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A Monte Carlo study was used to evaluate the effects of reductions in posttest vari-

ance on several methods for detecting predictors of change in a two-wave design. 

When the predictor was dichotomous, the analysis of covariance approach was com-

pared to the analysis of variance on difference scores. For a continuous predictor, par-

tial correlations, difference score correlations with the predictor and latent change cor-

relations with the predictor in structural equation growth models were used. When 

posttest variance decreased (e.g., ceiling effect) difference scores lost power, while the 

power of regression based methods (analysis of covariance and partial correlations) 

and structural equation measures of change were unaffected.  

In spite of arguments in favour of multiple measurements over time (e.g., Willett, 

1997), the pretest-posttest design is still widely used to compare the changes exhibited 

by two or more groups in response to a treatment (Collins, 1996a; Williams & Zimmer-

man, 1996; Bonate, 2000). This design has two advantages over a posttest only design. 

First, the pretest provides information about individual differences, which can be used 

to decrease estimates of error variance, thereby increasing power. The second advantage 

is that baseline (pretest) differences between groups can be taken into account.  

Two statistical methods are most often used to compare the changes from pretest to 

posttest. One method computes the posttest minus pretest difference scores (also called 

change or gain scores). An independent t-test or ANOVA is used to compare the mean 

difference scores for each group. This method is equivalent to the interaction term in a 

two-way mixed ANOVA, and provides a direct comparison of the mean changes exhib-

ited by each group. The second method is analysis of covariance (ANCOVA) in which 

the posttest is the dependent variable and the pretest is the covariate. This method an-
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swers the question of whether group membership predicts differences in posttest scores 

after pretest differences have been removed. Both methods achieve the dual goals of 

removing variability due to individual differences and adjusting for baseline differences 

between the groups.  

Difference scores and ANCOVA test different hypotheses, and can produce quite dif-

ferent answers (Lord, 1967). ANCOVA tests the hypothesis of equivalence of adjusted 

means, assuming the groups were equivalent on the pretest. Since differences in pretest 

means are assumed to be due to chance, a regression line is used to adjust posttest 

means to take into account the expected dissipation of these pretest differences at post-

test (regression to the mean). This hypothesis makes sense for randomized experiments 

but not for quasi-experimental designs. In particular, ANCOVA should not be used to 

control for large baseline differences between naturally occurring groups (see e.g., Miller 

& Chapman, 2001), since it is not reasonable to assume the groups have the same true 

baseline. ANOVA on difference scores tests the hypothesis of equivalence of means of 

differences, regardless of the pretest differences between groups. The difference scores 

are assumed to yield unbiased estimates of a treatment effect which is additive and in-

dependent of the pretest level. While difference scores were spurned for many years be-

cause of concerns raised by Cronbach and Furby (1970) and others about their unreli-

ability, more recent work has shown that reliability is not a serious problem (Llabre, 

Spitzer, Saab, Ironson & Schneiderman, 1991; Williams & Zimmerman, 1996). For ex-

ample, Rogosa and Willett (1983) pointed out that the reliability of change scores in-

creases whenever the true change varies across individuals. 

There has been considerable uncertainty about when to use these two methods (e.g., 

Wainer, 1991; Maris, 1998). At present there is an emerging consensus to avoid 

ANCOVA for comparing changes in quasi-experimental designs (e.g., Rogosa, 1988; 

Schafer, 1992; Cribbie & Jamieson, 2000; Miller & Chapman, 2001). When large, natu-

rally occurring baseline differences are present, ANCOVA is the wrong model and will 

produce a systematic bias that favours the finding of greater change in the group with 

the higher pretest mean (Jamieson, 1999). For randomized experiments ANCOVA is 

generally preferred to difference scores since it provides a slight increase in power (e.g., 

Bonate, 2000).  

There has also been interest in how ANCOVA and difference scores perform under 

conditions in which distribution assumptions such as normality and homogeneity of 

variance do not hold. A recent book by Bonate (2000) presents an extensive series of 
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computer simulations which compare the Type I error rates and power of ANCOVA 

and difference scores (as well as other methods) in the pretest-posttest design. He found 

that ANCOVA was slightly more powerful than difference scores over a wide range of 

distributions. However, the power of both tests decreased with departures from normal-

ity. Bonate examined several non-normal (skewed) distributions and failed to detect 

major differences between difference scores and ANCOVA. He also explored the effect of 

increasing posttest variance and concluded it had little effect on power of either method.  

While Bonate studied a wide range of conditions, he failed to examine the effect of 

decreasing posttest variance. This was an unfortunate omission, since decreases in post-

test variance are frequently found in research when a floor or ceiling effect is present.  

A floor or ceiling effect arises when scores approach maximum (ceiling) or minimum 

(floor) values. For example, in comparing how two groups respond to a relaxation 

method, the posttest scores for both groups may approach a floor of zero, resulting in 

decreased variability. It has been known for some time that difference scores do not per-

form well when floor/ceiling effects are present (Jamieson, 1995). For example, Collins 

(1996b) stated: “assuming there are no ceiling or floor effects, there is nothing unsound 

about difference scores” (p. 39).  

In addition to floor/ceiling effects, a decrease in posttest variance can result from a 

skewed measurement. With skewed measures, the means and variances are proportional 

(e.g., Winer, 1971) so that changes in the mean will be accompanied by changes in vari-

ance. With positively skewed measures, a mean decrease will be accompanied by a de-

crease in posttest variance. For example, response latency has a positively skewed dis-

tribution, and a treatment which decreases response latency will cause decreased vari-

ability in the posttest scores. Because there is a floor of zero for response latency, this is 

also an example of a floor effect. Bonate studied the effect of skewness, but not when it 

was accompanied by a change in the means, which would produce a change in posttest 

variance. 

While difference scores and ANCOVA are the most widely used methods to compare 

changes in the pretest-posttest design, there has also been recent interest in structural 

equation models (SEM) for identifying correlates of change. Raykov (1994) and others 

have proposed models that include a latent variable to measure the change from pretest 

to posttest, and Duncan, Duncan, Strycker, Li and Alpert (1999) provide an excellent 

introduction to the topic. Assuming that the expected change is linear in form these 

models can be very useful in testing complex hypotheses regarding change and also al-
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low the incorporation of congeneric (variables related to the underlying factor) meas-

urements of change. The path (parameter) between latent change and a (measured or 

latent) predictor variable is of interest to a researcher exploring predictors of change. To 

date there have been no studies examining how well SEM models of change are able to 

detect correlates of change when posttest variability decreases.  

The purpose of the present study was to compare the power of change scores, regres-

sion based methods (ANCOVA, partial correlation) and structural equation models of 

change, when variance decreases from pretest to posttest. Computer simulations pro-

duced a decrease in variance from pretest to posttest due to either a floor/ceiling effect, 

or as the result of skewness combined with a change in the means. The first set of simu-

lations represented a two group pretest-posttest design. The power of ANOVA on dif-

ference scores and the power of ANCOVA to detect a difference in mean change be-

tween the two groups were compared. The second set of simulations replaced the two 

groups with a continuous predictor, with two congeneric variables used as measures of 

the pretest, posttest and predictor constructs. Power to detect a relationship between 

the predictor and change was compared for three measures: (1) the correlation of the 

predictor with difference scores (which is the generalization of ANOVA on difference 

scores); (2) the partial correlation of the predictor with posttest, controlling for pretest 

(which is equivalent to multiple regression and is a generalization of ANCOVA); and 

(3) the correlation/covariance between the latent change and the latent predictor in the 

structural model. 

Method 

The SAS generator RANNOR (SAS Institute, 1990) was used to generate pseudo-

random variates, with means of zero and standard deviations (see below) selected to 

yield realistic effects. Two values were selected for the standard deviation of the error 

terms, 4 and 8, which yielded values of reliability (for the pretest) of .86 and .61, re-

spectively. Sample sizes were selected to be representative of the designs investigated. 

One thousand simulations were computed for each condition. 

For comparison of changes between two groups, pretest and posttest scores were cre-

ated for two groups, each of n = 25, by adding a different error component (µ = 0, σ = 

4 or 8) to the same true score component (µ = 0, σ = 10). Five points were added to 

the posttest scores of one group to create a differential change signal to be detected. 
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For the continuous predictor, two congeneric pretest and posttest measures were cre-

ated for N = 200 cases by adding a different error component (µ = 0, σ = 4 or 8) to the 

same true score component (µ = 0, σ = 10). A change component (µ = 0, σ = 10) was 

added to the posttest scores. Two congeneric predictor variables were created by adding 

a true score component (µ = 0, σ = 10) to an error component (µ = 0, σ = 4 or 8) and 

by adding the change component, premultiplied by .2 to create empirically realistic cor-

relations between the predictor variables and change. 

To simulate a floor/ceiling effect an increment was added to the posttest scores 

which was a function of the distance of the posttest scores from an arbitrary ceiling of 

50. Thus, the posttest score became posttest + c ⋅ (50 – posttest), where c had values of 

0, .1, .2, .3, .4, and .5. Zero represented no ceiling effect, while .5 represented a strong 

ceiling effect.  

To simulate skewed data, a constant of 100 was first added to all the scores to elimi-

nate negative values. Then a constant was added to the posttest scores to simulate a 

mean change. The constants examined were 0, 25, 50, 75 and 100. The larger numbers 

represented greater change away from the tail of the distribution, while 0 represented 

no mean change. Changes away from the tail of the distribution are conceptually similar 

to a floor or ceiling effect. Finally the pretest and posttest scores were transformed to 

log(10) to create negatively skewed distributions.  

Difference scores for the repeatedly assessed variables were computed by taking the 

difference between the pretest and posttest scores. ANOVA was used to compare the 

mean difference scores of the two groups. ANCOVA with posttest as the dependent 

variable and pretest as the covariate was also used to compare the changes between the 

two groups. Power was recorded as the proportion of simulations in which the groups 

were significantly different (two-tailed α = .05). 

For the continuous predictors, correlations were computed between the difference 

scores and each of the congeneric measures of the predictor variable, and partial correla-

tions were computed between the posttest scores and the measures of the predictor 

variable, after controlling for the corresponding pretest scores. Power was recorded as 

the proportion of simulations in which the correlations were statistically significantly 

(two-tailed α = .05).  
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Structural equation model 

The structural model used in this study (see Figure 1) was derived from models de-

veloped by Raykov (1997), MacCallum, Kim, Malarkey and Kiecolt-Glaser (1997), 

Steyer, Eid, and Schwenkmezger (1997), and others, for measuring change and identify-

ing correlates of change with SEM. The observed variables in this model are the two 

pretest measures, the two posttest measures, and the two measures of the predictor 

variable. Latent measures in this model represent baseline, change from pretest to post-

test, and a predictor variable. The variances of the latent baseline, change and third 

variable constructs were estimated from the data. Models often include the constraint 

that pretest and posttest variances are equal, to reflect consistency in the same vari-

ables when measured twice; however, since the present study involved manipulations 

that affected posttest variance those constraints were not included. The model contains 

9 degrees of freedom, with 12 unknowns being estimated from 15 covariances and 6 

variances. The structural models were tested against the data using SAS PROC CALIS 

(SAS Institute, 1990b) with maximum likelihood estimation. 

The covariance between the latent predictor and change variables was used as the 

measure of the relationship between the predictor variable and change. Power was re-

corded as the proportion of simulations in which the covariances were statistically sig-

nificant (two-tailed α = .05). As well, to allow for comparisons with the ANCOVA and 

difference score approaches, the correlation between the latent predictor and change 

variables was included. To test the fit of the model to the data, the Goodness of Fit In-

dex (GFI) (Jöreskog & Sörbom, 1989), Adjusted Goodness of Fit Index (AGFI) (Jöre-

skog & Sörbom, 1989), Comparative Fit Index (CFI) (Bentler, 1988), and Root Mean 

Square Error of Approximation (RMSEA) (Browne & Cudeck, 1993) were recorded for 

each analysis, to provide a good overall picture of the fit of the model to the data. 

Results 

Dichotomous Predictor  

The means and standard deviations of the posttest scores for the ceiling effect are 

presented in Table 1 (the pretest conditions were identical, and average values across 

conditions are also presented in the table). It can be seen that the standard deviations 

decrease as the ceiling is approached. 
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Figure 1. The structural model used for assessing the relationship between the latent 

predictor of change and the latent measure of change. 

The proportion of simulations in which the groups were significantly different (ob-

served power) for the ANOVA on difference scores and the ANCOVA under each ceil-

ing effect condition are presented in Table 2. When there is no ceiling effect (change = 

0), both methods have similar power to detect differences in change between the two 

groups. As the size of the ceiling effect increased (change toward .5), the average power 

for the ANOVA on difference scores decreased. In contrast, the average power for 

ANCOVA is unaffected by the ceiling effect. 
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Table 1 

Average Group Means and Standard Deviations When Posttest Scores Approach a Ceil-

ing (Group 1 Had a Constant of 5 Added to Posttest)  

 Reliability (of pretest) 

 .86  .61 

 Group 1 Group 2  Group 1 Group 2 

Change M SD M SD  M SD M SD 

0 5.01 10.74 0.02 10.77  5.00 12.80 0.05 12.81 

.1 9.45 9.72 4.95 9.71  9.52 11.55 4.96 11.56 

.2 13.98 8.66 10.01 8.67  13.94 10.24 9.93 10.23 

.3 18.50 7.53 15.02 7.57  18.51 8.95 15.04 8.96 

.4 22.99 6.47 19.98 6.47  22.99 7.71 20.00 7.68 

.5 27.51 5.38 25.03 5.37  27.47 6.41 25.03 6.38 

Note. M = Mean; SD = Standard deviation. 

The means, standard deviations and skewness of the posttest scores for the negatively 

skewed simulations are presented in Table 3 (the pretest conditions were again identi-

cal, and average values across conditions are also presented in the table). It can be seen 

that the standard deviations decrease as the posttest approaches the head of the skewed 

distribution. As well, the skewness statistic is consistently negative, reflecting the nega-

tive skewness produced by the logarithmic transformation.  

The proportion of simulations in which the groups were significantly different (ob-

served power) for the ANOVA on difference scores and the ANCOVA for the negatively 

skewed simulations are presented in Table 4. The level of change indicates the amount 

of change in posttest scores of a negatively skewed distribution in the direction of de-

creasing variance (toward the head of the distribution). For the negatively skewed dis-

tribution, when there is no mean change both methods have similar average power to 

detect the difference in change between the two groups. However, when the amount of 

change away from the tail of the distribution (in the direction of decreased posttest 

variance) increased, the average power for the ANOVA on difference scores decreased. 
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As with the ceiling effect, the average power for ANCOVA was unaffected by the skew-

ness and mean change. 

Table 2 

Average Power Rates (Proportion Significant) for ANOVA on Gain Scores and 

ANCOVA When Scores Approach a Ceiling 

 Reliability (of pretest) 

 .86  .61 

Change* Gain Scores ANCOVA  Gain Scores ANCOVA 

0 .850 .879  .310 .371 

.1 .824 .902  .280 .369 

.2 .726 .908  .278 .413 

.3 .568 .890  .223 .402 

.4 .374 .909  .157 .382 

.5 .164 .907  .097 .411 

Note. * 0 = no change, .5 = half the distance of the ceiling. 

Continuous Predictor 

Means, standard deviations and skewness were not presented for the continuous predic-

tor since the data are very similar to those from the dichotomous predictor. The propor-

tion of simulations in which the correlation between the third variable and change were 

statistically significant (observed power) for the gain scores, partial r and SEM under 

each of the ceiling effect conditions are presented in Table 5. The correlation between 

gain scores and the predictor shows a decrease in power as the ceiling was approached. 

In contrast, the power of the partial correlation of the predictor with posttest (control-

ling for pretest), and the power of the correlation between the latent change variable 

and the latent predictor variable from the structural model did not decrease. Table 6 

contains the average correlation between the gain scores and the predictor variable, the 

average partial correlation of the predictor variable with posttest (controlling for pre-

test), and the average correlation between the latent change variable and the latent 

predictor variable from the structural model. When there is no ceiling effect, all three 
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measures yield very similar coefficients. As the ceiling effect increases, the value of the 

correlation between the predictor variable and the difference scores decreased, as did the 

SEM correlation between the predictor and change. In contrast, the partial correlations 

were unaffected by the ceiling effect. Although the SEM correlation between the predic-

tor and change decreased, the power of the significance test was unaffected. 

Table 3 

Average Means, Standard Deviations and Skewness as Scores Change Toward the Head 

of a Negatively Skewed Distribution (Group 1 had a Constant of 5 Added to Posttest) 

 Reliability (of pretest) = .86 

 Pretest: M = 1.996, SD = .049, skewness = -.35 

 Group 1  Group 2 

Change M SD Skewness  M SD Skewness 

0 2.019 .047 -.32  1.997 .047 -.33 

25 2.112 .036 -.25  2.095 .038 -.25 

50 2.189 .030 -.22  2.175 .031 -.23 

75 2.254 .026 -.18  2.242 .027 -.17 

100 2.311 .023 -.16  2.300 .023 -.16 

 Reliability (of pretest) = .61 

 Pretest: M = 1.999, SD = .055, skewness = -.41 

 Group 1  Group 2 

Change M SD Skewness  M SD Skewness 

0 2.018 .054 -.39  1.996 .057 -.41 

25 2.112 .043 -.31  2.095 .045 -.32 

50 2.188 .037 -.26  2.174 .037 -.26 

75 2.254 .031 -.21  2.241 .032 -.22 

100 2.311 .027 -.20  2.300 .028 -.20 

Note. M = Mean; SD = Standard deviation. 
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Table 4 

Average Power Rates (Proportion Significant) for ANOVA on Gain Scores and 

ANCOVA When Scores Change Toward the Head of a Negatively Skewed Distribution 

 Reliability (of pretest) 

 .86 (Error SD = 4)  .61 (Error SD = 8) 

Change* Gain Scores ANCOVA  Gain Scores ANCOVA 

0 .857 .899  .326 .399 

25 .688 .879  .247 .387 

50 .461 .898  .182 .399 

75 .274 .872  .142 .399 

100 .139 .896  .111 .411 

 

The proportion of simulations in which the correlation between the predictor variable 

and change were statistically significant (observed power) for the gain scores, partial r 

and SEM for the negatively skewed simulations are presented in Table 7. The level of 

change indicates the amount of change in posttest scores of a negatively skewed distri-

bution in the direction of decreasing variance (toward the head of the distribution). The 

correlation between difference scores and predictor shows a decrease in power with 

greater decreases in posttest variance. In contrast, the power of the partial correlation of 

the predictor with posttest (controlling for pretest), and of the correlation between the 

latent change variable and the latent predictor variable from the structural model, did 

not decrease.  

Table 8 contains the average correlation between difference scores and the predictor 

variable, the average partial correlation of the predictor variable with posttest (con-

trolling for pretest), and the average correlation between the latent change variable and 

the latent predictor variable from the structural model for each of the level of change 

conditions. When there was no mean change all three methods had similar coefficients. 

However, when the amount of change toward the head of the skewed distribution in-

creased, the value of the correlation between the predictor variable and the difference 

scores decreased, as did the SEM regression coefficient from the predictor to change. As 
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with the floor/ceiling effect, the change scores but not the SEM exhibited an associated 

loss of power for detecting this relationship. Both the power and the value of the partial 

correlations were unaffected by the skewness and mean change. 

Table 5 

Average Power Rates (Proportion Significant) for Gain Scores, Partial r and SEM for 

Measuring the Correlation Between a Third Variable and Change, When Scores Ap-

proach a Ceiling 

 Reliability (of pretest) 

 .86  .61 

Change* 
Gain 

Scores 
Partial r SEM r  

Gain 

Scores 
Partial r SEM r 

0 .636 .639 .692  .240 .292 .411 

.1 .629 .645 .686  .224 .307 .428 

.2 .568 .630 .644  .195 .308 .416 

.3 .525 .638 .683  .164 .315 .423 

.4 .440 .644 .655  .127 .293 .403 

.5 .346 .642 .659  .084 .296 .407 

Note. * 0 = no change, .5 = half the distance of the ceiling. 

Discussion 

Difference scores lose power for comparing the changes between two groups when 

variance decreases from pretest to posttest, due to either the presence of a floor/ceiling 

effect, or a skewed distribution combined with a mean change. ANCOVA, in contrast, is 

unaffected by either of these conditions, and retained power in spite of the decreased 

posttest variance. These findings are consistent with those of Stoolmiller and Bank 

(1995) who also found that difference scores lost power, relative to ANCOVA, when 

variance decreased from pretest to posttest. The second set of simulations showed that 

the effects of decreased posttest variance due to both floor/ceiling and skewness general-

ized to a continuous predictor. The regression based measure of change (partial correla-
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tion) was unaffected by the decrease in variance, while the correlation with difference 

scores exhibited a loss of power with decreases in posttest variance. The pattern of the 

relationship between the latent predictor and change variables from the structural equa-

tion model was dependent on the manner in which the relationship was assessed. Spe-

cifically, although the value of the correlation coefficient was affected by the decreased 

variance (i.e., the correlation decreased), the power associated with the covariance (us-

ing the associated maximum likelihood estimates of the covariance and standard error) 

was unaffected. These findings indicate that ANCOVA (or other regression based meth-

ods such as partial correlation) and structural equation models of change are to be pre-

ferred to difference scores when strong floor/ceiling effects are present at posttest or 

when a skewed distribution is changing in the direction of decreasing variance. 

The explanation for the loss of power shown by ANOVA on difference scores when 

posttest variability decreases lies in the smaller change signal, relative to the pretest 

error variance. The ratio of the change signal to the error in the posttest will remain 

constant as the posttest variability decreases, but the absolute value of the change sig-

nal will decrease, relative to the size of the pretest variance. ANOVA on difference 

scores lacks power to detect this small signal because the pretest error variance and 

posttest error variance are pooled. The formula for the error variance of difference 

scores, 2 2 2

,
2difference pre post pre post pre posts s s r s s= + − , contains equal weighting for the pretest and 

posttest error variances, where s2 represents the sample variance, s represents the sam-

ple standard deviation and r represents the Pearson correlation coefficient. In contrast, 

regression based methods (ANCOVA or partial correlation) do not pool the pretest and 

posttest variances and are able to detect this small signal embedded in the smaller post-

test variance. The methodological connection between difference scores and latent 

change variables (with two time points) in SEM (see Duncan et al., 1999) may explain 

why the correlation from the structural equation model of change is also affected by the 

decreasing variance. 
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Table 6 

Average Gain Score Correlation, Average Partial Correlation, Average Correlation Be-

tween the Predictor and Change in the Structural Model, and Average Fit Indices for the 

Structural Model When Scores Approach a Ceiling 

 Reliability (of pretest) = .86 

Change 
Gain 

Scores 
Partial r SEM r GFI AGFI RMSEA CFI 

0 .160 .161 .196 .985 .966 .019 .998 

.1 .157 .161 .194 .985 .966 .019 .998 

.2 .149 .159 .188 .985 .965 .020 .998 

.3 .143 .162 .182 .985 .966 .018 .998 

.4 .128 .160 .162 .985 .966 .019 .998 

.5 .110 .160 .139 .985 .966 .018 .998 

 Reliability (of pretest) = .61 

Change 
Gain 

Scores 
Partial r SEM r GFI AGFI RMSEA CFI 

0 .099 .106 .188 .985 .966 .019 .996 

.1 .098 .109 .192 .985 .966 .018 .996 

.2 .094 .110 .191 .985 .965 .020 .996 

.3 .087 .108 .180 .985 .965 .020 .996 

.4 .076 .106 .158 .985 .965 .020 .996 

.5 .066 .105 .132 .985 .965 .019 .996 

Note. GFI = Goodness of fit index; AGFI = Adjusted goodness of fit index; RMSEA = Root mean 

square error of approximation; CFI = Comparative fit index. 
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Table 7 

Average Power Rates (Proportion Significant) for Gain Scores, Partial r and the SEM 

Path Measuring the Correlation With Change, When Scores Change Toward the Head of 

a Negatively Skewed Distribution 

 Reliability (of pretest) 

 .86  .61 

Change 
Gain 

Scores 
Partial r SEM r  

Gain 

Scores 
Partial r SEM r 

0 .644 .651 .689  .230 .282 .399 

25 .565 .628 .650  .181 .299 .434 

50 .491 .648 .674  .164 .319 .440 

75 .404 .645 .666  .115 .311 .416 

100 .323 .674 .727  .102 .287 .405 

 

These findings extend the work of Bonate (2000) who explored the effect of increas-

ing posttest variance and concluded it had little effect on the power of either difference 

scores or ANCOVA. We also find that increasing posttest variance does not differen-

tially affect these methods (results not presented here). Bonate examined several non-

normal (skewed) distributions and failed to detect differences between ANCOVA and 

difference scores. However, he did not explore conditions involving a mean shift, i.e., the 

means of both groups increasing (or decreasing) from pretest to posttest. Thus his find-

ings are comparable to the zero mean change condition in the present study. It is im-

portant to emphasize that non-normality (skewness) only impairs the power of differ-

ence scores when there is a mean change (away from the tail) which results in decreased 

posttest variance, a condition analogous to a floor/ceiling effect. 

The present investigation only examined the effect of decreasing variance from pre-

test to posttest on power, not on rates of Type I error. Neither of the conditions exam-

ined here, a ceiling effect and a skewed distribution changing in the direction of de-

creased posttest variance, have any differential effect on the Type I error rates of differ-

ence scores and ANCOVA (Jamieson & Cribbie, in preparation). In general, changes in 

posttest variance have minimal effects on Type I error rates (e.g., Bonate, 2000). How-
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ever, under certain conditions, skewness and changes in variance cause substantial in-

creases in Type I errors for difference scores (Jamieson & Cribbie, in preparation). 

Table 8 

Average Gain Score Correlation, Average Partial Correlation, Average Correlation Be-

tween the Predictor and Change in the Structural Model, and Average Fit Indices for the 

Structural Model When Scores Change Toward the Head of a Negatively Skewed Distri-

bution 

 Reliability (of pretest) = .86 

Change 
Gain 

Scores 
Partial r SEM r GFI AGFI RMSEA CFI 

0 .159 .160 .194 .984 .964 .020 .998 

25 .147 .157 .185 .985 .965 .020 .998 

50 .138 .162 .176 .985 .965 .019 .998 

75 .122 .160 .156 .985 .965 .020 .998 

100 .111 .164 .140 .984 .965 .020 .998 

 Reliability (of pretest) = .61 

Change 
Gain  

Scores 
Partial r SEM r GFI AGFI RMSEA CFI 

0 .100 .106 .186 .985 .964 .020 .996 

25 .093 .108 .184 .985 .964 .021 .996 

50 .086 .110 .173 .985 .965 .019 .996 

75 .073 .108 .151 .985 .965 .020 .996 

100 .067 .106 .132 .985 .965 .019 .996 

The present findings confirm the problems with difference scores when posttest vari-

ability decreases (Collins 1996b), and show that structural equation models of change 

do not share this problem. These findings are of practical value to researchers, since 

they show that regression-based measures of change (ANCOVA, partial correlation) and 

structural equation models of change are superior to difference scores when posttest 
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variability decreases. Further, a logical extension of this research would be to explore 

multiple group SEM (e.g., Byrne, 2001), which would be a direct generalization of the 

ANCOVA model, and would be appropriate for cases when the predictor of change is 

discrete and latent measures of change are of interest (i.e., multiple predictors of change 

are available) or there are more than two time points over which change is to be meas-

ured. 
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