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Abstract 
Pollination facilitation is an indirect interaction whereby one plant species positively influences 

the reproductive success of another plant species through pollinators. This thesis contributes to 

the field of pollination facilitation using two approaches. First, we conducted a systematic review 

of the experimental pollination facilitation literature. We found that the field of pollination 

facilitation advanced seven mechanistic hypotheses which we synthesized into a conceptual 

framework to summarize the extent of mechanisms tested to date. Co-flowering interactions 

including the magnet species effect are the most frequently studied; however, the capacity for 

plants to facilitate the pollination of other plants through pathways that do not require co-

blooming is an important research gap identified in this literature. We addressed several research 

gaps identified by the literature review. We tested the capacity for the dominant, foundation 

shrub Larrea tridentata to facilitate its annual understory. We separated blooming and non-floral 

interactions while incorporating the temporal dimension by tracking pollinator visitation to the 

understory as L. tridentata went through spring flowering phenology. L. tridentata interfered 

with the pollination of Malacothrix glabrata before it bloomed, and visitation was significantly 

reduced with blooming. L. tridentata supported plant and arthropod communities while creating 

locally stable microclimates demonstrating that positive and negative effects by foundation 

plants occur simultaneously. This project contributes to a better understanding of the underlying 

mechanisms driving interactions in a critically understudied arid environment. 

 

 

 

 

 

 
 

 



iii 

 

Acknowledgements 
 

Thank you to my advisor Dr. Christopher Lortie for providing guidance and advice, fielding 

countless changes to my experimental designs and always being so supportive and encouraging 

of my many ideas. Thanks also to Dr. Amro Zayed for providing solid, constructive feedback 

and advice for this project.  

I would like to thank my partner Brian Tammi for his extensive support over the last two years: 

for listening to me talk about bees for endless hours, always making sure I eat dinner and 

bringing snacks all the way to the Mojave National Preserve. Without his help I don’t think I 

would have got through this all.  

Thank you to everyone in the ecoblender lab and especially Alex Filazzola for providing input, 

brainstorming ideas and being willing to jump out of a car into a sandstorm. Thanks to Daisy 

Goulart for providing field assistance in 2017 and enduring seemingly endless windstorms. 

Thanks also to everyone that helped me process data: Stephanie Haas, Diana Pik, Charlie West, 

Shobika Baskaran and Shima Sadat Rafizadeh Amirsalami. Thanks to Ally Ruttan for giving me 

such helpful advice from her experiences.  

Finally thank you to Dr. Tasha LaDoux and Dr. Jim Andre of the Sweeney Granites Desert 

Research Centre (University of California, Riverside) for hosting me over both field seasons, 

providing expert advice, introducing me to flora of the area and inviting me over to watch Star 

Wars. It is such a fantastic place. 

 

 

 

 

 

 

 

 

 



iv 

 

Table of Contents 
Abstract ........................................................................................................................................... ii 

Acknowledgements ........................................................................................................................ iii 

List of Tables ................................................................................................................................. vi 

List of Figures ................................................................................................................................ ix 

 

General Introduction ....................................................................................................................... 1 

Chapter One. Finding the bees knees: a conceptual framework and systematic review of the 

mechanisms of pollinator-mediated facilitation.............................................................................. 6 

Abstract ....................................................................................................................................... 7 

Introduction ................................................................................................................................. 8 

Conceptual framework .............................................................................................................. 10 

Methods..................................................................................................................................... 12 

Systematic Review ................................................................................................................ 12 

Data Analysis ........................................................................................................................ 13 

Results ....................................................................................................................................... 14 

Discussion ................................................................................................................................. 15 

Research gaps in pollination facilitation studies ................................................................... 16 

Scale dependent effects are highly variable .......................................................................... 19 

Conclusions ............................................................................................................................... 20 

Literature Cited ......................................................................................................................... 21 

Figures and Tables .................................................................................................................... 28 

Appendix A ............................................................................................................................... 34 

Appendix B - List of studies included in systematic review .................................................... 38 

 

Chapter 2: Disentangling the drivers and trade-offs of pollinator-mediated interactions between 

creosote bush (Larrea tridentata) and desert dandelion (Malacothrix glabrata). ........................ 44 

Abstract ..................................................................................................................................... 45 

Introduction ............................................................................................................................... 46 

Methods..................................................................................................................................... 48 

Study design .......................................................................................................................... 50 

Statistical Analysis ................................................................................................................ 53 

Results ....................................................................................................................................... 55 



v 

 

Shrub effects on visitation rates and pollen deposition to phytometer species..................... 55 

Community-level shrub effects ............................................................................................. 56 

Discussion ................................................................................................................................. 58 

Conclusions ............................................................................................................................... 60 

Literature Cited ......................................................................................................................... 62 

Figures....................................................................................................................................... 70 

Tables ........................................................................................................................................ 76 

Appendix A – Model validation and full models...................................................................... 79 

Appendix B – Arthropod RTU list............................................................................................ 82 

Appendix C – Sensitivity of arthropod community models ..................................................... 85 

Appendix D: Post-hoc contrasts................................................................................................ 86 

Synthesis and General Conclusions .............................................................................................. 87 

Literature Cited ......................................................................................................................... 90 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 



vi 

 

List of Tables 
 

Chapter 1 

Table 1.1: A summary of the mechanistic hypotheses generated by a systematic review of the 

pollination facilitation literature, a concise definition for each, the proposed umbrella mechanism 

under which it falls and examples of reference articles………………………………………….29 

Table A1.1: Tables showing frequency of ecosystems tested, theme of study and mechanism of 

study.  Standardized residuals signify how much a value contributes to the overall chi-squared 

value. Significance at the 95% level is assessed at values > 1.96 and < 1.96. Some authors report 

experiments with multiple ecosystems or address multiple mechanism within a single paper so 

papers may be counted more than once. ………………………………………………………...36 

Table A1.2: Methods that authors used to control for confounding effects of plant-plant 

interactions and environmental variation. Methods are exclusive here but in a few cases multiple 

methods were used, papers were assigned to the most frequent method. ……………………….37 

Chapter 2 

Table 2.1: Results from quasi-Poisson GLMM (glmmPQL, MASS) testing for RTU specific 

responses to blooming stage. The log-transformed length of video was used as an offset as a 

measure of exposure. The repID (shrub ID + microsite) was used a random effect to account for 

the repeated measures study design. Post hoc comparisons (lsmeans) contrasting RTU specific 

responses between pre-blooming and blooming were done on significant interactions. 

Significance was denoted at α = 0.05 and shown in bold. ………………………………………76    

Table 2.2: Results from GLMM (glmmTMB) testing for the influence of heterospecific annual 

floral density and shrub blooming density on the frequency of pollinator floral visits and foraging 

bouts. The log-transformed length of video was used as an offset as a measure of exposure. The 

repID (shrub ID + microsite) was used a random effect in both models to account for the 

repeated measures study design. Significance was denoted at α = 0.05 and shown in bold…….76 

Table 2.3: Results from Gamma GLMM (lme4, glmer.nb) testing for differences foraging 

duration and the proportion of flowers visited per visit in response to microsite (shrub and open) 

and blooming stage (pre-blooming and full bloom). The repID (shrub ID + microsite) was used a 

random effect in both models to account for the repeated measures study design. Significance 

was denoted at α = 0.05 and shown in bold. Non-significant interactions were excluded from all 

models. …………………………………………….…………………………………………….77 

Table 2.4: Results from quasi-Poisson GLMM (MASS, glmmPQL) testing for the influence of 

L. tridentata, and two metrics of conspecific density on conspecific and heterospecific pollen 

deposition. Flower ID nested in plant was used as a random effect to account for multiple 

samples coming from individual plants. Significance was denoted at α = 0.05 and shown in 

bold………………………………………………………………………………………………77 



vii 

 

Table 2.5: Results from GLMM testing for differences in arthropod, bee and plant communities 

in response to response to microsite (shrub and open) and blooming stage (full bloom and pre-

blooming). Melyridae beetles comprised 1217/3384 individuals, models were fit with them 

excluded, included and individually. The repID (shrub ID + microsite) was used a random effect 

in all models to account for the repeated measures study design. Significance was denoted at α = 

0.05 and shown in bold. 

…………………………………………….……………………………………………………...78 

Table 2.6: Permutation test ANOVA on RDA testing for changes in influence of shrub microsite 

and understory annual vegetation on arthropod community composition with phenological shift 

into flowering of Larrea tridentata. The constraining variables of the pre-blooming RDA 

explained 12.5% of the total variation and the blooming RDA explained 

4%.……………………………………………………………………………………………….78 

Table A2.1: Likelihood ratio test comparison of random intercept model, additive and 

interaction GLMM negative binomial models for where total flower visits are the response 

variable. Null model is flowers.pot with the random intercept, additive is flower.pot + blooming 

+ microsite and interaction in flowers.pot + blooming * microsite. 

……………………………………………………………………………………………………79 

Table A2.2: Likelihood ratio test comparison of random intercept model, additive and 

interaction GLMM negative binomial models for where total plant visits are the response 

variable. Null model is flowers.pot with the random intercept, additive is flower.pot + blooming 

+ microsite and interaction in flowers.pot + blooming * microsite.……..………………………79 

Table A2.3: Results from negative binomial generalized linear mixed models (lme4, glmer.nb) 

testing for differences in the frequency of pollinator floral visits and foraging bouts in response 

to microsite (shrub and open) and blooming stage (pre-blooming and full bloom). Conspecific 

floral density was included as a predictor and the log-transformed length of video was used as an 

offset as a measure of exposure. The repID (shrub ID + microsite) was used a random effect in 

both models to account for the repeated measures study design. Significance was denoted at α = 

0.05 and shown in bold. Non-significant interactions were excluded from all models………….79 

Table A2.4: Full models. Quasipoisson GLMM (glmmPQL, MASS) with three-way interaction 

term for RTU*blooming*microsite. This output from Wald’s Type 3 test. Total flower visits and 

foraging bouts as response. Rep ID as random effect. …………………………………………..80 

Table A2.5: Gamma GLMM (glmer lme4) models for proportions of flowers visited including 

Blooming * RTU interaction to test for differences in RTU response to blooming stage……….80 

Table A2.6: Gamma GLMM (glmer lme4) for proportions of flowers visited including Microsite 

* RTU interaction to test for differences in RTU response to microsite. ……………………….80 

Table A2.7: Post-hoc constrast (lsmeans) on significant interaction from Table A6…………...81 



viii 

 

Table B2.1: A list of all RTU for Chapter 2. All RTU all exclusive and no individuals were 

double counted. 118 taxonomic groups were counted. The full dataset has been published openly 

(Braun and Lortie, 2018). …………………………………………….………………………….82 

Table C2.1: Negative binomial GLMM (glmer.nb, lme4) for arthropod abundance – Melyridae 

included and Melyridae only. …………………………………………………...………………85 

Table C2.2: Post-hoc contrasts interaction for abundance (Melyridae only) for microsite by 

Blooming (lsmeans). ……………………………………………………………….....................85 

Table D2.1: Results from post-hoc test (lsmeans, Tukey’s) for the Gamma generalized linear 

mixed model on significant interaction for proportion of flowers visited. Significance was 

denoted at α = 0.05 and shown in bold. …………………………………………………………86 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ix 

 

List of Figures 
 

Chapter 1 

Figure 1.1: A conceptual framework to model the mechanisms and hypotheses associated with 

pollinator-mediated facilitation. The concepts were extracted from a systematic review of 100 

studies on this topic. The seven mechanistic hypotheses tested within the literature can be 

categorized into four umbrella hypotheses. Refer to Table 1 for a description of the seven 

mechanistic hypotheses. Each mechanism (A) can lead to a behavioral or demographic responses 

(B) that increases pollinator visitation or conspecific pollen deposition (C) that leads to an 

increase in fitness for another plant species (D). ………………………………………………..28 

Figure 1.2: A map showing geographic distribution of studies testing for pollination facilitation. 

The islands Seychelles and Mauritius each have one publication but are not visible on this 

map……………………………………………………………………………………………….30 

Figure 1.3: The frequency of pollination facilitation studies tested in each ecosystem type and 

their corresponding scale of study……………………………………………………………….31 

Figure 1.4: The number of studies testing each mechanism and their corresponding scale of 

study. …………………………………………….………………………………………………32 

Figure 1.5: The number of associated studies based on spatial grain size and each testable 

mechanism. …………………………………………….………………………………………..33 

Figure A1.1: PRISMA diagram (Moher et al, 2009) of workflow for pollination facilitation 

systematic review describes the identification of relevant studies………………………………35 

 

Chapter 2 

Figure 2.1: The contribution of each recognizable taxonomic group (RTU) to the total number 

of flowers visited (weighted by video length) for each treatment. ……………………………...70 

Figure 2.2: RTU specific responses in foraging duration before and during blooming at each 

microsite. The foraging duration did not vary with microsite but showed a significant decrease 

with blooming. This was driven by pollinators in the ‘other’ category, which was comprised of 

primarily beetles and muscoid flies. …………………………………………………………….71 

Figure 2.3: Heterospecific pollen deposition on the stigmas of Malacothrix glabrata, but not 

conspecific deposition, increased with distance (in cm). Mean distance to shrub was 1.83 m, 

mean distance to nearest conspecific neighbour was 0.79 m and mean number of flowers of M. 

glabrata was 7. …………………………………………….…………………………………….72 

Figure 2.4: Pollinator visitation rates increased with the number of Larrea tridentata flowers..73 



x 

 

Figure 2.5: Relative Interaction Index (RII) values for five community interaction metrics 

among two treatments: A) Microsite (Shrub – Open) B) Blooming (Pre-Blooming – Blooming). 

Values shown are means ± 95% bootstrapped confidence intervals. Values greater than zero 

indicate positive effects, while values that are significantly lower than zero indicate negative 

effects. Values that are not significantly different from zero are neutral. ………………………74 

Figure 2.6: Hobo Pendant Data Loggers recorded micro-environmental conditions for the extent 

of the study period. Values shown are mean hourly temperatures for all microsites (eight open 

and eight shrub) between March 17th and May 14th. …………………………………………..75   

 

 

 

 

 

 

 

 



1 

 

General Introduction 
 

Interactions for pollination between plants directly involves reproductive success forming an 

interface between ecology and evolutionary biology that has captured the attention of biologists 

for more than 100 years. From an evolutionary perspective, mutualisms between plants and 

pollinators are adaptations evolved to meet the pollen dispersal needs of plants and the energy 

requirements of pollinators. These co-adaptations are at their most extreme within obligate 

mutualisms, e.g. between figs (Ficus) and wasps in the family Agaonidae, who are both 

pollinators and obligate seed parasites (Cook and Rasplus, 2003; Kjellberg et al., 2001). 

However, these strong examples of co-speciation are relatively rare. Plants frequently share 

pollinators (Mitchell et al., 2009; Waser et al., 1996) and pollination syndromes are dynamic 

(Waser et al., 1996). Plants can also impact the pollination of other plant species without sharing 

pollinators by providing habitat to another species’ pollinator (Hansen et al., 2007) or by shading 

a neighbour (McKinney and Goodell, 2010). Plant-pollinator mutualisms physically take place 

within natural communities and are embedded within complex webs of interactions (Montoya et 

al., 2006). Therefore, plant-pollinator interactions are not only the outcome of co-evolution 

between the direct participants; they also reflect interactions within the surrounding community.  

Competition has conceptually dominated the field of ecology for most of the last century. More 

recently this dominance has been challenged and facilitation is now recognized as a fundamental 

process that contributes to function of plant communities (Bruno et al., 2003; Callaway, 1995). 

Pollinator-mediated facilitation is any interaction where one plant species positively influences 

the reproductive success of another plant species via pollinators. It is now recognized that these 

interactions form a continuum from competition to facilitation (Rathcke, 1983). This shift began 

with early theoretical work that suggested morphologically similar plants can maintain pollinator 

interest by increasing the functional size of the floral display (Macior, 1971). This was followed 

up by theoretical models showing facilitation can occur if pollinators do not distinguish between 

the plants (Bobisud and Neuhaus, 1975). The first empirical support for pollinator-mediated 

facilitation was provided when hawkweeds (Hieracium) were shown to receive more visits in 

mixed stands than alone (Thomson, 1978). Laverty (1992) documented the facilitation of non-

rewarding orchids by rewarding species via the magnet species effect, where a particularly 

attractive species facilitates its less attractive neighbours by increasing local pollinator 
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abundances. More recently, increases in floral diversity were shown to result in facilitation, 

demonstrating that morphological similarity is not a requirement for facilitation (Ghazoul, 2006). 

The majority of empirical evidence comes from pairwise interactions, however positive 

interactions can be diffuse and in some communities, positive pollinator-mediated interactions 

may even dominate (Hegland et al., 2008).  

Understanding the ecological and individual contexts that mediate the outcome of pollinator-

mediated interactions is necessary research to address currently rising challenges in conservation 

and applied ecology. Pollination services are foundational to the self-sufficiency of ecosystems, 

but pollinators are undergoing a decline globally (NRC, 2007; Potts et al., 2010). Recent 

estimates report that 87.5% of global angiosperms are animal pollinated (Ollerton et al., 2011). 

Under declining pollinator availability competition between plants may intensify, potentially 

leading to competitive displacement or loss of species. Therefore, understanding how plants 

interact via pollinators is necessary to understand the potential impacts of these declines. Climate 

change is driving geographic shifts in species distributions leading to novel interactions between 

species (Hegland et al., 2009). The increasingly early onset of seasonal shifts may cause 

phenological mismatches between plants and their pollinators (Kudo and Ida, 2013). 

Experimental evidence suggests that early flowering species have an increased risk of decreased 

visitation but that many species experienced no mismatch (Rafferty and Ives, 2011). Mismatches 

are not an issue if another pollinator or interactor can fill its place (CaraDonna et al., 2017). 

Thus, studying the outcomes of pollinator sharing and how interactions shift with phenology will 

better help us understand the implications of shifting climates on pollination services. Another 

important source of novel interactions is introduced and invasive species. Interactions for 

pollination provide a framework to explain the impact of invasive plant species on the fitness of 

native species. One meta-analysis concluded that negative impacts of invasive species on the 

pollination of natives are more frequent (Morales and Traveset, 2009). However, another recent 

meta-analysis found concluded that there are no negative overarching effects of invasives 

(Charlebois and Sargent, 2017). This ‘evening out’ of interaction signs again highlights that 

interactions are a continuum from negative to positive, indicating the need to better understand 

underlying mechanisms. 
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The overarching objective of this thesis is to examine the mechanisms of pollinator-mediated 

interactions and contrast their relative importance to the plant and arthropod communities 

associated with foundation plants. The first chapter of this thesis is a systematic review of the 

experimental pollination facilitation literature. I extracted and catalogued the extent of 

mechanisms tested by previous researchers to synthesize a literature-driven conceptual 

framework. I also summarized the scales of study, ecosystem and ecological themes to determine 

major research gaps and biases within the literature. The second chapter is an experimental 

approach to measuring interactions between the ecologically dominant shrub species L. 

tridentata and the commonly co-blooming annual Malacothrix glabrata. I hypothesized that 

foundational, desert shrubs that act as benefactors impact the net outcome of pollination for 

associated annual plants depending on the phenological stage of the shrub. By disentangling 

blooming and non-blooming pathways as L. tridentata shifts through natural phenology, I was 

able to quantify their contributions to the net observed interactions. I also confirmed the role of 

L. tridentata as a foundation species in this system by sampling its associated plant and 

arthropod communities, and testing the shrubs ability to stabilize local microclimates. These 

projects contribute to a better understanding of the underlying mechanisms controlling these 

interactions, from across a wide spread of literature but also in a critically understudied desert 

ecosystem. The maintenance of pollination mutualisms is an important aspect of conservation 

and therefore of management, and these findings can be used to inform best management 

practices within arid regions.  
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Abstract 

Pollination facilitation is an indirect interaction whereby one plant species positively influences 

the reproductive success of another plant species through pollinators. A formal systematic review 

including 100 directly relevant papers was used to categorize the literature into a conceptual 

framework summarizing all mechanisms underlying pollination facilitation tested to date. We 

also summarized the spatial scale and grain size of each study, classified the theme, and recorded 

the ecosystem. Pollination facilitation research advanced seven major mechanistic hypotheses 

that can be synthesized into the following four umbrella mechanisms: trait-based effects, floral 

display size, floral diversity, and apparent pollination support. Co-flowering interactions 

including the magnet species effect are the most frequently studied; however, the capacity for 

plants to facilitate the pollination of other plants through pathways that do not require co-

blooming is an important research gap identified in this literature. We propose that the term 

‘apparent pollination support’ be used to describe pollination facilitation between plants through 

non co-blooming mechanisms.  Most studies have been conducted using a relatively small spatial 

grain (< 1 m2) but there was evidence from all scales in most ecosystems of facilitation 

suggesting it may be more prevalent than previously assumed globally. Most studies (87.5%) 

that tested for facilitation at multiple scales reported scale dependence highlighting the need to 

explicitly consider spatial dimensions in future experiments on these topics. Invasion biology, 

agricultural science, mimicry systems, and conservation of rare plant species all examined 

pollination facilitation. Research gaps included the need to decouple mechanisms, explore the 

temporal dimensions and examine the relative importance of scale on the underlying processes 

that influence plant and pollinator community dynamics.  

Keywords 

Pollinator, facilitation, plant-plant, systematic review, scale dependence 
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Introduction 

Positive interactions between plant species, i.e. facilitation, are increasingly incorporated into 

ecological theory (Bertness and Callaway, 1994; Bruno et al., 2003; Callaway, 1995). 

Facilitation has been documented in most ecosystems as a fundamental process driving plant 

community structure and dynamics (Callaway, 1995). Pollinators provide critical ecosystem 

services, and there is increasing concern over their potentially global decline (Kearns et al., 

1998; NRC, 2007).  Recent estimates report that 87.5% of global angiosperms are animal 

pollinated (Ollerton et al., 2011). Therefore, understanding how plants interact via pollinators is 

necessary to understand the potential impacts of these declines. Co-flowering species of plants 

are common, and while there are a few salient examples of obligate plant-pollinator 

specialization, many species of plants share pollinators (Mitchell et al., 2009). Pollinator sharing 

leads to interactions between plants that can influence the reproductive success of one or both 

species forming a continuum of competitive to facilitative interactions (Rathcke, 1983). 

Competition between species for pollination profoundly influences the reproductive success of 

plants driving the evolution of floral morphology, phenology and reproductive strategies thereby 

integrating ecological and evolutionary perspectives (Mitchell et al., 2009). Mounting evidence 

shows that selection on reproductive plant traits and the development of ecological relationships 

are not driven exclusively by competition and that facilitation plays an important role.  

Pollination facilitation influences many ecological and evolutionary processes. Facilitation has 

been demonstrated in plant mimicry systems (Benitez-Vieyra et al., 2007; Jersáková et al., 2009; 

Johnson et al., 2003; Peter and Johnson, 2008) and can promote the convergence of floral 

morphologies (Schemske, 1981). Facilitative interactions can also contribute to the evolution of 

complex mutualisms such as pollinator pollen placement mechanisms (Sun et al., 2011; Yang et 

al., 2013) and mitigate selection on mating traits that promote selfing (Moeller and Geber, 2005). 

Integrating pollinator mediated facilitation with current ecological theory will help to explain the 

coexistence of species with apparent niche overlaps (Moeller, 2004; Moeller and Geber, 2005) 

i.e. the joint use of resources by different species (Colwell and Futuyma, 1971) as well as the 

persistence of rare plants (Ghazoul, 2006; Moeller, 2004). Additionally, pollinator-mediated 

plant-plant interactions provide a framework for predicting the impact of invasive plant 

introduction on native plant communities (Bartomeus et al., 2008; Charlebois and Sargent, 2017; 

Molina-Montenegro et al., 2008; Morales and Traveset, 2009). Therefore, pollination facilitation 
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has a wide-reaching and general capacity to serve as a model integrating ecological and 

evolutionary perspectives. 

Pollinator mediated interactions are scale-dependent (Hegland and Kudo, 2014) meaning that the 

sign or strength of the interaction differs depending on the scale of observation. The recognition 

of spatial scale as a central concept to ecology has become well established (Levin, 1992; 

Sandel, 2015; Wiens, 1989), and increasingly, ecologists are explicitly incorporating spatial 

dimensions into their experimental design (Hegland and Kudo, 2014; Schmid et al., 2016; 

Spellman et al., 2016). Nonetheless, the current inconsistency in reporting in part stems from the 

terminology used by researchers (Sandel, 2015). Spatial scale as a descriptive measurement is 

distinct from the hierarchal, organizational levels frequently used by ecologists. Spatial scale is 

comprised of two components: grain, the size of the smallest unit of observation, and extent, the 

total sampling area (Scheiner et al., 2000; Turner, 1989). In field studies, grain and extent are 

often defined relative to the organism. Grain is often an individual or cluster of plants, and extent 

as a forest. Alternatively, they can be defined in absolute terms i.e. experimental plots. In both 

cases, these two scale components are finite measures that limit experimental resolution and 

therefore define the degree of generalization possible. It is not possible to infer patterns below 

measured grain size or above extent size (Wien, 1989). Scale of study has critical implications 

for applied ecology of plant-pollinator interactions and to experimental design because the 

mobility of animal pollinators increases the scale over which plants interact (Moeller, 2004). For 

example, some attractive plants facilitate their immediate neighbors while competing with others 

over a larger spatial scale (Hegland and Kudo, 2014; Schmid et al., 2016). Thus, a given scale 

can lead to erroneous conclusions when generalizing. 

Although previously predicted to be a rare phenomenon (Feldman et al., 2004), there has been an 

increase in the publication of papers reporting facilitative interactions over the last three decades. 

Given this apparent prevalence a better understanding of the underlying mechanisms and 

potential outcomes of this interaction is needed. To this end, we conducted a formalized 

systematic review of the pollination facilitation literature published. Using the literature, we 

developed a typology for the research and classified all studies into this conceptual framework. 

The synthetic framework visualizes all the pathways tested in the literature where plants induce a 

response in pollinators leading to an increase in fitness for another plant species (Figure 1) 
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describing a total of seven mechanistic hypotheses (Table 1). We focused on facilitation only 

because competition is comparatively well researched and mechanisms of facilitation are likely 

to be distinct from those underlying competition.  

The primary goal of this review and conceptual framework was to link current research with 

ecological theory. Previous reviews of plant-plant facilitation have identified the need to 

understand indirect pathways (Filazzola and Lortie, 2014) and the individual mechanisms 

leading to facilitation (Brooker et al., 2008). The following specific objectives were addressed 

using this systematic review: to determine the frequency that each mechanism has been tested, to 

describe research gaps, to highlight the most common applications of pollination facilitation, and 

to assess the geographic and ecological scope of pollination facilitation studies. Pollination is an 

important ecosystem service therefore we examine the frequencies of publications within each to 

determine publication biases and ecosystem-specific gaps. In this systematic review, grain size 

and scale dependence in the primary literature were also synthesized to provide an estimate of 

the relative context and importance of pollinator facilitation at different scales and in effect to 

describe the potential scope that this set of mechanisms could be important to be pollinator 

communities. 

Conceptual framework 

The seven hypotheses tested in the literature were classified into four umbrella mechanisms 

(Table 1). Pollination facilitation is an indirect interaction between plants mediated by the 

pollinator and the concepts were organized to reflect this plant-pollinator-plant interaction. The 

conceptual framework is comprised of trait-based effects, increasing floral display size, 

increasing floral diversity, and pollinator support as ‘umbrella’ mechanisms (Figure 1, A). We 

use the umbrella term “trait-based effects” to include both the magnet species effect and mimicry 

and to reflect that these interactions are trait-mediated. In the magnet species effect, a 

particularly attractive plant species increases local pollinator abundances, thereby facilitating 

their co-blooming but often less attractive neighbors (Laverty, 1992; Thomson, 1978). The traits 

that magnet species exhibit are those that make a plant attractive to pollinators such as showy 

displays (Molina-Montenegro et al., 2008) or offering substantial resources (Johnson et al., 

2003). The magnet species effect is not exclusively related to resources. For example, the 

sexually deceptive orchid Ophrys fusca acts as a magnet for a rewarding iris (Pellegrino et al., 

2016) and tall-scaped Primula farinosa facilitate their short-scaped morphs (Toräng et al., 2006). 



11 

 

In mimicry systems, less attractive plant species improve their fitness by mimicking a more 

preferred species (reviewed by Jersáková et al., 2009). In these cases, the trait is the resemblance 

to the model species. It can include mimicry of overall floral morphology (Carmona-Díaz and 

García-Franco, 2008), UV reflectance (Peter and Johnson, 2008), UV spectra and nectar content 

(Benitez-Vieyra et al., 2007). Facilitation due to the magnet species effect and mimicry is not 

commonly separated, and the degree of resemblance between the species is the major difference 

between these mechanisms (Carmona-Díaz and García-Franco, 2008). In both cases, the addition 

of another plant increases pollinator attraction disproportionate to the size of a display increase. 

Facilitation can occur when plants growing together increase their combined floral display size 

by co-blooming (Feldman, 2006; Thomson, 1981). Many pollinators forage optimally (Pyke et 

al., 1977), and the nectar and pollen content of flowers influences their foraging decisions 

(Heinrich and Raven, 1972; Real, 1981). This leads to pollinators preferentially visiting larger 

displays (Chittka and Thomson, 2001; Thomson, 1981). There are two major ways to describe 

the size of a floral display: density i.e. the interplant distance and abundance, the total number of 

individuals (Kunin, 1997). Patch area and floral density interact to determine attractiveness for 

pollinators (Thomson, 1981). However, in many studies abundance and density are unavoidably 

confounded. Pollinator responses to floral display size are density-dependent (reviewed by 

Feldman, 2006). Per flower visitation rates are expected to increase with floral density until 

pollinators become ‘saturated’ by the overabundance of floral resources leading to a shift from 

facilitation to competition between plants (Rathcke, 1983). Pollinator densities mediate the 

shifting point (Ye et al., 2013).  

When plants co-bloom, the increase in floral diversity can lead to improved pollination services 

by offering complementary resources to foragers (i.e. both pollen and nectar) or via sampling 

effort: more diverse displays may attract more diverse pollinators (Ghazoul, 2006), leading to the 

attraction of more effective pollinators. The umbrella term apparent pollination support includes 

all mechanisms for which co-blooming is not required. Sequential mutualisms arise when earlier 

blooming plants facilitate later blooming plants by increasing local pollinator abundance, or 

improving population longevity or stability (Waser and Real, 1979). We expand on this by 

including the mechanism of providing habitat for another plant’s pollinator (Hansen, 2007). This 
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final mechanism is a novel extension to the literature because it does not require shared 

pollinators.  

Each mechanism leads to either of two functional responses by pollinators (Figure 1, B): the 

change in behavior of individual pollinators or demography of pollinator populations. The 

conceptual framework by Moeller (2004) recognized two major responses by pollinators 

including aggregative (joint attraction) and numerical (joint maintenance) responses. We expand 

upon this; the most frequently documented behavioral response leading to facilitation is the joint 

attraction of pollinators (sensu Schemske 1981; Thomson 1978). There are other foraging-related 

behaviors that arise from context-dependent species preferences beyond attracting additional 

pollinators (Hersch and Roy, 2007). Pollinators can exert positive frequency dependent selection 

by preferentially visiting the most abundant plant. Thus plants can increase their fitness by co-

blooming (Ghazoul, 2006; Toräng et al., 2008). Similarly, pollinators that show floral constancy, 

i.e. the tendency to facultatively specialize, can lead to facilitation between multiple species 

(Bobisud and Neuhaus, 1975) or among mimicry partners (Schiestl and Johnson, 2013). Some 

pollinators exhibit site-fidelity greater than floral constancy that leads to sequential facilitation of 

plants growing in that site (Ogilvie and Thomson, 2016). Demographic pollinator responses, 

sensitive to the local habitat or landscape (Grab et al., 2017; Jakobsson and Padron, 2014), can 

change the pollinator abundance, composition, or longevity thereby benefiting spatially or 

temporally associated plants. Both behavioral and demographic responses can improve the 

quality and quantity components of pollination (Figure 1, C). Visitation rates form the quantity 

component and conspecific pollen deposition is the quality component (Herrera, 1989). 

Increased visitation will not lead to increased fitness if excessive heterospecific pollen is 

deposited (Morales and Traveset, 2008). Furthermore, increased visitation is not necessary to 

increase conspecific deposition if more effective pollinators visit. This increase in conspecific 

deposition leads to increased seed set or viability (Figure 1, D).  

Methods 

Systematic Review 

To review the field of pollination facilitation, we used the search terms “pollinat* facilitat*” in 

ISI Web of Science (WoS) and SCOPUS in November 2017. Results from these searches were 

exported as bibtex files and are available within the associated repository. We also consulted 
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book chapter bibliographies and did supplemental searches using Google Scholar to ensure that 

the literature was well represented within the WoS. Only primary, English language 

experimental research papers published since 1970 in peer-reviewed journals were included. The 

following inclusion criteria were used: 1) explicitly tested for pollination facilitation; 2) tested 

interspecific plant-plant interactions including a plant-mimic or object (e.g. hummingbird feeder, 

(Brockmeyer and Schaefer, 2012); 3) net facilitation was tested using at least one indicator of 

reproductive success (see Appendix A). We screened a total of 1501 papers by abstract and 268 

full-text articles leading to the inclusion of a total of 100 papers in this review (Appendix B).  

We classified the literature using our synthetic framework by the mechanistic hypotheses testable 

given the variables and experimental design utilized by the authors (Appendix A). Articles were 

further reviewed for spatial scale, country and ecosystem of study, main methods, theme of study 

and spatial grain size was categorized. Small grain was defined as one individual plant or a plot 

1m2 or less, medium between 1 m2 and 20 m2, large between 20 m2 and 500 m2, and very large 

greater than 500 m2. Scale dependence was defined as a significant change in the value of a 

variable or the importance of a model predictor variable when either the grain or extent was 

changed within the experiment. Studies were classified as broad if they were very large grained, 

had extents greater than 10000 m2, or self-reported as landscape scale; otherwise they were 

classified as narrow. Ecosystems were simplified to agricultural, alpine, wetland, beaches, 

experimental, forest, grassland, semi-arid, tropical forest and urban/disturbed. 

Data Analysis 

When multiple ecosystems were tested within the same publication, they were treated as 

independent observations. Publications testing for interactions using multiple grain sizes were 

considered independent for grain size graphs and subsequent frequency testing. Multiple 

mechanisms could also be tested with the same publication, and they were classified 

independently for graphs and frequency testing. However, the mechanism by grain size analysis 

was restricted to single scale studies because it was necessary for them to be paired within a 

study. We tested the relative frequencies of each tested mechanism, grain size, and ecosystem 

using Pearson’s chi-squared tests (chisq.test function) in R version 3.4.2 (R Development Core 

Team, 2016). As a post hoc test we used the standardized residuals to compare the proportion of 

each grouping. We fit a linear model using the log-transformed publication count as the response 
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and year as the predictor (lm function) in R version 3.4.2 (R Development Core Team, 2016) to 

test for a publication frequency increase over time. 

Results 

A total of 100 papers reported testing for pollination facilitation (Figure A1.1). The number of 

papers published per year has increased exponentially since 1978 (Adjusted R2 = 0.6426, p < 

0.0001). Studies from 27 countries have been published with the majority in the USA (Figure 

1.2).  

There were significant differences in the frequency of tested mechanisms (Figure 1.3, χ2 = 

119.21, df = 6, n = 162, p < 0.0001). The majority of papers addressed the magnet species effect 

(64%). Pollinator support is an unstudied mechanistic pathway. Habitat provisioning and 

sequential mutualisms were examined in only five papers each. A single mechanism was tested 

within 47% of papers, two mechanisms in 42% of papers, and only one paper examined four 

potential mechanisms. The framework did not apply to one paper that tested for facilitation at a 

community level using a novel network approach (Tur et al, 2016). 

The largest proportion (28.3%) of studies was conducted in grasslands or meadows (χ2 = 66.057, 

n = 106, df = 10, p < 0.0001). In most ecosystems, narrow scales were more frequently used, but 

in agricultural lands broader scales were more frequently tested (Figure 1.3). Alpine ecosystems, 

wetlands and tropical forests lacked studies that consider both scales within the same paper.  

All but three studies reported spatial grain size, and these ranged from 0.009 m2 to 35900 m2. 

However, most reported grain qualitatively (55%) as either an individual plant, clump, or a 

number of stems. Pollination facilitation is tested most frequently (61% of studies) with a small 

spatial grain (< 1 m2). Very large grain sizes greater than 500 m2 were tested the least comprising 

only 3.8% of studies (χ2 = 151.74, n = 105, df = 5, p < 0.0001). Extent was not consistently 

reported preventing full quantitative scale reporting. Instead, we classified studies into the 

categories of narrow and broad. These two scales of study were well distributed between tested 

mechanisms (Figure 1.4). Sequential mutualisms were the exception and have not been studied at 

both broad and narrow scales within a given study. The mechanisms of pollination facilitation 

have been studied using a range of spatial grain sizes (Figure 1.5). A total of 25 studies tested for 

interactions at multiple scales or explicitly included spatial dimensions into the experimental 

design with 21 of them reporting scale-dependence. 
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Invasion biology was the most frequently theme addressed (29% of studies) followed by 

agriculture (12%), deceptive pollination (9%), conservation (6%), and rare species (5%). Most 

papers studied unidirectional or bidirectional interactions; only nine used a network approach to 

either directly study interactions or supplement more traditional testing.  

The most frequent method of assessing reproductive success was tracking pollinator visitation 

rates (86% of studies). Of the 63 papers that used seed/fruit set as a response variable, 54 

controlled for potential confounding effects of plant-plant interactions (Table A1.2). The 

methods include using potted plants (19), testing for pollen limitation by hand-pollination (18), 

and pollinator exclusion (6). Of the nine that did not, two were very large-scale agricultural 

experiments that tracked pollinator visitation. Of the remaining six, two measured both pollen 

deposition and visitation, one measured pollen deposition, one study measured visitation, and 

one tracked pollen dispersal with dyes. There was only one study with no supplemental 

measurements or controls. 

Discussion 

This systematic review is the first formal synthesis of pollination facilitation providing an 

overview of the underlying mechanisms that have been tested to date. The conceptual framework 

proposed effectively classified the state of research of pollination facilitation based on the 

mechanistic pathways examined in the individual studies reviewed. This framework is 

nonetheless sufficiently flexible to included future novel hypotheses because of the use of 

umbrella terms that provide for the inclusion of additional mechanisms as they arise from future 

studies. Co-flowering interactions are the most frequently studied. The capacity for plants to 

facilitate the pollination of other plants through pathways that do not require co-blooming is an 

important research gap. Many studies do not explicitly differentiate between the mechanistic 

hypotheses. Another significant research gap is the study of joint multiple mechanisms. To better 

test the underlying drivers of pollinator mediated interactions and to integrate these findings into 

applied ecology, we need to study more than one mechanism in a given system preferably in the 

same experiment. Facilitative interactions between plants can increase under declining pollinator 

availability (Lazaro et al., 2014) highlighting the increasing importance to study these 

interactions as a means to better model resilience of pollinator and plant communities.  
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Research gaps in pollination facilitation studies 

In natural systems, multiple mechanisms of facilitation operate concurrently. There is always the 

potential for interactions between display size and other mechanisms of facilitation. These 

mechanisms can collectively inform applied ecology. For example, when the magnet species 

effect interacts with floral density, both the presence and density of the attractive species 

contribute to its effect on other species. In a simulated invasion, facilitation by Taraxacum 

officinale shifted to competition with high densities of the invader (Muñoz and Cavieres, 2008). 

This is applicable to applied invasion biology because it suggests for some species there is a 

density threshold at which an attractive plant can become a competitor. Seifan (2014) 

manipulated both the density and aggregation of attractive plants finding again a shift from 

facilitation to competition with increasing density, but also that at low densities, they were better 

facilitators when regularly spaced then aggregated. Magnet plants have the capacity to improve 

the self-sufficiency of restored ecosystems (Dixon, 2009). Thus better understanding interactions 

between attractiveness, density, and aggregation will improve restoration. 

Biodiversity continues to decline with human expansion (Butchart et al., 2010). Therefore, 

understanding the influence of floral diversity and display size jointly is important to for 

predicting the impacts of this decline. Experiments along gradients of fragmentation could 

provide a convenient and applicable system, particularly if pollinator populations are sampled. 

For example, along an urban diversity gradient, flower rich urban areas supported richer bee 

communities, leading to improved seed set for focal plant species (Theodorou et al., 2017). 

Incorporating pollinator identity is important to a better understanding of the mechanisms, as 

well as for predicting the impact of pollinator declines. For example, network analysis of island 

plant-pollinator visitation networks has shown that invasion intensity influenced the behavior of 

Apis mellifera, leading to community wide simplification of interactions despite having no 

negative influence on native seed set (Kaiser-Bunbury et al., 2011). Network approaches are 

labor and resource intensive but when combined with manipulative experiments will provide 

community-level and highly explanatory results. 

Apparent pollination support is the least studied mechanism of pollination facilitation. It is the 

most likely to generate novel hypotheses because co-flowering is not a requirement. The study of 

pollination support in the literature takes two distinct streams including sequential mutualism 
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(temporal facilitation) and habitat provisioning. Competition can shift to facilitation as floral 

phenologies diverge if shared pollinator populations are supported leading to a ‘sequential 

mutualism’, i.e. facilitation follows competitive interactions (Moeller, 2004; Waser and Real, 

1979). Sequential mutualisms are likely an outcome rather than a cause of phenological 

divergence (Waser and Real, 1979) particularly because sequential flowering is not exclusively 

maintained by competition. This form of mutualism can also be maintained by herbivory (Brody, 

1997). Alternatively, earlier blooming plants such as mass flowering crops can create resource 

pulses for pollinators that support later blooming plants (Grab et al., 2017). This effect had been 

termed ‘temporal spillover’ in agricultural studies (Riedinger et al., 2014). Evidence for temporal 

facilitation has also been found in invasive/native pairs (Ferrero et al., 2013), agricultural 

systems (Grab et al., 2017), and experimental arrays (Ogilvie and Thomson, 2016). Temporally 

separated mutualisms are generally predicted to be widespread (Waser and Real, 1979). 

Inclusion of the temporal dimension increases the complexity of interactions and presents 

considerable difficulty to experimental design. However, integrating the temporal dimension is 

likely critical in applied contexts because of the capacity for support. For example, the rare plant 

Symphyotrichum sericeum shares pollinators with earlier blooming plants (Robson, 2012) 

suggesting that conservation efforts to support the pollination of some rare plants need to 

consider both the immediate neighbors but also earlier blooming interacting plants. There is 

widespread potential for pollination facilitation to inform applied conservation practices. 

Habitat loss is one of the most important drivers of wild bee abundance and diversity declines 

(Brown and Paxton, 2009; Potts et al., 2010). The mechanisms of habitat provisioning are thus 

critical to the conservation of both pollinator and plant populations. Cavity-nesting bees 

including Megachile leafcutter bees, Hylaeus, Ceratina (Michener, 2000) and agriculturally 

important Osmia bees (Cane et al., 2007) use pithy stems and dead wood as nesting sites, but this 

pathway for facilitation is likely trait-mediated (i.e. pithiness) rather than species-specific. 

Accordingly, habitat provisioning is addressed at a community level by agricultural studies 

showing that proximity to hedgerows (Dainese et al., 2017) and semi-natural lands (Norfolk et 

al., 2016) benefits crop pollination. In natural ecosystems, the only published example of 

facilitation by habitat provisioning is species-specific. The Pandanus shrub provides habitat for 

the gecko Phelsuma cepediana which is the main pollinator of Trochetia blackburniana (Hansen 

et al., 2007), and this shrub is a species of conservation concern in Mauritius. Shrubs of T. 
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blackburnia experienced better pollination growing near Pandanus. The frequency that this 

mechanism functions is needed to better inform targets for conservation. Potential relationships 

can include facilitation by plants that act as hosts to pollinating Lepidoptera or within any system 

where the larva of a generalist pollinator requires a specific host plant. Plants growing in harsh 

environments benefit from close association to nurse plants due to abiotic stress amelioration 

(Filazzola and Lortie, 2014). Pollination facilitation has not been tested in arctic or desert 

ecosystems. Overall, pollination facilitation in harsh environments is a research gap.  Pollination 

facilitation is very understudied in these harsh environments and can be a very important 

pathway to both conservation and agriculture. 

Mensurative experiments that use seed-set or fruit-set as a response variable may be confounded 

by pollinator independent plant-plant interactions (Lachmuth et al., 2018). This review found the 

majority of experimental designs controlled for these sources of micro-environmental variation. 

Several authors have used methods to measure the presence of these interactions in tandem with 

tracking pollinator visits or pollen transfer. For example, Kaiser-Bunbury (2011) used the ratio 

of native to invasive flowers as a proxy for plant-plant competition. Molina-Montenegro (2008) 

corrected for potential bottom-up facilitation by measuring nitrogen and water availability, as 

well as visitation rates and seed output. The majority of papers overall use pollinator visitation as 

a response variable, which directly addresses pollinator behavioral or demographic responses. 

However, increased visitation does not always lead to increased seed set. For example, pollen 

deposition can be facilitated but not visitation rates (Muir and Vamosi, 2015) if more effective 

pollinators visit. Plants can simultaneously compete and facilitate different portions of the 

pollination process. In orchids, different interaction signs for pollinator attraction, pollen removal 

and pollen deposition have been reported concurrently (Duffy and Stout, 2011). It is not known 

how the mechanisms underlying the interaction influences the quality and quantity aspects of 

pollination. However, it is unlikely there is a consistent, overarching mechanistic influence 

because pollinator behavioral and demographic response to each mechanism depend on the 

identity of the interactors, as well as the context. The continued publications of papers that 

measure multiple metrics of reproduction will allow for future quantitative analyses as to the 

strength of interaction operating on each part of the pollination framework and enable this to be 

tested rigorously.  
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Scale dependent effects are highly variable 

The outcome of scale-dependency was highly variable across the pollination facilitation 

literature reviewed here. Facilitation typically decreased with distance likely because the 

influence of a plant cannot extend beyond the foraging range of its pollinators. For example, 

facilitation occurs at only very short distances from the invasives Lupinus (Jakobsson et al., 

2015) and Brassica nigra (Bruckman and Campbell, 2016) suggesting that these invasives have 

little overall effect on pollinations in these systems. In almond orchards, floral abundance under 

trees is positively associated with their seed set while floral abundance within the landscape is 

not (Norfolk et al., 2016). Conversely, the invasive Ranunculus ficaria has a stronger magnet 

effect when present at the landscape scale suggesting presence in landscape is more important 

than local floral abundances some systems (Masters and Emery, 2015). Facilitation shifting to 

competition with increasing scale was reported in several systems including insect-pollinated red 

clover (Hegland and Kudo, 2014) and nectar-feeding birds within a fynbos ecosystem (Schmid et 

al., 2016). Scale dependence can arise at least in part from underlying mechanisms. Spatial scale 

dependence can manifest as magnet plants first influence the probability of a pollinator entering 

a patch, and then within the patch influence the pollinator’s choices between individual flowers 

(Seifan et al., 2014). These effects can lead to relatively small-scale facilitation between 

neighbors but competition between patches. Floral abundance is likely important at larger scales 

because it relates to the total pollen and nectar resource content of a community, and therefore to 

the carrying capacity of pollinator populations, and density may be more important at smaller 

scales because it is related to individuals’ foraging habits and preferences; these hypotheses are 

yet to be tested. The perception of floral display size by pollinators differs at multiple scales 

because at small scales increases in density are attractive to pollinators but at larger scales, as 

density increases, the displays become more diluted relative to pollinator abundances (Rathcke, 

1983), and increases in display size become less visible. These perceptual biases by pollinators 

can lead to changes in interaction sign with increasing scale. Understanding the underlying 

mechanisms of scale-dependency is important to the effective experimental design of studies 

looking at pollination interactions. For instance, a recent meta-analysis found that the distance 

between control and neighboring plants influences the sign of an interaction more than the 

identity of the interactors (Charlebois and Sargent, 2017). A quantitative estimate of grain and 

extent is needed for pollinator mediated interaction studies because changes in strength and sign 
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of interactions have been reported to change with scale and without measures in spatial 

dimensions we cannot effectively model its importance. Pollinator mediated facilitation has been 

nonetheless reported across a wide range of spatial grain sizes and in a variety of ecosystems. 

This suggests that these interactions are prevalent and are not restricted to small scales. 

Conclusions 

Positive interspecific and intraspecific interactions between plants for pollinators can dominate 

in some plants communities (Hegland et al., 2008; Tur et al., 2016) and were relatively 

ubiquitous here. The scope of pollinator mediated facilitation is thus relatively broad 

encompassing most major ecosystems. Most pollinator mediated facilitation experiments to date 

use only a small spatial grain. This suggests that scale dependence can be a serious issue in these 

studies. It has been suggested that pollination as an ecosystem service operates on a local scale 

and at the ecological levels of the individual and population (Andersson et al., 2015). This 

review further suggests that pollination also operates on a community level for plants and their 

animal pollinators. The mechanisms categorized here likely do not function in isolation, and 

experiments that examine more than one pathway concurrently are needed. Furthermore, 

distributional asynchrony can result from shifts in the spatial distribution of species under 

climate change scenarios (Hegland et al., 2009) and this can lead to novel interactions between 

plants and pollinators highlighting the increasing need to understand the underlying drivers. 

Studies of pollinator-mediated facilitation must now begin to explore the relative importance of 

scale, temporal interactions, and the relative changes in one mechanism over another with these 

changes. 

 

  



21 

 

Literature Cited 

Andersson, E., McPhearson, T., Kremer, P., Gomez-Baggethun, E., Haase, D., Tuvendal, M., 

Wurster, D., 2015. Scale and context dependence of ecosystem service providing units. 

Ecosystem Services 12, 157-164. 

Bartomeus, I., Vila, M., Santamaria, L., 2008. Contrasting effects of invasive plants in plant-

pollinator networks. Oecologia 155, 761-770. 

Benitez-Vieyra, S., Hempel de Ibarra, N., Wertlen, A.M., Cocucci, A.A., 2007. How to look like 

a mallow: evidence of floral mimicry between Turneraceae and Malvaceae. Proc Biol 

Sci 274, 2239-2248. 

Bertness, M.D., Callaway, R., 1994. Positive interactions in communities. Trends in Ecology & 

Evolution 9, 191-193. 

Bobisud, L.E., Neuhaus, R.J., 1975. Pollinator constancy and survival of rare species. Oecologia 

21, 263-272. 

Brockmeyer, T., Schaefer, H.M., 2012. Do nectar feeders in Andean nature reserves affect 

flower visitation by hummingbirds? Basic and Applied Ecology 13, 294-300. 

Brody, A.K., 1997. Effects of pollinators, herbivores, and seed predators on flowering 

phenology. Ecology 78, 1624-1631. 

Brooker, R.W., Maestre, F.T., Callaway, R.M., Lortie, C.L., Cavieres, L.A., Kunstler, G., 

Liancourt, P., Tielbörger, K., Travis, J.M., Anthelme, F., 2008. Facilitation in plant 

communities: the past, the present, and the future. Journal of Ecology 96, 18-34. 

Brown, M.J., Paxton, R.J., 2009. The conservation of bees: a global perspective. Apidologie 40, 

410-416. 

Bruckman, D., Campbell, D.R., 2016. Pollination of a native plant changes with distance and 

density of invasive plants in a simulated biological invasion. Am J Bot 103, 1458-1465. 

Bruno, J.F., Stachowicz, J.J., Bertness, M.D., 2003. Inclusion of facilitation into ecological 

theory. Trends in Ecology & Evolution 18, 119-125. 

Butchart, S.H.M., Walpole, M., Collen, B., van Strien, A., Scharlemann, J.P.W., Almond, 

R.E.A., Baillie, J.E.M., Bomhard, B., Brown, C., Bruno, J., Carpenter, K.E., Carr, G.M., 

Chanson, J., Chenery, A.M., Csirke, J., Davidson, N.C., Dentener, F., Foster, M., Galli, 

A., Galloway, J.N., Genovesi, P., Gregory, R.D., Hockings, M., Kapos, V., Lamarque, J.-

F., Leverington, F., Loh, J., McGeoch, M.A., McRae, L., Minasyan, A., Morcillo, M.H., 



22 

 

Oldfield, T.E.E., Pauly, D., Quader, S., Revenga, C., Sauer, J.R., Skolnik, B., Spear, D., 

Stanwell-Smith, D., Stuart, S.N., Symes, A., Tierney, M., Tyrrell, T.D., Vié, J.-C., 

Watson, R., 2010. Global Biodiversity: Indicators of Recent Declines. Science. 

Callaway, R.M., 1995. Positive interactions among plants. Botanical Review 61, 306-349. 

Cane, J.H., Griswold, T., Parker, F.D., 2007. Substrates and materials used for nesting by North 

American Osmia bees (Hymenoptera: Apiformes: Megachilidae). Annals of the 

Entomological Society of America 100, 350-358. 

Carmona-Díaz, G., García-Franco, J.G., 2008. Reproductive success in the Mexican rewardless 

Oncidium cosymbephorum (Orchidaceae) facilitated by the oil-rewarding Malpighia 

glabra (Malpighiaceae). Plant Ecology 203, 253-261. 

Charlebois, J.A., Sargent, R.D., 2017. No consistent pollinator‐mediated impacts of alien plants 

on natives. Ecology letters 20, 1479-1490. 

Chittka, L., Thomson, J., 2001. Behavioral responses of pollinators to variation in floral display 

size an. d their influences on the evolution of floral traits. Cognitive ecology of 

pollination, 274-296. 

Colwell, R.K., Futuyma, D.J., 1971. On the measurement of niche breadth and overlap. Ecology 

52, 567-576. 

Dainese, M., Montecchiari, S., Sitzia, T., Sigura, M., Marini, L., 2017. High cover of hedgerows 

in the landscape supports multiple ecosystem services in Mediterranean cereal fields. 

Journal of Applied Ecology 54, 380-388. 

Dixon, K.W., 2009. Pollination and restoration. Science 325, 571-573. 

Duffy, K.J., Stout, J.C., 2011. Effects of conspecific and heterospecific floral density on the 

pollination of two related rewarding orchids. Plant Ecology 212, 1397-1406. 

Feldman, T., 2006. Pollinator aggregative and functional responses to flower density: does 

pollinator response to patches of plants accelerate at low‐densities? Oikos 115, 128-140. 

Feldman, T., Morris, W., Wilson, W., 2004. When can two plant species facilitate each other's 

pollination? Oikos 105, 197-207. 

Ferrero, V., Castro, S., Costa, J., Acuña, P., Navarro, L., Loureiro, J., 2013. Effect of invader 

removal: pollinators stay but some native plants miss their new friend. Biological 

Invasions 15, 2347-2358. 



23 

 

Filazzola, A., Lortie, C.J., 2014. A systematic review and conceptual framework for the 

mechanistic pathways of nurse plants. Global Ecology and Biogeography 23, 1335-1345. 

Ghazoul, J., 2006. Floral diversity and the facilitation of pollination. Journal of Ecology 94, 295-

304. 

Grab, H., Blitzer, E.J., Danforth, B., Loeb, G., Poveda, K., 2017. Temporally dependent 

pollinator competition and facilitation with mass flowering crops affects yield in co-

blooming crops. Scientific Reports 7, 45296. 

Hansen, D.M., Kiesbüy, H.C., Jones, C.G., Müller, C.B., 2007. Positive indirect interactions 

between neighboring plant species via a lizard pollinator. The American Naturalist 169, 

534-542. 

Hegland, S.J., Grytnes, J.-A., Totland, Ø., 2008. The relative importance of positive and negative 

interactions for pollinator attraction in a plant community. Ecological Research 24, 929-

936. 

Hegland, S.J., Kudo, G., 2014. Floral neighbourhood effects on pollination success in red clover 

are scale-dependent. Functional Ecology 28, 561-568. 

Hegland, S.J., Nielsen, A., Lázaro, A., Bjerknes, A.-L., Totland, Ø., 2009. How does climate 

warming affect plant-pollinator interactions? Ecology Letters 12, 184-195. 

Heinrich, B., Raven, P.H., 1972. Energetics and pollination ecology. Science 176, 597-602. 

Herrera, C.M., 1989. Pollinator abundance, morphology, and flower visitation rate: analysis of 

the “quantity” component in a plant-pollinator system. Oecologia 80, 241-248. 

Hersch, E.I., Roy, B.A., 2007. Context‐dependent pollinator behavior: An explanation for 

patterns of hybridization among three species of Indian paintbrush. Evolution 61, 111-

124. 

Jakobsson, A., Padron, B., 2014. Does the invasive Lupinus polyphyllus increase pollinator 

visitation to a native herb through effects on pollinator population sizes? Oecologia 174, 

217-226. 

Jakobsson, A., Padrón, B., Ågren, J., 2015. Distance-dependent effects of invasive Lupinus 

polyphyllus on pollination and reproductive success of two native herbs. Basic and 

Applied Ecology 16, 120-127. 



24 

 

Jersáková, J., Johnson, S.D., Jürgens, A., 2009. Deceptive behavior in plants. II. Food deception 

by plants: from generalized systems to specialized floral mimicry, Plant-Environment 

Interactions. Springer, pp. 223-246. 

Johnson, S.D., Peter, C.I., Nilsson, L.A., Agren, J., 2003. Pollination success in a deceptive 

orchid is enhance by co-occuring magnet plants. Ecology 84, 2919-2927. 

Kaiser-Bunbury, C.N., Valentin, T., Mougal, J., Matatiken, D., Ghazoul, J., 2011. The tolerance 

of island plant-pollinator networks to alien plants. Journal of Ecology 99, 202-213. 

Kearns, C.A., Inouye, D.W., Waser, N.M., 1998. Endangered mutualisms the conservation of 

plant-pollinator interactions. Annual Review of Ecology and Systematics 29, 83-112. 

Kunin, W.E., 1997. Population size and density effects in pollination: pollinator foraging and 

plant reproductive success in experimental arrays of Brassica kaber. Journal of Ecology, 

225-234. 

Lachmuth, S., Henrichmann, C., Horn, J., Pagel, J., Schurr, F.M., 2018. Neighbourhood effects 

on plant reproduction: An experimental–analytical framework and its application to the 

invasive Senecio inaequidens. Journal of Ecology 106, 761-773. 

Laverty, T.M., 1992. Plant interactions for pollinator visits: a test of the magnet species effect. 

Oecologia 89, 502-508. 

Lazaro, A., Lundgren, R., Totland, O., 2014. Experimental reduction of pollinator visitation 

modifi es plant–plant interactions for pollination. Oikos, 1037-1048. 

Levin, S.A., 1992. The problem of pattern and scale in ecology: the Robert H. MacArthur award 

lecture. Ecology 73, 1943-1967. 

Masters, J.A., Emery, S.M., 2015. The showy invasive plant Ranunculus ficaria facilitates 

pollinator activity, pollen deposition, but not always seed production for two native 

spring ephemeral plants. Biological Invasions 17, 2329-2337. 

Michener, C.D., 2000. The bees of the world. JHU press. 

Mitchell, R.J., Flanagan, R.J., Brown, B.J., Waser, N.M., Karron, J.D., 2009. New frontiers in 

competition for pollination. Annals of Botany 103, 1403-1413. 

Moeller, D.A., 2004. Facilitative interactions among plants via shared pollinators. 85 12. 

Moeller, D.A., Geber, M.A., 2005. Ecological context of the evolution of self-pollination in 

Clarkia xantiana: Population size, plant communities and reproductive assurance. 

Evolution 59, 786-799. 



25 

 

Molina-Montenegro, M.A., Badano, E.I., Cavieres, L.A., 2008. Positive interactions among plant 

species for pollinator service: assessing the ‘magnet species’ concept with invasive 

species. Oikos 117, 1833-1839. 

Morales, C.L., Traveset, A., 2008. Interspecific pollen transfer: magnitude, prevalence and 

consequences for plant fitness. Critical Reviews in Plant Sciences 27, 221-238. 

Morales, C.L., Traveset, A., 2009. A meta‐analysis of impacts of alien vs. native plants on 

pollinator visitation and reproductive success of co‐flowering native plants. Ecology 

letters 12, 716-728. 

Muir, J.L., Vamosi, J.C., 2015. Invasive Scotch broom (Cytisus scoparius, Fabaceae) and the 

pollination success of three Garry oak-associated plant species. Biological Invasions 17, 

2429-2446. 

Muñoz, A.A., Cavieres, L.A., 2008. The presence of a showy invasive plant disrupts pollinator 

service and reproductive output in native alpine species only at high densities. Journal of 

Ecology 96, 459-467. 

Norfolk, O., Eichhorn, M.P., Gilbert, F., Stewart, A., Brady, S., 2016. Flowering ground 

vegetation benefits wild pollinators and fruit set of almond within arid smallholder 

orchards. Insect Conservation and Diversity 9, 236-243. 

NRC, 2007. Status of pollinators in North America. National Academies Press. 

Ogilvie, J., Thomson, J.D., 2016. Site fidelity by bees drives pollination facilitation in 

sequentially blooming plant species. Ecology 97, 1442–1451. 

Ollerton, J., Winfree, R., Tarrant, S., 2011. How many flowering plants are pollinated by 

animals? Oikos 120, 321-326. 

Pellegrino, G., Bellusci, F., Palermo, A.M., 2016. Who helps whom? Pollination strategy of Iris 

tuberosa and its relationship with a sexually deceptive orchid. J Plant Res 129, 1051-

1059. 

Peter, C.I., Johnson, S.D., 2008. Mimics and magnets: The importance of color and ecological 

facilitation in floral deception. Ecology 89, 1583–1595. 

Potts, S.G., Biesmeijer, J.C., Kremen, C., Neumann, P., Schweiger, O., Kunin, W.E., 2010. 

Global pollinator declines: trends, impacts and drivers. Trends in ecology & evolution 25, 

345-353. 



26 

 

Pyke, G.H., Pulliam, H.R., Charnov, E.L., 1977. Optimal foraging: a selective review of theory 

and tests. The quarterly review of biology 52, 137-154. 

Rathcke, B., 1983. Competition and facilitation among plants for pollination. Pollination 

biology, 305-329. 

Real, L.A., 1981. Uncertainty and pollinator‐plant interactions: The foraging behavior of bees 

and wasps on artificial flowers. Ecology 62, 20-26. 

Riedinger, V., Renner, M., Rundlöf, M., Steffan-Dewenter, I., Holzschuh, A., 2014. Early mass-

flowering crops mitigate pollinator dilution in late-flowering crops. Landscape Ecology 

29, 425-435. 

Robson, D.B., 2012. An assessment of the potential for pollination facilitation of a rare plant by 

common plants: Symphyotrichum sericeum (Asteracae) as a case study. Botany 91, 34-

42. 

Sandel, B., 2015. Towards a taxonomy of spatial scale-dependence. Ecography 38, 358-369. 

Scheiner, S., Cox, S.B., Mittelbach, G.G., Osenberg, C., Kaspari, M., 2000. Species richness, 

species–area curves and Simpson’s paradox. Evolutionary Ecology Research 2, 791-802. 

Schemske, D.W., 1981. Floral convergence and pollinator sharing in two bee-pollinated tropical 

herbs. Ecology 62, 946-954. 

Schiestl, F.P., Johnson, S.D., 2013. Pollinator-mediated evolution of floral signals. Trends in 

Ecology & Evolution 28, 307-315. 

Schmid, B., Nottebrock, H., Esler, K.J., Pagel, J., Pauw, A., Böhning-Gaese, K., Schurr, F.M., 

Schleuning, M., 2016. Responses of nectar-feeding birds to floral resources at multiple 

spatial scales. Ecography 39, 619-629. 

Seifan, M., Hoch, E.-M., Hanoteaux, S., Tielbörger, K., Bartomeus, I., 2014. The outcome of 

shared pollination services is affected by the density and spatial pattern of an attractive 

neighbour. Journal of Ecology 102, 953-962. 

Spellman, K.V., Mulder, C.P.H., Carlson, M.L., 2016. Effects of invasive plant patch size and 

distance on the pollination and reproduction of native boreal plants. Botany 94, 1151-

1160. 

Sun, H.Q., Huang, B.Q., Yu, X.H., Kou, Y., An, D.J., Luo, Y.B., Ge, S., 2011. Reproductive 

isolation and pollination success of rewarding Galearis diantha and non-rewarding 

Ponerorchis chusua (Orchidaceae). Ann Bot 107, 39-47. 



27 

 

Theodorou, P., Albig, K., Radzeviute, R., Settele, J., Schweiger, O., Murray, T., Paxton, R., 

2017. The structure of flower visitor networks in relation to pollination across an 

agricultural to urban gradient. Functional ecology 31. 

Thomson, J.D., 1978. Effects of stand composition on insect visitation in two-species mixtures of 

Hieracium. American Midland Naturalist 100, 431-440. 

Thomson, J.D., 1981. Spatial and temporal components of resource assessment by flower-

feeding insects. The Journal of Animal Ecology 50, 49-59. 

Toräng, P., Ehrlén, J., Ågren, J., 2006. Facilitation in an insect-pollinated herb with a floral 

display dimorphism. Ecology 87, 2113-2117. 

Toräng, P., Ehrlén, J., Ågren, J., 2008. Mutualists and antagonists mediate frequency-dependent 

selection on floral display. Ecology 89, 1564-1572. 

Tur, C., Saez, A., Traveset, A., Aizen, M.A., 2016. Evaluating the effects of pollinator-mediated 

interactions using pollen transfer networks: evidence of widespread facilitation in south 

Andean plant communities. Ecol Lett 19, 576-586. 

Turner, M.G., 1989. Landscape ecology: the effect of pattern on process. Annual review of 

ecology and systematics 20, 171-197. 

Waser, N.M., Real, L.A., 1979. Effective mutualism between sequentially flowering plant 

species. Nature 281, 670. 

Wiens, J.A., 1989. Spatial Scaling in Ecology. Functional Ecology 3, 385-397. 

Yang, C.F., Wang, Q.F., Guo, Y.H., 2013. Pollination in a patchily distributed lousewort is 

facilitated by presence of a co-flowering plant due to enhancement of quantity and 

quality of pollinator visits. Ann Bot 112, 1751-1758. 

Ye, Z.-M., Dai, W.-K., Jin, X.-F., Gituru, R.W., Wang, Q.-F., Yang, C.-F., 2013. Competition 

and facilitation among plants for pollination: can pollinator abundance shift the plant–

plant interactions? Plant Ecology 215, 3-13. 

 

 

 

 



28 

 

Figures and Tables 

 

Figure 1: A conceptual framework to model the mechanisms and hypotheses associated with 

pollinator-mediated facilitation. The concepts were extracted from a systematic review of 100 

studies on this topic. The seven mechanistic hypotheses tested within the literature can be 

categorized into four umbrella hypotheses. Refer to Table 1 for a description of the seven 

mechanistic hypotheses. Each mechanism (A) can lead to a behavioral or demographic responses 

(B) that increases pollinator visitation or conspecific pollen deposition (C) that leads to an 

increase in fitness for another plant species (D). 
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Table 1.1: A summary of the mechanistic hypotheses generated by a systematic review of the 

pollination facilitation literature, a concise definition for each, the proposed umbrella mechanism 

under which it falls and examples of reference articles. 

Mechanism Description Umbrella 

mechanism 

applicable 

Key Paper(s) 

Magnet Species 

Effect 

Attractive plant increases pollination success of 

less attractive neighbors disproportionate to the 

size of the shared floral display 

Trait Based Effect Thomson 1978, 

Laverty 1992 

Mimicry Mutualistic (Mullerian) or 

unilateral (Batesian) facilitation between two or 

more species that share similar display patterns 

or colors 

Trait Based Effect Peter and 

Johnson, 2008 

Jeraskova, 2009 

Floral Neighborhood 

Abundance 

Increased pollination services due combining 

floral display and therefore increasing number 

of flowers 

Floral Display Size Thomson 1981 

Floral Neighborhood 

Density 

Increased pollination success by combining 

floral display and therefore decreasing overall 

interplant distance 

Floral Display Size Rathcke, 1983 

Feldman 2006 

Diversity Improved pollination services due to growing 

in more diverse floral stands or area 

Diversity Ghazoul 2006 

Sequential Mutualism Earlier blooming plants attract, maintain or 

increase pollinator population that then 

pollinates later blooming plant   

Pollinator Support Waser and Real 

1979 

Ogilvie and 

Thomson 2016 

Habitat Provisioning One or more plants provide habitat for the 

pollinators of another plant 

Pollinator Support Hansen, 2007 
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Figure 1.2: A map showing geographic distribution of studies testing for pollination facilitation. 

The islands Seychelles and Mauritius each have one publication but are not visible on this map. 
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Figure 1.3: The frequency of pollination facilitation studies tested in each ecosystem type and 

their corresponding scale of study.  
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Figure 1.4: The number of studies testing each mechanism and their corresponding scale of 

study.  
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Figure 1.5: The number of associated studies based on spatial grain size and each testable 

mechanism. 
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Appendix A 

 

Criteria for measuring reproductive success 

1) Measured rates of pollinator visitation to flowers  

a) Observed in-situ 

b) Observed by technology 

c) Collected from flowers 

2) Quantified pollen deposition to stigmas of beneficiary 

a) Conspecific pollen deposition 

b) Release from pollen limitation 

i) Hand pollination experiments 

3) Measured seed production 

a) Per fruit 

b) Per plant 

4) Measured fruit production 

Criteria for defining mechanistic hypotheses based upon predictor variables.  

Magnet species effect – Presence/absence of a certain species, species specific effect controlled 

for beyond abundance/diversity. 

Abundance – used heterospecific or combined floral abundance as predictor 

Density – used heterospecific or combined floral density as predictor. Includes aggregation.  

Mimicry – tested for facilitation between similar appearing species by author’s definition or in 

some cases authors tested for degree of similarity using floral traits  

Sequential Mutualism – earlier blooming plants facilitate later blooming plants or other temporal 

effect 

Habitat Provisioning – Provided habitat to known pollinator (Hansen 2007), alternatively 

author’s referred to semi-natural areas as wild bee habitats, such as hedgerows, grasslands and 

meadows as these areas provide nesting sites to pollinator populations.  

Diversity: Use floral diversity as a predictor variable 
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Figure A1.1: PRISMA diagram (Moher et al, 2009) of workflow for pollination facilitation 

systematic review describes the identification of relevant studies. 
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as book chapter bibliographies, google 
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abstract or summary (n = 
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Relevance  
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(n = ) 
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Conference abstract (n =2) 
Review (n = 7) 

Not english (n = 11) 
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Table A1.1: Tables showing frequency of ecosystems tested, theme of study and mechanism of 

study.  Standardized residuals signify how much a value contributes to the overall chi-squared 

value. Significance at the 95% level is assessed at values > 1.96 and < 1.96. Some authors report 

experiments with multiple ecosystems or address multiple mechanism within a single paper so 

papers may be counted more than once. 

Ecosystem Frequency Standardized Residuals 

Agricultural 15 1.81 

Alpine 12 0.79 

Aquatic/wetland 7 -0.89 

Beaches 2 -2.5 

Experimental 4 -1.90 

Forest 11 0.46 

Grassland 30 6.88 

Semi-arid 10 0.12 

Tropical forest 3 -2.24 

Unstated 3 -2.24 

Urban/disturbed 9 -0.21 

Theme Frequency Standardized residuals 

Agriculture 12 3.02 

Community ecology theory 4 -0.56 

Conservation 6 0.33 

Deceptive pollination 9 1.67 

Diversity 1 -1.91 

Floral traits selection 1 -1.91 

Foundation plants 2 -1.46 

Invasive species 29 10.63 

Mating systems 1 -1.91 

Mechanical pollen isolation 1 -1.91 

Mimicry 4 -0.56 

Niche theory 1 -1.91 

Pollination theory 1 -1.91 

Rare plants 5 -0.12 

Relatedness 2 -1.46 

Stress gradient 1 -1.91 

Species coexistence 5 -1.12 

Urban ecology 2 -1.46 

No theme 13 3.46 

Mechanism Frequency Standardized residuals 

Floral density 36 2.89 

Diversity 16 -1.60 

Floral abundance 27 0.86 

Habitat Provisioning 5 -4.07 

Magnet species effect 64 9.17 

Mimicry 9 -3.18 

Sequential Mutualism 5 -4.07 
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Table A1.2: Methods that authors used to control for confounding effects of plant-plant 

interactions and environmental variation. Methods are exclusive here but in a few cases multiple 

methods were used, papers were assigned to the most frequent method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Method Used N 

Potted plants 19 

Pollen supplementation to measure pollen 

limitation 

18 

Pollinator exclusion to determine degree of 

self and subsequent seed set 

6 

Focal plant removal 2 

Floral removal to maintain equal densities 1 

Measured micro-environmental variables (e.g. 

nitrogen availability) 

3 

Measured genetic quality of offspring to 

determine distance of outcrossing 

1 

Focal plant translocations 1 

Spatial separation of plants & measured 

distance 

2 

Individuals within a consistent monoculture 

(agricultural study distance to hedgerows 

measured) 

1 

Total 54 
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Appendix B - List of studies included in systematic review 

 

A list of all studies included in this systematic review from the Web of Science and SCOPUS 

using the term pollinat* facilitat* and supplemental searches using Google Scholar. 

 

Albrecht, M., Ramis, M.R., Traveset, A., 2016. Pollinator-mediated impacts of alien invasive plants on the 

pollination of native plants: the role of spatial scale and distinct behaviour among pollinator guilds. 

Biological Invasions 18, 1801-1812. 

Alexandersson, R., Agren, J., 1996. Population size, pollinator visitation and fruit production in the deceptive orchid 

Calypso bulbosa Oecologia 107, :533-540. 

Bartomeus, I., Vila, M., Santamaria, L., 2008. Contrasting effects of invasive plants in plant-pollinator networks. 

Oecologia 155, 761-770. 

Benitez-Vieyra, S., Hempel de Ibarra, N., Wertlen, A.M., Cocucci, A.A., 2007. How to look like a mallow: evidence 

of floral mimicry between Turneraceae and Malvaceae. Proc Biol Sci 274, 2239-2248. 

Brockmeyer, T., Schaefer, H.M., 2012. Do nectar feeders in Andean nature reserves affect flower visitation by 

hummingbirds? Basic and Applied Ecology 13, 294-300. 

Brookes, B., Small, E., Lefkovitch, L.P., Damman, H., Fairey, D.T., 1994. Attractiveness of alfalfa (Medicago 

satiua L.) to wild pollinators in relation to wildflower. Canadian Journal of Plant Science, 779-783. 

Brown, J., York, A., 2017. Fire, food and sexual deception in the neighbourhood of some Australian orchids. Austral 

Ecology 42, 468-478. 

Bruckman, D., Campbell, D.R., 2016. Pollination of a native plant changes with distance and density of invasive 

plants in a simulated biological invasion. Am J Bot 103, 1458-1465. 

Bruninga-Socolar, Crone, E.E., Winfree, R., 2016. The role of floral density in determining bee foraging behavior a 

natural experiment. Natural Areas Journal 36. 
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Carmona-Díaz, G., García-Franco, J.G., 2008. Reproductive success in the Mexican rewardless Oncidium 

cosymbephorum (Orchidaceae) facilitated by the oil-rewarding Malpighia glabra (Malpighiaceae). Plant 

Ecology 203, 253-261. 

Caruso, C., 2001. Differential selection on floral traits of Ipomopsis aggregata growing in contrasting environments. 
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Ecology 49, 1373-1383. 
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Chapter 2: Disentangling the drivers and trade-offs of pollinator-mediated 

interactions between creosote bush (Larrea tridentata) and desert dandelion 

(Malacothrix glabrata).  
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Abstract 

 

In arid ecosystems, the facilitative effects of shrubs can lead to concentrations of annual plants 

beneath the canopy. The indirect interactions that arise from the close spatial proximity of nurse-

protégé relationships can have important implications for community structure and assembly. 

Creosote bush, Larrea tridentata is a dominant shrub of the Mojave Desert. Here, we test the 

capacity of creosote bush to influence the pollination of the annual understory during its 

phenological shift into flowering. Pollinator visitation rates to the phytometer desert dandelion, 

Malacothrix glabrata, were significantly lower as the understory of creosote bush, and when 

creosote bush entered into a full bloom, visitation rates declined significantly at both understory 

and nearby open microsites. Decreases in visitation were driven by syrphid flies and the 

responses of solitary bees. In this system, we found that L. tridentata had a positive ecological 

effect on annual plant cover, as well as the abundance and diversity of the arthropod community 

but that it also had indirect negative effects on pollinator visitation to a representative flowering 

annual plant. These finding suggest that the net outcome of association with foundation plant 

species can be positive or negative depending on both the life-history stage of the protégé species 

tested and on the phenology of the foundation species. There is the capacity for these trade-offs 

to be widespread and an increasing focus on further documenting these trade-offs will advance 

both facilitation theory and assessment of selection processes that can drive co-evolutionary 

relationships between shrubs, annual plants, and pollinators.   

 

 

Keywords: Facilitation, Larrea tridentata, plant-pollinator, trade-off, nurse plant 
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Introduction 

 

Foundation species positively influence the structure of the surrounding plant communities by 

creating locally stable conditions for other species (Ellison et al., 2005). In arid environments, 

foundation shrubs can act as keystone facilitators, directly benefiting associated understory 

annual plants via multiple mechanistic pathways across all life stages (Filazzola and Lortie, 

2014). These include stress amelioration (McIntire and Fajardo, 2014), improved water and 

nutrient availability (Franco et al., 1994), and seed trapping (Flores and Jurado, 2003). Direct 

interactions between shrubs and annuals can be simultaneously facilitative and competitive 

(Bertness and Callaway, 1994; Callaway and Walker, 1997; Holzapfel and Mahall, 1999), and it 

has been proposed that the relative importance of negative versus positive effects covaries with 

abiotic stress (Bertness and Callaway, 1994; Schafer et al., 2012; Tielbörger and Kadmon, 2000). 

These complex sets of interactions lead to patterns in species coexistence and structure plant 

communities (Brooker et al., 2008; Valiente‐Banuet and Verdú, 2007). The facilitative effects of 

desert shrubs can lead to concentrations of annual plants beneath the shrub canopy (Facelli and 

Temby, 2002). This close spatial proximity of shrubs and annuals undoubtedly gives rise to 

indirect interactions (Sotomayor and Lortie, 2015). Indirect interactions occur whenever a third 

species alters the interaction between two other species (Callaway and Pennings, 2000; Callaway 

and Walker, 1997; Wootton, 1994). If the associated annual is a flowering plant, then there is the 

capacity for the plants to interact indirectly via pollinators. 

Mechanisms that require co-blooming dominate the study of pollinator-mediated interactions. 

The underlying hypotheses are primarily extensions to optimal foraging theory (Pyke, 1984; 

Pyke et al., 1977) with flowers as the central resources for which pollinators forage. Thus plants 

can become more attractive by combining their floral displays to increase net floral patch size 

(Schemske, 1981) or to make the patch offering more diverse (Ghazoul, 2006). Flowering desert 

shrubs offer concentrations of floral resources for foraging pollinators, and this can facilitate co-

blooming annuals. Magnet species are particularly attractive to pollinators increasing local 

pollinator abundances that benefit their less attractive neighbours (Laverty, 1992; Thomson, 

1978). If shrubs concentrate pollinators that do not in turn visit their neighbours, competition or 

interference rather than facilitation will arise. Shrubs are salient features of desert scrub 

ecosystems due their large size and structural complexity relative to ephemeral plants and can 
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also influence the pollination of associated plants via non-floral mechanistic pathways. Shrubs 

can facilitate their annual understory by improving conditions for pollinators by offering shelter 

or habitat. Alternatively, annuals growing under shrubs can be physically obscured from foraging 

pollinators or shaded thereby reducing visitation. For example, shading by the shrub Lonicera 

decreases pollinator visitation and pollen deposition to its understory annuals (McKinney and 

Goodell, 2010). Consequently, direct and indirect shrub effects on other species function 

simultaneously to determine net outcomes. The balance of facilitative and competitive 

interactions can be further altered by life stage (Bruno et al., 2003; Callaway and Walker, 1997; 

Pugnaire et al., 1996; Rousset and Lepart, 2000; Valiente-Banuet et al., 1991). For example, 

within some nurse-plant systems, young plants are facilitated during establishment but later 

compete with their nurses for resources (Yeaton, 1978). For plants, the life stage shift from 

vegetative growth to reproductive growth is a major event in resource allocation (Bazzaz et al., 

1987). Phenological shifts are likely a critical mediator of the sign of net outcomes of 

interactions with flowering, foundation plant species such as shrubs.  

The Mojave Desert is a biodiversity hotspot supporting 659 species of bees (Saul-Gershenz et al., 

2012) and 1680 species of vascular plants (Rundel and Gibson, 2005). Despite the celebrated 

biodiversity of Southwestern Deserts, pollinator-mediated interactions in this region are 

infrequently studied. Increases in intraspecific density can benefit the pollination of desert 

mustard Lesquerella fendleri (Roll et al., 1997); however, interspecific studies have primarily 

focused on competition within cacti systems in the Sonoran Desert (Fleming et al., 2001). Plant-

pollinator systems in southwest deserts are home to rare obligate mutualisms such as the Joshua 

tree Yucca brevifolia and Yucca moths (Pellmyr, 2003), and the senita cactus Pachycereus 

schottii and senita moths (Fleming and Holland, 1998) and are often considered highly 

specialized. The degree of specialization of species in desert ecosystems is a subject of ongoing 

debate (Chesson et al, 2004). Desert organisms are hypothesized to adapt to high environmental 

variability by generalizing resource use (Chesson et al., 2004) and this hypothesis has been 

supported to an extent through pollination network studies (Chacoff et al., 2012). Overall, few 

one-to-one relationships (i.e. matching between a single species of pollinator with a single 

species of plant) have been found with solitary bees (Simpson and Neff, 1987), and bees still 

visit even the senita cactus (Holland and Fleming, 2002). Despite the high number of specialist 

pollinators present in the Mojave, most plant species nonetheless interact through pollinators and 
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therefore there is the potential for competition and facilitation between neighbouring plants to 

occur.  

The purpose here was to examine both the direct and indirect effects of Larrea tridentata on the 

general success of its annual understory. Single species of plants that are sensitive to 

environmental variation are called phytometers in plant science (Clements and Goldsmith, 1924) 

and have been recommended as a tool to study the relative importance versus intensity of plant-

plant interactions as well (Brooker et al., 2005). We used the commonly co-occurring annual 

Malacothrix glabrata as a phytometer to measure variation in pollination services by 

environmental context. These species co-flower at beginning and ends of their bloom period 

(Jennings, 2001), and are thus a relevant system to model changes in net interactions within a 

growing season. We hypothesize that desert shrubs can positively and negatively influence the 

net outcome of pollination for associated annual plants through effects of large floral offering 

and extent of co-blooming with the community in addition to directly facilitating vegetative 

performance measures at earlier life stages. The following three predictions were tested: 1) 

visitation rates to an annual phytometer species differ under a shrub canopy relative to paired 

open microsites; 2) phenological stage of the shrub influences the pollination rates to the 

phytometer species; 3) annual community performance metrics including cover and richness will 

be higher under the shrub canopy. Understanding interactions for pollination at a community 

level is critical for understanding potential impacts of any decline in pollinator populations. If 

shrubs facilitate their understory annuals, they can buffer pollinator declines, but if shrubs 

typically interfere with pollination for annuals, the sensitivity to change for the community 

increases.   

Methods 

 

Study site 

The study area has an extent of 0.07 km2, and is located in the mouth of Sunset Cove on the 

property of the Sweeney Granite Mountains Desert Research Station within the Mojave National 

Preserve in California (34°46'26.5"N 115°39'31.3"W). The cove is created by tall rock 

formations on three sides, gently sloping and widening to the south. The diverse shrub and cactus 

community includes Larrea tridentata, Acamptopappus sphaerocephalus, Ambrosia salsola, 
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Eriogonum fasciculatum, Cylindropuntia acanthacarpa, Cylindropuntia echinocarpa and 

Thamnosa montana. The most common flowering annuals present during the study period were 

Cryptantha sp, Phacelia fremontii, Eriophyllum wallacei, Gilia sp., Phacelia tanacetifolia, 

Malacothrix glabrata and Chaenactis fremontii.  

Phytometer species 

We used the desert dandelion Malacothrix glabrata (Asteraceae) as a phytometer to measure 

pollination services. M. glabrata is an abundant, native annual wildflower that commonly co-

occurs with L. tridentata. The flowerheads are dense with yellow corollas and grow up to 40 cm 

tall (Morhardt and Morhardt, 2004). M. glabrata is insect-pollinated, including bees in the 

genera Nomadopsis (Rutowski and Alcock, 1980) and Anthidium (Wainwright, 1978) as well as 

short-winged flower beetles of the family Kateretidae (Cline and Audisio, 2010). Several of the 

24 species of Malacothrix are self-compatible (Davis and Philbrick, 1986), however the 

reproductive biology of M. glabrata has not been studied in detail.  

Study species 

Creosote bush, Larrea tridentata (Zygophyllaceae), has been a dominant flowering shrub of the 

southwestern United States for 25 000 years (Betancourt et al., 1990). It is able to maintain 

photosynthesis even under high temperatures and low water potentials (Barbour et al., 2007). 

This shrub species also primarily reproduces clonally leading to individuals that are 

exceptionally long lived. Clones that are over 1000 years old have been documented (Vasek, 

1980). The full pollinator guild contains 22 specialist pollinators and more than 80 generalists 

(Minckley et al., 1999). The associated pollinator guilds are highly variable over space, and most 

shrubs will only interact with 20% of their full guild (Cane et al., 2005). L. tridentata is one of 

the most reliable flowering plants in the Mojave because it has one of the lowest rainfall 

thresholds (12 mm) for blooming (Bowers and Dimmitt, 1994). It produces copious nectar and 

pollen rich flowers (Simpson et al., 1977) and provides critical resources to pollinators in 

drought years. L. tridentata functions as a benefactor species for other desert perennials such as 

Opuntia leptocaulis, (Yeaton, 1978), Peniocereus striatus (Suzán et al., 1994), and facilitates 

native annuals (Schafer et al., 2012).  
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Study design 

 

A total of 60 L. tridentata shrubs with developed floral buds and minimal perennial understory 

were chosen across the study site haphazardly (mean width: 336 cm, mean height: 209 cm). 

Paired shrub-open microsites were selected inside the dripline of the focal shrub and a minimum 

of 1.5 m away in an open area respectively. Both microsites were sampled on the south side of 

the shrub to minimize shading and were paired to minimize variation due to environmental 

heterogeneity. To separate floral and non-floral interaction pathways, interactions were tested 

prior to focal shrubs blooming and repeated using the same shrubs after they had entered into full 

bloom. Shrubs with fewer than five open blooms were considered non-blooming (“pre-

blooming”) because 5 is less than 1% of mean blooming observed throughout the season. The 

mean number of blooms of the ‘blooming’ treatment was 300.2 (min: 102, max: 1080). The 

repeated measures study design was chosen to measure relative changes in interactions with 

natural shrub phenology and to reduce between shrub variability. In two cases, a focal shrub did 

not bloom within the study period and was replaced by a different blooming shrub. These two 

cases were excluded from later RII calculations.  

Visitation and Pollen Deposition 

M. glabrata were gathered freshly each morning from nearby (< 3 km) populations where they 

seasonally coexist with L. tridentata. These plants were transplanted into 15 cm diameter black 

pots and one pot was placed at each microsite for a total of six shrub/open pairs per day. 

Conspecific floral density influences pollinator visitation (Bosch and Waser, 2001). Therefore, 

transplants of similar size and habit were paired, and the flowerheads of M. glabrata were 

trimmed to equal numbers between paired microsites, but left to vary between replicates. The 

mean number of flowers per pot was 10 (min 6, max 20). Polaroid Cube+ HD video cameras 

(1080p) were used to record pollinator activity to each potted M. glabrata. Recording took place 

between 11:30 am and 3:30 pm (mean length: 1:19 hr:min). The use of video technology allows 

for higher temporal resolution and replication beyond what is possible using traditional in situ 

observations (Lortie et al., 2012). Ten days of pre-blooming trials (60 shrub/open pairs) were 

conducted between April 10 and April 20 and ten days of blooming trials (60 shrub/open pairs) 
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between April 21 and May 2. To test for any influence of naturally co-occurring annuals and 

blooming shrubs, heterospecific annual floral density was measured within a 0.25 m2 quadrat in 

each microsite and the number of heterospecific shrubs in bloom were counted within a 2 m 

radius of each microsite. The number of open blooms of each L. tridentata was counted at the 

same time. 

Plant-pollinator interactions were estimated using the timestamps of the videos. A flower visit 

was defined as when an insect visitor flew on and touched the open side of a flower. A foraging 

instance was defined as one plant visit, measured between initial floral contact and when the 

visitor departed from physical contact of the final flower and left the field of view. Foraging 

duration included flower-to-flower travel time and multiple flowers could be visited during one 

foraging instance. Total flowers is the sum of all flowers visited per replicate. Proportion of 

flowers visited is the number of unique flowers visited per foraging instance divided by the 

number of flowers in the field of vision. Floral visitors were identified to recognizable taxonomic 

units (RTU) including the following categories: honeybees, solitary bees, Lepidoptera, syrphid 

flies, bombyliid flies and other, which was comprised primarily of small beetles and muscoid 

flies. A total of five videos were omitted due to disturbance or battery failure. 

To quantify how pollen deposition is influenced by proximity to L. tridentata, stigma were 

excised from M. glabrata at a nearby site (3 km) with a naturally occurring, co-blooming 

population of M. glabrata and L. tridentata between April 31st and May 2nd, 2017. Three stigma 

from each of three flowers per M. glabrata (nine stigma per plant) growing under the dripline 

and in nearby open areas were collected generating a total of 298 stigma from 13 shrub/open 

pairs. Distance to the nearest L. tridentata and three nearest M. glabrata neighbours were also 

recorded, and the number of M. glabrata flowers per plant were counted. The stigmas were 

stored individually in micro-centrifuge tubes filled with denatured alcohol. The tubes were spun 

down in a centrifuge at 4200 rpm for 4.5 minutes and the pellet pipetted onto the slide. This 

along with the stigma were mounted in fuchsin jelly (Kearns and Inouye, 1993). At 100 x 

magnification, 10 longitudinal transects (18 mm long) of pollen in addition to the stigma were 

counted per slide. Heterospecific pollen grains were imaged using a Canon 60D SLR with 60mm 

macro lens into microscope afocally.  
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Community-level effects of shrub species 

The arthropod communities were sampled to provide an estimate of pollinator availability for 

each microsite and to assess if L. tridentata acts as a foundation species for other taxa. Yellow, 

white, and blue coloured six-inch diameter plastic bowls filled with water with a few drops of 

dish detergent added to sample via pan trapping. Each study day, pan traps were set out by 10 am 

and collected by 5:30 pm. Arrays of three pan traps were deployed in a triangular shape at each 

microsite, marginally embedded in the ground to prevent disturbance. Total percent vegetation 

cover (a proxy for annual biomass) and annual species richness were recorded within a 0.25 m2 

quadrat when the traps were laid out. Arthropod sampling was conducted within two days of the 

video test but never on the same day to avoid influencing visitation. Nine days (54 shrub/open 

pairs) of sampling were completed before blooming, and 10 days (60 shrub/open pairs) during 

full bloom. 

Bees and syrphid flies were identified to species or genus (Ascher and Pickering, 2015; 

Michener, 2000; Michener et al., 1994; Miranda et al., 2013). The majority of remaining 

individuals was identified to at least the taxonomic resolution of family (Grissell and Schauff, 

1990; Marshall, 2012; Teskey et al., 1981; Triplehorn and Johnson, 2005) Thysanoptera, 

Orthoptera and Arachnida which were left to order. Recognizable taxonomic unit (RTU) is a 

suitable approximation of traditional species richness (Oliver and Beattie, 1993). Using RTU 

limits resolution compared with species-level identification, however many desert insect species 

have not been described and furthermore useful keys are often lacking. This method of 

categorizing diversity was a trade-off between maximizing resolution and speed given the high 

diversity of desert species. Related groups may be identified to different levels. E.g. wasps in the 

genus Miscophus and subfamily Pemphredoninae are both within the family Crabronidae. No 

individuals were double counted, and these groups were considered distinct, exclusive RTUs for 

diversity analyses. Nymphs were included in abundance analyses provided they could be 

identified at least to taxonomic order. Hemipteran nymphs that could not be identified to family 

were aggregated for diversity analyses. Mites (Acari) and springtails (Collembola) were 

excluded from all analyses due to biases in collection methods. The full dataset of 118 RTU is 

available online (KNB, Braun and Lortie, 2018). All physical specimens are archived at York 

University. 
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To determine which pollinators visited L. tridentata flowers during the study period, 15-minute 

observation periods were completed at 4 shrubs for 10 days pre-blooming (10 hours) and up to 6 

shrubs per day for 10 days when blooming (14.5 hours). The same focal shrubs were observed 

but on different days than pan trap sampling and video trials. Due to the large size of the shrubs, 

it was not possible to accurately track flower visits per foraging instance, therefore only the 

frequency of foraging instances was recorded. The identity and behaviour of the visitors were 

recorded and voucher insects were collected when possible to facilitate identification.  

To determine if L. tridentata influences local microclimate, a total of 16 HOBO pendant data 

loggers were used to record micro-environmental conditions. Ground level temperature and light 

availability were recorded every 30 minutes between March 19th and May 14th, 2017 at eight 

microsite pairs. Daytime (9am to 9pm) and nighttime (9pm to 9am) averages and daily 

temperature variance were calculated. 

Statistical Analysis 

 

All statistical analyses were performed using R (R Core Team, 2017) and all code is available in 

this project’s repository (https://github.com/jennabraun/larrea.facilitation). 

Visitation and Pollen Deposition 

To test for evidence that L. tridentata mediates pollinator visitation to M. glabrata, generalized 

linear mixed-models using negative binomial error distributions with a loglink function to 

account for overdispersion were fit (GLMM, lme4). The number of foraging instances and total 

number of flowers visited were treated as response variables. Video length was log-transformed 

for the loglink function and used as an offset to maintain the count structure of the data. To test 

for the influence of conspecific floral density, the number of M. glabrata blooms was included as 

a factor in models. We did not standardize visitation to visits/hour/flower because this assumes 

that pollinators respond linearly to conspecific floral density and that the slope of the relationship 

does not change with treatment (Reitan and Nielson, 2006). The focal ‘replicate shrub + 

microsite’ (Rep ID) was used as a random effect to account for the repeated measures study 

design in all models. Interactive, additive, and intercept only models were compared by AIC and 

likelihood ratio tests with χ2 approximations (Table A1, A2). To test for the influence of 

heterospecific blooming annuals and shrubs, negative binomial GLMMs (glmmTMB) with each 
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covariate included to the additive model were used. A quasipoisson GLMM (glmmPQL, MASS) 

was used to explore which visitors were driving observed visitation patterns.  

Gamma GLMM models (glmer, lme4) with foraging duration and proportion of flowers visited 

per foraging instance as response variables tested for behavioural differences. Solitary bees and 

‘other’ RTUs were subsetted to fit linear mixed models for both RTU using log-transformed 

foraging duration as the response variable; in all cases least-squares post hoc tests (lsmeans) 

were used on any significant interactions and the Rep ID was included as a random effect. 

Quasipoisson models (glmmPQL, MASS) were fit with conspecific and heterospecific pollen 

deposition as response variables. Distance to L. tridentata, distance to the nearest conspecific 

neighbour and the number of M. glabrata flowers were modeled as predictors. The sample ID 

nested in the flower ID nested in the plant was used as a random effect. 

Community-level shrub effects 

Negative binomial GLMMs with arthropod abundance, percent annual cover, annual species 

richness and annual bloom density as response variables were used to test for relative shrub 

effects on the local community (glmer.nb, lme4). Beetles from the family Melyridae comprised 

1217 of the 3384 total arthropods captured, therefore abundance models were fit with Melyridae 

excluded, included and individually to explore model sensitivities. Poisson GLMMs (lme4) were 

used to determine differences in arthropod species richness and bee abundance between the 

treatments, and negative binomial GLMMs (glmer.nb, lme4) were used to test for differences in 

bee richness. To test if L. tridentata individuals with more flowers were more attractive to 

pollinators, a quasipoisson GLM (glm) with visitation rates as the response and flower number 

and height as predictors. In all cases, least-squares post hoc tests (lsmeans) were used on any 

significant interactions, and the Rep ID was included as a random effect to control for repeated 

measures. 

GLMMs (glmer, lme4) with Gamma error distributions with mean daytime temperature, mean 

nighttime temperatures and daily temperature variance as response variables and microsite as a 

predictor were used to test for the capacity of L. tridentata to create stable microclimates. The 

shrub ID + microsite was used as a random effect to control for the repeated measures. 
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Redundancy analysis was used to test for the influence of microsite and associated annual 

communities on insect community composition (RDA, vegan). Arthropod abundances were 

Hellinger transformed to lower the weight of rare RTU (Legendre and Gallagher, 2001). 

Microsite, percent annual cover, annual richness and heterospecific annual bloom density were 

used as constraining variables in the ordination.  

In order to examine the change in interaction between the vegetation factors and arthropod 

communities with the phenological shift, rather than the effect of blooming itself, the dataset was 

split into pre-blooming and blooming, and analyses were run separately on each subset. In order 

to test for the significance of the constraining variables in explaining the variation, a 

permutation-like ANOVA was used on each RDA (anova.cca, vegan). 

Ecological effect sizes 

To compare the ecological effect of shrubs and blooming on five community response metrics 

(floral visitation of M. glabrata, arthropod abundance, arthropod species richness, percent annual 

cover and annual species richness), and to estimate the biological importance of statistically 

significant differences the effect size estimate RII was calculated (Armas et al., 2004). The 

equation: 𝑅𝐼𝐼 =  
𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡−𝑐𝑜𝑛𝑡𝑟𝑜𝑙

𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡+𝑐𝑜𝑛𝑡𝑟𝑜𝑙
 was used. Treatments were shrub microsite or blooming, 

while the controls were open microsite or pre-blooming. Only paired microsites in the data were 

used to calculate effect sizes. This measure ranges from −1 to +1, is symmetric around 0, and 

negative values indicated relative competition whilst positives indicate facilitation (Armas et al., 

2004). To determine if the effect was significantly different from 0, 95% confidence intervals 

around mean values were bootstrapped (boot), stratified by the focal shrub ID to account for the 

repeated measures study design. 

Results 

 

Shrub effects on visitation rates and pollen deposition to phytometer species 

 

A total of 697 flying insects visited 925 flowers (hereafter “pollinators”) to M. glabrata in 303 

hours of video recording. No pollinators were observed in 61 of the 235 video observation 

periods. Foraging instance frequency and total floral visitation by pollinators to M. glabrata were 

significantly lower at the shrub microsite relative to open areas and were reduced at both 
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microsites when L. tridentata entered full bloom (Table 2.1). There was a positive effect of M. 

glabrata conspecific density on both the frequency of foraging instances and floral visitation 

(Table 2.1). The frequency of flower visits by syrphids and solitary bees declined significantly 

with blooming (Table 2.1). There was no significant difference between RTU visiting the 

microsites (Figure 2.1) nor were there significant interactions between RTU, microsite, and 

blooming on the total flowers visited or frequency of foraging instances (Table A2.4). 

There was no significant influence of heterospecific shrub blooming density on foraging instance 

frequency or total flowers visited (Table 2.2). There was a significant, positive effect of 

heterospecific annual floral density on foraging instances but not flowers visited (Table 2.2). 

Floral visitation rates (flowers/hr) were significantly correlated between paired shrub/open 

microsites (Pearson’s = 0.262, t = 2.8708, df = 112, p-value = 0.004898). 

There was a negative effect of L. tridentata blooming on M. glabrata foraging duration but no 

microsite effect (Table 2.3). This was driven by visitors in the ‘other’ category (Figure 2.2, Est: -

1.0703, χ2: 12.274, t: -3.503, p = 0.000605). There was no difference in solitary bee foraging 

duration between blooming treatments (Est: -0.9341, χ2: 1.9017, t: -1.379, p = 0.208). The 

proportion of flowers visited per visit decreased significantly with blooming at the shrub 

microsite only (Table 2.3), but there were no RTU specific response to blooming or microsite 

(Table A2.5, A2.6). 

A total of 16209 grains of conspecific pollen and 1719 of heterospecific grains were recorded on 

M. glabrata stigma. At the nearby site, there was no significant influence of proximity to L. 

tridentata, nearest conspecific plant or the number of conspecific flowers on conspecific pollen 

deposition (Figure 2.3A, Table 2.4). Heterospecific pollen deposition increased significantly with 

distance from L. tridentata (Figure 2.3B). Conspecific and heterospecific pollen deposition were 

significantly correlated (Pearson’s = 0.15, t = 2.397, df = 229, p = 0.01).  

Community-level shrub effects 

 

A total of 3384 arthropods spanning 118 taxonomic groups (Appendix B) were caught in 19 days 

of pan trapping. There was a positive effect of shrub microsite on both arthropod abundance 

(Melyridae excluded) and arthropod species richness and a negative effect of blooming (Table 

2.5). Insect abundance (Melyridae excluded) was significantly correlated between paired 
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shrub/open microsites (Pearson’s = 0.46, p < 0.001). Melyridae abundance was significantly 

lower at the shrub microsites, and decreased with blooming at the open microsite only (Appendix 

C). There was no significant difference in bee abundance or richness caught in pan traps between 

any of the treatments (Table 2.5).  

Percent cover of ground vegetation was significantly greater in shrub microsites, and it decreased 

with blooming in the open microsite only (Table 2.5). There was a significant decrease in 

heterospecific annual floral density with blooming, but there were no significant differences 

between the microsites (Table 2.5). There was also no significant difference in annual species 

richness between any of the treatments (Table 2.5).  

Shrubs had a competitive effect on floral visitation of M. glabrata, a facilitative effect on 

arthropod abundance, arthropod species richness, and on annual percent cover but no significant 

effect on annual plant richness (Figure 2.5A). Blooming had a negative effect on floral visitation, 

arthropod abundance, and arthropod species richness and a neutral effect on annual richness at 

both microsites. Blooming had no significant effect on annual cover at the shrub microsite, 

however there was a significant, negative effect at the open microsite (Figure 2.5B).  

Pollinator visitation to L. tridentata increased with floral abundance (Figure 2.5, GLM: Est: 

0.0013408, χ2: 4.6383, p = 0.02283). Floral abundance and shrub height (Pearson’s = 0.335, t = 

2.6659, df = 56, p = 0.01002) were correlated, however height was not a significant predictor of 

pollinator visitation (GLM: Est: 0.0054, χ2: 3.6066, p = 0.061). L. tridentata received 197 floral 

visit over 15 hours of observations. Of 169 visits made by bees, Apis mellifera was the most 

frequent visitor (32%), followed by Centris sp. (21%), Hesperapis sp. (18%) and Megandrena 

enceliae (7%) and other solitary bees (23%) including Hoplitis and Megachile. 

Mean daytime temperatures were significantly lower (Figure 2.6, GLMM: Est: -0.064678, 

χ2:85.51, p <0.0001), and mean nighttime temperatures were significantly higher under the shrub 

canopy (GLMM: Est: 0.059203, χ2: 50.121, p <0.0001). Overall temperature variation was 

significantly lower in the shrub microsites (GLMM: Est: -0.27977, χ2: 523.38, p <0.0001). 

Arthropod community composition was significantly influenced by microsite for both blooming 

treatments (Table 2.6). There was no significant effect of the annual understory. The constraining 

variables of the pre-blooming RDA explained more variation (12.5%) than blooming (4%). Only 
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the pre-blooming RDA was significant (pre: F = 3.3448, df = 4, p = 0.001, blooming: F = 

1.1862, df = 4, p = 0.118).  

Discussion  

 

Net interaction theory proposes that both positive and negative interactions are common in most 

interactions between different species in a system (Callaway and Walker, 1997). This study 

confirmed the role of the desert shrub L. tridentata as a foundation species in this system through 

its positive effects on annual plants and arthropod communities and through its ability to stabilize 

microclimates. However, the net outcome of these interactions was both positive and negative 

depending on the specific mechanistic pathway and phenological stage of the shrub. L. tridentata 

interfered with the pollination of the representative phytometer species M. glabrata and this 

relative negative outcome of association was not alleviated when L. tridentata entered full 

bloom. The phenological shift into blooming by L. tridentata intensified with the development of 

exploitation competition with M. glabrata at both microsites rather than triggering facilitation 

via the magnet species effect.  

Plants that employ a cornucopian flowering strategy produce abundant floral resources over an 

extended period of time, and this strategy can attract a wide range of pollinators to the localized 

area (Gentry, 1974; Mosquin, 1971). This positive response by pollinators to the floral density of 

L. tridentata i.e. concentrations of floral resources was at a cost to the phytometer species tested 

M. glabrata. Pollinator visitation frequency and the foraging behaviour of pollinators changed in 

response to the large increase of floral resources by L. tridentata. The foraging strategies of 

many pollinator groups are centered around energetic considerations (Heinrich and Raven, 1972; 

Pyke, 1984). When choosing between resources, bees commonly stay for a few visits before 

leaving to the superior resource (Sowig, 1989), where the larger floral display (Bosch and Waser, 

2001) or richer rewards (Robertson et al., 1999) will improve their foraging efficiency. We found 

that pollinator preferences of L. tridentata over M. glabrata were species-specific. Feral 

honeybees, Apis mellifera, were the most frequent floral visitors to L. tridentata but only visited 

M. glabrata prior to L. tridentata blooming. Honeybees prefer larger floral patches (Sih and 

Baltus, 1987) and exhibit floral constancy; the facultative specialization on different flower 

species at different times by individuals (Waser, 1986). Solitary bees also showed a behavioural 

response by shifting their preference to L. tridentata. Facilitation via honeybees and solitary bees 
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has been documented in previous studies (Albrecht et al., 2016; Bruckman and Campbell, 2016), 

however in most cases the magnet plant does not offer such disproportionately abundant 

resources as L. tridentata relative to the potted annuals. The cornucopia flowering strategy by 

benefactors is likely to introduce significant decoy effects in shrub-annual facilitation systems.  

Eupeodes volucris (Diptera: Syrphidae) was the most frequent floral visitor to M. glabrata. 

However, E. volucris did not switch despite being known to visit L. tridentata (Hurd Jr and 

Linsley, 1975). Therefore, the decrease in visitation cannot be attributed to direct shrub effects. 

The additional bees attracted by L. tridentata may have competitively excluded Syrphids from 

the immediate area. Competition between Syrphids and other pollinators is understudied (Inouye 

et al., 2015), but competition between bee species is better known. Centris sp. bees were frequent 

visitors to L. tridentata flowers during this study. They are territorial and are known to chase 

away other bees from shrubs (Alcock et al., 1977). Similarly, honeybees can reduce visitation by 

solitary bees (Shavit et al., 2009) through competitive displacement (Cane and Tepedino, 2017). 

Alternatively, syrphid visitation may have declined due to changes in local abundances, 

particularly if their phenology is linked with annuals. E. volucris is multivoltine (Vockeroth, 

1992) but the phenology of E. volucris in desert systems has not been studied. Larval E. volucris 

are aphid predators and their phenology appears to be tied to prey availability rather than floral 

resource availability (Iler et al., 2013; Noma and Brewer, 2008). This suggests the influence of 

indirect shrub effects i.e. mediated through pollinator-pollinator interactions. This is a novel 

mechanism of pollinator-mediated competition in arid ecosystems that has the potential to be 

widespread. 

There was evidence of facilitation by conspecific and heterospecific annual floral density for 

visitation concurrent with interference by shrubs suggesting that phenological matching with 

other flowering species within the community mediates net pollination success in this system. 

Additional foundation species including Acamptopappus sphaerocephalus, Opuntia sp. and 

Ericameria cooperi entered into bloom alongside L. tridentata while annual floral density 

decreased, signifying a seasonal shift from annual floral dominance to shrub floral dominance. 

Phenological separation between annuals and shrubs is frequently observed in South Western 

desert ecosystems (Cable, 1969; Halvorson and Patten, 1975; Jennings, 2001). Exploitation 

competition of early-blooming spring annuals by later-blooming cornucopia plants offering 
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copious resources contributes to phenological divergence in the alpine (Mosquin, 1971). Thus 

the timing of blooming is important for competition avoidance, but also to benefit from co-

blooming with conspecifics and facilitating heterospecifics. Generally, the relative effect of 

blooming i.e. the temporal shift was greater in annual and arthropod communities than the effect 

of spatial association with L. tridentata. However, the intensity of the interaction depended on 

the specific metric measured. In the Mojave Desert, substantial within season changes to the 

intensity of facilitation and competition between shrubs and annuals can occur (Holzapfel and 

Mahall, 1999). Similarly, near the Negev desert the intensity of interactions between annuals 

varies with both life stage and temporal changes (Schiffers and Tielbörger, 2006). The shifts in 

both arthropod composition and annual performance measures show that phenology is a critical 

mediator of net outcomes between multiple trophic levels. 

In this study, facilitation in germination and early growth came at a potential net fitness cost via 

competition for pollination during reproductive life stages. Life-stage dependent tradeoffs within 

nurse-protégé associations between perennials are well documented with facilitation in early life 

shifting to resource competition later in life (Valiente-Banuet et al., 1991; Yeaton, 1978). Trade-

offs between animal-mediated indirect interactions can also occur between different life stages. 

For example, thorny plants can facilitate for germination, but later these benefactors compete 

through decoy effects by deflecting herbivores towards the beneficiary (Van Der Putten, 2009). 

Grass-tree (Xanthorrhoea semiplana) facilitates the pink-lipped spider orchid (Caladenia syn. 

Arachnorchis behrii) by protecting it from herbivores but reduces its pollination services through 

non-floral interference (Petit and Dickson, 2005). To our knowledge, this study is the first 

demonstration of a beneficial flowering nurse plant engaging in exploitation competition with its 

beneficiaries for pollinators. In arid environments, annuals invest more into reproduction than 

growth (Petrů et al., 2006) and are often found concentrated under shrubs (Facelli and Temby, 

2002). Therefore, germination-pollination tradeoffs should be common within plant communities 

in desert ecosystems. To quantify the net effects of facilitation, it is necessary to consider fitness 

alongside density effects (Tielbörger and Kadmon, 2000). Here we show the mechanisms by 

which a shrub can facilitate for density while decreasing fitness indirectly through effects on 

pollination. 

Conclusions 
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The majority of research on plant-plant interactions focuses on a single life stage or a single 

measurement (Goldberg et al., 2001; Tielbörger and Kadmon, 2000). These singular foci are 

inadequate for estimating fitness levels within plant populations (McPeek and Peckarsky, 1998). 

The extent of these tradeoffs is likely underestimated in arid environments and important for 

structuring desert communities. Shrubs had a net positive effect on annuals but interactions 

mediated through flowering at different life-stages and also shrub phenology were critical 

mediators of the sign of the net outcome of association by annual plants with a foundation plant 

species.   
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Figures 

 

 

Figure 2.1: The contribution of each recognizable taxonomic group (RTU) to the total number of 

flowers visited (weighted by video length) for each treatment.   
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Figure 2.2: RTU specific responses in foraging duration before and during blooming at each 

microsite. The foraging duration did not vary with microsite but showed a significant decrease 

with blooming. This was driven by pollinators in the ‘other’ category, which was comprised of 

primarily beetles and muscoid flies.  
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Figure 2.3: Heterospecific pollen deposition on the stigmas of Malacothrix glabrata, but not 

conspecific pollen, increased with distance (in cm). Mean distance to shrub was 1.83 m, mean 

distance to nearest conspecific neighbour was 0.79 m and mean number of flowers of M. 

glabrata was 7. 
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Figure 2.4: Pollinator visitation rates increased with the number of Larrea tridentata flowers.  
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Figure 2.5: Relative Interaction Index (RII) values for five community interaction metrics among 

two treatments: A) Microsite (Shrub – Open) B) Blooming (Pre-Blooming – Blooming). Values 

shown are means ± 95% bootstrapped confidence intervals. Values greater than zero indicate 

positive effects, while values that are significantly lower than zero indicate negative effects. 

Values that are not significantly different from zero are neutral. 
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Figure 2.6: Hobo Pendant Data Loggers recorded microenvironmental conditions for the extent 

of the study period. Values shown are mean hourly temperatures for all microsites (eight open 

and eight shrub) between March 17th and May 14th.   
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Tables 

 

Table 2.1: Results from quasi-Poisson GLMM (glmmPQL, MASS) testing for RTU specific 

responses to blooming stage. The log-transformed length of video was used as an offset as a 

measure of exposure. The repID (shrub ID + microsite) was used a random effect to account for 

the repeated measures study design. Post hoc comparisons (lsmeans) contrasting RTU specific 

responses between pre-blooming and blooming were done on significant interactions. 

Significance was denoted at α = 0.05 and shown in bold.    

 

 

Table 2.2: Results from GLMM (glmmTMB) testing for the influence of heterospecific annual 

floral density and shrub blooming density on the frequency of pollinator floral visits and foraging 

bouts. The log-transformed length of video was used as an offset as a measure of exposure. The 

repID (shrub ID + microsite) was used a random effect in both models to account for the 

repeated measures study design. Significance was denoted at α = 0.05 and shown in bold.  

 

 

 Total flower visits  Foraging bouts 
 Coeff χ2 p  Coeff χ2 p 

Microsite (shrub) -0.337480 4.1903 0.040655  -0.311383 4.6322 0.03137 

Blooming (bloom) -1.729417 15.4730 < 0.0001  -1.683054 12.2157 0.0004739 

RTU NA 197.0575 <0.0001  NA 217.5031 <0.00001 

Flowers.pot 0.064325 7.8743 0.005014  0.042763 4.0741 0.04354 

RTU*blooming NA 70.0222 <0.0001  NA 70.35 <0.0001 

Contrast: Pre blooming vs blooming  
RTU Estimate SE t.ratio p estimate SE t.ratio p 

Solitary bee 1.7294 .4419 3.914 0.0001 1.6831 .4840 3.478 0.0005 

Bombyliidae 0.04603 .3886 0.118 0.9057 0.3956 .3.5568 1.112 0.2662 

Honeybee 24.9969 77838 0.000 0.9997 24.3349 65302.3 0.000 0.9997 

Lepidoptera -2.4017 1.28900 -1.862 0.0629 -2.0771 1.0625 -1.955 0.0508 

Other -0.0197 .2403 -0.082 0.9347 0.1341 .2065 0.64 0.5163 

Syrphid 3.0563 .3347 8.813 <0.0001 3.1228 .3404 9.173 <0.0001 

 Total flower visits  Foraging bouts 

 Coeff SE z p  Coeff SE z p 
Microsite (shrub) -0.3660 0.16944  -2.160 0.03077  -0.33019 0.14706 -2.25 0.02475 

Blooming (bloom) -1.2396 0.16353 -7.581 <0.0001  -1.24571 0.14513 -8.58 <0.0001 

Flowers.pot 0.08084 0.02711 2.981 0.00287  0.05943 0.02374 2.503 0.01230 

Heterospecific 

 annual bloom density 

0.04013 

 

0.02342 

 

1.713 

 

0.08664 

 

 0.04086 

 

0.01984 

 

2.059 

 

0.03950 

 

Microsite (shrub) -0.3289 0.16998 -1.935 0.05301  -0.31539 0.14829 -2.13 0.033435 

Blooming (bloom) -1.1662 0.18601 -6.269 <0.0001  -1.20875 0.16707 -7.24 <0.0001 

Flowers.pot 0.07598 0.02703 2.811 0.00494  0.05296 0.02376 2.229 0.025799 

Heterospecific  

blooming shrub density 

-0.0494 

 

0.04093 

 

-1.207 

 

0.22744 

 

 0.03124 

 

0.03744 

 

-0.84 

 

0.403997 
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Table 2.3: Results from Gamma GLMM (lme4, glmer.nb) testing for differences foraging 

duration and the proportion of flowers visited per visit in response to microsite (shrub and open) 

and blooming stage (pre-blooming and full bloom). The repID (shrub ID + microsite) was used a 

random effect in both models to account for the repeated measures study design. Significance 

was denoted at α = 0.05 and shown in bold. Non-significant interactions were excluded from all 

models. 

 Foraging duration Proportion of flowers visited 

 Coef χ2 value p – value Coef χ2 value p – value 
Microsite (shrub) -0.047260 0.0464 0.8295 -0.03538 1.0051 0.46515 

Blooming (bloom) -0.777931 23.1788 <0.0001 0.0805 0.5335 0.31609 

Microsite * Blooming NA NA NA -0.20443 7.0691 0.00784 

 

Table 2.4: Results from quasi-Poisson GLMM (MASS, glmmPQL) testing for the influence of L. 

tridentata, and two metrics of conspecific density on conspecific and heterospecific pollen 

deposition. Flower ID nested within plant was used as a random effect to account for multiple 

samples coming from individual plants. Significance was denoted at α = 0.05 and shown in bold. 

 Conspecific Pollen Deposition Heterospecific Pollen Deposition 

 Coef χ2  p  Coef χ2  p  

Distance to L. tridentata 0.0002 0.4686 0.4936 0.0013 6.7835 0.0092 

Distance to M. glabrata 0.0019 2.4188 0.1199 -0.0009 0.2256 0.6348 

M. glabrata floral number 0.0076 0.6184 0.4316 -0.0201 1.6668 0.1967 
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Table 2.5: Results from GLMM testing for differences in arthropod, bee and plant communities 

in response to response to microsite (shrub and open) and blooming stage (full bloom and pre-

blooming). Melyridae beetles comprised 1217/3384 individuals, models were fit with them 

excluded, included and individually. The repID (shrub ID + microsite) was used a random effect 

in all models to account for the repeated measures study design. Significance was denoted at α = 

0.05 and shown in bold.  

 

Table 2.6: Permutation test ANOVA on RDA testing for changes in influence of shrub microsite 

and understory annual vegetation on arthropod community composition with phenological shift 

into flowering of Larrea tridentata. The constraining variables of the pre-blooming RDA 

explained 12.5% of the total variation and the blooming RDA explained 4%.  

 Pre-blooming Blooming 
 Df Variance F p Df Variance F p 

Microsite 1 0.04396 9.5687 0.001 1 0.01074 2.0561 0.005 

Percent cover 1 0.00688 1.4983 0.087 1 0.00507 0.9700 0.471 

Annual richness 1 0.00443 0.9653 0.449 1 0.00701 1.3421 0.119 

Annual bloom density 1 0.00619 1.3470 0.131 1 0.00197 0.3765 0.995 

 

 

 

 

 

 

 

 

 Insect abundance 

(Melyridae: excluded) 

Arthropod Species 

Richness 

Bee abundance Bee richness 

 Coef χ2  p  Coef χ2  p Coef χ2  p  Coef χ2 p 

Microsite 0.406 15.49 <0.0001 0.1454 6.62 0.01 0.058 0.079 0.778 -0.065  0.125 0.724 

Blooming -0.396 13.59 0.00023 -0.254 25.6 <0.000

1 

-0.08 0.21 0.646 -0.056 0.094 0.759 

Microsite * 

Blooming 

-0.277 

 

3.455 

 

0.063 

 

NA NA NA NA NA NA NA NA NA 

 Percent cover Annual Richness Annual Bloom 

Density 

Blooming shrub 

density within 2 m 
 Coef χ2 p Coef χ2 p Coef χ2 p Coef χ2 p 

Microsite 1.7599 165.4 <0.0001 0.0719 0.707 0.40 -0.28 0.601 0.438 0.366 4.083 0.04331 

Blooming -0.793 34.18 <0.0001 0.1407 2.701 0.10 -1.36 13.36 0.000

3 

1.67 149.7 <0.0001 

Microsite * 

blooming 

0.794 

 

22.81 <0.0001 NA NA NA NA NA NA NA NA NA 
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Appendix A – Model validation and full models 

 

Model selection from results of Table 1, full model of Table 1 and RTU interaction models for 

Table 3 

Table A2.1: Likelihood ratio test comparison of random intercept model, additive and interaction 

GLMM negative binomial models for where total flower visits are the response variable. Null 

model is flowers.pot with the random intercept, additive is flower.pot + blooming + microsite 

and interaction in flowers.pot + blooming * microsite.  

 

Model DF AIC BIC Chisq P > Chisq 

Null 4 1164.8 1178.6   

Additive 6 1111.6 1132.3 57.1788 <0.00001 

Interaction term 7 1113.6 1137.8 0.0322 0.8576 

 

 

Table A2.2: Likelihood ratio test comparison of random intercept model, additive and interaction 

GLMM negative binomial models for where total plant visits are the response variable. Null 

model is flowers.pot with the random intercept, additive is flower.pot + blooming + microsite 

and interaction in flowers.pot + blooming * microsite. 

Model DF AIC BIC Chisq P > Chisq 

Null 4 1066.0 1079.8   

Additive 6 1000.7 1021.5 69.2940 <0.00001 

Interaction term 7 1002.7 1026.9 0.0072 0.9326 

 

Table A2.3: Results from negative binomial generalized linear mixed models (lme4, glmer.nb) 

testing for differences in the frequency of pollinator floral visits and foraging bouts in response 

to microsite (shrub and open) and blooming stage (pre-blooming and full bloom). Conspecific 

floral density was included as a predictor and the log-transformed length of video was used as an 

offset as a measure of exposure. The repID (shrub ID + microsite) was used a random effect in 

both models to account for the repeated measures study design. Significance was denoted at α = 

0.05 and shown in bold. Non-significant interactions were excluded from all models. 

 

 

 

 

 Total flower visits Foraging bouts 

 Coeff χ2 p Coeff χ2 p 

Microsite (shrub) -0.3493 4.4979 0.03396 -0.3258 5.1183 0.0237 

Blooming (bloom) -1.2473 61.52 <0.0001 -1.2513 76.883 <0.0001 

Flowers.pot 0.0694 6.9013 0.0086 0.0474 4.1109 0.0426 

Microsite * Blooming NA NA NA NA NA NA 
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Table A2.4: Full models. Quasipoisson GLMM (glmmPQL, MASS) with three-way interaction 

term for RTU*blooming*microsite. This output from Wald’s Type 3 test. Total flower visits and 

foraging bouts as response. Rep ID as random effect.  
 
 

 Flower visits Foraging bouts 
 χ2 Df p χ2 Df p 

Blooming 16.3114 1 <0.0001 11.2812 1 0.0007829 

RTU 121.683 5 <0.0001 131.340 5 <0.0001 

Microsite 6.7008 1 0.009637 3.6569 1 0.0558390 

Flowers.pot 9.4194 1 0.002147 4.5640 1 0.0326507 

Blooming:RTU 56.9111 5 <0.0001 53.0033 5 <0.0001 

Blooming:microsite 3.6394 1 0.056426 2.3436 1 0.1258002 

Rtu:microsite 5.4996 5 0.357984 3.8289 5 0.5743031     

Blooming:RTU: 

microsite 

7.5190 5 0.184812 4.1995 5 0.5210663 

 

 

Table A2.5: Gamma GLMM (glmer lme4) models for proportions of flowers visited including 

Blooming * RTU interaction to test for differences in RTU response to blooming stage. 

 Estimate Std Error Z P 
Blooming -0.116064 0.140156 -0.828 0.40761 

RTU.Bombylid -0.247470 0.112323 -2.203 0.02758 

RTU.Honeybee 0.186243 0.240711 0.774 0.43910 

RTU.Lep -0.329590 0.262264 -1.257 0.20886 

RTU.Other -0.300436 0.095633 -3.142 0.00168 

RTU.Syrphid -0.173276 0.085192 -2.034 0.04196 

Blooming * 

RTU.Bombylid 

0.202234 0.174650 1.158 0.24689 

Blooming* 

RTU.Lep 

0.069411 0.297303 0.233 0.81540 

Blooming * 

RTU.Other 

0.033465 0.153065 0.219 0.82693 

Blooming * 

Syrphid 

0.006737 0.171338 0.039 0.96863 

 

Table A2.6: Gamma GLMM (glmer lme4) for proportions of flowers visited including Microsite 

* RTU interaction to test for differences in RTU response to microsite. 

 Estimate Std Error Z P 
Microsite -0.2956 0.1499 -1.973 0.04852 

RTU.Bombylid -0.3373 0.1226 -2.752 0.00592 

RTU.Honeybee 0.3531 0.2415 1.462 0.14375 

RTU.Lep -0.4734 0.1472 -3.215 0.00131 

RTU.Other -0.4738 0.1117 -4.243 2.2e-05 

RTU.Syrphid -0.3421 0.1079 -3.172 0.00152 

Microsite * RTU.Bombylid 0.2888 0.1717 1.682 0.09253 

Microsite * RTU.Lep 0.2057 0.2111 0.974 0.32988 

Microsite * RTU.Other 0.2655 0.1486 1.787 0.07399 

Microsite * Syrphid 0.3527 0.1410 2.502 0.01235 
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Table A2.7: Post-hoc constrast (lsmeans) on significant interaction from Table A6. 

 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Proportion of flowers visited 
Contrast Estimate SE t.ratio p 

Open, bee – shrub, bee 0.2956276573 0.14985202 1.973   0.7122 

Open, bombylid – shrub, bombylid 

 

0.0067785545 0.12221348 0.055   1.0000 

Open, honeybee – shrub, honeybee nonEst NA NA NA 

Open, lep – Shrub, lep 0.0899409512 0.17203545 0.523   1.0000 

Open, other – Shrub, other 0.0301074801 0.08727658 0.345   1.0000 

Open, syrphid – shrub, syrphid -0.0570436624 0.08160285 -0.699   0.9999 
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Appendix B – Arthropod RTU list 

 

Table B2.1: A list of all RTU for Chapter 2. All RTU all exclusive and no individuals were 

double counted. 118 taxonomic groups were counted. The full dataset has been published openly 

(Braun and Lortie, 2018). 

 

Order Superfamily Family Subfamily Genus Species Total 

Collected 

Aranae      14 

Coleoptera  Buprestidae    67 

  Chrysomelidae    7 

  Coccinellidae    6 

  Curculionidae    15 

  Meloidae 

 

Meloinae Cysteodemus  2 

  Meloidae Meloinae Eupompha Eupompha 

elegans 

3 

  Meloidae 

 

Meloinae Lytta 

 

Lytta auriculata 3 

  Meloidae Meloinae Lytta 

 

 1 

  Melyridae    1243 

Diptera     Acalyptrate - 

Tiny 

1 

  Anthomyiidae    4 

  Asilidae    76 

  Bombyliidae Ussinae   8 

  Bombyliidae Anthracinae Aphoebantus  2 

  Bombyliidae    23 

  Calliphoridae    1 

  Canacidae    1 

  Cecidomyiidae    55 

  Chamaemyiidae    1 

  Chloropidae    21 

  Chyromyidae    1 

  Drosophilidae    1 

  Ephydridae    12 

  Heleomyzidae    73 

  Milichiidae    10 

  Muscidae    3 

  Mythicomyiidae    258 

  Phoridae    17 

  Pipunculidae    8 

  Richardiidae  Omomyia  3 

  Sarcophagidae    22 

  Sciaridae    6 

  Syrphidae Syrphinae Eupeodes Eupeodes 

volucris 

19 

  Syrphidae Syrphinae Toxomerus Toxomerus 

marginatus 

1 

  Tachinidae    17 

  Tephritidae    7 
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  Therevidae    4 

Hemiptera  Anthocoridae    3 

  Aphididae    10 

  Berytidae 

 

Gampsocorinae  Pronotacantha 

annulata 

17 

  Berytidae    4 

  Cercopidae    6 

  Cicadellidae    351 

  Delphacidae    2 

  Geocoridae    14 

  Membracidae    1 

  Miridae    96 

  Nymph    176 

  Pentamoidae    6 

  Reduviidae Harpactorinae   10 

  Rhopadilae    7 

  Tingidae    2 

 Lygaeoidea     21 

 Psylloidea     2 

Hymenopt

era 

Apoidea 

(Anthophila) 

Andrenidae Andreninae  Ancylandrena 

larreae 

1 

   Andreninae Andrena  2 

   Panurginae Calliopsis  1 

   Andreninae  Megandrena 

encelia 

14 

  Apidae Apinae  Apis mellifera 4 

   Apinae Diadasia  12 

   Apinae Eucera  2 

   Apinae Mellisodes  4 

  Andrenidae Panurginae Perdita  1 

  Colletidae Colletinae Colletes  2 

  Halictidae Halictinae Halictus  7 

   Halictinae Lasioglossum  72 

  Megachilidae Megachilinae Anthidium  4 

   Megachilinae Ashmeadiella  4 

   Megachilinae Atoposmia  1 

   Megachilinae Hoplitis  1 

   Megachilinae Megachile  1 

   Megachilinae Osmia  9 

  Melittidae Dasypodainae Hesperapis  2 

 Apoidea 

(wasps) 

Crabronidae 

 

   39 

  Crabronidae Pemphredoninae   27 

  Crabronidae Astatinae Dryudella  1 

  Crabronidae Crabroninae Miscophus  25 

  Sphecidae Ammophilinae Ammophila  4 

  Sphecidae    1 

 Chrysidoidea Chrysididae    12 

  Dryinidae    1 

 Formicidoidea Formicidae    71 

 Pompiloidea Mutillidae    11 

  Myrmosidae    1 

  Pompilidae    13 

 Vespoidea Vespidae Eumeninae   1 

https://bugguide.net/node/view/787796
https://bugguide.net/node/view/117329
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Parasitica  Ceraphronidae    6 

  Megaspilidae    1 

 Ceraphronoide

a 

   wingless 1 

  Platygastridae    7 

 Chalcidoidea Chalcididae    3 

  Encrytidae    23 

  Eucharitidae    2 

  Eulophidae    16 

  Eupelmidae    13 

  Eurytomidae    4 

  Mymaridae    1 

  Perilampidae    1 

  Pteromalidae    25 

  Torymidae    10 

  Trichogrammatidae    4 

  Signiphoridae    3 

 Cynipoidea Figitidae    1 

 Ichnuemoidea Braconidae    1 

  Ichneumonidae Tersilochinae   1 

  Ichneumonidae    1 

Lepidopte

ra 

Adeloidea     1 

Lepidopte

ra 

 Nymphalidae    2 

Lepidopte

ra 

 Papilionidae 

 

   1 

Lepidopte

ra 

     1 

Microcorp

hyia 

     1 

Neuropter

a 

 Chrysopidae    1 

Orthopter

a 

     19 

Solifugae      3 

Thysanopt

era 

     137 

Trichopter

a 

     1 

 

 

 

 

 

 

 

https://bugguide.net/node/view/14738
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Appendix C – Sensitivity of arthropod community models 

 

Table C2.1: Negative binomial GLMM (glmer.nb, lme4) for arthropod abundance – Melyridae 

included and Melyridae only. 

 Insect abundance (Melyridae: included) Melyridae: abundance only 
 Coef χ2  p  Coef χ2  p  

Microsite (shrub) -0.09872 1.808 0.1787 -1.1920 38.0394 0<0.0001 

Blooming (in bloom) -0.39280 33.553 <0.00001 -0.2989 3.3485 0.067267 

Microsite * Blooming NA NA NA 0.6521 7.1290 0.007585 

 

Table C2.2: Post-hoc contrasts interaction for abundance (Melyridae only) for microsite by   

Blooming (lsmeans).  

 

Contrast Estimate SE Z p 
pre,open - post,open 0.2989089 0.1633482 1.830   0.2592 

pre,open - post,open 1.1920062 0.1932688 6.168   <.0001 

pre,open - post,shrub 0.8388073 0.1826136 4.593   <.0001 

post,open - pre,shrub 0.8930973 0.1906721 4.684   <.0001 

post,open - post,shrub 0.5398984 0.1799142 3.001   0.0143 

pre,shrub - post,shrub -0.3531989 0.1815186 -1.946   0.2090 
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Appendix D: Post-hoc contrasts 

 

Table D2.1: Results from post-hoc test (lsmeans, Tukey’s) for the Gamma generalized linear 

mixed model on significant interaction for proportion of flowers visited. Significance was 

denoted at α = 0.05 and shown in bold.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Proportion of flowers visited 

Contrast Estimate SE t.ratio p 

pre,open - post,open 0.03537548 0.04843350 0.730   0.8849 

pre,open - pre,shrub -0.08050042 0.08029773 -1.003   0.7479 

pre,open - post,shrub 0.15930471 0.08775466 1.815   0.2660 

post,open - pre,shrub -0.11587589 0.08384195 -1.382   0.5106 

post,open - post,shrub 0.12392924 0.09113159 1.360   0.5247 

pre,shrub - post,shrub 0.23980513 0.05952906 4.028   0.0003 



87 

 

Synthesis and General Conclusions 
 

The direct and indirect interactions between Larrea tridentata and its associated plant, arthropod 

and pollinator communities were examined within a diverse shrub and succulent desert scrub 

ecosystem located in the Mojave National Preserve. This thesis used a mechanistic approach to 

conceptually and empirically examine pollinator-mediated interactions of this foundational plant. 

Mechanistic approaches in community ecology are defined as the integration of individual-

ecological concepts into the creation of theoretical frameworks (Schoener, 1986). A formal 

systematic review including 100 directly relevant papers was used to categorize the literature 

into a conceptual framework summarizing all mechanisms underlying pollination facilitation 

tested to date. Pollination facilitation research advanced a total of seven major mechanistic 

hypotheses that can be synthesized into the following four umbrella mechanisms: trait-based 

effects, floral display size, floral diversity, and apparent pollination support. This review 

revealed several research gaps that were then experimentally addressed: the need to include the 

temporal dimension, to test multiple mechanisms jointly, to incorporate interactions that do not 

require co-blooming and to study these interactions in harsh environments.  

Foundational, desert shrubs that act as benefactors were hypothesized to impact the net outcome 

of pollination for associated annual plants depending on the phenological stage of the shrub. As 

predicted, L. tridentata interfered with the pollination of the representative phytometer species 

Malacothrix glabrata and facilitated associated annuals through its effects on climate 

amelioration. However, the interaction via pollinators shifted to exploitation competition upon 

blooming instead of the magnet species effect as predicted. This study confirmed the positive 

role of L. tridentata as a foundation plant but importantly suggests that facilitation for 

germination and growth early in life may involve a trade-off for reproduction later in life. The 

work from this thesis can be further framed into three important themes in ecology: Indirect 

interactions, stress gradients and functional ecology. 

Indirect interactions between species require the presence of a mediating, third species (Wootton, 

1994). This diverse range of interactions falls into two general categories: trait-mediated and 

density-mediated (Werner and Peacor, 2003). Consequently, the conceptual framework broadly 

separates pollinator responses into behavioural and population responses. The framework was 
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developed directly from the empirical literature and the individual concepts synthesized are 

exclusively from the perspective of the plant. Overall the specific mechanisms underlying 

pollinator responses have been neglected within this field. Ghazoul proposed that facilitation can 

result from the competitive displacement of pollinators to the less desirable plant (2006). In this 

study, competitive displacement of syrphid flies by bees may have contributed to the observed 

decrease in visitation rates to M. glabrata. At this time, empirical evidence connecting 

pollinator-pollinator interactions to competition or facilitation between plants is still lacking. 

Facilitation through population responses has rarely been studied and has been excluded from 

meta-analyses, despite the potential prevalence in natural systems (Jakobsson and Padron, 2014). 

In one of the few studies explicitly tested for population responses, Jackobsson and Padron 

(2014) separated facilitation via the magnet species effect from effects on population sizes. By 

tracking bumblebee abundances while testing for differences in visitation rates, they found that 

the invasive Lupinus facilitated native plants via pollinator population growth. Experimental 

work has found that pollinator densities mediate the density-dependence of pollinator mediated 

interactions (Ye et al., 2013). Integrating pollinator identity, interactions and behavioural 

ecology is the next step towards a fully mechanistic understanding of the framework and more 

complete understanding of plant-pollinator interactions at the community level. 

Stress-gradient hypothesis predicts that positive interactions are more common in harsh 

environments (Bertness and Callaway, 1994). Stress can result from environmental factors such 

as heat and salinity, or resource scarcity ie. droughts. When two organisms share the 

fundamental resource whose scarceness is the stressor, it is predicted that facilitation can only 

occur when neighbours increases the availability of this resource (Callaway, 2007; Maestre et al., 

2009; Maestre and Cortina, 2004). Pollen limitation is an external factor that negatively 

influences the reproductive capacity of plants (Knight et al., 2005) and can be considered a stress 

that leads to inhibited seed production. Therefore, when a plant attracts additional pollinators or 

contributes to the maintenance of local pollinator populations, it increases local pollinator 

resource availability for neighbours. However, this systematic review revealed that neither desert 

nor arctic ecosystems have been studied in these contexts. Several meta-analyses have concluded 

that most sexually producing plants are pollen-limited (Knight et al., 2005; Larson and Barrett, 

2000) and that the alpine is no more or less pollen-limited than more temperate lowlands 

(García-Camacho and Totland, 2009). This suggests the potential ubiquity of pollinator-mediated 
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facilitation. As expected under the stress gradient hypothesis, L. tridentata facilitated understory 

annuals while stabilizing microclimates throughout the season. This is a frequently examined 

mechanism underlying nurse-protégé studies (Filazzola and Lortie, 2014). Facilitation was not 

measured between L. tridentata and M. glabrata, so this project still provides no evidence of 

pollination facilitation in desert ecosystems. Indirect interactions are mediated by organisms 

rather than the abiotic environment, therefore unless the harshness of an ecosystem directly leads 

to pollen limitation i.e. inhibits pollinators, it is unlikely that the frequency of pollination 

facilitation would increase with stress.   

Understanding the function of communities through both time and space is a fundamental goal of 

community ecology. Any interaction is observed within a snapshot of time and space, and 

interaction networks are treated as stable, static entities (Poisot et al., 2015). This review 

revealed that incorporating interaction pathways that do not require co-blooming into 

experimental design is important because they operate concurrently with those that require co-

blooming. This prediction was confirmed by the empirical experiment which demonstrated an 

intensification of competitive interactions when blooming. The difference in pollination rates 

between microsites was very small when L. tridentata was blooming and there was no difference 

in conspecific pollen deposition between microsites. Without incorporating the temporal 

dimensions, the conclusions of this experiment would have been very different and the 

‘snapshot’ would not reflect these important interactions. Interactions are dynamic and networks 

frequently ‘rewire’ (CaraDonna et al., 2017). Competition between plants can influence linkage 

of plant-pollinator interactions (Carstensen et al., 2014). When a dominant plant blooms, it may 

induce a large scale rewiring within the community. Cornucopia plants sensu (Mosquin, 1971) 

continuously bloom for long periods, produce an abundance of nectar or pollen resources and are 

thus important to pollinators. Both the ecological function of L. tridentata and pollinator 

responses suggest that L. tridentata is a cornucopia species in this system, and our results suggest 

that pollinators switched to it when it entered a full bloom. Thus, a future model system for 

investigating how plants can rewire pollination networks and influence interaction turnover is 

cornucopia species. 
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