

MODELING VESSEL BEHAVIOURS BY

CLUSTERING AIS DATA USING OPTIMIZED

DBSCAN

XUYANG HAN

A RESEARCH THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL

FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF

SCIENCE

GRADUATE PROGRAM IN EARTH AND SPACE SCIENCE AND ENGINEERING

YORK UNIVERSITY
TORONTO, ONTARIO

FEBRUARY 2021

© XUYANG HAN, 2021

ii

Abstract

Today, maritime transportation represents substantial international trade.

Sustainable development of marine transportation requires systematic modeling and

surveillance for maritime situational awareness. In this research thesis, we present an

enhanced density-based spatial clustering (DBSCAN) method to model vessel behaviors.

The proposed methodology enhances the DBSCAN clustering performance by integrating

the Mahalanobis Distance metric that considers the correlations of the points representing

the locations of the vessels. The clustering method is applied to historical Automatic

Identification System (AIS) data and generates an action recommendation tool and a model

for detecting vessel trajectory anomalies. Two case studies present outcomes from the

openly available Gulf of Mexico AIS data, and Saint Lawrence Seaway and Great Lakes AIS

licensed data acquired from ORBCOMM (a maritime AIS data provider). This research

proposes a framework for modeling AIS data, an algorithm for generating a clustering model

of the vessels' trajectories, and a model for detecting vessel trajectory anomalies such as

unexpected stops, deviations from regulated routes, or inconsistent speed. This work's

findings demonstrate the applicability and scalability of the proposed method for modeling

more water regions, contributing to situational awareness, vessel collision prevention, safe

navigation, route planning, and detection of vessel behavior anomalies for auto-vessels

development.

iii

Acknowledgments

My deepest gratitude to my advisors, Prof. Costas Armenakis and Prof. Mojgan

Jadidi, who have consistently and diligently supported me to be a better student and

researcher to succeed in finishing outstanding research in this journey. Without their

guidance, it would be impossible to learn broad concepts in the Data Science research field

focusing on spatial data. I want to express my gratitude for providing me the incredibly

valuable opportunity to research the computer field while learning programming skills for

my future career. Nevertheless, more than their guidance in my work, I want to thank them

for their ability to constantly push me out of my comfort zone and continue the never-

ending process of learning.

Also, gratitude to my committee member, Prof. Manos Papagelis, for being such a

great professor and advisor, always patiently offering ideas and inspirations. I want to thank

The Bureau of Ocean Energy Management (BOEM) and the National Oceanic and

Atmospheric Administration (NOAA) for providing the open-sourced AIS dataset for this

research. I want to thank ORBCOMM for collecting the maritime AIS data and thank York

University for its legal support in requesting AIS data from ORBCOMM. I want to thank the

Natural Sciences and Engineering Research Council of Canada (NSERC) and York University

for their funding support. I also appreciate my family, who supported my education abroad

in Canada. Finally, gratitude to all my friends, teammates, and my cat Lagu who comforted

and supported me during the COVID-19 pandemic times.

iv

Table of Contents

Abstract .. ii

Acknowledgments ... iii

Table of Contents .. iv

List of Figures ... vi

List of Tables ... x

List of Abbreviations .. xi

1. Chapter 1: Introduction ... 1

1.1 Research Motivation .. 1

1.2 Research Objectives ... 4

1.3 Scientific Contribution .. 5

1.4 Thesis Outline ... 7

2. Chapter 2: Literature Review... 9

2.1 Background ... 9

2.2 Trajectory Data Mining ... 14

2.3 DBSCAN Enhancement ... 21

2.4 Mahalanobis Distance .. 27

3. Chapter 3: Methodology .. 32

3.1 Novel Representation of Marine Trajectory Data .. 32

3.2 Integration of Mahalanobis Metric to DBSCAN.. 35

3.3 Method for the Auto-Selection of the Enhanced DBSCAN Parameters 43

3.4 Implementation of the Clustering Framework ... 44

v

4. Chapter 4: Data and Experiments ... 50

4.1 Data and Data Pre-Processing .. 50

4.2 Testing and Evaluation Using Synthetic Data ... 56

4.2.1 Internal Evaluation .. 56

4.2.2 External Evaluation .. 58

4.2.3 Enhanced DBSCAN Algorithm Performance Evaluation 61

4.2.4 Sensitivity Analysis and Validation .. 97

4.3 Case Studies and Results .. 105

4.3.1 Gulf of Mexico AIS Big Data ... 105

4.3.2 Saint Lawrence Seaway AIS Data ... 113

5. Chapter 5: Conclusions .. 126

5.1 Summary and Contribution .. 126

5.2 Future Work and Perspectives ... 129

References .. 131

Appendix ... 137

vi

List of Figures

Figure 1–1. The workflow of the research .. 5

Figure 2–1. Principle of K-Means clustering algorithm (source: healthcare.ai) 10

Figure 2–2. KNN algorithm determination of the label of a new observation by the voting system

(k=3 in solid line vs. k=5 in dash line) (credit: Wikipedia.com User Antti Ajanki) 12

Figure 2–3. SVM algorithm use of hyperplanes to partition the data (credit: Monkeylearn.com user

Bruno Stecanella) .. 13

Figure 2–4. A typical Artificial Neural Network (ANN) structure (source: kdnuggets.com) 14

Figure 2–5. An example of MBR representation and Trajectory-Bundle Tree (TB Tree) structure for

trajectory segment from (Gao et al., 2007) .. 17

Figure 2–6. An example of a typical CNN structure on image classification (credit: medium.com

user Meghna Asthana) .. 18

Figure 2–7. Example of the DBSCAN process. A is the core points; B, C are the border points; N is

an outlier (credit: Wikipedia User Chire) .. 22

Figure 2–8. Differences between Euclidean distance and Mahalanobis distance – Even Point 1 and

Point 2 have the same Euclidean Distance to the centroid, but Point 2 has much longer

Mahalanobis Distance to this cluster (source: machinelearningplus.com user Selva Prabhakaran) 28

Figure 2–9. Principal components analysis (PCA) on forming two PCs as a window into the

multidimensional space (source: sartorius.com) .. 30

Figure 2–10. An example of Mahalanobis distance contour plot on 100 random points with mean

zero, unit variance, and 50% correlation. A blue square notes the centroid defined by the marginal

means. (source: statisticshowto.com) .. 31

Figure 3–1. Difference between COG, the direction of motion with respect to the ground, ①, and

Heading, the direction that a vessel is pointed at, ② (credit: Wikipedia user WolfgangW) 34

Figure 3–2. A point classification process using Mahalanobis Distance – even Point A has a longer

Euclidean Distance to the centroid, but Point B has a much longer Mahalanobis Distance to this

cluster (credit: Rick Wicklin on The DO Loop) ... 36

Figure 3–4. The Framework of extracting behavior patterns from actual AIS Data and applying the

model to new observations... 45

vii

Figure 3–5. A Schematic overview of the clustering hierarchy – Segmentation of actual AIS data

into smaller pieces and merging of the Clustering Results ... 47

Figure 3–6. Details of the semi-supervised clustering process - a combination of an unsupervised

clustering component and a supervised component.. 49

Figure 4–1. Overview of AIS data characteristics.. 51

Figure 4–2. Two synthesized datasets for algorithm testing and performance evaluation 53

Figure 4–3. Two Raw AIS Big Data .. 55

Figure 4–4. Designed structure of the Artificial Neural Network to be used in algorithm comparison

(Two Hidden Layers Are Omitted) ... 64

Figure 4–5. Comparing Enhanced DBSCAN's performance on discovering clusters from synthetic

dataset one to ground truth and other unsupervised clustering methods 67

Figure 4–6. Comparing Enhanced DBSCAN's performance on distinguishing intersections from

synthetic dataset two to ground truth and other unsupervised clustering methods 69

Figure 4–7. Performance evaluation of discovering clusters on unsupervised algorithms using

external evaluation metrics on dataset one ... 72

Figure 4–8. Performance evaluation of discovering clusters on unsupervised algorithms using

internal evaluation metrics on dataset one .. 72

Figure 4–9. Performance evaluation of distinguishing intersections and discovering clusters on

unsupervised algorithms using external evaluation metrics on dataset two 73

Figure 4–10. Performance evaluation of distinguishing intersections and discovering clusters on

unsupervised algorithms using internal evaluation metrics on dataset two 73

Figure 4–11. Comparing Enhanced DBSCAN's performance on detecting outliers from synthetic

dataset one to ground truth and other unsupervised clustering methods 77

Figure 4–12. Performance evaluation of outlier detection on unsupervised algorithms using

external evaluation metrics on dataset one ... 79

Figure 4–13. Performance evaluation of outlier detection on unsupervised algorithms using

internal evaluation metrics on dataset one .. 79

Figure 4–14. Comparing Enhanced DBSCAN's performance on discovering clusters from synthetic

dataset one to ground truth and other supervised clustering methods .. 83

viii

Figure 4–15. Comparing Enhanced DBSCAN's performance on distinguishing intersections and

discovering clusters from synthetic dataset two to ground truth and other supervised clustering

methods .. 86

Figure 4–16. Performance evaluation of discovering clusters on supervised algorithms using

external evaluation metrics on dataset one ... 88

Figure 4–17. Performance evaluation of discovering clusters on supervised algorithms using

internal evaluation metrics on dataset one .. 88

Figure 4–18. Performance evaluation of distinguishing intersections on supervised algorithms

using external evaluation metrics on dataset two .. 89

Figure 4–19. Performance evaluation of distinguishing intersections on supervised algorithms

using internal evaluation metrics on dataset two .. 89

Figure 4–20. Comparing Enhanced DBSCAN's performance on outlier detection from synthetic

dataset one to ground truth and other supervised clustering methods .. 94

Figure 4–21. Performance evaluation of outlier detection on supervised algorithms using external

evaluation metrics on dataset one ... 96

Figure 4–22. Performance evaluation of outlier detection on supervised algorithms using internal

evaluation metrics on dataset one ... 96

Figure 4–23. Comparison results by variating the parameters by 20% .. 103

Figure 4–24. Clustering performance evaluation of various parameters using external evaluation

metrics for sensitivity analysis .. 105

Figure 4–25. Raw AIS data and raw trajectory data in the Gulf of Mexico Region 106

Figure 4–26. Final AIS Clusters resulted from the proposed clustering framework on the Gulf of

Mexico, with each color representing one vessel behavior pattern .. 107

Figure 4–27. Ports and locations where vessels are mooring detected by the proposed clustering

framework in Gulf of Mexico Area .. 109

Figure 4–28. Profiled behavior vectors on the Gulf of Mexico from proposed clustering framework,

represented by the arrows .. 110

Figure 4–29. Application of the model for the Gulf of Mexico: vessel behavior recommendations

based on given location .. 111

Figure 4–30. Application of the model for the Gulf of Mexico: vessel behavior monitoring and

anomaly detection on new observations .. 112

ix

Figure 4–31. Raw AIS data and raw trajectory data in Saint Lawrence Seaway and Great Lakes

Region .. 114

Figure 4–32. Final AIS Clusters resulted from the proposed clustering framework on the Saint

Lawrence Seaway and Great Lakes Region, with each color representing one vessel behavior

pattern ... 115

Figure 4–33. Ports and locations where vessels are mooring detected by the proposed clustering

framework in Saint Lawrence Seaway and Great Lakes Region ... 116

Figure 4–34. Zoomed-in figures showing the details of those Ports and locations where vessels are

mooring detected by the proposed clustering framework in Saint Lawrence Seaway and Great

Lakes Region .. 117

Figure 4–35. Profiled behavior vectors on the Saint Lawrence Seaway and Great Lakes Region from

proposed clustering framework, represented by the arrows ... 118

Figure 4–36. Zoomed-in Figures Showing the Details of Those Profiled behavior vectors on the

Saint Lawrence Seaway and Great Lakes Region from proposed clustering framework, represented

by the arrows .. 121

Figure 4–37. Final AIS Clusters resulted from the proposed clustering framework on the location

between Kingston to Port at Wolfe Island, with each color representing one vessel behavior

pattern ... 122

Figure 4–38. Final AIS Clusters resulted from the proposed clustering framework in Lake Ontario

and St. Lawrence River, with each color representing one vessel behavior pattern 123

Figure 4–39. Application of the Model for Canadian Great Lakes Region: Vessel Behavior

Recommendations Based on Given Location .. 124

Figure 4–40. Application of the Model for Canadian Great Lakes Region: Vessel Behavior

Monitoring and Anomaly Detection on New Observations .. 125

x

List of Tables

Table 2–1. Marine Trajectory Data Clustering Related Works ... 15

Table 2–2. Current State-of-the-Art of the DBSCAN Enhancement Methods 24

Table 4–1. A comprehensive list of internal performance metrics for evaluating clustering results

 ... 57

Table 4–2. A comprehensive list of external performance metrics for evaluating clustering results

 ... 60

Table 4–3. Clustering performance evaluation of various unsupervised methods on discovering

clusters and distinguishing intersections .. 71

Table 4–4. Clustering performance evaluation of various unsupervised methods on detecting

outliers .. 78

Table 4–5. Clustering performance evaluation of various supervised methods on distinguishing

intersections and discovering clusters .. 87

Table 4–6. Clustering performance evaluation of various supervised methods on outlier detection

 ... 95

Table 4–7. The recommended values of the required parameters to be used in the Enhanced

DBSCAN unsupervised component ... 98

Table 4–8. Clustering performance evaluation of various parameters .. 104

xi

List of Abbreviations

AIS

Automatic Identification System

DBSCAN Data Using Optimized Density-Based Spatial Clustering of

Applications with Noise

Eps Defined Radius to Determine Neighboring Points in DBSCAN

MinPts Defined Minimum Number of Data Points to Determine Core

Points in DBSCAN

SOG Speed Over Ground

COG Course Over Ground

ANN Artificial Neural Networks

KNN K Nearest Neighborhoods

SVM Support Vector Machine

CNN Convolutional Neural Network

MMSI Maritime Mobile Service Identity

1

1. Chapter 1: Introduction

1.1 Research Motivation

Today maritime transportation represents 90% of international trade volume, and

more than 50,000 vessels are sailing the ocean every day. Therefore, systematically

modeling and surveillance should be of high priority in the maritime domain to reduce

maritime transportation security risks. Statistically, between 75% and 96% of maritime

accidents are caused by human error due to fatigue or misjudgment (Bernard Marr, 2019;

Dana, 2019). Navigation safety contributes to a sustainable society by reducing marine

transportation accidents, protecting the marine environment and creatures from exposure

to hazardous chemicals leakage from vessel collisions. Besides, auto-vessels developments

contribute to surveying and transportation efficiency, promoting and facilitating

sustainable and cost-saving industries (Bernard Marr, 2019; Dana, 2019). The auto-vessels

should be the most promising automatic vehicles to be implemented shortly, due to fewer

barriers to adoption than unmanned vehicles driving on the road (Bernard Marr, 2019; Dana,

2019) and unmanned aerial vehicles with a more complex operational air domain (Vespe

et al., 2012). Auto-vessels equipped with autonomous and semi-autonomous systems can

reduce human intervention reliance, making our oceans and maritime navigation safer. In

December 2018, Rolls-Royce and Fin-ferries demonstrated the world's first fully

autonomous ferry (Jallal, 2018). However, the ships were only deployed on simple inland

where waters are calm, the route is simple, and there is not high traffic. Indeed, there is still

2

a long way to go in the design and development of auto-vessel-related research, with

elements including route planning and trajectory anomalies detection, situational

awareness, and intelligent responses toward changing environments. This research focuses

on the first element, route planning, and anomalies detection, by proposing an algorithm

for generating a clustering model of the vessels' trajectories and a model for detecting

vessel trajectory anomalies such as unexpected stops, deviations from regulated routes, or

inconsistent speed.

In this regard, reliable open-sourced data sources for studying vessel behaviors and

generating nautical routes are the historical and real-time maritime Automatic

Identification System (AIS) data (Silveira, Teixeira and Soares, 2013; Sheng and Yin, 2018).

AIS is an automatic tracking system to identify and locate vessels by exchanging data with

other nearby ships, AIS base stations, and satellites. According to the Safety of Life at Sea

(SOLAS) convention, ships of 300 gross tonnages and upwards in international voyages, 500

and upwards for cargoes not in international waters, and passenger's vessels are obliged to

be embedded with AIS equipment, making AIS data abundant globally (IMO, 2000).

Furthermore, AIS becomes a worldwide data standard, and therefore this coherent source

of information can be suitable for global marine transportation traffic modeling and analysis.

In this research, we use open-sourced AIS data as the primary data source for the proposed

algorithm testing and generate models based on big data from the Saint Lawrence Seaway

Region. Since AIS data always contain inaccurate and uncertainty noise, outlier detection

and filtration are required when organizing and modeling AIS data. Also, given a large

3

amount of AIS data, this is more feasible to adopt unsupervised learning in modeling and

anomaly detection processes with a high degree of automation.

Thus in this research, Density-Based Spatial Clustering of Applications with Noise

(DBSCAN) is proposed to be used as the foundation of the marine trajectory modeling.

DBSCAN, an unsupervised method, is now available in many clustering libraries and is widely

used in many real-world applications (Hall et al., 2009; Pedregosa FABIANPEDREGOSA et al.,

2011; R Core Development Team, 2013; Schubert et al., 2015). As DBSCAN relies on a

density-based notion of clusters, this considers being an effective method to discover

clusters of arbitrary shapes and identify outliers (Ester et al., 1996). Thus, DBSCAN

demonstrates vast potentials to be applied to marine trajectory clustering. However,

applying the traditional DBSCAN clustering method has a considerable shortcoming with

spatially unevenly distributed actual AIS data (Academy et al., 2009; Esmaelnejad, Habibi

and Yeganeh, 2010; Smiti and Eloudi, 2013; Fong et al., 2014; Karami and Johansson, 2014;

Sawant, 2014; Liu, 2015; Hou, Gao and Li, 2016; Schubert et al., 2017; Han, Armenakis and

Jadidi, 2020), making it an unreliable method to be applied to marine trajectory clustering

without optimization. The traditional DBSCAN method requires two input parameters,

MinPts (minimum number of data points) and Eps (radius to determine neighboring points),

and the user needs to determine appropriate values for them. However, in real life, it is very

difficult to find the optimal parameters when the data and scale cannot be well understood

(Academy et al., 2009; Esmaelnejad, Habibi and Yeganeh, 2010; Smiti and Eloudi, 2013; Fong

et al., 2014; Karami and Johansson, 2014; Sawant, 2014; Liu, 2015; Hou, Gao and Li, 2016;

4

Schubert et al., 2017; Han, Armenakis and Jadidi, 2020). Furthermore, as the traditional

DBSCAN is based on the Euclidean distance metric, this sometimes cannot handle clusters

with complex shapes and distribution (Ren, Liu and Liu, 2012; Sangeetha, Padikkaramu and

Chellan, 2018). Thus, innovative distance metrics need to be proposed to handle data with

complicated spatial distributions, and to optimize the DBSCAN performance in terms of

homogeneity, completeness, and other evaluation metrics.

1.2 Research Objectives

The main aim of this research project is to design a model that is capable of planning

marine transportation routes and detecting abnormal vessel trajectories. This main aim is

achieved by accomplishing the following objectives:

Objective 1: To study and optimize the DBSCAN clustering method and propose a

method to auto-select the required parameters.

Objective 2: To propose a novel representation of marine trajectory data and

propose a clustering framework to apply the enhanced DBSCAN to actual AIS big data.

Objective 3: To validate the proposed clustering algorithm and framework by

comparing it to other commonly used machine learning techniques and apply them to case

studies to generate the marine transportation models.

Figure 1–1 shows the general structure of the research work.

5

Figure 1–1. The workflow of the research

This model utilizes the Mahalanobis distance metric and the adaptive parameter

method on DBSCAN and implemented high dimensional geospatial data. The main result of

clustering is a set of generated highways on the ocean. The anomalous behaviors can be

detected in real-time, considering the longitude, latitude, direction, and speed of the vessel.

This approach can be applied to real-time AIS surveillance.

1.3 Scientific Contribution

The contributions of this research work are the following: First, the proposed

clustering algorithm, specifically applying marine trajectory clustering, aims to contribute

to marine transportation route planning and abnormal behavior detection. The research

6

proposes a framework to process massive and messy marine AIS data and generate a

transportation model. Overall, the model developed in this research is based on enhancing

the DBSCAN clustering method and is set to be applied to historical or real-time AIS data.

Through organizing similar AIS data and clustering them together, the vessel behaviors can

be profiled into labeled clusters, each of which represents a specific vessel behavior stage.

Within each behavior stage, the vessel behaviors share maximum similarities and are

different from other clusters. Marine transportation route planning can be done by

selecting a series of stages provided by the model. The model can monitor vessels by

detecting any anomaly behaviors by collecting new AIS data from vessels traveling in the

already modeled region. For the waters which lack systematic route planning, the proposed

unsupervised clustering method can be applied to plan “highway on the ocean.” The

proposed algorithm can be applied for the waters with established routes to update these

prior clusters from the new-collected AIS data. The model can also provide prospective

routes and action recommendations based on autonomous vessels' location, facilitating

and contributing crucial progress on Artificial Intelligence vessel s research (AI-vessels).

Taking advantage of the proposed model, the autonomous vessels can stay on a safe route,

with a safe speed and direction (heading) following the recommended route. In general,

this research thesis provides a possible process for analyzing, clustering, and modeling AIS

data, contributing to the sustainable marine transportation research community toward

auto-vessel development. We believe the method and the results are very beneficial to

marine transportation management and hydrographic research communities.

7

Second, a similar data analytic framework can also be applied to other data sources

for more general analysis purposes. The proposed optimized DBSCAN clustering algorithm

provides new understandings of the DBSCAN clustering method. The proposed point-based

trajectory clustering algorithm and the framework to process unlabeled data beyond AIS

data, prepare labeled training data, and generate classification AI models can be applied to

various data mining domains. Using the proposed modified DBSCAN method, the algorithm

improves the clustering performance on unevenly distributed data and solves the problem

of finding parameters wisely based on the dataset characteristics, in which the traditional

DBSCAN faces huge challenges. The machine learning research community can share this

research progress and apply it to more general clustering tasks.

1.4 Thesis Outline

This research thesis presents an enhanced DBSCAN clustering method applied to

historical or real-time AIS data; therefore, the vessel routes can be modeled, and the

trajectories’ anomalies can be detected.

The organization of the thesis is as follows. Chapter 2 provides a comprehensive

review of current state-of-the-art marine trajectory data clustering methods and the

enhancements on the DBSCAN method.

Chapter 3 provides details about the proposed and developed method and

corresponding algorithms. Furthermore, this chapter describes the framework of extracting

8

vessel behavior patterns and detecting outliers and the three stages of our proposed

methodology. First, defines a novel representation of marine trajectory data by increasing

the dimensions of the vessel’s positioning data by considering additional attributes such as

velocity and direction in the clustering process, along with the geospatial information.

Second, the DBSCAN clustering method is enhanced by integrating the Mahalanobis

Distance metric, taking into account the correlations of the position cluster points aiming

to make a better identification process as well as reducing the computational cost. Third,

we propose a method to select the parameter automatically based on the data itself.

Chapter 4 presents details about the data used in the experiment, how the synthetic

data is generated for testing, how the clustering performance is evaluated, and the results

of two case studies where the proposed algorithm has been applied using two big datasets.

Chapter 5 highlights lessons learned and concludes the thesis with future work.

9

2. Chapter 2: Literature Review

2.1 Background

According to (Kanevski et al., 2009; Xu and Tian, 2015), clustering can be defined as

partitioning the dataset and group them into subsets of typical entries making the data in

each subset that share some common characteristics and where different subsets show

obvious disparities. Clustering methods are usually unsupervised techniques that infer a

function to describe internal relationships between unlabelled data, assisting data analysts

to do exploratory data analysis and knowledge discovery (Xu and Tian, 2015). Unsupervised

learning is a type of self-organized learning that helps find previously unknown data set

patterns without massive pre-existing labeled training data. Through clustering similar data

together, the clustering methods provide insight into the hidden structures and

dependencies in the datasets. The data analysts gain intuition from the clustering results on

how to furtherly design models to process the data. The clustering methods are widely used

in many exploratory data analyses, including pattern recognition, image analysis,

information retrieval, bioinformatics, data compression, computer graphics, and machine

learning.

The clustering algorithms are usually categorized into four types: partitioning

methods, hierarchical methods, grid-based and density-based methods. One of the most

common examples of the partition techniques is the K-Means algorithm, which divides ‘n’

10

data objects into ‘k’ numbers of clusters (Ahmed, Seraj and Islam, 2020). Figure 2–1 shows

a process of how the K-means clustering algorithm works when K=3. K-Means algorithm

initializes k centroids randomly and then iteratively relocates the partitions until the defined

centroid function is converged. As shown in Figure 2–1a, three centroids are randomly

generated (Point C1 in blue, Point C2 in green, and Point C3 in red) and assign the points

nearby to the nearest point initially. Then Figure 2–1b and Figure 2–1c shows that the K-

Means algorithm recalculates each cluster's centroids to update Point C1, C2, and C3 until

the cluster assignments no longer change. Figure 2–1d shows the result of K-Means

clustering.

a.

b.

c.

d.

Figure 2–1. Principle of K-Means clustering algorithm (source: healthcare.ai)

11

The hierarchical clustering models use dendrograms to connect objects nearby

(Reddy and Vinzamuri, 2019). The tree-structured models partition and group the objects

by considering a specifically defined attribute at each layer. Agglomerative hierarchical

clustering is a "bottom-up" approach that merges the clusters' pairs as one moves up the

hierarchy. On the contrary, divisive hierarchical clustering is a "top-down" approach, which

splits the cluster recursively as one moves down the hierarchy. The grid-based clustering

methods create a grid structure by iteratively dividing data space into a finite number of

cells until all cells’ density is lower than the threshold density (Ilango and Mohan, 2010).

Two common types of grid-based clustering methods are STING (STatistical INformation

Grid approach) and CLIQUE (CLustering In QUEst) (Wang, Yang and Muntz, 1997; Zaki et al.,

1997).

Among various types of clustering approaches mentioned above, density-based

clustering algorithms can be the most suitable method for this research because density-

based clustering algorithms can find arbitrary shapes of clusters. Density-based clustering

algorithms cluster data together by the concept of ‘density reachability,’ which means the

points spatially connect to each other are to be clustered together (Ester et al., 1996).

Commonly used density-based clustering algorithms are Density-Based Spatial Clustering of

Applications with Noises (DBSCAN), Ordering Points To Identify the Clustering Structure

(OPTICS), and DENsity-based CLUstEring (DENCLUE) (Ester et al., 1996; Ankerst et al., 1999;

Hinneburg and Keim, 2003). This research adopts DBSCAN as a foundation of the model for

12

clustering marine transportation trajectories. The details of the DBSCAN clustering method

will be discussed in Section 2.3.

Classification algorithms can be considered supervised clustering methods,

identifying the data into pre-defined clusters (Kanevski et al., 2009). Supervised algorithms

aim to train a model that can determine testing data labels after learning labeled training

data. Therefore, supervised algorithms perform tasks based on an understanding of

“ground truth”, thus the accuracy is usually high. Commonly used classification methods

are K-Nearest Neighbors (KNN), Support Vector Machine (SVM), and Artificial Neural

Networks (ANN). KNN classifies the data by a voting system to determine the category of a

new entity (Sun, Du and Shi, 2018). The object is assigned to the class based on the class to

which the majority of the K-nearest neighbors belong to. Figure 2–2 shows how the voting

system of the KNN algorithm determines the label of a new observation (the green point).

Figure 2–2 shows assigning k=3 will classify the new observation into the red triangle class

while assigning k=5 will classify the new observation into the blue square class.

Figure 2–2. KNN algorithm determination of the label of a new observation by the voting
system (k=3 in solid line vs. k=5 in dash line) (credit: Wikipedia.com User Antti Ajanki)

13

Support Vector Machine (SVM) is a classification method by training to find

hyperplanes that can partition the data into subsets (Zhou, Zhang and Wang, 2016). Figure

2–3 shows how SVM finds a hyperplane to separate the dataset by increasing the data

dimension.

a. b.

Figure 2–3. SVM algorithm use of hyperplanes to partition the data (credit:
Monkeylearn.com user Bruno Stecanella)

Artificial Neural Network is another widely used supervised classification algorithm.

The network is constructed by a number of layers of connected neurons, each of which is

represented by a regression model (Harvey and Harvey, 1998). Figure 2–4 shows how a

typical ANN is structured. Neural networks cluster the data by classifying observations into

the pre-defined or pre-labeled clusters.

14

Figure 2–4. A typical Artificial Neural Network (ANN) structure (source: kdnuggets.com)

This research is inspired by both the unsupervised clustering methods and the

supervised classification methods. Two components are designed in the proposed model

based on the two methods, and the details are discussed in Chapter 3. The following Section

2.2 reviews how those mentioned clustering and classification methods are applied in

trajectory clustering.

2.2 Trajectory Data Mining

Following the previous Section 2.1, which generally discussed commonly used

clustering and classification methods, this section discusses how those methods are

developed and applied in state-of-the-art marine trajectory clustering methods. Trajectory

clustering has attracted growing attention, considering the critical role of trajectory data

mining in modern intelligent systems for surveillance, security, abnormal behavior

15

detection, crowd behavior analysis, and traffic control (Bian et al., 2018). The details of

some existing trajectory clustering methods are presented in Table 2–1, categorized into

three groups: 1) supervised, 2) unsupervised, and 3) semi-supervised algorithms.

Table 2–1. Marine Trajectory Data Clustering Related Works

Marine
Trajectory Data

Clustering
Details Reference

Supervised
Methods

Nearest Neighbor algorithm (e.g., KNN): finds a voting
system to determine a new entity's category. In trajectory
clustering, the algorithms calculate the distances from an
inquiry trajectory to all labeled trajectory data and label the
inquiry trajectory by most of its k nearest neighbors (Gao et
al., 2007).

(Gao etc.
2007)

Support Vector Machine (SVM): generates a hypervolume,
separate the outliers from the valid trajectories. However, as
a binary classifier, SVM has challenges in grouping
trajectories into sub-clusters (Piciarelli et al., 2008).

(Piciarelli,
2008)

Artificial Neural Network: constructs many layers of
connected neurons, represented by a regression model. Since
in most cases, Neural Network is used for data classification,
neural networks cluster trajectories through classifying
observations into the pre-defined or pre-labeled clusters (Cho
and Chen, 2014).

(Cho, 2014)

Unsupervised
Methods

Hierarchical clustering models: tree-structured models that
consider different attributes at each level (Li et al., 2006).

(Li, 2006)

Spectral Clustering models: models representing trajectory
data as affinity matrixes, then compute internal relationships
by analyzing these affinity matrices (Xiang and Gong, 2008).

(Xiang, 2008)

16

Densely clustering models: clusters trajectories by
considering the spatial density with respect to distance
metrics.

A framework was proposed for partitioning and grouping
trajectories close to each other (Lee, Han and Whang, 2007).

K-means methods divide data into k clusters but are
challenging to be implemented in actual data since the k
value will never be well-known in real-world problems
(Galluccio et al., no date; Ferreira et al., 2012).

DBSCAN clusters point together, which are "density
reachable."

(Lee, 2007)

(Ferreira,
2013)

(Galluccio,
2012)

Semi-
Supervised

Methods

Humans prepare a small number of pre-defined clusters, and
the new observations are clustered to automatically update
the classifier (Laxhammar and Falkman, 2014).

(Laxhammar,
2012)

As mentioned in the previous section 2.1, supervised algorithms learn from labeled

training data to train a model, which can determine the labels of new observations

(Kanevski et al., 2009). Therefore, supervised algorithms perform tasks based on

understanding the "ground truth." K-Nearest Neighbors (KNN) is one of the most commonly

used supervised learning methods that can be applied in trajectory clustering. KNN

determines the label of a new trajectory segment by finding the k nearest trajectory

segments. In the implementation, trajectory data are usually represented by Minimum

Bounding Rectangles (MBR) and indexed in a tree structure such as a Trajectory-Bundle Tree

(TB Tree). Figure 2–5 presents an example of MBR representation and TB tree structure

(Gao et al., 2007).

17

Figure 2–5. An example of MBR representation and Trajectory-Bundle Tree (TB Tree)
structure for trajectory segment from (Gao et al., 2007)

It was proposed how distances between trajectory segments to MBRs can be

calculated (Gao et al., 2007), and based on that, they proposed KNN algorithms based on

the best-first traversal paradigm for retrieving historical trajectories. However, KNN and

other Nearest Neighbor algorithms' drawback is that only the spatial relationships between

a pair of trajectory data are considered, but local characters are ignored.

Another commonly used supervised learning method that can be applied in

trajectory clustering is the Support Vector Machine (SVM). SVM is trained to generate the

hypervolume, separating the outliers from the valid trajectories. For example, (Piciarelli et

al., 2008) proposed an approach based on single-class SVM clustering, where the novelty

detection SVM capabilities are used for the identification of anomalous trajectories, even

in the absence of a priori information on the distribution of outliers. However, as a binary

classifier, SVM has difficulties explicitly labeling or grouping trajectories into sub-clusters,

especially large datasets.

18

Artificial Neural Networks (ANN) are another widely used supervised type of

algorithms. The network is constructed by many layers of connected neurons, represented

by a regression model. Since, in most cases, ANN is used for data classification, neural

networks usually cluster trajectories through classifying new observations into the pre-

defined or pre-labeled clusters (Ilango and Mohan, 2010). In recent decades, with the

advancement of ANN development, ANN starts to play crucial roles in trajectory mining.

Convolutional Neural Network (CNN, or ConvNet) is a popular approach to use. CNN is a

special artificial neural network that consists of convolutional and pooling layers,

respectively. CNN is widely used in computer vision due to its efficiency in processing image

data. Figure 2–6 shows an example of a typical CNN structure on image classification.

Figure 2–6. An example of a typical CNN structure on image classification (credit:
medium.com user Meghna Asthana)

As CNN developed further, they have been applied to processing streaming video

data and used for recognizing moving objects. For example, (Cho and Chen, 2014) studied

19

the problem of segmenting independently moving objects in a flow field. Those research

works provide crucial supports for obtaining and preparing the trajectory segments from

video sources.

As mentioned in Section 2.1, unsupervised learning is a type of self-organized

learning that helps find previously unknown data set patterns without prior knowledge.

Unsupervised algorithms can find hidden structures and unknown dependencies through

clustering data with similarities. One advantage of the unsupervised algorithm is that

extensive human effort in preparing the training data is not required, while unsupervised

algorithms usually have lower accuracy without a training process. One of the most

commonly used unsupervised algorithms is the K-Means algorithm, which divides ‘n’ data

objects into ‘k’ number of clusters. The use of vector fields has been proposed in (Ferreira

et al., 2012) to represent trajectory datasets and applied a K-means algorithm to partition

the vector fields into k clusters. K-means methods are difficult to be implemented in

authentic data since the k value is difficult to be well-known on real-world problems.

(Galluccio et al., no date) proposed a graph-based method for estimating the number of

clusters present and determining good centroid locations to initialize the K-means

algorithm. The hierarchical clustering model is a tree-structured model that considers more

attributes at each level (Li et al., 2006).

The hierarchical clustering model is a tree-structured model that connects objects

nearby or partition the large cluster into sub-clusters by applying different criteria in various

layers. A coarse-to-fine strategy to cluster vehicle trajectory data was proposed (Li et al.,

20

2006). Applying the divisive approach, (Li et al., 2006) keeps dividing the entire trajectory

dataset into smaller and smaller sub-clusters until the intra-cluster tightness of each sub-

cluster reaches a defined threshold.

Spectral Clustering models represent trajectory data as an affinity matrix, then

compute internal relationships by analyzing these affinity matrices. It was proposed to use

eigenvector selection to improve spectral clustering results by measuring the relevance of

an eigenvector according to how well it can separate the data set into different clusters

(Zaki et al., 1997).

Densely clustering models classify trajectories by considering the spatial information

calculated by distance metrics. Density-based clustering algorithms can be the most

suitable method for this research because density-based clustering algorithms can find

clusters' arbitrary shapes. A framework for partitioning and grouping trajectories close to

each other was proposed (Ankerst et al., 1999). It used a Minimum Description Length (MDL)

principle to partition the trajectories and used a density-based line-segment clustering

algorithm to find common sub-trajectories (Ankerst et al., 1999). DBSCAN clustering

algorithms cluster data together by the concept of ‘density reachability,’ which means the

points spatially connect to each other are to be clustered together (Ester et al., 1996). This

research adopts DBSCAN as a foundation of the model for clustering marine transportation

trajectories. The details of the DBSCAN clustering method will be discussed in Section 2.3.

Semi-supervised algorithms fall between unsupervised algorithms and supervised

algorithms. Compared to supervised learning, semi-supervised algorithms require much

21

smaller human effort to prepare training data, while comparing to the unsupervised ones,

semi-supervised models usually have better performance regarding accuracy. Some semi-

supervised algorithms can be invented, starting from unsupervised or supervised algorithms.

For example, the algorithms can only require users to prepare a small amount of labeled

data to train the model then conduct the cluster tasks while updating the model with

unlabeled data automatically (Laxhammar and Falkman, 2014). In this way, semi-supervised

algorithms can be more efficient methods, combining the advantages of supervised and

unsupervised algorithms. This thesis proposes a semi-supervised method to be applied to

the trajectory clustering in real-world problems. This work starts with optimizing an

unsupervised algorithm, DBSCAN, then modifies it into a semi-supervised model. The model

can work in an unsupervised way and input labeled data to speed up, sending unlabeled

observations to the model to update the model.

2.3 DBSCAN Enhancement

Since the proposed density-based clustering algorithm integrating with the

Mahalanobis distance metric is closely related to DBSCAN, DBSCAN is briefly introduced in

this section, including the development of DBSCAN optimizations. DBSCAN discovers

clusters and outliers for a spatial dataset (Ester et al., 1996). It defines clusters as maximum

sets of density-connected data points, in which every core point in a cluster must have at

least a minimum number of data points (MinPts) within a neighbor of a given radius (Eps).

As shown in Figure 2–7, DBSCAN iterates through every point to grow the clusters until all

22

points are visited, and the unlabeled points left will be labeled as outliers. After DBSCAN

clustering, all data points within one cluster can be reached from one to another by

traversing a path of density-connected data points while the data points across different

clusters cannot. DBSCAN can find arbitrarily shaped clusters, showing potentials for marine

trajectory clustering. The complexity of traditional DBSCAN can be 𝑂(𝑛²) without the use

of any indexing to accelerate the computation. The overall average runtime complexity can

be reduced to 𝑂(𝑛 ∗ log(𝑛)) if an indexing structure is used for executing neighborhood

queries.

Figure 2–7. Example of the DBSCAN process. A is the core points; B, C are the border

points; N is an outlier (credit: Wikipedia User Chire)

However, due to the drawbacks of the DBSCAN clustering method, optimizations are

required before implementation. For example, traditional DBSCAN is very sensitive to the

two parameters (MinPts and Eps) selected by the user. Even a slightly different set of them

may lead to very different partitions of the dataset (Ren, Liu and Liu, 2012; Fong et al., 2014;

Schubert et al., 2017). Usually, the users need to get the optimal parameters from a long

and repetitive trial-and-error process. However, in real life, the optimal parameters are very

23

hard to find when the data and scale cannot be well understood (Academy et al., 2009;

Esmaelnejad, Habibi and Yeganeh, 2010; Smiti and Eloudi, 2013; Fong et al., 2014; Karami

and Johansson, 2014; Sawant, 2014; Liu, 2015; Hou, Gao and Li, 2016; Schubert et al., 2017;

Han, Armenakis and Jadidi, 2020). Besides, applying the traditional DBSCAN clustering

method has a considerable shortcoming with unevenly distributed data, that some data are

densely concentrated at several locations while other data are sparsely distributed.

Unevenly distributed data are challenging to be clustered ideally with a single designated

Eps (Academy et al., 2009; Esmaelnejad, Habibi and Yeganeh, 2010; Smiti and Eloudi, 2013;

Fong et al., 2014; Karami and Johansson, 2014; Sawant, 2014; Liu, 2015; Hou, Gao and Li,

2016; Schubert et al., 2017; Han, Armenakis and Jadidi, 2020), making real AIS data

unreliable to be used for applying traditional DBSCAN to it without optimization.

Furthermore, as the traditional DBSCAN is based on the Euclidean distance metric, this

sometimes cannot handle data with complex shapes and distribution (Ren, Liu and Liu, 2012;

Sangeetha, Padikkaramu and Chellan, 2018). Thus, novel distance metrics need to be

proposed to optimize the DBSCAN performance.

As stated in Table 2–2, multiple optimizations have been proposed to enhance

DBSCAN's performance from the research community. Solutions to the drawbacks of

clustering unevenly distributed datasets with varied densities have been proposed

(Xiaopeng Yu, Deyi Zhou and Yan Zhou, 2005; Uncu et al., 2006; Borah and Bhattacharyya,

2007; Peng, Dong and Naijun, 2007; Ram et al., 2009, 2010; Elbatta, 2012). Methods to find

optimal parameters suitable for corresponding datasets have been proposed (Academy et

24

al., 2009; Esmaelnejad, Habibi and Yeganeh, 2010; Karami and Johansson, 2014; Sawant,

2014). Density clustering methods are proposed without requiring any parameters from the

user (Fahim and Salem, 2006; Hou, Gao and Li, 2016). Various ways are proposed to increase

the algorithm's computational efficiency when applying to large databases (Borah and

Bhattacharyya, 2004; El-Sonbaty, Ismail and Farouk, 2004; Liu, 2006; Mahran and Mahar,

2008; Xiaoyun et al., 2008). Various methods also bring new clustering conceptions to

DBSCAN (Birant and Kut, 2007; Ren, Liu and Liu, 2012; Smiti and Eloudi, 2013; Sangeetha,

Padikkaramu and Chellan, 2018).

Table 2–2. Current State-of-the-Art of the DBSCAN Enhancement Methods

DBSCAN
Enhancement

Features
Details

Author and
Year

Clustering
Uneven Dataset

Efficiently Varied
in Density

VDBSCAN: Varied Density-Based Spatial Clustering of
Applications with Noise, by selecting several values of
parameter Eps for different densities according to a k-dist
plot

(Liu, 2007)

A New Clustering Algorithm Based on Distance and
Density, based on merging KNN and DBSCAN to enhance
DBSCAN

(Yu, 2005)

GRId Density-Based Spatial Clustering of Applications
with Noise: selects appropriate grids, merges cells with
similar densities, and identifies the most suitable values of
Eps and minPts in each grid

(Uncu, 2006)

Limited the amount of allowed local density variation to
achieve better results

DVBSCAN: A Density-based Algorithm for Discovering
Density Varied Clusters in Large Spatial Databases

(Ram, 2009),
(Ram, 2010)

25

Identification of Noise objects from a cluster with different
densities

(Birant, 2007)

Help Finding the
Optimal

Parameters

DMDBSCAN: Selection of several Eps from the k-dist plot
and then use of the dynamic method to find a suitable
value

(Mohammad,
2012)

A Novel Method to Find Appropriate ε for DBSCAN,
remove the ε and replace it with another parameter named
ρ (Noise ratio of the data set)

(Esmaelnejad,
2010)

Use Differential Evolution (Karami,
2014)

Adaptive Methods for Determining DBSCAN Parameters
to determine Eps by the value of 'k.'

(Sawant,
2014)

SA – DBSCAN, via analysis of the statistical characteristics
of the dataset

(Xia, 2009)

Novel Clustering
Conceptions

ST-DBSCAN: Discovers clusters concerning spatial, non-
spatial, and temporal values of the objects. Discovering
cluster on spatial-temporal data.

(Birant, 2007)

DSets-DBSCAN: A Parameter-Free Clustering Algorithm (Hou, 2016),

DCBRD: Density Clustering based on radius of data,
without parameters

(Fahim, 2006)

Soft DBSCAN: Improving DBSCAN clustering method
using fuzzy set theory

(Smiti, 2013)

Memory
efficiency and I/O
cost minimization

Introduction of Kernel function to make clustering more
accurate and faster

(Liu, 2006)

GMDBSCAN: Multi-Density DBSCAN Cluster Based on
Grid

(Chen, 2008),

An Improved Sampling-Based DBSCAN for Large Spatial
Databases

(Borah, 2004),

26

An Efficient Density-Based Clustering Algorithm for Large
Databases, by partitioning and merging the datasets

(EI-Sonbaty,
2004)

Novel distance
metrics

Incorporating Mahalanobis Distance by defining ‘leaders’
and ‘followers’ points

(Yan, 2012)

(Sangeetha,
2018)

 This research presents a method based on enhancing the DBSCAN clustering

referencing to the literature review. The majority of the existing optimizations are designed

for clustering 2-D spatial data (i.e., x, y). When the data dimension is growing and the

Mahalanobis distance metric is used, the distribution of the dataset becomes different (Ren,

Liu and Liu, 2012; Sangeetha, Padikkaramu and Chellan, 2018; Han, Armenakis and Jadidi,

2020). Therefore, the existing adaptive parameter method needs to be modified to be

applied to the enhanced DBSCAN method. Thus, a suitable optimization is required to apply

on high-dimensional DBSCAN clustering using an intuitive distance metric such as the

Mahalanobis distance matrix. We integrate the Mahalanobis Distance metric into DBSCAN

to enhance the DBSCAN clustering performance by considering the correlations. Besides,

an automatic and data-driven approach is proposed to choose the required initial two

parameters (MinPts and Eps) for enhanced DBSCAN.

27

2.4 Mahalanobis Distance

Since the proposed density-based clustering algorithm integrates the Mahalanobis

distance metric with DBSCAN, in this section, Mahalanobis distance is described and

compared to Euclidean distance. The Mahalanobis distance was first proposed by the Indian

statistician P. C. Mahalanobis in 1936 (Mahalanobis, P.C., 1936). It calculates the distance

between a multivariate vector data x and a distribution C or distance between two random

vectors x and y of the same distribution. The Mahalanobis distance DM(x, y) from a point

data x, to another point data y, which both are inside a cluster with the covariance matrix,

S, is defined by Eqs. (1). Eq. (3) is the mean vector of x and Eq. (4) is the covariance matrix

of the dimensions xi and xj. The Mahalanobis distance DM(x, C) from a point data, x, to the

cluster C with mean, μ, is defined by Eq (2). In the following equations, the dimensions of

vectors x, y and μ are 5×1, respectively. The dimensions of covariance matrix S and its

inverse matrix S-1, are 5×5, respectively. The dimensions of Mahalanobis distances DM(x, y)

and DM(x, C) are 1×1, respectively.

𝐷ெ(𝒙, 𝒚) = ඥ(𝒙 − 𝒚)்𝑺ିଵ(𝒙 − 𝒚) (1)

𝐷ெ(𝒙, 𝑪) = ඥ(𝒙 − 𝝁)்𝑺ିଵ(𝒙 − 𝝁) (2)

𝝁 = ൣ𝜇௟௔௧௜௧௨ௗ௘ , 𝜇௟௢௡௚௜௧௨ௗ௘ , 𝜇ௌைீ , 𝜇஼ைீ, 𝜇ு௘௔ௗ௜௡௚൧
்

 (3)

𝑺𝒊𝒋 = 𝑐𝑜𝑣൫𝑥௜, 𝑥௝൯ = 〈(𝑥௜ − 𝜇௜)(𝑥௝ − 𝜇௝)〉 (4)

28

On the other hand, the Euclidean distance only calculates distance between two

points in Euclidean space and does not consider the cluster's distribution. The difference

between Euclidean distance and Mahalanobis distance is demonstrated by Figure 2–8.

When calculating the Euclidean distance between the cluster centroid to Point 1 and Point

2, line segments' lengths (in pink and purple) are measured. Point 1 and Point 2 have the

same Euclidean Distance to the centroid, but Point 2 has a much longer Mahalanobis

Distance to this cluster because Point 2 is correlated to the cluster.

Figure 2–8. Differences between Euclidean distance and Mahalanobis distance – Even
Point 1 and Point 2 have the same Euclidean Distance to the centroid, but Point 2 has

much longer Mahalanobis Distance to this cluster (source: machinelearningplus.com user
Selva Prabhakaran)

The Mahalanobis distance can be reduced to the same as Euclidean distance if the

covariance matrix S is the identity matrix. In this case, all attributes in their specific

dimensions are totally independent and uncorrelated. The corresponding equation is

shown by Equ (5).

29

𝐷ெ(𝒙, 𝒚) = ඥ(𝒙 − 𝒚)்𝑺ିଵ(𝒙 − 𝒚) = ඥ(𝒙 − 𝒚)ଶ = 𝐸𝐷(𝒙, 𝒚) (5)

The Mahalanobis distance, as one of the most common measures in multivariate

statistics, is closely related to principal components analysis (PCA), another very common

statistical procedure. Statistically, PCA finds lines and planes in the multi-dimensional space

that best approximate the data regarding least-squares of residuals. The procedure is

shown in Figure 2–9. PCA places the observations in the high-dimensional variable space

and centers the mean to zero by subtracting the variable averages. The scores of the first

principal component (PC1), t1, are calculated by finding the line that best approximates the

data in the least-squares sense and projecting the data onto this line to get a coordinate

value along the PC-line. A second principal component (PC2) is calculated by finding another

PC-line orthogonal to the PC1. Then the scores of PC2, t2, are also calculated by projecting

the observations onto PC2-line and get coordinates. Figure 2–9 graphically visualizes the

data set structure by creating two-dimensional PCs to investigate data set in higher

dimensions. PCA is commonly used in exploratory data analysis and for making predictive

models.

30

Figure 2–9. Principal components analysis (PCA) on forming two PCs as a window into the
multidimensional space (source: sartorius.com)

PCA procedures share similarities with Mahalanobis distance, as the squared

Mahalanobis distance is equal to the sum of squares of the scores of all non-zero

standardized principal components. In the k dimension, the corresponding equation is

shown below by Eq. (6), where ti represents the score of the standardized principal

component in dimension i.

𝐷ெ
ଶ = 𝑡ଵ

ଶ + 𝑡ଶ
ଶ … + 𝑡௞

ଶ (6)

The most common use for the Mahalanobis distance is to find multivariate outliers,

which indicates unusual combinations of variables in corresponding dimensions. Figure 2–

10 shows an example of Mahalanobis distance contour plot of 100 random draws from a

bivariate normal distribution. The Mahalanobis distance can be used to determine whether

31

a sample is an outlier. For example, indicated by Figure 2–10, if Eps (distance threshold to

be an outlier) is defined to be 0.02, both points in red square and the purple circle will be

considered as outliers to this cluster.

Figure 2–10. An example of Mahalanobis distance contour plot on 100 random points with
mean zero, unit variance, and 50% correlation. A blue square notes the centroid defined

by the marginal means. (source: statisticshowto.com)

32

3. Chapter 3: Methodology

This chapter provides details about the proposed algorithms and the clustering

framework implementation in four steps. Section 3.1 describes a novel representation of

marine trajectory data by increasing the dimensions of the vessel’s positioning data by

considering additional attributes such as velocity and direction in the clustering process,

along with the geospatial information. Section 3.2 describes how the DBSCAN clustering

method is enhanced by integrating the Mahalanobis Distance metric, taking into account

the correlations of the position cluster points aiming to make a better identification process

as well as reducing the computational cost. This section also gives detailed information

about the definitions of the enhanced DBSCAN and pseudo-codes of the proposed

algorithms. Section 3.3 describes a proposed method to select the parameter needed in the

proposed algorithms automatically based on the data itself. Section 3.4 describes the

designed frameworks implementing the algorithms on big data. This section presents three

frameworks in three layers by which patterns can profile the vessel behaviors through

finding clusters within historical data.

3.1 Novel Representation of Marine Trajectory Data

The traditional densely based clustering works with two-dimensional data (i.e.,

location data). Latitude and longitude are the only spatial components to be considered,

and the 2-dimensional points are clustered together based on their spatial density.

33

Increasing the data dimensions can change the concept of "density reachability" and

enhance the clustering model abilities to find more complex unknown similarities between

the data rather than based on latitude and longitude.

In this research, it is proposed to extend each trajectory 2D point data record into a

five-dimensional vector, as shown at Eq. (7), Latitude, Longitude, also taking into account

Speed over Ground (SOG), Course over Ground (COG), and Heading. SOG is defined by the

actual speed at which the GPS unit is moving over the ground. COG describes motion

direction with respect to the ground that a vessel has moved relative to the magnetic north

pole or geographic north pole. Heading describes the direction that a vessel is pointed at

any time relative to the magnetic north pole or geographic north pole. The difference

between Heading and COG is presented in Figure 3–1. Besides Latitude and Longitude

describing the vessels’ geographic location, Speed over Ground (SOG), Course over Ground

(COG), and Heading are also essential parameters to describe vessels behaviors.

Considering SOG, COG, and Heading when clustering AIS data can bring deeper insights on

marine transportation from the clustering results.

34

Figure 3–1. Difference between COG, the direction of motion with respect to the ground,
①, and Heading, the direction that a vessel is pointed at, ② (credit: Wikipedia user

WolfgangW)

A marine transportation trajectory is defined as a finite sequence 𝑻 =

((𝒙𝟏, 𝑡ଵ), (𝒙𝟐, 𝑡ଶ), … , (𝒙𝒎, 𝑡௠)) . Each data point 𝒙𝒊 corresponds to a multi-dimensional

feature vector representing the moving object by a set of [𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒, 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒, 𝑆𝑂𝐺, 𝐶𝑂𝐺,

𝐻𝑒𝑎𝑑𝑖𝑛𝑔] at time point ti, where ti < ti+1 for i =1, ..., m-1.

𝒙 = [𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒, 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒, 𝑆𝑂𝐺, 𝐶𝑂𝐺, 𝐻𝑒𝑎𝑑𝑖𝑛𝑔]் (7)

𝑻 = ((𝒙𝟏, 𝑡ଵ), (𝒙𝟐, 𝑡ଶ), … , (𝒙𝒎, 𝑡௠)) (8)

For the sake of consistency and standardization, the data is normalized between [-

1, 1] as required by most machine learning techniques, including DBSCAN. By obtaining the

z-score of each attribute of each data, this normalization process is done by Eq. (9). After

35

normalization, all five attributes share the same mean value, 𝝁, the same variance value, 𝜎,

and the same weight when clustering.

𝑧 =
𝒙ି𝝁

ఙ
 (9)

3.2 Integration of Mahalanobis Metric to DBSCAN

As mentioned in Section 2.3, traditional DBSCAN clustering iterates from point to

point, calculate the distances among points, identify core points and cluster the surrounding

points together. The traditional DBSCAN using Euclidean Distance has two main

shortcomings: 1) high computation costs, and 2) only local characteristics are taken into

account when identifying the cluster. The proposed clustering method, integrated with the

Mahalanobis Distance metric, resolves the previously mentioned challenges by increasing

the computational efficiency and considering the correlation between the point within the

cluster.

When the traditional DBSCAN needs to identify if a point is an outlier, it finds the

points around it and calculates the Euclidean distance to them; then it calculates the

number of points within defined Eps and compares it to defined MinPts to determine if the

point is a core point, a border point, or an outlier. The computational cost is high, even

though with the help of spatial indexing. Furthermore, only some of the points around the

target point play a role in defining the target point, but not the whole cluster. Integrating

Mahalanobis distance enhances clustering performance on the unevenly distributed

36

dataset. As shown in Figure 3–2, when determining whether Point A and Point B belong to

the cluster, the Mahalanobis distance is calculated and compared to defined Eps. Only one

step of the calculation is required, and the correlation between the point to the whole

cluster has been considered.

Figure 3–2. A point classification process using Mahalanobis Distance – even Point A has a
longer Euclidean Distance to the centroid, but Point B has a much longer Mahalanobis

Distance to this cluster (credit: Rick Wicklin on The DO Loop)

The corresponding definitions for implementing the proposed enhanced DBSCAN

approach are given as follows.

Definition 1: Neighbourhoods is defined through 1.1 and 1.2 Definitions.

Definition 1.1: Neighborhoods of points
Given a group D of moving trajectory points, a point q is defined as a neighborhood

of the point p when {q ∈ D| DM (p, q) ≤ Eps} is satisfied.

37

Definition 1.2: Neighborhoods of Pre-defined Clusters
Given a group D of moving trajectory points, the neighborhoods of a Pre-defined

Cluster C, which at least has two points, are defined by {q ∈ D|DM (q, C) ≤ Eps}.

Definition 2: Core point

A core point contains at least a minimum number (MinPts) of neighborhoods.

Definition 3: Density-reachable is described through 3.1 and 3.2 Definitions.

Definition 3.1: Density-reachable to points
Given a database D of moving trajectory points, a point p is density-reachable from

the point q with respect to Eps and MinPts if there is a chain of points p1, …, pn, p1 = p
and pn = q such that pi+1 is within the Eps-neighborhood of pi, for 1 ≤ i ≤ n, pi ∈ D.

Definition 3.2: Density-Reachable to Pre-defined Clusters

A point p is directly density-reachable from a Pre-defined Cluster C, if p is within
the Eps-neighborhood of C

Definition 4: Density-Based Cluster

A Density-Based Cluster C is a non-empty subset of D satisfying the following
"maximality" and "connectivity" requirements:

∀p: if p is Density-Reachable from C with respect to Eps, then p ∈ C.
∀p ∈ C: p is Density-Reachable to C with respect to Eps
∀q, p ∈ C: p is Density-Reachable to q

Definition 5: Outlier

Given a database D of moving trajectory points and Clusters C1, C2, …, Ck, a point p is
an outlier if p is not belonging to any cluster Ci

As discussed in Section 2.3, the key idea of DBSCAN is that for each point of a cluster,

the neighborhood of a given radius has to contain at least a minimum number of points.

Here in this thesis, we adopt this idea and consider three other attributes, SOG, COG, and

38

Heading. The intuition behind this is that the neighbors of a trajectory point should be

geospatially near enough and with similar speed and traveling direction. Thus, we can

modify the original definition of Eps-neighborhood in traditional DBSCAN to Definition 1.1.

Note that DM(p, q) is the Mahalanobis distance between p and q instead of Euclidean

distance because it is necessary to consider the correlation of the whole cluster in five

dimensions to calculate distances.

We also innovated Definition 1.2 to describe the relationship between points and

clusters. Unlike the traditional DBSCAN, which defines Neighborhoods of Clusters by

density-reachable to a core point, Definition 1.2 gives a direct way to determine

relationships between points and clusters by taking advantage of the Mahalanobis distance

metric. In the following, we also give the formal definitions of other essential notions for

our density-based algorithm.

From Definition 2, we can determine whether point q is a core trajectory point

according to Definition 1.1. Because if the number of Neighborhoods of points is larger than

MinPts, q is a core trajectory point.

By combining Definition 1.1, Definition 2, and Definition 3.1, we can start to grow

the clusters using the unsupervised component. If the point q is a Neighborhood of the point

p, and the point p is a core point that belongs to a cluster, then the point q can be identified

to belong to the same cluster as the core point p. Then the number of neighborhoods of the

point q is calculated to compare with MinPts. If the point q is a core trajectory point, the

cluster growing process continues. If the point q is not a core trajectory point, the point p

39

is called Border Trajectory Point, and its neighborhoods cannot be grown into the cluster

from this route. Also, we innovated the definition of Definition 3.2 to grow the clusters.

Unlike Definition 3.1, which grows the clusters through Neighborhoods of the core

points, Definition 3.2 gives a direct way to grow the clusters by calculating the Mahalanobis

distance metric between points and clusters. The Eps-Neighborhood of the cluster will be

identified as part of the cluster.

So, summarizing the definitions 1-3, it is necessary to define Density-Based Cluster

as Definition 4 based on the relations above (Eps-Neighborhood and Density-reachable).

We conclude that any points belong to a cluster will either be Eps-Neighborhoods to the

cluster or one or more of its core points. Any points that belong to the cluster should either

be Eps-Neighborhoods to each other or Density-reachable to each other. Any other points

which do not belong to any clusters are considered outliers.

The corresponding algorithms for implementing the proposed enhanced DBSCAN

approach are given as follows.

Algorithm 1 Proposed DBSCAN Unsupervised (D, Eps, MinPts):
1. Select the two parameters Eps and MinPts;
2. Mark all the points in the dataset as unclassified and set C = 0;
3. for each point p in the Dataset D:
4. If the point's label is not 0:
5. continue to the next point;
6. Find all of P's neighboring points, regionQuery(D, P, Eps);
7. If the number of neighboring points is below MinPts:
8. this point is noise;
9. Else:
10. C += 1;

40

11. use this point as the seed for a new cluster, growCluster(D, labels, P,
NeighborPts, C, Eps, MinPts);

12. Return labels

Algorithm 1.1 regionQuery(D, P, Eps):
1. neighbors = [];
2. For each point in the dataset:
3. If the Mahalanobis distance is below the threshold Eps:
4. add it to the neighbors list;
5. Return neighbors;

Algorithm 1.2 growCluster(D, labels, P, NeighborPts, C, Eps, MinPts):
1. Assign the cluster label, C, to the seed point, P;
2. for all neighbors of P, Pn:
3. If Pn labeled as noise:
4. change Pn label to C;
5. Elif Pn has no labels (0):
6. label Pn as C;
7. Find all the neighbors of Pn, PnNeighborPts = regionQuery(D,

Pn, Eps);
8. If the number of neighboring points is above MinPts:
9. NeighborPts = NeighborPts + PnNeighborPts

Algorithm 2 Proposed DBSCAN Supervised (D, Training_D, Eps):
1. Select the parameter Eps;
2. for each pre-defined cluster in the Training Dataset:
3. Calculate Inverse of the Covariance Matrix of the pre-defined cluster;
4. Calculate Mean matrix of the pre-defined cluster;
5. for each point p in the Dataset D:
6. Calculate Mahalanobis Distance to each pre-defined cluster;
7. Find the one with the closest Mahalanobis Distance;
8. If the distance is above Eps:
9. this point belongs to the pre-defined cluster (share the same label);
10. Else:
11. this point is an outlier;
12. Return labels

41

Algorithm 1 presents the procedure of using the unsupervised component to

discover clusters. It requires three parameters as input, including the Dataset D and two

predefined parameters, Eps and MinPts. As mentioned in the definitions above, Eps sets the

neighborhoods' threshold, and MinPts limits the number of the core points. The algorithm

iterative through every point (line 3) and then find its Eps-neighborhoods by Algorithm 1.1

(line 6). If the number of Eps-neighborhoods is above MinPts (line 7), by definition, the point

is a core point and then grow the cluster from this point by Algorithm 1.2 (line 11). Then

the procedure iterates until all the points have been visited and labeled. By the end, all the

points density connected are clustered together, and others are identified as outliers. The

complexity of Algorithm 1 in the proposed DBSCAN can be 𝑂(𝑛 ∗ log(𝑛)) with the use of

indexing to accelerate the computation.

Algorithm 2 presents the procedure of using the supervised component to classify

new observations into pre-defined clusters. It requires three parameters as input, including

the new observations Dataset D, the training Dataset Training_D, and a pre-defined

parameter Eps. As mentioned in the definitions above, Eps sets the neighborhoods of

clusters' neighborhoods and finds the outliers. The algorithm iterative through every pre-

defined cluster in the training dataset (line 2) and then memorize associated the Inverse of

the Covariance Matrix (line 3) and the Mean matrix of the pre-defined clusters (line 4). The

algorithm iterative through every point in the new observations Dataset D (line 5) and

classifies each point by calculating the Mahalanobis distance to each cluster (line 6 and 7).

Then the procedure iterates until all the points have been visited and labeled. By the end,

42

all the points close to pre-defined clusters are classified, and others are identified as outliers.

The complexity of Algorithm 2 in the proposed DBSCAN is 𝑂(𝑛) with the use of indexing to

accelerate the computation.

In summary, the proposed algorithm is composed of two parts: an unsupervised

clustering method and a supervised one. The unsupervised algorithm finds the density

reachability of the points in the defined high dimensional space. The unsupervised

algorithm component integrates the Mahalanobis Distance metric considering the

correlation to the whole dataset. In this way, density-based clusters are generated by

grouping similar trajectory points. The supervised algorithm component takes advantage of

the pre-defined clusters generated from the previous step, and the user input Eps

parameter by an auto-selection method will be mentioned in the next section. The

preliminary model reads each point to classify them. The Mahalanobis distances to each

pre-defined clustered are computed, and the distance is compared with the user input Eps

term. If the Mahalanobis distance is smaller than Eps, the point can be identified to belong

to the cluster and then update. If the Mahalanobis distance is greater than Eps, then this

point is an outlier to this cluster. This step can run iteratively until no outliers are closer than

Eps to all clusters.

43

3.3 Method for the Auto-Selection of the Enhanced DBSCAN

Parameters

As mentioned before, DBSCAN requires users to input two parameters (MinPts and

Eps), and the clustering results can be very sensitive to the parameters selection. In addition,

in this work, the map-reduce method for handling big data problems is adopted. Thus, it is

required to have a universal way to select the parameters so that the clustering results in

the first layer from each MMSI can remain consistent. This research proposes a simple and

straightforward way to obtain a good initial selection for the two parameters of the

proposed enhanced DBSCAN method.

The detailed algorithm is given as follows:

Algorithm 3 Find_Eps_MinPts (D):
1. Set MinPts = max(10, int(0.001 * len(D))) ;
2. Calculate Covariance matrix of D;
3. Calculate Inverse of the Covariance matrix;
4. K = MinPts – 1;
5. for each point p in the Dataset D:
6. get K nearest Mahalanobis Distance;
7. save the value;
8. // Find “the last spike”
9. Eps = round(q3(kn_dists)+1.5*iqr(kn_dists), 3);
10. Eps = min(Eps, max(D))
11. Return Minpts, Eps

The proposed method finds MinPts by selecting 0.1% of the sample size. By this

method, MinPts are usually around 30, concerning that most of the datasets of each MMSI

44

have around 30,000 trajectory points. The MinPts are required to be at least ten since some

dataset’s data sizes are too small to have a valid MinPts parameter. The Eps are calculated

by the distribution of the k-nearest-neighbor distances of each data point. The method is

popular for understanding how the data distributed before setting clustering parameters.

Ideally speaking, multiple Eps should be selected corresponding to each distance level to

form clusters.

Nevertheless, due to the limitation of the DBSCAN, we only choose the Eps by

prioritizing to filter outliers. The upper limits of the KNN distribution are selected as Eps.

Moreover, the upper limit is defined by the upper quartile sum and 1.5 times the

Interquartile Range (IQR). The complexity of the proposed parameter auto-selection

method can be 𝑂(𝑛 ∗ log(𝑛)) with the use of indexing to accelerate the computation.

3.4 Implementation of the Clustering Framework

This section describes the designed frameworks that are capable of profiling vessel

behaviors and detecting abnormal vessel trajectories. The frameworks are developed by

applying the proposed clustering algorithm described in previous sections 3.1 – 3.3. Figure

3–4 shows the overview to process historical AIS data to generate the model (represented

by a pink square). By this framework, the vessel behaviors can be profiled by behavior

patterns through finding clusters within historical data and generate the model.

45

Figure 3–4. The Framework of extracting behavior patterns from actual AIS Data and

applying the model to new observations

Behavior patterns of marine transportation traffic are profiled based on the

clustering results. These clusters are used to model the AIS data within a certain region and

monitor vessels installed with AIS equipment. The model then can be applied to new AIS

observations to provide the desired outcome, including vessel behavior reports, action

recommendations, and even behavior prediction. The model has monitoring purposes for

crewed vessels and determining if the vessel has some anomaly behaviors. Autonomous

vessels can also take advantage of the model for planning the route from selecting

sequential clusters and getting recommendations for actions.

In order to apply the algorithms to big data, in this research, we adopt a map-reduce

framework to cluster smaller pieces of AIS data divided from the raw data based on

46

Maritime Mobile Service Identity (MMSI), then merge them and generate the final

classification model be used for reading the new observations. The method is based on the

assumption that data under each MMSI, which has been used for identifying individual

vessel trajectories, should have its specific behavior patterns.

The proposed first layer clustering algorithm groups similar trajectory points within

each MMSI and define this specific trajectory stage. The second layer clustering merges the

clusters from each MMSI data pieces, combining similar clusters and generating the final

clusters. Each cluster from the first layer clustering has been profiled as a behavior vector

to represent the cluster. The second layer cluster combines similar clusters by clustering

similar behavior vectors. The same clustering algorithm proposed in section 3.2 is utilized

in this step. The selections of the parameters differ from the method proposed in section

3.3. Instead of prioritizing filtering outliers, the parameter setting in this step prioritizes the

merging of the most similar clusters. Therefore, the Minpts and Eps are manually adjusted

to be much smaller than the recommendation value from the proposed parameter auto-

selection method.

 In this way, the algorithms run efficiently on processing big data. The details of the

proposed hierarchy clustering structure are shown in Figure 3–5, representing the

clustering process (orange square) in Figure 3–4.

47

Figure 3–5. A Schematic overview of the clustering hierarchy – Segmentation of actual AIS
data into smaller pieces and merging of the Clustering Results

Figure 3–6 presents the framework of clustering a dataset after integrating the

Mahalanobis distance into DBSCAN, representing the first layer clustering in Figure 3–5. The

raw data is firstly randomly split into two portions ensuring both datasets (Portion 1 and

Portion 2) share the same distributions by setting the stratify parameter. Portion 1 is

48

required to contain at least 10,000 trajectory points so that the prepared training data is

not biased due to overfitting. Usually, when the raw data has tremendous size, 5% of the

raw data will have larger than 10,000 trajectory points, which is large enough to be selected

to be used for preparing labeled training data.

The proposed clustering algorithm is a semi-supervised algorithm composed of an

unsupervised clustering component and a supervised one. The algorithm can generate

labeled data first in an unsupervised way with a smaller portion of the data. Then the pre-

defined model from the last step reads the rest inquiry data and keeps updating itself.

Figure 3–6 shows that the unsupervised algorithm component is implemented on Portion

1 (in orange) to create pre-defined clusters. The supervised component then read Portion

2 (in green) to update the model into a final model. By this method, only a small amount of

effort is allocated in the unsupervised step, which has highest runtime complexity in the

whole clustering process. The two clustering steps are consistent with a similar approach,

implementing the Mahalanobis Distance metric in the clustering process.

49

Figure 3–6. Details of the semi-supervised clustering process - a combination of an

unsupervised clustering component and a supervised component

Figure 3–6 is related to the definitions and algorithms described in Section 3.2.

Definition 1.1 and Definition 2 apply to clustering step 1 in Figure 3–6 when implementing

the unsupervised component. Definition 1.2 describes the relationship between points and

clusters, and Definition 3.2 which grows the clusters, applies to clustering step 2 in Figure

3–6 when implementing the supervised component.

50

4. Chapter 4: Data and Experiments

This section presents details about the experiments implementing the proposed

algorithms into actual AIS data and validations of the results. Section 4.1 describes the AIS

data characteristics and the data sources, and how the synthetic data is processed and

generated for testing. Section 4.2 describes the process of evaluating and validating the

proposed algorithms. This section describes what evaluation metrics are selected, how four

separated tests are designed and displays the results to validate the enhanced DBSCAN

clustering performance. A sensitivity analysis is designed for validating the parameter auto-

selecting method, which is also described in the section. Section 4.3 describes the results of

two case studies where the proposed algorithm has been applied using two big datasets

and shows examples of the application of the proposed algorithms and frameworks.

4.1 Data and Data Pre-Processing

Reliable open-sourced data sources for studying vessel behaviors and generating

nautical routes such as the historical and real-time Automatic Identification System (AIS)

data (Silveira, Teixeira and Soares, 2013; Sheng and Yin, 2018) have ben used for the

implementation, testing and validation of the proposed approach. AIS is an automatic

tracking system to identify and locate vessels by exchanging data with other nearby ships,

AIS base stations, and satellites. According to the Safety of Life at Sea (SOLAS) convention,

ships of 300 gross tonnages and upwards in international voyages, 500 and upwards for

51

cargoes not in international waters, and passenger's vessels are obliged to be embedded

with AIS equipment, making AIS data abundant globally (IMO, 2000). Furthermore, AIS

becomes a worldwide data standard, and therefore this coherent source of information can

be suitable for global marine transportation traffic modeling and analysis.

AIS data is considered the raw data source of marine transportation, as AIS data is

abundant and coherent globally. AIS contains 27 message types defined in ITU

(International Telecommunication Union) recommendation M.1371-4, and two classes of

shipboard equipment: class A (used mainly by commercial vessels) and class B (used mainly

by fishing vessels and pleasure craft). Among 27 message types and two classes, data of

Class A and Message type 1, 2, and 3 is suitable for this research because it contains the

desired attributes including date/time; Maritime Mobile Service Identity (MMSI); speed

over ground (SOG); latitude, longitude; course over ground (COG) and heading. Figure 4–1

shows the overview of parsed AIS data.

Figure 4–1. Overview of AIS data characteristics

Though, in this research, we use open-sourced AIS data as the primary data source

for the proposed algorithm testing. Three scales of data sets are used for studying, and they

52

are stored in MongoDB data management system. A smaller sample dataset is used for the

algorithm testing purposes, and two larger AIS datasets are chosen for final result validation.

The selected small dataset for algorithm testing is Data of Wolfe Island Ferry in January

2017.

As shown in Figure 4–2, this dataset describes the Wolfe Island Ferry traveling

between Kingston to port at Wolfe Island. Synthetic data are generated as additional

supportive datasets to test the clustering algorithm's performance under two scenarios. For

instance, the optimized DBSCAN algorithm should identify outliers and noises from the main

trajectories. Also, the algorithm should distinguish different paths from intersections. So,

two synthetic datasets are created based on the two synthetic datasets of Wolfe Island

Ferry AIS data in January 2017, traveling between Kingston and Wolfe Island, for testing the

two mentioned scenarios, as shown in Figure 4–2. The real data are shown in red color, and

the synthetic outliers and crossing data in blue. One thousand noisy points were randomly

generated around the main trajectory in Figure 4–2a, while 2000 points were rotated by 90

degrees in Figure 4–2b.

53

4-2a. Synthesized Dataset One to test outlier detection performance

4-2b. Synthesized Dataset Two to test the performance of distinguishing intersections

Figure 4–2. Two synthesized datasets for algorithm testing and performance evaluation

54

The proposed clustering algorithm has been applied on two big datasets as case

studies, and models to monitor vessels in those regions have been generated. The first one

is open-sourced data in the Gulf of Mexico Region (MarineCadastre.gov | Vessel Traffic Data,

no date), and the second one is AIS data purchased from ORBCOMM (Saint Lawrence

Seaway, from the Gulf of St. Lawrence to Lake Superior. Figure 4–3 presents all the raw AIS

point data of the two datasets.

4-3a. Raw AIS point data in the Gulf of Mexico Region

55

4-3b. Raw AIS Point Data of the Saint Lawrence Seaway Region

Figure 4–3. Two Raw AIS Big Data

The Gulf of Mexico Dataset is around 200 MB describing the whole month’s vessel

movement history of January 2017. The data contains around 1.2 million trajectory points

to be clustered. The Saint Lawrence Seaway Region Dataset is around 17 MB describing the

vessel movement history from 1st June 2017 to 3rd June 2017. The data contains around

135 thousand trajectory points to be clustered.

56

4.2 Testing and Evaluation Using Synthetic Data

The evaluation methods can be divided into two categories: internal evaluation and

external evaluation. The differences between the two evaluation categories are whether

external benchmarks or labels are referred to in the evaluation process. Internal evaluation

methods evaluate a clustering performance based on the clustering results themselves.

External evaluation methods evaluate clustering results based on external pre-defined

labels and benchmarks as ground truth. Besides, the estimated number of clusters and

noises are selected for evaluating the algorithms. The metrics selected in this research are:

the estimated number of clusters and noises, Entropy (Homogeneity), Purity

(Completeness), V-Measure, Adjusted Rand Index, F-measure (F1 Score), Davies-Bouldin

Index, Silhouette Coefficient, and Calinski-Harabasz Index. Since each selected criterion

indicates one aspect of the clustering performance, all of those indicators are utilized for

holistic evaluation.

4.2.1 Internal Evaluation

The selected internal evaluation methods are the Davies-Bouldin Index (Davies and

Bouldin, 1979), Silhouette Coefficient (Rousseeuw, 1987), and Calinski-Harabasz Index

(Caliñski and Harabasz, 1974). Table 4–1 states the detailed definitions of these internal

evaluation metrics. All of them assign a ratio describing the average similarity within a

cluster to the difference between clusters. Davies-Bouldin Index measures the similarities

within clusters as the average Euclidean distance of all data points to the cluster centroid

57

and measures the difference between clusters as the distance between cluster centroids.

The lower the Davies-Bouldin Index is, the better the clustering performance is. Silhouette

Coefficient measures the similarities within clusters as the mean intra-cluster distance and

measures the difference as the mean nearest-cluster distance. Silhouette Coefficient ranges

from +1 (the best) to -1 (the worst). Both the Davies-Bouldin Index and Silhouette

Coefficient indicate that a good clustering result should group all closed points while

clusters are distant from one another. The Calinski-Harabasz Index is also known as the

Variance Ratio Criterion. The score is defined as the ratio between the within-cluster

dispersion and the between-cluster dispersion. A better clustering result has a higher

Calinski-Harabasz Index value.

Table 4–1. A comprehensive list of internal performance metrics for evaluating clustering
results

Performance

Metric
Equation Parameters

Davies-Bouldin

Index
𝐷𝐵 =

1

𝑛
෍ max

௝ஷ௜
(

𝜎௜ + 𝜎௝

𝑑(𝑐௜ , 𝑐௝)
)

௡

௜ୀଵ

 𝒏 is the number of clusters,
 𝒄𝒊 is the centroid of cluster 𝒊,
 𝝈𝒊 is the average distance of all

elements in cluster 𝒊 to the centroid
𝒄𝒊,

 𝒅൫𝒄𝒊, 𝒄𝒋൯ is the distance between
centroids 𝒄𝒊 and 𝒄𝒋

Silhouette

Coefficient 𝑆 =

∑ ቊ
𝑏(𝑖) − 𝑎(𝑖)

𝑚𝑎𝑥൫𝑎(𝑖), 𝑏(𝑖)൯
ቋ

𝑛

 a is the mean intra-cluster distance,
 b is the mean nearest-cluster

distance, is the distance between a
sample and the nearest cluster that
the sample is not a part of,

 n is the total number of points

58

Calinski-Harabasz

Index

𝑠(𝑘) =
𝑇𝑟(𝐵௞)

𝑇𝑟(𝑊௞)
∗

𝑁 − 𝑘

𝑘 − 1

Where:
 𝑩𝒌 is the between-group

dispersion matrix

𝑩𝒌 = ෍ 𝒏𝒒൫𝒄𝒒 − 𝒄൯൫𝒄𝒒 − 𝒄൯
𝑻

𝒒

 𝑾𝒌 is the within-cluster dispersion
matrix.

𝑊௞ = ෍ ෍ ൫𝑥 − 𝑐௤൯൫𝑥 − 𝑐௤൯
்

௫∈஼೜

௞

௤ୀଵ

 𝑵 be the number of points in our
data,

 𝑪𝒒 be the set of points in cluster q,
 𝒄𝒒 be the center of cluster q,
 𝒄 be the center of 𝑬,
 𝒏𝒒 be the number of points in

cluster 𝒒.

However, the drawback of the internal criteria is obvious. High scores on an internal

measure do not necessarily imply a more effective clustering method. Some of the

clustering methods, take K-means as an example, optimize the clustering result using a

similar model. Thus, internal criteria will be biased towards them and naturally assign them

with higher scores. Therefore, the internal evaluation metrics only provide a reference to

understand the structure of the clusters. The clustering performance evaluation cannot

entirely depend on them.

4.2.2 External Evaluation

The external evaluation methods measure how close the clustering result is to the

predetermined ground truth. Table 4–2 states the detailed definitions of these external

evaluation metrics. The selected external evaluation methods are Homogeneity,

Completeness, V-measure (Rosenberg and Hirschberg, 2007), Adjusted Rand Index (Rand,

59

1971), and F1 Score/F-Measure (Sasaki and Fellow, 2007). Homogeneity, completeness, and

V-Measure scores are the metrics to evaluate the clustering performance based on

normalized conditional entropy measures of the clustering labeling. Entropy is a measure

of the amount of disorder in a vector. Homogeneity score (h) maximizes when all of its

clusters contain only data points from a single class. Completeness score (c) maximizes

when all the data points from a given class are elements of the same cluster. The V-measure

is the harmonic mean between homogeneity and completeness. All three metric scores

range from 0 to 1. The greater values indicate better clustering performance. Adjusted Rand

Index and F1 Score measures the clustering results' overall accuracy compared to the

ground truth. The Rand Index measures the percentage of correct decisions, which is simply

accuracy. The Rand index gives equal weight to false positives and false negatives. However,

separating similar documents (FN) is usually worse than putting pairs of different

documents in the same cluster (FP). To solve this problem, F-measure penalizes FN more

strongly than FP by selecting a value β > 1, thus giving more weight to recall. The greater is

the F-measure, the better is the clustering results.

60

Table 4–2. A comprehensive list of external performance metrics for evaluating clustering
results

Performance

Metric
Equation Parameters

Homogeneity

𝑐 = 1 −
𝐻(𝐾|𝐶)

𝐻(𝐾)

Where:

𝑯(𝑪) = − ෍
𝒏𝒄

𝒏
∗ 𝐥𝐨𝐠 (

𝒏𝒄

𝒏
)

|𝑪|

𝒄ୀ𝟏

𝐻(𝐶|𝐾) = − ෍ ෍
𝑛௖𝑘

𝑛
∗ log (

𝑛௖,௞

𝑛௞

)

|௄|

௞ୀଵ

|஼|

௖ୀଵ

 𝒏 is the total number of
samples,

 𝒏𝒄 and 𝒏𝒌 belong are the
number of samples of class
C and class K respectively,

 𝒏𝒄,𝒌 are the number of
samples divided from class
C to class K.

Completeness 𝒉 = 𝟏 −
𝑯(𝑪|𝑲)

𝑯(𝑪)
 Same as Homogeneity

V-measure

𝑣 =
(1 + 𝛽) ∗ ℎ ∗ 𝑐

𝛽 ∗ ℎ + 𝑐

By default, when beta equals 1, v-measure is
defined by:

𝒗 = 𝟐 ∗
𝒉 ∗ 𝒄

𝒉 + 𝒄

Same as Homogeneity

61

Adjusted Rand

Index and F1

Score (F-

Measure)

𝑹𝑰 =
𝑻𝑷 + 𝑻𝑵

𝑻𝑷 + 𝑭𝑷 + 𝑭𝑵 + 𝑻𝑵

𝑭𝜷 =
(𝜷𝟐 + 𝟏)𝑷𝒓

𝜷𝟐𝑷𝒓 + 𝑹𝒄

When by default, β = 1:

𝐹 =
2𝑃𝑟 ∗ 𝑅𝑐

𝑃𝑟 + 𝑅𝑐

 TP: True Positive, assigns
two similar documents to
the same cluster

 FP: False Positive, assigns
two different documents to
different clusters

 TN: True Negative, assigns
two dissimilar documents
to the same cluster

 FN: False Negative, assigns
two similar documents to
different clusters

 Precision: 𝑷𝒓 =
𝑻𝑷

𝑻𝑷ା𝑭𝑷

 Recall: 𝑹𝒄 =
𝑻𝑷

𝑻𝑷ା𝑭𝑵

However, the external evaluations require the assumption that a factual ground truth

exists for any real or synthetic dataset, and human experts can generate them as training

data. Besides the challenges of creating accurate ground-truth data, the core concept of

clustering methods does not entirely fit the assumption. Various clustering methods can

group the data while discovering complex but unknown similarities between the data. The

given ground truth will exclude any other possibilities to cluster the dataset. Thus, the

external evaluation uses subjective ground truth and evaluates how close the clustering

results to it. The ground truth labels are manually pre-defined for the two synthesized

datasets.

4.2.3 Enhanced DBSCAN Algorithm Performance Evaluation

In this section, experiments are performed to evaluate the proposed approach's

effectiveness by comparing it with various commonly used machine learning algorithms.

62

The clustering results from those algorithms are used as a reference on the testing datasets.

Since the proposed algorithm has two components: unsupervised components for

generating clusters in the first place and the supervised component that uses the previous

result as training data to label the rest, this section evaluates two parts of the algorithms

separately. Thus, the selected algorithms are also divided into two categories. The selected

unsupervised clustering methods are K-Means and traditional DBSCAN methods. The

selected supervised clustering methods are K Nearest Neighbors (KNN), Support Vector

Machines (SVM), and Artificial Neural Network (ANN).

K-Means method requires the user to input the k value as a pre-determined

parameter. K was input into both experiments on two datasets based on the ground truth.

Traditional DBSCAN also requires the user to input Eps and MinPts values as a pre-

determined parameter. The parameters were obtained accordingly by the parameter auto-

selection method proposed in Section 3.4, though with some adjustment. KNN requires the

user to input the k value as a pre-determined parameter, and k=5 was used in this

experiment.

The following Figure 4–4 presents the designed artificial neural network structure

(two hidden layers are omitted). The detailed structure is described as follows.

 An Input Layer: five neurons

 A Dense Layer: 128 neurons, with ReLU activation and L1 (Lasso Regression) and L2

(Ridge Regression) regularization whose parameter was set to be 0.01.

 A Dense Layer: 64 neurons with ReLU activation

63

 A Dense Layer: 32 neurons with ReLU activation,

 A Dense Layer: 16 neurons with ReLU activation,

 A Dense Layer: 8 neurons with sigmoid activation.

 An Output Layer: The number of neurons depends on how many pre-defined

clustered in the training data.

The input layer has five neurons, which are represented by five attributes of the

trajectory point. Those L1 and L2 regularizers add penalty as model complexity increases,

to avoid overfitting on noises in the training data. ReLU gives output zero for all negative

inputs, while returns any positive value back. The ReLU activation is selected in the

intermediate layers because it is simple and it consists of no heavy computation, making

the training process faster. The sigmoid activation function takes input and maps the

resulting values in between 0 to 1. Since what the last layer does is a binary classification

task to determine if the point belongs to corresponding class, the sigmoid activation is

selected. The number of neurons in the last dense layer depends on how many pre-defined

clustered in the training data. For example, if the data is in Class One out of five classes, the

output layer can be represented as [1, 0, 0, 0, 0].

64

Figure 4–4. Designed structure of the Artificial Neural Network to be used in algorithm
comparison (Two Hidden Layers Are Omitted)

Finding clusters and detecting outliers are the two performances to be evaluated in

this section, and both external evaluation and internal evaluation criteria are used in the

evaluation. Overall, this section presents four comparison groups categorized by the types

of clustering algorithms and clustering purposes. The four groups are clustering

65

performance of using unsupervised learning to discover clusters (Section 4.2.3.1), clustering

performance of using unsupervised learning to detect outliers (Section 4.2.3.2), the

performance of using supervised learning to classify new observations (Section 4.2.3.3), the

performance of using supervised learning to detect outliers (Section 4.2.3.4).

4.2.3.1 Clustering Performance of Using Unsupervised Learning to Discover Clusters

This section evaluates the proposed clustering method’s clustering performance on

discovering clusters by comparing it with other unsupervised learning algorithms. Figure 4–

5 shows comparison results among unsupervised learning algorithms implementing on

Dataset One. Figure 4–5a presents the synthesized ground truth for this comparison set. As

previously mentioned in Section 3.1, the proposed clustering framework utilizes the

unsupervised component of the raw data to discover the clusters first. The experiment only

uses 30% of the Dataset One to test the clustering performance by the same framework.

Since this section focuses on evaluating the performance of discovering clusters, the

synthesized outliers are filtered before implementing the algorithms. Figure 4–6 shows

comparison results among unsupervised learning algorithms implementing on Dataset Two.

Due to a smaller data size of Dataset Two, 40% of the Dataset Two are used for testing, and

Figure 4–6a presents the synthesized ground truth of Dataset Two.

66

4-5a. Ground Truth of Dataset One

4-5b. Clustering Result from K-Means

67

4-5c. Clustering Result from Plain DBSCAN

4-5d. Clustering Results from Enhanced DBSCAN

Figure 4–5. Comparing Enhanced DBSCAN's performance on discovering clusters from
synthetic dataset one to ground truth and other unsupervised clustering methods

68

4-6a. Ground Truth of Dataset Two

4-6b. Clustering Result from K-Means

69

4-6c. Clustering Result from Plain DBSCAN

4-6d. Clustering Results from Enhanced DBSCAN

Figure 4–6. Comparing Enhanced DBSCAN's performance on distinguishing intersections
from synthetic dataset two to ground truth and other unsupervised clustering methods

70

By visually evaluating the performance on discovering the clusters from Figure 4–5

and Figure 4–6 first, results from Plain DBSCAN and Enhanced DBSCAN is more similar to

the ground truth than the results from K-means. K-means requires the user to input k as a

pre-determined parameter, and ‘k=4’ and ‘k=5’ were input into both experiments on two

datasets based on the ground truth. K-means did not function well even though with the

pre-determined parameters. For example, as Figure 4–5b shows, Cluster 4 in Ground Truth

(the cluster in red in Figure 4–5a) was divided into two clusters by K-means (the cluster in

red and green in Figure 4–5b). The ground truth indicates that since the vessels keep the

same heading and speed within Cluster 4, making it simply the constant cluster is not

recommended to be divided. Figure 4–5b shows a wrong clustering result from K-means.

As shown in Figure 4–5c and Figure 4–5d, both Plain DBSCAN and Enhanced DBSCAN still

find outliers even though the outliers in the ground truth were filtered in the first place. The

results from both DBSCAN methods can be justified by the nature of DBSCAN algorithms

and the proposed parameter selection method mentioned in Section 3.4, that the most

deviated data within the dataset will be considered outliers. Both two DBSCAN methods

find more than four clusters, which is different from the ground truth.

Besides, as mentioned in Section 4.2.1 and Section 4.2.2, the proposed clustering

algorithm's performance is assessed using the selected metrics, external evaluation, and

internal evaluation metrics. Before evaluating the results by the selected metrics, some

divided clusters were combined to ensure evaluation is more valid, but the outliers were

71

not edited into any clusters. The action may favor K-means. Table 4–3 states the values of

the clustering performance metrics of all clustering algorithms.

Table 4–3. Clustering performance evaluation of various unsupervised methods on
discovering clusters and distinguishing intersections

Figure 4–7 to Figure 4–10 visualize the values of each clustering performance metric.

Various colors are used to represent different clustering methods. The x-axis represents

external evaluation attributes, and the y-axis represents the corresponding score.

Data Set Algorithms
Estimated
number of

clusters

Entropy /
Homogeneity

Purity /
Completeness

V-measure
Adjusted

Rand Index
Adjusted Mutual

Information
F1 Score

Silhouette
Coefficient

Davies-
Bouldin Index

Calinski-
Harabasz Index

Ground Truth 4 1 1 1 1 1 1 0.671 0.687 14512.862

K-Means 4 0.906 0.959 0.932 0.974 0.932 0.976 0.706 0.371 22519.854

Plain DBSCAN 5 0.879 0.879 0.879 0.956 0.879 0.97 0.65 0.781 12416.903
Enhanced
DBSCAN

5 0.934 0.967 0.95 0.985 0.95 0.986 0.666 0.49 14429.481

Ground Truth 5 1 1 1 1 1 1 0.557 0.586 528.491

K-Means 3 0.796 0.977 0.877 0.877 0.887 0.811 0.55 0.633 681.302

Plain DBSCAN 5 0.955 0.967 0.961 0.979 0.96 0.987 0.548 0.735 499.87
Enhanced
DBSCAN 5 0.949 0.981 0.965 0.979 0.965 0.986 0.552 0.562 492.229

Data Set
Two

Data Set
One

72

Figure 4–7. Performance evaluation of discovering clusters on unsupervised algorithms

using external evaluation metrics on dataset one

Figure 4–8. Performance evaluation of discovering clusters on unsupervised algorithms

using internal evaluation metrics on dataset one

0.7

0.75

0.8

0.85

0.9

0.95

1

Entropy /
Homogeneity

Purity /
Completeness

V-measure Adjusted Rand
Index

Adjusted
Mutual

Information

F1 Score

External Evaluation Attributes

External Evaluation of Unsupervised Algorithms on Dataset One

Ground Truth

K-Means

Plain DBSCAN

Enhanced DBSCAN

0.65

0.70

0.75

0.80

0.85

0.90

Silhouette
Coefficient

Davies-Bouldin
Index

Calinski-Harabasz
Index

N
o

rm
al

iz
ed

 V
a
lu

e

External Evaluation Attributes

Internal Evaluation of Unsupervised Algorithms on

Dataset One

Ground Truth

K-Means

Plain DBSCAN

Enhanced DBSCAN

73

Figure 4–9. Performance evaluation of distinguishing intersections and discovering

clusters on unsupervised algorithms using external evaluation metrics on dataset two

Figure 4–10. Performance evaluation of distinguishing intersections and discovering

clusters on unsupervised algorithms using internal evaluation metrics on dataset two

0.7

0.75

0.8

0.85

0.9

0.95

1

Entropy /
Homogeneity

Purity /
Completeness

V-measure Adjusted Rand
Index

Adjusted
Mutual

Information

F1 Score

External Evaluation Attributes

External Evaluation of Unsupervised Algorithms on Dataset Two

Ground Truth

K-Means

Plain DBSCAN

Enhanced DBSCAN

0.65

0.70

0.75

0.80

0.85

0.90

Silhouette
Coefficient

Davies-Bouldin
Index

Calinski-Harabasz
Index

N
o

rm
al

iz
e
d

 V
al

u
e
s

External Evaluation Attributes

Internal Evaluation of Unsupervised Algorithms on

Dataset Two

Ground Truth

K-Means

Plain DBSCAN

Enhanced
DBSCAN

74

The results indicate that the proposed approach has the best performance regarding

external evaluation by analyzing both Figure 4–7 to Figure 4–10 and Table 4–3. The ground

truth is one on every external evaluation attribute, and the enhanced DBSCAN has the

closest values to it compared to other algorithms. On analysis of Dataset One, the entropy

value of enhanced DBSCAN is 0.934. The purity value and F1 Score of enhanced DBSCAN is

0.934 and 0.986 respectively. It is found that the enhanced DBSCAN has the highest score

on these metrics, demonstrating the proposed algorithm has good accuracy, homogeneity,

and completeness.

Internal evaluation metrics' values were normalized into 0.5 – 1 so that all three

internal evaluation metrics can share the same scale. Since the internal evaluation does not

use ground truth as a reference, the internal evaluation values cannot determine which

algorithm gives a better clustering result. So, this experiment uses internal evaluation

methods to evaluate the ground truth and the values used as indicators for describing the

ground truth. The results of internal evaluation methods on other algorithms are compared

with the ground truth. The closer the values to the ground truth, the result is more similar

to the ground truth, and it has better clustering performance.

Overall, the enhanced DBSCAN results satisfy the expectation that it can keep a high

level of performance quality in terms of external evaluation metrics, compared to other

unsupervised algorithms. The enhanced algorithm results are also very similar to ground

truth concerning internal evaluation metrics with less than 0.1 difference.

75

4.2.3.2 Clustering Performance of Using Unsupervised Learning to Detect Outliers

This section evaluates the proposed clustering method’s clustering performance in

detecting outliers by comparing it with other unsupervised learning algorithms. Figure 4–

11 shows comparison results among unsupervised learning algorithms implementing on

Dataset One. Figure 4–11a presents the synthesized ground truth for this comparison set.

Same to Section 4.2.3.1, the experiment only uses 30% of the Dataset One to test the

clustering performance. One hundred multivariate outliers were artificially synthesized

around the main trajectory. The experiment tests binary classification performance to

compare the results from various unsupervised clustering algorithms on the same level.

4-11a. Ground Truth of Dataset One

76

4-11b. Clustering Result from K-Means

4-11c. Clustering Result from Plain DBSCAN

77

4-11d. Clustering Results from Enhanced DBSCAN

Figure 4–11. Comparing Enhanced DBSCAN's performance on detecting outliers from
synthetic dataset one to ground truth and other unsupervised clustering methods

By visually evaluating the performance on discovering the clusters from Figure 4–11

first, Plain DBSCAN and Enhanced DBSCAN have better performance on detecting outliers

than K-means. “K = 2” was input into K-Means to differentiate outliers from the main

trajectory. As shown in Figure 4–11b, some outliers are identified as main trajectory points,

and they are wrong. DBSCAN methods, by their natures, can find outliers based on the

“density connectivity” of each cluster. To modify the method for doing binary classification

tasks, parameters are adjusted from the results given by the proposed parameter selection

method mentioned in Section 3.4 for this purpose. As shown in Figure 4–11c and Figure 4–

78

11d, both Plain DBSCAN and Enhanced DBSCAN successfully identify synthesized outliers

but still find more outliers as they are also relatively deviated from the main route.

Besides, the proposed clustering algorithm's performance is assessed by the

selected metrics, both external evaluation, and internal evaluation metrics. Table 4–4 states

the values of the clustering performance metrics of all clustering algorithms.

Table 4–4. Clustering performance evaluation of various unsupervised methods on
detecting outliers

Figure 4–12 and Figure 4–13 visualize the values of each clustering performance

metric. Various colors are used to represent different clustering methods. The x-axis

represents external evaluation attributes, and the y-axis represents the corresponding

score.

Data Set Algorithms
Estimated

number of noise
points

Entropy /
Homogeneity

Purity /
Completeness

V-measure
Adjusted

Rand Index
Adjusted Mutual

Information
F1 Score

Silhouette
Coefficient

Davies-
Bouldin Index

Calinski-
Harabasz Index

Ground Truth 100 1 1 1 1 1 1 0.056 1.492 1487.002
K-Means 93 0.897 0.952 0.923 0.963 0.923 0.999 0.864 0.586 5493.952

Plain DBSCAN 107 0.976 0.952 0.964 0.985 0.964 1 0.854 0.661 5117.953
Enhanced
DBSCAN

109 0.944 0.88 0.911 0.956 0.911 0.999 0.846 0.725 4708.045

Data Set
One

79

Figure 4–12. Performance evaluation of outlier detection on unsupervised algorithms

using external evaluation metrics on dataset one

Figure 4–13. Performance evaluation of outlier detection on unsupervised algorithms

using internal evaluation metrics on dataset one

0.7

0.75

0.8

0.85

0.9

0.95

1

Entropy /
Homogeneity

Purity /
Completeness

V-measure Adjusted
Rand Index

Adjusted
Mutual

Information

F1 Score

External Evaluation Attributes

External Evaluation of Outlier Detection on Dataset One

Ground Truth

K-Means

Plain DBSCAN

Enhanced DBSCAN

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Silhouette
Coefficient

Davies-Bouldin
Index

Calinski-Harabasz
Index

N
o

rm
al

iz
e
d

 V
a
lu

es

External Evaluation Attributes

Internal Evaluation of Outlier Detection on Dataset One

Ground Truth

K-Means

Plain DBSCAN

Enhanced DBSCAN

80

The results indicate that the proposed approach has high performance in detecting

outliers based on the external evaluation and internal evaluation by analyzing Figure 4–12,

Figure 4–13, and Table 4–4. According to the figures and tables, the plain DBSCAN has the

highest external evaluations score with higher than 0.95. Even though the enhanced

DBSCAN has a high F-1 score close to 1, indicating good accuracy, entropy, and purity scores,

even still at a high level, is lower than plain DBSCAN (higher than 0.9). This can be explained

by that enhanced DBSCAN finds more outliers than expected.

Same to Section 4.2.3.1, the values of internal evaluation metrics were normalized

into 0.5 – 1 so that all three internal evaluation metrics can share the same scale. The results

of internal evaluation methods on other algorithms are compared with the ground truth.

According to Figure 4–13, the ground truth is different from the clustering method's results.

This can be explained by that the ground truth may not be entirely objectively prepared by

the analyzer. Some synthesized outliers that fall on the main trajectory can be part of the

clusters. Thus, indicated by this experiment, the result of the enhanced DBSCAN satisfies

the expectation that it keeps a high level of performance quality on detecting outliers

among other unsupervised algorithms.

4.2.3.3 Performance of Using Supervised Learning to Classify New Observations

This section evaluates the proposed clustering method’s clustering performance on

discovering clusters by comparing it with other supervised learning algorithms. Figure 4–14

shows comparison results among supervised learning algorithms implementing on Dataset

81

One. Figure 4–14a presents the synthesized ground truth for this comparison set. As

previously mentioned in Section 3.1, the proposed clustering framework utilizes the

unsupervised component on a portion of the raw data to discover the clusters first and then

apply the supervised component to the rest of the data. By the same framework, the

experiment uses 30% of the Dataset One as training data to train each supervised model

and then test the clustering performance on the rest 70% data. Same to Section 4.2.3.1, this

section focuses on evaluating the performance of discovering clusters, and the synthesized

outliers are filtered before implementing the algorithms. Figure 4–15 shows comparison

results among supervised learning algorithms implementing on Dataset Two. Due to the

smaller data size of Dataset Two, 40% of Dataset Two are used for training, and 60% of the

data for testing. Figure 4–15a presents the synthesized ground truth of Dataset Two.

4-14a. Ground Truth of Dataset One

82

4-14b. Clustering Result from K-NN

4-14c. Clustering Result from SVM

83

 4-14d. Clustering Result from ANN

4-14e. Clustering Results from Enhanced DBSCAN

Figure 4–14. Comparing Enhanced DBSCAN's performance on discovering clusters from
synthetic dataset one to ground truth and other supervised clustering methods

84

4-15a. Ground Truth of Dataset Two

4-15b. Clustering Result from K-NN

85

4-15c. Clustering Result from SVM

4-15d. Clustering Result from ANN

86

4-15e. Clustering Results from Enhanced DBSCAN

Figure 4–15. Comparing Enhanced DBSCAN's performance on distinguishing intersections
and discovering clusters from synthetic dataset two to ground truth and other supervised

clustering methods

By visually evaluating the performance on classifying the observations into pre-

defined clusters from Figure 4–14 and Figure 4–15 first, all supervised algorithms can get a

similar outcome to the ground truth with training data. As shown in Figure 4–14e and Figure

4–15e, Enhanced DBSCAN still find outliers even though the outliers in the ground truth

were filtered in the first place. The results can be justified by the nature of the supervised

component in the enhanced DBSCAN algorithms. Based on the proposed parameter

selection method mentioned in Section 3.4, the most deviated data beyond 1.5 times of IQR

within the dataset will be considered outliers.

87

Besides, as mentioned in Section 4.2.1 and Section 4.2.2, the proposed clustering

algorithm's performance is assessed using the selected metrics, external evaluation, and

internal evaluation metrics. Table 4–5 states the values of the clustering performance

metrics of all clustering algorithms.

Table 4–5. Clustering performance evaluation of various supervised methods on
distinguishing intersections and discovering clusters

Figure 4–16 to Figure 4–19 visualize the values of each clustering performance

metric. Various colors are used to represent different clustering methods. The x-axis

represents external evaluation attributes, and the y-axis represents the corresponding

score.

Data Set Algorithms
Estimated
number of

clusters

Entropy /
Homogeneity

Purity /
Completeness

V-measure
Adjusted Rand

Index

Adjusted
Mutual

Information
F1 Score

Silhouette
Coefficient

Davies-
Bouldin
Index

Calinski-
Harabasz Index

Ground Truth 4 1 1 1 1 1 1 0.659 0.791 32966.388

KNN 4 0.921 0.952 0.936 0.975 0.936 0.984 0.673 0.646 34590.951

SVM 4 0.907 0.944 0.925 0.971 0.925 0.98 0.679 0.542 35517.235
Enhanced
DBSCAN 4 0.977 0.973 0.975 0.992 0.975 0.996 0.66 0.816 33429.567

ANN 4 0.918 0.952 0.935 0.972 0.935 0.983 0.673 0.628 34638.614

Ground Truth 4 1 1 1 1 1 1 0.581 0.527 892.718

KNN 4 0.991 0.985 0.988 0.996 0.988 0.997 0.583 0.537 906.921

SVM 4 0.947 0.981 0.963 0.979 0.963 0.984 0.566 0.498 824.776

Enhanced
DBSCAN

4 0.96 0.967 0.964 0.983 0.963 0.987 0.577 0.636 859.67

ANN 4 0.955 0.977 0.966 0.989 0.965 0.987 0.569 0.497 868.113

Data Set
One

Data Set
Two

88

Figure 4–16. Performance evaluation of discovering clusters on supervised algorithms

using external evaluation metrics on dataset one

Figure 4–17. Performance evaluation of discovering clusters on supervised algorithms

using internal evaluation metrics on dataset one

0.7

0.75

0.8

0.85

0.9

0.95

1

Entropy /
Homogeneity

Purity /
Completeness

V-measure Adjusted Rand
Index

Adjusted
Mutual

Information

F1 Score

External Evaluation Attributes

External Evaluation of Supervised Algorithms on Dataset One

Ground Truth

KNN

SVM

Enhanced DBSCAN

ANN

0.65

0.70

0.75

0.80

0.85

0.90

Silhouette
Coefficient

Davies-Bouldin
Index

Calinski-Harabasz
Index

N
o

rm
al

iz
e
d

 V
a
lu

e
s

External Evaluation Attributes

Internal Evaluation of Supervised Algorithms on

Dataset One

Ground Truth

KNN

SVM

Enhanced DBSCAN

ANN

89

Figure 4–18. Performance evaluation of distinguishing intersections on supervised

algorithms using external evaluation metrics on dataset two

Figure 4–19. Performance evaluation of distinguishing intersections on supervised

algorithms using internal evaluation metrics on dataset two

0.7

0.75

0.8

0.85

0.9

0.95

1

Entropy /
Homogeneity

Purity /
Completeness

V-measure Adjusted Rand
Index

Adjusted
Mutual

Information

F1 Score

External Evaluation Attributes

External Evaluation of Supervised Algorithms on Dataset Two

Ground Truth

KNN

SVM

Enhanced DBSCAN

ANN

0.65

0.70

0.75

0.80

0.85

0.90

Silhouette
Coefficient

Davies-Bouldin
Index

Calinski-Harabasz
Index

N
o

rm
al

iz
e
d

 V
al

u
e
s

External Evaluation Attributes

Internal Evaluation of Supervised Algorithms on

Dataset Two

Ground Truth

KNN

SVM

Enhanced DBSCAN

ANN

90

The results indicate that the proposed approach keeps high performance by

analyzing both Figure 4–16 to Figure 4–19 and Table 4–5. According to Figure 4–16, the

blue line represents the ground truth, and the green line represents the enhanced DBSCAN

with a score very close to 1. The external evaluation results indicate that the proposed

algorithm has good accuracy, homogeneity, and completeness since the scores are all

higher than 0.95. Internal evaluation metrics' values were normalized into 0.5 – 1 so that all

three internal evaluation metrics can share the same scale. According to Figure 4–17, the

result from evaluating enhanced DBSCAN is very close to the ground truth with less than

0.1 difference on those metrics, suggesting that the result is similar to the ground truth and

has good clustering performance. According to Figure 4–18 and Figure 4–19, enhanced

DBSCAN is not the best algorithm when implementing on Dataset Two. This can be

explained by that enhanced DBSCAN finds outliers beyond filtered outliers. Since Dataset

Two has a smaller data size, only a small variation may make a huge difference in the

evaluation result even though enhanced DBSCAN gets higher than 0.96 for each external

evaluation attribute.

Overall, results from the enhanced DBSCAN satisfy the expectation that it keeps a

high level of performance quality in terms of external evaluation metrics, compared to other

supervised algorithms. The results from the enhanced algorithm also stay in a satisfying

range concerning internal evaluation metrics.

91

4.2.3.4 Performance of Using Supervised Learning to Detect Outliers

This section evaluates the proposed clustering method’s clustering performance in

detecting outliers by comparing it with other supervised learning algorithms. Figure 4–20

shows comparison results among supervised learning algorithms implementing on Dataset

One. Figure 4–20a presents the synthesized ground truth for this comparison set. Same to

Section 4.2.3.3, the experiment uses 30% of the Dataset One as training data and test the

clustering performance on the rest 70% of the data. One thousand multivariate outliers

were artificially synthesized around the main trajectory. To compare the results from

various supervised clustering algorithms on the same level, the experiment tests binary

classification performance. Due to enhanced DBSCAN’s ability to detect outliers is based on

each cluster, in this experiment, the enhanced DBSCAN is doing two tasks simultaneously,

which are discovering clusters and detecting outliers. So, the training data for each

algorithm is different in this experiment. Training data for KNN, SVM, and ANN only have

two labels, 1 and 0, representing the main trajectory and outliers. Enhanced DBSCAN in this

experiment uses the same training data as Section 4.2.3.1 and does not use any synthetic

outliers as training data.

92

4-20a. Ground Truth of Dataset One

4-20b. Clustering Result from K-NN

93

4-20c. Clustering Result from SVM

4-20d. Clustering Result from ANN

94

4-20e. Clustering Results from Enhanced DBSCAN

Figure 4–20. Comparing Enhanced DBSCAN's performance on outlier detection from
synthetic dataset one to ground truth and other supervised clustering methods

By first visually evaluating the performance on discovering the clusters from Figure

4–20, SVM results have the best performance to differentiate outliers from the main

trajectory. Both KNN and ANN identified some outliers as main trajectory points by mistake.

Enhanced DBSCAN uses a Mahalanobis distance metric to measure the distance between

points and clusters. Mahalanobis distance considers correlation within the cluster. As

shown in Figure 4–20e, some outliers at the same line with pre-defined clusters are

identified as part of those clusters.

95

Besides, the proposed clustering algorithm's performance is assessed by the

selected metrics, both external evaluation, and internal evaluation metrics. Table 4–6 states

the values of the clustering performance metrics of all clustering algorithms.

Table 4–6. Clustering performance evaluation of various supervised methods on outlier
detection

Figure 4–21 and Figure 4–22 visualize the values of each clustering performance

metric. Various colors are used to represent different clustering methods. The x-axis

represents external evaluation attributes, and the y-axis represents the corresponding

score.

Data Set Algorithms
Estimated

number of noise
points

Entropy /
Homogeneity

Purity /
Completeness

V-measure
Adjusted Rand

Index

Adjusted
Mutual

Information
F1 Score

Silhouette
Coefficient

Davies-
Bouldin
Index

Calinski-
Harabasz Index

Ground Truth 1000 1 1 1 1 1 1 0.74 0.87 13213.074
KNN 909 0.857 0.921 0.888 0.946 0.888 0.996 0.747 0.823 13107.855
SVM 998 0.995 0.997 0.996 0.999 0.996 1 0.741 0.869 13227.934

Enhanced
DBSCAN

975 0.825 0.84 0.932 0.925 0.832 0.994 0.725 0.945 10899.795

ANN 956 0.923 0.955 0.939 0.975 0.939 0.998 0.742 0.843 13144.003

Data Set
One

96

Figure 4–21. Performance evaluation of outlier detection on supervised algorithms using

external evaluation metrics on dataset one

Figure 4–22. Performance evaluation of outlier detection on supervised algorithms using

internal evaluation metrics on dataset one

0.7

0.75

0.8

0.85

0.9

0.95

1

Entropy /
Homogeneity

Purity /
Completeness

V-measure Adjusted Rand
Index

Adjusted
Mutual

Information

F1 Score

External Evaluation Attributes

External Evaluation of Outlier Detection on Dataset One

Ground Truth

KNN

SVM

Enhanced DBSCAN

ANN

0.65

0.70

0.75

0.80

0.85

0.90

Silhouette
Coefficient

Davies-Bouldin
Index

Calinski-Harabasz
Index

N
o

rm
al

iz
e
d

 V
al

u
e
s

External Evaluation Attributes

Internal Evaluation of Outlier Detection on Dataset

One

Ground Truth

KNN

SVM

Enhanced DBSCAN

ANN

97

The results indicate that the proposed approach has good performance in detecting

outliers based on the external evaluation by analyzing Figure 4–21, Figure 4–22, and Table

4–6. According to the figures and tables, the SVM has the highest score. Even though the

enhanced DBSCAN has a high F-1 score, indicating good accuracy, entropy and purity scores,

even still at a high level, are relatively lower. This can be explained by that enhanced

DBSCAN finds more outliers than expected. Besides, enhanced DBSCAN is doing two tasks

simultaneously. Thus, the evaluation favors other algorithms. Same to Section 4.2.3.1, the

values of internal evaluation metrics were normalized into 0.5 – 1 so that all three internal

evaluation metrics can share the same scale. The results of internal evaluation methods on

other algorithms are compared with the ground truth. According to Figure 4–22, the

enhanced DBSCAN is different from the results from other clustering methods. This can also

be explained by that enhanced DBSCAN finds more outliers than expected. Thus, indicated

by this experiment, the enhanced DBSCAN keeps a good performance quality level on

detecting outliers among other supervised algorithms, satisfying the expectation.

4.2.4 Sensitivity Analysis and Validation

This section evaluates the validity of the proposed method for the Auto-Selection

Parameters of the Enhanced DBSCAN. This experiment variates the parameters to obtain a

set of results with different sets of parameters. Through analyzing the results, how those

parameters can influence the results are analyzed. The purposed of this sensitivity analysis

is to test whether the parameters recommended by auto-selection method is a good initial

98

setting, and whether the clustering result will be still valid when parameters are variated.

This experiment's raw dataset is three-day data in regions between Kingston to Port at

Wolfe Island, as shown in Figure 4–23a. The proposed parameters auto-selection method

was implemented on this dataset and the following Table 4–7 presents the parameters

recommended by the method.

Table 4–7. The recommended values of the required parameters to be used in the
Enhanced DBSCAN unsupervised component

Parameters Recommended Values

MinPts 10

Eps 0.287333

The experiment adjusts the parameters by 20% up and down separately and then

applies the adjusted parameters to the enhanced DBSCAN. The comparison results are then

shown as followed in Figure 4–23.

99

4-23a. Original Result (MinPts = 10, Eps = 0.2873)

4-23b. Result with Adjusted Parameters (MinPts = 10, Eps = 0.3448)

100

4-23c. Result with Adjusted parameters (MinPts = 10, Eps = 0.2394)

4-23d. Result with Adjusted parameters (MinPts = 12, Eps = 0.2873)

101

4-23e. Result with Adjusted Parameters (MinPts = 8, Eps = 0.2873)

4-23f. Result with Adjusted parameters (MinPts = 8, Eps = 0.2394)

102

4-23g. Result with Adjusted parameters (MinPts = 8, Eps = 0.3448)

4-23h. Result with Adjusted parameters (MinPts = 12, Eps = 0.3448)

103

4-23i. Result with Adjusted parameters (MinPts = 12, Eps = 0.2394)

Figure 4–23. Comparison results by variating the parameters by 20%

MinPts is the parameter to limit the number of the core points used to grow the

clusters. The larger the MinPts is, the smaller the number of the core points is, and the size

of the clusters will be smaller, making more points to be identified as outliers. Eps is the

parameter to determine neighborhoods. The smaller the Eps is, the fewer neighborhoods

can be clustered together, making more clusters discovered. So Figure 4–23f,h,i, and g are

the four extreme results: Figure 4–23f is the result with the most clusters; Figure 4–23h is

the result with the least clusters; Figure 4–23i is the result with the most outliers; Figure 4–

23g is the results with the least outliers.

104

Through first visually analyzing the comparison group, including those four extreme

results, it can be concluded that the parameters recommended by the auto-selection

method are accurate, and the algorithm is robust from variating the parameters. Basically,

all results successfully, at least partially, in discovering the corresponding clusters and

detecting outliers. All results have detected the port area. Besides, as shown in Figure 4–24

and Table 4–8, at least four clusters (stages) have been defined by those results. Figure 4–

24 shows that even the worst parameters selection still has a higher than 0.9 average score,

showing the results' quality and the algorithm's robustness.

Table 4–8. Clustering performance evaluation of various parameters

Data Set Parameters
Estimated
number of

clusters

Estimated
number of

noise points

Entropy /
Homogeneity

Purity /
Completen

ess
V-measure

Adjusted
Rand Index

Adjusted
Mutual

Information
F1 score

MinPts = 10, Eps = 0.2873 5 56 1 1 1 1 1 1
MinPts = 10, Eps = 0.3448 5 32 0.91 0.931 0.92 0.973 0.92 0.961

MinPts = 10, Eps = 0.2394 5 60 0.974 0.968 0.971 0.988 0.971 0.994

MinPts = 12, Eps = 0.2873 4 66 0.958 0.957 0.958 0.988 0.957 0.984

MinPts = 8, Eps = 0.2873 7 40 0.939 0.949 0.944 0.982 0.943 0.974

MinPts = 8, Eps = 0.2394 6 52 0.937 0.933 0.935 0.979 0.935 0.981

MinPts = 8, Eps = 0.3448 5 32 0.91 0.931 0.92 0.973 0.92 0.961

MinPts = 12, Eps = 0.3448 4 60 0.922 0.923 0.922 0.98 0.922 0.974

MinPts = 12, Eps = 0.2394 4 72 0.925 0.919 0.922 0.972 0.922 0.974

Data Set between
Kingston to Port
at Wolfe Island

105

Figure 4–24. Clustering performance evaluation of various parameters using external
evaluation metrics for sensitivity analysis

In summary, this section proves that the auto-selection method gives good

recommendations, and they have a certain level of tolerance of variation and uncertainty.

The proposed parameter auto-selection method can be used in large scale big data.

4.3 Case Studies and Results

4.3.1 Gulf of Mexico AIS Big Data

The proposed clustering algorithm has been applied to big data in the Gulf of Mexico

Region, and a model to monitor vessels in that region has been generated. In this research

thesis, we accessed around 200 MB of open-sourced data in the Gulf of Mexico Region

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

Entropy /
Homogeneity

Purity /
Completeness

V-measure Adjusted Rand
Index

Adjusted
Mutual

Information

F1 score

Evaluation Criteras

Parameters Sensitivity Analysis and Validation

MinPts = 10, Eps = 0.2873

MinPts = 10, Eps = 0.3448

MinPts = 10, Eps = 0.2394

MinPts = 12, Eps = 0.2873

MinPts = 8, Eps = 0.2873

MinPts = 8, Eps = 0.2394

MinPts = 8, Eps = 0.3448

MinPts = 12, Eps = 0.3448

MinPts = 12, Eps = 0.2394

106

(MarineCadastre.gov | Vessel Traffic Data, no date). The data is from one month of January

2017 and contains data of 70 MMSI. The data contains around 1.2 million trajectory points

to be clustered. The raw data has been visualized in Figure 4–25. Figure 4–25a presents all

the raw AIS point data, and Figure 4–25b visualized the data in various colors for

corresponding MMSI.

4-25a. Raw AIS Point Data in the Gulf of
Mexico Region

4-25b. Raw Trajectory Data by MMSI in
the Gulf of Mexico Region

Figure 4–25. Raw AIS data and raw trajectory data in the Gulf of Mexico Region

As mentioned in Section 3.1, the enhanced DBSCAN clustering method has been

implemented on the data of each MMSI. By this step, 2653 clusters are generated as the

preliminary results. Each cluster represents a kind of profiled vessel behavior concerning

the corresponding MMSI. Then the similar clusters from different data of MMSI have been

merged. Behavior vectors are created by averaging the five attributes in the same cluster,

and the behavior vectors are used for second layer clustering. The second layer, clustering,

used the same enhanced DBSCAN method to keep the result consistent. Parameters are

manually modified to fit this step's goal since the priory in the second layer clustering was

107

no longer filter the outliers. After this step, 1279 third layer clusters are generated from

merging the 2653 clusters by the last step. Figure 4–26 shows the final AIS clusters on the

Gulf of Mexico, each representing one vessel behavior pattern in the region. Since there are

way too many clusters presented in Figure 4–26, some colors are used repetitively to

present different clusters.

Figure 4–26. Final AIS Clusters resulted from the proposed clustering framework on the

Gulf of Mexico, with each color representing one vessel behavior pattern

108

One of the applications of analyzing the clustering results is to detect port areas. The

places where all the vessels are anchored in the Gulf of Mexico Region are presented in

Figure 4–27a. Figure 4–27b presents a zoomed-in figure showing the details of those ports.

4-27a. All Ports Detected by the Algorithm

109

4-27b. Zoomed-In Figure Showing Details Around West Bay

Figure 4–27. Ports and locations where vessels are mooring detected by the proposed
clustering framework in Gulf of Mexico Area

New behavior vectors are created by averaging the attributes and considering data

size as weights. In the following Figure 4–28, those behavior vectors are represented as

arrows. The data size is presented as darkness level, and the directions of the arrows

present the heading. Figure 4–28b presents a zoomed-in figure showing the details of those

behavior vectors.

110

4-28a. All behavior vectors Profiled by the Algorithm

4-28b. Zoomed-in figure showing details around Galveston Bay and Trinity Bay

Figure 4–28. Profiled behavior vectors on the Gulf of Mexico from proposed clustering
framework, represented by the arrows

111

Taking advantage of the final clustering results, vessel behavior recommendation

and anomaly detection model have been developed. Given the vessel location, the model

will recommend what the vessel should do based on the well-organized training data. The

example is shown in Figure 4–29. For a vessel located at (25.49, -93.3906), the

recommendation model calculates Euclidean Distance to all profiled behavior vectors, and

finds the two closest clusters (Cluster 1775 and Cluster 1115). The corresponding

probabilities is found by the ratio of the inverse of the distance, making the closer cluster

has higher weights to provide possible vessel actions to the vessel at the location. The

recommendation model, at the current stage, only recommends speed and heading. When

the model becomes more comprehensive for future works, more advanced information can

be provided, such as destination and routes associated with the specific clusters.

Figure 4–29. Application of the model for the Gulf of Mexico: vessel behavior

recommendations based on given location

The anomaly detection model has been developed from the final clustering result as

well. The algorithm is the same as the supervised component of the proposed enhanced

Point Cluster 1775 Cluster 1115

LAT 25.4900 LAT 25.4399 LAT 25.4676
LONG -93.3906 LON -92.9318 LON -93.1219

SOG 12.8459 SOG 12.4737
COG 100.7888 COG 107.2874
Heading 100.2267 Heading 108.1444
Probabality 80.29% Probabality 19.71%

112

DBSCAN. Based on the new observations, the model calculates the Mahalanobis distance

to the two closest clusters and determines which cluster the data belongs. The model can

also provide probabilities that the vessel has anomaly behaviors. The example is shown in

Figure 4–30. The model reads the AIS signal from the monitored vessel and finds matchings

with the well-organized clusters (Cluster 111 and Cluster 1710) with corresponding

probabilities. For an AIS signal from the monitored vessel, the anomaly detection model

calculates Mahalanobis Distance to all profiled AIS clusters vectors, and finds the two

closest clusters (Cluster 111 and Cluster 1710). The corresponding probabilities are found

by the ratio of the inverse of the distance, making the closer cluster has higher probabilities

to be matched with the monitored vessel. The anomaly detection model, at the current

stage, detects anomaly behaviors with respect to all clusters. When the model becomes

more comprehensive for future works, more advanced information can be used for

detecting anomaly behaviors associated with the specific routes.

Figure 4–30. Application of the model for the Gulf of Mexico: vessel behavior monitoring
and anomaly detection on new observations

New
Observation

Cluster 111 Cluster 1710 Anomaly

LAT 27.8456 LAT 27.8456 LAT 27.8174
LON -97.2262 LON -97.2261 LON -97.3759
SOG 0.0000 SOG 0.0415 SOG 2.6565
COG -105.7000 COG -141.3424 COG -45.8701
Heading 230.0000 Heading 229.2495 Heading 185.7938

Probabality 74.54% Probabality 16.87% Probabality 8.58%

113

4.3.2 Saint Lawrence Seaway AIS Data

Another dataset that was implemented by the proposed clustering algorithm is the

Saint Lawrence Seaway region AIS data. Models to monitor vessels in that region have been

generated for the case study. We purchased 3-day data in June 2017 from OBCOMM. The

data is around 17 MB describing the vessel's movement history and contains around 135

thousand trajectory points clustered. The raw data has been visualized in Figure 4–31.

Figure 4–31a presents all the raw AIS point data, and Figure 4–31b visualized the data in

various colors for corresponding MMSI.

4-31a. Raw AIS Point Data in Saint Lawrence Seaway Region

114

4-31b. Raw Trajectory Data by MMSI in Saint Lawrence Seaway Region

Figure 4–31. Raw AIS data and raw trajectory data in Saint Lawrence Seaway and Great
Lakes Region

Same to Section 4.3.1, the hierarchical clustering framework has been implemented

on the dataset. Firstly, the enhanced DBSCAN clustering method has been implemented on

the data of each MMSI in the first layer. By this step, 3095 clusters are generated as the

preliminary results. Each cluster represents a kind of profiled vessel behavior concerning

the corresponding MMSI. Then the similar clusters from different data of MMSI have been

merged. Behavior vectors are created by averaging the five attributes in the same cluster,

and the behavior vectors are used for second layer clustering. The second layer, clustering,

used the same enhanced DBSCAN method to keep the result consistent. Parameters are

manually modified to fit this step's goal since the priory in the second layer clustering was

no longer filter the outliers. After this step, 2888 third layer clusters are generated from

merging the 3095 clusters by the last step. Figure 4–32 shows the final AIS clusters on the

115

Saint Lawrence Seaway, each representing one vessel behavior pattern in the region. Since

there are way too many clusters presented in Figure 4–32, some colors are used repetitively

to present different clusters.

Figure 4–32. Final AIS Clusters resulted from the proposed clustering framework on the
Saint Lawrence Seaway and Great Lakes Region, with each color representing one vessel

behavior pattern

One of the applications of analyzing the clustering results is to detect port areas. The

places where all the vessels are anchored in the Saint Lawrence Seaway Region are

presented in Figure 4–33. Figure 4–34 presents zoomed-in figures showing the details of

those ports.

116

Figure 4–33. Ports and locations where vessels are mooring detected by the proposed
clustering framework in Saint Lawrence Seaway and Great Lakes Region

4-34a. Locations of the Vessels mooring in Toronto harbor

117

4-34b. Locations of the Vessels mooring at Hamilton and Burlington

4-34c. Vessels moored in Montreal harbor

Figure 4–34. Zoomed-in figures showing the details of those Ports and locations where
vessels are mooring detected by the proposed clustering framework in Saint Lawrence

Seaway and Great Lakes Region

118

New behavior vectors are created by averaging the attributes and considering data

size as weights. In the following Figure 4–35, those behavior vectors are represented as

arrows. The data size is presented as darkness level, and the directions of the arrows

present the heading. Figure 4–36 presents zoomed-in figures showing the details of those

behavior vectors. The results help visual analytics in identifying port regions and busy routes.

Figure 4–35. Profiled behavior vectors on the Saint Lawrence Seaway and Great Lakes
Region from proposed clustering framework, represented by the arrows

119

4-36a. Vessels Vectors in Lake Superior

4-36b. Vessels Vectors in Lake Ontario

120

4-36c. Vessels Vectors in Lake Huron

4-36d. Vessels Vectors in the Montreal area

121

4-36e. Vessels vectors in St. Lawrence Seaway

Figure 4–36. Zoomed-in Figures Showing the Details of Those Profiled behavior vectors on
the Saint Lawrence Seaway and Great Lakes Region from proposed clustering framework,

represented by the arrows

In Figure 4–37 and Figure 4–38, some final clusters are presented in the zoomed-in

regions. Figure 4–37 covers the same region as the dataset for algorithm validation. The

result shows consistency to the ground truth, such as Figure 4–5a. Besides the four clusters

(stages) describing the vessels traveling across the river, one more cluster to sailing along

the river is profiled (the cluster in orange). This cluster has less data density, but the sparse

points are still clustered together, taking advantage of the Mahalanobis distance metric,

which considers the correlation between the point in the dataset.

122

Figure 4–37. Final AIS Clusters resulted from the proposed clustering framework on the
location between Kingston to Port at Wolfe Island, with each color representing one vessel

behavior pattern

Figure 4–38 shows another example of a series of clustered vessels in Lake Ontario

and St. Lawrence River. The result shows that some port areas are identified on the

Southwestern Lake Ontario and a vessel sailing behavior from the lake into the river. The

stages traveling along the river are mainly divided by the speed difference since the

direction almost remains the same. A new finding by this result is that some stages of

separated geospatially can still be clustered together. Once the vessel slows down in more

crowded water, a new stage is defined. However, after the vessel resumes the normal speed,

taking advantage of the Mahalanobis distance metric, these vessel behaviors are highly

similar to those before slowing down. Thus, they are clustered together. The cluster in green

123

in Figure 4–38 is a case in point. Even after two stages (in pink and purple) divide this cluster,

the three separated stages are still considered one cluster (in green).

Figure 4–38. Final AIS Clusters resulted from the proposed clustering framework in Lake
Ontario and St. Lawrence River, with each color representing one vessel behavior pattern

Taking advantage of the final clustering results, vessel behavior recommendation

and anomaly detection model have been developed. Given the vessel location, the model

will recommend what the vessel should do based on the well-organized training data. The

example is shown in Figure 4–39. For a vessel located at Lat: 46o, Long: -73o, the

recommendation model calculates Euclidean Distance to all profiled behavior vectors, and

finds the four closest clusters (Cluster 2169, Cluster 2840, Cluster 1867, and Cluster 2119).

124

The corresponding probabilities is found by the ratio of the inverse of the distance, making

the closer cluster has higher weights to provide possible vessel actions to the vessel at the

location. The recommendation model, at the current stage, only recommends speed and

heading. When the model becomes more comprehensive for future works, more advanced

information can be provided, such as destination and routes associated with the specific

clusters.

Figure 4–39. Application of the Model for Canadian Great Lakes Region: Vessel Behavior
Recommendations Based on Given Location

The anomaly detection model has been developed from the final clustering result as

well. The algorithm is the same as the supervised component of the proposed enhanced

DBSCAN. The model will calculate the Mahalanobis distance to the two closest clusters

based on the new observations and determine which cluster the data belongs. The model

can also provide probabilities that the vessel has anomaly behaviors. The example is shown

in Figure 4–40. The model reads the AIS signal from the monitored vessel and finds

matchings with the well-organized clusters (Cluster 734 and Cluster 838) with

corresponding probabilities. For an AIS signal from the monitored vessel, the anomaly

Point Cluster 2169 Cluster 2840 Cluster 1867 Cluster 2119

LAT 46.0000 LAT 46.6253 LAT 46.4463 LAT 46.0816 LAT 46.6144
LONG -73.0000 LON -71.7936 LON -72.1909 LON -72.9443 LON -71.7876

SOG 90.1609 SOG 125.3478 SOG 95.7679 SOG 93.3478
COG 2296.4598 COG 639.6957 COG 2194.1964 COG 2386.4203
Heading 230.5977 Heading 63.3043 Heading 219.5536 Heading 238.4638
Probabality 34.18% Probabality 23.64% Probabality 22.11% Probabality 20.07%

125

detection model calculates Mahalanobis Distance to all profiled AIS clusters vectors, and

finds the two closest clusters (Cluster 734 and Cluster 838). The corresponding probabilities

are found by the ratio of the inverse of the distance, making the closer cluster has higher

probabilities to be matched with the monitored vessel. The anomaly detection model, at

the current stage, detects anomaly behaviors with respect to all clusters. When the model

becomes more comprehensive for future works, more advanced information can be used

for detecting anomaly behaviors associated with the specific routes.

Figure 4–40. Application of the Model for Canadian Great Lakes Region: Vessel Behavior
Monitoring and Anomaly Detection on New Observations

New
Observation

Cluster 734 Cluster 838 Anomaly

LAT 45.6245 LAT 43.6366 LAT 43.7469
LON -73.4976 LON -79.3915 LON -81.7179
SOG 0.0000 SOG 0.0000 SOG 0.0000
COG 2652.0000 COG 2685.6322 COG 2311.8750
Heading 252.0000 Heading 511.0000 Heading 511.0000

Probabality 73.16% Probabality 26.41% Probabality 0.42%

126

5. Chapter 5: Conclusions

5.1 Summary and Contribution

The research can be summarized into three following aspects. First, the research

proposed enhanced DBSCAN by optimizing clustering performance in terms of homogeneity,

completeness, and other evaluation metrics. Second, the research proposed a clustering

framework to be implemented on big data, generating the clustering results in two case

studies. Third, the research developed the models for vessel action recommendation and

detecting vessel behavior outliers in the case study regions.

Firstly, a clustering method has been proposed to enhance the DBSCAN clustering

method by incorporating the Mahalanobis distance metric. The proposed clustering

method outperforms traditional DBSCAN by considering correlations among the points and

reduce computational cost. The enhanced DBSCAN using Mahalanobis distance can deal

with scale and correlation issues better than traditional DBSCAN using Euclidean distance.

The thesis presents a straightforward way to find the required parameters required by the

enhanced DBSCAN, making the method consistent when applying to big data. The proposed

algorithm has also been thoroughly compared with other commonly used clustering

algorithms in four designed validation experiments. It has been evaluated by both internal

and external clustering evaluation metrics, and the results indicate that the proposed

algorithm's performance is high.

127

Secondly, based on the proposed algorithm, the thesis proposed a clustering

framework that can be efficiently applied to big data. The framework takes speed and

heading into account when clustering the vessels in addition to geospatial information. By

defining the point data as a novel five-dimensional vector, the clustering algorithm can find

insights and discoveries in a space with a more complex concept of 'density reachability.'

The hierarchical clustering framework comprises layers of clustering, utilizing both the

unsupervised component and supervised component of the proposed clustering algorithm.

The proposed clustering framework has been implemented on novel high-dimensional data

to represent historical AIS data for modeling vessel behaviors.

Thirdly, the clustering results generate maritime traffic patterns extraction and

vessel behavior anomaly detection models. Two big datasets are accessed and used for the

case study. The first study area is the Gulf of Mexico, and the second is the Canadian Great

Lakes regions. The thesis presents how the models work on giving action recommendations

based on the information from the vessel and detecting behavior anomalies of the vessel.

The results indicate that the proposed framework can effectively model vessel behaviors in

those two waters and show its potentials to work in other regions.

The contributions of the research can also be summarized into three aspects. Firstly,

the machine learning community benefits from the DBSCAN clustering optimization. The

enhanced DBSCAN brings new possibilities and understanding of clustering. The proposed

parameter auto-selecting method facilitates clustering tasks and spare efforts on trial-and-

error methods to find suitable parameters.

128

Secondly, the enhanced DBSCAN clustering method and proposed framework

implementing on historical AIS data contributes to modeling marine transportation and

autonomous vessels research. This research proposed a way to monitor crewed vessels,

provides foundations for vessel route planning and vessel behavior anomalies detection.

Thirdly, the proposed clustering algorithm and framework can use applied to more

general data analytics tasks. Beyond contributions to marine transportation modeling, a

similar clustering framework can also be applied to similar tasks on modeling data from

other moving objects such as Automatic Dependent Surveillance-Broadcast (ADS-B) data,

data from pedestrians, data from vehicles, and data from UAVs. The proposed clustering

algorithm and framework can also be applied to social media and video platform user

analysis. Through profiling user behaviors and organizing contents, Ads/contents promotion

algorithm can be designed. Besides providing a possible process for analyzing, clustering,

and modeling AIS data, the enhanced DBSCAN and hierarchy clustering framework can be

applied to organizing the other raw unlabeled data and facilitating preparing labeled

training data by descriptor data clustering. The framework also provides a foundation for

active learning. The framework can be furtherly modified into an interactive process taking

advantage of the designed semi-supervised process. The machine learning community will

be tremendously benefited as it can help spare huge efforts on preparing large training data

when generating AI models.

129

5.2 Future Work and Perspectives

The proposed method is based on assumptions that marine AIS data contains

valuable insights into mined and vessel behavior patterns discovered from systematically

studying them. To guarantee the assumption to be valid, it requires that the raw unlabeled

AIS trajectories data should have been quality controlled. Even though the proposed

framework provides the ability to filter outliers from the trajectory, it is not powerful

enough, yet the whole trajectory has inferior quality. A pre-processing procedure to filter

the anomaly AIS trajectory should be implemented in the future to ensure the quality of the

training data.

Working with heavily unevenly distributed data has been challenges. The work

proposed an intuitive approach to find parameters for enhanced DBSCAN. However, since

the way parameters are defined is to prioritize differentiating the outliers, the results are

not optimal for some datasets with more outliers than valuable data. For example, in some

datasets, the majority of the points data is concentrated at port areas. The proposed

algorithm will mistakenly detect main trajectories as outliers concerning the way to define

the parameters. Furthermore, some datasets in which stages are not distinct enough to be

separated from each other. Thus, the proposed parameter selection method has an

unreliable result to obtain clusters composed of consistent points. The parameter setting

still requires adjusting from the user, and a more dynamic modification is expected from

the future.

130

Besides solving the limitations listed above, two extra aspects of the research can

be expanded in the future. Firstly, the currently proposed clustering method works on five-

dimensional point data at a specific time and profile behaviors based on the clustering

results but does not consider the trajectory. A long short-term memory concept can be

applied to the clustering process by integrating another time dimension. For example, the

vector data can be influenced by its behavior history, with larger weights on closer previous

vectors. In this case, data can be more accurately profiled, and the model generated can

make better behavior predictions. Secondly, the framework can be furtherly modified into

an active learning model with an interactive labeling process. The clustering framework can

generate accurate clustering results with small human efforts on preparing large training

data and computational cost by iteratively returning the least reliable clustering results

from the unsupervised component and manually modifying the labels.

131

References

[1] Bernard Marr. 2019. “The Incredible Autonomous Ships of The Future: Run by Artificial
Intelligence Rather Than A Crew.” Forbes. 2019.
https://www.forbes.com/sites/bernardmarr/2019/06/05/the-incredible-autonomous-ships-
of-the-future-run-by-artificial-intelligence-rather-than-a-crew/?sh=6c5f29806fbf.

[2] Dana, Merkel. 2019. “Autonomous Ships, Opportunities & Challenges.” 2019.
https://www.marinelink.com/news/autonomous-ships-opportunities-challenges-471609.

[3] Vespe, Michele, Ingrid Visentini, Karna Bryan, and Paolo Braca. 2012. “Unsupervised Learning
of Maritime Traffic Patterns for Anomaly Detection.” IET Conference Publications 2012 (595
CP): 14. https://doi.org/10.1049/cp.2012.0414.

[4] Jallal, C. 2018. “Rolls-Royce and Finferries Demonstrate World’s First Fully Autonomous
Ferry.” Maritime Digitalisation & Communications, December. https://www.rolls-
royce.com/media/press-releases/2018/03-12-2018-rr-and-finferries-demonstrate-worlds-
first-fully-autonomous-ferry.aspx.

[5] Sheng, Pan, and Jingbo Yin. 2018. “Extracting Shipping Route Patterns by Trajectory Clustering
Model Based on Automatic Identification System Data.” Sustainability (Switzerland) 10 (7).
https://doi.org/10.3390/su10072327.

[6] Silveira, P. A.M., A. P. Teixeira, and C. Guedes Soares. 2013. “Use of AIS Data to Characterise
Marine Traffic Patterns and Ship Collision Risk off the Coast of Portugal.” Journal of
Navigation 66 (6): 879–98. https://doi.org/10.1017/S0373463313000519.

[7] IMO. 2000. “SOLAS CHAPTER V SAFETY OF NAVIGATION REGULATION 1-Application.” IMO.
2000. www.imo.org.

[8] Ester, Martin, Hans-Peter Kriegel, Jiirg Sander, and Xiaowei Xu. 1996. “A Density-Based
Algorithm for Discovering Clusters in Large Spatial Databases with Noise.” www.aaai.org.

[9] Schubert, Erich, Alexander Koos, Tobias Emrich, Andreas Züfle, Klaus Arthur Schmid, and
Arthur Zimek. 2015. “A Framework for Clustering Uncertain Data.” In Proceedings of the VLDB
Endowment, 8:1976–79. https://doi.org/10.14778/2824032.2824115.

[10] Pedregosa FABIANPEDREGOSA, Fabian, Vincent Michel, Olivier Grisel OLIVIERGRISEL, Mathieu
Blondel, Peter Prettenhofer, Ron Weiss, Jake Vanderplas, et al. 2011. “Scikit-Learn: Machine
Learning in Python Gaël Varoquaux Bertrand Thirion Vincent Dubourg Alexandre Passos
PEDREGOSA, VAROQUAUX, GRAMFORT ET AL. Matthieu Perrot.” Journal of Machine Learning
Research. Vol. 12. https://doi.org/10.5555/1953048.2078195.

[11] R Core Development Team. 2013. “R: A Language and Environment for Statistical Computing,
Reference Index Version 3.0.2.” https://www.gnu.org/copyleft/gpl.html.

132

[12] Hall, Mark, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann, and Ian H.
Witten. 2009. “The WEKA Data Mining Software: An Update.” ACM SIGKDD Explorations
Newsletter 11 (1): 10–18. https://doi.org/10.1145/1656274.1656278.

[13] Han, X, C Armenakis, and M Jadidi. 2020. “DBscan Optimization for Improving Marine
Trajectory Clustering and Anomaly Detection.” In International Archives of the
Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 43:455–
61. https://doi.org/10.5194/isprs-archives-XLIII-B4-2020-455-2020.

[14] Hou, Jian, Huijun Gao, and Xuelong Li. 2016. “DSets-DBSCAN: A Parameter-Free Clustering
Algorithm.” IEEE Transactions on Image Processing 25 (7): 3182–93.
https://doi.org/10.1109/TIP.2016.2559803.

[15] Sawant, Kedar. 2014. “Adaptive Methods for Determining DBSCAN Parameters.” IJISET-
International Journal of Innovative Science, Engineering & Technology. Vol. 1. www.ijiset.com.

[16] Karami, Amin, and Ronnie Johansson. 2014. “Choosing DBSCAN Parameters Automatically
Using Differential Evolution.” International Journal of Computer Applications 91 (7): 1–11.
https://doi.org/10.5120/15890-5059.

[17] Xia Ln, and Jing Jw. 2009. “SA - DBSCAN: A self-adaptive density-based clustering algorithm”
Journal of the Graduate School of the Chinese Academy of Sciences

[18] Esmaelnejad, Jamshid, Jafar Habibi, and Soheil Hassas Yeganeh. 2010. “A Novel Method to
Find Appropriate ε for DBSCAN.” In Lecture Notes in Computer Science (Including Subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 5990 LNAI:93–102.
Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12145-6_10.

[19] Smiti, Abir, and Zied Eloudi. 2013. “Soft DBSCAN: Improving DBSCAN Clustering Method Using
Fuzzy Set Theory.” In 2013 6th International Conference on Human System Interactions, HSI
2013, 380–85. https://doi.org/10.1109/HSI.2013.6577851.

[20] Liu, Bo. 2015. “Maritime Traffic Anomaly Detection from AIS Satellite Data in near Port
Regions,” no. August.
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&v
ed=2ahUKEwi4_IW9hcDhAhXi_XMBHS0qCsUQFjAAegQIARAC&url=http%3A%2F%2Fciteseerx.
ist.psu.edu%2Fviewdoc%2Fdownload%3Fdoi%3D10.1.1.856.5052%26rep%3Drep1%26type%3
Dpdf&usg=AOvVaw09P6dR.

[21] Fong, Simon, Saif Ur Rehman, Kamran Aziz, and Information Science. 2014. “DBSCAN: Past,
Present and Future,” 232–38.

[22] Schubert, Erich, Jörg Sander, Martin Ester, Hans-Peter Kriegel, Xiaowei Xu, and H.-P Kriegel.
2017. “DBSCAN Revisited, Revisited: Why and How You Should (Still) Use DBSCAN.” DBSCAN
Revisited, Revisited: Why and How You Should (Still) Use DBSCAN. ACM Trans. Database Syst
42 (3). https://doi.org/10.1145/3068335.

133

[23] Ren, Yan, Xiaodong Liu, and Wanquan Liu. 2012. “DBCAMM: A Novel Density Based Clustering
Algorithm via Using the Mahalanobis Metric.” Applied Soft Computing Journal 12 (5): 1542–
54. https://doi.org/10.1016/j.asoc.2011.12.015.

[24] Sangeetha, Margaret, Velumani Padikkaramu, and Rajakumar Thankappan Chellan. 2018. “A
Novel Density Based Clustering Algorithm by Incorporating Mahalanobis Distance.”
International Journal of Intelligent Engineering and Systems 11 (3).
https://doi.org/10.22266/ijies2018.0630.13.

[25] Kanevski, Mikhail, Loris Foresti, Christian Kaiser, Alexel Pozdnoukhov, Vadim Timonin, and
Devis Tuia. 2009. “Machine Learning Models for Geospatial Data.” Handbook of Theoretical
and Quantitative Geography, no. April 2018: 175–227.

[26] Xu, Dongkuan, and Yingjie Tian. 2015. “A Comprehensive Survey of Clustering Algorithms.”
Annals of Data Science 2 (2): 165–93. https://doi.org/10.1007/s40745-015-0040-1.

[27] Ahmed, Mohiuddin, Raihan Seraj, and Syed Mohammed Shamsul Islam. 2020. “The K-Means
Algorithm: A Comprehensive Survey and Performance Evaluation.” Electronics (Switzerland) 9
(8): 1–12. https://doi.org/10.3390/electronics9081295.

[28] Reddy, Chandan K., and Bhanukiran Vinzamuri. 2019. “A Survey of Partitional and Hierarchical
Clustering Algorithms.” In Data Clustering, 87–110. Chapman and Hall/CRC.
https://doi.org/10.1201/9781315373515-4.

[29] Ilango, Mr, and V Mohan. 2010. “A Survey of Grid Based Clustering Algorithms.” International
Journal of Engineering Science and Technology 2 (8): 3441–46.

[30] Wang, Wei, Jiong Yang, and Richard Muntz. 1997. “STING: A Statistical Information Grid
Approach to Spatial Data Mining.” In Proceedings of the 23rd International Conference on
Very Large Databases, VLDB 1997, 186–95.

[31] Zaki, Mohammed J, Srinivasan Parthasarathy, Mitsunori Ogihara, and Wei Li. 1997. “Parallel
Algorithms for Discovery of Association Rules.” Data Mining and Knowledge Discovery 1 (4):
343–73. https://doi.org/10.1023/A:1009773317876.

[32] Ankerst, Mihael, Markus M Breunig, Hans-peter Kriegel, and Jörg Sander. 1999. “OPTICS:
Ordering Points to Identify the Clustering Structure.” ACM SIGMOD Record 28 (2): 49–60.

[33] Hinneburg, Alexander, and Daniel A Keim. 2003. “A General Approach to Clustering in Large
Databases with Noise.” Knowledge and Information Systems 5 (4): 387–415.
https://doi.org/10.1007/s10115-003-0086-9.

[34] Sun, Jingwen, Weixing Du, and Niancai Shi. 2018. “A Survey of KNN Algorithm.” Information
Engineering and Applied Computing, 1–10.

134

[35] Zhou, Xujun, Xianxia Zhang, and Bing Wang. 2016. “Online Support Vector Machine: A
Survey.” In Advances in Intelligent Systems and Computing, 382:269–78. Springer Verlag.
https://doi.org/10.1007/978-3-662-47926-1_26.

[36] Harvey, Shane, and Reg Harvey. 1998. “An Introduction to Artificial Neural Network.” Appita
Journal 51 (1): 26–30. https://doi.org/10.2514/6.1994-294.

[37] Bian, Jiang, Dayong Tian, Yuanyan Tang, and Dacheng Tao. 2018. “A Survey on Trajectory
Clustering Analysis,” February. http://arxiv.org/abs/1802.06971.

[38] Gao, Yun Jun, Chun Li, Gen Cai Chen, Ling Chen, Xian Ta Jiang, and Chun Chen. 2007. “Efficient
K-Nearest-Neighbor Search Algorithms for Historical Moving Object Trajectories.” Journal of
Computer Science and Technology 22 (2): 232–44. https://doi.org/10.1007/s11390-007-9030-
x.

[39] Piciarelli, Claudio, Claudio Piciarelli, Christian Micheloni, Gian Luca Foresti, and Senior
Member. 2008. “Trajectory-Based Anomalous Event Detection.”
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.149.6985.

[40] Cho, Kyunghyun, and Xi Chen. 2014. “Classifying and Visualizing Motion Capture Sequences
Using Deep Neural Networks.” In VISAPP 2014 - Proceedings of the 9th International
Conference on Computer Vision Theory and Applications, 2:122–30. SciTePress.
https://doi.org/10.5220/0004718301220130.

[41] Li, Xi, Xi Li, Weiming Hu, and Wei Hu. 2006. “A Coarse-to-Fine Strategy for Vehicle Motion
Trajectory Clustering.” IN PROC. INT’L CONF. PATTERN RECOGNITION.
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.488.1975.

[42] Xiang, Tao, and Shaogang Gong. 2008. “Spectral Clustering with Eigenvector Selection.”
Pattern Recognition 41 (3): 1012–29. https://doi.org/10.1016/j.patcog.2007.07.023.

[43] Lee, Jae-Gil, Jiawei Han, and Kyu-Young Whang. 2007. Trajectory Clustering: A Partition-and-
Group Framework *.

[44] Ferreira, Nivan, Claudio Silva, James T Klosowski, and Carlos Scheidegger. 2012. “Vector Field
K-Means: Clustering Trajectories by Fitting Multiple Vector Fields.” Computer Graphics Forum,
Vol. 32, Wiley Online Library, 2013, pp. 201–210

[45] Galluccio, Laurent, Olivier Michel, Pierre Comon, and Alfred O Hero III. 2012. “Graph Based K-
Means Clustering.” Signal Processing 92 (9) (2012) 1970–1984.

[46] Laxhammar, Rikard, and Goran Falkman. 2014. “Online Learning and Sequential Anomaly
Detection in Trajectories.” IEEE Transactions on Pattern Analysis and Machine Intelligence 36
(6): 1158–73. https://doi.org/10.1109/TPAMI.2013.172.

[47] Peng, Liu, Zhou Dong, and Wu Naijun. 2007. “VDBSCAN: Varied Density Based Spatial
Clustering of Applications with Noise.” In Proceedings - ICSSSM’07: 2007 International

135

Conference on Service Systems and Service Management.
https://doi.org/10.1109/ICSSSM.2007.4280175.

[48] Uncu, Ozge, William A. Gruver, Dilip B. Kotak, Dorian Sabaz, Zafeer Alibhai, and Colin Ng.
2006. “GRIDBSCAN: GRId Density-Based Spatial Clustering of Applications with Noise.” In
Conference Proceedings - IEEE International Conference on Systems, Man and Cybernetics,
4:2976–81. Institute of Electrical and Electronics Engineers Inc.
https://doi.org/10.1109/ICSMC.2006.384571.

[49] Ram, Anant, Sunita Jalal, Anand S. Jalal, and Manoj Kumar. 2010. “A Density Based Algorithm
for Discovering Density Varied Clusters in Large Spatial Databases.” International Journal of
Computer Applications 3 (6): 1–4. https://doi.org/10.5120/739-1038.

[50] Ram, Anant, Ashish Sharma, Anand S. Jalal, Raghuraj Singh, and Ankur Agrawal. 2009. “An
Enhanced Density Based Spatial Clustering of Applications with Noise.” In 2009 IEEE
International Advance Computing Conference, IACC 2009, 1475–78.
https://doi.org/10.1109/IADCC.2009.4809235.

[51] Borah, B., and D. K. Bhattacharyya. 2007. “A Clustering Technique Using Density Difference.”
In Proceedings of ICSCN 2007: International Conference on Signal Processing Communications
and Networking, 585–88. https://doi.org/10.1109/ICSCN.2007.350675.

[52] Xiaopeng Yu, Deyi Zhou, and Yan Zhou. 2005. “A New Clustering Algorithm Based on Distance
and Density.” In Proceedings of ICSSSM ’05. 2005 International Conference on Services
Systems and Services Management, 2005., 2:1016-1021 Vol. 2. IEEE.
https://doi.org/10.1109/ICSSSM.2005.1500146.

[53] Elbatta, Mohammad N T. 2012. “An Improvement for DBSCAN Algorithm for Best Results in
Varied Densities.”

[54] Fahim, Am, and Am Salem. 2006. “Density Clustering Based on Radius of Data (DCBRD).”
Enformatika 16: 344–49.

[55] Liu, Bing. 2006. “A Fast Density-Based Clustering Algorithm for Large Databases.” In
Proceedings of the 2006 International Conference on Machine Learning and Cybernetics,
2006:996–1000. https://doi.org/10.1109/ICMLC.2006.258531.

[56] Xiaoyun, Chen, Min Yufang, Zhao Yan, and Wang Ping. 2008. “GMDBSCAN: Multi-Density
DBSCAN Cluster Based on Grid.” In IEEE International Conference on E-Business Engineering,
ICEBE’08 - Workshops: AiR’08, EM2I’08, SOAIC’08, SOKM’08, BIMA’08, DKEEE’08, 780–83.
https://doi.org/10.1109/ICEBE.2008.54.

[57] Borah, B., and D. K. Bhattacharyya. 2004. “An Improved Sampling-Based DBSCAN for Large
Spatial Databases.” In Proceedings of International Conference on Intelligent Sensing and
Information Processing, ICISIP 2004, 92–96. https://doi.org/10.1109/icisip.2004.1287631.

136

[58] El-Sonbaty, Yasser, M. A. Ismail, and Mohamed Farouk. 2004. “An Efficient Density Based
Clustering Algorithm for Large Databases.” In Proceedings - International Conference on Tools
with Artificial Intelligence, ICTAI, 673–77. https://doi.org/10.1109/ICTAI.2004.27.

[59] Mahran, Shaaban, and Khaled Mahar. 2008. “Using Grid for Accelerating Density-Based
Clustering.” In Proceedings - 2008 IEEE 8th International Conference on Computer and
Information Technology, CIT 2008, 35–40. https://doi.org/10.1109/CIT.2008.4594646.

[60] Birant, Derya, and Alp Kut. 2007. “ST-DBSCAN: An Algorithm for Clustering Spatial-Temporal
Data.” Data and Knowledge Engineering 60 (1): 208–221.
https://doi.org/10.1016/j.datak.2006.01.013.

[61] “MarineCadastre.Gov | Vessel Traffic Data.” n.d. Accessed December 14, 2020.
https://marinecadastre.gov/ais/.

[62] ‘Reprint of: Mahalanobis, P.C. (1936) “On the Generalised Distance in Statistics.”’ (2018)
Sankhya A. Springer Science and Business Media LLC, 80(S1), pp. 1–7. doi: 10.1007/s13171-
019-00164-5.

[63] Davies, D. L. and Bouldin, D. W. (1979) ‘A Cluster Separation Measure’, IEEE Transactions on
Pattern Analysis and Machine Intelligence, PAMI-1(2), pp. 224–227. doi:
10.1109/TPAMI.1979.4766909.

[64] Rousseeuw, P. J. (1987) ‘Silhouettes: A graphical aid to the interpretation and validation of
cluster analysis’, Journal of Computational and Applied Mathematics. North-Holland, 20(C),
pp. 53–65. doi: 10.1016/0377-0427(87)90125-7.

[65] Caliñski, T. and Harabasz, J. (1974) ‘A Dendrite Method Foe Cluster Analysis’, Communications
in Statistics, 3(1), pp. 1–27. doi: 10.1080/03610927408827101.

[66] Rosenberg, A. and Hirschberg, J. (2007) V-Measure: A conditional entropy-based external
cluster evaluation measure.

[67] Sasaki, Y. and Fellow, R. (2007) The truth of the F-measure.

[68] Rand, W. M. (1971) ‘Objective criteria for the evaluation of clustering methods’, Journal of the
American Statistical Association, 66(336), pp. 846–850. doi:
10.1080/01621459.1971.10482356.

137

Appendix

Python Source Codes

Algorithm 1 Proposed_DBSCAN_Unsupervised (D, Eps, MinPts)

Algorithm 1 is the function of using the unsupervised component of the proposed clustering

algorithm to discover clusters in the first step. It requires three parameters as input,

including the Dataset D and two predefined parameters, Eps and MinPts. Eps sets the

threshold of the neighborhoods, and MinPts limits the number of the core points. The

procedure iterates until all the points have been visited and labeled. By the end, all the

points density connected are clustered together, and others are identified as outliers. The

function returns a list of cluster labels.

def Proposed_DBSCAN_Unsupervised(D, eps, MinPts):
 """
 Cluster the dataset `D` using the proposed enhanced DBSCAN algorithm.

 The proposed enhanced DBSCAN algorithm takes a dataset `D` (a list of
vectors),
 a threshold distance `eps,`
 and a required number of points `MinPts`.

 It will return a list of cluster labels. The label -1 means noise,
and then
 the clusters are numbered starting from 1.
 """

 # This list will hold the final cluster assignment for each point in
D.
 # There are two reserved values:

138

 # -1 - Indicates a noise point
 # 0 - Means the point hasn't been considered yet.
 # Initially all labels are 0.
 labels = [0] * len(D)

 # C is the ID of the current cluster.
 C = 0

 # This outer loop is just responsible for picking new seed points
 # --a point from which to grow a new cluster.
 # Once a valid seed point is found, a new cluster is created,
 # and the cluster growth is all handled by the 'expandCluster'
routine.

 # For each point P in the Dataset D...
 # ('P' is the index of the datapoint, rather than the datapoint
itself.)
 print('start to Cluster in Step 1:')
 for P in range(0, len(D)):
 # print the progress
 # if P % 1000 == 0:
 # print(str(P / len(D) * 100) + '%')

 # Only points that have not already been claimed can be picked as
new seed points.
 # If the point's label is not 0, continue to the next point.
 if not (labels[P] == 0):
 continue

 # Find all of P's neighboring points.
 NeighborPts = regionQuery(D, P, eps)

 # If the number is below MinPts, this point is noise.
 # This is the only condition under which a point is labeled NOISE
 # -- when it's not a valid seed point.
 # A NOISE point may later be picked up by another cluster as a
border point
 # (this is the only condition under which a cluster label can
change
 # --from NOISE to something else).
 if len(NeighborPts) < MinPts:
 labels[P] = -1

 # Otherwise, if there are at least MinPts nearby,
 # use this point as the core point / seed for a new cluster.
 else:
 C += 1
 growCluster(D, labels, P, NeighborPts, C, eps, MinPts)

139

 # All data has been clustered!
 return labels

def growCluster(D, labels, P, NeighborPts, C, eps, MinPts):
 """
 Grow a new cluster with label `C` from the core point / seed point
`P`.

 This function searches through the dataset to find all points that
belong
 to this new cluster. When this function returns, cluster `C` is
complete.

 Parameters:
 `D` - The dataset (a list of vectors)
 `labels` - List storing the cluster labels for all dataset points
 `P` - Index of the core point / seed point for this new
cluster
 `NeighborPts` - All of the neighbors of `P`
 `C` - The label for this new cluster.
 `eps` - Threshold distance
 `MinPts` - Minimum required number of neighbors
 """

 # Assign the cluster label to the seed point.
 labels[P] = C

 # Look at each neighbor of P (neighbors are referred to as Pn).
 # NeighborPts will be used as a FIFO queue of points to search
 # --that is, it will grow as we discover new core points for the
cluster.
 # The FIFO behavior is accomplished by using a while-loop rather than
a for-loop.
 # In NeighborPts, the points are represented by their index in the
original dataset.
 i = 0
 while i < len(NeighborPts):

 # Get the next point from the queue.
 Pn = NeighborPts[i]

 # If Pn was labelled NOISE during the seed search,

140

 # then we know it's not a core point (it doesn't have enough
neighbors),
 # so make it a border point of cluster C and move on.
 if labels[Pn] == -1:
 labels[Pn] = C

 # Otherwise, if Pn isn't already claimed, claim it as part of C.
 elif labels[Pn] == 0:
 # Add Pn to cluster C (Assign cluster label C).
 labels[Pn] = C

 # Find all the neighbors of Pn
 PnNeighborPts = regionQuery(D, Pn, eps)

 # If Pn has at least MinPts neighbors, it's a core point!
 # Add all of its neighbors to the FIFO queue to be searched.
 if len(PnNeighborPts) >= MinPts:
 NeighborPts = NeighborPts + PnNeighborPts

 # Advance to the next point in the FIFO queue.
 i += 1

 # We've finished growing cluster C!

def regionQuery(D, P, eps):
 """
 Find all points in dataset `D` within distance `eps` of point `P`.

 This function calculates the Mahalanobis distance between a point P
and every other
 point in the dataset, and then returns only those points which are
within a
 threshold distance `eps`.
 """
 neighbors = []

 # Calculate the covariance matrix
 D_covMatrix = np.cov(D.T, bias=True)

 # If the covariance matrix is singular and do not have inverse
matrix,
 # Use the (Moore-Penrose) pseudo-inverse of a matrix as D_I for next
step
 try:

141

 D_I = np.matrix(D_covMatrix).I
 except:
 D_I = np.matrix(np.linalg.pinv(D_covMatrix))

 # For each point in the dataset...
 for Pn in range(0, len(D)):

 # If the distance is below the threshold, add it to the neighbors
list.
 dis = np.dot(np.dot((D[P] - D[Pn]), D_I), (D[P] - D[Pn]).T)[0, 0]
** 0.5
 if dis < eps:
 neighbors.append(Pn)

 return neighbors

 # We've finished Finding all neighbour points in the dataset!

142

Algorithm 2 Proposed DBSCAN Supervised (D, Training_D, Eps)

Algorithm 2 is the function of using the supervised component to classify new observations

into pre-defined clusters. It requires three parameters as input, including the new

observations Dataset X_test, the training Dataset Training_D (or split into X_train and

Y_train), and a pre-defined parameter Eps. Eps sets the threshold of the neighborhoods of

clusters and find the outliers. The procedure iterates until all the points have been visited

and labeled. By the end, all the points close to pre-defined clusters are classified, and others

are identified as outliers. The function returns a list of cluster labels.

def Proposed_DBSCAN_Supervised(X_train, Y_train, X_test, Eps):
 """
 Cluster the dataset `X_test` using the proposed enhanced DBSCAN
algorithm.

 The supervised component takes a dataset `X_train` (a list of
vectors) and
 a list of labels,`X_train`, to train the decision machine.

 Then the trained model is implemented on the target dataset,
'X_test',
 using a threshold distance `eps`,
 to classify the points.

 It will return a list of cluster labels. The label -1 means noise,
and then
 the clusters are numbered starting from 1.
 """

 # Create a dataframe to hold the training data
 df_train = pd.DataFrame(X_train)
 df_train['label'] = Y_train

143

 I_df_train = []
 mean_df_train = []
 labels = []

 # iterate every cluster in the trainig data
 for label in np.unique(Y_train):
 # get the label
 df_train_i = df_train[df_train['label'] == label]

 # get the five attributes of X
 df_X_train_i = df_train_i[[0, 1, 2, 3, 4]]

 # Calculate the covariance matrix
 covMatrix_df_X_train_i = np.cov(df_X_train_i.T, bias=True)

 # If the covariance matrix is singular and do not have inverse
matrix,
 # Use the (Moore-Penrose) pseudo-inverse of a matrix as D_I for
next step
 try:
 D_I = np.matrix(covMatrix_df_X_train_i).I
 except:
 D_I = np.matrix(np.linalg.pinv(covMatrix_df_X_train_i))

 # get center point of the cluster
 mean_df_X_train_i = df_X_train_i.mean(axis=0)

 # store the values in the memory for the use in next step
 I_df_train.append(D_I)
 mean_df_train.append(mean_df_X_train_i)

 # print('start to Cluster in Step 2:')
 # iterate every point in the test dataset
 for i in range(X_test.shape[0]):
 # print the progess
 # if i % 1000 == 0:
 # print(str(i / X_test.shape[0] * 100) + '%')

 # point p
 p = X_test[i]
 dist_list = []

 # iterate through every pre-defined cluster
 for j in range(len(np.unique(Y_train))):
 # calculate the Mahalanobis distance from the point to the
cluster
 I_j = I_df_train[j]

144

 mean_j = mean_df_train[j]
 dist_j = np.dot(np.dot((p - mean_j), I_j), (p - mean_j).T)[0,
0] ** 0.5

 # store the distance
 dist_list.append(dist_j)

 # find the closest cluster
 min_idx = dist_list.index(min(dist_list))

 # compare the distance to the defined Eps
 # if smaller than Eps, the classify the point into this cluster
 if min(dist_list) < Eps:
 labels.append(min_idx)
 # if not, the point is an outlier
 else:
 labels.append(-1)

 # All data has been clustered!
 return labels

145

Algorithm 3 Find_Eps_MinPts_for_Unsupervised (D)

Algorithm 3 is the function of finding the two recommended parameters (Eps and MinPts)

to be used in the unsupervised component of the proposed clustering algorithm to discover

clusters in the first step. It requires only one parameter as input: the targeted Dataset X.

And the two parameters, Eps and MinPts, will be recommended as returned output.

def Find_Eps_MinPts_for_Unsupervised(X):
 """
 Based on the dataset `X` itself
 to recommend a pair of parameters (MinPts and Eps)
 to be used in the unsupervised component in the proposed enhanced
DBSCAN algorithm.

 The algorithm only takes a dataset `X` (a list of vectors)

 It will return two values.
 The first one is MinPts, and the second one is Eps.
 """

 # the recommended MinPts is 0.1% of the total size of Dataset X
 # the recommended MinPts also should be at least 10
 # it can be varied based on user's configuration
 Minpts = max(10, int(0.001 * len(X)))

 # Calculate the covariance matrix
 D_covMatrix = np.cov(X.T, bias=True)

 # If the covariance matrix is singular and do not have inverse
matrix,
 # Use the (Moore-Penrose) pseudo-inverse of a matrix as D_I for next
step
 try:
 D_I = np.matrix(D_covMatrix).I
 except:
 D_I = np.matrix(np.linalg.pinv(D_covMatrix))

146

 # start to calculate k nearest neighbours distance
 k = Minpts - 1
 kn_distance = []

 # print('start to find MinPts and Eps in Step 1:')
 # iterative through every point
 for i in range(len(X)):
 MM_dist = []

 # iterate every other point to calculate the Mahalanobis distance
 for j in range(len(X)):
 dis = np.dot(np.dot((X[i] - X[j]), D_I), (X[i] - X[j]).T)[0,
0] ** 0.5
 MM_dist.append(dis)

 # find the k nearest neighbours distance
 MM_dist.sort()
 kn_distance.append(MM_dist[k])
 # print the progress
 # if i % 1000 == 0:
 # print(str(i / len(X) * 100) + '%')

 # set the Eps to be the upper limit
 # defined by the sum of the upper quartile and 1.5 times the Inter-
quartile Range (IQR)
 # this is prioritized for differentiating the outliers
 Eps = round(np.percentile(kn_distance, 75) + 1.5 * iqr(kn_distance),
3)

 # We find the required parameters!
 return Minpts, Eps

147

Algorithm 4 Find_Eps_for_Supervised (Training_D, D)

Algorithm 4 is the function of finding the recommended parameter Eps used in the

supervised component of the proposed clustering algorithm to classify the new

observations. It requires t2o parameters as input, including the new observations Dataset

X_test, the training Dataset Training_D (or split into X_train and Y_train). Eps will be

recommended as returned output.

def Find_Eps_for_Supervised(X_train, Y_train, X_test):
 """
 Based on the targeted dataset `X_test` itself,
 and the training dataset Training_D (or split into X_train and
Y_train)
 to recommend the parameter (Eps)
 to be used in the Supervised component in the proposed enhanced
DBSCAN algorithm.

 The algorithm takes parameters of the targeted dataset `X_test` (a
list of vectors),
 and the training dataset Training_D.

 It will return one value, Eps.
 """

 # Create a dataframe to hold the training data
 df_train = pd.DataFrame(X_train)
 df_train['label'] = Y_train

 I_df_train = []
 mean_df_train = []

 # iterate every cluster in the trainig data
 for label in np.unique(Y_train):
 # get the label
 df_train_i = df_train[df_train['label'] == label]

148

 # get the five attributes of X
 df_X_train_i = df_train_i[[0, 1, 2, 3, 4]]

 # Calculate the covariance matrix
 covMatrix_df_X_train_i = np.cov(df_X_train_i.T, bias=True)

 # If the covariance matrix is singular and do not have inverse
matrix,
 # Use the (Moore-Penrose) pseudo-inverse of a matrix as D_I for
next step
 try:
 D_I = np.matrix(covMatrix_df_X_train_i).I
 except:
 D_I = np.matrix(np.linalg.pinv(covMatrix_df_X_train_i))

 # get center point of the cluster
 mean_df_X_train_i = df_X_train_i.mean(axis=0)

 # store the values in the memory for the use in next step
 I_df_train.append(D_I)
 mean_df_train.append(mean_df_X_train_i)

 # create a output list
 kn_distance = []

 # iterate every point in the test dataset
 for i in range(X_test.shape[0]):
 # only 1/3 of the points are used for getting Eps
 if i % 3 == 0:

 # Point p
 p = X_test[i]

 dist_list = []

 # calculate Mahalanobis distance to each pre-defined clusters
 # iterate every cluster
 for j in range(len(np.unique(Y_train))):
 I_j = I_df_train[j]
 mean_j = mean_df_train[j]

 # calculate Mahalanobis distance
 dist_j = np.dot(np.dot((p - mean_j), I_j), (p -
mean_j).T)[0, 0] ** 0.5

 dist_list.append(dist_j)

 # save the smallest dist

149

 kn_distance.append(dist_list.index(min(dist_list)))

 # set the Eps to be the upper limit
 # defined by the sum of the upper quartile and 1.5 times the Inter-
quartile Range (IQR)
 # this is prioritized for differentiating the outliers
 Eps = round(np.percentile(kn_distance, 75) + 1 * iqr(kn_distance), 3)

 # We find the required parameter!
 return Eps

