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Abstract

In this thesis, we first develop a second-order corrected-explicit-implicit domain

decomposition scheme (SCEIDD) for the parallel approximation of convection-

diffusion equations over multi-block sub-domains. The stability and convergence

properties of the SCEIDD scheme is analyzed, and it is proved that this scheme is

unconditionally stable. Moreover, it is proved that the SCEIDD scheme is second-

order accurate in time and space. Furthermore, three different numerical experi-

ments are performed to verify the theoretical results. In all the experiments the

SCEIDD scheme is compared with the EIPCMU2D scheme which is first-order in

time.

Then, we focus on the application of numerical PDEs in wind farm power op-

timization. We develop a model for wind farm power optimization while consid-

ering the wake interaction among wind turbines. The proposed model is a PDE-

constrained optimization model with the objective of maximizing the total power of

the wind turbines where the three-dimensional Navier-Stokes equations are among
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the constraints. Moreover, we develop an efficient numerical algorithm to solve the

model. This numerical algorithm is based on the pattern search method, the actu-

ator line method and a numerical scheme which is used to solve the Navier-Stokes

equations. Furthermore, the proposed numerical algorithm is used to investigate

the wake structures. Numerical results are consistent with the field-tested results.

Moreover, we find that by optimizing the turbines' operation while considering the

wake effect, we can gain an additional 8% in the total power.

Finally, we relax the deterministic assumption for the incoming wind speed. The

developed model is ultimately a PDE-constrained stochastic optimization model.

Moreover, we develop an efficient numerical algorithm to solve this model. This

numerical algorithm is based on the Monte Carlo simulation method, the pattern

search method, the actuator line method and the corrected-explicit-implicit do-

main decomposition scheme which we develop for the parallel approximation of

three-dimensional Navier-Stokes equations. The developed numerical algorithm,

the parallel scheme, and the model are validated by a benchmark used in the litera-

ture and the experimental data. We find that by optimizing the turbines' operation

and considering the randomness of incoming wind speed, we can gain an additional

9% in total power.
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1 Introduction

1.1 Background

Unsteady convection-diffusion equations are important time-dependent partial dif-

ferential equations that their numerical solutions arise in many important applica-

tions in science and engineering, such as simulation of underground water pollution,

oil reservoir simulation, wind flow simulation, etc. (see [5, 8, 61, 64, 69]). In such

problems, the convection term essentially dominates the diffusion term, leading

to a nearly hyperbolic set of governing partial differential equations. Standard

numerical methods are not capable of computing the solutions of such equations.

They often introduce nonphysical oscillations into the approximated solutions, or

they only have a first-order accuracy in space. To improve the accuracy of these

schemes and avoid their oscillations, modified upwind schemes [48] that numeri-

cally simulate the direction of propagation of information in a flow field have been

studied. Although modified upwind schemes suppress oscillations in numerical

solutions, they could have a less promising performance for solving convection-
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diffusion equations in large-scale applications. In these applications, an extremely

refined global mesh is needed which will increase the computational cost dramat-

ically. Domain decomposition methods (DDMs) provide a feasible approach for

handling these problems. DDMs reduce the computational cost by decomposing

the global domain into smaller subdomains and solve sub-problems in different sub-

domains in parallel. For the parallel approximation of time-dependent parabolic

equations, some explicit-implicit DDMs on non-overlapping subdomains were de-

veloped in [9, 17, 20, 45, 46]. The explicit-implicit domain decomposition (EIDD)

method proposed by Kuznetsov [45] used a fully explicit scheme on the bound-

ary of subdomains which causes numerical instability. To reduce the numerical

instability, Dawson and Dupont [17] factorized the fully explicit scheme used on

the boundary of subdomains into a partially explicit and partially implicit scheme.

Their EIDD method achieved a better numerical stability; however, it was still

not unconditionally stable. A penalized EIDD proposed by Black [9] achieved a

numerically verified unconditional stability; nevertheless, it had a time step size

restriction to attain a first-order temporal accuracy. To improve time step size

restrictions of the EIDD methods, Du, Mu and Wu [20] proposed an alternative

approach by using a multi-step explicit scheme on the interfaces of subdomains. To

eliminate time step size restrictions of the EIDD methods, Zhuang and Sun [114]

proposed a class of stabilized explicit-implicit domain decomposition algorithms by
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adding a stabilization step to the EIDD methods. Recently, a new technique called

implicit correction in [47,84,111,112] ] is adopted to improve the parallel efficiency

of EIDD methods by easing the time step-size restriction. The idea is to replace

the predicted values on the interfaces with the new solutions computed by some

implicit correction scheme, once the subdomain solutions are available at each time

level. By adding the correction step to EIDD methods, the CEIDD algorithms ex-

hibit much better numerical stability. Recently, the EIDD and CEIDD methods for

the parabolic equations have been extended for the convection-diffusion equations

in [19,113]. Du and Liang [19] proposed an efficient EIDD methods by combining a

splitting technique with the non-overlapping decomposition method. They used a

multi-level explicit upstream scheme to compute the interface values on the bound-

aries of subdomains while the interior values of subdomains were computed by the

splitting upstream one-dimensional implicit schemes. The CEIDD scheme proposed

by Zhu [113] predicts the values on the interfaces by the linear combinations of the

values at the current and previous time steps, computes the interior values in sub-

domains by an implicit modified upwind scheme and recomputes the values on the

interfaces by an implicit scheme. However, the EIDD and CEIDD schemes devel-

oped in [19,113] for convection-diffusion equations are only first-order in time step.

It is an important and difficult task to develop time high-order non-overlapping

domain decomposition schemes for convection-diffusion equations.
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Numerical solutions of convection-diffusion equations arise in many important

applications such as wind flow simulation which is essential for analyzing wind

energy production of a wind farm. Wind energy, as an alternative to fossil fu-

els, is clean, plentiful, widely distributed, and it produces no greenhouse gas. It

is an established source of energy, and its share in generating electricity has ex-

perienced a tremendous increase in the past decade. For example, Canada has

experienced an average growth rate of 23% per year in generating electricity from

wind energy in the past five years. Currently, wind energy is the fastest-growing

source of electricity in the world and it is estimated that it will generate up to

18% of the world' s electricity by 2050. One of the keys of realizing this goal is to

improve wind turbine' s performance in terms of power production. In this frame-

work, the first step is how to analyze the performance of a single wind turbine.

Analyzing and modeling a single wind turbine can be conveniently and elegantly

conducted, using Blade Element Momentum (BEM) theory [12, 38, 54, 55, 66, 93].

The BEM is based on dividing the flow into annular control volumes, applying

momentum balance and energy conservation in each control volume. The annuli

are bounded by stream surfaces that enclose the rotor and extend from far up-

stream to far downstream. This method is simple to apply and has been popular

for many years in analyzing the performance of a horizontal axis wind turbine.

However, the BEM has limitations such as no aerodynamic interactions between
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different blade elements, and it usually underpredicts the power generated by a

wind turbine (see [38, 60]). It is, therefore, necessary to use different methods to

analyze the performance of a wind turbine. One such method is the vortex wake

method [10,59,62,83,88,102] which is computationally expensive and another is the

asymptotic acceleration potential method [36,100] which uses linearized flow equa-

tion for modeling of the airflow around wind turbines. Recently, the generalized

actuator disk method [14,15,24,31,53,72,73,80,89,90,92,106] has been developed

for analyzing a wind turbine. This method is a straightforward extension of the

BEM method, and it uses tabulated airfoil data along with the conservation laws.

The main difference is that, whereas the BEM is based on the assumption that

there are no aerodynamic interactions between the flow in radial stream tubes,

the generalized actuator disc method has no restriction on the kinematics of the

flow since it is governed by the unsteady Navier-Stokes equations. The main lim-

itation of the generalized actuator disc method is that it is valid for rotationally

symmetric flow conditions since the forces at each spanwise section are distributed

evenly. This also implies that the presence of the blades is taken as an integrated

part in the circumferential direction, and hence the method cannot capture the

influence of the tip vortices. To overcome the limitations of the generalized actu-

ator disk model, actuator line model was developed by Sorensen [91]. This model

combines three-dimensional Navier-Stokes equations with a technique in which the
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loading is distributed along lines representing the blades of the turbine in a fully

three-dimensional domain. The kinematics of the wake is determined by solving

Navier-Stokes equations numerically in one of three different formulations namely

velocity-pressure [25,30,95,101,103,104,108], vorticity-vector-potential [23,29,51],

or velocity-vorticity formulation [13,28,33,99,105,107,109,110], whereas the influ-

ence of the rotating blades on the flow field is included using tabulated airfoil data.

The airfoil data and subsequent loading are determined iteratively by computing

local angles of attack from the movement of the blades and the local flow field.

This model has been used by other researchers [78, 82, 86, 97, 98] for studying the

wake properties and analyzing the performance of a single turbine. However, it is

quite challenging to analyze the performance of multiple turbines due to the wake

interactions amongst the turbines.

Currently, wind turbines are operating at their own local optimum points to

maximize their own performance. Many studies have shown that operating all

turbines in a wind farm at their local optimum points leads to the suboptimal

performance of the overall wind farm [43,58]. This is due to the wake generated by

upstream wind turbines which alter the flow field and lead to a wind velocity deficit

in downstream wind turbines [16,77,81,91]. As a consequence, if all wind turbines

operate at their own local optimum points then downstream wind turbines cannot

generate power as much as upstream wind turbines. For instance, Neustadter and
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Spera [65] investigated the performance of three turbines separated by seven rotor

diameters. They found that if all turbines operate at their own local optimum

points then the power loss of downstream turbines can be as high as 10%. Another

investigation by Rebecca [6] shows that the power loss of downstream wind turbines

in full wake conditions can be as high as 30%, but when averaged over different

wind directions, it is around 5-8%. These studies confirm that operating turbines

at their local optimum points will lead to suboptimal performance of the overall

wind farm. Therefore, in order to improve the performance of the overall wind

farm, it is necessary to find the global optimum points of wind turbines by taking

into account the impact of the wake on power production. Though Patricio [96]

studied the total power optimization in a wind farm while considering the wake

effect, he used an improvised BEM-alike method to model wind turbines' wake.

Furthermore, he applied a rather inefficient grid search method to find optimum

operating points of the upstream wind turbine while assuming that the downstream

turbine is operating at its own local optimum points. Most of the work related to

the power optimization in a wind farm study the power loss when the downstream

turbines are operating at their local optimum points [6,37,39,42,65,96] or wake of

wind turbines is modeled via an improvised BEM-alike method. Little work has

been done on explicitly optimizing the total power production of wind turbines

while considering the wake impact.
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One of the main characteristics of wind power generated by turbines in a wind

farm is the inherent variability and unpredictability of the generation source which

is incoming wind. Therefore, to further improve the performance of the overall wind

farm, the random behavior of incoming wind speed must be taken into account

when optimizing the total power and finding the global optimum points of wind

turbines. To find a good probability distribution function to describe this random

behavior of wind speed, a large number of studies have been done. Generally, the

two-parameter Weibull distribution is widely used and accepted in the specialized

literature on wind energy and other renewable energy sources [57, 79]. However,

very little work has been done on explicitly optimizing the total power production

of wind turbines while considering the randomness of wind speed as well as the

wake impact.

Unsteady Navier-Stokes equations are not only important in modeling the air-

flow in a wind farm, but also play a vital role in providing solutions for a wide

range of engineering problems [1, 26, 71]. In such problems, obtaining an accurate

simulation of wind flow governed by the Navier-Stokes equations requires a great

number of mesh points which can lead to the problem of solving large linear sys-

tems. It is, therefore, greatly beneficial to obtain solutions in reasonable time.

However, even without real-time applications in mind, reducing the computational

cost is always beneficial, as this enables us to study increasingly large and complex
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problems. There seems to be an agreement that direct methods are too expensive

to handle them efficiently. Hence, an alternative approach is desired. Among the

possible alternative paths that can be followed, domain decomposition comes to

mind quite naturally. The task of approximating the wind flow in a wind farm

could be split into small tasks that are be dealt with in parallel. The Schwartz-

type (overlapping domains) decomposition algorithm for the numerical solution of

the Navier-Stokes equations and other methods have been studied in [4, 27]. In

the framework of explicit-implicit domain decomposition scheme for the Navier-

Stokes equations, very little work has been done. It is, therefore, very desirable to

develop an efficient explicit-implicit domain decomposition scheme to solve three-

dimensional Navier-Stokes equations in reasonable time.

1.2 Work of the Thesis

In this thesis, we first develop an unconditional second-order corrected-explicit-

implicit domain decomposition scheme (SCEIDD) over non-overlapping subdo-

mains for the parallel approximation of convection-diffusion equations. This is

achieved by combining a second-order extrapolation scheme, implicit correction

technique, and modified upwind schemes. In the proposed SCEIDD scheme, the

computational domain at first is decomposed into non-overlapping subdomains and

then each subdomain is discretized by a nonuniformly partitioned mesh. Moreover,
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at each time step, we predict the values at the interface mesh points by a time

second-order extrapolation scheme. Then, we approximate the interior values in

each subdomain by a second-order implicit scheme where the time derivative is

discretized by the linear combination of the backward Euler differences at the cur-

rent and previous time steps and the convection-diffusion term is discretized by the

modified upwind scheme. Finally, once the subdomain solutions are available, we

correct the predicted values at the interface mesh points. The proposed SCEIDD

scheme has three main features. First, it is unconditionally stable; hence, there is no

restriction on time step size. Second, it has second-order accuracy in both time and

space whereas previously developed domain decomposition schemes have the first-

order accuracy in time. Third, in the proposed SCEIDD scheme, non-overlapping

subdomains have simple geometry, while in comparison to the scheme proposed

in [85], non-overlapping subdomains have complicated geometry. Consequently,

less effort is needed for numerical simulation. We also analyze the stability and

convergence properties of the SCEIDD scheme for convection-diffusion equations

with variable coefficients. We prove that the proposed scheme is unconditionally

stable, and it is second-order accurate in both time and space. Finally, we pro-

vide three different numerical experiments to verify the theoretical results. The

goal of the first experiment is to show that the SCEIDD scheme is second-order in

time and space. The goal of the second experiment is to show that the SCEIDD

10



scheme maintains its accuracy as the number of subdomains increases. The goal

of the third experiment is to show that the SCEIDD scheme estimates accurately

the solution of convection-diffusion equations with a discontinuous initial solution.

Furthermore, in all the experiments the SCEIDD scheme is compared with the

EIPCMU2D scheme [113] which is first-order in time and developed recently for

the parallel approximation of the convection-diffusion equations.

In this thesis, we then focus on the application of numerical PDEs in wind

farm power optimization. We develop a model for wind farm power optimiza-

tion while considering the wake interaction among wind turbines. The proposed

model is a PDE-constrained optimization model with the objective of maximizing

the total power of the wind turbines where the three-dimensional Navier-Stokes

equations are the constraints. In this model, the three-dimensional Navier-Stokes

equations are used to model the airflow as well as interacting wakes in the wind

farm where the external forces in these equations represent the loading of wind

turbines. Moreover, we develop an efficient numerical algorithm to solve the model

accurately. This numerical algorithm is based on the pattern search method, the

actuator line method and an efficient numerical scheme which is used to solve

the three-dimensional Navier-Stokes equations in velocity-vorticity formulation. In

the proposed numerical algorithm, we employ patten search method to find the

global optimum operating points of wind turbines. Moreover, in the pattern search

11



method, we evaluate the objective value, the total power of wind turbines, us-

ing the actuator line method and the three-dimensional Navier-Stokes equations

solver. In this regard, the three-dimensional Navier-Stokes equations solver and

the actuator line are connected in the following sense: 1) an input parameter of the

three-dimensional Navier-Stokes equations solver, the external forces, is an output

of the actuator line, and an input parameter of the actuator line, the wind speed

at the plane of wind turbines, is an output of the three-dimensional Navier-Stokes

equations solver. We iterate through the three-dimensional Navier-Stokes equations

solver and the actuator line method until convergence. Moreover, in the actuator

line method, the external forces which represent the loading of wind turbines are

computed using tabulated airfoil data. Furthermore, we employ an efficient nu-

merical scheme which uses the false-transient technique, backward Euler method

and explicit scheme to solve the three-dimensional Navier-Stokes equations in a

velocity-vorticity formulation. In this numerical scheme, the velocity Poisson equa-

tions are made parabolic using the false-transient technique and are solved along

with the vorticity transport equations. The parabolic velocity Poisson equations

are advanced in time using backward Euler method and are solved along with the

continuity equation for velocities, thus ensuring a divergence-free velocity field. The

vorticity transport equations in conservative form are solved using explicit scheme

for the non-linear term and implicit scheme for viscosity term. Finally, we present

12



two numerical case studies to test the efficiency and accuracy of the proposed nu-

merical algorithm. We first apply the proposed numerical algorithm to find the

optimal operating points of a single turbine as well as to investigate the near-wake

and far-wake structures. These optimal operating points and the wake charac-

teristic are consistent with the field-tested results. Then, we apply the proposed

numerical algorithm to find the global optimal operating points of multiple turbines

operating in a wind farm. We find that by operating wind turbines at their global

optimal operating points, we can safely gain an additional 8% in the total power.

Finally, in this thesis, to push the proposed model to further realism, we re-

lax the deterministic assumption for the incoming wind speed on the boundaries

of wind farm and treat it as a stochastic variable. The developed model is ulti-

mately a PDE-constrained stochastic optimization model; the decision variables,

the objective function, and the constraints are the same as in the previously devel-

oped model. Moreover, we develop an efficient numerical algorithm to solve this

model accurately and efficiently. This numerical algorithm is based on the Monte

Carlo simulation method, the pattern search method, the actuator line method and

the corrected-explicit-implicit domain decomposition scheme which we develop for

the parallel approximation of three-dimensional Navier-Stokes equations. In the

proposed numerical algorithm, we apply the pattern search method to find the op-

erating points of wind turbines which optimize the total power. Furthermore, in the

13



pattern search method, we compute the objective value, the total power, for a given

decision variables, operating points of wind turbines, using Monte Carlo simulation

method, the actuator line method and the corrected-explicit-implicit domain de-

composition scheme. First, Monte Carlo simulation method is used for generating

scenarios where the random samples are drawn from the doubly truncated Weibull

distribution with the given probability distribution function. Then, for a given sam-

ple which is the speed of the incoming wind, we apply the actuator line method and

the three-dimensional Navier-Stokes equations solver to compute the total power.

Moreover, we develop a corrected-explicit-implicit domain decomposition scheme

for the parallel approximation of the three-dimensional Navier-Stokes equations

in a velocity-vorticity formulation. This is achieved by combining a second-order

extrapolation scheme, an implicit correction technique, and the false-transient tech-

nique. In the proposed scheme, at each time step, we predict the values of velocity

at interface mesh points by a time second-order extrapolation scheme. Then, we ap-

proximate the interior values of velocity in each subdomain using the backward Eu-

ler method, an explicit scheme, an implicit scheme and the false-transient method.

Subsequently, once the subdomain solutions are available, we correct the predicted

values of velocity at the interface mesh points. Moreover, we use similar steps to

those of solving the velocity equations to solve the vorticity transport equations.

Finally, the developed numerical algorithm, the parallel scheme and the model are
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validated by a benchmark used in the literature and the experimental data. It is

shown that by taking into account the randomness of wind speed and optimizing

the total power, we can improve the performance of wind turbines in a wind farm.

We find that by optimizing the turbines' operation and taking into account the

randomness of wind speed, we can gain an additional 9%, in total power.

15



2 Second-Order Domain Decomposition Scheme

2.1 Convection Diffusion Equations

In this chapter, we develop a second-order corrected-explicit-implicit domain de-

composition scheme (SCEIDD) for the parallel approximation of convection-diffusion

equations over multi-block sub-domains. The stability and error analysis of the

SCEIDD scheme for convection-diffusion equations with variable coefficients are

analyzed. We prove that the SCEIDD scheme has second-order accuracy in both

time and space, and it has no stability condition. Moreover, numerical experiments

are provided to verify the theoretical results.
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2.2 Second-Order Corrected-Explicit-Implicit DD Scheme

Consider the following two-dimensional convection-diffusion equations:










































ut = L(u) + f(X, t), (X, t) ∈ Ω× (0, T ],

u(X, t) = 0, (X, t) ∈ ∂Ω× (0, T ],

u(X, 0) = u0(X), X ∈ Ω,

(2.1)

where the operator L(u), is defined as:

L(u) =
∂

∂x
(a1(x, y)

∂

∂x
u(x, y, t)) +

∂

∂y
(a2(x, y)

∂

∂y
u(x, y, t))

−
∂

∂x
(b1(x, y)u(x, y, t))−

∂

∂y
(b2(x, y)u(x, y, t))

−c(x, y)u(x, y, t). (2.2)

Here the variables t ≥ 0, X = (x, y), T > 0, Ω = (0, 1) × (0, 1) and ∂Ω denote

the time, spatial coordinates, final time, the computational domain and the bound-

ary of the computational domain, respectively; f(X, t) is the given source term,

and a1(x, y), a2(x, y) are the diffusion coefficients where a1(x, y), a2(x, y) ≥ a0 >

0, (x, y) ∈ Ω̄;
−→
b (x, y) = (b1(x, y), b2(x, y)) is the velocity field, and u0(X) is the

given initial condition. Let tn = nτ be the time step where τ = T/N , for some

integer N , and let discretize the computational domain Ω by a uniformly parti-

tioned mesh Ωh. Th points in the mesh Ωh are (xi, yj), xi = ihx, 1 ≤ i ≤ Jx − 1,

yj = jhy, 1 ≤ j ≤ Jy − 1, where hx = 1/Jx and hy = 1/Jy, for some integers

Jx > 0 and Jy > 0, are the spatial step sizes. Now, we introduce a mesh function
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Un
i,j = U(xi, yj, tn) which approximates the exact solution at the mesh points, and

it is used in the following notation:

∂tU
n
i,j =

Un
i,j − Un−1

i,j

τ
, δxUn

i− 1

2
,j

=
Un

i,j − Un
i−1,j

hx

, δyUn
i,j− 1

2

=
Un

i,j − Un
i,j−1

hy

, (2.3)

δx(b1U
n,ux)i,j = 1

hx
(b1i+ 1

2
,jU

n,ux

i+ 1

2
,j
− b1i− 1

2
,jU

n,ux

i− 1

2
,j

), (2.4)

δy(b2U
n,uy)i,j = 1

hy
(b2i,j+ 1

2
Un,uy

i,j+ 1

2

− b2i,j− 1

2
Un,uy

i,j− 1

2

), (2.5)

where

Un,ux

i+ 1

2
,j

= H(b1i+ 1

2
,j)U

n
i,j + (1−H(b1i+ 1

2
,j))U

n
i+1,j, (2.6)

Un,uy

i,j+ 1

2

= H(b2i.j+ 1

2
)Un

i,j + (1−H(b2i,j+ 1

2
))Un

i,j+1, (2.7)

and

δ2
x,a∗

1
Un

i,j = 1
hx

(a∗
1i+ 1

2
,j

δxUn
i+ 1

2
,j
− a∗

1i− 1

2
,j

δxUn
i− 1

2
,j

), (2.8)

δ2
y,a∗

2
Un

i,j = 1
hy

(a∗
2i,j+ 1

2

δyUn
i,j+ 1

2

− a∗
2i,j− 1

2

δyUn
i,j− 1

2

), (2.9)

where

a∗
1i− 1

2
,j

=
2a2

1i−
1
2

,j

2a
1i−

1
2

,j
+hx|b

1i−
1
2

,j
|
, (2.10)

a∗
2i,j− 1

2

=
2a2

2i,j−
1
2

2a
2i,j−

1
2

+hy |b
2i,j−

1
2

|
. (2.11)

Here the piecewise function H(x) is defined by:

H(x) =



























1, x ≥ 0,

0, x < 0.
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Figure 2.1: Multiple subdomains.

To develop a second-order finite difference scheme in time, we use the linear com-

bination of the backward Euler differences at the current and previous time steps

to discretize the time derivative ∂u
∂t

:

Lτ Un
i,j = ∂tU

n
i,j +

1

2τ
(Un

i,j − 2Un−1
i,j + Un−2

i,j ). (2.12)

To approximate the convection-diffusion term by a second-order finite difference

scheme, we define the operator Lh(U) which is based on the modified upwind scheme

[49,50,61]:

LhUn
i,j = δ2

x,a∗

1
Un

i,j + δ2
y,a∗

2
Un

i,j − δx(b1U
n,ux)i,j − δy(b2U

n,uy)i,j − ci,jU
n
i,j.(2.13)

Now, we decompose the computational domain Ω = (0, 1) × (0, 1) into (P +
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1)(Q + 1) non-overlapping subdomains as shown in Figure 1. In general, P and Q

are related to the size of the problem and the number of processors in the computer

platform. The subdomains may have different widths and heights. For the theoret-

ical analysis, we assume that each subdomain has at least one mesh point, implying

2 ≤ P + 1 ≤
⌊

Jx

2

⌋

− 1, 2 ≤ Q + 1 ≤
⌊

Jy

2

⌋

− 1. Associated to the subdomains, there

are (P + 1)(Q + 1) interfaces. Let Γh = Γ1
h

⋃

Γ2
h be the set of all mesh points on

the interfaces, and let Γ3
h = Γ1

h ∩ Γ2
h be the set of intersection points of interface

boundaries where Γ1
h and Γ2

h are given by:

Γ1
h = {(iαhx, jhy) | 4 ≤ iα + 2 ≤ iα+1, 1 ≤ α ≤ P, 1 ≤ j ≤ (Jy − 1)},

Γ2
h = {(ihx, jβhy) | 4 ≤ jβ + 2 ≤ jβ+1, 1 ≤ β ≤ Q, 1 ≤ i ≤ (Jx − 1)}.(2.14)

Here, i0 = 0, iP +1 = Jx, j0 = 0 and jQ+1 = Jy. Therefore, Ωh is decomposed into

(P + 1)(Q + 1) non-overlapping subdomains:

Ωhα,β = {(ihx, jhy) | iα−1 < i < iα, jβ−1 < j < jβ}.

Now, we propose a second-order corrected-explicit-implicit domain decom-

position scheme (SCEIDD) over multi-block subdomains which consists of the

following steps (for n ≥ 2):

Step 1. Apply the following explicit scheme to predict the value of Un
i,j at the

interface mesh points by:

Ũn
i,j = 2Un−1

i,j − Un−2
i,j on Γh. (2.15)
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Step 2. Compute the value of Un
i,j at the interior points of subdomains by:























Un
i,j − Un−1

i,j

τ
+

(Un
i,j − 2Un−1

i,j + Un−2
i,j )

2τ
= LhUn

i,j + fn
i,j on Ωh\{Γh ∪ ∂Ωh} ,

Un
i,j = Ũn

i.j on Γh .

(2.16)

Step 3. Correct the predicted value of Un
i,j at the interface mesh points by:























Un
i,j − Un−1

i,j

τ
+

(Un
i,j − 2Un−1

i,j + Un−2
i,j )

2τ
= LhUn

i,j + fn
i,j on Γh\Γ

3
h ,

Un
i,j = Ũn

i.j on Γ3
h.

(2.17)

Step 4. Correct the predicted value of Un
i,j at the intersection points of interface

boundaries by:

Un
i,j − Un−1

i,j

τ
+

(Un
i,j − 2Un−1

i,j + Un−2
i,j )

2τ
= LhUn

i,j + fn
i,j on Γ3

h. (2.18)

The boundary conditions are:

Un
i,j = 0, (xi, yj) ∈ ∂Ωh, i = 1 . . . Jx, j = 1 . . . Jy, (2.19)

and the initial values are given by:

U0
i,j = u0(ih, jh), on Ωh. (2.20)

In the proposed scheme, for the first time step, we can compute the value o f U1
i,j

by any scheme which has second-order accuracy both in time and space such as the

Crank-Nicolson scheme:






















∂tU
1
i,j = Lh

U1
i,j + U0

i,j

2
+ f

1

2

i,j on Ωh,

U1
i,j = 0 on ∂Ωh.

(2.21)
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The SCEIDD scheme (2.15)-(2.21) is simple, and it can be used for a parallel imple-

mentation to tackle the high computational complexity when solving convection-

diffusion equations in large-scale applications. The steps for parallel implementa-

tion of the scheme is given in Algorithm 1.

2.3 Stability Analysis of the SCEIDD Scheme

In this section, we analyze the stability of the SCEIDD scheme. Throughout this

section, any subscript C will denote a generic positive constant that depends on

the exact solution u(x, y, t), the convection and diffusion coefficients. However, it

is independent of the time step τ , the spatial steps hx, hy, and the number of sub-

domains (P+1)(Q+1). First, we give the definition of the inner product of two

mesh functions and L2 norm of a mesh function which will be used in the stability

analysis of the SCEIDD scheme. The inner product of two mesh functions Un and

V n is defined by 〈Un, V n〉 =
∑Jx

i=1

∑Jy

j=1 Un
i,jV

n
i,jhxhy , and the L2 norm of Un is

defined by ‖Un‖2 = 〈Un, Un〉. Now, we define H1 seminorms which are based on

the L2 norm:

|Un|2a∗,1 = ‖
√

a∗
1δxUn‖2 + ‖

√

a∗
2δyUn‖2,

|Un|2b,1 = ‖
√

b+
1 hxδxUn‖2 + ‖

√

b+
2 hyδyUn‖2,
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Algorithm 1 Parallel SCEIDD algorithm for 2-D convection-diffusion problems

1: Set U0
i,j = u(ihx, jhy, n) for i = 0, . . . , Jx, j = 0, . . . , Jy.

2: Solve the linear system of equations (2.21) to obtain U1
i,j, i = 1, . . . , Jx − 1,

j = 1, . . . , Jy − 1.

3: Assign the subdomain Ωhα,β to the processor Pα,β (α = 1, . . . , (P + 1), β =

1, . . . , (Q + 1)) and the interface Γh to the processor I.

4: while n ≤ N do

5: At the processor I, predict the value of Un
i,j at the interface mesh points using

(2.15), then pass the interface values associated with the subdomain Ωhα,β to

the processor Pα,β (α = 1, . . . , (P + 1), β = 1, . . . , (Q + 1)).

6: At the processors P1,1,. . . , PP +1,Q+1, solve the linear system of equations

(2.16) to obtain the value of Un
i,j at the interior points of subdomains in

parallel. Then, at each processor Pα,β, pass the values of Un
i,j, at the mesh

points adjacent to the interface mesh points, to the processor I for correction

computation.

7: At the processor I, correct the predicted values of Un
i,j at the interface mesh

points and at the intersection points of interface boundaries by (2.17) and

(2.18), respectively.

8: end while
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where

‖
√

a∗
1δxUn‖2 =

Jx
∑

i=1

Jy
∑

j=1

a∗
1i− 1

2
,j

(δxUn
i− 1

2
,j

)2hxhy,

‖
√

a∗
2δyUn‖2 =

Jx
∑

i=1

Jy
∑

j=1

a∗
2i,j− 1

2

(δyUn
i,j− 1

2

)2hxhy,

‖
√

b+
1 hxδxUn‖2 =

Jx
∑

i=1

Jy
∑

j=1

b+
1i− 1

2
,j

(δxUn
i− 1

2
,j

)2h2
xhy,

‖
√

b+
2 hyδyUn‖2 =

Jx
∑

i=1

Jy
∑

j=1

b+
2i,j− 1

2

(δyUn
i,j− 1

2

)2hxh2
y.

In the above equations, b+(x, y) = b(x, y)H(b(x, y)) and b−(x, y) = −b(x, y)(1 −

H(b(x, y))), which is equivalent to the definition of positive and negative parts of

a function. Before performing the stability analysis, we introduce the following

notations which are used to obtain the compact form of the SCEIDD scheme:

Q̃n
1ai,j =







































a∗
1i− 1

2
,j

h−2
x (Ũn

i−1,j − Un
i−1,j) if (xi−1, yj) ∈ Γ1

h,

a∗
1i+ 1

2
,j

h−2
x (Ũn

i+1,j − Un
i+1,j) if (xi+1, yj) ∈ Γ1

h,

0 Otherwise,

Q̃n
2ai,j =







































a∗
2i,j− 1

2

h−2
y (Ũn

i,j−1 − Un
i,j−1) if (xi, yj−1) ∈ Γ2

h,

a∗
2i,j+ 1

2

h−2
y (Ũn

i,j+1 − Un
i,j+1) if (xi, yj+1) ∈ Γ2

h,

0 Otherwise,
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Q̃n
1bi,j =







































b+
1i− 1

2
,j

h−1
x (Ũn

i−1,j − Un
i−1,j) if (xi−1, yj) ∈ Γ1

h,

b−
1i+ 1

2
,j

h−1
x (Ũn

i+1,j − Un
i+1,j) if (xi+1, yj) ∈ Γ1

h,

0 Otherwise,

Q̃n
2bi,j =







































b+
2i,j− 1

2

h−1
y (Ũn

i,j−1 − Un
i,j−1) if (xi, yj−1) ∈ Γ2

h,

b−
2i,j+ 1

2

h−1
y (Ũn

i,j+1 − Un
i,j+1) if (xi, yj+1) ∈ Γ2

h,

0 Otherwise.

Therefore, using the above equations, the SCEIDD scheme (2.15)-(2.20) can be

written in a compact form:

Lτ Un
i,j = LhUn

i,j + fn
i,j + Q̃n

1ai,j + Q̃n
1bi,j + Q̃n

2ai,j + Q̃n
2bi,j. (2.22)

Lemma 2.3.1. Let Un be a mesh function satisfying the boundary condition Un
i,j =

0, (xi, yj) ∈ ∂Ωh. Then it holds that:

〈δ2
x,a∗

1
Un + δ2

y,a∗

2
Un, ∂tU

n〉 = −
1

2
∂t(|U

n|2a∗,1)−
τ

2
|∂tU

n|2a∗,1, (2.23)

〈
∂tU

n − ∂tU
n−1

2
, ∂tU

n〉 =
τ

4
∂t(‖∂tU

n‖2) +
1

4
‖∂tU

n − ∂tU
n−1‖2, (2.24)

‖Un‖2 ≤ C|Un|2a∗,1. (2.25)
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Proof: From the boundary condition and Abel' s formulation we have:

〈δ2
x,a∗

1
Un + δ2

y,a∗

2
Un, ∂tU

n〉 =

−
Jx−1
∑

i=1

Jy−1
∑

j=1

1

τ
a∗

1i+ 1

2
,j

δxUn
i+ 1

2
,j

(a∗
1i+ 1

2
,j

δxUn
i+ 1

2
,j
− a∗

1i− 1

2
,j

δxUn−1
i− 1

2
,j

)hxhy,

−
Jx−1
∑

i=1

Jy−1
∑

j=1

1

τ
a∗

2i,j+ 1

2

δxUn
i,j+ 1

2

(a∗
2i,j+ 1

2

δxUn
i,j+ 1

2

− a∗
2i,j− 1

2

δxUn−1
i,j− 1

2

)hxhy.

(2.26)

Then, one can derive the equation (2.23) from the above equation by applying the

following equality:

a(b− c) =
1

2
|a− c|2 −

1

2
|a− b|2 +

1

2
|b|2 −

1

2
|c|2 for any a, b, c ∈ R. (2.27)

Using (2.27), one can also derive the equation (2.24) which is straightforward.

Now, we complete the proof by deriving the inequality (2.25). From the boundary

condition, Un
i,j = 0 on ∂Ωh, we have:

Un
i,j = hxδxUn

1

2
,j

+ · · ·+ hxδxUn
i− 1

2
,j

.

Using the Schwartz inequality, we obtain:

|Un
i,j|

2 ≤ ih2
x

i
∑

k=1

|δxUn
k− 1

2
,j
|2 ≤ hx

Jx
∑

i=1

|δxUn
i− 1

2
,j
|2.

Multiplying both sides of the above inequality by hxhy and summing over i and j,

we get:

Jx
∑

i=1

Jy
∑

j=1

|Un
i,j|

2hxhy ≤
Jx
∑

i=1

Jy
∑

j=1

(hx

Jx
∑

i=1

|δxUn
i− 1

2
,j
|2)hxhy =

Jx
∑

i=1

hx(
Jx
∑

i=1

Jy
∑

j=1

|δxUn
i− 1

2
,j
|2hxhy)

≤ C|Un|2a∗,1.
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Lemma 2.3.2. Let Un be a mesh function satisfying the boundary condition Un
i,j =

0, (xi, yj) ∈ ∂Ωh. Then we have that:

〈δx(b1U
n,ux) + δy(b2U

n,uy), ∂tU
n〉 =

1

2
∂t(|U

n|2b,1) +
τ

2
|∂tU

n|2b,1

+ 〈(δxb1)U
n, ∂tU

n〉+
∑

i,j

b1i+ 1

2
,jδxUn

i+ 1

2
,j

∂tU
n
i,jhxhy

+ 〈(δyb2)U
n, ∂tU

n〉+
∑

i,j

b2i,j+ 1

2
δyUn

i,j+ 1

2

∂tU
n
i,jhxhy. (2.28)

Proof: Using the equations (2.4) and (2.6), we get:

〈δx(b1U
n,ux), ∂tU

n〉 =
∑

i,j

(b1i+ 1

2
,jH(b1i+ 1

2
,j)δxUn

i+ 1

2
,j

(∂tU
n
i+1,j − ∂tU

n
i,j)hxhy

+
1

hx

∑

i,j

(b1i+ 1

2
,jU

n
i+1,j − b1i− 1

2
,jU

n
i,j)∂tU

n
i,jhxhy

=
1

τ

∑

i,j

b+
1i+ 1

2
,j

δxUn
i+ 1

2
,j

(δxUn
i+ 1

2
,j
− δxUn−1

i+ 1

2
,j

)h2
xhy

+ 〈(δxb1)U
n, ∂tU

n〉+
∑

i,j

b1i+ 1

2
,jδxUn

i+ 1

2
,j

∂tU
n
i,jhxhy. (2.29)

In a similar way, using the equations (2.5) and (2.7), we have that:

〈δy(b2U
n,uy), ∂tU

n〉 =
1

τ

∑

i,j

b+
2i,j+ 1

2

δyUn
i,j+ 1

2

(δyUn
i,j+ 1

2

− δyUn−1
i,j+ 1

2

)hxh2
y +

〈(δyb2)U
n, ∂tU

n〉+
∑

i,j

b2i,j+ 1

2
δyUn

i,j+ 1

2

∂tU
n
i,jhxhy. (2.30)

Now, one can obtain the equation (2.28) by applying (2.27) in the equations (2.29)

and (2.30), and adding the two resulting equations.

Theorem 2.3.1. Let Un = {Un
i,j | n ≥ 0, 0 ≤ i ≤ Jx, 0 ≤ j ≤ Jy} be the solution

of the scheme (2.15)-(2.21). Then it holds that:

‖Un‖2 ≤ C

(

|U0|2a∗,1 + |U0|2b,1 + τ‖f
1

2‖2 + τ
n
∑

k=2

‖fk‖2

)

. (2.31)
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Proof: Let ‖|Un‖|2a∗,b = |Un|2a∗,1 + |Un|2b,1 + τ
2
(‖∂tU

n‖2). Then multiplying both

sides of the equation (2.22) by ∂tU
n
i,jhxhy, summing over i, j, and using Lemmas

(2.3.1) and (2.3.2) in the resulting equation lead to:

1

2
∂t(‖|U

n‖|2a∗,b) +
τ 2

4
‖∂2

t Un‖2 = −
τ

2
|∂tU

n|2a∗,1 −
τ

2
|∂tU

n|2b,1 − ‖∂tU
n‖2〉

−
∑

i,j

b1i+ 1

2
,jδxUn

i+ 1

2
,j

∂tU
n
i,jhxhy − 〈(δyb2)U

n, ∂tU
n〉 − 〈cUn, ∂tU

n〉

−
∑

i,j

b2i,j+ 1

2
δyUn

i,j+ 1

2

∂tU
n
i,jhxhy + 〈fn, ∂tU

n〉+ 〈Q̃n
1a, ∂tU

n〉

+ 〈Q̃n
1b, ∂tU

n〉+ 〈Q̃n
2a, ∂tU

n〉+ 〈Q̃n
2b, ∂tU

n − 〈(δxb1)U
n, ∂tU

n〉

(2.32)

where Q̃n
1a and Q̃n

2a are:

〈Q̃n
1a, ∂tU

n〉 =
∑

(xi,yj)∈Γ1
h

(a∗
1i+ 1

2
,j

h−2
x ∂tU

n
i+1,j + a∗

1i− 1

2
,j

h−2
x ∂tU

n
i−1,j)(Ũ

n
i,j − Un

i,j)hxhy,

(2.33)

〈Q̃n
2a, ∂tU

n〉 =
∑

(xi,yj)∈Γ2
h

(a∗
2i,j+ 1

2

h−2
y ∂tU

n
i,j+1 + a∗

2i,j− 1

2

h−2
y ∂tU

n
i,j−1)(Ũ

n
i,j − Un

i,j)hxhy.

(2.34)

Using the following well-known inequality:

ab < ηa2 + (4η)−1b2 a, b ∈ R, η ≥ 0, (2.35)
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and equation (2.25), we can derive that:

−〈(δxb1)U
n, ∂tU

n〉 − 〈(δyb2)U
n, ∂tU

n〉 − 〈cUn, ∂tU
n〉

≤ C‖Un‖+ η‖∂tU
n‖2

≤ C‖|Un‖|2a∗,b + η‖∂tU
n‖2. (2.36)

Using (2.35), one can also derive that:

−
∑

i,j

b1i+ 1

2
,jδxUn

i+ 1

2
,j

∂tU
n
i,jhxhy

−
∑

i,j

b2i,j+ 1

2
δyUn

i,j+ 1

2

∂tU
n
i,jhxhy + 〈fn, ∂tU

n〉

≤ C‖|Un‖|2a∗,b + η‖∂tU
n‖2 + C‖fn‖2. (2.37)

Inserting the equation (2.36) and the above inequality into (2.32), we obtain:

1

2
∂t(‖|U

n‖|2a∗,b) ≤ −
τ

2
|∂tU

n|2a∗,1 − ‖∂tU
n‖2 + 〈Q̃n

1a, ∂tU
n〉+ 〈Q̃n

1b, ∂tU
n〉

+〈Q̃n
2a, ∂tU

n〉+ 〈Q̃n
2b, ∂tU

n〉+ C‖|Un‖|2a∗,b + η‖∂tU
n‖2 + C‖fn‖2. (2.38)

Now, we analyze the term a∗
1i+ 1

2
,j

h−2
x ∂tU

n
i+1,j(Ũ

n
i,j − Un

i,j)hxhy in 〈Q̃n
1a, ∂tU

n〉 at the

mesh point (xi, yj) ∈ Γ1
h. Using (2.27), we get:

∂tU
n
i+1,j(Ũ

n
i,j − Un

i,j) = τ∂tU
n
i+1,j(∂tU

n−1
i,j − ∂tU

n
i,j)

=
τ

2
(|∂tU

n−1
i,j |

2 − |∂tU
n
i,j|

2 − |∂tU
n
i+1,j − ∂tU

n−1
i,j |

2

+ |∂tU
n
i+1,j − ∂tU

n
i,j|

2) (xi, yj) ∈ Γ1
h. (2.39)
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In similar way, we have:

∂tU
n
i−1,j(Ũ

n
i,j − Un

i,j) = τ∂tU
n
i−1,j(∂tU

n−1
i,j − ∂tU

n
i,j)

=
τ

2
(|∂tU

n−1
i,j |

2 − |∂tU
n
i,j|

2 − |∂tU
n
i−1,j − ∂tU

n−1
i,j |

2

+ |∂tU
n
i−1,j − ∂tU

n
i,j|

2) (xi, yj) ∈ Γ1
h. (2.40)

Inserting equations (2.39) and (2.40) into (2.33) yields:

〈Q̃n
1a, ∂tU

n〉 ≤
∑

(xi,yj)∈Γ1
h

a∗
1i+ 1

2
,j

h−2
x

τ

2
(|∂tU

n−1
i,j |

2 − |∂tU
n
i,j|

2)hxhy

+
∑

(xi,yj)∈Γ1
h

a∗
1i+ 1

2
,j

h−2
x

τ

2
|∂tU

n
i+1,j − ∂tU

n
i,j|

2hxhy

+
∑

(xi,yj)∈Γ1
h

a∗
1i− 1

2
,j

h−2
x

τ

2
(|∂tU

n−1
i,j |

2 − |∂tU
n
i,j|

2)hxhy

+
∑

(xi,yj)∈Γ1
h

a∗
1i− 1

2
,j

h−2
x

τ

2
|∂tU

n
i−1,j − ∂tU

n
i,j|

2hxhy. (2.41)

Now, we define:

W n
1Γ1

h
=

∑

(xi,yj)∈Γ1
h

τ 2

2
(a∗

1i− 1

2
,j

+ a∗
1i+ 1

2
,j

)h−2
x |∂tU

n
i,j|

2hxhy.

Then the equation (2.41) becomes:

〈Q̃n
1a, ∂tU

n〉 ≤ −
W n

1Γ1
h
−W n−1

1Γ1
h

τ
+

∑

(xi,yj)∈Γ1
h

a∗
1i+ 1

2
,j

h−2
x

τ

2
(|∂tU

n
i+1,j − ∂tU

n
i,j|

2)hxhy

+
∑

(xi,yj)∈Γ1
h

a∗
1i− 1

2
,j

h−2
x

τ

2
(|∂tU

n
i−1,j − ∂tU

n
i,j|

2)hxhy.

Using (2.27) in the above inequality, we obtain:

〈Q̃n
1a, ∂tU

n〉 ≤ −
W n

1Γ1
h
−W n−1

1Γ1
h

τ
+

∑

(xi,yj)∈Γ1
h

a∗
1i+ 1

2
,j

h−2
x

τ

2
(|∂tU

n
i+1,j − ∂tU

n
i,j|

2)hxhy

+
∑

(xi,yj)∈Γ1
h

a∗
1i− 1

2
,j

h−2
x

τ

2
(|∂tU

n
i−1,j − ∂tU

n
i,j|

2)hxhy + 2η‖∂tU
n‖2. (2.42)
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In similar way, we can show that:

〈Q̃n
2a, ∂tU

n〉 ≤ −
W n

2Γ2
h
−W n−1

2Γ2
h

τ
+

∑

(xi,yj)∈Γ2
h

a∗
2i,j+ 1

2

h−2
x

τ

2
(|∂tU

n
i,j+1 − ∂tU

n
i,j|

2)hxhy

+
∑

(xi,yj)∈Γ2
h

a∗
2i,j− 1

2

h−2
x

τ

2
(|∂tU

n
i,j−1 − ∂tU

n
i,j|

2)hxhy + 2η‖∂tU
n‖2, (2.43)

where

W n
1Γ2

h
=

∑

(xi,yj)∈Γ2
h

τ 2

2
(a∗

2i,j− 1

2

+ a∗
2i,j+ 1

2

)h−2
x |∂tU

n
i,j|

2hxhy. (2.44)

Inserting (2.42) and (2.43) into (2.38) yields:

1

2
∂t(‖|U

n‖|2a∗,b) ≤ −
τ

2
|∂tU

n|2a∗,1 − ‖∂tU
n‖2

+ 〈Q̃n
1b, ∂tU

n〉+ 〈Q̃n
2b, ∂tU

n〉+ C‖|Un‖|2a∗,b + η‖∂tU
n‖2 + C‖fn‖2

−
W n

1Γ1
h
−W n−1

1Γ1
h

τ
+

∑

(xi,yj)∈Γ1
h

a∗
1i+ 1

2
,j

h−2
x

τ

2
(|∂tU

n
i+1,j − ∂tU

n
i,j|

2)hxhy

+
∑

(xi,yj)∈Γ1
h

a∗
1i− 1

2
,j

h−2
x

τ

2
(|∂tU

n
i−1,j − ∂tU

n
i,j|

2)hxhy + 2η‖∂tU
n‖2

−
W n

2Γ2
h
−W n−1

2Γ2
h

τ
+

∑

(xi,yj)∈Γ2
h

a∗
2i,j+ 1

2

h−2
x

τ

2
(|∂tU

n
i,j+1 − ∂tU

n
i,j|

2)hxhy

+
∑

(xi,yj)∈Γ2
h

a∗
2i,j− 1

2

h−2
x

τ

2
(|∂tU

n
i,j−1 − ∂tU

n
i,j|

2)hxhy + 2η‖∂tU
n‖2.
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In the above inequality the following term is negative:

−
τ

2
|∂tU

n|2a∗,1 +
∑

(xi,yj)∈Γ1
h

a∗
1i+ 1

2
,j

h−2
x

τ

2
(|∂tU

n
i+1,j − ∂tU

n
i,j|

2)hxhy

+
∑

(xi,yj)∈Γ1
h

a∗
1i− 1

2
,j

h−2
x

τ

2
(|∂tU

n
i−1,j − ∂tU

n
i,j|

2)hxhy

+
∑

(xi,yj)∈Γ2
h

a∗
2i,j+ 1

2

h−2
x

τ

2
(|∂tU

n
i,j+1 − ∂tU

n
i,j|

2)hxhy

+
∑

(xi,yj)∈Γ2
h

a∗
2i,j− 1

2

h−2
x

τ

2
(|∂tU

n
i,j−1 − ∂tU

n
i,j|

2)hxhy ≤ 0.

Therefore, we obtain:

1

2
∂t(‖|U

n‖|2a∗,b) ≤ −‖∂tU
n‖2 −

W n
1Γ1

h
−W n−1

1Γ1
h

τ
−

W n
2Γ2

h
−W n−1

2Γ2
h

τ
〉

+ 〈Q̃n
1b + Q̃n

2b, ∂tU
n〉+ C‖|Un‖|2a∗,b

+ η‖∂tU
n‖2 + C‖fn‖2 + 4η‖∂tU

n‖2. (2.45)

Using (2.27), we can derive that:

〈Q̃n
1b + Q̃n

2b, ∂tU
n〉 ≤ C(W n

1Γ1
h

+ W n
2Γ2

h
) + η‖∂tU

n‖2. (2.46)

Let En = 1
2
(‖|Un‖|2a∗,b) + W n

1Γ1
h

+ W n
2Γ2

h
. Then, using (2.46), (2.45) becomes:

∂t(E
n) ≤ −‖∂tU

n‖2 + CEn + 6η‖∂tU
n‖2 + C‖fn‖2. (2.47)

Assuming η is small, then we get:

∂t(E
n) ≤ CEn + C‖fn‖2. (2.48)

Summing n from 2 to n leads to:

En ≤ E1 + Cτ
n
∑

2

Ek + Cτ
n
∑

2

‖fk‖2. (2.49)
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By the discrete Gronwall inequality, we have:

En ≤ exp(CT )

(

E1 + Cτ
n
∑

2

‖fk‖2

)

. (2.50)

Now, we complete the proof by approximating E1 in the following. Because the

value of U1
i,j in the SCEIDD scheme is computed by the Crank-Nicolson scheme,

we have:

1

2
‖∂tU

1‖2 + (2−
1

2
)‖∂tU

1‖2 = 〈Lh(U1 + U0), ∂tU
1〉+ 〈f

1

2 , ∂tU
1〉. (2.51)

Because:

〈δ2
x,a∗

1
U1 + δ2

x,a∗

1
U0, ∂tU

1〉 = −
∑

i,j

1

τ
a∗

1i+ 1

2
,j

(δxU1
i+ 1

2
,j

+ δxU0
i+ 1

2
,j

)(δxU1
i+ 1

2
,j
− U0

i+ 1

2
,j

),

it follows that:

〈δ2
x,a∗

1
(U1 + U0) + δ2

y,a∗

2
(U1 + U0), ∂tU

1〉 = −
1

τ
(|U1|2a∗,1 − |U

0|2a∗,1). (2.52)

In similar way, using (2.35), it can be derived that:

〈−δx(b1U
1,ux + b1U

0,ux) − δy(b2U
1,uy + b2U

0,uy), ∂tU
1〉 ≤ −

|U1|2b,1 − |U
0|2b,1

τ

+ C(|U1|2a∗,1 + |U0|2a∗,1) + η‖∂tU
1‖2.

Using the above inequality, (2.52), part 3 of Lemma 2.3.1, and (2.35) lead to:

〈Lh(U1 + U0), ∂tU
1〉 ≤ −∂t(|U1|2a∗,1 + |U1|2b,1) + C(|U1|2a∗,1 + |U0|2a∗,1) + η‖∂tU

1‖2.
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Inserting the above inequality in (2.51), applying (2.35) to the last term (f
1

2 , ∂tU
1〉)

and eliminating the negative term yield:

∂t(|U1|2a∗,1 + |U1|2b,1) +
1

2
‖∂tU

1‖2 ≤ C(|U1|2a∗,1 + |U0|2a∗,1 + ‖f
1

2‖2),

and it follows that:

|U1|2a∗,1 + |U1|2b,1 +
τ

2
‖∂tU

1‖2 ≤ C

(

|U0|2a∗,1 + |U0|2b,1 + τ‖f
1

2‖2

)

. (2.53)

Using the above equation, we can get:

E1 ≤ C

(

|U0|2a∗,1 + |U0|2b,1 + τ‖f
1

2‖2

)

. (2.54)

Inserting the equation (2.54) into (2.50) yields:

En ≤ exp(CT )

(

C

(

|U0|2a∗,1 + |U0|2b,1 + τ‖f
1

2‖2

)

+ Cτ
n
∑

k=2

‖fk‖2

)

.

Using part 3 of Lemma 3.1 yields:

‖Un‖2 ≤ C

((

|U0|2a∗,1 + |U0|2b,1 + τ‖f
1

2‖2

)

+ τ
n
∑

k=2

‖fk‖2

)

.

2.4 Error Analysis

In this section, we perform the error analysis for the SCEIDD scheme, and we prove

that it has second-order accuracy in both time and space. Let Ψ̃n
i,j and Ψn

i,j be the

local truncation error of explicit scheme (2.15) and the local truncation error of
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implicit schemes (2.16)-(2.18), respectively. These truncation errors, Ψ̃n
i,j and Ψn

i,j,

satisfy the following equations:

un
i,j = 2un−1

i,j − un−2
i,j − Ψ̃n

i,j, on Γh, (2.55)























Lτ un
i,j = Lhun

i,j −Ψn
i,j on Ωh\{Γh ∪ ∂Ωh},

un
i,j = un

i.j on Γh,

(2.56)























Lτ un
i,j = Lhun

i,j −Ψn
i,j on Γh\Γ

3
h,

un
i,j = un

i.j on Γ3
h,

(2.57)

Lτ un
i,j = Lhun

i,j −Ψn
i,j on Γ3

h, (2.58)

∂tu
1
i,j = Lh

u1
i,j + u0

i,j

2
−Ψ

1

2

i,j on Ωh. (2.59)

In the following Lemma, we estimate the local truncation errors.

Lemma 2.4.1. Let Ψn
i,j, Ψ̃n

i,j and Ψ
1

2

i,j be the local truncation errors of the SCEIDD

scheme. Then we have that:

|Ψ
1

2

i,j| ≤ C(τ 2 + h2
x + h2

y), (xi, yj) ∈ Ωh,

|Ψn
i,j| ≤ C(τ 2 + h2

x + h2
y), (xi, yj) ∈ Ωh,

|Ψ̃n
i,j| ≤ Cτ 2, (xi, yj) ∈ Γh.

(2.60)
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Proof: By the Taylor expansion, we get:

Lhun
i,j = δ2

x,a∗

1
un

i,j + δ2
y,a∗

2
un

i,j − δx(b1u
n,ux)i,j − δy(b2u

n,uy)i,j − ci,ju
n
i,j

= L(u)|ni,j + O(h2
x + h2

y), (2.61)

Lτ un
i,j = ∂tu

n
i,j +

1

2τ
(un

i,j − 2un−1
i,j + un−2

i,j ) = ut|
n
i,j + O(τ 2). (2.62)

From (2.1) and the above equation, we have:

Ψn
i,j = Lτ un

i,j − Lhun
i,j − fn

i,j = ut|
n
i,j − L(u)|ni,j − fn

i,j + O(τ 2) + O(h2
x + h2

y)

= O(τ 2 + h2
x + h2

y). (2.63)

Therefore, |Ψn
i,j| ≤ C(τ 2 + h2

x + h2
y). From the equation (2.15):

Ψ̃n
i,j = un

i,j − (2un−1
i,j − un−2

i,j ) = O(τ 2). (2.64)

Thus, |Ψ̃n
i,j| ≤ C(τ 2)(n ≥ 2). Since the Crank-Nicolson scheme has second-order

accuracy in time and space, therefore the proof of the lemma is complete. Now, we

analyze the error of the SCEIDD scheme which is defined as the difference between

the approximated and the exact solution. Let en
i,j = Un

i,j − un
i,j and ẽn

i,j = Ũn
i,j − un

i,j.

Then from the equations (2.15)-(2.18) and (2.55)-(2.59), we have:

ẽn
i,j = 2en−1

i,j − en−2
i,j − Ψ̃n

i,j, on Γh, (2.65)























Lτ en
i,j = Lhen

i,j −Ψn
i,j on Ωh\{Γh ∪ ∂Ωh},

en
i,j = ẽn

i,j on Γh,

(2.66)

36

























Lτ en
i,j = Lhen

i,j −Ψn
i,j on Γh\Γ

3
h,

en
i,j = ẽn

i,j on Γ3
h,

(2.67)

Lτ en
i,j = Lhen

i,j −Ψn
i,j on Γ3

h, (2.68)

∂te
1
i,j = Lh

e1
i,j + e0

i,j

2
−Ψ

1

2

i,j on Ωh, (2.69)

where en
i,j = 0, (xi, yj) ∈ ∂Ωh and e0

i,j = 0. Similar to the stability analysis, one can

show that:

‖en‖2 ≤ C exp(CT )

(

|e0|2a∗,1 + |e0|2b,1 + τ‖Ψ
1

2‖2

+ τ
n
∑

k=2

‖Ψk‖2 + τ
n
∑

k=2

|‖Ψ̃k‖|2
)

, (2.70)

where

‖Ψ̃k‖|2 =
∑

(xi,yj)∈Γ1
h

Ch−4
x |Ψ̃

k
i,j|

2hxhy +
∑

(xi,yj)∈Γ2
h

Ch−4
y |Ψ̃

k
i,j|

2hxhy.

Let τ
h2

x
= λx and τ

h2
y

= λy. Then, using (2.64), we obtain that:

‖en‖ ≤ C(τ 2 + h2
x + h2

y).

We proved that the SCEIDD scheme has second-order accuracy in time and space

which is stated in the following theorem.
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Theorem 2.4.1. (Convergence ) If the solution of problem (2.1) is sufficiently

smooth, then numerical solution Un
i,j generated by the SCEIDD scheme (2.15)-(2.21)

converges to the exact solution with error of O
(

τ 2 + h2
x + h2

y

)

in L2 norm.

2.5 Numerical Experiment

In this section, we present numerical experiments for two-dimensional convection-

diffusion equations to verify the theoretical results obtained in two previous sections.

Three different numerical experiments have been performed to study the stability

and accuracy of the SCEIDD scheme in the sense of L2 error norm:

‖en‖2 =
√

∑

i

∑

j

(u(xi, yj, tn)− Un(xi, yj))2hxhy,

where u(xi, yj, tn) and Un(xi, yj) are the exact solution and the approximated so-

lution, respectively.

Example 1. In this example, we consider the transport of a rotating Gaussian

pulse in a two-dimensional square domain which has been widely used to test nu-

merical schemes developed for convection-diffusion equations. For this example,

the variable velocity field is given by b1 = −4y, b2 = 4x, the diffusion coefficients

are taken as a1(x, y) = a2(x, y) = D where D is a positive constant, the reaction

coefficient is given by c(x, y) = 0, and the initial configuration of the Gaussian pulse
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is given by:

u0(x, y) = exp

(

−
(x− xc)

2 + (y − yc)
2

2σ2

)

. (2.71)

Here, (xc, yc) and σ are the location of the center and standard deviation, respec-

tively. For this example, the exact solution is given by:

u(x, y, t) =
2σ2

2σ2 + 4Dt
exp

(

−
(x∗ − xc)

2 + (y∗ − yc)
2

2σ2 + 4Dt

)

, (2.72)

where

x∗ = (cos 4t)x + (sin 4t)y, y∗ = −(sin 4t)x + (cos 4t)y. (2.73)

The boundary condition and source term f are decided by the above exact solution,

and additional data are given as follows: Ω = [−0.5, 0.5] × [−0.5, 0.5], (xc, yc) =

(0, 0), σ = 0.0447.

To show that the SCEIDD scheme is unconditionally stable, we apply it to solve the

convection-diffusion equation (2.1) with the exact solution and other parameters

provided in Example 1, where the computational domain is decomposed into 2× 2,

6 × 1, and 10 × 1 subdomains, as shown in Figure 2.2. Moreover, the numerical

experiments are carried out for different time steps, different diffusion coefficients,

D=5× 10−3, D=1× 10−2, while keeping the spatial step, h = 1
200

, and the final

time, T = 0.5, fixed. From the numerical results, displayed in Tables 2.2 and 2.1,

it is evident that, as we increase the time step while keeping the spatial step size
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Figure 2.2: 6×1 subdomains (left) and 2×2 subdomains (right).

fixed, the error of the SCEIDD scheme remain relatively small. For instance, from

Table 2.2, for very large time step size τ = 1
10

, the error of the SCEIDD scheme is

7.3575× 10−4, 9.2359× 10−4 and 5.5947× 10−3 when the computational domain is

decomposed into 2 × 2, 6 × 1 and 10 × 1 subdomains, respectively. These results

verify that the SCEIDD scheme is unconditionally stable.

To find the convergence rate of the SCEIDD scheme in space, we let T = 0.5, τ =

h
30

and apply the SCEIDD scheme with various spatial steps, 1
50

, 1
250

, 1
350

, and 1
550

to

approximate the solution of the problem (2.1) with parameters provided in Example

1. Moreover, the simulation is performed for different diffusion coefficients, D =

5× 10−3 and D = 1× 10−2, and for different number of subdomains. From Tables
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Table 2.1: Error by SCEIDD at T = 0.5, with D=1e-2 and h = 1
200

.

SD τ 1/800 1/200 1/50 1/10

2×2 Error 7.6909e-05 7.5314e-05 8.3839e-04 1.1021e-03

6×1 Error 7.6901e-05 7.5267e-05 8.2473e-04 3.5690e-03

10×1 Error 7.6890e-05 7.5108e-05 8.5775e-04 6.6340e-03

Table 2.2: Error by SCEIDD at T = 0.5, with D=5e-3 and h = 1
200

.

SD τ 1/800 1/200 1/50 1/10

2×2 Error 2.0570e-04 2.0436e-04 2.0102e-04 7.3575e-04

6×1 Error 2.0567e-04 2.0398e-04 1.9691e-04 9.2359e-04

10×1 Error 2.0505e-04 1.9453e-04 2.6569e-04 5.5947e-03
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Table 2.3: Ratio in h by SCEIDD at T = 0.5, with D=1e-2 and τ = h
30

.

SD h 1/150 1/250 1/350 1/550

6×1 Error 1.7395e-04 6.5501e-05 3.4209e-05 1.4050e-05

Ratio in space 1.912 1.9306 1.9688

10×1 Error 1.7866e-04 6.8657e-05 3.6105e-05 1.4933e-05

Ratio in space 1.8722 1.9101 1.9533

2×2 Error 1.7482e-04 6.6332e-05 3.4692e-05 1.4275e-05

Ratio in space 1.8971 1.9263 1.9647

Table 2.4: Ratio in h by SCEIDD at T = 0.5, with D=5e-3 and τ = h
30

.

SD h 1/150 1/250 1/350 1/550

6×1 Error 3.3896e-04 1.2997e-04 6.8343e-05 2.8199e-05

Ratio in space 1.8766 1.9102 1.9586

10×1 Error 3.4833e-04 1.3599e-04 7.1938e-05 2.9799e-05

Ratio in space 1.8413 1.8925 1.9499

2×2 Error 3.4713e-04 1.3372e-04 7.0556e-05 2.9209e-05

Ratio in space 1.8675 1.9001 1.9512
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Table 2.5: Ratio in τ by SCEIDD at T = 0.5, with D=1e-2 and τ = h
20

.

SD τ 1/3000 1/5000 1/7000 1/11000

6×1 Error 9.8361e-05 3.7583e-05 1.9761e-05 8.1976e-06

Ratio in time 1.8834 1.9105 1.9467

S
C

E
ID

D

10×1 Error 9.9266e-05 3.8147e-05 2.0166e-05 8.4056e-06

Ratio in time 1.8722 1.8945 1.9361

2×2 Error 9.8734e-05 3.7809e-05 1.9920e-05 8.2857e-06

Ratio in time 1.8791 1.9045 1.9408

E
IP

C
M

U
2D Error 7.6103e-04 4.5872e-04 3.2753e-04 2.0057e-04

(2×2) Ratio in time 0.9910 1.0012 1.0850
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Table 2.6: Ratio in τ by SCEIDD at T = 0.5, with D=5e-3, τ = h
20

.

SD τ 1/3000 1/5000 1/7000 1/11000

6×1 Error 3.4855e-04 1.3603e-04 7.1971e-05 2.9918e-05

Ratio in time 1.8419 1.8920 1.9421

S
C

E
ID

D

10×1 Error 3.5688e-04 1.4015e-04 7.4535e-05 3.1152e-05

Ratio in time 1.8298 1.8766 1.9301

2×2 Error 3.5210e-04 1.3771e-04 7.2935e-05 3.0394e-05

Ratio in time 1.8377 1.8890 1.9366

E
IP

C
M

U
2D Error 8.2265e-04 4.9784e-04 3.5572e-04 2.2416e-04

(2×2) Ratio in time 0.9832 0.9990 1.0217
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2.4 and 2.3, we observe that the SCEIDD scheme has second-order convergence

rate in space. These numerical results are in agreement with the theoretical results

obtained in the Theorem 2.4.1. Now, we test the accuracy of the SCEIDD scheme

in time and compare its accuracy with the accuracy of EIPCMU2D scheme [113]

which is recently developed for the parallel approximation of convection-diffusion

equations. We let T = 0.5, h = 20τ and apply the SCEIDD and EIPCMU2D

scheme with various time steps to solve the problem (2.1) with parameters provided

in Example 1. Again, the simulation is performed for different diffusion coefficients,

D = 5× 10−3 and D = 1× 10−2, and for the different number of subdomains. The

numerical results are presented in Tables 2.6 and 2.5. From these Tables, we observe

that SCEIDD scheme is second-order in time while EIPCMU2D scheme is only first

order in time.

Example 2. For this example, the variable velocity field is given by b1 = y,

b2 = 0, the diffusion coefficients are taken as a1(x, y) = a2(x, y) = D where D is

a positive constant, the reaction coefficient is given by c(x, y) = 0, and the exact

solution is given by:

u(x, y, t) = exp(−t) sin(x) cos(y). (2.74)

In this example, the computational domain is taken as Ω = [0, 1] × [0, 1], and the

initial value u0(x, y), the boundary condition and the source term f are decided by

the above exact solution.
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Numerical results for this example, presented in Table 2.7, are obtained at final

time T = 0.5, for D = 5× 10−3, using different time steps and for different number

of subdomains while keeping the spatial step fixed, h = 1
200

. From Table 2.7, it is

evident that, for a large time step, the SCEIDD scheme maintain its accuracy when

the computational domain is decomposed into many subdomains. For instance, for

very large time step τ = 1
10

, the error of the SCEIDD scheme is 2.5539× 10−2 when

the computational domain is decomposed into 200 subdomains. These results show

that the SCEIDD scheme not only is unconditionally stable but also maintain its

accuracy as the number of subdomains increases.

Now, we test the accuracy of the SCEIDD scheme in space for Example 2. In

this regard, we present the numerical results in Table 2.8. These numerical results

are obtained at final time T = 0.5, for D = 5×10−3, using different spatial steps and

for the different number of subdomains while keeping the time step fixed, τ = h
30

.

From these numerical results, we observe the SCEIDD scheme has second-order

convergence rate in space. We also note that the SCEIDD scheme maintain its

second-order convergence rate in space as the number of subdomains increases.

Finally, we investigate the accuracy of the SCEIDD scheme in time for Example

2. In this regard, the numerical results are displayed in Table 2.9. These numerical

results are obtained at final time T = 0.5, for D = 5 × 10−3, using different time

steps and for the different number of subdomains while keeping the spatial step
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Table 2.7: Error by SCEIDD at T = 0.5, with h = 1
200

and variable τ .

SD τ 1/800 1/200 1/50 1/10

2×2 Error 3.7970e-05 5.6152e-05 4.3802e-04 5.6764e-03

4×4 Error 3.9488e-05 8.4541e-05 8.7937e-04 1.0495e-02

6×6 Error 4.1168e-05 1.0127e-04 9.8923e-04 1.4327e-02

10×10 Error 4.3693e-05 1.6476e-04 2.1118e-03 1.8745e-02

20×20 Error 5.1037e-05 2.9811e-04 4.1097e-03 2.5539e-02

fixed, h = 20τ . From these results, we note that the SCEIDD scheme is second-

order in time. Furthermore, it is noted that the SCEIDD scheme maintains its

second-order accuracy in time as the number of subdomain increases.

Example 3. We consider the moving sharp front problem in a two-dimensional

square domain. In this example, the velocity field is given by b1 = 1, b2 = 1, the

diffusion coefficients are taken as a1 = a2 = 1e− 3, the reaction coefficient is given

by c(x, y) = 0, the initial value is given by:

u0(x, y) =



















1, 0 ≤ x, y ≤ 0.2

0, Otherwise,

(2.75)

and the boundary conditions are given by:

u(0, y, t) = 1, y ∈ [0, 1], u(x, 0, t) = 1, x ∈ [0, 1], t ∈ (0, T ],
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Table 2.8: Ratio in h by SCEIDD at T = 0.5, with D=5e-3 and τ = h
30

.

SD h 1/150 1/250 1/350 1/550

2x2 Error 5.9566e-05 2.3982e-05 1.2701e-05 5.2897e-06

Ratio in space 1.7810 1.8890 1.9380

4x4 Error 5.9823e-05 2.4184e-05 1.2834e-05 5.3523e-06

Ratio in space 1.7730 1.8830 1.9350

6x6 Error 6.0057e-05 2.4328e-05 1.2928e-05 5.4067e-06

Ratio in space 1.7690 1.8791 1.9287

10x10 Error 6.0387e-05 2.4562e-05 1.3091e-05 5.4877e-06

Ratio in space 1.7610 1.8702 1.9236

20x20 Error 6.1055e-05 2.4853e-05 1.3291e-05 5.5753e-06

Ratio in space 1.7595 1.8602 1.9220

48



Table 2.9: Ratio in τ by SCEIDD at T = 0.5, with D=5e-3 and τ = h
20

.

SD τ 1/3000 1/5000 1/7000 1/11000

2x2 Error 6.0368e-05 2.4450e-05 1.2993e-05 5.4358e-06

Ratio in time 0 1.7693 1.8789 1.9280

4x4 Error 6.0599e-05 2.4648e-05 1.3128e-05 5.5019e-06

Ratio in time 0 1.7610 1.8722 1.9241

6x6 Error 6.0825e-05 2.4802e-05 1.3250e-05 5.5708e-06

S
C

E
ID

D

Ratio in time 0 1.7561 1.8633 1.9170

10x10 Error 6.1077e-05 2.4994e-05 1.3384e-05 5.6365e-06

Ratio in time 0 1.7491 1.8562 1.9134

20x20 Error 6.1267e-05 2.5108e-05 1.3469e-05 5.6795e-06

Ratio in time 0 1.7463 1.8510 1.9105

E
IP

C
M

U
2D Error 2.6855e-04 1.7476e-04 1.2790e-04 8.2670e-05

20×20 Ratio in time 0.8410 0.9278 0.9655
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∂u(1, y, t)

∂x
= 0, y ∈ [0, 1],

∂u(x, 1, t)

∂y
= 0, x ∈ [0, 1], t ∈ (0, T ].

This example involves the propagation of a sharp front through the computational

domain. Therefore, the numerical simulation of this example is difficult and chal-

lenging. To test the accuracy of the SCEIDD scheme for this example, we apply

it to simulate the propagation of sharp front using τ = hx = hy = 1
150

while the

computational domain is decomposed into 4 blocks. The surface plot of approxi-

mated solutions at t = 0.1 and t = 0.2 are displayed in Figures 2.3 and 2.4. From

these figures, it is evident that the SCEIDD scheme simulates the propagation of a

sharp front with good accuracy. Moreover, we compare the solution curves of three

different numerical schemes. Figure 2.5 shows the solution curves of SCEIDD, UP-

WIND, EIPCMU2D and the reference solution at t = 0.2 on a sectional plane at

y = 0.5. It is clear that the SCEIDD scheme has good accuracy compared to the

UPWIND and EIPCMU2D schemes.

2.6 Conclusion

We developed a second-order corrected-explicit-implicit domain decomposition scheme

(SCEIDD) for the parallel approximation of convection-diffusion equations over

multi-block subdomains in two dimensions. This scheme is unconditionally stable,

and it is second-order accurate in time as well as space. The proposed SCEIDD
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Figure 2.3: Sharp font approximated by

our scheme SCEIDD at t=0.1.

10.80.60.40.201

0.5

0.4

0.6

0.8

1

1.2

0.2

0
0

Figure 2.4: Sharp font approximated by

our scheme SCEIDD at t=0.2.
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Figure 2.5: Computed moving sharp front with different schemes.

scheme maintains the advantages of CEIDD schemes, including good parallelism,

the localization of communication, the flexibility of domain partitioning. Moreover,

this scheme is designed over non-overlapping subdomains with simpler structures.

Therefore, less effort is needed for numerical simulation. We also performed the

stability and convergence analysis for the SCEIDD scheme, and we proved that it

is second-order in time and space. Further, we carried out numerical experiments

for three different examples to show that the developed SCEIDD scheme approxi-

mates the solutions of convection-diffusion equations with good accuracy and high

efficiency. Moreover, in all the experiments the SCEIDD scheme is compared with

the EIPCMU2D scheme [113] which is first-order in time and developed recently
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for the parallel approximation of the convection-diffusion equations.
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3 Power Optimization of Wind Turbines

3.1 Introduction

In this chapter, we focus on analyzing, designing and power calculation of a sin-

gle wind turbine as well as modeling of the airflow in a wind farm for the total

power optimization. In the case of a single wind turbine, we address the following

questions:

1. how much power can be generated?

2. what is the optimal design?

3. how to calculate the power of a given rotor?

In the case of multiple wind turbines, we focus on:

1. modeling the airflow to optimize the total power while considering wake in-

teractions among wind turbines.
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2. finding the global optimal operating points of multiple wind turbines by con-

sidering the wake effect on the power generated by wind turbines.

In the following section, we derive a set of equations that incorporate the physical

parameters influencing the power generation of a single wind turbine.

3.2 Power Production

How much energy is in the wind and how much of the wind's energy can be converted

into useful electrical energy? In 1919, Albert Betz theoretically determined the

maximum amount of kinetic energy that can be extracted by a wind turbine. He

considered a wind turbine as a circular disc through which the wind flows with an

incoming wind speed of U0 and leaves the rotor plane with a speed of U1, see Figure

3.1. If U1 is almost as large as U0, the turbine will not extract much kinetic energy.

On the other hand, if U1 is very low, then not much air will pass through the

turbine, resulting in less energy extraction. This suggests that there is an optimum

value for the reduction of the wind speed. Below, we derive the relation among the

optimum wind speed at the plane of the rotor, U1, upstream wind speed, U0, and

downstream wind speed, U2.

After the wind passes the rotor, the air speed would be reduced to U2 and there

would be a pressure drop. The initial pressure is p1 and as air moves towards the

rotor, the pressure rises to a pressure p+. After passing the rotor, the pressure
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Figure 3.1: Interaction between the wind and a wind turbine.

suddenly falls by an amount of ∆p. Therefore, immediately behind the turbine

the pressure is p− = p+ −∆p, and further downstream the pressure again rises to

p2 = p0. Curves for the wind speed and the pressure are shown in Figure 3.1.

Since the flow is frictionless and no work is done, the Bernoulli equation can be

applied on both sides of the rotor to find the relation between the pressure p and

the speed U :

1

2
ρU2 + p = ptot. (3.1)

If we apply (3.1) for the flow upstream of the rotor, we get:

p0 +
1

2
ρU2

0 = p+ +
1

2
ρU2

1 . (3.2)
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If we apply (3.1) downstream of the rotor plane, we get:

p+ −∆p +
1

2
ρU2

1 = p0 +
1

2
ρU2

2 . (3.3)

Subtracting (3.3) from (3.2) yields:

∆p =
1

2
ρ(U2

0 − U2
2 ). (3.4)

If we look at one square meter of the rotor plane, the mass flow equals ρU , the

momentum equals the mass times the velocity and the pressure equals the force per

surface area. Thus, the differential pressure can be calculated as:

∆p = ρU1(U0 − U2). (3.5)

From (3.4) and (3.5), we get:

U1 =
1

2
(U0 + U2). (3.6)

Therefore, the wind speed in the plane of the rotor is the average of the upstream

and downstream velocities. Now that we have the expression for the optimum wind

speed at the plane of the rotor as a function of ultimate wake velocities, we can

now derive the expression for the power extracted by the turbine as a function of

upstream velocity. The power of the turbine equals the change in the kinetic energy

in the air:

P =
1

2
ρU1(U

2
0 − U2

2 )A. (3.7)
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Here, A is the surface area swept by the rotor. The axial force (thrust) on the rotor

can be calculated as:

T = ∆pA. (3.8)

If one defines the axial induction factor, a, as the fractional decrease in wind velocity

between the free stream and the rotor plane:

a = 1−
U1

U0

, (3.9)

then, U1 = (1−a)U0. The quantity, aU0, is often referred to as the induced velocity

at the rotor, in which case velocity of the wind at the rotor is a combination of the

free stream velocity and the induced wind velocity. Using (3.9) and (3.6), we get:

U2 = (1− 2a)U0. (3.10)

From (3.10), the wind speed behind the rotor slows down as the axial induction

factor increases. If a = 1
2
, then the wind has slowed to zero velocity behind the

rotor. In this case, this simple theory proposed by Betz is no longer applicable.

Using the above equation, (3.7) and (3.8), we derive equations for the generated

power and force as a function of upstream velocity:

P = 2ρa(1− a)2U3
0 A,

T = 2ρa(1− a)U2
0 A.

(3.11)

Wind turbine rotor performance is usually characterized by its power coefficient,
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Figure 3.2: Cp and CT for an idealized wind turbine.

Cp:

Cp =
Rotor Power

Power in the wind
=

P
1
2
ρU3

0 A
. (3.12)

This non-dimensional power coefficient represents the fraction of the power in the

wind that is extracted by the rotor. Combining (3.11) and (3.12), we get:

Cp = 4a(1− a)2,

CT = 4a(1− a).

(3.13)

Consequently, the equation (3.11) can be written in terms of Cp and CT :

P =
1

2
ρCpU3

0 A,

T =
1

2
ρCT U2

0 A.

(3.14)

In Figure 3.2, curves for Cp and CT are shown. The maximum Cp is determined by

taking the derivative of the power coefficient, the equation (3.13), with respect to
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a and setting it equal to zero, yielding a = 1
3
. Therefore, the power coefficient, Cp,

has an optimum at about 0.593 (exactly 16
27

) at an axial interference factor of 0.333

(exactly 1
3
). According to Betz, we have:

P =
1

2
ρCp,BetzU

3
0 A, with Cp,Betz =

16

27
. (3.15)

Therefore, the maximum possible extractable energy is 59.3% of the total available

wind energy from a given volume of wind. Wind turbine designers around the world

try to design their wind energy extractor (blades) to catch up with this limit. In

the next section, we show how to design the blades in order to extract maximum

possible energy from the wind.

3.3 Rotor Design

3.3.1 Airfoil Theory

Figure 3.3 shows a typical wing section of the blade. The air hits the blade at an

angle of α which is called the angle of attack. The reference line for this angle on the

blade is the chord line. As the air hits the blade at the angle of α, an aerodynamic

force is produced. This force can be broken down into two components, lift and

drag. The lift force FL, per definition, is perpendicular to the wind direction, and

it can be calculated as:

FL = CL

1

2
ρW 2

1 (bc), (3.16)
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Figure 3.3: Velocities and angles on the wing section of the blade.

where CL is the coefficient of lift, ρ is the density of air, W1 is the relative wind

speed, b is the width of the blade section, and c is the length of the chord line.

Similarly, for the drag force, we have:

FD = CD

1

2
ρW 2

1 (bc). (3.17)

The lift and drag coefficient both depend on the angle of attack and it will be

discussed in section 3.6. With the help of airfoil theory, the optimized values of

blade pitch and chord length that create the most efficient blade geometry is derived

in the following subsection.

61



3.3.2 Pitch Angle and Chord Length after Betz

Figure 3.3 shows the velocities and the angles in a given distance, r, from the

rotor axis. To design the rotor, we have to define the pitch angle β and the chord

length c. Both of them depend on the given radius that we are looking at; hence,

we sometimes write β(r) and c(r). The blade, as shown in Figure 3.3, is moving

upwards, thus the wind speed, seen from the blade, is moving downwards with a

relative speed of (1 + a
′

)V1, where:

V1 = ωr. (3.18)

Here, ω is the angular speed of the rotor given by:

ω = 2πn, (3.19)

where n is the rotational speed of the rotor in round per second. Betz does not

include rotation of the wind, i.e. a
′

= 0, which yields:

W 2
1 = V 2

1 + U2
1 . (3.20)

If we define the tip speed ratio as:

X =
Vtip

U0

=
ωR

U0

, (3.21)

then we have:

γ(r) = arctan
3rX

2R
, (3.22)
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and

Φ(r) = arctan
2R

3rX
. (3.23)

In the above equations, a = 1
3

is used, as derived in the previous section, the power

coefficient achieves its maximum at this vale. Therefore, the pitch angle is obtained

by:

β(r)Betz = arctan
2R

3rX
− αD, (3.24)

where αD is the design angle of attack which is used for the blade design. Most

often, this angle is chosen to be close to the angle that gives maximum glide ratio,

see Figure 3.15; hence, this implies that αD is in the range from 5◦ to 10◦. However,

this angle is sometimes reduced near the tip of the blade.

If we look at one blade element in the distance r from the rotor axis with the

thickness dr, then the lift force is, see formula (3.16) and (3.17):

dFL = CL

1

2
ρW 2

1 cdr, (3.25)

and the drag force is:

dFD = CD

1

2
ρW 2

1 cdr. (3.26)

By decomposing the lift and the drag forces into the axial and the tangential com-

ponents, we derive the following equation for the torque at the plane of the rotor:

dΨ =
1

2
ρW 2

1 cdrCx, (3.27)
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where

Cx = CLsin(φ)− CDcos(φ). (3.28)

Similarly, for the thrust at the rotor plane, we have:

dT =
1

2
ρW 2

1 cdrCy, (3.29)

where

Cy = CLcos(φ) + CDsin(φ). (3.30)

Now, in the design situation, we have CL ≥≥ CD, then (3.27) becomes:

dΨ =
1

2
ρW 2

1 cdrCLcos(γ). (3.31)

From the definition of the power, we have:

dP = dΨrω. (3.32)

If we have B blades, then (3.31) including (3.32) give:

dP = B
1

2
ρW 2

1 cdrCLcos(γ)rω. (3.33)

According to Betz, the blade element would also give:

dP =
16

27

1

2
ρU3

0 (2πrdr). (3.34)

Using U0 = 3
2
W1 cos(γ) and V1 = W1 sin(γ), then (3.34) and (3.33) give:

c(r)Betz =
16πR

9BCL,D

1

X
√

X2( r
R

)2 + 4
9

, (3.35)
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Figure 3.4: Chord length as a function of r, for different numbers of blades.

where CL,D is the lift coefficient at the chosen design angle of attack, αA,D. Tip

speed ratio of about X = 7 is optimal and three blades seem to be state of the art.

Figure 3.4 and 3.5 show the results of formula (3.35) concerning the chord length

according to Betz.

3.3.3 Pitch Angle and Chord Length Considering Wake Rotation

In the previous analysis, using linear momentum theory, it was assumed that no

rotation was imparted to the airflow. The previous analysis can be extended to the

case where the rotating rotor generates angular momentum, which can be related

to rotor torque. According to the conservation of angular momentum, the torque in

the wind turbine shaft can only be created if there is a rotation in the downstream
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Figure 3.5: Chord length as function of r, for different tip speed ratios.

wake in the opposite direction of the rotor's rotation. Figure 3.6 shows downstream

rotation of the wake that the wake rotates in the opposite direction to the rotor.

By taking into account the torque producing the wake in the opposite direction of

the rotor's rotation, the relative tangential speed of the rotating blade is V1 + a
′

V1,

as shown in Figure 3.7. From Figure 3.8, we have the following equations:

W1 = W0 cos(φ1 − φ), (3.36)

U1 = W1 sin(φ). (3.37)

By combining above two equations, we get:

U1 = W0 cos(φ1 − φ) sin(φ). (3.38)
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From Figure 3.8, we also have:

∆W = 2W0 sin(φ1 − φ). (3.39)

From the conservation of momentum, we have:

dFL = ∆Wdq, (3.40)

where dq is the math flow through the ring element in the radius r with the width

dr:

dq = 2ρπrdrU1. (3.41)
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By using (3.38), (3.39) and the definition of power which equals the torque multi-

plied by angular velocity:

dp = dMω

= dFL sin(φ)rω

= ∆wdq sin(φ)rω

= r2ωρ2πdrW 2
0 sin(2(φ1 − φ)) sin2(φ1). (3.42)

We have now a relation for the power of the ring element as a function of the flow

angle. If we take the derivative of the above equation and solve it for flow angle,

then we have:

φmax =
2

3
φ1 =

2

3
arctan(

R

Xr
), (3.43)

and for the pitch anlge:

βSchmitz(r) =
2

3
arctan(

R

Xr
)− αD. (3.44)

Using equations (3.40), (3.39), (3.38) and (3.43), we can derive:

dFL = 2W 2
0 2ρπrdr sin2(

φ1

3
) cos2(

φ1

3
). (3.45)

From the air foil theory, we have:

dFL =
1

2
ρW 2

0 BcdrCL cos2(
φ1

3
). (3.46)

By combining above two equations:

cSchmitz(r) =
1

B

16πr

CL

sin2(
φ1

3
). (3.47)
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Using equation (3.43), the above equation becomes:

cSchmitz(r) =
1

B

16πr

CL

sin2(
1

3
arctan(

R

Xr
)). (3.48)

Figures 3.9 and 3.10 show the comparison between Betz and Schmitz' s formula for

the design of the optimal pitch angle and the chord length. From these figures, it

appears that Betz and Schmitz' s theory differs on designing the optimal pitch angle

and the chord length near the hub, but near the tip there are no differences between

them. So far, we have focused on the maximum power that can be generated by a

wind turbine and the design of an optimal rotor. In the following section, we focus

on the power calculation of a given rotor.
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3.4 Blade Element Theory

The BEM method solves for the torque and thrust using the law of momentum,

angular momentum, and the Bernoulli's equation. Let U0 be the given upstream

velocity, U1(r) be the unknown downstream velocity, U2(r) be the unknown velocity

at the rotor plane, see Figure 3.1. Then, by the law of momentum and angular

momentum, one can get:

dT (r) = 2πrρU1(r)(U0 − U2(r))Bdr, (3.49)

and

dΨ(r) = 2πr2ρU1(r)V2(r)Bdr. (3.50)
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On the other hand, from the airfoil theory, see the equations (3.27) and (3.29), we

have:

dT (r) =
1

2
ρW 2

1 cBCydr, (3.51)

dΨ(r) =
1

2
ρW 2

1 cBCxrdr. (3.52)

Hence, using the above equations, (3.49) and (3.50), we have:

a

1− a
=

cBCy

8πr sin2(φ)
, (3.53)

a
′

a′ + 1
=

cBCx

8πr sin(φ) cos(φ)
. (3.54)

In the above equations, we have used:

tan(φ(r)) =
1− a(r)

1 + a′(r)

U0

rΩ
, α(r) = φ(r)− β(r), (3.55)

W1(r) =
U0(1− a(r))

sin(φ(r))
=

rΩ(1 + a
′

(r))

cos(φ(r))
. (3.56)

By solving equations (3.53) and (3.54) for a
′

and a, we get:

a(r) =
1

4 sin2(φ(r))
σ(r)Cx(r)

+ 1
, (3.57)

a
′

(r) =
1

4 sin(φ(r)) cos(φ(r))
σ(r)Cy(r)

− 1
, (3.58)

where

σ(r) =
c(r)B

2πr
, (3.59)

Cx(r) = CL(α(r)) cos(φ(r)) + CD(α(r)) sin(φ(r)), (3.60)

Cy(r) = CL(α(r)) sin(φ(r))− CD(α(r)) cos(φ(r)). (3.61)
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For rotors with few blades, it can be shown that a better approximation of a and

a
′

is:

a(r) =
1

4Fcorr(r) sin2(Φ(r))
σ(r)Cy(r)

+ 1
, (3.62)

a
′

(r) =
1

4Fcorr(r) sin(Φ(r)) cos(Φ(r))
σ(r)Cx(r)

− 1
, (3.63)

where Fcorr is given in the equation (3.80). This simple momentum theory breaks

down when a(r) is greater than ac = 0.2. In this case, one shall apply:

a(r) =
1

2

(

2 + Ka(r)(1− 2ac)−

√

(2 + Ka(r)(1− 2ac))2 + 4(Ka(r)a2
c − 1)

)

, (3.64)

where

Ka(r) =
4Fcorr(r) sin2(Φ(r))

σ(r)Cx(r)
. (3.65)

We solve the nonlinear system with two unknowns a(r) and a
′

(r) by an iterative

method in Algorithm 2. With the solution of a(r) and a
′

(r), one can compute the

thrust force, the torque and the generated power by the wind turbine on one ring

element at radius r.

The BEM method is simple to apply and has been popular for many years in

analyzing the performance of a wind turbine. Nevertheless, the BEM has limitations

such as no aerodynamic interactions between different blade elements, and it usually

underpredicts the power generated by a wind turbine (see [38,60]). Therefore, It is
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Algorithm 2 Solve for a(r), a
′

(r) at radius r

1: Given Ω, β, U0; k ← 0; a(k)(r)← 0; a
′(k)(r)← 0;

2: repeat

3: k ← k + 1;

4: evaluate tan(φ(r)), α(r) in (3.55);

5: evaluate CL in (3.78) and CD in (3.79);

6: evaluate Cx in (3.61) and Cy in (3.60);

7: evaluate a(k)(r) in (3.57) and a
′(k)(r) in (3.58);

8: if a(k)(r) ≥ 0.2 then

9: evaluate a(k)(r) in (3.64);

10: end if

11: until |a(k)(r)− a(k−1)(r)| < ǫ; |a
′(k)(r)− a

′(k−1)(r)| < ǫ
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necessary to use different methods to analyze the performance of a wind turbine.

One such method is the actuator line method which is developed by Sorensen et al.

[91] for modeling and analyzing a single turbine. However, it is quite challenging to

analyze the performance of multiple turbines due to the wake interactions amongst

the turbines. In the following section, we focus on modeling the airflow to optimize

the total power while considering the wake interactions among the wind turbines.

3.5 Modeling of the Flow for Power Optimization in Wind

Farm

For a wind farm with N turbines, the model for power optimization in its condensed

form is the following:

Max
β1,...,βN

Ω1,...,ΩN

N
∑

i=1

Pi

subject to (3.67) and

βmin ≤ βi ≤ βmax,

Ωmin ≤ Ωi ≤ Ωmax,

∀i ∈ {1, 2, . . . , N}.

(3.66)

Here, the decision variables are the rotational speed Ωi and the pitch angle βi of

the ith turbine, for i = 1, · · · , N . The parameters βmin, βmax, Ωmin and Ωmax are

the physical limits of the adjustable pitch angle and the rotational speed. The
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objective function is to maximize the total power where Pi is the power generated

by the ith turbine which is a complicated nonlinear function of the direct decision

variables as well as other derived quantities from the PDE system (3.67). Due

to its complexity, we derive it in detail in section 3.6. The constraints are the

three-dimensional Navier-Stokes equations which govern the relationship between

the wind flow field and the external forces placed in the computational domain, see

the schematic diagram in Figure 3.11. These equations on a rectangular domain,

76



dr

r

0U

W

rW

r

airS

Figure 3.12: Cross-sectional airfoil element.

dr

r

0U

Rotor axis

Rotor Plane

a
b

f

relU

u

TanS

D

L

Tan airS r S= W +

Figure 3.13: Cross-sectional airfoil element showing force vectors.

77



D = [0, lx]× [0, ly]× [0, lz], are given by:















































∂U

∂t
+ UUx + V Uy + Wuz = −

1

ρ
px + ν(Uxx + Uyy + Uzz) + fu(t, x, y, z),

∂V

∂t
+ UVx + V Vy + WVz = −

1

ρ
py + ν(Vxx + Vyy + Vzz) + fv(t, x, y, z),

∂W

∂t
+ UWx + V Wy + WWz = −

1

ρ
pz + ν(Wxx + Wyy + Wzz) + fw(t, x, y, z),

(3.67)

with the following boundary conditions:











































































































U(t, 0, ·, ·) = U0, V (t, 0, ·, ·) = 0, W (t, 0, ·, ·) = 0,

Ux(t, lx, ·, ·) = 0, Vx(t, lx, ·, ·) = 0, Wx(t, lx, ·, ·) = 0,

Uy(t, ·, 0, ·) = 0, Vy(t, ·, 0, ·) = 0, Wy(t, ·, 0, ·) = 0,

Uy(t, ·, ly, ·) = 0, Vy(t, ·, ly, ·) = 0, Wy(t, ·, ly, ·) = 0,

Uz(t, ·, ·, 0) = 0, Vz(t, ·, ·, 0) = 0, Wz(t, ·, ·, 0) = 0,

Uz(t, ·, ·, lz) = 0, Vz(t, ·, ·, lz) = 0, Wz(t, ·, ·, lz) = 0,

(3.68)

the initial conditions:

U(0, ·, ·, ·) = U0, V (t, ·, ·, ·) = 0, W (t, ·, ·, ·) = 0, (3.69)

and the continuity equation:

Ux + Vy + Wz = 0. (3.70)

Here, ν is the viscosity, ρ is the density of the air, U0 is the atmosphere wind speed.

The unknown variables U , V and W are the wind speed in x, y and z-direction,
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respectively. The unknown variable p is the pressure, and the external forces are

given by fu, fv and fw. One can view (3.67) as a blackbox of the optimization

model (3.66) where the set of operating control variables (βi, Ωi), i = 1, · · · , N is

the input, and the output is the total generated power. We remind the reader that

inside this blackbox fu, fv and fw are non-stationary blade forces which depend on

the flow velocities U , V and W . From (3.67), it is evident the solution of U , V and

W depends on fu, fv and fw. The next two sections are devoted to disentangle this

complicated relationship. Section 3.6 describes this facet of the relation: assume

U , V and W are given for a turbine, then how to compute the blade forces fu, fv

and fw. Section 3.7 describes this facet of the relation: assume fu, fv and fw are

given, then how to compute U , V and W .

3.6 Blade Aerodynamics and Power Production

Figure 3.12 shows a cross-sectional airfoil element on the blade at radius r in the

plane of the rotor. A blade is viewed as a continuous stack of airfoils from the hub

to the tip. In a modern blade, the airfoils deform from the hub to the tip smoothly,

but gradually. The aerodynamic forces acting on an airfoil is related to the local

relative velocity. From Figure 3.13, the relative velocity at radius r from the hub

is:

U2
rel(r) = (U(r))2 + (ST an(r))2, (3.71)
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Figure 3.14: Coefficient of lift and drag.

where

ST an(r) = Ωr + Sair(r). (3.72)

In the above equations, U(r) and ST an(r) are the axial speed and the relative

tangential speed at radius r from the hub, respectively. In the equation (3.72),

Sair is the wind speed in tangential direction which is computed by the orthogonal

projection of V and W onto the tangential direction. One has to solve the Navier-

Stokes equations (3.67) to find U , V and W . We remind that Ω is a decision variable

in the joint optimization model (3.66). The angle between Urel and the rotor plane

is:

φ(r) = tan−1(
U(r)

ST an(r)

). (3.73)
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The angle of attack between the relative wind velocity and the airfoil chord line is:

α(r) = φ(r)− β(r), (3.74)

where β(r) is the local pitch angle between the airfoil and the rotor plane at the

radius r. From the airfoil theory, the lift force L(r), perpendicular to the relative

wind direction, and the drag force D(r) are:

L(r) =
1

2
ρU2

rel(r)c(r)b(r)CL(α(r)), (3.75)

D(r) =
1

2
ρU2

rel(r)c(r)b(r)CD(α(r)), (3.76)

where c(.) is the chord length of the airfoil and b(.) is the width of the blade section.

In the above equations, CL(.) and CD(.) are the lift and drag coefficients at radius

r which depend on the local angle of attack α(·), see Figure 3.14. The ratio of these

two coefficients GR ≡ CL/CD is called the glide ratio. Normally, we are interested

in at high glide ratio for wind turbines as well as for air planes. Figures 3.15 and

3.14 show the curves for the glide ratio, the lift and the drag coefficients. These

curves are usually obtained by testing wing profiles in wind tunnels. However, for

numerical studies, it is convenient to have the curves as functions. For NACA

23012 profile [18] and for 0◦ < α(.) < 16◦, CL(.) and CD(.) are characterized by the

following polynomials:

CL,D(α(r)) = k0 + k1α(r) + k2α(r)2 (3.77)

+ k3α(r)3 + k4α(r)4,

81



0 10 20 30 40 50 60 70 80 90
0

20

40

60

80

100

120
NACA 23012

alpha

G
R

Figure 3.15: Glide ratio as a function of the angle of attack.

where the polynomial coefficients are shown in Table 3.1. For an angle larger than

the critical angle of attack, 16◦, we will apply the following correction:

CL(α(r)) = A1 sin(2α(r)) + A2
cos2(α(r))

sin(α(r))
, (3.78)

CD(α(r)) = B1 sin2(α(r)) + B2 cos(α(r)) + CDs, (3.79)

where

A1 =
B1

2
,

A2 = (CLs − CD,max sin(αst) cos(αst))
sin(αst)

cos2(αst)
,

B1 = CD,max,

B2 =
1

cos(αst)
(CDs − CD,max sin2(αst)).
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Table 3.1: NACA 23012 coefficients, α ∈ [0◦, 16◦].

CL(.) CD(.)

k0 1.0318e− 1 6.0387e− 3

k1 1.0516e− 1 −3.6282e− 4

k2 1.0483e− 3 5.4269e− 5

k3 7.3487e− 6 6.5341e− 6

k4 −6.5827e− 6 −2.8045e− 7

Here CLs and CDs are the lift and drag coefficients at stall angle of attack αst,

and CD,max is the maximal value of the drag coefficient which is approximately 1,

see Figure 3.14. We also need another correction due to the cross-flow effect at

the blade tip. To take into account this effect, we employ the correction formula

CL(.) = CL(.)
Fcorr

and CD(.) = CD(.)
Fcorr(.)

where:

Fcorr(r) =
2

π
arccos(exp(−B

R− r

2r sin(φ(r))
)). (3.80)

In the above equation, B and R are the number of blades and the rotor radius, re-

spectively. Now, we project the lift and drag force onto the axial and the tangential
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direction to get their components in these directions:

Fx(r) = L(r) cos(φ(r)) + D(r) sin(φ(r)), (3.81)

Fy(r) = L(r) sin(φ(r))−D(r) cos(φ(r)). (3.82)

Consequently, for the ith turbine with B blades, the thrust force dTi(r), the torque

dΨi(r) and the power dPi(r) are:

dTi(r) = Fx(r)Bdr, (3.83)

dΨi(r) = Fy(r)Bdr, (3.84)

dPi(r) = dΨi(r)(Ωr). (3.85)

Here, dTi(r) is along axial direction, and it is used to compute the source term

fu in the Navier-Stokes equations (3.67). The torque Ψi(r) is along the tangential

direction, and one must project it onto y and z-direction to compute the source

terms fv and fw in the Navier-Stokes equations (3.67). From the equation (3.85),

the generated power for the ith turbine with blade length R is:

Pi =
∫ R

0
dP (r) =

∫ R

0
Fy(r)BΩrdr. (3.86)

Using equations (3.75) and (3.76), the power generated by the ith turbine is:

Pi =
ρBΩ

2

∫ R

0

(

U2
rel(r)c(r)b(r)

(

CL(α(r)) sin(φ(r))− CD(α(r)) cos(φ(r))

))

rdr. (3.87)
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Summing Pi from i = 1 to N will give the objective function of the optimization

model (3.66) which is the total power generated by all N turbines.

3.7 Numerical Solution of the Navier-Stokes Equations

By using the curl operator to equations (3.67), one gets the following dimensionless

form of the vorticity transport equation:

∂ω

∂t
+ U.∇ω = ω.∇U +

1

Re
∇2ω +∇× fǫ, (3.88)

where U = (U, V, W ) and ω = (ξ, η, ζ). The vorticity vector ω is defined as:

ω = ∇×U. (3.89)

By taking the curl of equation (3.89) and using the continuity equation (3.70), the

following velocity Poisson equation can be obtained:

∇2U = −∇× ω. (3.90)

We seek the solutions for equations (3.88) and (3.90) with the boundary and initial

conditions given in (3.68) and (4.4). In order to ensure accuracy in the prediction

of velocities and vorticities, a staggered grid system as displayed in Figure 3.16 is

used in the present numerical scheme. Let Un, V n, W n, ξn , ηn and ζn be the

numerical approximation of U , V , W , ξ ,η and ζ at time step n, then we calculate

the solution in new time step by the following steps:
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1. The velocity Poisson equations, obtained as a result of taking curl of the

vorticity, are made parabolic using the false-transient technique [7, 32,56,63]:

α
∂Un

∂t
−∇2Un −∇× ωn−1 = 0, (3.91)

where α is a relaxation parameter. Central finite differencing scheme is used to

approximate the second order derivatives that leads to a large linear system to be

solved. There are many approaches to solve the linear system in each time step,

for instance, Multigrid method, incomplete LU factorization approach, Generalized

Minimum Residual technique with an appropriate preconditioning. Here, we use

Generalized Minimum Residual technique, but in a sparse format [75].

After we calculate velocities U and V using (3.91), then velocity W is calculated

from the continuity equation as given below:

∂2W n

∂z2
= −

∂

∂z
(
∂Un

∂x
+

∂V n

∂y
). (3.92)

Since the velocities U and V are already known, the resulting set of equations

from (3.92) can be solved using the TDMA (Tridiagonal matrix algorithm). The

main advantage of the present numerical solution procedure is that it assures a

divergence-free solution for the velocity field, in addition to achieving a higher

numerical accuracy and a significant reduction in the computational time.

2. The vorticity transport equations are discretized in time using the explicit

scheme for the nonlinear term and implicit scheme for the linear term. The non-
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linear terms are discretized explicitly to avoid the solution of a nonlinear system.

This introduces limitations on the length of the time step which is proportional to

the spacial resolution (CFL Condition):

∂ωn

∂t
+ Un.∇ωn−1 = ωn−1.∇Un +

1

Re
∇2ωn +∇× fǫ. (3.93)

The central finite differencing scheme is used to approximate the first and sec-

ond derivatives which leads to a large linear system, and it is solved by the Gen-

eralized Minimum Residual technique. In the equation (3.93), the source term,

fǫ = (fǫu, fǫv, fǫw) acts as a singular vorticity source along the rotor blades. To

avoid singular behavior, fǫ is formed by taking the convolution of the computed

normal load, f = (fu, fv, fw), and a regularization kernel, ηǫ, as shown below [91]:

fǫ = f ⊗ ηǫ, (3.94)

where

ηǫ =
1

ǫ3π
3

2

exp(−(
r

ǫ
)2). (3.95)

We remind the reader that fu is computed directly using the equation (3.83). How-

ever, one needs to project the torque in the equation (3.84) which is along the

tangential direction onto y and z-direction to compute fv and fw. Finally, for a

given pitch angle and rotational velocity, to compute U , V , W and f simultaneously,

we propose a time-stepping procedure which at every instant assures a time-true

solution. This procedure is summarized in Algorithm 3.
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Figure 3.16: Staggered grid.

Algorithm 3 Iterations between Navier-Stokes equation and blade Forces

1: for a given βi, Ωi, i = 1, · · · , N , let n = 0, Un(0, x, y, z) = U0,V n(0, x, y, z) = 0,

W n(0, x, y, z) = 0, ∀(x, y, z) ∈ D.

2: repeat

3: Using Un, V n, W n at the rotor plane and the equations (3.71)-(3.87), compute

fn
u , fn

v , fn
w and the generated power.

4: Solve the Navier-Stokes equations to get Un+1, V n+1 and W n+1.

5: until |Un+1 − Un| < ǫ, |vn+1 − V n| < ǫ and |W n+1 −W n| < ǫ
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3.7.1 Generalized Minimal Residual Algorithm

One of the most effective iterative methods for solving large sparse symmetric posi-

tive definite linear systems of equations is the conjugate gradient method [11], [34].

Several different generalizations of this method have been presented in the re-

cent years to deal with nonsymmetric problems and symmetric indefinite prob-

lems [3, 21, 22, 40, 68, 70]. Recently, Youcef Saad developed an efficient numerical

algorithm called Generalized Minimum Residual algorithm for solving nonsymmet-

ric linear systems which is based on the Arnoldi process [2,74,76]. This generalized

method, summarized in Algorithm 4, is to intend to solve the following system:

Ax = b. (3.96)

In Algorithm 4, H̄k is a (k + 1) × k matrix which is the same as Hk = V T
k AVk,

except for an additional row whose only nonzero element is hk+1,k in the (k + 1, k)

position.

3.8 Joint Optimization Algorithm

The joint optimization model (3.66) is a PDE-constrained optimization model with

the objective of maximizing the total power output of the wind farm. This objective

function is the sum of the power produced by the individual turbines, Pi, which is

given in the equation (3.87). From this equation, we note that Pi is a complicated
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Algorithm 4 Generalized Minimal Residual Algorithm

1: Choose x0 and compute r0 = b− Ax0 and v1 = r0

‖r0‖
.

2: for j = 1, 2, 3, . . . , m do

3: hi,j = (Avj, vi), i = 1, 2, . . . , j,

4: v̂j+1 = Avj −
∑j

i=1 hi,jvi,

5: hj+1,j = ‖v̂j+1‖ and vj+1 = v̂j+1

hj+1,j
.

6: end for

7: Form the approximate solution: xm = x0 + Vmym where ym minimizes ‖βe1 −

H̄my‖, y ∈ Rm.

8: Restart: compute rm = b − Axm; if satisfied then stop else compute x0 = xm,

v1 = rm

‖rm‖
and go to 2.
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nonlinear function of the direct decision variables as well as the wind speed at the

plane of the rotor which is the solution of Navier-Stokes equations (3.67). Therefore,

it is almost impossible to find the derivative of the objective function. Hence, we

adopt the pattern search algorithm [67] which is a derivative free method to solve the

joint optimization model (3.66). The pattern search method starts with an arbitrary

feasible initial point, i.e., a set of operating configuration, βi, Ωi, i = 1, · · · , N , and

seek a better set of operating configuration to gain more power. For the model

(3.66), let x be the vector of all decision variables, Dfeasible be the feasible region:

x ≡ [β1, · · · , βN , Ω1, · · · , ΩN ]T , (3.97)

Dfeasible = {x | β1min ≤ x1 ≤ β1max, . . . , ΩNmin ≤ x2N ≤ ΩNmax}, (3.98)

and f be the objective function:

f ≡
N
∑

i=1

Pi, (3.99)

then the joint optimization algorithm based on the pattern search method in its

matrix notation is presented in Algorithm 5. The parameters used in this algorithm

are the convergence tolerance γtol = 1× 10−6, the contraction parameter θ = 0.5,

the aggressive parameter η = 2, the sufficient increase function µ(s) = s3/2 and the

direction set d ≡ {pi, i = 1, · · · , n + 1}. In this direction set, the search directions

are given by pi = 1
2n

E − Ei, for i = 1, · · · , n, and pn+1 = 1
2n

E where E is the

n dimensional vector of all ones and Ei is the ith column of the unit matrix of
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Algorithm 5 Joint Optimization

1: initialize the parameters γtol, θ, η, µ(·), guess x0 and set γ0 ≥ γtol.

2: evaluate f(x0) by Algorithm 3 and (3.87).

3: for k = 1, 2, 3, . . . do

4: if γk ≤ γtol then

5: return.

6: end if

7: for pk ∈ d do

8: if (xk + γkpk) /∈ Dfeasible then

9: xk + γkpk = xb.

10: end if

11: evaluate f(xk + γkpk) by Algorithm 3 and (3.87).

12: if f(xk + γkpk) > f(xk) + µ(γk) then

13: xk+1 ← xk + γkpk and γk+1 ← γkη.

14: break.

15: else

16: xk+1 ← xk and γk+1 ← γkθ.

17: end if

18: end for

19: end for
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size n. Note that the search direction does not come from the gradient, but rather

from a predetermined direction set d. Moreover, one member of d is a improving

direction [67].

3.9 Numerical Simulation

In this section, we present two numerical case studies to test the efficiency and

accuracy of the proposed numerical algorithm. In these numerical case studies,

we use a three-bladed wind turbine with a rotor diameter of 10 meters where the

blade sections consist of NACA 23012 series airfoils. The chord length and the

manufactured twist angle of this turbine are obtained using the formulas given in

(3.48) and (3.44).

To capture the gradients of the flow field, grid points are concentrated near the

blade tips and stretched in the axial direction as well as in the y and z-direction.

In the case of one turbine, the resulting grid consists of 76 grid points in the

axial direction, 80 points in the y-direction and 92 points in the z-direction. In

the case of two turbines, the resulting grid consists of 96 grid points in the axial

direction, 80 points in the y-direction and 92 points in the z-direction. In the

axial direction, the grid spacing ranges from dx = 0.02 at the rotor plane to about

dx = 1.9476 in the far wake and in the y-direction, the spacing takes values from

dy = 0.02 near the tip to about dy = 1.2150 at the lateral boundary. Moreover,
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Table 3.2: Sections of NACA 23012 blade

relative radius 0.188 0.313 0.438 0.563 0.688 0.813 0.938

pitch 24.2 14.7 9.4 6.0 3.8 2.2 1.0

relative chord 0.259 0.212 0.169 0.138 0.116 0.100 0.087

in the z-direction, the spacing takes values from dz = 0.0346 near the tip to about

dz = 1.4863 at the lateral boundary. The computations are carried out on a

100m × 60m × 60m computational domain and at an effective Reynolds number

of Re = U0 ∗ R/ν = 5000. The grid spacing and the value of the used Reynolds

number are of course a compromise between the accuracy and computing costs.

To ensure that the flow is fully developed in most of the wake, we carry out the

computations until t=10 with a time step of dt = 1× 10−3 which corresponds to

10000 time steps.

3.9.1 One Turbine

We apply the developed numerical Algorithm 5 to find the optimal operating points

of NACA 23012 when the incoming wind speed is 9m
s

, 10m
s

and 11m
s

. The results are

tabulated in Table 3.3. From this table, the optimal pitch angle and the rotational

speed are β = 1.1215◦ and Ω = 1.684 rad/s when the incoming wind speed is

9m
s

. At this optimal operating point, the generated power is P = 20.5110kw, the
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thrust is 5.6873 kilonewton, and the torque is 0.80744 kilonewton. These results are

consistent with the field-tested results in [89]. Moreover, at this optimal operating

point, the averaged angle of attack is α = 13.046◦ which yields high glide ratio, see

Figure 3.15.

We now examine the performance of the developed numerical algorithm with

different initial guesses. In this regard, we apply Algorithm 5 to find the optimal

operating points of NACA 23012 using different initial guesses. The results are

tabulated in Table 3.4. From this table, we observe that Algorithm 5 starting from

the initial guesses β0 = 0◦ and Ω0 = 1 rad/s finds the optimal solutions of β =

1.1213◦ and Ω = 1.6837 rad/s when the incoming wind speed is 9m
s

. The magnitude

of difference between these optimal points and those optimal points associated with

the incoming wind speed of 9m
s

in Table 3.3 is very small. Therefore, Algorithm 5

produces consistent optimal solutions, and it is not sensitive to the selected initial

guesses used. Moreover, these results imply that the optimal operating points of a

single turbine are unique.

We also investigate the efficiency of the developed numerical algorithm in terms

of the number of objective function evaluations required for our algorithm to reach

convergence. In this regard, the best objective function value, the number of ob-

jective function evaluations and the mesh size at each iteration of Algorithm 5 are

plotted for U0 = 9, U0 = 10 and U0 = 11 in Figures 3.17, 3.18 and 3.19. For
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Table 3.3: Optimal operating point of NACA 23012.

Wind speed init. β Ω α T Ψ P

U0=9 m
s

(-3, 2) 1.1215 1.684 13.046 5.6873 0.80744 20.5110

U0=10 m
s

(1, 1.9) 1.375 1.800 13.1870 6.5458 1.0100 30.0060

U0=11 m
s

(2, 1) 1.4146 2.0500 13.4190 8.0906 1.2410 40.5448

example, from Figure 3.17, it is evident that Algorithm 5 converges to the sta-

tionary point 20.5110 as the sequence of the mesh size parameter tends to zero.

From this figure, we also note that the number of objective function evaluations is

30. With this number of objective function evaluations, Algorithm 5 seems to find

the optimal operating points of a single turbine in a reasonable time. However, as

the number of turbine increases the objective function evaluation becomes substan-

tially expensive. Therefore, for future work we are planning to develop a robust

optimization algorithm to speed up the optimization process.

Finally, we examine the efficiency of Algorithm 3 in simulating the flow in

ultimate wakes of a wind turbine. In this regard, we apply Algorithm 3 to simulate

the flow around NACA 23012 operating at its optimal operating points β = 1.375◦

and Ω = 1.800 rad/s when the incoming wind speed is 10m
s

. The results are
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Table 3.4: Optimal operating point of NACA 23012 (different initial point).

Wind speed init. β Ω α T Ψ P

U0=9 m
s

(0, 1) 1.1213 1.6837 13.0468 5.6874 0.80747 20.5113

U0=10 m
s

(-2, 1) 1.3754 1.802 13.1881 6.5459 1.0102 30.0061

U0=11 m
s

(-2, 1.7) 1.4160 2.0550 13.4120 8.0902 1.2403 40.5435
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Figure 3.17: Pattern search result for laminar flow U0 = 9.
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Figure 3.18: Pattern search result for laminar flow U0 = 10.
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Figure 3.19: Pattern search result for laminar flow U0 = 11
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Figure 3.20: Wind flow in the plane of the rotor near the hub.

displayed in Figures 3.20, 3.21, 3.23 and 3.22. The flow patterns shown in these

figures are consistent with the field-tested results in [89]. Moreover, from Figure

3.23, we notice that the wake of wind turbine continues to expand in the axial

direction as well as in the z-direction as it develops further downstream. It is also

important to note that, 6 rotor diameters away from the plane of the wind turbine,

the wake has not yet fully recovered. Therefore, a wind turbine placed downstream

of other wind turbines will experience diminished power production compared to

free-standing wind turbines. In conclusion, in order to improve the performance of

overall wind farm, it is essential to optimize the total power while considering the

wake effect.

99



y

15 20 25 30 35

z

15

20

25

30

35

Wind flow in the plane of wind turbine near and far from the hub

(V,W)

Figure 3.21: Wind flow in the plane of the rotor near and far from the hub.
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Figure 3.22: Wind flow in xz-plane passing through the hub.
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Figure 3.23: Wind flow in xz-plane passing through the hub.

Figure 3.24: Schematic diagram of two turbines.
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3.9.2 Two Turbines

The schematic diagram in Figure 3.24 shows two three-bladed turbines where the

downstream turbine is positioned in the wake of the upstream turbine. These two

turbines are four rotor diameters apart, and their blade sections consist of NACA

23012 series airfoils. We now apply the developed numerical Algorithm 5 to find the

global optimum operating point of these two turbines where the wake of upstream

turbine interfere with the downstream turbine. The results are tabulated in Table

3.5. From this table, the global optimum point of upstream and downstream turbine

are (β, Ω) = (1.1646, 1.5915) and (β, Ω) = (0.7470, 1.3086), respectively. Moreover,

from this table, we also note that the upstream turbine generates 18.575kw power

and the downstream turbine generates 17.107kw power when they operate at their

global optimum point. In this case, the total power output of wind turbines is

35.682kw. In contrast, when both turbines operate at their own optimum point,

i.e., (β, Ω) = (1.1215, 1.6840), as shown in Table 3.3, then the upstream turbine

generates 16.495kw power and the downstream turbine generates 16.226kw power.

In this case, the total power output of wind turbines is 32.721kw. Therefore, by

optimizing the turbines' operation while considering the wake effect, we can gain

an additional 9.05% in the total power since 35.682/32.721 = 1.0905. Moreover, we

also note that this extra gain in the total power does not lead to increased loading
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on wind turbines. For example, from Table 3.5, the thrust of the downstream

turbine operating at its global optimum point and in the wake of upstream turbine

is T = 5.2265 kN which is less than the thrust of a free-standing turbine T = 5.6873

kN, see Table 3.3, operating at its own optimal point with no exposure to the wake

of another turbine.

From Table 3.3, we note that a free-standing wind turbine operating at its opti-

mum point (β, Ω) = (1.1215, 1.6840) generates 20.5110kw power when the incoming

wind speed is 9m
s

. In contrast, if two turbines are grouped in a wind farm, and

they operate at the optimum point of a free-standing turbine, then the upstream

and downstream turbine generate 16.495kw and 16.226kw power, respectively. This

power reduction of the downstream turbine is due to the wake generated by up-

stream wind turbine which alters the flow field and leads to a wind velocity deficit

in the downstream wind turbine. The power reduction of the upstream wind tur-

bine can be justified due to the thrust generated by the downstream turbine which

reacts to the common flow field, and leads to a wind velocity deficit in the upstream

wind turbine. In this perspective, the wake zone concept could be extended. It is

not only the turbine at front affects the performance of the turbines at rear; rather,

all turbines affect each other via the common flow field in which they are immersed.

Finally, from Table 3.3, we note that a free-standing wind turbine achieves

its highest aerodynamic performance at the angle of attack 13.046 degrees. This
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angle of attack leads to a high glide ratio as shown in Figure 3.15. However,

from Table 3.5, when two turbines are grouped in a wind farm they achieve their

highest aerodynamic performance at the angle of attack higher than 13.046 degrees.

For example, from Table 3.5, the angle of attack of the upstream and downstream

turbine are 17.489 and 16.4512 degrees, respectively, when the incoming wind speed

is 11m
s

, and they operate at the global optimum point. Moreover, from Table 3.5, it

is evident that the angles of attack for all tested cases are consistently bigger, around

16 degrees. This angle of attack, 16 degrees, is the critical angle of attack for the

lift coefficient, and it leads to higher lift coefficient, see Figure 3.14. In conclusion,

the developed Algorithm 5 moves towards maximizing the lift coefficients when

optimizing the total power.

3.10 Conclusion

In this chapter, we studied how to optimize power production of multiple wind tur-

bines by considering the wake interactions among them. We modeled the intricate

interference of multiple turbines through the actuator line method and the Navier-

Stokes equations. We find that by optimizing the turbines' operation, we can safely

gain an additional 8% in the total power. We find that not only the turbine at the

front affects the production of a turbine at the rear, but all turbines affect each

other by exerting forces into the flow field in which all turbines are immersed. In
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Table 3.5: Joint optimal operating points of two NACA 23012.

Wind speed turbine β Ω α T Ψ P

1st, joint 1.1646 1.5915 13.1200 5.1708 0.75555 18.575

2nd, joint 0.7470 1.3086 22.3690 5.2265 0.75073 17.107

U0=9 m
s

1st 1.1215 1.6840 11.3001 5.1469 0.64332 16.495

2nd 1.1215 1.6840 11.1630 5.1180 0.62954 16.226

Gain: 9.04%

1st, joint 0.5979 1.5252 15.1863 6.3486 0.98574 26.8790

2nd, joint 0.082 1.3939 18.1510 6.3911 0.96538 25.8350

U0=10 m
s

1st 1.3750 1.8000 11.4591 5.9452 0.81589 24.5200

2nd 1.3750 1.8000 11.3320 5.9133 0.80071 24.2460

Gain: 8.11%

1st, joint 0.331 1.7222 17.4891 8.2425 1.1991 35.7501

2nd, joint 0.8275 1.6114 16.4512 7.2552 1.1972 34.6912

U0=11 m
s

1st 1.4160 2.0500 11.6740 7.3602 1.0041 33.3061

2nd 1.4160 2.0500 11.5511 7.3233 0.9861 32.8601

Gain: 7.3680%
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contrast to the case of a single turbine, the numerical results show that, at the

optimal operating point for multiple wind turbines, the angle of attack does not

yield the highest glide ratio. We also find that the optimal angle of attack deviates

the most from the point where the glide ratio is maximum for the turbine at the

rear. This work paves a way for a larger scale power production optimization and

more accurate wind farm layout optimization.
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4 Stochastic Power Optimization Using DD

4.1 Introduction

In the previous chapter, we optimize the total power in a wind farm assuming a

deterministic value for the incoming wind. In this chapter, we relax this assump-

tion and treat the incoming wind as a stochastic variable. We essentially focus on

analyzing and modeling stochastic optimization of wind turbines' output in a wind

farm subject to Navier-Stokes equations. Obtaining accurate simulation of wind

flows governed by Navier-Stokes equations requires a great number of mesh points

which can lead to the problem of solving large linear systems. Therefore, to ob-

tain the solutions in a reasonable time, we develop a corrected-explicit-implicit do-

main decomposition scheme for the parallel approximation of the three-dimensional

Navier-Stokes equations in a velocity-vorticity formulation. To validate the pro-

posed parallel scheme, we apply it to estimate the solution of the lid-driven cavity

problem which has been used as a benchmark problem for many numerical meth-

ods due to its simple geometry and complicated flow behaviors. To further validate
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the developed parallel scheme in the context of wind turbines' power production,

we test our model against an experimental data that is available for a commercial

wind turbine called WindSpot. We estimate the power generation of wind spot for

different wind speeds using the parallel simulation of the Navier-Stokes equations

and the actuator line method. It will be shown that our power estimates match

the experimental data for the WindSpot very well. Since the results of our vali-

dation are acceptable, we proceed to apply the developed parallel scheme for the

Navier-Stokes equations and the actuator line method in the context of stochastic

optimization of wind turbines' output in a wind farm.

4.2 Modeling of the Flow for Stochastic Power Optimiza-

tion

For a wind farm with N turbines, the production stochastic optimization model in

its condensed form is the following:

Max
β1,...,βN

Ω1,...,ΩN

N
∑

i=1

EU0 [Pi]

subject to (4.2), and

βmin ≤ βi ≤ βmax,

Ωmin ≤ Ωi ≤ Ωmax,

∀i ∈ {1, 2, . . . , N},

(4.1)
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where the incoming wind speed on the inlet boundary, U0, is a random variable

and the objective function is the expected total generated power from the wind

farm. This optimization problem (4.1) is to select 2n decision variables, (β1,Ω1, . . . ,

βn,Ωn) in a 2n-dimensional rectangular box, where Ωi is the speed at which the ith

turbine rotates and βi is the angle at which the blades of the ith turbine are being

pitched. Moreover, these decision variables are bounded Ωmin ≤ Ωi ≤ Ωmax and

βmin ≤ βi ≤ βmax where Ωmin, Ωmax, βmin and βmax are the lower and upper bounds

on the rotational speed and the pitch angle. These lower bounds are imposed due

to the fact that if the wind turbine rotates slowly, or the blades are pitched at a

low angle then most of the wind will pass unperturbed through the gaps between

the blades which will result in power reduction. The upper bounds are imposed

due to the fact that if the turbine turns too fast, or the blades are pitched at a

high angle then it will act as a solid wall to the wind which will result in power

reduction. Moreover, in the model (4.1), Pi is the power generated by the ith

turbine that has a complicated nonlinear relationship with the decision variables

and the wind speed which is the solution of the Navier-Stokes equations (4.2); it

is derived in the previous chapter in section 3.6. Finally, in the model (4.1), the

constraints are the Navier-Stokes equations which govern the relationship between

the wind flow field and the external forces. These equations on a rectangular
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domain, D = [0, lx]× [0, ly]× [0, lz], are given by:















































∂U

∂t
+ UUx + V Uy + Wuz = −

1

ρ
px + ν(Uxx + Uyy + Uzz) + fu(t, x, y, z),

∂V

∂t
+ UVx + V Vy + WVz = −

1

ρ
py + ν(Vxx + Vyy + Vzz) + fv(t, x, y, z),

∂W

∂t
+ UWx + V Wy + WWz = −

1

ρ
pz + ν(Wxx + Wyy + Wzz) + fw(t, x, y, z),

(4.2)

with the following boundary conditions:











































































































U(t, 0, ·, ·) = U0, V (t, 0, ·, ·) = 0, W (t, 0, ·, ·) = 0,

Ux(t, lx, ·, ·) = 0, Vx(t, lx, ·, ·) = 0, Wx(t, lx, ·, ·) = 0,

Uy(t, ·, 0, ·) = 0, Vy(t, ·, 0, ·) = 0, Wy(t, ·, 0, ·) = 0,

Uy(t, ·, ly, ·) = 0, Vy(t, ·, ly, ·) = 0, Wy(t, ·, ly, ·) = 0,

Uz(t, ·, ·, 0) = 0, Vz(t, ·, ·, 0) = 0, Wz(t, ·, ·, 0) = 0,

Uz(t, ·, ·, lz) = 0, Vz(t, ·, ·, lz) = 0, Wz(t, ·, ·, lz) = 0,

(4.3)

the initial conditions:

U(0, ·, ·, ·) = U0, V (t, ·, ·, ·) = 0, W (t, ·, ·, ·) = 0, (4.4)

and the continuity equation:

Ux + Vy + Wz = 0, (4.5)

where ν is the viscosity, ρ is the air density and U0 is the incoming wind speed

which is a random variable.
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4.3 Value of Stochastic Programming for Power Production

There are two approaches to find optimal operating points of wind turbines while

considering the random wind speed on the boundary of the wind farm. The first

approach is to solve a deterministic model, and the second approach is to solve a

stochastic model. The first approach replaces the random incoming wind speed by

its expectation, while the second approach explicitly includes the randomness of

the incoming wind speed. Both approaches are aimed to find the optimal operat-

ing points of wind turbines. However, the second approach has advantages over

the first one. Here, we illustrate the advantage of the stochastic model over the

deterministic model through an example, and we show that ignoring the random

characteristics of the incoming wind speed may limit the usefulness of the optimal

solutions. For simplicity, we consider one turbine operating within the wind farm

where the incoming wind speed has a discrete distribution with finite number of

values 7m
s

, 8m
s

, 9m
s

, 10m
s

and 11m
s

that are equally likely to be observed. For these

wind speeds, the power generated by the turbine for a fixed pitch angle and various

rotational velocities are given in Figure 4.1. Here, we use the deterministic ap-

proach to find the optimal rotational speed. In this case, we assume the incoming

wind speed is 9m
s

which is the expectation of 7m
s

, 8m
s

, 9m
s

, 10m
s

and 11m
s

. Since

the incoming wind speed is 9m
s

, the optimal rotational velocity of the wind turbine
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is 1.684, see Table 3.3. Now, if we operate the wind turbine at this optimal point,

then the expected power output is:

9.6531 + 15.2134 + 22.3351 + 29.4452 + 37.6782

5
= 22.865, (4.6)

where 9.911, 15.435, 22.409, 29.170 and 37.156 are the power generated by the

turbine for the incoming wind speed of 7m
s

, 8m
s

, 9m
s

, 10m
s

and 11m
s

, respectively.

Therefore, if the wind turbine operates at the optimal rotational velocity obtained

by the deterministic approach, then the expected power output will be 22.865kw.

Now, we investigate the expected power output of the turbine at different rota-

tional velocity using the power output curves, see Figure 4.1. From this figure, at

rotational velocity 1.684, the power output curves for the incoming wind speed 10m
s

and 11m
s

are steep while other three curves are almost flat. Therefore, at rotational

velocity slightly away from 1.684, the expected power output may increases. To

find out, we compute the expected power output of the turbine operating at the

rotational velocity 2.00:

9.0259 + 14.8221 + 22.996 + 30.0612 + 39.0965

5
= 23.2003.

Therefore, if we operate the wind turbine at rotational velocity 2, then we gain

1.47% more power (since 23.2003=1.47*22.8650). Due to the simplifying assump-

tion, this gain is small but it is large for the optimization model 4.1 as numerical

results confirm this.

112



Rotational Speed
0.5 1 1.5 2 2.5 3

P
o

w
e

r

0

5

10

15

20

25

30

35

40

45

U0=11

U0=10

U0=9

U0=8

U0=7

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4.1: Generated power for various rotational velocity.
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4.4 Scenario-Based Approximation Model

To solve the stochastic optimization model (4.1), we first need to model the random

behavior of the incoming wind speed. In this regard, a large number of studies have

been conducted to find a good probability distribution to model the randomness

of the wind speed. Generally, the two-parameter Weibull distribution is widely

used and accepted in the specialized literature on wind energy and other renewable

energy sources [57, 79]. Here, we use the doubly truncated Weibull distribution

with the following probability distribution function to model the random behavior

of the incoming wind speed:

f(x) =























g(x)

G(b)−G(a)
a ≤ x ≤ b,

0 Otherwise,

(4.7)

where g is the non-truncated Weibull distribution with shape parameter kc and

scale parameter sc, and G is the cumulative distribution function. It can be shown

that the expected value of the doubly truncated Weibull distribution is equal to:

Ef (X) =

sc exp(( a
sc

)kc)

1− exp(−( b
sc

)kc)

(

γ(
1

kc

+ 1, (
b

sc

)kc)− γ(
1

kc

+ 1, (
a

sc

)kc)
)

,

(4.8)

where γ is the incomplete gamma function.

To simulate the uncertainty of the incoming wind speed in the stochastic opti-

mization model (4.1), we use the Monte Carlo simulation method. The advantage
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of applying this method is that the required number of samples for a given level

of accuracy is independent of the size of the model (4.1). We apply the Monte

Carlo simulation method to generate finite number of scenarios, (U1
0 , U2

0 , . . . , UM
0 ),

according to the doubly truncated Weibull distribution (4.8), where each scenario

U j
0 , j = 1, . . . , M represents the incoming wind speed. The scenario generation

process is summarized in Algorithm 4.9. Consequently, we obtain the following

scenario-based approximation model to the stochastic optimization model (4.1):

Max
β1,...,βN

Ω1,...,ΩN

N
∑

i=1

∑M
j=1 P j

i

M

P j
i , i = 1 . . . N, subject to (4.2) under scenario U j

0 for j = 1 . . . M,

βmin ≤ βi ≤ βmax,

Ωmin ≤ Ωi ≤ Ωmax,

∀i ∈ {1, 2, . . . , N}.

(4.9)

Algorithm 6 Scenario generation

1: for j = 1, 2, 3, . . . , M do

2: repeat

3: U j
0 = sc(− ln(1− zj))

1

kc where zj is a random number generated from the

uniform distribution.

4: until a ≤ U j
0 ≤ b

5: end for
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4.5 Parallel Scheme for Navier-Stokes Equations

By using the curl operator to the equations (4.2), one gets the following dimension-

less form of the vorticity transport equations:

∂ξ

∂t
= −

∂(V ξ)

∂y
−

∂(Wξ)

∂z
+

∂(Uη)

∂y
+

∂(Uζ)

∂z
+

1

Re
(
∂2ξ

∂x2
+

∂2ξ

∂y2
+

∂2ξ

∂z2
)

+
∂fw

∂y
−

∂fv

∂z
, (4.10)

∂η

∂t
= −

∂(Uη)

∂x
−

∂(Wη)

∂z
+

∂(V ξ)

∂x
+

∂(V ζ)

∂z
+

1

Re
(
∂2η

∂x2
+

∂2η

∂y2
+

∂2η

∂z2
)

−
∂fw

∂x
+

∂fu

∂z
, (4.11)

∂ζ

∂t
= −

∂(Uζ)

∂x
−

∂(V ζ)

∂y
+

∂(Wξ)

∂x
+

∂(Wη)

∂y
+

1

Re
(
∂2ζ

∂x2
+

∂2ζ

∂y2
+

∂2ζ

∂z2
)

+
∂fv

∂x
−

∂fu

∂y
, (4.12)

with the following boundary conditions:


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


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





















































































ξ(t, 0, ·, ·) =
∂W (t, 0, ·, ·)

∂y
−

∂V (t, 0, ·, ·)

∂z
,

ξ(t, lx, ·, ·) =
∂W (t, lx, ·, ·)

∂y
−

∂V (t, lx, ·, ·)

∂z
,

ξ(t, ·, 0, ·) =
∂W (t, ·, 0, ·)

∂y
−

∂V (t, ·, 0, ·)

∂z
,

ξ(t, ·, ly, ·) =
∂W (t, ·, ly, ·)

∂y
−

∂V (t, ·, ly, ·)

∂z
,

ξ(t, ·, ·, 0) =
∂W (t, ·, ·, 0)

∂y
−

∂V (t, ·, ·, 0)

∂z
,

ξ(t, ·, ·, lz) =
∂W (t, ·, ·, lz)

∂y
−

∂V (t, ·, ·, lz)

∂z
,

(4.13)
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
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
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
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















η(t, 0, ·, ·) = −
∂W (t, 0, ·, ·)

∂x
+

∂U(t, 0, ·, ·)

∂z
,

η(t, lx, ·, ·) = −
∂W (t, lx, ·, ·)

∂x
+

∂U(t, lx, ·, ·)

∂z
,

η(t, ·, 0, ·) = −
∂W (t, ·, 0, ·)

∂x
+

∂U(t, ·, 0, ·)

∂z
,

η(t, ·, ly, ·) = −
∂W (t, ·, ly, ·)

∂x
+

∂U(t, ·, ly, ·)

∂z
,

η(t, ·, ·, 0) = −
∂W (t, ·, ·, 0)

∂x
+

∂U(t, ·, ·, 0)

∂z
,

η(t, ·, ·, lz) = −
∂W (t, ·, ·, lz)

∂x
+

∂U(t, ·, ·, lz)

∂z
,

(4.14)
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ζ(t, 0, ·, ·) =
∂V (t, 0, ·, ·)

∂x
−

∂U(t, 0, ·, ·)

∂y
,

ζ(t, lx, ·, ·) =
∂V (t, lx, ·, ·)

∂x
−

∂U(t, lx, ·, ·)

∂y
,

ζ(t, ·, 0, ·) =
∂V (t, ·, 0, ·)

∂x
−

∂U(t, ·, 0, ·)

∂y
,

ζ(t, ·, ly, ·) =
∂V (t, ·, ly, ·)

∂x
−

∂U(t, ·, ly, ·)

∂y
,

ζ(t, ·, ·, 0) =
∂V (t, ·, ·, 0)

∂x
−

∂U(t, ·, ·, 0)

∂y
,

ζ(t, ·, ·, lz) =
∂V (t, ·, ·, lz)

∂x
−

∂U(t, ·, ·, lz)

∂y
.

(4.15)

By taking the curl of vorticity (ξ, η, ζ) = ∇ × (U, V, W ) and using the continuity

equation (4.5), we obtain the following velocity Poisson equations:

∂2U

∂x2
+

∂2U

∂y2
+

∂2U

∂z2
= −

∂(ζ)

∂y
+

∂(η)

∂z
, (4.16)

∂2V

∂x2
+

∂2V

∂y2
+

∂2V

∂z2
=

∂(ζ)

∂x
−

∂(ξ)

∂z
, (4.17)

∂2W

∂z2
= −

∂2(U)

∂z∂x
−

∂2(V )

∂z∂y
, (4.18)
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with the following boundary conditions:











































































































U(t, 0, ·, ·) = U0, V (t, 0, ·, ·) = 0, W (t, 0, ·, ·) = 0,

Ux(t, lx, ·, ·) = 0, Vx(t, lx, ·, ·) = 0, Wx(t, lx, ·, ·) = 0,

Uy(t, ·, 0, ·) = 0, Vy(t, ·, 0, ·) = 0, Wy(t, ·, 0, ·) = 0,

Uy(t, ·, ly, ·) = 0, Vy(t, ·, ly, ·) = 0, Wy(t, ·, ly, ·) = 0,

Uz(t, ·, ·, 0) = 0, Vz(t, ·, ·, 0) = 0, Wz(t, ·, ·, 0) = 0,

Uz(t, ·, ·, lz) = 0, Vz(t, ·, ·, lz) = 0, Wz(t, ·, ·, lz) = 0,

(4.19)

and initial conditions:

u(0, ·, ·, ·) = U0, v(t, ·, ·, ·) = 0, w(t, ·, ·, ·) = 0. (4.20)

We seek for the numerical solution of ξ(t, x, y, z), η(t, x, y, z), ζ(t, x, y, z), U(t, x, y, z),

V (t, x, y, z) and W (t, x, y, z) in the computational domain D ≡ [0, lx]×[0, ly]×[0, lz]

for t ∈ [0 T ] using parallel simulation. To find these numerical solutions, we first

need to define the grid points in the computational domain. In this regard, we

partition the computational domain using the following set of non-uniform grid

points:

Dh = {(xi, yj, zk) |xi = xi−1 + hi
x, 1 ≤ i ≤ Jx,

yj = yj−1 + hj
y, 1 ≤ j ≤ Jy,

zk = zk−1 + hk
z , 1 ≤ k ≤ Jz, } (4.21)

118



Figure 4.2: Staggered grid

where x0 = 0, y0 = 0, z0 = 0, xJx
= lx, yJy

= ly and zJz
= lz. We divide the time

interval into N subinterval of equal length using the points, tn = nτ , n=0. . . N,

where τ = T
N

. To discretize the velocity Poisson equations (4.16)-(4.18) and the

vorticity transport equations (4.10)-(4.12), we use a MAC staggered grid system,

as displayed in Figure 4.2, to ensure the accuracy in the prediction of velocities and

vorticities. From this figure, we note that the numerical solution of U, V and W are

evaluated at the grid points (xi, yj+ 1

2
, zk+ 1

2
), (xi+ 1

2
, yj, zk+ 1

2
) and (xi+ 1

2
, yj+ 1

2
, zk), re-

spectively. Moreover, from this figure, we also note that the numerical solution of ξ,

η and ζ are computed at the grid points (xi+ 1

2
, yj, zk), (xi, yj+ 1

2
, zk) and (xi, yj, zk+ 1

2
)

, respectively. Before we proceed to a detailed description of the developed parallel

scheme to solve the equations (4.16)-(4.18) and (4.10)-(4.12), we introduce some
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Figure 4.3: Arbitrary mesh function at an arbitrary grid point.

notations. For an arbitrary mesh function Gn
i,j,k = G(tn, xi, yj, zk) defined at an

arbitrary grid point (xi, yj, zk), we introduce the following notations:

∂tG
n
i,j,k =

Gn
i,j,k −Gn−1

i,j,k

τ
, (4.22)

δxGn
i− 1

2
,j,k

=
Gn

i,j,k −Gn
i−1,j,k

dx1

, (4.23)

δyGn
i,j− 1

2
,k

=
Gn

i,j,k −Gn
i,j−1,k

dy1

, (4.24)

δzGn
i,j,k− 1

2

=
Gn

i,j,k −Gn
i,j,k−1

dz1

, (4.25)

and

δ2
xGn

i,j,k =
1

dx2(
dx1

2
+ dx2

2
)
Gn

i+1,j,k − (
1

dx2(
dx1

2
+ dx2

2
)

+
1

dx1(
dx1

2
+ dx2

2
)
)Gn

i,j,k

+
1

dx1(
dx1

2
+ dx2

2
)
Gn

i−1,j,k, (4.26)
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δ2
yGn

i,j,k =
1

dy2(
dy1

2
+ dy2

2
)
Gn

i,j+1,k − (
1

dy2(
dy1

2
+ dy2

2
)

+
1

dy1(
dy1

2
+ dy2

2
)
)Gn

i,j,k

+
1

dy1(
dy1

2
+ dy2

2
)
Gn

i,j−1,k, (4.27)

δ2
zGn

i,j,k =
1

dz2(
dz1

2
+ dz2

2
)
Gn

i,j,k+1 − (
1

dz2(
dz1

2
+ dz2

2
)

+
1

dz1(
dz1

2
+ dz2

2
)
)Gn

i,j,k

+
1

dz1(
dz1

2
+ dz2

2
)
Gn

i,j,k−1. (4.28)

In the following subsections, we present the developed corrected-explicit-implicit

domain decomposition scheme for the parallel approximation of the three-dimensional

Navier-Stokes equations in a velocity-vorticity formulation. This is achieved by

combining a second-order extrapolation scheme and an implicit correction tech-

nique. In the proposed scheme, at each time step, we predict the values of velocity

at interface mesh points by a time second-order extrapolation scheme. Then, we

approximate the interior values of velocity in each subdomain using the backward

Euler method, an explicit scheme and an implicit scheme. Finally, once the sub-

domain solutions are available, we correct the predicted values of velocity at the

interface mesh points. Using similar steps, we approximate the solutions of vorticity

transport equations.
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4.5.1 Parallel Approximation of U

Let Un
i,j+ 1

2
,k+ 1

2

be the numerical approximation of U at the grid point (xi, yj+ 1

2
, zk+ 1

2
)

at time tn, and Du
h be the set of mesh points associated with Un

i,j− 1

2
,k− 1

2

:

Du
h = {(xi, yj− 1

2
, zk− 1

2
) | i = 0, . . . , Jx, j = 0, . . . , Jy + 1, k = 0, . . . , Jz + 1}.

Decompose Du
h into (P u + 1)(Qu + 1)(Su + 1) non-overlapping subdomains Du

hα,β,γ ,

α = 1 . . . P u + 1, β = 1 . . . Qu + 1 , γ = 1 . . . Su + 1:

Du
hα,β,γ = {(xi, yj− 1

2
, zk− 1

2
) | iu

α−1 < i < iu
α, ju

β−1 < j < ju
β , ku

γ−1 < k < ku
γ}.

In general, P and Q are related to the size of the problem and the number of

processors in the computer platform. Associated to the subdomains, there are

(P u + 1)(Qu + 1)(Su + 1) interfaces. Let Γu
h = Γu1

h

⋃

Γu2
h

⋃

Γu3
h be the set of all mesh

points on the interfaces where Γu1
h , Γu2

h and Γu3
h are given by:

Γu1
h = {(xiu

α
, yj− 1

2
, zk− 1

2
) | 4 ≤ iu

α + 2 ≤ iu
α+1, 1 ≤ α ≤ P u, 0 < j < (Jy + 1),

0 < k < (Jz + 1)},

Γu2
h = {(xi, yju

β
− 1

2
, zk− 1

2
) | 4 ≤ ju

β + 2 ≤ ju
β+1, 1 ≤ β ≤ Qu, 1 ≤ i ≤ (Jx − 1),

0 < k < (Jz + 1)},

Γu3
h = {(xi, yj− 1

2
, zku

γ − 1

2
) | 4 ≤ ku

γ + 2 ≤ ku
γ+1, 1 ≤ γ ≤ Su, 1 ≤ i ≤ (Jx − 1),

0 < j < (Jy + 1)},

(4.29)
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where iu
0 = 0, iu

P +1 = Jx, ju
0 = 0, ju

Q+1 = Jy + 1, ku
0 = 0 and ku

S+1 = Jz + 1. Now,

we propose a corrected-explicit-implicit domain decomposition scheme over multi-

block subdomains for the parallel approximation of the velocity Poisson equation

(4.16) which consists of the following steps:

Step 1. Apply the following explicit scheme to predict the value of Un
i,j− 1

2
,k− 1

2

at

the interface mesh points by:

Ũn
i,j− 1

2
,k− 1

2

= 2Un−1
i,j− 1

2
,k− 1

2

− Un−2
i,j− 1

2
,k− 1

2

on Γu
h. (4.30)

Step 2. Compute the value of Un
i,j− 1

2
,k− 1

2

at the interior points of subdomains by:











































Un
i,j− 1

2
,k− 1

2

− Un−1
i,j− 1

2
,k− 1

2

τ
= δ2

xUn
i,j− 1

2
,k− 1

2

+ δ2
yUn

i,j− 1

2
,k− 1

2

+ δ2
zUn

i,j− 1

2
,k− 1

2

+ δyζn−1
i,j− 1

2
,k− 1

2

− δzηn−1
i,j− 1

2
,k− 1

2

on Du
h\{Γ

u
h ∪ ∂Du

h},

Un
i,j− 1

2
,k− 1

2

= Ũn
i,j− 1

2
,k− 1

2

on Γu
h .

(4.31)

Step 3. Correct the predicted value of Un
i,j− 1

2
,k− 1

2

at the interface mesh points

Γu
h\{Γ

u1
h ∩ Γu2

h , Γu1
h ∩ Γu3

h , Γu2
h ∩ Γu3

h } by:



































































Un
i,j− 1

2
,k− 1

2

− Un−1
i,j− 1

2
,k− 1

2

τ
= δ2

xUn
i,j− 1

2
,k− 1

2

+ δ2
yUn

i,j− 1

2
,k− 1

2

+ δ2
zUn

i,j− 1

2
,k− 1

2

+ δyζn−1
i,j− 1

2
,k− 1

2

− δzηn−1
i,j− 1

2
,k− 1

2

on Γu
h\{Γ

u1
h ∩ Γu2

h , Γu1
h ∩ Γu3

h , Γu2
h ∩ Γu3

h },

Un
i,j− 1

2
,k− 1

2

=Ũn
i,j− 1

2
,k− 1

2

on {Γu1
h ∩ Γu2

h , Γu1
h ∩ Γu3

h , Γu2
h ∩ Γu3

h } .

(4.32)
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Step 4. Correct the predicted value of Un
i,j− 1

2
,k− 1

2

at the interface mesh points

{Γu1
h ∩ Γu2

h , Γu1
h ∩ Γu3

h , Γu2
h ∩ Γu3

h } by:



































































Un
i,j− 1

2
,k− 1

2

− Un−1
i,j− 1

2
,k− 1

2

τ
= δ2

xUn
i,j− 1

2
,k− 1

2

+ δ2
yUn

i,j− 1

2
,k− 1

2

+ δ2
zUn

i,j− 1

2
,k− 1

2

+ δyζn−1
i,j− 1

2
,k− 1

2

− δzηn−1
i,j− 1

2
,k− 1

2

on {Γu1
h ∩ Γu2

h , Γu1
h ∩ Γu3

h , Γu2
h ∩ Γu3

h },

Un
i,j− 1

2
,k− 1

2

= Ũn
i,j− 1

2
,k− 1

2

on {Γu1
h ∩ Γu2

h ∩ Γu3
h } .

(4.33)

Step 5. Correct the predicted value of Un
i,j− 1

2
,k− 1

2

at the interface mesh points

{Γu1
h ∩ Γu2

h ∩ Γu3
h } by:























Un
i,j− 1

2
,k− 1

2

− Un−1
i,j− 1

2
,k− 1

2

τ
= δ2

xUn
i,j− 1

2
,k− 1

2

+ δ2
yUn

i,j− 1

2
,k− 1

2

+ δ2
zUn

i,j− 1

2
,k− 1

2

+ δyζn−1
i,j− 1

2
,k− 1

2

− δzηn−1
i,j− 1

2
,k− 1

2

on {Γu1
h ∩ Γu2

h ∩ Γu3
h }.

(4.34)

The boundary conditions are given in (4.19) and the first level values U1
i,j− 1

2
,k− 1

2

are

obtained without domain decomposition scheme.

4.5.2 Parallel Approximation of V

Assume that V n
i+ 1

2
,j,k+ 1

2

approximates the exact solution, V, at (xi+ 1

2
, yj, zk+ 1

2
) at

time tn, and assume Dv
h is the set of mesh points associated with V n

i− 1

2
,j,k− 1

2

:

Dv
h = {(xi− 1

2
, yj, zk− 1

2
) | i = 0, . . . , Jx + 1, j = 0, . . . , Jy, k = 0, . . . , Jz + 1}.
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Divide Dv
h into (P v + 1)(Qv + 1)(Sv + 1) non-overlapping subdomains Dv

hα,β,γ , α =

1 . . . P v + 1, β = 1 . . . Qv + 1 , γ = 1 . . . Sv + 1:

Dv
hα,β,γ = {(xi− 1

2
, yj, zk− 1

2
) | iv

α−1 < i < iv
α, jv

β−1 < j < jv
β, kv

γ−1 < k < kv
γ},

Let Γv
h = Γv1

h

⋃

Γv2
h

⋃

Γv3
h be the set of interface mesh points where:

Γv1
h = {(xiv

α− 1

2
, yj, zk− 1

2
) | 4 ≤ iv

α + 2 ≤ iv
α+1, 1 ≤ α ≤ P v, 0 < j < Jy,

0 < k < (Jz + 1)},

Γv2
h = {(xi− 1

2
, yjv

β
, zk− 1

2
) | 4 ≤ jv

β + 2 ≤ jv
β+1, 1 ≤ β ≤ Qv, 0 < i < (Jx + 1),

0 < k < (Jz + 1)},

Γv3
h = {(xi− 1

2
, yj, zkv

γ− 1

2
) | 4 ≤ kv

γ + 2 ≤ kv
γ+1, 1 ≤ γ ≤ Sv, 0 < i < (Jx + 1),

0 < j < Jy}.

(4.35)

Here, iv
0 = 0, iv

P +1 = Jx + 1, jv
0 = 0, jv

Q+1 = Jy, kv
0 = 0 and kv

S+1 = Jz + 1.

It is worth to mention that, in the parallel approximation of velocity Poisson

equations, we use false transient method which is an alternative technique to solve

the steady-state problems. In this approach, instead of solving the steady-state

problem directly, the relevant transient problem is solved until the solution no longer

varies with the time [7, 32, 56, 63]. Moreover, central finite differencing scheme is

used to approximate the second-order derivatives that leads to a large linear system
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to be solved. Here, we use Generalized Minimum Residual technique, see Algorithm

4, but in a sparse format [75]. Now, we propose the domain decomposition scheme

which is used for the parallel approximation of (4.17). It is summarized in the

following:

Step 1. Predict the value of V n
i− 1

2
,j,k− 1

2

at the interface mesh points Γv
h by:

Ṽ n
i− 1

2
,j,k− 1

2

= 2V n−1
i− 1

2
,j,k− 1

2

− V n−2
i− 1

2
,j,k− 1

2

. (4.36)

Step 2. Find V n
i− 1

2
,j,k− 1

2

at the interior points of subdomains by:











































V n
i− 1

2
,j,k− 1

2

− V n−1
i− 1

2
,j,k− 1

2

τ
= δ2

xV n
i− 1

2
,j,k− 1

2

+ δ2
yV n

i− 1

2
,j,k− 1

2

+ δ2
zV n

i− 1

2
,j,k− 1

2

− δxζn−1
i− 1

2
,j,k− 1

2

+ δzξn−1
i− 1

2
,j,k− 1

2

on DV
h \{Γ

v
h ∪ ∂Dv

h},

V n
i− 1

2
,j,k− 1

2

= Ṽ n
i− 1

2
,j,k− 1

2

on Γv
h .

(4.37)

Step 3. Correct the predicted value of V n
i− 1

2
,j,k− 1

2

at the interface mesh points

Γv
h\{Γ

v1
h ∩ Γv2

h , Γv1
h ∩ Γv3

h , Γv2
h ∩ Γv3

h } by:



































































V n
i− 1

2
,j,k− 1

2

− V n−1
i− 1

2
,j,k− 1

2

τ
= δ2

xV n
i− 1

2
,j,k− 1

2

+ δ2
yV n

i− 1

2
,j,k− 1

2

+ δ2
zV n

i− 1

2
,j,k− 1

2

− δxζn−1
i− 1

2
,j,k− 1

2

+ δzξn−1
i− 1

2
,j,k− 1

2

on Γv
h\{Γ

v1
h ∩ Γv2

h , Γv1
h ∩ Γv3

h , Γv2
h ∩ Γv3

h },

V n
i− 1

2
,j,k− 1

2

= Ṽ n
i− 1

2
,j,k− 1

2

on {Γv1
h ∩ Γv2

h , Γv1
h ∩ Γv3

h , Γv2
h ∩ Γv3

h }.

(4.38)

Step 4. Correct the predicted value of V n
i− 1

2
,j,k− 1

2

at the interface mesh points {Γv1
h ∩
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Γv2
h , Γv1

h ∩ Γv3
h , Γv2

h ∩ Γv3
h } by:



































































V n
i− 1

2
,j,k− 1

2

− V n−1
i− 1

2
,j,k− 1

2

τ
= δ2

xV n
i− 1

2
,j,k− 1

2

+ δ2
yV n

i− 1

2
,j,k− 1

2

+ δ2
zV n

i− 1

2
,j,k− 1

2

− δxζn−1
i− 1

2
,j,k− 1

2

+ δzξn−1
i− 1

2
,j,k− 1

2

on {Γv1
h ∩ Γv2

h , Γv1
h ∩ Γv3

h , Γv2
h ∩ Γv3

h } ,

V n
i− 1

2
,j,k− 1

2

= Ṽ n
i− 1

2
,j,k− 1

2

on {Γv1
h ∩ Γv2

h ∩ Γv3
h } .

(4.39)

Step 5. Correct the predicted value of V n
i− 1

2
,j,k− 1

2

at the interface mesh points {Γv1
h ∩

Γv2
h ∩ Γv3

h } by:























V n
i− 1

2
,j,k− 1

2

− V n−1
i− 1

2
,j,k− 1

2

τ
= δ2

xV n
i− 1

2
,j,k− 1

2

+ δ2
yV n

i− 1

2
,j,k− 1

2

+ δ2
zV n

i− 1

2
,j,k− 1

2

− δxζn−1
i− 1

2
,j,k− 1

2

+ δzξn−1
i− 1

2
,j,k− 1

2

on {Γv1
h ∩ Γv2

h ∩ Γv3
h }.

(4.40)

In the parallel approximation of equations (4.16), (4.17) and (4.18), we use the

boundary conditions given in (4.19). Moreover, we find the solutions of U , V and

W at time t = 1 without domain decomposition scheme.

4.5.3 Parallel Approximation of W

Let W n
i+ 1

2
,j+ 1

2
,k

be the numerical solution of W at the grid point (xi+ 1

2
, yj+ 1

2
, zk) at

time tn, and let Dw
h be the set of mesh points associated with W n

i− 1

2
,j− 1

2
,k

:

Dw
h = {(xi− 1

2
, yj− 1

2
, zk) | i = 0, . . . , Jx + 1, j = 0, . . . , Jy + 1, k = 0, . . . , Jz}.
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Decompose Dw
h into (P w + 1)(Qw + 1)(Sw + 1) non-overlapping sub-domains where

the grid points in the subdomains are given by:

Dw
hα,β,γ = {(xi− 1

2
, yj− 1

2
, zk) | iw

α−1 < i < iw
α , jw

β−1 < j < jw
β kw

γ−1 < k < kw
γ }.

Let Γw
h be the set of all mesh points on the interfaces, that is, Γw

h = Γw1
h

⋃

Γw2
h

⋃

Γw3
h ,

where:

Γw1
h = {(xiw

α − 1

2
, yj− 1

2
, zk) | 4 ≤ iw

α + 2 ≤ iw
α+1, 1 ≤ α ≤ P w, 0 < j < (Jy + 1),

0 < k < Jz},

Γw2
h = {(xi− 1

2
, yjw

β
− 1

2
, zk) | 4 ≤ jw

β + 2 ≤ jw
β+1, 1 ≤ β ≤ Qw, 0 < i < (Jx + 1),

0 < k < Jz},

Γw3
h = {(xi− 1

2
, yj− 1

2
, zkw

γ
) | 4 ≤ kw

γ + 2 ≤ kw
γ+1, 1 ≤ γ ≤ Sw, 0 < i < (Jx + 1),

0 < j < (Jy + 1)}.

(4.41)

Here, iw
0 = 0, iw

P +1 = Jx + 1, jw
0 = 0, jw

Q+1 = Jy + 1, kw
0 = 0 and kw

S+1 = Jz.

We approximate the solution of equation (4.18) in parallel by the following domain

decomposition scheme:

Step 1. Predict the value of W n
i− 1

2
,j− 1

2
,k

at the interface mesh points Γw
h by:

W̃ n
i− 1

2
,j− 1

2
,k

= 2W n−1
i− 1

2
,j− 1

2
,k
−W n−2

i− 1

2
,j− 1

2
,k

. (4.42)
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Step 2. Find W n
i− 1

2
,j− 1

2
,k

at the interior points of subdomains by:











































W n
i− 1

2
,j− 1

2
,k
−W n−1

i− 1

2
,j− 1

2
,k

τ
= δ2

zW n
i− 1

2
,j− 1

2
,k

+ δzδxUn
i− 1

2
,j− 1

2
,k

+ δzδyV n
i− 1

2
,j− 1

2
,k

on Dw
h \{Γ

w
h ∪ ∂Dw

h },

W n
i− 1

2
,j− 1

2
,k

= W̃ n
i− 1

2
,j− 1

2
,k

on Γw
h .

(4.43)

Step 3. Correct the predicted value of W n
i− 1

2
,j− 1

2
,k

at the interface mesh points

Γw
h \{Γ

w1
h ∩ Γw2

h , Γw1
h ∩ Γw3

h , Γw2
h ∩ Γw3

h } by:










































W n
i− 1

2
,j− 1

2
,k
−W n−1

i− 1

2
,j− 1

2
,k

τ
= δ2

zW n
i− 1

2
,j− 1

2
,k

+ δzδxUn
i− 1

2
,j− 1

2
,k

+ δzδyV n
i− 1

2
,j− 1

2
,k

on Γw
h \{Γ

w1
h ∩ Γw2

h , Γw1
h ∩ Γw3

h , Γw2
h ∩ Γw3

h },

W n
i− 1

2
,j− 1

2
,k

=W̃ n
i− 1

2
,j− 1

2
,k

on {Γw1
h ∩ Γw2

h , Γw1
h ∩ Γw3

h , Γw2
h ∩ Γw3

h }.

(4.44)

Step 4. Correct the predicted value of W n
i− 1

2
,j− 1

2
,k

at the interface mesh points

{Γw1
h ∩ Γw2

h , Γw1
h ∩ Γw3

h , Γw2
h ∩ Γw3

h } by:










































W n
i− 1

2
,j− 1

2
,k
−W n−1

i− 1

2
,j− 1

2
,k

τ
= δ2

zW n
i− 1

2
,j− 1

2
,k

+ δzδxUn
i− 1

2
,j− 1

2
,k

+ δzδyV n
i− 1

2
,j− 1

2
,k

on {Γw1
h ∩ Γw2

h , Γw1
h ∩ Γw3

h , Γw2
h ∩ Γw3

h },

W n
i− 1

2
,j− 1

2
,k

= W̃ n
i− 1

2
,j− 1

2
,k

on {Γw1
h ∩ Γw2

h ∩ Γw3
h }.

(4.45)

Step 5. Correct the predicted value of W n
i− 1

2
,j− 1

2
,k

at the interface mesh points

{Γw1
h ∩ Γw2

h ∩ Γw3
h } by:























W n
i− 1

2
,j− 1

2
,k
−W n−1

i− 1

2
,j− 1

2
,k

τ
= δ2

zW n
i− 1

2
,j− 1

2
,k

+ δzδxUn
i− 1

2
,j− 1

2
,k

+ δzδyV n
i− 1

2
,j− 1

2
,k

on {Γw1
h ∩ Γw2

h ∩ Γw3
h }.

(4.46)
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4.5.4 Parallel Approximation of ξ

Let ξn
i+ 1

2
,j,k

be the numerical approximation of ξ at (xi+ 1

2
, yj, zk) at time tn, and let

Dξ
h be the set of mesh points associated with ξn

i− 1

2
,j,k

:

Dξ
h = {(xi− 1

2
, yj, zk) | i = 0, . . . , Jx + 1, j = 0, . . . , Jy, k = 0, . . . , Jz}.

Decompose Dξ
h into (P ξ + 1)(Qξ + 1)(Sξ + 1) non-overlapping sub-domains:

Dξ
hα,β,γ = {(xi− 1

2
, yj, zk) | iξ

α−1 < i < iξ
α, jξ

β−1 < j < jξ
β kξ

γ−1 < k < kξ
γ}.

Let Γξ
h = Γξ1

h

⋃

Γξ2
h

⋃

Γξ3
h be the set of all mesh points on the interfaces where:

Γξ1
h = {(x

i
ξ
α− 1

2

, yj, zk) | 4 ≤ iξ
α + 2 ≤ iξ

α+1, 1 ≤ α ≤ P ξ, 0 < j < Jy,

0 < k < Jz},

Γξ2
h = {(xi− 1

2
, y

j
ξ

β

, zk) | 4 ≤ jξ
β + 2 ≤ jξ

β+1, 1 ≤ β ≤ Qξ, 0 < i < (Jx + 1),

0 < k < Jz},

Γξ3
h = {(xi− 1

2
, yj, z

k
ξ
γ
) | 4 ≤ kξ

γ + 2 ≤ kξ
γ+1, 1 ≤ γ ≤ Sξ, 0 < i < (Jx + 1),

0 < j < Jy}.

(4.47)

Here, iξ
0 = 0, iξ

P +1 = Jx + 1, jξ
0 = 0, jξ

Q+1 = Jy, kξ
0 = 0 and kξ

S+1 = Jz. The vorticity

equation (4.11) is solved in parallel by the following steps:

Step 1. Predict the value of ξn
i− 1

2
,j,k

at the interface mesh points Γξ
h by:

ξ̃n
i− 1

2
,j,k

= 2ξn−1
i− 1

2
,j,k
− ξn−2

i− 1

2
,j,k

. (4.48)
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Step 2. Find ξn
i− 1

2
,j,k

at the interior points of subdomains by:























































































ξn
i− 1

2
,j,k
− ξn−1

i− 1

2
,j,k

τ
=

1

Re
(δ2

xξn
i− 1

2
,j,k

+ δ2
yξn

i− 1

2
,j,k

+ δ2
zξn

i− 1

2
,j,k

)

+ δy(Uη)n−1
i− 1

2
,j,k
− δy(V ξ)n−1

i− 1

2
,j,k
− δz(Wξ)n−1

i− 1

2
,j,k

+ δz(Uζ)n−1
i− 1

2
,j,k

+ δyfw
n
i− 1

2
,j,k − δzfv

n
i− 1

2
,j,k

on Dξ
h\{Γ

ξ
h ∪ ∂Dξ

h},

ξn
i− 1

2
,j− 1

2
,k

= ξ̃n
i− 1

2
,j− 1

2
,k

on Γξ
h .

(4.49)

Step 3. Correct the predicted value of ξn
i− 1

2
,j,k

at the interface mesh points Γξ
h\{Γ

ξ1
h ∩

Γξ2
h , Γξ1

h ∩ Γξ3
h , Γξ2

h ∩ Γξ3
h } by:























































































ξn
i− 1

2
,j,k
− ξn−1

i− 1

2
,j,k

τ
=

1

Re
(δ2

xξn
i− 1

2
,j,k

+ δ2
yξn

i− 1

2
,j,k

+ δ2
zξn

i− 1

2
,j,k

)

+ δy(Uη)n−1
i− 1

2
,j,k
− δy(V ξ)n−1

i− 1

2
,j,k
− δz(Wξ)n−1

i− 1

2
,j,k

+ δz(Uζ)n−1
i− 1

2
,j,k

+ δyfw
n
i− 1

2
,j,k − δzfv

n
i− 1

2
,j,k

on Γξ
h\{Γ

ξ1
h ∩ Γξ2

h , Γξ1
h ∩ Γξ3

h , Γξ2
h ∩ Γξ3

h },

ξn
i− 1

2
,j− 1

2
,k

= ξ̃n
i− 1

2
,j− 1

2
,k

on {Γξ1
h ∩ Γξ2

h , Γξ1
h ∩ Γξ3

h , Γξ2
h ∩ Γξ3

h }.

(4.50)

Step 4. Correct the predicted value of ξn
i− 1

2
,j,k

at the interface mesh points {Γξ1
h ∩
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Γξ2
h , Γξ1

h ∩ Γξ3
h , Γξ2

h ∩ Γξ3
h } by:























































































ξn
i− 1

2
,j,k
− ξn−1

i− 1

2
,j,k

τ
=

1

Re
(δ2

xξn
i− 1

2
,j,k

+ δ2
yξn

i− 1

2
,j,k

+ δ2
zξn

i− 1

2
,j,k

)

+ δy(Uη)n−1
i− 1

2
,j,k
− δy(V ξ)n−1

i− 1

2
,j,k
− δz(Wξ)n−1

i− 1

2
,j,k

+ δz(Uζ)n−1
i− 1

2
,j,k

+ δyfw
n
i− 1

2
,j,k − δzfv

n
i− 1

2
,j,k

on {Γξ1
h ∩ Γξ2

h , Γξ1
h ∩ Γξ3

h , Γxi2
h ∩ Γξ3

h }

ξn
i− 1

2
,j− 1

2
,k

= ξ̃n
i− 1

2
,j− 1

2
,k

on {Γξ1
h ∩ Γξ2

h ∩ Γξ3
h }.

(4.51)

Step 5. Correct the predicted value of ξn
i− 1

2
,j,k

at the interface mesh points {Γξ1
h ∩

Γξ2
h ∩ Γξ3

h } by:



































































ξn
i− 1

2
,j,k
− ξn−1

i− 1

2
,j,k

τ
=

1

Re
(δ2

xξn
i− 1

2
,j,k

+ δ2
yξn

i− 1

2
,j,k

+ δ2
zξn

i− 1

2
,j,k

)

+ δy(Uη)n−1
i− 1

2
,j,k
− δy(V ξ)n−1

i− 1

2
,j,k
− δz(Wξ)n−1

i− 1

2
,j,k

+ δz(Uζ)n−1
i− 1

2
,j,k

+ δyfw
n
i− 1

2
,j,k − δzfv

n
i− 1

2
,j,k

on {Γξ1
h ∩ Γξ2

h ∩ Γξ3
h }.

(4.52)

The boundary conditions used in the parallel approximation of equations (4.10),

(4.11) and (4.12) are given in the equations (4.13), (4.14) and (4.13), respectively.

Moreover, the first level values are obtained by the definition, by taking curl of the

velocity vectors obtained at time level 1.
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4.5.5 Parallel Approximation of η

Let ηn
i,j+ 1

2
,k

be the numerical approximation of the exact solution at (xi, yj+ 1

2
, zk)

at time tn and let Dη
h be the set of mesh points associated with ηn

i,j− 1

2
,k

:

Dη
h = {(xi, yj− 1

2
, zk) | i = 0, . . . , Jx, j = 0, . . . , Jy + 1, k = 0, . . . , Jz}

Decompose Dη
h into (P η + 1)(Qη + 1)(Sη + 1) non-overlapping sub-domains:

Dη
hα,β,γ = {(xi, yj− 1

2
, zk) | iη

α−1 < i < iη
α, jη

β−1 < j < jη
β kη

γ−1 < k < kη
γ}.

Let Γη
h be the set of all mesh points on the interfaces, that is, Γη

h = Γη1
h

⋃

Γη2
h

⋃

Γη3
h ,

where:

Γη1
h = {(xi

η
α
, yj− 1

2
, zk) | 4 ≤ iη

α + 2 ≤ iη
α+1, 1 ≤ α ≤ P η, 0 < j < (Jy + 1)

0 < k < Jz},

Γη2
h = {(xi, yj

η

β
− 1

2
, zk) | 4 ≤ jη

β + 2 ≤ jη
β+1, 1 ≤ β ≤ Qη, 0 < i < Jx,

0 < k < Jz},

Γη3
h = {(xi, yj− 1

2
, zk

η
γ
) | 4 ≤ kη

γ + 2 ≤ kη
γ+1, 1 ≤ γ ≤ Sη, 0 < i < Jx,

0 < j < (Jy + 1)},

(4.53)

Here, iη
0 = 0, iη

P +1 = Jx, jη
0 = 0, jη

Q+1 = Jy + 1, kη
0 = 0 and kη

S+1 = Jz. Below is the

summary of parallel scheme for solving equation (4.10):
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Step 1. Predict the value ηn
i,j− 1

2
,k

at the interface mesh points Γη
h by:

η̃n
i,j− 1

2
,k

= 2ηn−1
i,j− 1

2
,k
− ηn−2

i,j− 1

2
,k

. (4.54)

Step 2. Find ηn
i,j− 1

2
,k

at the interior points of subdomains by:























































































ηn
i,j− 1

2
,k
− ηn−1

i,j− 1

2
,k

τ
=

1

Re
(δ2

xηn
i,j− 1

2
,k

+ δ2
yηn

i,j− 1

2
,k

+ δ2
zηn

i,j− 1

2
,k

)

− δx(Uη)n−1
i,j− 1

2
,k
− δz(Wη)n−1

i,j− 1

2
,k

+ δx(V ξ)n−1
i,j− 1

2
,k

+ δz(V ζ)n−1
i,j− 1

2
,k
− δxfw

n
i,j− 1

2
,k + δzfu

n
i,j− 1

2
,k

on Dη
h\{Γ

η
h ∪ ∂Dη

h},

ηn
i,j− 1

2
,k

= η̃n
i,j− 1

2
,k

on Γη
h .

(4.55)

Step 3. Correct the predicted value of ηn
i,j− 1

2
,k

at the interface mesh points Γη
h\{Γ

η1
h ∩

Γη2
h , Γη1

h ∩ Γη3
h , Γη2

h ∩ Γη3
h } by:























































































ηn
i,j− 1

2
,k
− ηn−1

i,j− 1

2
,k

τ
=

1

Re
(δ2

xηn
i,j− 1

2
,k

+ δ2
yηn

i,j− 1

2
,k

+ δ2
zηn

i,j− 1

2
,k

)

− δx(Uη)n−1
i,j− 1

2
,k
− δz(Wη)n−1

i,j− 1

2
,k

+ δx(V ξ)n−1
i,j− 1

2
,k

+ δz(V ζ)n−1
i,j− 1

2
,k
− δxfw

n
i,j− 1

2
,k + δzfu

n
i,j− 1

2
,k

on Γη
h\{Γ

η1
h ∩ Γη2

h , Γη1
h ∩ Γη3

h , Γη2
h ∩ Γη3

h },

ηn
i,j− 1

2
,k

= η̃n
i,j− 1

2
,k

on {Γη1
h ∩ Γη2

h , Γη1
h ∩ Γη3

h , Γη2
h ∩ Γη3

h }.

(4.56)
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Step 4. Correct the predicted value of ηn
i,j− 1

2
,k

at the interface mesh points {Γη1
h ∩

Γη2
h , Γη1

h ∩ Γη3
h , Γη2

h ∩ Γη3
h } by:























































































ηn
i,j− 1

2
,k
− ηn−1

i,j− 1

2
,k

τ
=

1

Re
(δ2

xηn
i,j− 1

2
,k

+ δ2
yηn

i,j− 1

2
,k

+ δ2
zηn

i,j− 1

2
,k

)

− δx(Uη)n−1
i,j− 1

2
,k
− δz(Wη)n−1

i,j− 1

2
,k

+ δx(V ξ)n−1
i,j− 1

2
,k

+ δz(V ζ)n−1
i,j− 1

2
,k
− δxfw

n
i,j− 1

2
,k + δzfu

n
i,j− 1

2
,k

on {Γη1
h ∩ Γη2

h , Γη1
h ∩ Γη3

h , Γη2
h ∩ Γη3

h },

ηn
i,j− 1

2
,k

= η̃n
i,j− 1

2
,k

on {Γη1
h ∩ Γη2

h ∩ Γη3
h }.

(4.57)

Step 5. Correct the predicted value of ηn
i,j− 1

2
,k

at the interface mesh points {Γη1
h ∩

Γη2
h ∩ Γη3

h } by:



































































ηn
i,j− 1

2
,k
− ηn−1

i,j− 1

2
,k

τ
=

1

Re
(δ2

xηn
i,j− 1

2
,k

+ δ2
yηn

i,j− 1

2
,k

+ δ2
zηn

i,j− 1

2
,k

)

− δx(Uη)n−1
i,j− 1

2
,k
− δz(Wη)n−1

i,j− 1

2
,k

+ δx(V ξ)n−1
i,j− 1

2
,k

+ δz(V ζ)n−1
i,j− 1

2
,k
− δxfw

n
i,j− 1

2
,k + δzfu

n
i,j− 1

2
,k

on {Γη1
h ∩ Γη2

h ∩ Γη3
h }.

(4.58)

4.5.6 Parallel Approximation of ζ

Let ζn
i,j,k+ 1

2

be the numerical approximation of ζ at (xi, yj, zk+ 1

2
) at time tn, and let

Dζ
h be the set of mesh points associated with ζn

i,j,k− 1

2

:

Dζ
h = {(xi, yj, zk− 1

2
) | i = 0, . . . , Jx, j = 0, . . . , Jy, k = 0, . . . , Jz + 1}.
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Decompose Dζ
h into (P ζ + 1)(Qζ + 1)(Sζ + 1) non-overlapping subdomains:

Dζ
hα,β,γ = {(xi, yj, zk− 1

2
) | iζ

α−1 < i < iζ
α, jζ

β−1 < j < jζ
β kζ

γ−1 < k < kζ
γ}.

Let Γζ
h be the set of all mesh points on the interfaces, that is, Γζ

h = Γζ1
h

⋃

Γζ2
h

⋃

Γζ3
h ,

where:

Γζ1
h = {(x

i
ζ
α
, yj, zk− 1

2
) | 4 ≤ iζ

α + 2 ≤ iζ
α+1, 1 ≤ α ≤ P ζ , 0 < j < Jy

0 < k < (Jz + 1)},

Γζ2
h = {(xi, y

j
ζ

β

, zk− 1

2
) | 4 ≤ jζ

β + 2 ≤ jζ
β+1, 1 ≤ β ≤ Qζ , 0 < i < Jx,

0 < k < (Jz + 1)},

Γζ3
h = {(xi, yj, z

k
ζ
γ− 1

2

) | 4 ≤ kζ
γ + 2 ≤ kζ

γ+1, 1 ≤ γ ≤ Sζ , 0 < i < Jx,

0 < j < Jy},

(4.59)

Here, iζ
0 = 0, iζ

P +1 = Jx, jζ
0 = 0, jζ

Q+1 = Jy, kζ
0 = 0 and kζ

S+1 = Jz + 1. We present

the developed parallel scheme for solving the equation (4.12) in the following:

Step 1. Predict the value of ζn
i,j,k− 1

2

at the interface mesh points Γζ
h by:

ζ̃n
i,j,k− 1

2

= 2ζn−1
i,j,k− 1

2

− ζn−2
i,j,k− 1

2

. (4.60)
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Step 2. Find ζn
i,j,k− 1

2

at the interior points of subdomains by:























































































ζn
i,j,k− 1

2

− ζn−1
i,j,k− 1

2

τ
=

1

Re
(δ2

xζn
i,j,k− 1

2

+ δ2
yζn

i,j,k− 1

2

+ δ2
zζn

i,j,k− 1

2

)

− δx(Uζ)n−1
i,j,k− 1

2

− δy(V ζ)n−1
i,j,k− 1

2

+ δx(Wξ)n−1
i,j,k− 1

2

+ δy(Wη)n−1
i,j,k− 1

2

+ δxfv
n
i,j,k− 1

2

− δyfu
n
i,j,k− 1

2

on Dζ
h\{Γ

ζ
h ∪ ∂Dζ

h},

ζn
i,j,k− 1

2

= ζ̃n
i,j,k− 1

2

on Γζ
h.

(4.61)

Step 3. Correct the predicted value of ζn
i,j,k− 1

2

at the interface mesh points Γζ
h\{Γ

ζ1
h ∩

Γζ2
h , Γζ1

h ∩ Γζ3
h , Γζ2

h ∩ Γζ3
h } by:























































































ζn
i,j,k− 1

2

− ζn−1
i,j,k− 1

2

τ
=

1

Re
(δ2

xζn
i,j,k− 1

2

+ δ2
yζn

i,j,k− 1

2

+ δ2
zζn

i,j,k− 1

2

)

− δx(Uζ)n−1
i,j,k− 1

2

− δy(V ζ)n−1
i,j,k− 1

2

+ δx(Wξ)n−1
i,j,k− 1

2

+ δy(Wη)n−1
i,j,k− 1

2

+ δxfv
n
i,j,k− 1

2

− δyfu
n
i,j,k− 1

2

on Γζ
h\{Γ

ζ1
h ∩ Γζ2

h , Γζ1
h ∩ Γζ3

h , Γζ2
h ∩ Γζ3

h },

ζn
i,j,k− 1

2

= ζ̃n
i,j,k− 1

2

on {Γζ1
h ∩ Γζ2

h , Γζ1
h ∩ Γζ3

h , Γζ2
h ∩ Γζ3

h }.

(4.62)
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Step 4. Correct the predicted value of ζn
i,j,k− 1

2

at the interface mesh points {Γζ1
h ∩

Γζ2
h , Γζ1

h ∩ Γζ3
h , Γζ2

h ∩ Γζ3
h } by:























































































ζn
i,j,k− 1

2

− ζn−1
i,j,k− 1

2

τ
=

1

Re
(δ2

xζn
i,j,k− 1

2

+ δ2
yζn

i,j,k− 1

2

+ δ2
zζn

i,j,k− 1

2

)

− δx(Uζ)n−1
i,j,k− 1

2

− δy(V ζ)n−1
i,j,k− 1

2

+ δx(Wξ)n−1
i,j,k− 1

2

+ δy(Wη)n−1
i,j,k− 1

2

+ δxfv
n
i,j,k− 1

2

− δyfu
n
i,j,k− 1

2

on {Γζ1
h ∩ Γζ2

h , Γζ1
h ∩ Γζ3

h , Γζ2
h ∩ Γζ3

h },

ζn
i,j,k− 1

2

= ζ̃n
i,j,k− 1

2

on {Γζ1
h ∩ Γζ2

h ∩ Γζ3
h }.

(4.63)

Step 5. Correct the predicted value of ζn
i,j,k− 1

2

at the interface mesh points {Γζ1
h ∩

Γζ2
h ∩ Γζ3

h } by



































































ζn
i,j,k− 1

2

− ζn−1
i,j,k− 1

2

τ
=

1

Re
(δ2

xζn
i,j,k− 1

2

+ δ2
yζn

i,j,k− 1

2

+ δ2
zζn

i,j,k− 1

2

)

− δx(Uζ)n−1
i,j,k− 1

2

− δy(V ζ)n−1
i,j,k− 1

2

+ δx(Wξ)n−1
i,j,k− 1

2

+ δy(Wη)n−1
i,j,k− 1

2

+ δxfv
n
i,j,k− 1

2

− δyfu
n
i,j,k− 1

2

on {Γζ1
h ∩ Γζ2

h ∩ Γζ3
h }.

(4.64)

4.6 Determination of Body Forces

To determine the body forces acting on the rotor blades, a blade-element approach

combined with two-dimensional airfoil characteristics is used. The full description

is given in Chapter 3 in Section 3.6.
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4.7 Joint Optimization Using Stochastic Programming

To solve the scenario-based approximation model (4.9) which is an approximation

to the stochastic optimization model (4.1), we use the pattern search algorithm [67].

This method starts with an arbitrary initial point, i.e., a set of operating configura-

tion, βi, Ωi, i = 1, · · · , N , where βi and Ωi satisfy the constraints in (4.1). Then, it

chooses a certain set of search directions at each iterate, and evaluates the expected

total power which is the objective function at a given step length along each of these

directions. If an operating point with a significantly higher expected total power

is found, it is adopted as the new operating point and the step length is increased,

otherwise the step length is decreased; this process is repeated until convergence.

For the model (4.9), let x be the vector of all decision variables, and Dfeasible be the

feasible region:

x ≡ [β1, · · · , βN , Ω1, · · · , ΩN ]T , (4.65)

Dfeasible = {x | β1min ≤ x1 ≤ β1max, . . . , ΩNmin ≤ x2N ≤ ΩNmax},

and f be the objective function:

f ≡
N
∑

i=1

∑M
j=1[Pi(U

j
0 )]

M
, (4.66)

then the stochastic joint optimization algorithm based on the pattern search method

in its matrix notation is presented in Algorithm 7. All the parameters in this algo-

rithm such as the convergence tolerance, the contraction parameter, the aggressive
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parameter, the sufficient increase function and the direction set are the same as the

ones used in Algorithm 5.

4.8 Numerical Simulation

In this section, we present numerical results. First, we perform two numerical

experiments to validate the developed corrected-explicit-implicit domain decompo-

sition scheme for the parallel approximation of the three-dimensional Navier-Stokes

equations in a velocity-vorticity formulation (4.30)-(4.64). Then, we estimate the

power generation of a commercial wind turbine called WindSpot, and investigate

its wake characteristic using the developed parallel scheme and the actuator line

method. Finally, we present numerical results to test the efficiency and accuracy

of the proposed numerical Algorithm 7 which is used to optimize the total power

while considering the wake effect as well as the randomness of the incoming wind

speed. Withing this algorithm, we use the developed parallel algorithm and the

actuator line method to evaluate the objective function at a given operating points.

4.8.1 Validation of Parallel Simulation of Navier-Stokes Equations

We carry out two numerical experiments to validate the developed parallel scheme

(4.30)-(4.64). In the first numerical experiment, we choose a problem that has an

exact analytical solution and use the exact solution as a benchmark. In the sec-
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Algorithm 7 Stochastic Joint Optimization

1: initialize the parameters γtol, θ, η, µ(·), guess x0 and set γ0 ≥ γtol.

2: Generate M scenarios, U j
0 , j = 1, 2, 3, . . . , M by Algorithm 6.

3: evaluate f(x0) by Algorithm (4.5) and (3.87).

4: for k = 1, 2, 3, . . . do

5: if γk ≤ γtol then

6: return.

7: end if

8: for pk ∈ d do

9: if (xk + γkpk) /∈ Dfeasible then

10: xk + γkpk = xb.

11: end if

12: evaluate f(xk + γkpk) by Algorithm 4.5, Algorithm 6 and (3.87);

13: if f(xk + γkpk) > f(xk) + µ(γk) then

14: xk+1 ← xk + γkpk, γk+1 ← γkη and break.

15: else

16: xk+1 ← xk and γk+1 ← γkθ.

17: end if

18: end for

19: end for
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ond numerical experiment, we choose a lid-driven cavity problem as a benchmark

problem. This problem is always used in the literature [35,41,44,87,94] to test the

accuracy and efficiency of a new scheme developed for the numerical approximation

of Navier-Stokes equations.

Example 1: Consider the following three-dimensional incompressible Navier-Stokes

equations:






































































∂U

∂t
+ UUx + V Uy + WUz = −

1

ρ
px + ν(Uxx + Uyy + Uzz) + fu,

∂U

∂t
+ UVx + V Vy + WVz = −

1

ρ
py + ν(Vxx + Vyy + Vzz) + fv,

∂W

∂t
+ UWx + V Wy + WWz = −

1

ρ
pz + ν(Wxx + Wyy + Wzz) + fw,

Ux + Vy + Wz = 0,

(4.67)

where the source terms are zero. It has an exact solution given by:










































U(t, x, y, z) = −a[exp(ax) sin(ay + dz) + exp(az) sin(ax + dy)] exp(−d2νt),

V (t, x, y, z) = −a[exp(ay) sin(az + dx) + exp(ax) sin(ay + dz)] exp(−d2νt),

W (t, x, y, z) = −a[exp(az) sin(ax + dy) + exp(ay) sin(az + dx)] exp(−d2νt),

(4.68)

where a = 1, d = 1 and ν = 1. Now, we apply the developed parallel scheme (4.30)-

(4.64) to approximate the solutions of three-dimensional incompressible Navier-

Stokes equations (4.67) in the computational domain D = [0, 1]× [0, 1]× [0, 1]. In

our simulation, the boundary conditions and the initial solutions are obtained using

the exact solutions (4.68). Moreover, in our simulation, we use non-uniform grid
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points in x, y and z-direction where 17 gird points are used in each direction with

the smallest spatial step size 0.05 and the maximum spatial step size 0.075. The

numerical results as well as the exact solutions at the final time T=0.1 are given

in Figures 4.4 and 4.5. In Figure 4.4 the approximated solutions obtained with no

domain decomposition, whereas in Figure 4.5 the approximated solutions obtained

with domain decomposition (the computational domain is decomposed into 2 ×

2 × 2 multi-blocks). From these figures, it is evident that the proposed parallel

scheme approximates the solutions of three-dimensional Navier-Stokes equations

(4.67) with a good accuracy.

Example 2 (Lid-driven cavity problem): Consider the three-dimensional

incompressible Navier-Stokes equations given in (4.67) with the following boundary

conditions:











































































































U(t, 0, ·, ·) = 0, V (t, 0, ·, ·) = 0, W (t, 0, ·, ·) = 0,

U(t, 1, ·, ·) = 0, V (t, 1, ·, ·) = 0, W (t, 1, ·, ·) = 0,

U(t, ·, 0, ·) = 0, V (t, ·, 0, ·) = 0, W (t, ·, 0, ·) = 0,

U(t, ·, 1, ·) = 1, V (t, ·, 1, ·) = 0, W (t, ·, 1, ·) = 0,

U(t, ·, ·, 0) = 0, V (t, ·, ·, 0) = 0, W (t, ·, ·, 0) = 0,

U(t, ·, ·, 1) = 0, V (t, ·, ·, 1) = 0, W (t, ·, ·, 1) = 0.

(4.69)

We apply the developed parallel scheme (4.30)-(4.64) to simulate the solutions of
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Figure 4.4: Comparison of estimated solutions and exact solutions.
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Figure 4.5: Comparison of estimated solutions and exact solutions.
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Figure 4.6: Velocity profile for the lid driven cavity flow at z=0.5 plane.

these Navier-Stokes equations (4.67) with the boundary conditions given in (4.69).

We set the initial values for all the variables at the interior points to be zero, and

run the simulation until the steady-state solutions are reached. In our simulation,

the viscosity coefficient, the time step and the computational domain are taken

as ν = 1, dt = 1× 10−5 and D = [0, 1] × [0, 1] × [0, 1], respectively. Moreover,

in our simulation, we decompose the domain into 2 × 2 × 1 subdomains and use

non-uniform grid points in x, y and z-direction where 15 gird points are used in

each direction. The grid point distribution in three spatial directions is taken the

same and chosen as:

xi =
cos( π

2N
)− cos((2i− 1) π

2N
)

cos( π
2N

)− cos((2N − 1) π
2N

)
, i = 1, 2, . . . , N.
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Figure 4.7: Velocity profile for the lid driven cavity flow at y=0.5 plane.

The numerical results are displayed in Figures 4.6, 4.7 and 4.8. These figures show

the velocity profile at three typical planes. These flow patterns agree well with the

results obtained in the references [41,44].

4.8.2 Model Validation by Experimental Data

WindSpot is a 3.5 kW three-bladed wind turbine with a rotor diameter of 4.05

meters. It can be fitted with different set of blades, essentially at zero twist angle

with a active pitch control system. The chord length of this turbine is 0.254 meters

at the hub, and it decreases linearly to 0.156 meters at the blade tip. Moreover,

it is operating at a fixed rotational speed of 12 rad
s

and a fixed pitch angle of 10.5
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Figure 4.8: Velocity profile for the lid driven cavity flow at x=0.5 plane.

degrees [52].

In our simulation, the computational domain is taken as 30m×14m×14m, and

the grid points, see Figure 4.10, are concentrated near the blade tips and stretched

in the x, y and z-direction. The resulting grid consists of 46 grid points in the

axial direction, 50 points in the y-direction and 57 points in the z-direction. In the

axial direction the grid spacing ranges from dx = 0.02 at the rotor plane to about

dx = 1.9476 in the far wake and in the y-direction the spacing takes values from

dy = 0.02 near the tip to about dy = 1.2150 at the lateral boundary. Moreover,

in the z-direction the spacing takes values from dz = 0.0346 near the tip to about

dz = 1.4863 at the lateral boundary. To ensure that the flow is fully developed in
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most of the wake, we carry out the computations until t=10 with a time step of

dt = 1× 10−3 which corresponds to 10000 time steps.

4.8.2.1 Power generation of WindSpot

We apply the developed corrected-explicit-implicit domain decomposition scheme

(4.30)-(4.64) combined with the actuator line technique to estimate the power gen-

eration of WindSpot for different incoming wind speed. The numerical results are

displayed in Figure 4.9. This figure shows the computed and the experimental

power coefficient of WindSpot for different incoming wind speed. From this figure,

it is evident that the computed and measured values are in excellent agreement for

wind speeds up to about 10 m
s

.

4.8.2.2 Wake Structures

In this subsection, we test the efficiency and accuracy of the developed parallel

algorithm (4.30)-(4.64) in simulating a wind turbine wake. We apply the developed

parallel scheme (4.30)-(4.64) combined with the actuator line technique to simulate

the wake of WindSpot which is operating at a fixed rotational speed of 12 rad
s

and

a fixed pitch angle of 10.5 degrees. The numerical results are displayed in Figures

4.11, 4.12,4.13 and 4.14. These figures show contours of magnitude of vorticity at

y-z planes in ultimate wakes when the incoming wind speed is 10 m
s

. From these
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Figure 4.9: Comparison of measured and computed power.

figures, it is evident the developed parallel scheme combined with the actuator line

method simulates the development of the wake vortices with high accuracy. Figure

4.14 shows the diffusion of the vortex about 3 to 4 rotor diameters behind the wind

turbine. However, from experiments, it is known that the diffusion of the vortex

happens at distance far behind the wind turbine [91]. This early diffusion of the

vortex in our simulation is due to small Reynolds number and coarse grid used

at far wake. The contours of magnitude of vorticity for different wind speeds are

also investigated. Figure 4.15 depicts the contours of magnitude of vorticity at

the plane of rotor for different incoming wind speeds. These results confirm that

the developed parallel scheme combined with the actuator line method simulates
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the development of the wake vortices for different incoming wind speed with high

accuracy.

Figure 4.16 shows the distribution of the axial interference factor (3.9), in the

rotor plane when the incoming wind speed is 10 m
s

. The three blades are seen as

lines with a high density of contour lines. This is due to the large changes in induced

velocity that takes place across the blades. The values of axial factor on the blades

range from -0.0158 to 0.3933, with peak values appearing near the mid-section of

the blades with a positive value on one side of the blade and a negative value on

the other side of the blade. The tip vortices appear as localized regions where the

value of axial interference factor is negative. In this region the minimum value

of axial interference factor is about -.0119. This value of axial interference factor,

-.0119, corresponded to an axial velocity that is 1.19% higher than the incoming

wind speed.

The distribution of axial factor in z-direction at a constant radius is also in-

vestigated. Figure 4.17 shows the distribution of axial factor from one side of the

blade to the other side in z-direction. From this figure, it is evident that the distri-

bution is dominated by minimum and maximum values. The development of the

axial factor distribution in the wake is depicted in Figure 4.18. These distributions

are plotted along the blade from the hub to the tip at different distances behind

the wind turbine in the wake region. It appears that the distribution dies out at
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Figure 4.10: Mesh grid in the plane of the wind turbine.
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Figure 4.11: Computed magnitude of vorticity at y-z planes for U0 = 10m
s

.

153



x=10.0354

y
2 4 6 8 10 12

z

2

6

10

x=10.0767

y
2 4 6 8 10 12

z

2

6

10

x=10.1444

y
2 4 6 8 10 12

z

2

6

10

x=10.2291

y
2 4 6 8 10 12

z

2

6

10

x=10.3214

y
2 4 6 8 10 12

z

2

6

10

x=10.5817

y
2 4 6 8 10 12

z

2

6

10

x=10.7313

y
2 4 6 8 10 12

z

2

6

10

x=10.442

y
2 4 6 8 10 12

z

2

6

10

x=10.8816

y
2 4 6 8 10 12

2

6

10

Figure 4.12: Computed magnitude of vorticity behind the turbine.
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Figure 4.13: Computed magnitude of vorticity at y-z planes in near wake.
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Figure 4.14: Computed magnitude of vorticity at y-z planes in far wake.
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Figure 4.15: Computed magnitude of vorticity for different wind speed.
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Figure 4.16: Distribution of axial factor in the rotor plane for U0 = 10.

the far wake which is due to the fact that at the far wake the wind speed will

recover to the free stream value. Figures 4.19, 4.20 and 4.21 show the distribution

of averaged axial velocity in y-z plane in x-direction. From these figures, as the

wind approaches the rotor the axial velocity keeps dropping and then immediately

behind the wind turbine, it keeps increasing until it recovers in the far wake. It

is noticed that even in the far wake the wind speed has not fully recovered and

this is one proof that joint optimization of multiple wind turbines is necessary for

improving the performance of wind turbines in the wind farm.
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Figure 4.17: Distribution of axial factor in z-direction.
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Figure 4.18: Distribution of axial factor along the blade (wake region).
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Figure 4.19: Velocity profile in x-direction for wind speeds U0 = 3, . . . , 6.
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Figure 4.20: Velocity profile in x-direction for wind speeds U0 = 7, . . . , 10.
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Figure 4.21: Velocity profile in x-direction for wind speeds U0 = 11, . . . , 14.
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4.8.3 Numerical Results for NACA 23012

In this section, we present two numerical case studies to test the efficiency and

accuracy of the proposed numerical algorithm 7 as well as the developed parallel

algorithm (4.30)-(4.64). In these numerical case studies, we use a three-bladed

wind turbine with a rotor diameter of 10 meters where the blade sections consist

of NACA 23012 series airfoils. The chord length and the manufactured twist angle

of this turbine are obtained using the formulas given in (3.48) and (3.44).

To capture the gradients of the flow field, grid points are concentrated near the

blade tips and stretched in the x, y and z-direction. In the case of one turbine, the

resulting grid consists of 86 grid points in the axial direction, 90 points in the y-

direction and 102 points in the z-direction. In the case of two turbines, the resulting

grid consists of 106 grid points in the axial direction, 90 points in the y-direction

and 102 points in the z-direction. In the axial direction the grid spacing ranges

from dx = 0.02 at the rotor plane to about dx = 1.9476 in the far wake, and in

the y-direction the grid spacing takes values from dy = 0.02 near the tip to about

dy = 1.2150 at the lateral boundary. Moreover, in the z-direction, the grid spacing

takes values from dz = 0.0346 near the tip to about dz = 1.4863 at the lateral

boundary. The computations are carried out on a 100m×60m×60m computational

domain and at an effective Reynolds number of Re = U0 ∗ R/ν = 5000. Moreover,
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in all the experiments, the computational domain is decomposed into 2 × 2 × 2

subdomains, and the doubly truncated Weibull distribution is used to model the

random behavior of the incoming wind speed. Here, we use the doubly truncated

Weibull distribution with the shape parameter kc = 3, the scale parameter sc = 9,

the lower limit a = 6 and the upper limit b = 15. To ensure that the flow is fully

developed in most of the wake, we run the simulation to about t=20 with a time

step of dt=2× 10−3 which corresponds to 10000 time steps.

4.8.3.1 One Turbine

We consider the case that there is only one turbine in the wind farm and use two

approaches to find the optimal operating points of this free-standing wind turbine.

The first approach is to solve a deterministic model, and the second approach is to

solve a stochastic model. The former approach replaces the random incoming wind

speed by the expected value of the doubly truncated Weibull distribution which

is 9.020m
s

(4.8). Since the incoming wind speed is 9.020m
s

, the optimal rotational

velocity and the optimal pitch angle of the wind turbine are β∗
d = 1.1215◦ and

Ω∗
d = 1.6840 rad/s, respectively, see Table 3.3. At this optimal operating points,

we calculate the expected power output of the turbine as follows. First, we use Al-

gorithm 6 to generate 5000 scenarios. Each scenario represents the incoming wind

speed, and it is generated using doubly truncated Weibull distribution. Moreover,
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each scenario is rounded to the nearest integer less than or equal that scenario.

Then, for each scenario, we use the developed parallel algorithm (4.30)-(4.64) com-

bined with the actuator line technique to compute the power generated by the

turbine. Having calculated the power generated by the turbine for each scenario,

we evaluate the expected power output of the turbine. The results are tabulated

in Table 4.1. From this table, we observe that if we operate the turbine at deter-

ministic optimal points, then the expected power output, the angle of attack, the

thrust and the torque are 21.0339kw power, 15.0587 degrees, 4.8115 kilonewton and

0.7536 kilonewton, respectively.

Now, we apply the latter approach which explicitly includes the randomness of

the incoming wind speed to find the optimal operating points of the free-standing

wind turbine. In the latter approach, we solve the scenario-based approximation

model (4.9) by the developed Algorithm 7 to find the optimal operating points of

the wind turbine. Algorithm 7 starts with a feasible initial operating point and, in

step 3, it generates 5000 scenarios by Algorithm 6. Likewise for the deterministic

approach, the scenarios are generated using doubly truncated Weibull distribution,

and each scenario is rounded to the nearest integer less than or equal that scenario.

For each scenario, Algorithm 7 uses the developed parallel algorithm (4.30)-(4.64)

combined with the actuator line technique to compute the power generated by the

turbine. Having calculated the power generated by the turbine for each scenario,
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Table 4.1: Deterministic optimal operating point of NACA 23012.

β Ω α T Ψ P

U0 = 9.020 m
s

1.1213 1.6837 15.0587 4.8115 0.7536 21.0339

we compute the expected power output of the turbine which is the objective func-

tion of the scenario-based approximation model (4.9). Algorithm 7 repeats these

process until convergence. The optimal pitch angle and the rotational speed ob-

tained by Algorithm 7 are β∗
s = 1.5201◦ and Ω∗

s = 2.2048 rad/s, respectively. Now,

we compare these optimal operating points with the optimal operating points ob-

tained using the deterministic approach in a sense that which one leads to a higher

expected power output. In this regard, we compute the expected power output of

the turbine operating at the deterministic optimal points as well as the expected

power output of the turbine operating at the stochastic optimal points. The re-

sults are tabulated in the Table 4.2. From this table, the expected power output

of the turbine operating at the stochastic optimal points is 22.3990, and the ex-

pected power output of the turbine operating at the deterministic optimal points

is 21.0339. Therefore, by optimizing the turbines' operation while considering the

randomness of the incoming wind speed, we can gain an additional 6.46% in the

expected power since 22.3990 = (1 + 6.46%)21.0339.
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Table 4.2: Stochastic optimal operating point of NACA 23012.

β Ω α T Ψ P

stochastic 1.5201 2.2048 10.3990 6.5451 0.7056 22.3990

deterministic 1.1215 1.6840 15.0587 4.8115 0.7536 21.0339

Gain: 6.46%

Table 4.3: Joint optimal operating points of two NACA 23012.

Turbine β Ω α T Ψ P PTotal Gain

J
o

i
n

t

S
t
o

c
h

a
s
t
i
c

1st, 0.331 1.722 16.636 5.657 0.734 20.183

2nd, 0.827 1.611 15.648 4.979 0.733 19.623 39.806 —

N
o

n
-
J

o
i
n

t

D
e

t
e

r
m

i
n

i
s
t
i
c

1st, 1.121 1.684 13.042 4.357 0.600 17.771

2nd, 1.121 1.684 12.884 4.333 0.587 17.494 35.265 12.88%

J
o

i
n

t

D
e

t
e

r
m

i
n

i
s
t
i
c

1st, 1.164 1.591 15.143 4.377 0.705 19.014

2nd, 0.747 1.308 25.818 4.424 0.700 17.511 36.525 8.98%

N
o

n
-
J

o
i
n

t

S
t
o

c
h

a
s
t
i
c

1st, 1.520 2.204 8.760 5.958 0.561 19.086

2nd, 1.520 2.204 8.654 5.924 0.549 18.654 37.740 5.47%
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4.8.3.2 Two Turbines

We consider the case that there are two turbines, four rotor diameters apart, in the

wind farm and use four approaches to find the optimal operating points of the wind

turbines. The first approach is to solve a deterministic model without considering

the wake effect, the second approach is to solve a deterministic model while con-

sidering the wake effect, the third approach is to solve a stochastic model without

considering the wake effect, and the last approach is to solve a stochastic model

while considering the wake effect. The first two approaches replace the random

incoming wind speed by the expected value of the doubly truncated Weibull distri-

bution which is 9.020m
s

(4.8). Since the incoming wind speed is 9.020m
s

, the first

approach finds β∗
1njd = β∗

2njd = 1.1215◦ and Ω∗
1njd = Ω∗

2njd = 1.6840 rad/s for the

optimal operating points of wind turbines, see Table 3.3. Moreover, since the incom-

ing wind speed is 9.020m
s

, applying the second approach, we find that the optimal

operating points of the upstream turbine are β∗
1jd = 1.1646◦ and Ω∗

1jd = 1.5915,

and the optimal operating points of the downstream turbine are β∗
2jd = 0.747◦ and

Ω∗
2jd = 1.3086, see Table 3.5. The third approach takes into account the random

behavior of the wind speed on the boundary of the wind farm. However, it ignores

the wake interaction between the upstream and downstream turbine. Using the

third approach, we find β∗
1njs = β∗

2njs = 1.5201◦ and Ω∗
1njs = Ω∗

2njs = 2.2048 rad/s

169



for the optimal operating points of the wind turbines, see Table 4.2. Finally, we

use the last approach which considers the randomness of the incoming wind speed

as well as the wake interaction between the upstream and downstream turbine to

find the optimal operating points of wind turbines. In this approach, we solve the

scenario-based approximation model (4.9) by the developed Algorithm 7 to find

the optimal operating points of the wind turbines. Algorithm 7 starts with a fea-

sible initial operating point and, at each iterate, it computes the expected total

power output in the same way as when we compute the expected power out of

the free-standing turbine in the stochastic approach. Using the last approach, we

find that the optimal operating points of the upstream turbine are β∗
1js = 0.3310◦

and Ω∗
1js = 1.7222 rad/s, and the optimal operating points of the downstream

turbine are β∗
2js = 0.8275◦ and Ω∗

2js = 1.6114 rad/s. Now, we compare the opti-

mal operating points obtained by these four approaches in a sense that which one

leads to a higher expected total power output. In this regard, we compute the

expected total power output at the optimal operating points associated with each

approach. The results are tabulated in Table 4.3. From this table, the expected

total power output at optimal operating points associated with the first, second,

third and fourth approach are 35.2656kw , 36.5255kw , 37.7408kw and 39.8067kw,

respectively. Therefore, using the last approach, the gain of 12.88%, 8.98% and

5.47% in the expected total power output are obtained with respect to the other
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three approaches. In conclusion, we can improve the performance of the wind farm

by considering the randomness of the incoming wind speed as well as the wake

interaction among the turbines.

4.9 Conclusion

We studied how to optimize wind turbines' power production in a wind farm where

the wind speed on the boundary of the wind farm is random. We modeled the three-

dimensional flow field in the wind farm by combining the actuator line model and

the solutions of Navier-Stokes equations while taking into account the randomness

of incoming wind speed. Furthermore, we developed a parallel scheme to solve

three-dimensional Navier-Stokes equations in velocity-vorticity formulation which

was ultimately used in the simulation of the stochastic optimization model. The

parallel scheme and the model were further validated by a benchmark used in

the literature and experimental data. It was shown that by taking into account the

randomness of incoming wind speed and optimizing the total power, we can improve

the performance of wind turbines in a wind farm. We found that by optimizing the

turbines' operation and taking into account the randomness of wind speed, we can

gain an additional 9%, in total power.
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