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We apply the method of optimal control theory to determine the optimal piston trajectory for
successively less idealized models of the Otto cycle. The optimal path has significantly smaller
losses from friction and heat leaks than the path with conventional piston motion and the same
loss parameters. The resulting increases in efficiency are of the order of 10%.
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I. INTRODUCTION

Equilibrium thermodynamics concerns itself with
limiting cases of possible processes. Thus it can be used to
place an upper bound on the performance of heat engines,
but not to analyze processes taking place at finite rates. In
order to analyze these we need more than a knowledge ofthe
equilibrium states; we also need to consider the details ofthe
irreversibilities and the time or rate parameters (evolution) of
the system.

In recent work 1--6 in finite-time thermodynamics the ir­
reversibilities considered have been those due to a finite rate
ofheat transfer between heat reservoirs and the working flu­
id. The objective has been to determine the trajectories
which optimize some objective function,such as efficiency
or power.

In this work we find the optimum time path for a ther­
modynamic system with friction and a finite rate of heat
leakage. For our system we choose an internal-combustion
Otto cycle. In practice, thermal and friction losses reduce the
efficiency of these engines by about 40%.7.8 We have also
considered the effects of finite bounds on the acceleration
and deceleration.

The internal combustion engine has been the object of
an enormous amount of engineering research. However, it
appears that very little attention has been paid to how the
piston motion can affect the performance of the engine. We
have therefore concentrated our attention on the piston mo­
tion and have evaluated the improvements that could be re­
alized by optimizing this motion.

Although our model is far simpler than an actual inter­
nal combustion engine, it serves several purposes. First, we
use it to illustrate the optimization of the time path of a
system. Second, the model leads to a qualitative understand­
ing ofhow engine losses can be reduced. This insight will, we
hope, guide more detailed and realistic models. Finally, we
do evaluate the amount of improvement that might be
achieved by optimizing the piston motion for an engine with
losses representative of those encountered in actual internal
combustion engines.

Previous work in finite-time thermodynamics has gen­
erally optimized either power or efficiency. In practice, how­
ever, some compromise between these objectives is made.
Since we wish to have fairly realistic operating conditions,
we have fixed the total cycle time and fuel consumed per
cycle. Under these constraints maximizing efficiency, effec­
tiveness, and average power are all identical.

In Sec. 11 we describe the losses usually encountered in
internal combustion engines and present our model of these.
We then describe the conventionally operating engine with
which our optimized operation will be compared.

The procedure used to find the optimum trajectory is
described in Sec. Ill. The computational results for both the
optimal and conventional trajectories are given in Sec. IV.

In Sec. V we sum up and evaluate the improvements in
internal combustion engine performance that could result
from piston trajectory optimization.

11. DESCRIPTION OF MODEL

A. Loss terms

The following is a description of the major sources of
irreversibilities in internal combustion engine operation. It is
based on information taken from Taylor's monograph.7 The
models that we employ for the losses are considerably sim­
plified. However, they do reproduce the qualitative behavior
and the total magnitude of these losses.

,. Friction

Friction typically dissipates about 20% of the power
developed by the engine. Of this about 75% is due to the
friction ofthe piston rings on the cylinder walls and 25% is
in the crankshaft bearings. The latter contribution is as­
sumed to be independent of the piston motion. For the for­
mer contribution we assume a friction force linear in veloc­
ity, i.e.,

Friction force = a V,

corresponding to a well-lubricated system. Thus the work
consumed by friction in a stroke taking time t is

W f = Lav2
dt '. (I)

Due to greater pressure on the piston the value ofa is usually
about twice as large on the power stroke as on the other
strokes. We assume that the heat dissipated by the friction is
not returned directly to the working fluid.

2. Pressure drop

There is an additional friction-like loss term on the in­
take stroke. This is due to the pressure differential that devel­
ops, due to viscosity, as the gas flows through the inlet valve.
The pressure differential is proportional to velocity, so it
may be included in the friction term for the intake stroke.
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The force developed is about twice that for the rubbing fric­
tion.7 On the expansion stroke the pressure drop is
negligible.

3. Heatleak

Losses due to heat transfer from the working fluid to the
cylinder walls typicaIly cost about 12% of the total power.
The percentage of the heat ofcombustion transferred to the
cooling system is about 30%. The difference occurs because
much of the heat lost through the cylinder walls would oth­
erwise have been expelled with the exhaust. The heat trans­
fer expression used here assumes that the rate is linear in the
inside surface area of the cylinder and in the difference be­
tween the temperature T of the working fluid and that ofthe
wall Tw . Tw is assumed to be constant. For heat conduction
coefficient K and cylinder diameter b, the rate of heat leak at
position X (see Fig. I) is

Q= K1Tb (4b + X)(T - Tw )' (2)

TABLE I. Engine parameters. a

4. Timeloss

Losses due to beginning the expansion stroke while
combustion is still taking place amount to about 6% of the
reversible work. Since the burning velocity is strongly de­
pendent on the piston motion, the time loss has little depen­
dence on the motion.7

5. Exhaust blowdown

In a conventional engine losses due to opening the ex­
haust valve before completion of the expansion stroke cost
less than 2% ofthe total power. These losses are not included
here.

B. Conventional engine

The engine parameters used in these calculations are
listed in Table I. The losses due to bearing friction and time
loss are simply subtracted from the total work per cycle since
these are independent of the piston trajectory. The friction
and heat leak coefficients are calculated so as to produce
losses of the correct magnitude7

•
8 for the cycle when Eqs. (1)

and (2) are used with the conventional piston motion. These
calculations are described below.

Figure I shows a typical piston to crankshaft linkage. It
is a simple matter to show that the equation ofmotion for the
piston is9

. 2m1X { r } - 1/2X = -r-sine 1+ lcose [I - (rlt)2 sin2e 1 ,

(31

where.JX = 2r and e= 41Tt Ir. r is the cycle time (two
crankshaft revolutions) and X = Xowhen t = O. If rlt = 0,
the motion would be purely sinusoidal. Typically rlt is be­
tween 0.16 and 0.409

; for these calculations we used 0.25.
Varying the value of rlt had little effect on the results.

Mechanical parameters
compression ratio = 8
Xo= [cm,<i1X= 7cm
cylinder bore, b = 7.98 cm
cylinder volume. V = 400 cm'
cycle time r = 33.3 msec corresponding to 3600 rpm

Thermodynamic parameters

Initial temperature
No. of moles of gas
const. vol. heat capacity
cylinder wall temp., Tw = 600 K
reversible work per cycle. WR = 435.1 J
reversible power, WR IT = 13.1 kW

Loss terms
friction coefficient, a = [2.9 kg sec-I
heat leak coefficient. K = 1305 kg deg- ' sec-'
work lost per cycle to time loss and bearing friction, WB = SO J

aThe parameters are based on data from Ref. 1.

Compression stroke
333K
0.0144
2.SR

Power stroke
279SK
0.0151
3.35 R



YI = (1 _ 4L1~ )1/2.
amt,

We can now get the friction losses per stroke by integrating
Eq. (1):

A. Nonpower strokes

First, we need to minimize the friction losses on a single
stroke completed in time t I' From Eg. (1)

("
Wf = Jo ail dt.

If we place no limits on the acceleration, we can use the
calculus of variations to find the trajectory which minimizes
Wf . This is given by

X= constant = L1X It,.

For the case in which the acceleration is constrained to
lie between - am and am' it is obvious that the trajectory
will be as follows: Start at v = 0, accelerate at the maximum
rate until some time ta' run at constant velocity v = am ta
until t = t I - 2ta , then decelerate at the maximum rate for
the rest of the stroke until v = O. Optimal control theory can
be used to show that this is indeed the solution.

We find to and the friction losses per stroke as follows.
Requiring that the piston move a distance L1X in time t I> we
have

tinuous Systems Modeling Program (CSMP), we solved the
equations numerically. The final condition that resulted was
compared to the known final condition and used to refine the
guess. The details of the entire procedure are described in
Sec. III B.

Next, we restored the time constraint and found the
Euler-Lagrange equations that describe the trajectory.
These formed a fourth-order system with two initial and two
final conditions. Using the results from the time uncon­
strained case as a starting point we solved these equations
and combined them with results for the nonpower strokes to
get the optimal trajectory for the entire cycle. We describe
this procedure in Sec. III C.

Finally, we placed limits on the acceleration. The tra­
jectory is given by a fourth-order system connecting two
boundary solutions. We now had three initial conditions and
three final conditions, knowing the two extra boundary con­
ditions is balanced out by lack ofknowledge ofthe two points
at which the solution passes from the boundaries to the inte­
rior. In Sec. III D we give the details of this calculation.

In the sections that follow we deal with finding extre­
mal values of integral expressions subject to inequality con­
straints. The classical calculus of variations in the form of
optimal control theory can be extended to deal with such
problems. 1U We have used this theory wherever necessary. A
statement ofthe optimal control problem and necessary con­
ditions for the optimal path are given in the Appendix.

The friction coefficient a is determined as follows: We
substitute Eq. (3) into(I), set rll equal to zero (purely sinusoi­
dal motion) and integrate from 0 to 11" (one stroke). This gives
the losses for one stroke

WJ = [a~(L1X)2]12T.

Now if a is the friction coefficient of the exhaust and com­
pression strokes, then the coefficient on the power stroke is
2a, and on the intake stroke (including pressure drop) it is
3a. Thus the losses for the full cycle are

WJ = (7a~L1X2)121".

We then set Wf =0.15 WR and use the parameters from Ta­
ble I to find a = 12.9 h S~C-I.

The Eqs. (I), (2), and (3) determine the time evolution of
the system. They can be solved numerically to calculate the
total work per cycle. The heat leak coefficient K was deter­
mined by trying various values in the equations until the
total work lost was about 10% of the reversible work. It can
be roughly obtained as follows: Letting Qand ij be the aver­
age rate ofheat leak and efficiency, we have for the work lost
due to the heat leak.

WQ ;;::ijQ1T •

Then from Eq. (2)

Q;;::K(~b + X)(1Tb )(T - Tw )'

with X= 4.5 cm and T= 1800 K. Combining these and us­
ing the values from Table I we find that WQIWR = 0.1 and
ij = 0.157 corresponds to K = 1305 kg deg- I sec-3,

Ill. OPTIMIZATION PROCEDURE

The optimization problem we set here is finding the
maximum work per cycle for fixed fuel consumption and
total cycle time. Thus the only difference between the opti­
mized engine and the conventional one is in the piston mo­
tion. The procedure consists of finding the optimal trajec­
tory on each stroke as a function of the time spent on that
stroke and then optimizing the distribution of time among
the strokes.

Since heat transfer effects are negligible on the non­
power strokes, optimization ofthese strokes is relatively sim­
ple. The three strokes can be treated together with a fixed
total time; this is done in Sec. IliA.

The power stroke is more difficult. Some portions of the
trajectory lie on boundaries determined by the limits placed
on the acceleration. We shall see that the rest of the solution
is given in terms of a fourth-order differential system with
boundary conditions given at both end points. To complicate
matters the points at which the solution leaves the bound­
aries are not known a priori.

Instead of attacking the fully elaborated problem di­
rectly, we approached it in several steps. First, we considered
a problem with no constraints on either the acceleration or
on the time to complete the power stroke. It turns out that
the optimal time for the power stroke is finite, anyway. The
solution to this problem requires solving a second-order dif­
ferential system with one initial condition and one final con­
dition. We were able to find an efficient method of guessing
the unknown initial condition. Then, using the IBM Con-

L1X=a"'t~ +am ta (t l -2to )'

Solving for ta we get

ta = ~tl(l - YIl,
where

(4)



We now have a second-order system with boundary condi-

B. Power stroke-time unconstrained case

If the problem is parameterized in terms of the piston
position X rather than the time t, it is no longer necessary to
specify a time duration for the power stroke. The optimiz­
ation problem becomes

i
XJ

( NRT )maximize Wp = --- av dX,
x" X

subject to the constraint on the internal energy

dT=T' = -=--!. [NRT + 1TbK(~ +x) (T- T
w

)].

dx NC X v 2 (8) .

We assume that the heat capacity C is independent of tem­
perature. Since v(X) might be discontinuous at the endpoints,
this problem shold be treated by optimal control theory. 10

The Hamiltonian is

H= NRT -av- ~[NRT
X NC X

+ (1T~K)(~ +X)tT- Tw )].

Wf = a(21'"(am t)2 dt +f -'"(am ta )2 dt ).

to get

aa~ 3 2
Wf=-t,(l +2Yd(l-y,) , (5)

12

where Eq. (4) has been used.
We now wish to find the time t l which minimizes the

total friction losses for the three nonpower strokes. The fric­
tion coefficient a is the same on the exhaust and compression
strokes. Therefore the time t 1 spent on each ofthese strokes is
the same. The friction coefficient on the intake stroke is 3a,
let the time spent on this stroke bet2• We can now use Eq. (5)
to write down the total losses on the nonpower strokes:

Wf = !aa~ [t ~ (I - yl(1 + 2y,)

+ it ~(I - Y2f(1 + 2Y2)]. (6)

We now let the total time for the three strokes be t = 2t, + t2

and set 0 Wf lot2 = O. After rearranging we get

t~(1 - Yd2 = 3tW - Y2)2. (7)

For a given value of t this equation can be solved numerically
to get t l and t2•

For the case where am -+ 00, Eq. (7) becomes

t2 = (v'3)t"

and the total friction losses, from Eq. (6), are

Wf = a(2 + v'312(.axflt,

The canonical equations are Eq. (8) and

,{ '= _ NR + AR + AK1Tb (~ + X),
X CX NCv 2

The maximum principle becomes

[
K1TbA (T - Tw } ( b )]112

v= - + X .
aCN 2

(9)

tions T(Xo)= To, A (Xf )= O.

..1.0 can be estimated in the following manner. 11 Let J} be
the maximum work that can be done in expanding from~ to
Xf

i
XI

~ = vmax Fdx,
[Xj'XI) Xj

where

F= NRTIX - av,

and vmax indicates that the maximization is to be with re­
[Xj.XI ]

spect to the function v on the interval [~,xf]' We can then
write

Jo= v max ,
{Xo , X.J n l

where we define n, by

i
x,

n, = Fdx +J1•

x"

J, can also be expressed as the product of the reversible
work done in an adiabatic expansion and the effectiveness El

of the process starting from X,:

J, = E,NCT [1 - (X';Xf)RIC].

For small values of .ax -X, - Xo we can write

n, = (NRTo _ avo).ax
Xo

+ E,NRCT, [1- ( Xo;f.aXYICj.

From Eq, (8) we can write

.aX[ NRTo K1Tb ( b ) ]T, = 1;,- - -- + -- - +Xo (1;)- TU') .
NC Xo Vo 2

Substituting this in the expression for n, and setting
an,lovo = 0 we get

{
K ( b) [( Xo)R IC]} '/2Vo = E -;; 2" + Xo (1Tb )(To - Tw ) 1 - XI '

or, using (91

Ao = ENC [I - (Xo/Xf)R IC ].

We know E will be somewhat larger than the effective­
ness of0.85 realized with the sinusoidal piston motion (this is
for the power stroke, not the whole cycle), so this equation
provides a good means to get a reasonable first guess for ..1. 0 '

We then improve the value of ..1.0 iteratively until A(Xr) is
reasonably close to zero,

C. Power stroke with time constraint

We Wish to maximize the amount of work done on the
power stroke in time t '. This is given by the integral

Wp = 1"(N~X - aX 2
) dt, (10)

with the constraint

, - 1 [ NRTX ( b ) ]T= NC ----x- +K1Tb 2' + X (T- Tw } .(11)



and

(15)

NRv (~ _ I) + ~K1Tb(!l... +x),
X NC NC 2

(16)

aH
aTAI =

TABLE n. Parameters for different cases.

a K T

Case kg sec' I k. deg I sec ' msec rpm

I 12.9 1305 33.33 3600
11 7.50 2350 33.33 3600
III 17.2 650 33.33 3600
IV 12.9 1305 25.00 4800
V [2.9 1305 50.00 2400

v=a.
We also require that - am <;;;a<;;;am .

The Hamiltonian for this problem is

H= NRTv -av2- ~[NRTV
X Ne X

+ K1Tb (~ +X}T -- Tw )] + A2v + AJa.

D. Limited acceleration

We will now require the velocity to be zero at both end
points and constrain the acceleration to lie within finite lim­
its. Because we wish to apply inequality constraints to the
acceleration, we will treat this as an optimal control
problem. 10

The control problem is the same as that of the previous
section, but now the integrand in Eq, (10) is regarded as de­
pending implicitly on the acceleration a. The dependence of
the state variables T, X, and v on the control variable a is
given by Eqs. (11), (12), and

The canonical equations conjugate to (11), (12), and (15) are

attempting to "hit" the final conditions (X (t '),A. (t 'I]. This
would have to be done for enough values oft •to be able to do
the time-distribution part of the problem. The amount of
computation required was kept fairly reasonable by means of
the following procedure.

(i) The time unconstrained problem was solved in order
to get a starting point. The initial velocity for this case was
taken as the first guess for vn and the initial acceleration was
used with Eq. (13) to guess ,1.0' (ii) Equations (11)-(14) were
then solved numerically until the condition X =Xf was met,
rather than over a specified time interval. An was then varied
until A was reasonably close to zero at this point. The result
was the optimal trajectory on the power stroke for some time
t '. (iii) The trajectory resulting from (ii) would be for the long­
est t ' of interest since it would be close to the solution for the
time unconstrained case. Solutions for shorter t ' were ob­
tained by increasing vo, using the value of,1.0 from the pre­
vious solution and then repeating step (ii). (iv) As each trajec­
tory was obtained the total work was obtained by using Eq.
(6). Step (iii) was repeated until the maximum was passed.
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The Lagrangian for the problem is

L - NRTX X'2 ;[T' RTX----a +11. +--
X CX

K1Tb (b /2 + X)(T - Tw )]

+ NC .

From this we obtain the Euler-Lagrange equations
which can be rearranged to yield

Position. cm

aL I = A(t ') = O.
aT 1="

This last condition occurs because we do not wish to fix the
final temperature. I(l

The numerical solution of the Euler-Lagrange equa­
tions requires guessing two initial conditions (Ao and vn) and

o6 I, 1 1 6
1.0 -- -~ -~

c:
~ 9
0::

v= K1Tb {(T _T)(NR) (!l... + x)
2aNC w X 2

+,1. [Rd (~ +x) - (T- Tw )]}, (13)

A= NRv (1 + ~) + AK1Tb (!l... +x). (14)
x NC NC 2

Equations (11)-{14) form a fourth-order system of dif­
ferential equations. If they could be solved they would yield
the maximum value of Wp as a function of t '. It would then
be possible to combine this result with (7) to find the values of
t and t " subject to 7 = t + t " that maximizes the work done
in the entire cycle.

In solving these equations, there are four boundary con­
ditions to be satisfied. These are

X (0) = Xo, X (t ') = Xf' T(OI = 1;11

FIG, 2. Piston motion on the power stroke.



TABLE Ill. Results for unconstrained acceleration.

urn,u, t' Wr Wr Wf WQ Q WQIQ Tf €

Case msec ' msec 1 1 1 1 1 K

cony. 13.6 8.33 503 276 67 43 224 0.19 1095 0.633
opt. 25.4 5.48 518 307 58 21 156 0.14 1200 0.705
11
cony. 13.6 8.33 480 273 39 74 340 0.22 900 0.627
opt. 44.1 3.40 518 321 43 22 I7I 0.13 1170 0.737
lIJ
cony. 13.6 8.33 518 275 89 22 126 0.17 1270 0.631
opt. 16.9 6.52 525 302 71 13 100 0.13 1310 0.693
IV
cony. 18.1 6.25 507 264 89 33 178 0.19 1180 0.606
opt. 26.2 4.74 517 294 73 19 138 0.14 1240 0.675
V
cony. 9.1 12.5 489 278 44 63 301 0.21 960 0.638
opt. 25.0 6.10 518 319 45 22 170 0.13 1170 0.732

FIG. 3. Trajectories for various yalues of a.....

aH
0= - =,1,3'aa .

If this holds for more than isolated points we also have

A: 3 = O.

v = [2a m (X -Xol]l/2.

When this condition was met the solution was switched from
the interior segment to the maximum acceleration segment.
This replaces the condition X = Xf in step (b).

Then ifwe eliminate ,1,2 between Eqs. (17) and (18), we get the
same set ofequations as was obtained for the case ofunlimit­
ed acceleration.

On this basis we can conclude that the trajectory is the
one that we might have intuitively expected, namely, two
boundary segments (maximum acceleration and maximum
deceleration) connected by a segment which satisfies the sys­
tem of equations of Sec. III C.

The solutions were obtained in a manner similar to that
described in the previous section but with several important
differences. These were: (a) Instead ofvarying ,1,0 and "shoot­
ing" for A. (t '), we guessed the final temperature and tried to
"hit" Tcl by solving the equations backwards. This turned
out to give much faster convergence. (b) Instead ofchanging
Vo to get solutions for various values of t " we now changed
the amount of time spent on the maximum deceleration seg­
ment. In effect this meant that we were varying the velocity
at the end of the interior segment. (c) On the constant accel­
eration segment the velocity is related to the piston position
by

IV. RESULTS

A. Piston trajectories

Figure 2 shows the piston velocity plotted versus the
piston position on the power stroke. The plots shown are for
the optimal trajectory with no constraints on the accelera­
tion, the purely sinusoidal motion, and the modified sinusoi­
dal motion described in Sec. 11 B.

The modified sinusoidal motion reaches a slightly high­
er peak velocity (13.6 m sec-I versus 13.2 m sec-I) than the
pure sinusoidal motion. The peak for the modified motion is
at 4.1 cm rather than 4.5 cm. As a result, the modified mo­
tion has higher velocities in the region where the tempera­
ture is highest. This results in an increase of -1.5% in the

-. - t::. unlimited
---- 0 amok' 5 x I04m sec"2

--0 amOk '5 xI03msec"2

3.0 5.0 7.0
Piston Position, cm

A: 2 = - aH = NRTV(I_ ..&) + "&K1rb(T- Tw )'

ax X 2 NC NC
(171

A1 = - aH = 2av -,1,2 _ NRT (1- i.L). (18). av X NC

From the maximum principle, the condition for an inte­
rior maximum is
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FIG. 4. Comparison ofconventional, symmetric, and optimized
trajectories.
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FIG. 5. Trajectory for the full cycle with am", = 2 X 104 m sec - '.
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B. Comparison of optimal and conventional engines

The results of the calculations are summarized in Ta­
bles Ill-V. Table III contains the results for the unlimited

In Fig. 3 we plot the optimized power strokes for maxi­
mum accelerations of 5X 103 and 5 X 104 m sec~2 as well as
for the unconstrained case. Note that the latter two are virtu­
ally identical, except at the ends of the stroke. The lower
acceleration case is also quite similar to the other two in the
interior segment. However, the velocity for this example is
distinctly higher, apparently in order to compensate fortime
lost on the other segments.

Figure 4 shows the conventional motion, the lowest ac­
celeration case, and the "symmetric" case. This last case is
one for which the trajectory was required to be the same on
all four strokes. The maximum acceleration was 2 X 104

m sec- 1. Note that this curve is more level than the other
two, this is to hold friction losses down. The peak velocity is
lower than that for the conventional motion, but much clos­
er to the beginning of the stroke so as to minimize heat leak
losses in this region. The low acceleration case is similar to
the conventional motion but with a higher peak. This in­
creases friction losses on this stroke, but reduces losses on
the other strokes as well as those due to heat leak.

The velocity as a function of time for the whole cycle is
shown in Fig. 5. This is for the case ama• = 2 X 104 cm sec- 2.

'-0..

-.-6 conventional
----0 symmetric
--0 amo.: 5. I03m sec"2

'-0..,

3.0 5.0 7.0

Pislon Position, cm

friction losses, a reduction of - 6% in the heat leak, and an
increase in effectiveness of -0.8%.

For the optimized trajectory the velocity is very nearly
a linear function ofpiston position and roughly exponential
in time. This occurred for all cases that we examined. The
fact that the velocity is higher at small X indicates the rela­
tively greater importance of the heat leak when the gas tem­
perature is high. The average velocity is much higher than
with the conventional motion. This results in a considerable
increase in the friction losses on this stroke, but reduces the
friction losses on the nonpower strokes as well as producing
a substantial reduction in the heat leak losses. The numerical
results are summarized in Tables 11 and Ill.

For the limited acceleration cases amax was varied from
5X 103 to 5 X Hr m sec- 2

• The lower of these values corre­
sponds roughly to the maximum acceleration in the conven­
tional motion. With the higher acceleration results very
similar to the unconstrained case were obtained.
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TABLE IV. Results for limited acceleration.

Qmu V~X I' wp wr wf wQ Q WQIQ Tf €

msec- 2 msec- I msec 1 1 1 1 1 K

conv. 13.6 8.33 503 276 67 43 224 0.19 1095 0.633
5XIO' 17.1 7.62 500 279 63 43 210 0.20 1130 0.640
IXIO" 18.6 6.63 508 293 58 34 186 0.18 1160 0.672
2x 10" 20.5 6.07 513 300 58 28 172 0.16 1180 0.689
5X1O" 22.4 5.90 516 304 57 24 167 0.14 1185 0.698
unconstrained 25.4 5.48 518 307 58 21 156 0.13 1200 0.705
symmetric 13.1 8.32 511 290 57 38 220 0.17 1090 0.666



acceleration calculations, Table IV has those for limited ac­
celeration, and Table V shows the percent improvements in
effectiveness, heat leak losses, and friction losses. The var­
ious cases refer to different choices of friction coefficient,
heat leak coefficient, and cycle time. Case I refers to the
conditions listed in Table I. The parameters used for the
different cases are listed in Table Il.

From Tables III and IV we note several interesting ef­
fects. First, optimization has a much more pronounced ef­
fect on WQ than on Q. This is due to the fact that the reduc­
tion in the heat leak is achieved primarily at the beginning of
the stroke. Due to the higher temperature the heat saved
here will be used with a greater efficiency than that saved
later in the stroke. Also, as should be expected, larger values
ofQ are associated with smaller values of Tt" Finally, in­
creasing or decreasing the total cycle time (cases IV and V)
causes similar, but relatively smaller, changes in t '.

From Table V we can see that the improvement in effec­
tiveness is primarily due to the reduction ofheat leak losses.
For the unlimited acceleration cases the effectiveness is im­
proved by between 9.8% and 17.6%. The largest improve­
ments are for those cases where the heat leak is most impor­
tant. Whereas WQ is reduced by between 42% and 71 %. the
friction losses are never reduced by more than 20%. For the
two cases, 11 and V, with the largest heat leak losses the
friction losses actually increase.

The most striking thing about the results of the limited
acceleration calculations is that significant improvements in
effectiveness can be achieved with moderate accelerations.
An upper limit to acceleration of only 1X 104 m sec- 2

(slightly less than the maximum for the conventional motion
at 4800 rpm) produces an improvement of 6.2%. With an
acceleration of 5X 104 m sec- 2 some 90% of the maximum
improvement is achieved.

Also from Table V we see that for am.. > I X 104

m sec - I there is little reduction in friction losses. Beyond
this point the improvement in effectiveness is virtually en­
tirely due to the reduction of heat leak losses. This again
illustrates the extreme importance of the heat leak on the
initial portion of the power stroke.

Finally, we consider the "symmetric" case. A linkage
which produces the same motion on each stroke would cer­
tainly be easier to design than one that produces different

TABLE V. Improvements due to optimization.

°l11iU, % increase % decrease % decrease
Case m sec ., in E' in WQ in Wf

I 5X 10" 1.1 -0.14 5
I I X 10' 6.2 21 12
I 2X 10' • 5.1 12 14
I 2x 104 8.7 34 14
I 5X 10' 10.1 44 14
I 00 11.2 53 13
11 00 17.6 71 - 10.5
III 00 9.8 61 20
IV 00 11.4 42 18
V 00 14.7 66 -1.3

'Symmetrical case.

piston motions. From Tables IV and V we see that with this
constraint we can still improve the effectiveness by 5.1 %.
This is about 60% of the improvement realized without this
constraint.

The result that the main portion of the losses are due to
reducing the heat leak does not mean that the frictional ef­
fects are less important. The presence offriction determines
the extent to which the heat leak can be reduced. Ifno fric­
tion were present the unlimited acceleration case would per­
mit the heat leak to be eliminated altogether. The two loss
terms are not independent and must both be included in or­
der to get a reasonable result.

v. CONCLUSIONS

In summary, we have found that, with our model, opti­
mizing the piston motion has the potential of improving in­
ternal combustion engine efficiency by more than 10%. This
is primarily due to reduction of the heat leak losses on the
initial portion of the power stroke. Even with fairly strong
constraints on the piston motion significant improvements
can be made. These results may turn out to be either optimis­
tic or conservative for a real engine. The results suggest that
a more intense investigation of this means of improving effi­
ciency is warranted.

In addition to improving the effectiveness and power
there are three other advantages that may result from reduc­
ing friction and heat load on the engine. First, a lengthening
of the engine life may result. Second, the cooling demands
are greatly reduced, perhaps enough to make air cooling fea­
sible. Finally, the fact that the exhaust gas temperature is
higher for the optimized engine may be advantageous for the
operation ofcatalytic converters. These factors may make it
possible to make further changes in engine operating condi­
tions, which, in turn, could produce further increases in effi­
ciency or reduce emissions.

The development ofan alternative mechanism for con­
necting the piston to the crankshaft has advantages in addi­
tion to those discussed here. Improved linkages could pro­
duce reductions in the shearing stress of the piston against
the cylinder wall. This would increase both efficiency and
engine lifetime. Another possibility is in the development of
the variable displacement engine. 12 Such an engine has con­
siderable potential for improving efficiency and would also
require new linkage mechanisms.

It is possible that the maximum allowable acceleration
may be dictated by thermodynamic, rather than mechanical,
considerations. By this we refer to considerations ofexhaust
blowdown and time loss. By optimizing the piston motion
during combustion it may be possible to reduce both time
loss and emissions.
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APPENDIX: OPTIMAL CONTROL THEORY

Optimal control theory differs from the classical calcu­
lus ofvariations in two ways. The first is that optimal control
theory gives the equations of motion in Hamiltonian rather
than Lagrangian form. The second and more important dif­
ference is that optimal control theory can deal with inequal­
ity constraints.

The general optimal control problem is stated as fol­
lows. We wish to maximize the functional

J(v,y) = fF[y(!),V(!)] dt

subject to the constraints
y = f(y,v),

and

R(v)<O,

and the initial conditions

y(to) = Yo'

The components oh are called the control variables and the
components of y are the state variables. The Hamiltonian is
defined by

H=F+'J..A.

Three conditions must be satisfied by the optimal path.
First, the necessary conditions for an extremal path give the
canonical equations of motion:

. JH f )y= - = (y,v
J'J...

and

}..= _ aH
av'

That we obtain a maximum ofJ is assured by applying
the maximum principle, that for every point ('J...,y) on the
optimal path the optimal control vector v· must satisfy the
inequality

H (Y,v·,'J...);;.H(y,v,AI,

where v is any control vector permitted by the inequality
constraints.

Finally, ifend-point condition y(t tl is not given we must
require that

J...(ttl = o.
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