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Abstract—Lightweight structures directly contribute to the sus-
tainability of aviation, as their use reduces the structural weight
of aircraft which in turn reduces fuel burned during flight. One
family of lightweight structures are metal-coated polymers. Hybrid
nanocrystalline microtrusses are a member of this family. These
structures are fabricated by 3D printing complex truss-like structures
out of polymer material, and electrodepositing nanocrystalline metal
onto the polymer. Recent work has shown that buckling instabilities
govern the strength of these systems. Hence this study focuses on
modelling local shell buckling, one of the critical buckling mecha-
nisms. This paper briefly reviews existing models for filled-shell local
shell buckling, and outlines the development of an improved model.

Index Terms—compression; buckling; filled-shell; microtruss;
nanocrystalline; instability

I. INTRODUCTION

Electrodepositing nanocrystalline metals onto 3D printed
polymers creates hybrid materials with exceptional properties,
including high strength and stiffness-to-density as well as
nearly limitless geometric control. These hybrid materials can
be used to reduce the weight of aircraft and other transporta-
tion vehicles, directly decreasing fuel consumption, cost and
environmental impact. To achieve this, accurate models of the
mechanical behaviour of hybrid nanometal-polymer materials
and structures must be developed. This paper will explore
the compressive properties of polymer struts enhanced with
nanocrystalline metal coatings.

A nanometal polymer hybrid structure is produced by crea-
ting a polymer preform through 3D printing and subsequently
coating the preform with nanocrystalline metal [1], as seen
in Fig. 1. The reduced grain sizes of nanocrystalline metals
relative to conventional metals allow for increased strength
as per the Hall-Petch effect [2]. While other properties of
nanocrystalline metals, such as wear resistance, also benefit
by reducing grain size [3], ductility and modulus tend to
decrease. Truss-like structures are very appealing because of
their high ratio of stiffness-to-mass. These structures exhibit
mass-efficiency and low-weight while combining the high-
strength benefits of nanocrystalline metals.

The production methods of nanometal-polymer hybrids also
support the goals of sustainability. 3D printing of polymer
structures yields less material waste than typical subtractive
techniques, while also allowing for the manufacturing of
complex geometries with ease. Furthermore, the use of electro-
deposition techniques is cost-efficient and is relatively benign
environmentally [3]. Elecrotrodeposition also allows for con-
trolling the deposited nanometal crystal sizes [3, 4]. Together
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Fig. 1: Various scales of a nanocoated microtruss structure. Clockwise from
upper left: coated microtrus structure, truss unit cells, individual struts, atoms
at the material level [image modified from [4]]

with control over the geometry of the struts (r, [ and ¢ in Fig
1), this provides four length scales over which the behaviour
of the nanocoated microtruss structure can be controlled.

Previous studies on nanocoated microtrusses have shown
that their failure mechanisms are driven by compressive insta-
bilities of the struts [4]. As the truss elements of nanocoated
microtrusses are metal-coated polymer cylinders (as seen in
Fig. 1), the present research explores the compressive instabi-
lities associated with metal coated polymer cylinders.

II. LITERATURE REVIEW

The two compressive instabilities of interest for metal-
coated polymer cylinders are local shell buckling and global
(or Euler) buckling, as seen in Fig. 2. Local shell buckling
is characterized by the appearance of waves on the surface
of the cylindrical shell [5, 6], while global buckling results
in the lateral deflection of a column relative to its original
undeformed axis.

For a nanometal-polymer hybrid, the nanometal coating
provides all of the structural strength, and hence failure of
the hybrid is governed by failure of the nanometal coating.
Past investigations of metal-coated microtrusses assumed that
the failure mechanisms of the struts only depended on the
geometry and material properties of the metal shell [4], and
that the polymer core provided no structural contribution.
However, for thinly coated microtruss structures, where the
cross-sectional area of the polymer is much more than that of
the shell, the polymer contributes to the load-bearing capacity
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Fig. 2: Appearance of global buckling (left) and local shell buckling (right)

of the struts, while increasing their resistance to buckling [7—
9].

A. Hollow Shell Buckling

Local shell buckling of filled cylindrical shells — or simply
filled-shell buckling — is closely related to local buckling
of hollow shells. The local shell buckling load for a thin
cylindrical shell in axial compression was found independently
[10] by Lorenz [11], Timoshenko [6], and von Karman and
Tsien [12]. At the inception of buckling, the strain energy
of the shell consists only of the direct compressive stress
and strain. Buckling occurs when it is more energy efficient
to deform the shell in sinusoidal waves than to continue to
deform the shell by direct compression. For a thin cylindrical
shell in axial compression, the buckling stress is found to be
[6, 11, 13-15]:

o= Li (1)
V31 —v2)r
where E is the Young’s modulus of the shell’s material, v is
its Poisson’s ratio, and ¢ and r are the thickness and inner
radius of the shell, respectively.

Various derivations of (1) have shown that the buckled shape
of the shell — be it axisymmetric or non-axisymmetric — is not a
factor in determining its buckling load [6, 12]. In addition, the
end conditions also do not affect the buckling load provided
that the cylinder is sufficiently long [6, 12, 13, 15].

Experimental investigations of hollow-shell buckling have
shown that buckling loads in practice are strongly affected
by geometric imperfections, material imperfections, and load-
ing asymmetry [13, 16]. This was confirmed through the
experiments of Tennyson [17], who manufactured nearly
imperfection-free cylinders and ensured careful axial load
distributions around the circumferences of the cylinders.

B. Filled shell buckling

Filled-shell buckling models utilize separate treatments of
the shell and core behaviours. Most models for filled-shell
buckling are intended for foam-filled metal or polymer tubes
and experiments to validate them have used these material
combinations.

The problem of local shell buckling of filled cylindrical
shells was driven by the need to understand buckling of solid

propellant rockets under axial loads [7, 8, 18]. The earliest
attempt at a filled-shell buckling model by Myint [8] emulated
the approach used by von Karman and Tsien [12]. Uniquely,
the Myint model assumed that a shear interaction between
the shell and core was important. Later studies showed that
the shear interactions between the shell and the core were
negligible [7, 9]. More recently, Karam and Gibson [7] utilized
a foundation model derived by Gough et al. [16], which was
originally intended for buckling of face sheets on sandwich
panels subject to axial compression.

A variety of experimental investigations were also under-
taken to investigate the phenomena of filled shell buckling.
The majority of the experiments were performed using metal
tubes filled with polymer or polymer-like foams [18, 19],
intended to mimic the structure of solid propellant rockets or
natural materials like plant stems. Through these experiments,
it was reported that the filler material prevented or hindered
the formation of some buckling deformations. It was also
found that a better agreement between theory and experiment
occurred with shells when the thickness-to-radius ratios were
large [18, 19], due to the fact that buckling loads for thick
shells are less prone to imperfection sensitivity.

While the Karam and Gibson model is currently the best
available model for filled-shell buckling, there are several
drawbacks. The Karam and Gibson model utilizes a stress
function originally intended for buckling of face sheets on
composite sandwich beams [16, 20], and is thus not axisym-
metric. Moreover, their model becomes less accurate when
the coating thickness is large [20] as the core shear stresses
become too large to properly capture using their model.

III. CORE MODEL

The development of a core model requires an understanding
of the behaviour of a solid polymer cylinder. During local
shell buckling of a filled cylinder under an axial load, the
core is subject to radial sinusoidal displacements which are the
consequence of buckling, as shown in Fig. 3. The following
assumptions are utilized:

o the shell and core are perfectly bonded;
« both the shell and core materials behave elastically;
« the buckling displacements are sinusoidal;
o there are many waves that form when the shell buckles;
« the core conforms to the buckled shape of the shell; and
o the shell is very thin compared to the radius (i.e.

t/r <0.1).

The Southwell model employs stress functions to calculate
the stress field in an axysymmetrically-loaded isotropic cylin-
der [21]. This describes the stress state of a thick hollow or
solid cylinder, depending upon the boundary conditions. Fig.
4 shows the generalized geometry and appropriate boundary
conditions for which the Southwell model is valid. The solu-
tion to this domain using the Southwell model provides the
complete stress state of the axisymmetric section, and hence
the entire cylinder.
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Fig. 3: A metal-coated polymer cylinder prior to buckling deformations (left)
and at after buckling (right). The cylinder has radius r, length [ and shell
thickness ¢ while the buckle wavelengths have amplitude A and wavelength
A caused by the axial load F’

While commercial finite element packages are effective in
determining the stress state of many geometries quite readily,
the use of a custom-written program developed solely for
analysing this geometry is a more efficient solution. The
solution of the Southwell model is tailored to represent the
specific stress states of an axisymmetric domain, allowing the
use of coarser meshes to achieve an accurate solution. The
governing equations for the Southwell model are [21]:
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where r is the radial ordinate direction, z is the axial ordinate
direction, and ¢ and v are stress functions which must be
determined. Once ¢ and 1) are obtained, the individual stress
components can be calculated using their equations written in
terms of ¢ and ¢ [21]:
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where o, is the radial stress, oy is the circumferential stress,
0, 1s the axial stress and 7. is the shear stress as seen in Fig.
4. Tt is to be noted that the Karam and Gibson model does not
account for the circumferential stress [7, 20].

A general analytical solution is not obtainable for (2). A
finite differencing solution was developed by Allen et al. [21]
which utilizes second-order central differencing throughout the
domain. Since the stress components are written in terms of
¢ and ¢ (i.e. (3)) the governing equations of these stress
functions (i.e. (2)) are discretized. Details of the discretization
can be found in Allen [21]. With the stress distributions known
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Fig. 4: Cylinder geometry (left) and axisymmetric domain (right) for
Southwell model. The cylinder has length [, inner radius r; and outer radius
ro. Boundary conditions for the domain extremeties are given in terms of the
values of the shear stress 7, axial stress o, and radial stress o,

for the axisymmetric domain of Fig. 4, the internal energy of
the cylinder can be readily calculated.

A modified domain is used in conjunction with the
Southwell model in order to determine the stress state in
the core of a filled cylindrical shell undergoing buckling
deformations. A sinosoidal stress loading is utilized because
buckling deformations are sinusoidal [6-9, 12, 14, 15, 19],
and these lead to sinusoidal stress fields. A section of the
core undergoing buckling deflections is analysed using the
Southwell model, as shown in Fig. 5. Comparing Fig. 4
and Fig. 5, the new domain makes use of periodic boundary
conditions, while a sinosoidal radial stress loading acts on the
cylinder and the axisymmetric section. The periodic boundary
conditions ensure that a calculation done for one buckle
wavelength A can be reused when many waves are present
[6, 7, 12]. The sinusoidal radial stress field is of the form:

where o is a given load magnitude, m is the number of half
waves, and [ is the length of the cylinder. Since the loading
configuration represents one full wavelength, m is set to 2. The
application of the radial stress field (i.e. (4)) leads to sinusoidal
radial deflections with a magnitude of A as seen in Fig 3.

Analyses using the Southwell model, as well as finite
element analyses, reveals that for small wavelengths to radius
ratios (i.e. small \/r) the value of the internal energy, U, is
insensitive to the buckle wavelength A. This implies that one
calculation using the Southwell model for a given core material
will provide the fitting constant K using:

2U

K= 5
mA2ry’ )

“4)

0, = 0g COS (

where K is the fitting constant. Once K is determined, the
expression for the core energy U, is found for any core radius
r and number of buckle wavelengths m /2:

U=U,= %KAQWT. ©6)
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Fig. 5: Geometry, boundary conditions, and load for modified Southwell
domain corresponding to buckling deflections of a filled cylindrical shell

This surrogate model is required for the core behaviour
so that the core energy can be calculated for various core
geometries, while also providing a differentiable function for
the internal energy. The value of K is dependant only on the
material properties of the core, and must be recalculated when
a new core material is used. The core energy expression (Eqn.
6) is used together with the shell energy terms to determine
the buckling load for the filled shell system.

IV. BUCKLING LOAD DERIVATION

While undergoing buckling, the energy sinks of a hollow
cylindrical shell include the bending energy (Up) and the
circumferential stretching energy (U.). The geometry and
relevant material properties of a filled shell system are shown
in Fig. 3 and Fig. 5.

The shell bending energy refers to the energy associated
with the bending action of the shell sections as they undergo
sinusoidal buckling deformations. It takes the form [6]:

PrA2mint  , ymmx nrEt3
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where ¢ is the shell thickness, F is the Young’s Modulus of
the shell material, [ is the length of the shell, r is the shell’s
radius, and v is the shell material Poisson’s ratio.

The energy resulting from the circumferential tension or

compression of the shell hoop sections is defined as [6]:
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During buckling, the total internal energy (U;) of a filled
cylinder is the sum of the shell bending energy (7), the shell
circumferential stretching energy (8), and the core energy (6).
The external energy (U.) arises due to the applied axial force,
F (see Fig. 3). These two energy terms, respectively, are:

U;=U,+U.+U, &)

and
Fm?r2? A2
41

At the inception of buckling, the following differential
relation holds:

Ue = (10)

ou.  ou;

0A  0A°
This is known as the bifurcation point: a further increase
in F' will either lead to buckling or continued axial loading
without buckling. While in perfect systems buckling will not
take place, imperfections will always cause real systems to
buckle [13].

Equating (9) and (10) and applying the operation as in (11),
the elastic buckling load of a metal-coated polymer cylinder
in axial compression is found. Adding on the load-bearing
capacity of the core gives an expression of the form:

F:<1+ECT>[27TTE1€3 1 K’/‘

E 2t) |3(1—v?) A2
Equation (12) applies for any A, but only one critical A value
exists for a given cylinder with known material properties. This
critical A value is found by finding the positive real root of the
polynomial expression OF/OX = 0. Once found, the critical
A value is substituted into (12) to give the critical load for the
filled shell system of interest.

(1)

+ —)\2 . (12)

V. FINITE ELEMENT VERIFICATION

Buckling analysis was undertaken in Abaqus to verify the
predicted loads. This was done for ranges of cylinder length-
to-radius (I/r) ratios and thickness-to-radius (¢/r) ratios. Many
[/r ratios were used to ensure that the buckling load was
insensitive to cylinder length. All geometries were represented
axisymmetrically, and the subspace algorithm was used to
solve for the eigenvalues and corresponding buckled shapes. A
perturbation was applied in the form of an axial displacement
at one end of each cylinder, while keeping the opposing end
fixed and allowing both ends to expand radially. There were at
least 5 elements through the coating thicknesses after meshing
was carried out. The lowest eigenvalue calculated by the solver
was taken to be the buckling load.

The t/r ratios studied ranged between 0.005 and 0.1. Ratios
below 0.005 indicate very low thicknesses which are not
practical for nanocoated microtruss structures, while those
above 0.1 correspond to very thick coatings which are outside
of the range of thin-shell buckling assumptions.

Fig. 6 shows a graph of the non-dimensional buckling loads
as predicted by Abaqus along with the theoretical buckling
loads predicted by both the new elastic theory (i.e. (12)) and
the Karam and Gibson theory [7]. The theoretical curves and
Abaqus results were found for E./F = 0.01, this value being
typical for metal-coated polymer cylinders where the polymer
material is ABS or a similar 3D printed material. The buckling
loads for different [/r values (overlapping points at each t/r
value in Fig. 6) are not identical due to slight differences
in mesh characteristics. However, the are sufficiently close

Copyright (©) 2018 by CSME



0.0501

o 0.0451

7

0.040

o
o
v}
S

0.0301

0.025

— Karam and Gibson Model
— New Elastic Model
x Abaqus Modal Analyses Results

Normalized Buckling Load, F/E

001 002 003 004 005 006 007 008 009 0.10
Shell Thickness-to-radius Ratio, #/r

Fig. 6: Non-dimensional loads calculated for the new elastic model and
the Karam and Gibson model, with Abaqus modal analyses results included
(E:/E =0.01, v = 0.3 and v, = 0.35)

to indicate no dependence of the buckling load on cylinder
length.

As seen in Fig. 6, both the Karam and Gibson theory and
the new elastic theory predict lower loads than the Abaqus
results. The Karam and Gibson theory predicts loads that are
up to 10% lower than those predicted by Abaqus, while the
new theory predicts loads that are no less than 3% of the
values. The agreement between the Abaqus results and the
new model theory improves at higher ¢/r values.

A. Discussion

The improved predictions of the new elastic model are
in accordance with the increased energy that the this model
predicts. The circumferential stress component found using
the Southwell model is not accounted for in the Karam and
Gibson model, leading to lower energy predictions and lower
predicted buckling loads. While the Southwell model is a
more complete description of the stress state of a core subject
to buckling deformations, the Karam and Gibson theory is
simpler to implement in practice.

Though the Southwell model involves more steps to find
the behaviour of the elastic core (i.e. finding the fitting, K),
the loading configuration can be changed for several other
situations involving filled shell buckling. This can include
hollowing out the core or assuming no adhesion between the
shell and the core. These cases have not been studied in the
existing literature.

While the present model predicts the buckling strength of
metal-coated polymer cylinders, adapting it for use with hybrid
microtruss structures will require topological information of a
given microtruss.

VI. CONCLUDING REMARKS

A new model has been developed that accurately accounts
for the energy state in the polymer core of a metal-coated
polymer cylinder as the cylinder undergoes sinusoidal buckling
deformations. The model utilizes the Southwell stress model,
which describes the stress state in cylindrical geometries under

axisymmetric loads. This model has been used to represent the
core behaviour of a filled-shell system undergoing buckling,
and agrees more closely with finite element results. Although
the model is more complex to implement than existing the-
ories, such as the Karam and Gibson method, it is more
adaptable to different cylinder geometries or adverse shell-
core adhesion situations.
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