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Abstract 

Today, maritime transportation represents substantial international trade. 

Sustainable development of marine transportation requires systematic modeling and 

surveillance for maritime situational awareness. In this research thesis, we present an 

enhanced density-based spatial clustering (DBSCAN) method to model vessel behaviors. 

The proposed methodology enhances the DBSCAN clustering performance by integrating 

the Mahalanobis Distance metric that considers the correlations of the points representing 

the locations of the vessels. The clustering method is applied to historical Automatic 

Identification System (AIS) data and generates an action recommendation tool and a model 

for detecting vessel trajectory anomalies. Two case studies present outcomes from the 

openly available Gulf of Mexico AIS data, and Saint Lawrence Seaway and Great Lakes AIS 

licensed data acquired from ORBCOMM (a maritime AIS data provider). This research 

proposes a framework for modeling AIS data, an algorithm for generating a clustering model 

of the vessels' trajectories, and a model for detecting vessel trajectory anomalies such as 

unexpected stops, deviations from regulated routes, or inconsistent speed. This work's 

findings demonstrate the applicability and scalability of the proposed method for modeling 

more water regions, contributing to situational awareness, vessel collision prevention, safe 

navigation, route planning, and detection of vessel behavior anomalies for auto-vessels 

development. 

 

 



iii 

Acknowledgments 

My deepest gratitude to my advisors, Prof. Costas Armenakis and Prof. Mojgan 

Jadidi, who have consistently and diligently supported me to be a better student and 

researcher to succeed in finishing outstanding research in this journey. Without their 

guidance, it would be impossible to learn broad concepts in the Data Science research field 

focusing on spatial data. I want to express my gratitude for providing me the incredibly 

valuable opportunity to research the computer field while learning programming skills for 

my future career. Nevertheless, more than their guidance in my work, I want to thank them 

for their ability to constantly push me out of my comfort zone and continue the never-

ending process of learning.  

Also, gratitude to my committee member, Prof. Manos Papagelis, for being such a 

great professor and advisor, always patiently offering ideas and inspirations. I want to thank 

The Bureau of Ocean Energy Management (BOEM) and the National Oceanic and 

Atmospheric Administration (NOAA) for providing the open-sourced AIS dataset for this 

research. I want to thank ORBCOMM for collecting the maritime AIS data and thank York 

University for its legal support in requesting AIS data from ORBCOMM. I want to thank the 

Natural Sciences and Engineering Research Council of Canada (NSERC) and York University 

for their funding support. I also appreciate my family, who supported my education abroad 

in Canada.  Finally, gratitude to all my friends, teammates, and my cat Lagu who comforted 

and supported me during the COVID-19 pandemic times.   



iv 

Table of Contents 

Abstract .................................................................................................................................. ii 

Acknowledgments ................................................................................................................. iii 

Table of Contents .................................................................................................................. iv 

List of Figures ......................................................................................................................... vi 

List of Tables ........................................................................................................................... x 

List of Abbreviations .............................................................................................................. xi 

1. Chapter 1: Introduction ................................................................................................. 1 

1.1 Research Motivation .................................................................................................... 1 

1.2 Research Objectives ..................................................................................................... 4 

1.3 Scientific Contribution .................................................................................................. 5 

1.4 Thesis Outline ............................................................................................................... 7 

2. Chapter 2: Literature Review......................................................................................... 9 

2.1 Background ................................................................................................................... 9 

2.2 Trajectory Data Mining ............................................................................................... 14 

2.3 DBSCAN Enhancement ............................................................................................... 21 

2.4 Mahalanobis Distance ................................................................................................ 27 

3. Chapter 3: Methodology .............................................................................................. 32 

3.1 Novel Representation of Marine Trajectory Data ...................................................... 32 

3.2 Integration of Mahalanobis Metric to DBSCAN.......................................................... 35 

3.3 Method for the Auto-Selection of the Enhanced DBSCAN Parameters ..................... 43 

3.4 Implementation of the Clustering Framework ........................................................... 44 



v 

4. Chapter 4: Data and Experiments ............................................................................... 50 

4.1 Data and Data Pre-Processing .................................................................................... 50 

4.2 Testing and Evaluation Using Synthetic Data ............................................................. 56 

4.2.1 Internal Evaluation .............................................................................................. 56 

4.2.2 External Evaluation .............................................................................................. 58 

4.2.3 Enhanced DBSCAN Algorithm Performance Evaluation ...................................... 61 

4.2.4 Sensitivity Analysis and Validation ...................................................................... 97 

4.3 Case Studies and Results .......................................................................................... 105 

4.3.1 Gulf of Mexico AIS Big Data ............................................................................... 105 

4.3.2 Saint Lawrence Seaway AIS Data ....................................................................... 113 

5. Chapter 5: Conclusions .............................................................................................. 126 

5.1 Summary and Contribution ...................................................................................... 126 

5.2 Future Work and Perspectives ................................................................................. 129 

References .......................................................................................................................... 131 

Appendix ............................................................................................................................. 137 

 

 

 

 

 

 

  



vi 

List of Figures 

Figure 1–1. The workflow of the research .......................................................................................... 5 

Figure 2–1. Principle of K-Means clustering algorithm (source: healthcare.ai) ................................ 10 

Figure 2–2. KNN algorithm determination of the label of a new observation by the voting system 

(k=3 in solid line vs. k=5 in dash line) (credit: Wikipedia.com User Antti Ajanki) ............................. 12 

Figure 2–3. SVM algorithm use of hyperplanes to partition the data (credit: Monkeylearn.com user 

Bruno Stecanella) .............................................................................................................................. 13 

Figure 2–4. A typical Artificial Neural Network (ANN) structure (source: kdnuggets.com) ............. 14 

Figure 2–5. An example of MBR representation and Trajectory-Bundle Tree (TB Tree) structure for 

trajectory segment from (Gao et al., 2007) ...................................................................................... 17 

Figure 2–6. An example of a typical CNN structure on image classification (credit: medium.com 

user Meghna Asthana) ...................................................................................................................... 18 

Figure 2–7. Example of the DBSCAN process. A is the core points; B, C are the border points; N is 

an outlier (credit: Wikipedia User Chire) .......................................................................................... 22 

Figure 2–8. Differences between Euclidean distance and Mahalanobis distance – Even Point 1 and 

Point 2 have the same Euclidean Distance to the centroid, but Point 2 has much longer 

Mahalanobis Distance to this cluster (source: machinelearningplus.com user Selva Prabhakaran) 28 

Figure 2–9.  Principal components analysis (PCA) on forming two PCs as a window into the 

multidimensional space (source: sartorius.com) .............................................................................. 30 

Figure 2–10. An example of Mahalanobis distance contour plot on 100 random points with mean 

zero, unit variance, and 50% correlation. A blue square notes the centroid defined by the marginal 

means. (source: statisticshowto.com) .............................................................................................. 31 

Figure 3–1. Difference between COG, the direction of motion with respect to the ground, ①, and 

Heading,  the direction that a vessel is pointed at, ② (credit: Wikipedia user WolfgangW) .......... 34 

Figure 3–2. A point classification process using Mahalanobis Distance – even Point A has a longer 

Euclidean Distance to the centroid, but Point B has a much longer Mahalanobis Distance to this 

cluster (credit: Rick Wicklin on The DO Loop) ................................................................................... 36 

Figure 3–4. The Framework of extracting behavior patterns from actual AIS Data and applying the 

model to new observations............................................................................................................... 45 



vii 

Figure 3–5. A Schematic overview of the clustering hierarchy – Segmentation of actual AIS data 

into smaller pieces and merging of the Clustering Results ............................................................... 47 

Figure 3–6. Details of the semi-supervised clustering process - a combination of an unsupervised 

clustering component and a supervised component........................................................................ 49 

Figure 4–1. Overview of AIS data characteristics.............................................................................. 51 

Figure 4–2. Two synthesized datasets for algorithm testing and performance evaluation ............. 53 

Figure 4–3. Two Raw AIS Big Data .................................................................................................... 55 

Figure 4–4. Designed structure of the Artificial Neural Network to be used in algorithm comparison 

(Two Hidden Layers Are Omitted) ..................................................................................................... 64 

Figure 4–5. Comparing Enhanced DBSCAN's performance on discovering clusters from synthetic 

dataset one to ground truth and other unsupervised clustering methods ...................................... 67 

Figure 4–6. Comparing Enhanced DBSCAN's performance on distinguishing intersections from 

synthetic dataset two to ground truth and other unsupervised clustering methods ...................... 69 

Figure 4–7. Performance evaluation of discovering clusters on unsupervised algorithms using 

external evaluation metrics on dataset one ..................................................................................... 72 

Figure 4–8. Performance evaluation of discovering clusters on unsupervised algorithms using 

internal evaluation metrics on dataset one ...................................................................................... 72 

Figure 4–9. Performance evaluation of distinguishing intersections and discovering clusters on 

unsupervised algorithms using external evaluation metrics on dataset two ................................... 73 

Figure 4–10. Performance evaluation of distinguishing intersections and discovering clusters on 

unsupervised algorithms using internal evaluation metrics on dataset two .................................... 73 

Figure 4–11. Comparing Enhanced DBSCAN's performance on detecting outliers from synthetic 

dataset one to ground truth and other unsupervised clustering methods ...................................... 77 

Figure 4–12. Performance evaluation of outlier detection on unsupervised algorithms using 

external evaluation metrics on dataset one ..................................................................................... 79 

Figure 4–13. Performance evaluation of outlier detection on unsupervised algorithms using 

internal evaluation metrics on dataset one ...................................................................................... 79 

Figure 4–14. Comparing Enhanced DBSCAN's performance on discovering clusters from synthetic 

dataset one to ground truth and other supervised clustering methods .......................................... 83 



viii 

Figure 4–15. Comparing Enhanced DBSCAN's performance on distinguishing intersections and 

discovering clusters from synthetic dataset two to ground truth and other supervised clustering 

methods ............................................................................................................................................ 86 

Figure 4–16. Performance evaluation of discovering clusters on supervised algorithms using 

external evaluation metrics on dataset one ..................................................................................... 88 

Figure 4–17. Performance evaluation of discovering clusters on supervised algorithms using 

internal evaluation metrics on dataset one ...................................................................................... 88 

Figure 4–18.  Performance evaluation of distinguishing intersections on supervised algorithms 

using external evaluation metrics on dataset two ............................................................................ 89 

Figure 4–19. Performance evaluation of distinguishing intersections on supervised algorithms 

using internal evaluation metrics on dataset two ............................................................................ 89 

Figure 4–20. Comparing Enhanced DBSCAN's performance on outlier detection from synthetic 

dataset one to ground truth and other supervised clustering methods .......................................... 94 

Figure 4–21. Performance evaluation of outlier detection on supervised algorithms using external 

evaluation metrics on dataset one ................................................................................................... 96 

Figure 4–22. Performance evaluation of outlier detection on supervised algorithms using internal 

evaluation metrics on dataset one ................................................................................................... 96 

Figure 4–23. Comparison results by variating the parameters by 20% .......................................... 103 

Figure 4–24. Clustering performance evaluation of various parameters using external evaluation 

metrics for sensitivity analysis ........................................................................................................ 105 

Figure 4–25. Raw AIS data and raw trajectory data in the Gulf of Mexico Region ......................... 106 

Figure 4–26. Final AIS Clusters resulted from the proposed clustering framework on the Gulf of 

Mexico, with each color representing one vessel behavior pattern .............................................. 107 

Figure 4–27. Ports and locations where vessels are mooring detected by the proposed clustering 

framework in Gulf of Mexico Area .................................................................................................. 109 

Figure 4–28. Profiled behavior vectors on the Gulf of Mexico from proposed clustering framework, 

represented by the arrows .............................................................................................................. 110 

Figure 4–29. Application of the model for the Gulf of Mexico: vessel behavior recommendations 

based on given location .................................................................................................................. 111 

Figure 4–30. Application of the model for the Gulf of Mexico: vessel behavior monitoring and 

anomaly detection on new observations ........................................................................................ 112 



ix 

Figure 4–31. Raw AIS data and raw trajectory data in Saint Lawrence Seaway and Great Lakes 

Region .............................................................................................................................................. 114 

Figure 4–32. Final AIS Clusters resulted from the proposed clustering framework on the Saint 

Lawrence Seaway and Great Lakes Region, with each color representing one vessel behavior 

pattern ............................................................................................................................................. 115 

Figure 4–33. Ports and locations where vessels are mooring detected by the proposed clustering 

framework in Saint Lawrence Seaway and Great Lakes Region ..................................................... 116 

Figure 4–34. Zoomed-in figures showing the details of those Ports and locations where vessels are 

mooring detected by the proposed clustering framework in Saint Lawrence Seaway and Great 

Lakes Region .................................................................................................................................... 117 

Figure 4–35. Profiled behavior vectors on the Saint Lawrence Seaway and Great Lakes Region from 

proposed clustering framework, represented by the arrows ......................................................... 118 

Figure 4–36. Zoomed-in Figures Showing the Details of Those Profiled behavior vectors on the 

Saint Lawrence Seaway and Great Lakes Region from proposed clustering framework, represented 

by the arrows .................................................................................................................................. 121 

Figure 4–37. Final AIS Clusters resulted from the proposed clustering framework on the location 

between Kingston to Port at Wolfe Island, with each color representing one vessel behavior 

pattern ............................................................................................................................................. 122 

Figure 4–38. Final AIS Clusters resulted from the proposed clustering framework in Lake Ontario 

and St. Lawrence River, with each color representing one vessel behavior pattern ...................... 123 

Figure 4–39. Application of the Model for Canadian Great Lakes Region: Vessel Behavior 

Recommendations Based on Given Location .................................................................................. 124 

Figure 4–40. Application of the Model for Canadian Great Lakes Region: Vessel Behavior 

Monitoring and Anomaly Detection on New Observations ............................................................ 125 

 

 

 

  



x 

List of Tables 

Table 2–1. Marine Trajectory Data Clustering Related Works ......................................................... 15 

Table 2–2. Current State-of-the-Art of the DBSCAN Enhancement Methods .................................. 24 

Table 4–1. A comprehensive list of internal performance metrics for evaluating clustering results

 ........................................................................................................................................................... 57 

Table 4–2. A comprehensive list of external performance metrics for evaluating clustering results

 ........................................................................................................................................................... 60 

Table 4–3. Clustering performance evaluation of various unsupervised methods on discovering 

clusters and distinguishing intersections .......................................................................................... 71 

Table 4–4. Clustering performance evaluation of various unsupervised methods on detecting 

outliers .............................................................................................................................................. 78 

Table 4–5. Clustering performance evaluation of various supervised methods on distinguishing 

intersections and discovering clusters .............................................................................................. 87 

Table 4–6. Clustering performance evaluation of various supervised methods on outlier detection

 ........................................................................................................................................................... 95 

Table 4–7. The recommended values of the required parameters to be used in the Enhanced 

DBSCAN unsupervised component ................................................................................................... 98 

Table 4–8. Clustering performance evaluation of various parameters .......................................... 104 

 

 

 

 

 

  



xi 

List of Abbreviations 

 

AIS 

 

Automatic Identification System  

DBSCAN Data Using Optimized Density-Based Spatial Clustering of 

Applications with Noise 

Eps Defined Radius to Determine Neighboring Points in DBSCAN  

MinPts Defined Minimum Number of Data Points to Determine Core 

Points in DBSCAN 

SOG Speed Over Ground 

COG Course Over Ground 

ANN Artificial Neural Networks 

KNN K Nearest Neighborhoods 

SVM Support Vector Machine 

CNN Convolutional Neural Network  

MMSI Maritime Mobile Service Identity 



1 

1. Chapter 1: Introduction 

 

1.1 Research Motivation 

Today maritime transportation represents 90% of international trade volume, and 

more than 50,000 vessels are sailing the ocean every day. Therefore, systematically 

modeling and surveillance should be of high priority in the maritime domain to reduce 

maritime transportation security risks. Statistically, between 75% and 96% of maritime 

accidents are caused by human error due to fatigue or misjudgment (Bernard Marr, 2019; 

Dana, 2019). Navigation safety contributes to a sustainable society by reducing marine 

transportation accidents, protecting the marine environment and creatures from exposure 

to hazardous chemicals leakage from vessel collisions. Besides, auto-vessels developments 

contribute to surveying and transportation efficiency, promoting and facilitating 

sustainable and cost-saving industries (Bernard Marr, 2019; Dana, 2019). The auto-vessels 

should be the most promising automatic vehicles to be implemented shortly, due to fewer 

barriers to adoption than unmanned vehicles driving on the road (Bernard Marr, 2019; Dana, 

2019) and unmanned aerial vehicles with a more complex operational air domain  (Vespe 

et al., 2012). Auto-vessels equipped with autonomous and semi-autonomous systems can 

reduce human intervention reliance, making our oceans and maritime navigation safer. In 

December 2018, Rolls-Royce and Fin-ferries demonstrated the world's first fully 

autonomous ferry (Jallal, 2018). However, the ships were only deployed on simple inland 

where waters are calm, the route is simple, and there is not high traffic. Indeed, there is still 
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a long way to go in the design and development of auto-vessel-related research, with 

elements including route planning and trajectory anomalies detection, situational 

awareness, and intelligent responses toward changing environments. This research focuses 

on the first element, route planning, and anomalies detection, by proposing an algorithm 

for generating a clustering model of the vessels' trajectories and a model for detecting 

vessel trajectory anomalies such as unexpected stops, deviations from regulated routes, or 

inconsistent speed. 

In this regard, reliable open-sourced data sources for studying vessel behaviors and 

generating nautical routes are the historical and real-time maritime Automatic 

Identification System (AIS) data (Silveira, Teixeira and Soares, 2013; Sheng and Yin, 2018). 

AIS is an automatic tracking system to identify and locate vessels by exchanging data with 

other nearby ships, AIS base stations, and satellites. According to the Safety of Life at Sea 

(SOLAS) convention, ships of 300 gross tonnages and upwards in international voyages, 500 

and upwards for cargoes not in international waters, and passenger's vessels are obliged to 

be embedded with AIS equipment, making AIS data abundant globally (IMO, 2000). 

Furthermore, AIS becomes a worldwide data standard, and therefore this coherent source 

of information can be suitable for global marine transportation traffic modeling and analysis. 

In this research, we use open-sourced AIS data as the primary data source for the proposed 

algorithm testing and generate models based on big data from the Saint Lawrence Seaway 

Region. Since AIS data always contain inaccurate and uncertainty noise, outlier detection 

and filtration are required when organizing and modeling AIS data. Also, given a large 
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amount of AIS data, this is more feasible to adopt unsupervised learning in modeling and 

anomaly detection processes with a high degree of automation.  

Thus in this research, Density-Based Spatial Clustering of Applications with Noise 

(DBSCAN) is proposed to be used as the foundation of the marine trajectory modeling. 

DBSCAN, an unsupervised method, is now available in many clustering libraries and is widely 

used in many real-world applications (Hall et al., 2009; Pedregosa FABIANPEDREGOSA et al., 

2011; R Core Development Team, 2013; Schubert et al., 2015). As DBSCAN relies on a 

density-based notion of clusters, this considers being an effective method to discover 

clusters of arbitrary shapes and identify outliers (Ester et al., 1996). Thus, DBSCAN 

demonstrates vast potentials to be applied to marine trajectory clustering. However, 

applying the traditional DBSCAN clustering method has a considerable shortcoming with 

spatially unevenly distributed actual AIS data (Academy et al., 2009; Esmaelnejad, Habibi 

and Yeganeh, 2010; Smiti and Eloudi, 2013; Fong et al., 2014; Karami and Johansson, 2014; 

Sawant, 2014; Liu, 2015; Hou, Gao and Li, 2016; Schubert et al., 2017; Han, Armenakis and 

Jadidi, 2020), making it an unreliable method to be applied to marine trajectory clustering 

without optimization. The traditional DBSCAN method requires two input parameters, 

MinPts (minimum number of data points) and Eps (radius to determine neighboring points), 

and the user needs to determine appropriate values for them. However, in real life, it is very 

difficult to find the optimal parameters when the data and scale cannot be well understood 

(Academy et al., 2009; Esmaelnejad, Habibi and Yeganeh, 2010; Smiti and Eloudi, 2013; Fong 

et al., 2014; Karami and Johansson, 2014; Sawant, 2014; Liu, 2015; Hou, Gao and Li, 2016; 
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Schubert et al., 2017; Han, Armenakis and Jadidi, 2020). Furthermore, as the traditional 

DBSCAN is based on the Euclidean distance metric, this sometimes cannot handle clusters 

with complex shapes and distribution (Ren, Liu and Liu, 2012; Sangeetha, Padikkaramu and 

Chellan, 2018). Thus, innovative distance metrics need to be proposed to handle data with 

complicated spatial distributions, and to optimize the DBSCAN performance in terms of 

homogeneity, completeness, and other evaluation metrics. 

 

1.2 Research Objectives 

The main aim of this research project is to design a model that is capable of planning 

marine transportation routes and detecting abnormal vessel trajectories. This main aim is 

achieved by accomplishing the following objectives: 

Objective 1: To study and optimize the DBSCAN clustering method and propose a 

method to auto-select the required parameters.   

Objective 2: To propose a novel representation of marine trajectory data and 

propose a clustering framework to apply the enhanced DBSCAN to actual AIS big data.  

Objective 3: To validate the proposed clustering algorithm and framework by 

comparing it to other commonly used machine learning techniques and apply them to case 

studies to generate the marine transportation models.  

Figure 1–1 shows the general structure of the research work. 
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Figure 1–1. The workflow of the research 

 

This model utilizes the Mahalanobis distance metric and the adaptive parameter 

method on DBSCAN and implemented high dimensional geospatial data. The main result of 

clustering is a set of generated highways on the ocean. The anomalous behaviors can be 

detected in real-time, considering the longitude, latitude, direction, and speed of the vessel. 

This approach can be applied to real-time AIS surveillance.  

 

1.3 Scientific Contribution  

The contributions of this research work are the following: First, the proposed 

clustering algorithm, specifically applying marine trajectory clustering, aims to contribute 

to marine transportation route planning and abnormal behavior detection. The research 
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proposes a framework to process massive and messy marine AIS data and generate a 

transportation model. Overall, the model developed in this research is based on enhancing 

the DBSCAN clustering method and is set to be applied to historical or real-time AIS data. 

Through organizing similar AIS data and clustering them together, the vessel behaviors can 

be profiled into labeled clusters, each of which represents a specific vessel behavior stage. 

Within each behavior stage, the vessel behaviors share maximum similarities and are 

different from other clusters. Marine transportation route planning can be done by 

selecting a series of stages provided by the model. The model can monitor vessels by 

detecting any anomaly behaviors by collecting new AIS data from vessels traveling in the 

already modeled region. For the waters which lack systematic route planning, the proposed 

unsupervised clustering method can be applied to plan “highway on the ocean.” The 

proposed algorithm can be applied for the waters with established routes to update these 

prior clusters from the new-collected AIS data. The model can also provide prospective 

routes and action recommendations based on autonomous vessels' location, facilitating 

and contributing crucial progress on Artificial Intelligence vessel s research (AI-vessels). 

Taking advantage of the proposed model, the autonomous vessels can stay on a safe route, 

with a safe speed and direction (heading) following the recommended route. In general, 

this research thesis provides a possible process for analyzing, clustering, and modeling AIS 

data, contributing to the sustainable marine transportation research community toward 

auto-vessel development. We believe the method and the results are very beneficial to 

marine transportation management and hydrographic research communities. 
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Second, a similar data analytic framework can also be applied to other data sources 

for more general analysis purposes. The proposed optimized DBSCAN clustering algorithm 

provides new understandings of the DBSCAN clustering method. The proposed point-based 

trajectory clustering algorithm and the framework to process unlabeled data beyond AIS 

data, prepare labeled training data, and generate classification AI models can be applied to 

various data mining domains. Using the proposed modified DBSCAN method, the algorithm 

improves the clustering performance on unevenly distributed data and solves the problem 

of finding parameters wisely based on the dataset characteristics, in which the traditional 

DBSCAN faces huge challenges. The machine learning research community can share this 

research progress and apply it to more general clustering tasks. 

 

1.4 Thesis Outline 

This research thesis presents an enhanced DBSCAN clustering method applied to 

historical or real-time AIS data; therefore, the vessel routes can be modeled, and the 

trajectories’ anomalies can be detected.  

The organization of the thesis is as follows. Chapter 2 provides a comprehensive 

review of current state-of-the-art marine trajectory data clustering methods and the 

enhancements on the DBSCAN method.  

Chapter 3 provides details about the proposed and developed method and 

corresponding algorithms. Furthermore, this chapter describes the framework of extracting 
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vessel behavior patterns and detecting outliers and the three stages of our proposed 

methodology. First, defines a novel representation of marine trajectory data by increasing 

the dimensions of the vessel’s positioning data by considering additional attributes such as 

velocity and direction in the clustering process, along with the geospatial information. 

Second, the DBSCAN clustering method is enhanced by integrating the Mahalanobis 

Distance metric, taking into account the correlations of the position cluster points aiming 

to make a better identification process as well as reducing the computational cost. Third, 

we propose a method to select the parameter automatically based on the data itself.  

Chapter 4 presents details about the data used in the experiment, how the synthetic 

data is generated for testing, how the clustering performance is evaluated, and the results 

of two case studies where the proposed algorithm has been applied using two big datasets.  

Chapter 5 highlights lessons learned and concludes the thesis with future work. 
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2. Chapter 2: Literature Review   

 

2.1 Background  

According to (Kanevski et al., 2009; Xu and Tian, 2015), clustering can be defined as 

partitioning the dataset and group them into subsets of typical entries making the data in 

each subset that share some common characteristics and where different subsets show 

obvious disparities. Clustering methods are usually unsupervised techniques that infer a 

function to describe internal relationships between unlabelled data, assisting data analysts 

to do exploratory data analysis and knowledge discovery (Xu and Tian, 2015). Unsupervised 

learning is a type of self-organized learning that helps find previously unknown data set 

patterns without massive pre-existing labeled training data. Through clustering similar data 

together, the clustering methods provide insight into the hidden structures and 

dependencies in the datasets. The data analysts gain intuition from the clustering results on 

how to furtherly design models to process the data. The clustering methods are widely used 

in many exploratory data analyses, including pattern recognition, image analysis, 

information retrieval, bioinformatics, data compression, computer graphics, and machine 

learning.  

The clustering algorithms are usually categorized into four types: partitioning 

methods, hierarchical methods, grid-based and density-based methods. One of the most 

common examples of the partition techniques is the K-Means algorithm, which divides ‘n’ 
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data objects into ‘k’ numbers of clusters (Ahmed, Seraj and Islam, 2020). Figure 2–1 shows 

a process of how the K-means clustering algorithm works when K=3. K-Means algorithm 

initializes k centroids randomly and then iteratively relocates the partitions until the defined 

centroid function is converged. As shown in Figure 2–1a, three centroids are randomly 

generated (Point C1 in blue, Point C2 in green, and Point C3 in red) and assign the points 

nearby to the nearest point initially. Then Figure 2–1b and Figure 2–1c shows that the K-

Means algorithm recalculates each cluster's centroids to update Point C1, C2, and C3 until 

the cluster assignments no longer change. Figure 2–1d shows the result of K-Means 

clustering.  

 

a. 

 

b. 

 

c. 

 

d. 

Figure 2–1. Principle of K-Means clustering algorithm (source: healthcare.ai) 
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The hierarchical clustering models use dendrograms to connect objects nearby 

(Reddy and Vinzamuri, 2019). The tree-structured models partition and group the objects 

by considering a specifically defined attribute at each layer. Agglomerative hierarchical 

clustering is a "bottom-up" approach that merges the clusters' pairs as one moves up the 

hierarchy. On the contrary, divisive hierarchical clustering is a "top-down" approach, which 

splits the cluster recursively as one moves down the hierarchy. The grid-based clustering 

methods create a grid structure by iteratively dividing data space into a finite number of 

cells until all cells’ density is lower than the threshold density (Ilango and Mohan, 2010). 

Two common types of grid-based clustering methods are STING (STatistical INformation 

Grid approach) and CLIQUE (CLustering In QUEst) (Wang, Yang and Muntz, 1997; Zaki et al., 

1997).  

Among various types of clustering approaches mentioned above, density-based 

clustering algorithms can be the most suitable method for this research because density-

based clustering algorithms can find arbitrary shapes of clusters. Density-based clustering 

algorithms cluster data together by the concept of ‘density reachability,’ which means the 

points spatially connect to each other are to be clustered together (Ester et al., 1996). 

Commonly used density-based clustering algorithms are Density-Based Spatial Clustering of 

Applications with Noises (DBSCAN), Ordering Points To Identify the Clustering Structure 

(OPTICS), and DENsity-based CLUstEring (DENCLUE) (Ester et al., 1996; Ankerst et al., 1999; 

Hinneburg and Keim, 2003). This research adopts DBSCAN as a foundation of the model for 
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clustering marine transportation trajectories. The details of the DBSCAN clustering method 

will be discussed in Section 2.3.  

Classification algorithms can be considered supervised clustering methods, 

identifying the data into pre-defined clusters (Kanevski et al., 2009). Supervised algorithms 

aim to train a model that can determine testing data labels after learning labeled training 

data. Therefore, supervised algorithms perform tasks based on an understanding of 

“ground truth”, thus the accuracy is usually high. Commonly used classification methods 

are K-Nearest Neighbors (KNN), Support Vector Machine (SVM), and Artificial Neural 

Networks (ANN). KNN classifies the data by a voting system to determine the category of a 

new entity (Sun, Du and Shi, 2018). The object is assigned to the class based on the class to 

which the majority of the K-nearest neighbors belong to. Figure 2–2 shows how the voting 

system of the KNN algorithm determines the label of a new observation (the green point). 

Figure 2–2 shows assigning k=3 will classify the new observation into the red triangle class 

while assigning k=5 will classify the new observation into the blue square class. 

 

Figure 2–2. KNN algorithm determination of the label of a new observation by the voting 
system (k=3 in solid line vs. k=5 in dash line) (credit: Wikipedia.com User Antti Ajanki) 
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Support Vector Machine (SVM) is a classification method by training to find 

hyperplanes that can partition the data into subsets (Zhou, Zhang and Wang, 2016). Figure 

2–3 shows how SVM finds a hyperplane to separate the dataset by increasing the data 

dimension.  

 

  

a.                                                                 b. 

Figure 2–3. SVM algorithm use of hyperplanes to partition the data (credit: 
Monkeylearn.com user Bruno Stecanella) 

 

Artificial Neural Network is another widely used supervised classification algorithm. 

The network is constructed by a number of layers of connected neurons, each of which is 

represented by a regression model (Harvey and Harvey, 1998). Figure 2–4 shows how a 

typical ANN is structured. Neural networks cluster the data by classifying observations into 

the pre-defined or pre-labeled clusters.  
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Figure 2–4. A typical Artificial Neural Network (ANN) structure (source: kdnuggets.com) 

 

This research is inspired by both the unsupervised clustering methods and the 

supervised classification methods. Two components are designed in the proposed model 

based on the two methods, and the details are discussed in Chapter 3. The following Section 

2.2 reviews how those mentioned clustering and classification methods are applied in 

trajectory clustering. 

 

2.2 Trajectory Data Mining 

Following the previous Section 2.1, which generally discussed commonly used 

clustering and classification methods, this section discusses how those methods are 

developed and applied in state-of-the-art marine trajectory clustering methods. Trajectory 

clustering has attracted growing attention, considering the critical role of trajectory data 

mining in modern intelligent systems for surveillance, security, abnormal behavior 
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detection, crowd behavior analysis, and traffic control (Bian et al., 2018). The details of 

some existing trajectory clustering methods are presented in Table 2–1, categorized into 

three groups: 1) supervised, 2) unsupervised, and 3) semi-supervised algorithms.  

 

Table 2–1. Marine Trajectory Data Clustering Related Works 

Marine 
Trajectory Data 

Clustering 
Details Reference 

Supervised 
Methods 

Nearest Neighbor algorithm (e.g., KNN): finds a voting 
system to determine a new entity's category. In trajectory 
clustering, the algorithms calculate the distances from an 
inquiry trajectory to all labeled trajectory data and label the 
inquiry trajectory by most of its k nearest neighbors (Gao et 
al., 2007). 

(Gao etc. 
2007) 

Support Vector Machine (SVM): generates a hypervolume, 
separate the outliers from the valid trajectories. However, as 
a binary classifier, SVM has challenges in grouping 
trajectories into sub-clusters (Piciarelli et al., 2008). 

(Piciarelli, 
2008) 

Artificial Neural Network: constructs many layers of 
connected neurons, represented by a regression model. Since 
in most cases, Neural Network is used for data classification, 
neural networks cluster trajectories through classifying 
observations into the pre-defined or pre-labeled clusters (Cho 
and Chen, 2014). 

(Cho, 2014) 

Unsupervised 
Methods 

Hierarchical clustering models: tree-structured models that 
consider different attributes at each level (Li et al., 2006). 

(Li, 2006) 

Spectral Clustering models: models representing trajectory 
data as affinity matrixes, then compute internal relationships 
by analyzing these affinity matrices (Xiang and Gong, 2008). 

(Xiang, 2008) 
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Densely clustering models: clusters trajectories by 
considering the spatial density with respect to distance 
metrics. 

A framework was proposed for partitioning and grouping 
trajectories close to each other (Lee, Han and Whang, 2007). 

K-means methods divide data into k clusters but are 
challenging to be implemented in actual data since the k 
value will never be well-known in real-world problems 
(Galluccio et al., no date; Ferreira et al., 2012). 

DBSCAN clusters point together, which are "density 
reachable." 

(Lee, 2007) 

(Ferreira, 
2013) 

(Galluccio, 
2012) 

Semi-
Supervised 

Methods 

Humans prepare a small number of pre-defined clusters, and 
the new observations are clustered to automatically update 
the classifier (Laxhammar and Falkman, 2014). 

(Laxhammar, 
2012) 

 

As mentioned in the previous section 2.1, supervised algorithms learn from labeled 

training data to train a model, which can determine the labels of new observations 

(Kanevski et al., 2009). Therefore, supervised algorithms perform tasks based on 

understanding the "ground truth." K-Nearest Neighbors (KNN) is one of the most commonly 

used supervised learning methods that can be applied in trajectory clustering. KNN 

determines the label of a new trajectory segment by finding the k nearest trajectory 

segments. In the implementation, trajectory data are usually represented by Minimum 

Bounding Rectangles (MBR) and indexed in a tree structure such as a Trajectory-Bundle Tree 

(TB Tree). Figure 2–5 presents an example of MBR representation and TB tree structure 

(Gao et al., 2007).  
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Figure 2–5. An example of MBR representation and Trajectory-Bundle Tree (TB Tree) 
structure for trajectory segment from (Gao et al., 2007) 

 

It was proposed how distances between trajectory segments to MBRs can be 

calculated (Gao et al., 2007), and based on that, they proposed KNN algorithms based on 

the best-first traversal paradigm for retrieving historical trajectories. However, KNN and 

other Nearest Neighbor algorithms' drawback is that only the spatial relationships between 

a pair of trajectory data are considered, but local characters are ignored.  

Another commonly used supervised learning method that can be applied in 

trajectory clustering is the Support Vector Machine (SVM). SVM is trained to generate the 

hypervolume, separating the outliers from the valid trajectories. For example, (Piciarelli et 

al., 2008) proposed an approach based on single-class SVM clustering, where the novelty 

detection SVM capabilities are used for the identification of anomalous trajectories, even 

in the absence of a priori information on the distribution of outliers. However, as a binary 

classifier, SVM has difficulties explicitly labeling or grouping trajectories into sub-clusters, 

especially large datasets.  



18 

Artificial Neural Networks (ANN) are another widely used supervised type of 

algorithms. The network is constructed by many layers of connected neurons, represented 

by a regression model. Since, in most cases, ANN is used for data classification, neural 

networks usually cluster trajectories through classifying new observations into the pre-

defined or pre-labeled clusters (Ilango and Mohan, 2010). In recent decades, with the 

advancement of ANN development, ANN starts to play crucial roles in trajectory mining. 

Convolutional Neural Network (CNN, or ConvNet) is a popular approach to use. CNN is a 

special artificial neural network that consists of convolutional and pooling layers, 

respectively. CNN is widely used in computer vision due to its efficiency in processing image 

data. Figure 2–6 shows an example of a typical CNN structure on image classification.  

 

 

Figure 2–6. An example of a typical CNN structure on image classification (credit: 
medium.com user Meghna Asthana) 

 

As CNN developed further, they have been applied to processing streaming video 

data and used for recognizing moving objects. For example, (Cho and Chen, 2014) studied 
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the problem of segmenting independently moving objects in a flow field. Those research 

works provide crucial supports for obtaining and preparing the trajectory segments from 

video sources. 

As mentioned in Section 2.1, unsupervised learning is a type of self-organized 

learning that helps find previously unknown data set patterns without prior knowledge. 

Unsupervised algorithms can find hidden structures and unknown dependencies through 

clustering data with similarities. One advantage of the unsupervised algorithm is that 

extensive human effort in preparing the training data is not required, while unsupervised 

algorithms usually have lower accuracy without a training process. One of the most 

commonly used unsupervised algorithms is the K-Means algorithm, which divides ‘n’ data 

objects into ‘k’ number of clusters. The use of vector fields has been proposed in (Ferreira 

et al., 2012) to represent trajectory datasets and applied a K-means algorithm to partition 

the vector fields into k clusters. K-means methods are difficult to be implemented in 

authentic data since the k value is difficult to be well-known on real-world problems. 

(Galluccio et al., no date) proposed a graph-based method for estimating the number of 

clusters present and determining good centroid locations to initialize the K-means 

algorithm. The hierarchical clustering model is a tree-structured model that considers more 

attributes at each level (Li et al., 2006).  

The hierarchical clustering model is a tree-structured model that connects objects 

nearby or partition the large cluster into sub-clusters by applying different criteria in various 

layers. A coarse-to-fine strategy to cluster vehicle trajectory data was proposed (Li et al., 
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2006). Applying the divisive approach, (Li et al., 2006) keeps dividing the entire trajectory 

dataset into smaller and smaller sub-clusters until the intra-cluster tightness of each sub-

cluster reaches a defined threshold. 

Spectral Clustering models represent trajectory data as an affinity matrix, then 

compute internal relationships by analyzing these affinity matrices. It was proposed to use 

eigenvector selection to improve spectral clustering results by measuring the relevance of 

an eigenvector according to how well it can separate the data set into different clusters 

(Zaki et al., 1997).  

Densely clustering models classify trajectories by considering the spatial information 

calculated by distance metrics. Density-based clustering algorithms can be the most 

suitable method for this research because density-based clustering algorithms can find 

clusters' arbitrary shapes. A framework for partitioning and grouping trajectories close to 

each other was proposed (Ankerst et al., 1999). It used a Minimum Description Length (MDL) 

principle to partition the trajectories and used a density-based line-segment clustering 

algorithm to find common sub-trajectories (Ankerst et al., 1999). DBSCAN clustering 

algorithms cluster data together by the concept of ‘density reachability,’ which means the 

points spatially connect to each other are to be clustered together (Ester et al., 1996). This 

research adopts DBSCAN as a foundation of the model for clustering marine transportation 

trajectories. The details of the DBSCAN clustering method will be discussed in Section 2.3. 

Semi-supervised algorithms fall between unsupervised algorithms and supervised 

algorithms. Compared to supervised learning, semi-supervised algorithms require much 
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smaller human effort to prepare training data, while comparing to the unsupervised ones, 

semi-supervised models usually have better performance regarding accuracy. Some semi-

supervised algorithms can be invented, starting from unsupervised or supervised algorithms. 

For example, the algorithms can only require users to prepare a small amount of labeled 

data to train the model then conduct the cluster tasks while updating the model with 

unlabeled data automatically (Laxhammar and Falkman, 2014). In this way, semi-supervised 

algorithms can be more efficient methods, combining the advantages of supervised and 

unsupervised algorithms. This thesis proposes a semi-supervised method to be applied to 

the trajectory clustering in real-world problems. This work starts with optimizing an 

unsupervised algorithm, DBSCAN, then modifies it into a semi-supervised model. The model 

can work in an unsupervised way and input labeled data to speed up, sending unlabeled 

observations to the model to update the model.  

 

2.3 DBSCAN Enhancement  

Since the proposed density-based clustering algorithm integrating with the 

Mahalanobis distance metric is closely related to DBSCAN, DBSCAN is briefly introduced in 

this section, including the development of DBSCAN optimizations. DBSCAN discovers 

clusters and outliers for a spatial dataset (Ester et al., 1996). It defines clusters as maximum 

sets of density-connected data points, in which every core point in a cluster must have at 

least a minimum number of data points (MinPts) within a neighbor of a given radius (Eps). 

As shown in Figure 2–7, DBSCAN iterates through every point to grow the clusters until all 
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points are visited, and the unlabeled points left will be labeled as outliers. After DBSCAN 

clustering, all data points within one cluster can be reached from one to another by 

traversing a path of density-connected data points while the data points across different 

clusters cannot. DBSCAN can find arbitrarily shaped clusters, showing potentials for marine 

trajectory clustering. The complexity of traditional DBSCAN can be 𝑂(𝑛²) without the use 

of any indexing to accelerate the computation. The overall average runtime complexity can 

be reduced to 𝑂(𝑛 ∗ log(𝑛)) if an indexing structure is used for executing neighborhood 

queries.   

 

 
Figure 2–7. Example of the DBSCAN process. A is the core points; B, C are the border 

points; N is an outlier (credit: Wikipedia User Chire) 

 

However, due to the drawbacks of the DBSCAN clustering method, optimizations are 

required before implementation. For example, traditional DBSCAN is very sensitive to the 

two parameters (MinPts and Eps) selected by the user. Even a slightly different set of them 

may lead to very different partitions of the dataset (Ren, Liu and Liu, 2012; Fong et al., 2014; 

Schubert et al., 2017). Usually, the users need to get the optimal parameters from a long 

and repetitive trial-and-error process. However, in real life, the optimal parameters are very 
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hard to find when the data and scale cannot be well understood (Academy et al., 2009; 

Esmaelnejad, Habibi and Yeganeh, 2010; Smiti and Eloudi, 2013; Fong et al., 2014; Karami 

and Johansson, 2014; Sawant, 2014; Liu, 2015; Hou, Gao and Li, 2016; Schubert et al., 2017; 

Han, Armenakis and Jadidi, 2020). Besides, applying the traditional DBSCAN clustering 

method has a considerable shortcoming with unevenly distributed data, that some data are 

densely concentrated at several locations while other data are sparsely distributed. 

Unevenly distributed data are challenging to be clustered ideally with a single designated 

Eps (Academy et al., 2009; Esmaelnejad, Habibi and Yeganeh, 2010; Smiti and Eloudi, 2013; 

Fong et al., 2014; Karami and Johansson, 2014; Sawant, 2014; Liu, 2015; Hou, Gao and Li, 

2016; Schubert et al., 2017; Han, Armenakis and Jadidi, 2020), making real AIS data 

unreliable to be used for applying traditional DBSCAN to it without optimization. 

Furthermore, as the traditional DBSCAN is based on the Euclidean distance metric, this 

sometimes cannot handle data with complex shapes and distribution (Ren, Liu and Liu, 2012; 

Sangeetha, Padikkaramu and Chellan, 2018). Thus, novel distance metrics need to be 

proposed to optimize the DBSCAN performance. 

As stated in Table 2–2, multiple optimizations have been proposed to enhance 

DBSCAN's performance from the research community. Solutions to the drawbacks of 

clustering unevenly distributed datasets with varied densities have been proposed 

(Xiaopeng Yu, Deyi Zhou and Yan Zhou, 2005; Uncu et al., 2006; Borah and Bhattacharyya, 

2007; Peng, Dong and Naijun, 2007; Ram et al., 2009, 2010; Elbatta, 2012). Methods to find 

optimal parameters suitable for corresponding datasets have been proposed (Academy et 



24 

al., 2009; Esmaelnejad, Habibi and Yeganeh, 2010; Karami and Johansson, 2014; Sawant, 

2014). Density clustering methods are proposed without requiring any parameters from the 

user (Fahim and Salem, 2006; Hou, Gao and Li, 2016). Various ways are proposed to increase 

the algorithm's computational efficiency when applying to large databases (Borah and 

Bhattacharyya, 2004; El-Sonbaty, Ismail and Farouk, 2004; Liu, 2006; Mahran and Mahar, 

2008; Xiaoyun et al., 2008). Various methods also bring new clustering conceptions to 

DBSCAN (Birant and Kut, 2007; Ren, Liu and Liu, 2012; Smiti and Eloudi, 2013; Sangeetha, 

Padikkaramu and Chellan, 2018).  

Table 2–2. Current State-of-the-Art of the DBSCAN Enhancement Methods 

DBSCAN 
Enhancement 

Features 
Details 

Author and 
Year 

Clustering 
Uneven Dataset 

Efficiently Varied 
in Density 

VDBSCAN: Varied Density-Based Spatial Clustering of 
Applications with Noise, by selecting several values of 
parameter Eps for different densities according to a k-dist 
plot 

(Liu, 2007) 

A New Clustering Algorithm Based on Distance and 
Density, based on merging KNN and DBSCAN to enhance 
DBSCAN 

(Yu, 2005) 

GRId Density-Based Spatial Clustering of Applications 
with Noise: selects appropriate grids, merges cells with 
similar densities, and identifies the most suitable values of 
Eps and minPts in each grid 

(Uncu, 2006) 

Limited the amount of allowed local density variation to 
achieve better results   

DVBSCAN: A Density-based Algorithm for Discovering 
Density Varied Clusters in Large Spatial Databases 

(Ram, 2009), 
(Ram, 2010) 
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Identification of Noise objects from a cluster with different 
densities 

(Birant, 2007) 

Help Finding the 
Optimal 

Parameters 

DMDBSCAN: Selection of several Eps from the k-dist plot 
and then use of the dynamic method to find a suitable 
value 

(Mohammad, 
2012) 

A Novel Method to Find Appropriate ε for DBSCAN, 
remove the ε and replace it with another parameter named 
ρ (Noise ratio of the data set) 

(Esmaelnejad, 
2010) 

Use Differential Evolution (Karami, 
2014) 

Adaptive Methods for Determining DBSCAN Parameters 
to determine Eps by the value of 'k.' 

(Sawant, 
2014) 

SA – DBSCAN, via analysis of the statistical characteristics 
of the dataset 

(Xia, 2009) 

Novel Clustering 
Conceptions 

ST-DBSCAN: Discovers clusters concerning spatial, non-
spatial, and temporal values of the objects. Discovering 
cluster on spatial-temporal data. 

(Birant, 2007) 

DSets-DBSCAN: A Parameter-Free Clustering Algorithm (Hou, 2016),  

DCBRD: Density Clustering based on radius of data, 
without parameters 

(Fahim, 2006) 

Soft DBSCAN: Improving DBSCAN clustering method 
using fuzzy set theory 

(Smiti, 2013) 

Memory 
efficiency and I/O 
cost minimization 

Introduction of Kernel function to make clustering more 
accurate and faster 

(Liu, 2006) 

GMDBSCAN: Multi-Density DBSCAN Cluster Based on 
Grid 

(Chen, 2008),  

An Improved Sampling-Based DBSCAN for Large Spatial 
Databases 

(Borah, 2004),  
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An Efficient Density-Based Clustering Algorithm for Large 
Databases, by partitioning and merging the datasets 

(EI-Sonbaty, 
2004) 

Novel distance 
metrics 

Incorporating Mahalanobis Distance by defining ‘leaders’ 
and ‘followers’ points  

(Yan, 2012) 

(Sangeetha, 
2018) 

 

 This research presents a method based on enhancing the DBSCAN clustering 

referencing to the literature review. The majority of the existing optimizations are designed 

for clustering 2-D spatial data (i.e., x, y). When the data dimension is growing and the 

Mahalanobis distance metric is used, the distribution of the dataset becomes different (Ren, 

Liu and Liu, 2012; Sangeetha, Padikkaramu and Chellan, 2018; Han, Armenakis and Jadidi, 

2020). Therefore, the existing adaptive parameter method needs to be modified to be 

applied to the enhanced DBSCAN method. Thus, a suitable optimization is required to apply 

on high-dimensional DBSCAN clustering using an intuitive distance metric such as the 

Mahalanobis distance matrix. We integrate the Mahalanobis Distance metric into DBSCAN 

to enhance the DBSCAN clustering performance by considering the correlations. Besides, 

an automatic and data-driven approach is proposed to choose the required initial two 

parameters (MinPts and Eps) for enhanced DBSCAN.  
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2.4 Mahalanobis Distance 

Since the proposed density-based clustering algorithm integrates the Mahalanobis 

distance metric with DBSCAN, in this section, Mahalanobis distance is described and 

compared to Euclidean distance. The Mahalanobis distance was first proposed by the Indian 

statistician P. C. Mahalanobis in 1936 (Mahalanobis, P.C., 1936). It calculates the distance 

between a multivariate vector data x and a distribution C or distance between two random 

vectors x and y of the same distribution. The Mahalanobis distance DM(x, y) from a point 

data x, to another point data y, which both are inside a cluster with the covariance matrix, 

S, is defined by Eqs. (1). Eq. (3) is the mean vector of x and Eq. (4) is the covariance matrix 

of the dimensions xi and xj. The Mahalanobis distance DM(x, C) from a point data, x, to the 

cluster C with mean, μ, is defined by Eq (2). In the following equations, the dimensions of 

vectors x, y and μ are 5×1, respectively. The dimensions of covariance matrix S and its 

inverse matrix S-1, are 5×5, respectively. The dimensions of Mahalanobis distances DM(x, y) 

and DM(x, C) are 1×1, respectively. 

 

𝐷ெ(𝒙, 𝒚) = ඥ(𝒙 − 𝒚)்𝑺ିଵ(𝒙 − 𝒚)                                                (1) 

𝐷ெ(𝒙, 𝑪) = ඥ(𝒙 − 𝝁)்𝑺ିଵ(𝒙 − 𝝁)                                                (2) 

𝝁 = ൣ𝜇௟௔௧௜௧௨ௗ௘ , 𝜇௟௢௡௚௜௧௨ௗ௘ , 𝜇ௌைீ , 𝜇஼ைீ, 𝜇ு௘௔ௗ௜௡௚൧
்

                        (3) 

𝑺𝒊𝒋 = 𝑐𝑜𝑣൫𝑥௜, 𝑥௝൯ = 〈(𝑥௜ − 𝜇௜)(𝑥௝ − 𝜇௝)〉                                       (4) 
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On the other hand, the Euclidean distance only calculates distance between two 

points in Euclidean space and does not consider the cluster's distribution. The difference 

between Euclidean distance and Mahalanobis distance is demonstrated by Figure 2–8. 

When calculating the Euclidean distance between the cluster centroid to Point 1 and Point 

2, line segments' lengths (in pink and purple) are measured. Point 1 and Point 2 have the 

same Euclidean Distance to the centroid, but Point 2 has a much longer Mahalanobis 

Distance to this cluster because Point 2 is correlated to the cluster.  

 

 

Figure 2–8. Differences between Euclidean distance and Mahalanobis distance – Even 
Point 1 and Point 2 have the same Euclidean Distance to the centroid, but Point 2 has 

much longer Mahalanobis Distance to this cluster (source: machinelearningplus.com user 
Selva Prabhakaran) 

 

The Mahalanobis distance can be reduced to the same as Euclidean distance if the 

covariance matrix S is the identity matrix. In this case, all attributes in their specific 

dimensions are totally independent and uncorrelated. The corresponding equation is 

shown by Equ (5).  
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𝐷ெ(𝒙, 𝒚) = ඥ(𝒙 − 𝒚)்𝑺ିଵ(𝒙 − 𝒚) = ඥ(𝒙 − 𝒚)ଶ = 𝐸𝐷(𝒙, 𝒚)           (5) 

 

The Mahalanobis distance, as one of the most common measures in multivariate 

statistics, is closely related to principal components analysis (PCA), another very common 

statistical procedure. Statistically, PCA finds lines and planes in the multi-dimensional space 

that best approximate the data regarding least-squares of residuals. The procedure is 

shown in Figure 2–9. PCA places the observations in the high-dimensional variable space 

and centers the mean to zero by subtracting the variable averages. The scores of the first 

principal component (PC1), t1, are calculated by finding the line that best approximates the 

data in the least-squares sense and projecting the data onto this line to get a coordinate 

value along the PC-line. A second principal component (PC2) is calculated by finding another 

PC-line orthogonal to the PC1. Then the scores of PC2, t2, are also calculated by projecting 

the observations onto PC2-line and get coordinates. Figure 2–9 graphically visualizes the 

data set structure by creating two-dimensional PCs to investigate data set in higher 

dimensions. PCA is commonly used in exploratory data analysis and for making predictive 

models.  
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Figure 2–9.  Principal components analysis (PCA) on forming two PCs as a window into the 
multidimensional space (source: sartorius.com) 

 

PCA procedures share similarities with Mahalanobis distance, as the squared 

Mahalanobis distance is equal to the sum of squares of the scores of all non-zero 

standardized principal components. In the k dimension, the corresponding equation is 

shown below by Eq. (6), where ti represents the score of the standardized principal 

component in dimension i. 

 

𝐷ெ
ଶ = 𝑡ଵ

ଶ + 𝑡ଶ
ଶ … + 𝑡௞

ଶ                                    (6) 

 

The most common use for the Mahalanobis distance is to find multivariate outliers, 

which indicates unusual combinations of variables in corresponding dimensions. Figure 2–

10 shows an example of Mahalanobis distance contour plot of 100 random draws from a 

bivariate normal distribution. The Mahalanobis distance can be used to determine whether 



31 

a sample is an outlier. For example, indicated by Figure 2–10, if Eps (distance threshold to 

be an outlier) is defined to be 0.02, both points in red square and the purple circle will be 

considered as outliers to this cluster.  

 

 

Figure 2–10. An example of Mahalanobis distance contour plot on 100 random points with 
mean zero, unit variance, and 50% correlation. A blue square notes the centroid defined 

by the marginal means. (source: statisticshowto.com) 
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3. Chapter 3: Methodology 

This chapter provides details about the proposed algorithms and the clustering 

framework implementation in four steps. Section 3.1 describes a novel representation of 

marine trajectory data by increasing the dimensions of the vessel’s positioning data by 

considering additional attributes such as velocity and direction in the clustering process, 

along with the geospatial information. Section 3.2 describes how the DBSCAN clustering 

method is enhanced by integrating the Mahalanobis Distance metric, taking into account 

the correlations of the position cluster points aiming to make a better identification process 

as well as reducing the computational cost. This section also gives detailed information 

about the definitions of the enhanced DBSCAN and pseudo-codes of the proposed 

algorithms. Section 3.3 describes a proposed method to select the parameter needed in the 

proposed algorithms automatically based on the data itself. Section 3.4 describes the 

designed frameworks implementing the algorithms on big data. This section presents three 

frameworks in three layers by which patterns can profile the vessel behaviors through 

finding clusters within historical data.  

 

3.1 Novel Representation of Marine Trajectory Data 

The traditional densely based clustering works with two-dimensional data (i.e., 

location data). Latitude and longitude are the only spatial components to be considered, 

and the 2-dimensional points are clustered together based on their spatial density. 
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Increasing the data dimensions can change the concept of "density reachability" and 

enhance the clustering model abilities to find more complex unknown similarities between 

the data rather than based on latitude and longitude.  

In this research, it is proposed to extend each trajectory 2D point data record into a 

five-dimensional vector, as shown at Eq. (7), Latitude, Longitude, also taking into account 

Speed over Ground (SOG), Course over Ground (COG), and Heading. SOG is defined by the 

actual speed at which the GPS unit is moving over the ground. COG describes motion 

direction with respect to the ground that a vessel has moved relative to the magnetic north 

pole or geographic north pole. Heading describes the direction that a vessel is pointed at 

any time relative to the magnetic north pole or geographic north pole. The difference 

between Heading and COG is presented in Figure 3–1. Besides Latitude and Longitude 

describing the vessels’ geographic location, Speed over Ground (SOG), Course over Ground 

(COG), and Heading are also essential parameters to describe vessels behaviors. 

Considering SOG, COG, and Heading when clustering AIS data can bring deeper insights on 

marine transportation from the clustering results. 
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Figure 3–1. Difference between COG, the direction of motion with respect to the ground, 
①, and Heading,  the direction that a vessel is pointed at, ② (credit: Wikipedia user 

WolfgangW) 

 

A marine transportation trajectory is defined as a finite sequence 𝑻 =

((𝒙𝟏, 𝑡ଵ),  (𝒙𝟐, 𝑡ଶ), … , (𝒙𝒎, 𝑡௠)) . Each data point 𝒙𝒊  corresponds to a multi-dimensional 

feature vector representing the moving object by a set of [𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒, 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒, 𝑆𝑂𝐺, 𝐶𝑂𝐺, 

𝐻𝑒𝑎𝑑𝑖𝑛𝑔] at time point ti, where ti < ti+1 for i =1, ..., m-1. 

 

𝒙 = [𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒,  𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒,  𝑆𝑂𝐺,  𝐶𝑂𝐺,  𝐻𝑒𝑎𝑑𝑖𝑛𝑔]்                      (7) 

𝑻 = ((𝒙𝟏, 𝑡ଵ),  (𝒙𝟐, 𝑡ଶ), … , (𝒙𝒎, 𝑡௠))                                                   (8) 

 

For the sake of consistency and standardization, the data is normalized between [-

1, 1] as required by most machine learning techniques, including DBSCAN. By obtaining the 

z-score of each attribute of each data, this normalization process is done by Eq. (9). After 
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normalization, all five attributes share the same mean value, 𝝁, the same variance value, 𝜎, 

and the same weight when clustering.  

𝑧 =
𝒙ି𝝁

ఙ
                                                                                        (9) 

 

 

3.2 Integration of Mahalanobis Metric to DBSCAN 

As mentioned in Section 2.3, traditional DBSCAN clustering iterates from point to 

point, calculate the distances among points, identify core points and cluster the surrounding 

points together. The traditional DBSCAN using Euclidean Distance has two main 

shortcomings: 1) high computation costs, and 2) only local characteristics are taken into 

account when identifying the cluster. The proposed clustering method, integrated with the 

Mahalanobis Distance metric, resolves the previously mentioned challenges by increasing 

the computational efficiency and considering the correlation between the point within the 

cluster.  

When the traditional DBSCAN needs to identify if a point is an outlier, it finds the 

points around it and calculates the Euclidean distance to them; then it calculates the 

number of points within defined Eps and compares it to defined MinPts to determine if the 

point is a core point, a border point, or an outlier. The computational cost is high, even 

though with the help of spatial indexing. Furthermore, only some of the points around the 

target point play a role in defining the target point, but not the whole cluster. Integrating 

Mahalanobis distance enhances clustering performance on the unevenly distributed 
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dataset. As shown in Figure 3–2, when determining whether Point A and Point B belong to 

the cluster, the Mahalanobis distance is calculated and compared to defined Eps. Only one 

step of the calculation is required, and the correlation between the point to the whole 

cluster has been considered.  

 

 

Figure 3–2. A point classification process using Mahalanobis Distance – even Point A has a 
longer Euclidean Distance to the centroid, but Point B has a much longer Mahalanobis 

Distance to this cluster (credit: Rick Wicklin on The DO Loop) 

 

The corresponding definitions for implementing the proposed enhanced DBSCAN 

approach are given as follows.  

Definition 1: Neighbourhoods is defined through 1.1 and 1.2 Definitions. 
 

Definition 1.1: Neighborhoods of points 
Given a group D of moving trajectory points, a point q is defined as a neighborhood 

of the point p when {q ∈ D| DM (p, q) ≤ Eps} is satisfied. 
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Definition 1.2: Neighborhoods of Pre-defined Clusters 
Given a group D of moving trajectory points, the neighborhoods of a Pre-defined 

Cluster C, which at least has two points, are defined by {q ∈ D|DM (q, C) ≤ Eps}. 
 
 
Definition 2: Core point 

A core point contains at least a minimum number (MinPts) of neighborhoods.  
 
 
Definition 3: Density-reachable is described through 3.1 and 3.2 Definitions. 
 

Definition 3.1: Density-reachable to points 
Given a database D of moving trajectory points, a point p is density-reachable from 

the point q with respect to Eps and MinPts if there is a chain of points p1, …, pn, p1 = p 
and pn = q such that pi+1 is within the Eps-neighborhood of pi, for 1 ≤ i ≤ n, pi ∈ D. 

 
Definition 3.2: Density-Reachable to Pre-defined Clusters 

A point p is directly density-reachable from a Pre-defined Cluster C, if p is within 
the Eps-neighborhood of C  

 
 
Definition 4: Density-Based Cluster 

A Density-Based Cluster C is a non-empty subset of D satisfying the following 
"maximality" and "connectivity" requirements: 

∀p: if p is Density-Reachable from C with respect to Eps, then p ∈ C. 
∀p ∈ C: p is Density-Reachable to C with respect to Eps  
∀q, p ∈ C: p is Density-Reachable to q  

 
 
Definition 5: Outlier 

Given a database D of moving trajectory points and Clusters C1, C2, …, Ck, a point p is 
an outlier if p is not belonging to any cluster Ci  
 

 

As discussed in Section 2.3, the key idea of DBSCAN is that for each point of a cluster, 

the neighborhood of a given radius has to contain at least a minimum number of points. 

Here in this thesis, we adopt this idea and consider three other attributes, SOG, COG, and 
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Heading. The intuition behind this is that the neighbors of a trajectory point should be 

geospatially near enough and with similar speed and traveling direction. Thus, we can 

modify the original definition of Eps-neighborhood in traditional DBSCAN to Definition 1.1. 

Note that DM(p, q) is the Mahalanobis distance between p and q instead of Euclidean 

distance because it is necessary to consider the correlation of the whole cluster in five 

dimensions to calculate distances.  

We also innovated Definition 1.2 to describe the relationship between points and 

clusters. Unlike the traditional DBSCAN, which defines Neighborhoods of Clusters by 

density-reachable to a core point, Definition 1.2 gives a direct way to determine 

relationships between points and clusters by taking advantage of the Mahalanobis distance 

metric. In the following, we also give the formal definitions of other essential notions for 

our density-based algorithm.  

From Definition 2, we can determine whether point q is a core trajectory point 

according to Definition 1.1. Because if the number of Neighborhoods of points is larger than 

MinPts, q is a core trajectory point.  

By combining Definition 1.1, Definition 2, and Definition 3.1, we can start to grow 

the clusters using the unsupervised component. If the point q is a Neighborhood of the point 

p, and the point p is a core point that belongs to a cluster, then the point q can be identified 

to belong to the same cluster as the core point p. Then the number of neighborhoods of the 

point q is calculated to compare with MinPts. If the point q is a core trajectory point, the 

cluster growing process continues. If the point q is not a core trajectory point, the point p 
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is called Border Trajectory Point, and its neighborhoods cannot be grown into the cluster 

from this route. Also, we innovated the definition of Definition 3.2 to grow the clusters.  

Unlike Definition 3.1, which grows the clusters through Neighborhoods of the core 

points, Definition 3.2 gives a direct way to grow the clusters by calculating the Mahalanobis 

distance metric between points and clusters. The Eps-Neighborhood of the cluster will be 

identified as part of the cluster.  

So, summarizing the definitions 1-3, it is necessary to define Density-Based Cluster 

as Definition 4 based on the relations above (Eps-Neighborhood and Density-reachable). 

We conclude that any points belong to a cluster will either be Eps-Neighborhoods to the 

cluster or one or more of its core points. Any points that belong to the cluster should either 

be Eps-Neighborhoods to each other or Density-reachable to each other. Any other points 

which do not belong to any clusters are considered outliers. 

The corresponding algorithms for implementing the proposed enhanced DBSCAN 

approach are given as follows.  

 
 
Algorithm 1 Proposed DBSCAN Unsupervised (D, Eps, MinPts): 
1. Select the two parameters Eps and MinPts; 
2. Mark all the points in the dataset as unclassified and set C = 0; 
3. for each point p in the Dataset D: 
4.   If the point's label is not 0:  
5.    continue to the next point; 
6.   Find all of P's neighboring points, regionQuery(D, P, Eps); 
7.   If the number of neighboring points is below MinPts: 
8.    this point is noise;  
9.   Else: 
10.    C += 1; 
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11.    use this point as the seed for a new cluster, growCluster(D, labels, P, 
NeighborPts, C, Eps, MinPts); 

12. Return labels 
 
 

Algorithm 1.1 regionQuery(D, P, Eps): 
1. neighbors = []; 
2. For each point in the dataset: 
3.   If the Mahalanobis distance is below the threshold Eps:  
4.    add it to the neighbors list; 
5. Return neighbors; 

 
Algorithm 1.2 growCluster(D, labels, P, NeighborPts, C, Eps, MinPts): 
1. Assign the cluster label, C, to the seed point, P; 
2. for all neighbors of P, Pn: 
3.   If Pn labeled as noise: 
4.    change Pn label to C; 
5.   Elif Pn has no labels (0): 
6.    label Pn as C; 
7.    Find all the neighbors of Pn, PnNeighborPts = regionQuery(D, 

Pn, Eps); 
8.    If the number of neighboring points is above MinPts: 
9.     NeighborPts = NeighborPts + PnNeighborPts 

 
 
Algorithm 2 Proposed DBSCAN Supervised (D, Training_D, Eps): 
1. Select the parameter Eps; 
2. for each pre-defined cluster in the Training Dataset: 
3.   Calculate Inverse of the Covariance Matrix of the pre-defined cluster; 
4.   Calculate Mean matrix of the pre-defined cluster; 
5. for each point p in the Dataset D: 
6.   Calculate Mahalanobis Distance to each pre-defined cluster; 
7.   Find the one with the closest Mahalanobis Distance; 
8.   If the distance is above Eps: 
9.    this point belongs to the pre-defined cluster (share the same label);  
10.   Else: 
11.    this point is an outlier; 
12. Return labels 
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Algorithm 1 presents the procedure of using the unsupervised component to 

discover clusters. It requires three parameters as input, including the Dataset D and two 

predefined parameters, Eps and MinPts. As mentioned in the definitions above, Eps sets the 

neighborhoods' threshold, and MinPts limits the number of the core points. The algorithm 

iterative through every point (line 3) and then find its Eps-neighborhoods by Algorithm 1.1 

(line 6). If the number of Eps-neighborhoods is above MinPts (line 7), by definition, the point 

is a core point and then grow the cluster from this point by Algorithm 1.2 (line 11). Then 

the procedure iterates until all the points have been visited and labeled. By the end, all the 

points density connected are clustered together, and others are identified as outliers. The 

complexity of Algorithm 1 in the proposed DBSCAN can be 𝑂(𝑛 ∗ log(𝑛)) with the use of 

indexing to accelerate the computation.  

Algorithm 2 presents the procedure of using the supervised component to classify 

new observations into pre-defined clusters. It requires three parameters as input, including 

the new observations Dataset D, the training Dataset Training_D, and a pre-defined 

parameter Eps. As mentioned in the definitions above, Eps sets the neighborhoods of 

clusters' neighborhoods and finds the outliers. The algorithm iterative through every pre-

defined cluster in the training dataset (line 2) and then memorize associated the Inverse of 

the Covariance Matrix (line 3) and the Mean matrix of the pre-defined clusters (line 4). The 

algorithm iterative through every point in the new observations Dataset D (line 5) and 

classifies each point by calculating the Mahalanobis distance to each cluster (line 6 and 7). 

Then the procedure iterates until all the points have been visited and labeled. By the end, 
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all the points close to pre-defined clusters are classified, and others are identified as outliers. 

The complexity of Algorithm 2 in the proposed DBSCAN is 𝑂(𝑛) with the use of indexing to 

accelerate the computation. 

In summary, the proposed algorithm is composed of two parts: an unsupervised 

clustering method and a supervised one. The unsupervised algorithm finds the density 

reachability of the points in the defined high dimensional space. The unsupervised 

algorithm component integrates the Mahalanobis Distance metric considering the 

correlation to the whole dataset. In this way, density-based clusters are generated by 

grouping similar trajectory points. The supervised algorithm component takes advantage of 

the pre-defined clusters generated from the previous step, and the user input Eps 

parameter by an auto-selection method will be mentioned in the next section. The 

preliminary model reads each point to classify them. The Mahalanobis distances to each 

pre-defined clustered are computed, and the distance is compared with the user input Eps 

term. If the Mahalanobis distance is smaller than Eps, the point can be identified to belong 

to the cluster and then update. If the Mahalanobis distance is greater than Eps, then this 

point is an outlier to this cluster. This step can run iteratively until no outliers are closer than 

Eps to all clusters. 
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3.3 Method for the Auto-Selection of the Enhanced DBSCAN 

Parameters  

As mentioned before, DBSCAN requires users to input two parameters (MinPts and 

Eps), and the clustering results can be very sensitive to the parameters selection. In addition, 

in this work, the map-reduce method for handling big data problems is adopted. Thus, it is 

required to have a universal way to select the parameters so that the clustering results in 

the first layer from each MMSI can remain consistent. This research proposes a simple and 

straightforward way to obtain a good initial selection for the two parameters of the 

proposed enhanced DBSCAN method.  

The detailed algorithm is given as follows: 

 
 
Algorithm 3 Find_Eps_MinPts (D): 
1. Set MinPts = max(10, int(0.001 * len(D))) ; 
2. Calculate Covariance matrix of D; 
3. Calculate Inverse of the Covariance matrix; 
4. K = MinPts – 1; 
5. for each point p in the Dataset D: 
6.   get K nearest Mahalanobis Distance; 
7.   save the value; 
8. // Find “the last spike” 
9. Eps = round(q3(kn_dists)+1.5*iqr(kn_dists), 3); 
10. Eps = min(Eps, max(D)) 
11. Return Minpts, Eps 

 

 

The proposed method finds MinPts by selecting 0.1% of the sample size. By this 

method, MinPts are usually around 30, concerning that most of the datasets of each MMSI 
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have around 30,000 trajectory points. The MinPts are required to be at least ten since some 

dataset’s data sizes are too small to have a valid MinPts parameter. The Eps are calculated 

by the distribution of the k-nearest-neighbor distances of each data point. The method is 

popular for understanding how the data distributed before setting clustering parameters. 

Ideally speaking, multiple Eps should be selected corresponding to each distance level to 

form clusters. 

Nevertheless, due to the limitation of the DBSCAN, we only choose the Eps by 

prioritizing to filter outliers. The upper limits of the KNN distribution are selected as Eps. 

Moreover, the upper limit is defined by the upper quartile sum and 1.5 times the 

Interquartile Range (IQR). The complexity of the proposed parameter auto-selection 

method can be 𝑂(𝑛 ∗ log(𝑛)) with the use of indexing to accelerate the computation.  

 

3.4 Implementation of the Clustering Framework 

This section describes the designed frameworks that are capable of profiling vessel 

behaviors and detecting abnormal vessel trajectories. The frameworks are developed by 

applying the proposed clustering algorithm described in previous sections 3.1 – 3.3. Figure 

3–4 shows the overview to process historical AIS data to generate the model (represented 

by a pink square). By this framework, the vessel behaviors can be profiled by behavior 

patterns through finding clusters within historical data and generate the model.  
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Figure 3–4. The Framework of extracting behavior patterns from actual AIS Data and 

applying the model to new observations 

 

Behavior patterns of marine transportation traffic are profiled based on the 

clustering results. These clusters are used to model the AIS data within a certain region and 

monitor vessels installed with AIS equipment. The model then can be applied to new AIS 

observations to provide the desired outcome, including vessel behavior reports, action 

recommendations, and even behavior prediction. The model has monitoring purposes for 

crewed vessels and determining if the vessel has some anomaly behaviors. Autonomous 

vessels can also take advantage of the model for planning the route from selecting 

sequential clusters and getting recommendations for actions. 

In order to apply the algorithms to big data, in this research, we adopt a map-reduce 

framework to cluster smaller pieces of AIS data divided from the raw data based on 
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Maritime Mobile Service Identity (MMSI), then merge them and generate the final 

classification model be used for reading the new observations. The method is based on the 

assumption that data under each MMSI, which has been used for identifying individual 

vessel trajectories, should have its specific behavior patterns.  

The proposed first layer clustering algorithm groups similar trajectory points within 

each MMSI and define this specific trajectory stage. The second layer clustering merges the 

clusters from each MMSI data pieces, combining similar clusters and generating the final 

clusters. Each cluster from the first layer clustering has been profiled as a behavior vector 

to represent the cluster. The second layer cluster combines similar clusters by clustering 

similar behavior vectors. The same clustering algorithm proposed in section 3.2 is utilized 

in this step. The selections of the parameters differ from the method proposed in section 

3.3. Instead of prioritizing filtering outliers, the parameter setting in this step prioritizes the 

merging of the most similar clusters. Therefore, the Minpts and Eps are manually adjusted 

to be much smaller than the recommendation value from the proposed parameter auto-

selection method.  

 In this way, the algorithms run efficiently on processing big data. The details of the 

proposed hierarchy clustering structure are shown in Figure 3–5, representing the 

clustering process (orange square) in Figure 3–4.  
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Figure 3–5. A Schematic overview of the clustering hierarchy – Segmentation of actual AIS 
data into smaller pieces and merging of the Clustering Results 

 

Figure 3–6 presents the framework of clustering a dataset after integrating the 

Mahalanobis distance into DBSCAN, representing the first layer clustering in Figure 3–5. The 

raw data is firstly randomly split into two portions ensuring both datasets (Portion 1 and 

Portion 2) share the same distributions by setting the stratify parameter. Portion 1 is 
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required to contain at least 10,000 trajectory points so that the prepared training data is 

not biased due to overfitting. Usually, when the raw data has tremendous size, 5% of the 

raw data will have larger than 10,000 trajectory points, which is large enough to be selected 

to be used for preparing labeled training data.  

The proposed clustering algorithm is a semi-supervised algorithm composed of an 

unsupervised clustering component and a supervised one. The algorithm can generate 

labeled data first in an unsupervised way with a smaller portion of the data. Then the pre-

defined model from the last step reads the rest inquiry data and keeps updating itself. 

Figure 3–6 shows that the unsupervised algorithm component is implemented on Portion 

1 (in orange) to create pre-defined clusters. The supervised component then read Portion 

2 (in green) to update the model into a final model. By this method, only a small amount of 

effort is allocated in the unsupervised step, which has highest runtime complexity in the 

whole clustering process. The two clustering steps are consistent with a similar approach, 

implementing the Mahalanobis Distance metric in the clustering process.  
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Figure 3–6. Details of the semi-supervised clustering process - a combination of an 

unsupervised clustering component and a supervised component 

 

 

Figure 3–6 is related to the definitions and algorithms described in Section 3.2. 

Definition 1.1 and Definition 2 apply to clustering step 1 in Figure 3–6 when implementing 

the unsupervised component. Definition 1.2 describes the relationship between points and 

clusters, and Definition 3.2 which grows the clusters, applies to clustering step 2 in Figure 

3–6 when implementing the supervised component.  
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4. Chapter 4: Data and Experiments  

This section presents details about the experiments implementing the proposed 

algorithms into actual AIS data and validations of the results. Section 4.1 describes the AIS 

data characteristics and the data sources, and how the synthetic data is processed and 

generated for testing. Section 4.2 describes the process of evaluating and validating the 

proposed algorithms. This section describes what evaluation metrics are selected, how four 

separated tests are designed and displays the results to validate the enhanced DBSCAN 

clustering performance. A sensitivity analysis is designed for validating the parameter auto-

selecting method, which is also described in the section. Section 4.3 describes the results of 

two case studies where the proposed algorithm has been applied using two big datasets 

and shows examples of the application of the proposed algorithms and frameworks. 

 

4.1 Data and Data Pre-Processing 

Reliable open-sourced data sources for studying vessel behaviors and generating 

nautical routes such as the historical and real-time Automatic Identification System (AIS) 

data (Silveira, Teixeira and Soares, 2013; Sheng and Yin, 2018) have ben used for the 

implementation, testing and validation of the proposed approach. AIS is an automatic 

tracking system to identify and locate vessels by exchanging data with other nearby ships, 

AIS base stations, and satellites. According to the Safety of Life at Sea (SOLAS) convention, 

ships of 300 gross tonnages and upwards in international voyages, 500 and upwards for 
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cargoes not in international waters, and passenger's vessels are obliged to be embedded 

with AIS equipment, making AIS data abundant globally (IMO, 2000). Furthermore, AIS 

becomes a worldwide data standard, and therefore this coherent source of information can 

be suitable for global marine transportation traffic modeling and analysis.  

AIS data is considered the raw data source of marine transportation, as AIS data is 

abundant and coherent globally. AIS contains 27 message types defined in ITU 

(International Telecommunication Union) recommendation M.1371-4, and two classes of 

shipboard equipment: class A (used mainly by commercial vessels) and class B (used mainly 

by fishing vessels and pleasure craft). Among 27 message types and two classes, data of 

Class A and Message type 1, 2, and 3 is suitable for this research because it contains the 

desired attributes including date/time; Maritime Mobile Service Identity (MMSI); speed 

over ground (SOG); latitude, longitude; course over ground (COG) and heading. Figure 4–1 

shows the overview of parsed AIS data.  

 
Figure 4–1. Overview of AIS data characteristics  

 

Though, in this research, we use open-sourced AIS data as the primary data source 

for the proposed algorithm testing. Three scales of data sets are used for studying, and they 
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are stored in MongoDB data management system. A smaller sample dataset is used for the 

algorithm testing purposes, and two larger AIS datasets are chosen for final result validation. 

The selected small dataset for algorithm testing is Data of Wolfe Island Ferry in January 

2017.  

As shown in Figure 4–2, this dataset describes the Wolfe Island Ferry traveling 

between Kingston to port at Wolfe Island. Synthetic data are generated as additional 

supportive datasets to test the clustering algorithm's performance under two scenarios. For 

instance, the optimized DBSCAN algorithm should identify outliers and noises from the main 

trajectories. Also, the algorithm should distinguish different paths from intersections. So, 

two synthetic datasets are created based on the two synthetic datasets of Wolfe Island 

Ferry AIS data in January 2017, traveling between Kingston and Wolfe Island, for testing the 

two mentioned scenarios, as shown in Figure 4–2. The real data are shown in red color, and 

the synthetic outliers and crossing data in blue. One thousand noisy points were randomly 

generated around the main trajectory in Figure 4–2a, while 2000 points were rotated by 90 

degrees in Figure 4–2b.  
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4-2a. Synthesized Dataset One to test outlier detection performance 

 

 
4-2b. Synthesized Dataset Two to test the performance of distinguishing intersections 

Figure 4–2. Two synthesized datasets for algorithm testing and performance evaluation 
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The proposed clustering algorithm has been applied on two big datasets as case 

studies, and models to monitor vessels in those regions have been generated. The first one 

is open-sourced data in the Gulf of Mexico Region (MarineCadastre.gov | Vessel Traffic Data, 

no date), and the second one is AIS data purchased from ORBCOMM (Saint Lawrence 

Seaway, from the Gulf of St. Lawrence to Lake Superior. Figure 4–3 presents all the raw AIS 

point data of the two datasets.  

 
4-3a. Raw AIS point data in the Gulf of Mexico Region 
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4-3b. Raw AIS Point Data of the Saint Lawrence Seaway Region 

Figure 4–3. Two Raw AIS Big Data  

 

The Gulf of Mexico Dataset is around 200 MB describing the whole month’s vessel 

movement history of January 2017. The data contains around 1.2 million trajectory points 

to be clustered. The Saint Lawrence Seaway Region Dataset is around 17 MB describing the 

vessel movement history from 1st June 2017 to 3rd June 2017. The data contains around 

135 thousand trajectory points to be clustered.   
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4.2 Testing and Evaluation Using Synthetic Data 

The evaluation methods can be divided into two categories: internal evaluation and 

external evaluation. The differences between the two evaluation categories are whether 

external benchmarks or labels are referred to in the evaluation process. Internal evaluation 

methods evaluate a clustering performance based on the clustering results themselves. 

External evaluation methods evaluate clustering results based on external pre-defined 

labels and benchmarks as ground truth. Besides, the estimated number of clusters and 

noises are selected for evaluating the algorithms. The metrics selected in this research are: 

the estimated number of clusters and noises, Entropy (Homogeneity), Purity 

(Completeness), V-Measure, Adjusted Rand Index, F-measure (F1 Score), Davies-Bouldin 

Index, Silhouette Coefficient, and Calinski-Harabasz Index. Since each selected criterion 

indicates one aspect of the clustering performance, all of those indicators are utilized for 

holistic evaluation. 

 

4.2.1 Internal Evaluation  

The selected internal evaluation methods are the Davies-Bouldin Index (Davies and 

Bouldin, 1979), Silhouette Coefficient (Rousseeuw, 1987), and Calinski-Harabasz Index 

(Caliñski and Harabasz, 1974). Table 4–1 states the detailed definitions of these internal 

evaluation metrics. All of them assign a ratio describing the average similarity within a 

cluster to the difference between clusters. Davies-Bouldin Index measures the similarities 

within clusters as the average Euclidean distance of all data points to the cluster centroid 
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and measures the difference between clusters as the distance between cluster centroids. 

The lower the Davies-Bouldin Index is, the better the clustering performance is. Silhouette 

Coefficient measures the similarities within clusters as the mean intra-cluster distance and 

measures the difference as the mean nearest-cluster distance. Silhouette Coefficient ranges 

from +1 (the best) to -1 (the worst). Both the Davies-Bouldin Index and Silhouette 

Coefficient indicate that a good clustering result should group all closed points while 

clusters are distant from one another. The Calinski-Harabasz Index is also known as the 

Variance Ratio Criterion. The score is defined as the ratio between the within-cluster 

dispersion and the between-cluster dispersion. A better clustering result has a higher 

Calinski-Harabasz Index value.  

 

Table 4–1. A comprehensive list of internal performance metrics for evaluating clustering 
results 

Performance 

Metric 
Equation Parameters 

Davies-Bouldin 

Index 
𝐷𝐵 =

1

𝑛
෍ max

௝ஷ௜
(

𝜎௜ + 𝜎௝

𝑑(𝑐௜ , 𝑐௝)
)

௡

௜ୀଵ

 

 𝒏 is the number of clusters, 
 𝒄𝒊 is the centroid of cluster 𝒊, 
 𝝈𝒊 is the average distance of all 

elements in cluster 𝒊 to the centroid 
𝒄𝒊, 

 𝒅൫𝒄𝒊, 𝒄𝒋൯ is the distance between 
centroids 𝒄𝒊 and 𝒄𝒋  

Silhouette 

Coefficient 𝑆 =

∑ ቊ
𝑏(𝑖) − 𝑎(𝑖)

𝑚𝑎𝑥൫𝑎(𝑖), 𝑏(𝑖)൯
ቋ

𝑛
 

 a is the mean intra-cluster distance, 
 b is the mean nearest-cluster 

distance, is the distance between a 
sample and the nearest cluster that 
the sample is not a part of, 

 n is the total number of points 
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Calinski-Harabasz 

Index 

𝑠(𝑘) =
𝑇𝑟(𝐵௞)

𝑇𝑟(𝑊௞)
∗

𝑁 − 𝑘

𝑘 − 1
 

Where: 
 𝑩𝒌 is the between-group 

dispersion matrix 

𝑩𝒌 = ෍ 𝒏𝒒൫𝒄𝒒 − 𝒄൯൫𝒄𝒒 − 𝒄൯
𝑻

𝒒

 

 𝑾𝒌 is the within-cluster dispersion 
matrix. 

𝑊௞ = ෍ ෍ ൫𝑥 − 𝑐௤൯൫𝑥 − 𝑐௤൯
்

௫∈஼೜

௞

௤ୀଵ

 

 

 𝑵 be the number of points in our 
data, 

 𝑪𝒒 be the set of points in cluster q, 
 𝒄𝒒 be the center of cluster q, 
 𝒄 be the center of 𝑬, 
 𝒏𝒒 be the number of points in 

cluster 𝒒. 

 

However, the drawback of the internal criteria is obvious. High scores on an internal 

measure do not necessarily imply a more effective clustering method. Some of the 

clustering methods, take K-means as an example, optimize the clustering result using a 

similar model. Thus, internal criteria will be biased towards them and naturally assign them 

with higher scores. Therefore, the internal evaluation metrics only provide a reference to 

understand the structure of the clusters. The clustering performance evaluation cannot 

entirely depend on them. 

 

4.2.2 External Evaluation  

The external evaluation methods measure how close the clustering result is to the 

predetermined ground truth. Table 4–2 states the detailed definitions of these external 

evaluation metrics. The selected external evaluation methods are Homogeneity, 

Completeness, V-measure (Rosenberg and Hirschberg, 2007), Adjusted Rand Index (Rand, 
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1971), and F1 Score/F-Measure (Sasaki and Fellow, 2007). Homogeneity, completeness, and 

V-Measure scores are the metrics to evaluate the clustering performance based on 

normalized conditional entropy measures of the clustering labeling. Entropy is a measure 

of the amount of disorder in a vector. Homogeneity score (h) maximizes when all of its 

clusters contain only data points from a single class. Completeness score (c) maximizes 

when all the data points from a given class are elements of the same cluster. The V-measure 

is the harmonic mean between homogeneity and completeness. All three metric scores 

range from 0 to 1. The greater values indicate better clustering performance. Adjusted Rand 

Index and F1 Score measures the clustering results' overall accuracy compared to the 

ground truth. The Rand Index measures the percentage of correct decisions, which is simply 

accuracy. The Rand index gives equal weight to false positives and false negatives. However, 

separating similar documents (FN) is usually worse than putting pairs of different 

documents in the same cluster (FP). To solve this problem, F-measure penalizes FN more 

strongly than FP by selecting a value β > 1, thus giving more weight to recall. The greater is 

the F-measure, the better is the clustering results. 
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Table 4–2. A comprehensive list of external performance metrics for evaluating clustering 
results 

Performance 

Metric 
Equation Parameters 

Homogeneity 

𝑐 = 1 −
𝐻(𝐾|𝐶)

𝐻(𝐾)
 

 

Where: 

𝑯(𝑪) = − ෍
𝒏𝒄

𝒏
∗ 𝐥𝐨𝐠 (

𝒏𝒄

𝒏
)

|𝑪|

𝒄ୀ𝟏

 

𝐻(𝐶|𝐾) =  − ෍ ෍
𝑛௖𝑘

𝑛
∗ log (

𝑛௖,௞

𝑛௞

)

|௄|

௞ୀଵ

|஼|

௖ୀଵ

 

 

 𝒏 is the total number of 
samples, 

 𝒏𝒄 and 𝒏𝒌 belong are the 
number of samples of class 
C and class K respectively, 

 𝒏𝒄,𝒌 are the number of 
samples divided from class 
C to class K. 

Completeness 𝒉 = 𝟏 −
𝑯(𝑪|𝑲)

𝑯(𝑪)
 Same as Homogeneity 

V-measure 

 

𝑣 =
(1 + 𝛽) ∗ ℎ ∗ 𝑐

𝛽 ∗ ℎ + 𝑐
 

 
By default, when beta equals 1, v-measure is 
defined by: 

𝒗 = 𝟐 ∗
𝒉 ∗ 𝒄

𝒉 + 𝒄
 

 
 

Same as Homogeneity 
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Adjusted Rand 

Index and F1 

Score (F-

Measure) 

 

𝑹𝑰 =
𝑻𝑷 + 𝑻𝑵

𝑻𝑷 + 𝑭𝑷 + 𝑭𝑵 + 𝑻𝑵
 

 

𝑭𝜷 =
(𝜷𝟐 + 𝟏)𝑷𝒓

𝜷𝟐𝑷𝒓 + 𝑹𝒄
 

 
 
When by default, β = 1: 

𝐹 =
2𝑃𝑟 ∗ 𝑅𝑐

𝑃𝑟 + 𝑅𝑐
 

 TP: True Positive, assigns 
two similar documents to 
the same cluster 

 FP: False Positive, assigns 
two different documents to 
different clusters 

 TN: True Negative, assigns 
two dissimilar documents 
to the same cluster 

 FN: False Negative, assigns 
two similar documents to 
different clusters 

 Precision: 𝑷𝒓 =
𝑻𝑷

𝑻𝑷ା𝑭𝑷
 

 Recall: 𝑹𝒄 =
𝑻𝑷

𝑻𝑷ା𝑭𝑵
 

 

However, the external evaluations require the assumption that a factual ground truth 

exists for any real or synthetic dataset, and human experts can generate them as training 

data. Besides the challenges of creating accurate ground-truth data, the core concept of 

clustering methods does not entirely fit the assumption. Various clustering methods can 

group the data while discovering complex but unknown similarities between the data. The 

given ground truth will exclude any other possibilities to cluster the dataset. Thus, the 

external evaluation uses subjective ground truth and evaluates how close the clustering 

results to it. The ground truth labels are manually pre-defined for the two synthesized 

datasets.  

 

4.2.3 Enhanced DBSCAN Algorithm Performance Evaluation  

In this section, experiments are performed to evaluate the proposed approach's 

effectiveness by comparing it with various commonly used machine learning algorithms. 
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The clustering results from those algorithms are used as a reference on the testing datasets. 

Since the proposed algorithm has two components: unsupervised components for 

generating clusters in the first place and the supervised component that uses the previous 

result as training data to label the rest, this section evaluates two parts of the algorithms 

separately. Thus, the selected algorithms are also divided into two categories. The selected 

unsupervised clustering methods are K-Means and traditional DBSCAN methods. The 

selected supervised clustering methods are K Nearest Neighbors (KNN), Support Vector 

Machines (SVM), and Artificial Neural Network (ANN).  

K-Means method requires the user to input the k value as a pre-determined 

parameter. K was input into both experiments on two datasets based on the ground truth. 

Traditional DBSCAN also requires the user to input Eps and MinPts values as a pre-

determined parameter. The parameters were obtained accordingly by the parameter auto-

selection method proposed in Section 3.4, though with some adjustment. KNN requires the 

user to input the k value as a pre-determined parameter, and k=5 was used in this 

experiment.  

The following Figure 4–4 presents the designed artificial neural network structure 

(two hidden layers are omitted). The detailed structure is described as follows.  

 An Input Layer: five neurons 

 A Dense Layer: 128 neurons, with ReLU activation and L1 (Lasso Regression) and L2 

(Ridge Regression) regularization whose parameter was set to be 0.01. 

 A Dense Layer: 64 neurons with ReLU activation 
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 A Dense Layer: 32 neurons with ReLU activation,  

 A Dense Layer: 16 neurons with ReLU activation,  

 A Dense Layer: 8 neurons with sigmoid activation.  

 An Output Layer: The number of neurons depends on how many pre-defined 

clustered in the training data.  

 

The input layer has five neurons, which are represented by five attributes of the 

trajectory point. Those L1 and L2 regularizers add penalty as model complexity increases, 

to avoid overfitting on noises in the training data. ReLU gives output zero for all negative 

inputs, while returns any positive value back. The ReLU activation is selected in the 

intermediate layers because it is simple and it consists of no heavy computation, making 

the training process faster. The sigmoid activation function takes input and maps the 

resulting values in between 0 to 1. Since what the last layer does is a binary classification 

task to determine if the point belongs to corresponding class, the sigmoid activation is 

selected. The number of neurons in the last dense layer depends on how many pre-defined 

clustered in the training data. For example, if the data is in Class One out of five classes, the 

output layer can be represented as [1, 0, 0, 0, 0].  
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Figure 4–4. Designed structure of the Artificial Neural Network to be used in algorithm 
comparison (Two Hidden Layers Are Omitted) 

 

Finding clusters and detecting outliers are the two performances to be evaluated in 

this section, and both external evaluation and internal evaluation criteria are used in the 

evaluation. Overall, this section presents four comparison groups categorized by the types 

of clustering algorithms and clustering purposes. The four groups are clustering 
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performance of using unsupervised learning to discover clusters (Section 4.2.3.1), clustering 

performance of using unsupervised learning to detect outliers (Section 4.2.3.2), the 

performance of using supervised learning to classify new observations (Section 4.2.3.3), the 

performance of using supervised learning to detect outliers (Section 4.2.3.4).  

 

4.2.3.1 Clustering Performance of Using Unsupervised Learning to Discover Clusters 

This section evaluates the proposed clustering method’s clustering performance on 

discovering clusters by comparing it with other unsupervised learning algorithms. Figure 4–

5 shows comparison results among unsupervised learning algorithms implementing on 

Dataset One. Figure 4–5a presents the synthesized ground truth for this comparison set. As 

previously mentioned in Section 3.1, the proposed clustering framework utilizes the 

unsupervised component of the raw data to discover the clusters first. The experiment only 

uses 30% of the Dataset One to test the clustering performance by the same framework. 

Since this section focuses on evaluating the performance of discovering clusters, the 

synthesized outliers are filtered before implementing the algorithms. Figure 4–6 shows 

comparison results among unsupervised learning algorithms implementing on Dataset Two. 

Due to a smaller data size of Dataset Two, 40% of the Dataset Two are used for testing, and 

Figure 4–6a presents the synthesized ground truth of Dataset Two.  
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4-5a. Ground Truth of Dataset One 

 
4-5b. Clustering Result from K-Means 
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4-5c. Clustering Result from Plain DBSCAN 

 
4-5d. Clustering Results from Enhanced DBSCAN 

Figure 4–5. Comparing Enhanced DBSCAN's performance on discovering clusters from 
synthetic dataset one to ground truth and other unsupervised clustering methods 
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4-6a. Ground Truth of Dataset Two 

 

4-6b. Clustering Result from K-Means 
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4-6c. Clustering Result from Plain DBSCAN 

 

 
4-6d. Clustering Results from Enhanced DBSCAN 

Figure 4–6. Comparing Enhanced DBSCAN's performance on distinguishing intersections 
from synthetic dataset two to ground truth and other unsupervised clustering methods 
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By visually evaluating the performance on discovering the clusters from Figure 4–5 

and Figure 4–6 first, results from Plain DBSCAN and Enhanced DBSCAN is more similar to 

the ground truth than the results from K-means. K-means requires the user to input k as a 

pre-determined parameter, and ‘k=4’ and ‘k=5’ were input into both experiments on two 

datasets based on the ground truth. K-means did not function well even though with the 

pre-determined parameters. For example, as Figure 4–5b shows, Cluster 4 in Ground Truth 

(the cluster in red in Figure 4–5a) was divided into two clusters by K-means (the cluster in 

red and green in Figure 4–5b). The ground truth indicates that since the vessels keep the 

same heading and speed within Cluster 4, making it simply the constant cluster is not 

recommended to be divided. Figure 4–5b shows a wrong clustering result from K-means. 

As shown in Figure 4–5c and Figure 4–5d, both Plain DBSCAN and Enhanced DBSCAN still 

find outliers even though the outliers in the ground truth were filtered in the first place. The 

results from both DBSCAN methods can be justified by the nature of DBSCAN algorithms 

and the proposed parameter selection method mentioned in Section 3.4, that the most 

deviated data within the dataset will be considered outliers. Both two DBSCAN methods 

find more than four clusters, which is different from the ground truth.   

Besides, as mentioned in Section 4.2.1 and Section 4.2.2, the proposed clustering 

algorithm's performance is assessed using the selected metrics, external evaluation, and 

internal evaluation metrics. Before evaluating the results by the selected metrics, some 

divided clusters were combined to ensure evaluation is more valid, but the outliers were 
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not edited into any clusters. The action may favor K-means. Table 4–3 states the values of 

the clustering performance metrics of all clustering algorithms.  

 

Table 4–3. Clustering performance evaluation of various unsupervised methods on 
discovering clusters and distinguishing intersections 

 
 

Figure 4–7 to Figure 4–10 visualize the values of each clustering performance metric. 

Various colors are used to represent different clustering methods. The x-axis represents 

external evaluation attributes, and the y-axis represents the corresponding score. 

 

Data Set Algorithms
Estimated 
number of 

clusters

Entropy / 
Homogeneity

Purity / 
Completeness

V-measure
Adjusted 

Rand Index
Adjusted Mutual 

Information
F1 Score

Silhouette 
Coefficient

Davies-
Bouldin Index

Calinski-
Harabasz Index

Ground Truth 4 1 1 1 1 1 1 0.671 0.687 14512.862

K-Means 4 0.906 0.959 0.932 0.974 0.932 0.976 0.706 0.371 22519.854

Plain DBSCAN 5 0.879 0.879 0.879 0.956 0.879 0.97 0.65 0.781 12416.903
Enhanced 
DBSCAN

5 0.934 0.967 0.95 0.985 0.95 0.986 0.666 0.49 14429.481

Ground Truth 5 1 1 1 1 1 1 0.557 0.586 528.491

K-Means 3 0.796 0.977 0.877 0.877 0.887 0.811 0.55 0.633 681.302

Plain DBSCAN 5 0.955 0.967 0.961 0.979 0.96 0.987 0.548 0.735 499.87
Enhanced 
DBSCAN 5 0.949 0.981 0.965 0.979 0.965 0.986 0.552 0.562 492.229

Data Set 
Two

Data Set 
One
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Figure 4–7. Performance evaluation of discovering clusters on unsupervised algorithms 

using external evaluation metrics on dataset one 

 

 
Figure 4–8. Performance evaluation of discovering clusters on unsupervised algorithms 

using internal evaluation metrics on dataset one 
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Figure 4–9. Performance evaluation of distinguishing intersections and discovering 

clusters on unsupervised algorithms using external evaluation metrics on dataset two 

  

 
Figure 4–10. Performance evaluation of distinguishing intersections and discovering 

clusters on unsupervised algorithms using internal evaluation metrics on dataset two 

0.7

0.75

0.8

0.85

0.9

0.95

1

Entropy /
Homogeneity

Purity /
Completeness

V-measure Adjusted Rand
Index

Adjusted
Mutual

Information

F1 Score

External Evaluation Attributes

External Evaluation of Unsupervised Algorithms on Dataset Two 

Ground Truth

K-Means

Plain DBSCAN

Enhanced DBSCAN

0.65

0.70

0.75

0.80

0.85

0.90

Silhouette
Coefficient

Davies-Bouldin
Index

Calinski-Harabasz
Index

N
o

rm
al

iz
e
d

 V
al

u
e
s

External Evaluation Attributes

Internal Evaluation of Unsupervised Algorithms on 

Dataset Two 

Ground Truth

K-Means

Plain DBSCAN

Enhanced
DBSCAN



74 

 

The results indicate that the proposed approach has the best performance regarding 

external evaluation by analyzing both Figure 4–7 to Figure 4–10 and Table 4–3. The ground 

truth is one on every external evaluation attribute, and the enhanced DBSCAN has the 

closest values to it compared to other algorithms. On analysis of Dataset One, the entropy 

value of enhanced DBSCAN is 0.934. The purity value and F1 Score of enhanced DBSCAN is 

0.934 and 0.986 respectively. It is found that the enhanced DBSCAN has the highest score 

on these metrics, demonstrating the proposed algorithm has good accuracy, homogeneity, 

and completeness.  

Internal evaluation metrics' values were normalized into 0.5 – 1 so that all three 

internal evaluation metrics can share the same scale. Since the internal evaluation does not 

use ground truth as a reference, the internal evaluation values cannot determine which 

algorithm gives a better clustering result. So, this experiment uses internal evaluation 

methods to evaluate the ground truth and the values used as indicators for describing the 

ground truth. The results of internal evaluation methods on other algorithms are compared 

with the ground truth. The closer the values to the ground truth, the result is more similar 

to the ground truth, and it has better clustering performance.  

Overall, the enhanced DBSCAN results satisfy the expectation that it can keep a high 

level of performance quality in terms of external evaluation metrics, compared to other 

unsupervised algorithms. The enhanced algorithm results are also very similar to ground 

truth concerning internal evaluation metrics with less than 0.1 difference.  
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4.2.3.2 Clustering Performance of Using Unsupervised Learning to Detect Outliers 

This section evaluates the proposed clustering method’s clustering performance in 

detecting outliers by comparing it with other unsupervised learning algorithms. Figure 4–

11 shows comparison results among unsupervised learning algorithms implementing on 

Dataset One. Figure 4–11a presents the synthesized ground truth for this comparison set. 

Same to Section 4.2.3.1, the experiment only uses 30% of the Dataset One to test the 

clustering performance. One hundred multivariate outliers were artificially synthesized 

around the main trajectory. The experiment tests binary classification performance to 

compare the results from various unsupervised clustering algorithms on the same level.  

 
4-11a. Ground Truth of Dataset One 
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4-11b. Clustering Result from K-Means 

 
4-11c. Clustering Result from Plain DBSCAN 
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4-11d. Clustering Results from Enhanced DBSCAN 

Figure 4–11. Comparing Enhanced DBSCAN's performance on detecting outliers from 
synthetic dataset one to ground truth and other unsupervised clustering methods 

 

By visually evaluating the performance on discovering the clusters from Figure 4–11 

first, Plain DBSCAN and Enhanced DBSCAN have better performance on detecting outliers 

than K-means. “K = 2” was input into K-Means to differentiate outliers from the main 

trajectory. As shown in Figure 4–11b, some outliers are identified as main trajectory points, 

and they are wrong. DBSCAN methods, by their natures, can find outliers based on the 

“density connectivity” of each cluster. To modify the method for doing binary classification 

tasks, parameters are adjusted from the results given by the proposed parameter selection 

method mentioned in Section 3.4 for this purpose. As shown in Figure 4–11c and Figure 4–
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11d, both Plain DBSCAN and Enhanced DBSCAN successfully identify synthesized outliers 

but still find more outliers as they are also relatively deviated from the main route.  

Besides, the proposed clustering algorithm's performance is assessed by the 

selected metrics, both external evaluation, and internal evaluation metrics. Table 4–4 states 

the values of the clustering performance metrics of all clustering algorithms.  

 

Table 4–4. Clustering performance evaluation of various unsupervised methods on 
detecting outliers 

 
 

Figure 4–12 and Figure 4–13 visualize the values of each clustering performance 

metric. Various colors are used to represent different clustering methods. The x-axis 

represents external evaluation attributes, and the y-axis represents the corresponding 

score. 

 

Data Set Algorithms
Estimated 

number of noise 
points

Entropy / 
Homogeneity

Purity / 
Completeness

V-measure
Adjusted 

Rand Index
Adjusted Mutual 

Information
F1 Score

Silhouette 
Coefficient

Davies-
Bouldin Index

Calinski-
Harabasz Index

Ground Truth 100 1 1 1 1 1 1 0.056 1.492 1487.002
K-Means 93 0.897 0.952 0.923 0.963 0.923 0.999 0.864 0.586 5493.952

Plain DBSCAN 107 0.976 0.952 0.964 0.985 0.964 1 0.854 0.661 5117.953
Enhanced 
DBSCAN

109 0.944 0.88 0.911 0.956 0.911 0.999 0.846 0.725 4708.045

Data Set 
One
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Figure 4–12. Performance evaluation of outlier detection on unsupervised algorithms 

using external evaluation metrics on dataset one 

 

 
Figure 4–13. Performance evaluation of outlier detection on unsupervised algorithms 

using internal evaluation metrics on dataset one 
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The results indicate that the proposed approach has high performance in detecting 

outliers based on the external evaluation and internal evaluation by analyzing Figure 4–12, 

Figure 4–13, and Table 4–4. According to the figures and tables, the plain DBSCAN has the 

highest external evaluations score with higher than 0.95. Even though the enhanced 

DBSCAN has a high F-1 score close to 1, indicating good accuracy, entropy, and purity scores, 

even still at a high level, is lower than plain DBSCAN (higher than 0.9). This can be explained 

by that enhanced DBSCAN finds more outliers than expected.  

Same to Section 4.2.3.1, the values of internal evaluation metrics were normalized 

into 0.5 – 1 so that all three internal evaluation metrics can share the same scale. The results 

of internal evaluation methods on other algorithms are compared with the ground truth. 

According to Figure 4–13, the ground truth is different from the clustering method's results. 

This can be explained by that the ground truth may not be entirely objectively prepared by 

the analyzer. Some synthesized outliers that fall on the main trajectory can be part of the 

clusters. Thus, indicated by this experiment, the result of the enhanced DBSCAN satisfies 

the expectation that it keeps a high level of performance quality on detecting outliers 

among other unsupervised algorithms.  

 

4.2.3.3 Performance of Using Supervised Learning to Classify New Observations 

This section evaluates the proposed clustering method’s clustering performance on 

discovering clusters by comparing it with other supervised learning algorithms. Figure 4–14 

shows comparison results among supervised learning algorithms implementing on Dataset 
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One. Figure 4–14a presents the synthesized ground truth for this comparison set. As 

previously mentioned in Section 3.1, the proposed clustering framework utilizes the 

unsupervised component on a portion of the raw data to discover the clusters first and then 

apply the supervised component to the rest of the data. By the same framework, the 

experiment uses 30% of the Dataset One as training data to train each supervised model 

and then test the clustering performance on the rest 70% data. Same to Section 4.2.3.1, this 

section focuses on evaluating the performance of discovering clusters, and the synthesized 

outliers are filtered before implementing the algorithms. Figure 4–15 shows comparison 

results among supervised learning algorithms implementing on Dataset Two. Due to the 

smaller data size of Dataset Two, 40% of Dataset Two are used for training, and 60% of the 

data for testing. Figure 4–15a presents the synthesized ground truth of Dataset Two.  

 

4-14a. Ground Truth of Dataset One 
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4-14b. Clustering Result from K-NN 

 

4-14c. Clustering Result from SVM 



83 

 4-14d. Clustering Result from ANN 

 
4-14e. Clustering Results from Enhanced DBSCAN 

Figure 4–14. Comparing Enhanced DBSCAN's performance on discovering clusters from 
synthetic dataset one to ground truth and other supervised clustering methods 
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4-15a. Ground Truth of Dataset Two 

 
4-15b. Clustering Result from K-NN 
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4-15c. Clustering Result from SVM 

 
4-15d. Clustering Result from ANN 
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4-15e. Clustering Results from Enhanced DBSCAN 

Figure 4–15. Comparing Enhanced DBSCAN's performance on distinguishing intersections 
and discovering clusters from synthetic dataset two to ground truth and other supervised 

clustering methods 

 

By visually evaluating the performance on classifying the observations into pre-

defined clusters from Figure 4–14 and Figure 4–15 first, all supervised algorithms can get a 

similar outcome to the ground truth with training data. As shown in Figure 4–14e and Figure 

4–15e, Enhanced DBSCAN still find outliers even though the outliers in the ground truth 

were filtered in the first place. The results can be justified by the nature of the supervised 

component in the enhanced DBSCAN algorithms. Based on the proposed parameter 

selection method mentioned in Section 3.4, the most deviated data beyond 1.5 times of IQR 

within the dataset will be considered outliers.   
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Besides, as mentioned in Section 4.2.1 and Section 4.2.2, the proposed clustering 

algorithm's performance is assessed using the selected metrics, external evaluation, and 

internal evaluation metrics. Table 4–5 states the values of the clustering performance 

metrics of all clustering algorithms.  

 

Table 4–5. Clustering performance evaluation of various supervised methods on 
distinguishing intersections and discovering clusters 

  
 

Figure 4–16 to Figure 4–19 visualize the values of each clustering performance 

metric. Various colors are used to represent different clustering methods. The x-axis 

represents external evaluation attributes, and the y-axis represents the corresponding 

score. 

 

Data Set Algorithms
Estimated 
number of 

clusters

Entropy / 
Homogeneity

Purity / 
Completeness

V-measure
Adjusted Rand 

Index

Adjusted 
Mutual 

Information
F1 Score

Silhouette 
Coefficient

Davies-
Bouldin 
Index

Calinski-
Harabasz Index

Ground Truth 4 1 1 1 1 1 1 0.659 0.791 32966.388

KNN 4 0.921 0.952 0.936 0.975 0.936 0.984 0.673 0.646 34590.951

SVM 4 0.907 0.944 0.925 0.971 0.925 0.98 0.679 0.542 35517.235
Enhanced 
DBSCAN 4 0.977 0.973 0.975 0.992 0.975 0.996 0.66 0.816 33429.567

ANN 4 0.918 0.952 0.935 0.972 0.935 0.983 0.673 0.628 34638.614

Ground Truth 4 1 1 1 1 1 1 0.581 0.527 892.718

KNN 4 0.991 0.985 0.988 0.996 0.988 0.997 0.583 0.537 906.921

SVM 4 0.947 0.981 0.963 0.979 0.963 0.984 0.566 0.498 824.776

Enhanced 
DBSCAN

4 0.96 0.967 0.964 0.983 0.963 0.987 0.577 0.636 859.67

ANN 4 0.955 0.977 0.966 0.989 0.965 0.987 0.569 0.497 868.113

Data Set 
One

Data Set 
Two
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Figure 4–16. Performance evaluation of discovering clusters on supervised algorithms 

using external evaluation metrics on dataset one 

 

 
Figure 4–17. Performance evaluation of discovering clusters on supervised algorithms 

using internal evaluation metrics on dataset one 
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Figure 4–18.  Performance evaluation of distinguishing intersections on supervised 

algorithms using external evaluation metrics on dataset two 

 

 
Figure 4–19. Performance evaluation of distinguishing intersections on supervised 

algorithms using internal evaluation metrics on dataset two 

 

0.7

0.75

0.8

0.85

0.9

0.95

1

Entropy /
Homogeneity

Purity /
Completeness

V-measure Adjusted Rand
Index

Adjusted
Mutual

Information

F1 Score

External Evaluation Attributes

External Evaluation of Supervised Algorithms on Dataset Two 

Ground Truth

KNN

SVM

Enhanced DBSCAN

ANN

0.65

0.70

0.75

0.80

0.85

0.90

Silhouette
Coefficient

Davies-Bouldin
Index

Calinski-Harabasz
Index

N
o

rm
al

iz
e
d

 V
al

u
e
s

External Evaluation Attributes

Internal Evaluation of Supervised Algorithms on 

Dataset Two 

Ground Truth

KNN

SVM

Enhanced DBSCAN

ANN



90 

The results indicate that the proposed approach keeps high performance by 

analyzing both Figure 4–16 to Figure 4–19 and Table 4–5. According to Figure 4–16, the 

blue line represents the ground truth, and the green line represents the enhanced DBSCAN 

with a score very close to 1. The external evaluation results indicate that the proposed 

algorithm has good accuracy, homogeneity, and completeness since the scores are all 

higher than 0.95. Internal evaluation metrics' values were normalized into 0.5 – 1 so that all 

three internal evaluation metrics can share the same scale. According to Figure 4–17, the 

result from evaluating enhanced DBSCAN is very close to the ground truth with less than 

0.1 difference on those metrics, suggesting that the result is similar to the ground truth and 

has good clustering performance. According to Figure 4–18 and Figure 4–19, enhanced 

DBSCAN is not the best algorithm when implementing on Dataset Two. This can be 

explained by that enhanced DBSCAN finds outliers beyond filtered outliers. Since Dataset 

Two has a smaller data size, only a small variation may make a huge difference in the 

evaluation result even though enhanced DBSCAN gets higher than 0.96 for each external 

evaluation attribute.  

Overall, results from the enhanced DBSCAN satisfy the expectation that it keeps a 

high level of performance quality in terms of external evaluation metrics, compared to other 

supervised algorithms. The results from the enhanced algorithm also stay in a satisfying 

range concerning internal evaluation metrics.  
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4.2.3.4 Performance of Using Supervised Learning to Detect Outliers 

This section evaluates the proposed clustering method’s clustering performance in 

detecting outliers by comparing it with other supervised learning algorithms. Figure 4–20 

shows comparison results among supervised learning algorithms implementing on Dataset 

One. Figure 4–20a presents the synthesized ground truth for this comparison set. Same to 

Section 4.2.3.3, the experiment uses 30% of the Dataset One as training data and test the 

clustering performance on the rest 70% of the data. One thousand multivariate outliers 

were artificially synthesized around the main trajectory. To compare the results from 

various supervised clustering algorithms on the same level, the experiment tests binary 

classification performance. Due to enhanced DBSCAN’s ability to detect outliers is based on 

each cluster, in this experiment, the enhanced DBSCAN is doing two tasks simultaneously, 

which are discovering clusters and detecting outliers. So, the training data for each 

algorithm is different in this experiment. Training data for KNN, SVM, and ANN only have 

two labels, 1 and 0, representing the main trajectory and outliers. Enhanced DBSCAN in this 

experiment uses the same training data as Section 4.2.3.1 and does not use any synthetic 

outliers as training data.  
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4-20a. Ground Truth of Dataset One 

 
4-20b. Clustering Result from K-NN 
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4-20c. Clustering Result from SVM 

 
4-20d. Clustering Result from ANN 
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4-20e. Clustering Results from Enhanced DBSCAN 

Figure 4–20. Comparing Enhanced DBSCAN's performance on outlier detection from 
synthetic dataset one to ground truth and other supervised clustering methods 

 

By first visually evaluating the performance on discovering the clusters from Figure 

4–20, SVM results have the best performance to differentiate outliers from the main 

trajectory. Both KNN and ANN identified some outliers as main trajectory points by mistake. 

Enhanced DBSCAN uses a Mahalanobis distance metric to measure the distance between 

points and clusters. Mahalanobis distance considers correlation within the cluster. As 

shown in Figure 4–20e, some outliers at the same line with pre-defined clusters are 

identified as part of those clusters.  
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Besides, the proposed clustering algorithm's performance is assessed by the 

selected metrics, both external evaluation, and internal evaluation metrics. Table 4–6 states 

the values of the clustering performance metrics of all clustering algorithms.  

 

 

Table 4–6. Clustering performance evaluation of various supervised methods on outlier 
detection 

  
 

Figure 4–21 and Figure 4–22 visualize the values of each clustering performance 

metric. Various colors are used to represent different clustering methods. The x-axis 

represents external evaluation attributes, and the y-axis represents the corresponding 

score. 

 

Data Set Algorithms
Estimated 

number of noise 
points

Entropy / 
Homogeneity

Purity / 
Completeness

V-measure
Adjusted Rand 

Index

Adjusted 
Mutual 

Information
F1 Score

Silhouette 
Coefficient

Davies-
Bouldin 
Index

Calinski-
Harabasz Index

Ground Truth 1000 1 1 1 1 1 1 0.74 0.87 13213.074
KNN 909 0.857 0.921 0.888 0.946 0.888 0.996 0.747 0.823 13107.855
SVM 998 0.995 0.997 0.996 0.999 0.996 1 0.741 0.869 13227.934

Enhanced 
DBSCAN

975 0.825 0.84 0.932 0.925 0.832 0.994 0.725 0.945 10899.795

ANN 956 0.923 0.955 0.939 0.975 0.939 0.998 0.742 0.843 13144.003

Data Set 
One
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Figure 4–21. Performance evaluation of outlier detection on supervised algorithms using 

external evaluation metrics on dataset one 

 

 
Figure 4–22. Performance evaluation of outlier detection on supervised algorithms using 

internal evaluation metrics on dataset one 
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The results indicate that the proposed approach has good performance in detecting 

outliers based on the external evaluation by analyzing Figure 4–21, Figure 4–22, and Table 

4–6. According to the figures and tables, the SVM has the highest score. Even though the 

enhanced DBSCAN has a high F-1 score, indicating good accuracy, entropy and purity scores, 

even still at a high level, are relatively lower. This can be explained by that enhanced 

DBSCAN finds more outliers than expected. Besides, enhanced DBSCAN is doing two tasks 

simultaneously. Thus, the evaluation favors other algorithms. Same to Section 4.2.3.1, the 

values of internal evaluation metrics were normalized into 0.5 – 1 so that all three internal 

evaluation metrics can share the same scale. The results of internal evaluation methods on 

other algorithms are compared with the ground truth. According to Figure 4–22, the 

enhanced DBSCAN is different from the results from other clustering methods. This can also 

be explained by that enhanced DBSCAN finds more outliers than expected. Thus, indicated 

by this experiment, the enhanced DBSCAN keeps a good performance quality level on 

detecting outliers among other supervised algorithms, satisfying the expectation.  

 

4.2.4 Sensitivity Analysis and Validation 

This section evaluates the validity of the proposed method for the Auto-Selection 

Parameters of the Enhanced DBSCAN. This experiment variates the parameters to obtain a 

set of results with different sets of parameters. Through analyzing the results, how those 

parameters can influence the results are analyzed. The purposed of this sensitivity analysis 

is to test whether the parameters recommended by auto-selection method is a good initial 
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setting, and whether the clustering result will be still valid when parameters are variated. 

This experiment's raw dataset is three-day data in regions between Kingston to Port at 

Wolfe Island, as shown in Figure 4–23a. The proposed parameters auto-selection method 

was implemented on this dataset and the following Table 4–7 presents the parameters 

recommended by the method.  

 

 

 

 

Table 4–7. The recommended values of the required parameters to be used in the 
Enhanced DBSCAN unsupervised component 

Parameters Recommended Values 

MinPts 10 

Eps 0.287333 

 

The experiment adjusts the parameters by 20% up and down separately and then 

applies the adjusted parameters to the enhanced DBSCAN. The comparison results are then 

shown as followed in Figure 4–23.  
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4-23a. Original Result (MinPts = 10, Eps = 0.2873) 

 
4-23b. Result with Adjusted Parameters (MinPts = 10, Eps = 0.3448) 
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4-23c. Result with Adjusted parameters (MinPts = 10, Eps = 0.2394) 

 
4-23d. Result with Adjusted parameters (MinPts = 12, Eps = 0.2873) 
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4-23e. Result with Adjusted Parameters (MinPts = 8, Eps = 0.2873) 

 
4-23f. Result with Adjusted parameters (MinPts = 8, Eps = 0.2394) 
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4-23g. Result with Adjusted parameters (MinPts = 8, Eps = 0.3448) 

 
4-23h. Result with Adjusted parameters (MinPts = 12, Eps = 0.3448) 
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4-23i. Result with Adjusted parameters (MinPts = 12, Eps = 0.2394) 

Figure 4–23. Comparison results by variating the parameters by 20% 

 

MinPts is the parameter to limit the number of the core points used to grow the 

clusters. The larger the MinPts is, the smaller the number of the core points is, and the size 

of the clusters will be smaller, making more points to be identified as outliers. Eps is the 

parameter to determine neighborhoods. The smaller the Eps is, the fewer neighborhoods 

can be clustered together, making more clusters discovered. So Figure 4–23f,h,i, and g are 

the four extreme results: Figure 4–23f is the result with the most clusters; Figure 4–23h is 

the result with the least clusters; Figure 4–23i is the result with the most outliers; Figure 4–

23g is the results with the least outliers.  
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Through first visually analyzing the comparison group, including those four extreme 

results, it can be concluded that the parameters recommended by the auto-selection 

method are accurate, and the algorithm is robust from variating the parameters. Basically, 

all results successfully, at least partially, in discovering the corresponding clusters and 

detecting outliers. All results have detected the port area. Besides, as shown in Figure 4–24 

and Table 4–8, at least four clusters (stages) have been defined by those results. Figure 4–

24 shows that even the worst parameters selection still has a higher than 0.9 average score, 

showing the results' quality and the algorithm's robustness.  

 

 

 

Table 4–8. Clustering performance evaluation of various parameters 

 

 

Data Set Parameters
Estimated 
number of 

clusters

Estimated 
number of 

noise points

Entropy / 
Homogeneity

Purity / 
Completen

ess
V-measure

Adjusted 
Rand Index

Adjusted 
Mutual 

Information
F1 score

MinPts = 10, Eps = 0.2873 5 56 1 1 1 1 1 1
MinPts = 10, Eps = 0.3448 5 32 0.91 0.931 0.92 0.973 0.92 0.961

MinPts = 10, Eps = 0.2394 5 60 0.974 0.968 0.971 0.988 0.971 0.994

MinPts = 12, Eps = 0.2873 4 66 0.958 0.957 0.958 0.988 0.957 0.984

MinPts = 8, Eps = 0.2873 7 40 0.939 0.949 0.944 0.982 0.943 0.974

MinPts = 8, Eps = 0.2394 6 52 0.937 0.933 0.935 0.979 0.935 0.981

MinPts = 8, Eps = 0.3448 5 32 0.91 0.931 0.92 0.973 0.92 0.961

MinPts = 12, Eps = 0.3448 4 60 0.922 0.923 0.922 0.98 0.922 0.974

MinPts = 12, Eps = 0.2394 4 72 0.925 0.919 0.922 0.972 0.922 0.974

Data Set between 
Kingston to Port 
at Wolfe Island
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Figure 4–24. Clustering performance evaluation of various parameters using external 
evaluation metrics for sensitivity analysis 

 

In summary, this section proves that the auto-selection method gives good 

recommendations, and they have a certain level of tolerance of variation and uncertainty. 

The proposed parameter auto-selection method can be used in large scale big data.  

 

 

4.3 Case Studies and Results  

 

4.3.1 Gulf of Mexico AIS Big Data  

The proposed clustering algorithm has been applied to big data in the Gulf of Mexico 

Region, and a model to monitor vessels in that region has been generated. In this research 

thesis, we accessed around 200 MB of open-sourced data in the Gulf of Mexico Region 

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

Entropy /
Homogeneity

Purity /
Completeness

V-measure Adjusted Rand
Index

Adjusted
Mutual

Information

F1 score

Evaluation Criteras

Parameters Sensitivity Analysis and Validation 

MinPts = 10, Eps = 0.2873

MinPts = 10, Eps = 0.3448

MinPts = 10, Eps = 0.2394

MinPts = 12, Eps = 0.2873

MinPts = 8, Eps = 0.2873

MinPts = 8, Eps = 0.2394

MinPts = 8, Eps = 0.3448

MinPts = 12, Eps = 0.3448

MinPts = 12, Eps = 0.2394



106 

(MarineCadastre.gov | Vessel Traffic Data, no date). The data is from one month of January 

2017 and contains data of 70 MMSI. The data contains around 1.2 million trajectory points 

to be clustered. The raw data has been visualized in Figure 4–25. Figure 4–25a presents all 

the raw AIS point data, and Figure 4–25b visualized the data in various colors for 

corresponding MMSI.   

 

4-25a. Raw AIS Point Data in the Gulf of 
Mexico Region 

 

4-25b. Raw Trajectory Data by MMSI in 
the Gulf of Mexico Region 

Figure 4–25. Raw AIS data and raw trajectory data in the Gulf of Mexico Region  

 

As mentioned in Section 3.1, the enhanced DBSCAN clustering method has been 

implemented on the data of each MMSI. By this step, 2653 clusters are generated as the 

preliminary results. Each cluster represents a kind of profiled vessel behavior concerning 

the corresponding MMSI. Then the similar clusters from different data of MMSI have been 

merged. Behavior vectors are created by averaging the five attributes in the same cluster, 

and the behavior vectors are used for second layer clustering. The second layer, clustering, 

used the same enhanced DBSCAN method to keep the result consistent. Parameters are 

manually modified to fit this step's goal since the priory in the second layer clustering was 
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no longer filter the outliers. After this step, 1279 third layer clusters are generated from 

merging the 2653 clusters by the last step. Figure 4–26 shows the final AIS clusters on the 

Gulf of Mexico, each representing one vessel behavior pattern in the region. Since there are 

way too many clusters presented in Figure 4–26, some colors are used repetitively to 

present different clusters.  

 

 
Figure 4–26. Final AIS Clusters resulted from the proposed clustering framework on the 

Gulf of Mexico, with each color representing one vessel behavior pattern  
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One of the applications of analyzing the clustering results is to detect port areas. The 

places where all the vessels are anchored in the Gulf of Mexico Region are presented in 

Figure 4–27a. Figure 4–27b presents a zoomed-in figure showing the details of those ports.  

 

 
4-27a. All Ports Detected by the Algorithm 
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4-27b. Zoomed-In Figure Showing Details Around West Bay 

Figure 4–27. Ports and locations where vessels are mooring detected by the proposed 
clustering framework in Gulf of Mexico Area 

 

New behavior vectors are created by averaging the attributes and considering data 

size as weights. In the following Figure 4–28, those behavior vectors are represented as 

arrows. The data size is presented as darkness level, and the directions of the arrows 

present the heading. Figure 4–28b presents a zoomed-in figure showing the details of those 

behavior vectors. 
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4-28a. All behavior vectors Profiled by the Algorithm 

 
4-28b. Zoomed-in figure showing details around Galveston Bay and Trinity Bay 

Figure 4–28. Profiled behavior vectors on the Gulf of Mexico from proposed clustering 
framework, represented by the arrows 
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Taking advantage of the final clustering results, vessel behavior recommendation 

and anomaly detection model have been developed. Given the vessel location, the model 

will recommend what the vessel should do based on the well-organized training data. The 

example is shown in Figure 4–29. For a vessel located at (25.49, -93.3906), the 

recommendation model calculates Euclidean Distance to all profiled behavior vectors, and 

finds the two closest clusters (Cluster 1775 and Cluster 1115). The corresponding 

probabilities is found by the ratio of the inverse of the distance, making the closer cluster 

has higher weights to provide possible vessel actions to the vessel at the location. The 

recommendation model, at the current stage, only recommends speed and heading. When 

the model becomes more comprehensive for future works, more advanced information can 

be provided, such as destination and routes associated with the specific clusters. 

 

 
Figure 4–29. Application of the model for the Gulf of Mexico: vessel behavior 

recommendations based on given location 

 
 

The anomaly detection model has been developed from the final clustering result as 

well. The algorithm is the same as the supervised component of the proposed enhanced 

Point Cluster 1775 Cluster 1115

LAT 25.4900 LAT 25.4399 LAT 25.4676
LONG -93.3906 LON -92.9318 LON -93.1219

SOG 12.8459 SOG 12.4737
COG 100.7888 COG 107.2874
Heading 100.2267 Heading 108.1444
Probabality 80.29% Probabality 19.71%
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DBSCAN. Based on the new observations, the model calculates the Mahalanobis distance 

to the two closest clusters and determines which cluster the data belongs. The model can 

also provide probabilities that the vessel has anomaly behaviors. The example is shown in 

Figure 4–30. The model reads the AIS signal from the monitored vessel and finds matchings 

with the well-organized clusters (Cluster 111 and Cluster 1710) with corresponding 

probabilities. For an AIS signal from the monitored vessel, the anomaly detection model 

calculates Mahalanobis Distance to all profiled AIS clusters vectors, and finds the two 

closest clusters (Cluster 111 and Cluster 1710). The corresponding probabilities are found 

by the ratio of the inverse of the distance, making the closer cluster has higher probabilities 

to be matched with the monitored vessel. The anomaly detection model, at the current 

stage, detects anomaly behaviors with respect to all clusters. When the model becomes 

more comprehensive for future works, more advanced information can be used for 

detecting anomaly behaviors associated with the specific routes.   

 

 

Figure 4–30. Application of the model for the Gulf of Mexico: vessel behavior monitoring 
and anomaly detection on new observations 

 

 

New 
Observation 

Cluster 111 Cluster 1710 Anomaly

LAT 27.8456 LAT 27.8456 LAT 27.8174
LON -97.2262 LON -97.2261 LON -97.3759
SOG 0.0000 SOG 0.0415 SOG 2.6565
COG -105.7000 COG -141.3424 COG -45.8701
Heading 230.0000 Heading 229.2495 Heading 185.7938

Probabality 74.54% Probabality 16.87% Probabality 8.58%
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4.3.2 Saint Lawrence Seaway AIS Data  

Another dataset that was implemented by the proposed clustering algorithm is the 

Saint Lawrence Seaway region AIS data. Models to monitor vessels in that region have been 

generated for the case study. We purchased 3-day data in June 2017 from OBCOMM. The 

data is around 17 MB describing the vessel's movement history and contains around 135 

thousand trajectory points clustered. The raw data has been visualized in Figure 4–31. 

Figure 4–31a presents all the raw AIS point data, and Figure 4–31b visualized the data in 

various colors for corresponding MMSI.   

 

 
4-31a. Raw AIS Point Data in Saint Lawrence Seaway Region 
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4-31b. Raw Trajectory Data by MMSI in Saint Lawrence Seaway Region 

Figure 4–31. Raw AIS data and raw trajectory data in Saint Lawrence Seaway and Great 
Lakes Region  

 

Same to Section 4.3.1, the hierarchical clustering framework has been implemented 

on the dataset. Firstly, the enhanced DBSCAN clustering method has been implemented on 

the data of each MMSI in the first layer. By this step, 3095 clusters are generated as the 

preliminary results. Each cluster represents a kind of profiled vessel behavior concerning 

the corresponding MMSI. Then the similar clusters from different data of MMSI have been 

merged. Behavior vectors are created by averaging the five attributes in the same cluster, 

and the behavior vectors are used for second layer clustering. The second layer, clustering, 

used the same enhanced DBSCAN method to keep the result consistent. Parameters are 

manually modified to fit this step's goal since the priory in the second layer clustering was 

no longer filter the outliers. After this step, 2888 third layer clusters are generated from 

merging the 3095 clusters by the last step.  Figure 4–32 shows the final AIS clusters on the 
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Saint Lawrence Seaway, each representing one vessel behavior pattern in the region. Since 

there are way too many clusters presented in Figure 4–32, some colors are used repetitively 

to present different clusters. 

 

 
Figure 4–32. Final AIS Clusters resulted from the proposed clustering framework on the 
Saint Lawrence Seaway and Great Lakes Region, with each color representing one vessel 

behavior pattern 

 

One of the applications of analyzing the clustering results is to detect port areas. The 

places where all the vessels are anchored in the Saint Lawrence Seaway Region are 

presented in Figure 4–33. Figure 4–34 presents zoomed-in figures showing the details of 

those ports.  
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Figure 4–33. Ports and locations where vessels are mooring detected by the proposed 
clustering framework in Saint Lawrence Seaway and Great Lakes Region 

 

  
4-34a.  Locations of the Vessels mooring in Toronto harbor 
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4-34b. Locations of the Vessels mooring at Hamilton and Burlington 

 

 
4-34c. Vessels moored in Montreal harbor 

Figure 4–34. Zoomed-in figures showing the details of those Ports and locations where 
vessels are mooring detected by the proposed clustering framework in Saint Lawrence 

Seaway and Great Lakes Region 
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New behavior vectors are created by averaging the attributes and considering data 

size as weights. In the following Figure 4–35, those behavior vectors are represented as 

arrows. The data size is presented as darkness level, and the directions of the arrows 

present the heading. Figure 4–36 presents zoomed-in figures showing the details of those 

behavior vectors. The results help visual analytics in identifying port regions and busy routes.  

 

 

Figure 4–35. Profiled behavior vectors on the Saint Lawrence Seaway and Great Lakes 
Region from proposed clustering framework, represented by the arrows 
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4-36a. Vessels Vectors in Lake Superior 

 

  
4-36b. Vessels Vectors in Lake Ontario 
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4-36c. Vessels Vectors in Lake Huron 

 

    
4-36d. Vessels Vectors in the Montreal area 
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4-36e. Vessels vectors in St. Lawrence Seaway 

Figure 4–36. Zoomed-in Figures Showing the Details of Those Profiled behavior vectors on 
the Saint Lawrence Seaway and Great Lakes Region from proposed clustering framework, 

represented by the arrows 

 

In Figure 4–37 and Figure 4–38, some final clusters are presented in the zoomed-in 

regions. Figure 4–37 covers the same region as the dataset for algorithm validation. The 

result shows consistency to the ground truth, such as Figure 4–5a. Besides the four clusters 

(stages) describing the vessels traveling across the river, one more cluster to sailing along 

the river is profiled (the cluster in orange). This cluster has less data density, but the sparse 

points are still clustered together, taking advantage of the Mahalanobis distance metric, 

which considers the correlation between the point in the dataset.   
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Figure 4–37. Final AIS Clusters resulted from the proposed clustering framework on the 
location between Kingston to Port at Wolfe Island, with each color representing one vessel 

behavior pattern 

 

Figure 4–38 shows another example of a series of clustered vessels in Lake Ontario 

and St. Lawrence River. The result shows that some port areas are identified on the 

Southwestern Lake Ontario and a vessel sailing behavior from the lake into the river. The 

stages traveling along the river are mainly divided by the speed difference since the 

direction almost remains the same. A new finding by this result is that some stages of 

separated geospatially can still be clustered together. Once the vessel slows down in more 

crowded water, a new stage is defined. However, after the vessel resumes the normal speed, 

taking advantage of the Mahalanobis distance metric, these vessel behaviors are highly 

similar to those before slowing down. Thus, they are clustered together. The cluster in green 
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in Figure 4–38 is a case in point. Even after two stages (in pink and purple) divide this cluster, 

the three separated stages are still considered one cluster (in green).  

 

 

Figure 4–38. Final AIS Clusters resulted from the proposed clustering framework in Lake 
Ontario and St. Lawrence River, with each color representing one vessel behavior pattern 

 

Taking advantage of the final clustering results, vessel behavior recommendation 

and anomaly detection model have been developed. Given the vessel location, the model 

will recommend what the vessel should do based on the well-organized training data. The 

example is shown in Figure 4–39. For a vessel located at Lat: 46o, Long: -73o, the 

recommendation model calculates Euclidean Distance to all profiled behavior vectors, and 

finds the four closest clusters (Cluster 2169, Cluster 2840, Cluster 1867, and Cluster 2119). 
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The corresponding probabilities is found by the ratio of the inverse of the distance, making 

the closer cluster has higher weights to provide possible vessel actions to the vessel at the 

location. The recommendation model, at the current stage, only recommends speed and 

heading. When the model becomes more comprehensive for future works, more advanced 

information can be provided, such as destination and routes associated with the specific 

clusters. 

 

 

Figure 4–39. Application of the Model for Canadian Great Lakes Region: Vessel Behavior 
Recommendations Based on Given Location 

 

 

The anomaly detection model has been developed from the final clustering result as 

well. The algorithm is the same as the supervised component of the proposed enhanced 

DBSCAN. The model will calculate the Mahalanobis distance to the two closest clusters 

based on the new observations and determine which cluster the data belongs. The model 

can also provide probabilities that the vessel has anomaly behaviors. The example is shown 

in Figure 4–40. The model reads the AIS signal from the monitored vessel and finds 

matchings with the well-organized clusters (Cluster 734 and Cluster 838) with 

corresponding probabilities. For an AIS signal from the monitored vessel, the anomaly 

Point Cluster 2169 Cluster 2840 Cluster 1867 Cluster 2119

LAT 46.0000 LAT 46.6253 LAT 46.4463 LAT 46.0816 LAT 46.6144
LONG -73.0000 LON -71.7936 LON -72.1909 LON -72.9443 LON -71.7876

SOG 90.1609 SOG 125.3478 SOG 95.7679 SOG 93.3478
COG 2296.4598 COG 639.6957 COG 2194.1964 COG 2386.4203
Heading 230.5977 Heading 63.3043 Heading 219.5536 Heading 238.4638
Probabality 34.18% Probabality 23.64% Probabality 22.11% Probabality 20.07%
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detection model calculates Mahalanobis Distance to all profiled AIS clusters vectors, and 

finds the two closest clusters (Cluster 734 and Cluster 838). The corresponding probabilities 

are found by the ratio of the inverse of the distance, making the closer cluster has higher 

probabilities to be matched with the monitored vessel. The anomaly detection model, at 

the current stage, detects anomaly behaviors with respect to all clusters. When the model 

becomes more comprehensive for future works, more advanced information can be used 

for detecting anomaly behaviors associated with the specific routes.   

 

 

Figure 4–40. Application of the Model for Canadian Great Lakes Region: Vessel Behavior 
Monitoring and Anomaly Detection on New Observations 

 

 

  

New 
Observation 

Cluster 734 Cluster 838 Anomaly

LAT 45.6245 LAT 43.6366 LAT 43.7469
LON -73.4976 LON -79.3915 LON -81.7179
SOG 0.0000 SOG 0.0000 SOG 0.0000
COG 2652.0000 COG 2685.6322 COG 2311.8750
Heading 252.0000 Heading 511.0000 Heading 511.0000

Probabality 73.16% Probabality 26.41% Probabality 0.42%
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5. Chapter 5: Conclusions 

 

5.1 Summary and Contribution 

The research can be summarized into three following aspects. First, the research 

proposed enhanced DBSCAN by optimizing clustering performance in terms of homogeneity, 

completeness, and other evaluation metrics. Second, the research proposed a clustering 

framework to be implemented on big data, generating the clustering results in two case 

studies. Third, the research developed the models for vessel action recommendation and 

detecting vessel behavior outliers in the case study regions.  

Firstly, a clustering method has been proposed to enhance the DBSCAN clustering 

method by incorporating the Mahalanobis distance metric. The proposed clustering 

method outperforms traditional DBSCAN by considering correlations among the points and 

reduce computational cost. The enhanced DBSCAN using Mahalanobis distance can deal 

with scale and correlation issues better than traditional DBSCAN using Euclidean distance. 

The thesis presents a straightforward way to find the required parameters required by the 

enhanced DBSCAN, making the method consistent when applying to big data. The proposed 

algorithm has also been thoroughly compared with other commonly used clustering 

algorithms in four designed validation experiments. It has been evaluated by both internal 

and external clustering evaluation metrics, and the results indicate that the proposed 

algorithm's performance is high.  
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Secondly, based on the proposed algorithm, the thesis proposed a clustering 

framework that can be efficiently applied to big data. The framework takes speed and 

heading into account when clustering the vessels in addition to geospatial information. By 

defining the point data as a novel five-dimensional vector, the clustering algorithm can find 

insights and discoveries in a space with a more complex concept of 'density reachability.' 

The hierarchical clustering framework comprises layers of clustering, utilizing both the 

unsupervised component and supervised component of the proposed clustering algorithm. 

The proposed clustering framework has been implemented on novel high-dimensional data 

to represent historical AIS data for modeling vessel behaviors.  

Thirdly, the clustering results generate maritime traffic patterns extraction and 

vessel behavior anomaly detection models. Two big datasets are accessed and used for the 

case study. The first study area is the Gulf of Mexico, and the second is the Canadian Great 

Lakes regions. The thesis presents how the models work on giving action recommendations 

based on the information from the vessel and detecting behavior anomalies of the vessel. 

The results indicate that the proposed framework can effectively model vessel behaviors in 

those two waters and show its potentials to work in other regions.  

The contributions of the research can also be summarized into three aspects. Firstly, 

the machine learning community benefits from the DBSCAN clustering optimization. The 

enhanced DBSCAN brings new possibilities and understanding of clustering. The proposed 

parameter auto-selecting method facilitates clustering tasks and spare efforts on trial-and-

error methods to find suitable parameters.  
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Secondly, the enhanced DBSCAN clustering method and proposed framework 

implementing on historical AIS data contributes to modeling marine transportation and 

autonomous vessels research. This research proposed a way to monitor crewed vessels, 

provides foundations for vessel route planning and vessel behavior anomalies detection. 

Thirdly, the proposed clustering algorithm and framework can use applied to more 

general data analytics tasks. Beyond contributions to marine transportation modeling, a 

similar clustering framework can also be applied to similar tasks on modeling data from 

other moving objects such as Automatic Dependent Surveillance-Broadcast (ADS-B) data, 

data from pedestrians, data from vehicles, and data from UAVs. The proposed clustering 

algorithm and framework can also be applied to social media and video platform user 

analysis. Through profiling user behaviors and organizing contents, Ads/contents promotion 

algorithm can be designed. Besides providing a possible process for analyzing, clustering, 

and modeling AIS data, the enhanced DBSCAN and hierarchy clustering framework can be 

applied to organizing the other raw unlabeled data and facilitating preparing labeled 

training data by descriptor data clustering. The framework also provides a foundation for 

active learning. The framework can be furtherly modified into an interactive process taking 

advantage of the designed semi-supervised process. The machine learning community will 

be tremendously benefited as it can help spare huge efforts on preparing large training data 

when generating AI models.  
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5.2 Future Work and Perspectives 

The proposed method is based on assumptions that marine AIS data contains 

valuable insights into mined and vessel behavior patterns discovered from systematically 

studying them. To guarantee the assumption to be valid, it requires that the raw unlabeled 

AIS trajectories data should have been quality controlled. Even though the proposed 

framework provides the ability to filter outliers from the trajectory, it is not powerful 

enough, yet the whole trajectory has inferior quality. A pre-processing procedure to filter 

the anomaly AIS trajectory should be implemented in the future to ensure the quality of the 

training data.  

Working with heavily unevenly distributed data has been challenges. The work 

proposed an intuitive approach to find parameters for enhanced DBSCAN. However, since 

the way parameters are defined is to prioritize differentiating the outliers, the results are 

not optimal for some datasets with more outliers than valuable data. For example, in some 

datasets, the majority of the points data is concentrated at port areas. The proposed 

algorithm will mistakenly detect main trajectories as outliers concerning the way to define 

the parameters. Furthermore, some datasets in which stages are not distinct enough to be 

separated from each other. Thus, the proposed parameter selection method has an 

unreliable result to obtain clusters composed of consistent points. The parameter setting 

still requires adjusting from the user, and a more dynamic modification is expected from 

the future. 
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Besides solving the limitations listed above, two extra aspects of the research can 

be expanded in the future. Firstly, the currently proposed clustering method works on five-

dimensional point data at a specific time and profile behaviors based on the clustering 

results but does not consider the trajectory. A long short-term memory concept can be 

applied to the clustering process by integrating another time dimension. For example, the 

vector data can be influenced by its behavior history, with larger weights on closer previous 

vectors. In this case, data can be more accurately profiled, and the model generated can 

make better behavior predictions. Secondly, the framework can be furtherly modified into 

an active learning model with an interactive labeling process. The clustering framework can 

generate accurate clustering results with small human efforts on preparing large training 

data and computational cost by iteratively returning the least reliable clustering results 

from the unsupervised component and manually modifying the labels.   
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Appendix 

Python Source Codes 

----------------------------------------------------------------------------------------------------------------------- 

Algorithm 1 Proposed_DBSCAN_Unsupervised (D, Eps, MinPts) 

 

Algorithm 1 is the function of using the unsupervised component of the proposed clustering 

algorithm to discover clusters in the first step. It requires three parameters as input, 

including the Dataset D and two predefined parameters, Eps and MinPts. Eps sets the 

threshold of the neighborhoods, and MinPts limits the number of the core points. The 

procedure iterates until all the points have been visited and labeled. By the end, all the 

points density connected are clustered together, and others are identified as outliers. The 

function returns a list of cluster labels.  

 

def Proposed_DBSCAN_Unsupervised(D, eps, MinPts): 
    """ 
    Cluster the dataset `D` using the proposed enhanced DBSCAN algorithm. 
 
    The proposed enhanced DBSCAN algorithm takes a dataset `D` (a list of 
vectors), 
    a threshold distance `eps,` 
    and a required number of points `MinPts`. 
 
    It will return a list of cluster labels. The label -1 means noise, 
and then 
    the clusters are numbered starting from 1. 
    """ 
 
    # This list will hold the final cluster assignment for each point in 
D. 
    # There are two reserved values: 
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    #    -1 - Indicates a noise point 
    #     0 - Means the point hasn't been considered yet. 
    # Initially all labels are 0. 
    labels = [0] * len(D) 
 
    # C is the ID of the current cluster. 
    C = 0 
 
    # This outer loop is just responsible for picking new seed points 
    # --a point from which to grow a new cluster. 
    # Once a valid seed point is found, a new cluster is created, 
    # and the cluster growth is all handled by the 'expandCluster' 
routine. 
 
    # For each point P in the Dataset D... 
    # ('P' is the index of the datapoint, rather than the datapoint 
itself.) 
    print('start to Cluster in Step 1:') 
    for P in range(0, len(D)): 
        # print the progress 
        # if P % 1000 == 0: 
        #     print(str(P / len(D) * 100) + '%') 
 
        # Only points that have not already been claimed can be picked as 
new seed points. 
        # If the point's label is not 0, continue to the next point. 
        if not (labels[P] == 0): 
            continue 
 
        # Find all of P's neighboring points. 
        NeighborPts = regionQuery(D, P, eps) 
 
        # If the number is below MinPts, this point is noise. 
        # This is the only condition under which a point is labeled NOISE 
        # -- when it's not a valid seed point. 
        # A NOISE point may later be picked up by another cluster as a 
border point 
        # (this is the only condition under which a cluster label can 
change 
        # --from NOISE to something else). 
        if len(NeighborPts) < MinPts: 
            labels[P] = -1 
 
        # Otherwise, if there are at least MinPts nearby, 
        # use this point as the core point / seed for a new cluster. 
        else: 
            C += 1 
            growCluster(D, labels, P, NeighborPts, C, eps, MinPts) 
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    # All data has been clustered! 
    return labels 
 
 
 
 
 
 
def growCluster(D, labels, P, NeighborPts, C, eps, MinPts): 
    """ 
    Grow a new cluster with label `C` from the core point / seed point 
`P`. 
 
    This function searches through the dataset to find all points that 
belong 
    to this new cluster. When this function returns, cluster `C` is 
complete. 
 
    Parameters: 
      `D`      - The dataset (a list of vectors) 
      `labels` - List storing the cluster labels for all dataset points 
      `P`      - Index of the core point / seed point for this new 
cluster 
      `NeighborPts` - All of the neighbors of `P` 
      `C`      - The label for this new cluster. 
      `eps`    - Threshold distance 
      `MinPts` - Minimum required number of neighbors 
    """ 
 
    # Assign the cluster label to the seed point. 
    labels[P] = C 
 
    # Look at each neighbor of P (neighbors are referred to as Pn). 
    # NeighborPts will be used as a FIFO queue of points to search 
    # --that is, it will grow as we discover new core points for the 
cluster. 
    # The FIFO behavior is accomplished by using a while-loop rather than 
a for-loop. 
    # In NeighborPts, the points are represented by their index in the 
original dataset. 
    i = 0 
    while i < len(NeighborPts): 
 
        # Get the next point from the queue. 
        Pn = NeighborPts[i] 
 
        # If Pn was labelled NOISE during the seed search, 
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        # then we know it's not a core point (it doesn't have enough 
neighbors), 
        # so make it a border point of cluster C and move on. 
        if labels[Pn] == -1: 
            labels[Pn] = C 
 
        # Otherwise, if Pn isn't already claimed, claim it as part of C. 
        elif labels[Pn] == 0: 
            # Add Pn to cluster C (Assign cluster label C). 
            labels[Pn] = C 
 
            # Find all the neighbors of Pn 
            PnNeighborPts = regionQuery(D, Pn, eps) 
 
            # If Pn has at least MinPts neighbors, it's a core point! 
            # Add all of its neighbors to the FIFO queue to be searched. 
            if len(PnNeighborPts) >= MinPts: 
                NeighborPts = NeighborPts + PnNeighborPts 
 
        # Advance to the next point in the FIFO queue. 
        i += 1 
 
        # We've finished growing cluster C! 
 
 
 
 
 
def regionQuery(D, P, eps): 
    """ 
    Find all points in dataset `D` within distance `eps` of point `P`. 
 
    This function calculates the Mahalanobis distance between a point P 
and every other 
    point in the dataset, and then returns only those points which are 
within a 
    threshold distance `eps`. 
    """ 
    neighbors = [] 
     
    # Calculate the covariance matrix 
    D_covMatrix = np.cov(D.T, bias=True) 
 
    # If the covariance matrix is singular and do not have inverse 
matrix,    
    # Use the (Moore-Penrose) pseudo-inverse of a matrix as D_I for next 
step 
    try: 
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        D_I = np.matrix(D_covMatrix).I 
    except: 
        D_I = np.matrix(np.linalg.pinv(D_covMatrix)) 
 
    # For each point in the dataset... 
    for Pn in range(0, len(D)): 
 
        # If the distance is below the threshold, add it to the neighbors 
list. 
        dis = np.dot(np.dot((D[P] - D[Pn]), D_I), (D[P] - D[Pn]).T)[0, 0] 
** 0.5 
        if dis < eps: 
            neighbors.append(Pn) 
 
    return neighbors 
     
    # We've finished Finding all neighbour points in the dataset! 
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----------------------------------------------------------------------------------------------------------------------- 

Algorithm 2 Proposed DBSCAN Supervised (D, Training_D, Eps) 

 

Algorithm 2 is the function of using the supervised component to classify new observations 

into pre-defined clusters. It requires three parameters as input, including the new 

observations Dataset X_test, the training Dataset Training_D (or split into X_train and 

Y_train), and a pre-defined parameter Eps. Eps sets the threshold of the neighborhoods of 

clusters and find the outliers. The procedure iterates until all the points have been visited 

and labeled. By the end, all the points close to pre-defined clusters are classified, and others 

are identified as outliers. The function returns a list of cluster labels.  

 

def Proposed_DBSCAN_Supervised(X_train, Y_train, X_test, Eps): 
    """ 
    Cluster the dataset `X_test` using the proposed enhanced DBSCAN 
algorithm. 
 
    The supervised component takes a dataset `X_train` (a list of 
vectors) and 
    a list of labels,`X_train`, to train the decision machine.  
     
    Then the trained model is implemented on the target dataset, 
'X_test', 
    using a threshold distance `eps`, 
    to classify the points. 
 
    It will return a list of cluster labels. The label -1 means noise, 
and then 
    the clusters are numbered starting from 1. 
    """ 
 
    # Create a dataframe to hold the training data 
    df_train = pd.DataFrame(X_train) 
    df_train['label'] = Y_train 
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    I_df_train = [] 
    mean_df_train = [] 
    labels = [] 
 
    # iterate every cluster in the trainig data 
    for label in np.unique(Y_train): 
        # get the label 
        df_train_i = df_train[df_train['label'] == label] 
         
        # get the five attributes of X 
        df_X_train_i = df_train_i[[0, 1, 2, 3, 4]] 
 
        # Calculate the covariance matrix 
        covMatrix_df_X_train_i = np.cov(df_X_train_i.T, bias=True) 
         
        # If the covariance matrix is singular and do not have inverse 
matrix, 
        # Use the (Moore-Penrose) pseudo-inverse of a matrix as D_I for 
next step 
        try: 
            D_I = np.matrix(covMatrix_df_X_train_i).I 
        except: 
            D_I = np.matrix(np.linalg.pinv(covMatrix_df_X_train_i)) 
 
        # get center point of the cluster 
        mean_df_X_train_i = df_X_train_i.mean(axis=0) 
         
        # store the values in the memory for the use in next step 
        I_df_train.append(D_I) 
        mean_df_train.append(mean_df_X_train_i) 
 
    # print('start to Cluster in Step 2:') 
    # iterate every point in the test dataset 
    for i in range(X_test.shape[0]): 
        # print the progess 
        # if i % 1000 == 0: 
        #     print(str(i / X_test.shape[0] * 100) + '%') 
         
        # point p 
        p = X_test[i] 
        dist_list = [] 
         
        # iterate through every pre-defined cluster 
        for j in range(len(np.unique(Y_train))): 
            # calculate the Mahalanobis distance from the point to the 
cluster 
            I_j = I_df_train[j] 
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            mean_j = mean_df_train[j] 
            dist_j = np.dot(np.dot((p - mean_j), I_j), (p - mean_j).T)[0, 
0] ** 0.5 
             
            # store the distance 
            dist_list.append(dist_j) 
 
        # find the closest cluster 
        min_idx = dist_list.index(min(dist_list)) 
 
        # compare the distance to the defined Eps 
        # if smaller than Eps, the classify the point into this cluster 
        if min(dist_list) < Eps: 
            labels.append(min_idx) 
        # if not, the point is an outlier 
        else: 
            labels.append(-1) 
             
    # All data has been clustered! 
    return labels 
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----------------------------------------------------------------------------------------------------------------------- 

Algorithm 3 Find_Eps_MinPts_for_Unsupervised (D) 

 

Algorithm 3 is the function of finding the two recommended parameters (Eps and MinPts) 

to be used in the unsupervised component of the proposed clustering algorithm to discover 

clusters in the first step. It requires only one parameter as input: the targeted Dataset X. 

And the two parameters, Eps and MinPts, will be recommended as returned output.   

 

def Find_Eps_MinPts_for_Unsupervised(X): 
    """ 
    Based on the dataset `X` itself 
    to recommend a pair of parameters (MinPts and Eps) 
    to be used in the unsupervised component in the proposed enhanced 
DBSCAN algorithm. 
 
    The algorithm only takes a dataset `X` (a list of vectors) 
 
    It will return two values. 
    The first one is MinPts, and the second one is Eps. 
    """ 
 
    # the recommended MinPts is 0.1% of the total size of Dataset X 
    # the recommended MinPts also should be at least 10 
    # it can be varied based on user's configuration 
    Minpts = max(10, int(0.001 * len(X))) 
 
    # Calculate the covariance matrix 
    D_covMatrix = np.cov(X.T, bias=True) 
 
    # If the covariance matrix is singular and do not have inverse 
matrix, 
    # Use the (Moore-Penrose) pseudo-inverse of a matrix as D_I for next 
step 
    try: 
        D_I = np.matrix(D_covMatrix).I 
    except: 
        D_I = np.matrix(np.linalg.pinv(D_covMatrix)) 
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    # start to calculate k nearest neighbours distance 
    k = Minpts - 1 
    kn_distance = [] 
 
    # print('start to find MinPts and Eps in Step 1:') 
    # iterative through every point 
    for i in range(len(X)): 
        MM_dist = [] 
 
        # iterate every other point to calculate the Mahalanobis distance 
        for j in range(len(X)): 
            dis = np.dot(np.dot((X[i] - X[j]), D_I), (X[i] - X[j]).T)[0, 
0] ** 0.5 
            MM_dist.append(dis) 
 
        # find the k nearest neighbours distance 
        MM_dist.sort() 
        kn_distance.append(MM_dist[k]) 
        # print the progress 
        # if i % 1000 == 0: 
        #     print(str(i / len(X) * 100) + '%') 
 
    # set the Eps to be the upper limit 
    # defined by the sum of the upper quartile and 1.5 times the Inter-
quartile Range (IQR) 
    # this is prioritized for differentiating the outliers 
    Eps = round(np.percentile(kn_distance, 75) + 1.5 * iqr(kn_distance), 
3) 
 
    # We find the required parameters! 
    return Minpts, Eps 
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----------------------------------------------------------------------------------------------------------------------- 

Algorithm 4 Find_Eps_for_Supervised (Training_D, D) 

 

Algorithm 4 is the function of finding the recommended parameter Eps used in the 

supervised component of the proposed clustering algorithm to classify the new 

observations. It requires t2o parameters as input, including the new observations Dataset 

X_test, the training Dataset Training_D (or split into X_train and Y_train). Eps will be 

recommended as returned output.   

 

def Find_Eps_for_Supervised(X_train, Y_train, X_test): 
    """ 
    Based on the targeted dataset `X_test` itself, 
    and the training dataset Training_D (or split into X_train and 
Y_train) 
    to recommend the parameter (Eps) 
    to be used in the Supervised component in the proposed enhanced 
DBSCAN algorithm. 
 
    The algorithm takes parameters of the targeted dataset `X_test` (a 
list of vectors), 
    and the training dataset Training_D. 
 
    It will return one value, Eps. 
    """ 
 
    # Create a dataframe to hold the training data 
    df_train = pd.DataFrame(X_train) 
    df_train['label'] = Y_train 
 
    I_df_train = [] 
    mean_df_train = [] 
 
    # iterate every cluster in the trainig data 
    for label in np.unique(Y_train): 
        # get the label 
        df_train_i = df_train[df_train['label'] == label] 
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        # get the five attributes of X 
        df_X_train_i = df_train_i[[0, 1, 2, 3, 4]] 
 
        # Calculate the covariance matrix 
        covMatrix_df_X_train_i = np.cov(df_X_train_i.T, bias=True) 
 
        # If the covariance matrix is singular and do not have inverse 
matrix, 
        # Use the (Moore-Penrose) pseudo-inverse of a matrix as D_I for 
next step 
        try: 
            D_I = np.matrix(covMatrix_df_X_train_i).I 
        except: 
            D_I = np.matrix(np.linalg.pinv(covMatrix_df_X_train_i)) 
 
        # get center point of the cluster 
        mean_df_X_train_i = df_X_train_i.mean(axis=0) 
 
        # store the values in the memory for the use in next step 
        I_df_train.append(D_I) 
        mean_df_train.append(mean_df_X_train_i) 
 
    # create a output list 
    kn_distance = [] 
 
    # iterate every point in the test dataset 
    for i in range(X_test.shape[0]): 
        # only 1/3 of the points are used for getting Eps 
        if i % 3 == 0: 
 
            # Point p 
            p = X_test[i] 
 
            dist_list = [] 
 
            # calculate Mahalanobis distance to each pre-defined clusters 
            # iterate every cluster 
            for j in range(len(np.unique(Y_train))): 
                I_j = I_df_train[j] 
                mean_j = mean_df_train[j] 
                 
                # calculate Mahalanobis distance 
                dist_j = np.dot(np.dot((p - mean_j), I_j), (p - 
mean_j).T)[0, 0] ** 0.5 
 
                dist_list.append(dist_j) 
 
            # save the smallest dist 
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            kn_distance.append(dist_list.index(min(dist_list))) 
     
    # set the Eps to be the upper limit 
    # defined by the sum of the upper quartile and 1.5 times the Inter-
quartile Range (IQR) 
    # this is prioritized for differentiating the outliers 
    Eps = round(np.percentile(kn_distance, 75) + 1 * iqr(kn_distance), 3) 
     
    # We find the required parameter! 
    return Eps 

 


