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Abstract 

 Stereoscopic Kanizsa figures are an example of stereoscopic interpolation of an illusory 

surface. In such stimuli, luminance-defined disparity signals exist only along the edges of 

inducing elements, but observers reliably perceive a coherent surface that extends across the 

central region in depth. The aim of this series of experiments was to understand the nature of the 

disparity signal that underlies the perception of illusory stereoscopic surfaces. I systematically 

assessed the accuracy and precision of suprathreshold depth percepts using a collection of 

Kanizsa figures with a wide range of 2D and 3D properties. For comparison, I assessed similar 

perceptually equated figures with luminance-defined surfaces, with and without inducing 

elements. A cue combination analysis revealed that observers rely on ordinal depth cues in 

conjunction with stereopsis when making depth judgements. Thus, 2D properties (e.g. occlusion 

features and luminance relationships) contribute rich information about 3D surface structure by 

influencing perceived depth from binocular disparity. 
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Chapter 1 

Introduction 

 

1.1. Illusory Contours 

 Illusory contours occur when boundaries are perceived in an image in the absence of a 

corresponding luminance gradient. Schumann (1900) first described these contours as 

‘subjective’ because they do not exist in the physical stimulus, only in the observer’s 

interpretation of it. He argued that the visual system detects features in these figures that trigger 

fundamental perceptual phenomena, resulting in the perception of contours in the absence of 

luminance, texture, or colour boundaries. Studies of illusory phenomenon often focus on illusory 

boundaries generated from luminance discontinuities, such as edges or line terminations (Lesher, 

1995). This type of illusory contour is consistent with a stimulus arrangement in which texture is 

partially occluded by another region due to equivalent contrast. In this case, the regular alignment 

of edges or endpoints of the occluded texture creates a percept of an illusory contour. For 

example, Ehrenstein’s figure (1941) is created by line terminations that surround a region of 

homogeneous luminance; this results in the formation of illusory contours at the end-points that 

create a boundary around the central region. Abutting line terminations can also create illusory 

boundaries using a variety of different texture patterns (see Gilliam & Nakayama, 2002; Kanizsa, 

1974). Examples of illusory contours can also be seen in works of art. Ellsworth Kelly completed 

a series of paintings in the 1950s that use line terminations to generate illusory contours that 

emphasize the boundaries of sparse objects (Shapley, 1996). While illusory boundaries can be 

created under a wide range of conditions, the most well-known examples are those created by 

Kanizsa (1955) (Figure 1.1). Many variants of two-dimensional (2D) Kanizsa figures have been 

used to study the properties of illusory contours and constraints on their formation (Banton & 
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Levi, 1992; Coren, 1972; Ullman, 1976). These studies have identified several percepts common 

to Kanizsa figures, i) the presence of definite boundaries between the inducers, ii) depth ordering 

of the inducers and the central region, and iii) lightness differences between the central region 

and the background. These phenomena may be seen in Figure 1.1 where illusory boundaries are 

formed between the four circular inducing elements that results in the percept of a rectangular 

surface positioned between the observer and the four disks. Studies of depth perception in 2D 

Kanizsa figures have consistently shown that the central region is perceived as closer to the 

viewer than the inducing elements (Bradley & Dumais, 1984; Coren, 1972; Coren & Porac, 

1983). In Kanizsa’s figures (and many subsequent modifications), a complete square is seen even 

though this shape is specified only by the relative position of the inducing elements (i.e. their 

geometric arrangement). The illusory boundaries generated by these Kanizsa configurations are 

perceptually similar to luminance edges in that they: (i) share neural architecture that process 

luminance-defined edges (Larsson et al., 1999; von der Heydt, Peterhans, & Baumgartner, 1984), 

(ii) share similar perceptual effects (Paradiso et al., 1989; Smith & Over, 1979; Vogels & Orban, 

1987), and (iii) exhibit rivalry with luminance-defined edges (Fahle & Palm, 1991). As outlined 

below, the perception of illusory boundaries in Kanizsa figures appears to depend on both the 

local cues to occlusion at the inducing elements as well as global geometric cues. 

 
 

Figure 1.1. Square Kanizsa figure with four high contrast inducing elements. 
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1.2. Occlusion Geometry 

 As noted above, the perceived depth order derived from the occlusion geometry in 

Kanizsa figures plays a key role in creating its illusory boundaries (Coren, 1972; Gillam & 

Nakayama, 2002; Kellman & Shipley, 1991; Rubin, 2001). When the edge of an occluding 

surface intersects that of an occluded region, a 2D discontinuity called a junction is formed. For 

example, in Figure 1.1, the Kanizsa has two regions with visible contour junctions at, (i) the 

vertices of the central illusory square, and (ii) the tips of the inducing elements. These junctions 

are points at which the contour has no unique orientation. Previous researchers have investigated 

the relationship between the structure of these 2D junctions and the perceived geometry of the 

illusory surface (Anderson & Julesz, 1995; Anderson, 1997; Shipley & Kellman, 1990). In 

general, the interpolation of 2D illusory boundaries begins and ends at these critical points, and if 

they are removed, contour interpolation is markedly reduced or eliminated (Shipley & Kellman, 

1990)1. In Figure 1.1, the interpolation of the illusory boundaries begins and ends at the explicit 

L-junctions at the tips of the inducing elements. In natural environments, when surfaces 

belonging to two distinct objects overlap they tend to form a T-junction. These junctions are 

reliably interpreted by the visual system as a monocular indicator of a depth discontinuity 

(Helmholtz, 1909). Typically, the top of the T-junction is assigned to the edge of the occluding 

object and the stem is assigned to the partially occluded object (Nakayama et al., 1989). It has 

been argued that when interpreting Kanizsa figures, viewers assume that the occluder and 

background have the same luminance, thus one arm of the T-junction is camouflaged. Thus, 

although physically this region forms an L-junction it is interpreted as a T-junction. The 2D 

                                                      
1 There are examples in which two objects are in contact that suggest tangent discontinuities may not 

be critical for all cases of illusory contour formation (see Tse & Albert, 1998). While these exceptions 

show that illusory volumes can occur without these discontinuities, they do play a critical role in 

Kanizsa-like configurations. 
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geometry at these physical L-junctions is ambiguous, since there are two competing illusory T-

junctions that represent two possible positions of an occluding surface (see Figure 1.2). One way 

to resolve this border-ownership problem is to add a luminance change to define the T-junction as 

belonging to the outer inducing edge or the illusory square, which changes the perceived depth 

order of the figure from amodal (i.e. illusory square behind the inducers) to modal (i.e. illusory 

square in front of inducers) completion (see Figure 3 in Anderson, Singh, & Fleming, 2002). 

While it has been demonstrated that these junctions play a critical role as local occlusion cues 

that initiate contour interpolation processes (Rubin, 2001), alone they are not sufficient for 

contour interpolation (Kellman, Garrigan, & Shipley, 2005). To resolve this border-ownership 

ambiguity, the visual system can rely on global geometric assumptions (e.g. the geometric 

relations between adjacent inducing elements). 

 

 

 

 

 

 

 

 

 

 

 

 

 



5 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2. An illustration of the two possible depth order configurations in a Kanizsa 

figure based on the occlusion geometry at the tips of the inducing elements. The illusory 

T-junctions at the tips of the inducing elements are highlighted in blue. The two 

configurations depend on which one of the edges that meet at the explicit L-junction is 

assumed to continue beyond the tip (modified figure from Anderson, Singh, & Fleming, 

2002).  

 

 One critical global geometric property that enhances the strength of illusory boundaries 

and facilitates their stability is the collinearity (i.e. alignment) of the inducing edges (Grossberg 

& Mingolla, 1985). This constraint has been recast as ‘relatability’ by Kellman and Shipley 

(1991).  They argue that alignment requirements should be considered in terms of ‘contour 

relatability’ and that the visual system only interpolates contours that meet particular smoothness 

constraints and monotonicity (i.e. interpolated contours bend in only one direction). However, 

while collinearity contributes to the 2D interpolation of smooth connected contours, there is 

evidence that it is not necessary to initiate the formation of illusory contours (Anderson, 2007; 

A) Central Region in Front 

Inducing contour is assigned to the 

top of the illusory T-junction as an 

occluding contour. 

Outer contour is assigned to the stem 

of the illusory T-junction as an 

occluded contour. 

B) Central Region Behind 

Inducing contour is assigned to the 

stem of the illusory T-junction as an 

occluded contour. 

Outer contour is assigned to the top 

of the illusory T-junction as an 

occluding contour. 
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Gillam, 1987). Furthermore, there are other global/geometric properties (e.g. similarity) that can 

facilitate the perception of illusory boundaries and influence the trajectory of interpolated 

contours.  

 The local occlusion geometry and global geometric cues are used by the visual system to 

specify border-ownership of the illusory edges in conventional 2D Kanizsa figures. This in turn 

determines the perceived depth order of the illusory surface and inducing elements (Gillam & 

Nakayama, 2002; Kogo et al., 2010). The presence of perceived depth order in the illusory 

surfaces described above is supported by functional imaging studies that demonstrate brain areas 

related to depth-recognition tasks are consistently activated when observing 2D illusory Kanizsa 

figures (Mendola et al., 1999). 

 

1.3. Lightness Illusion 

 The illusory surface elicited by 2D Kanizsa figures is commonly accompanied by a 

lightness enhancement in the central region that causes the region to appear brighter than the 

homogeneous background (when dark inducing elements on presented on a light background as 

in Figure 1.1).  Previous research has shown that although lightness illusions do not always occur 

along with illusory surface percepts (Day, 1987; Dresp, Lorenceau, & Bonnet, 1990; Kogo et al., 

2010), when they do occur, illusory boundaries are typically perceived (He & Ooi, 1998; 

Prazdny, 1983). Further, the quality of the lightness illusion depends on both the presence of the 

illusory boundaries, and on attributes of the inducing elements, such as their polarity (Matthews 

& Welch, 1997), and perceived depth order (Kogo et al., 2014). Recently, Kogo et al. (2014) 

proposed a neurocomputational model in which they suggest that the qualitative depth percepts 

and lightness enhancement elicited by 2D Kanizsa figures are processed in parallel and integrated 

to create the occluding illusory surface. The effects of depth order on the perception of 
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photometric properties in general is well documented (Adelson, 1993; Knill & Kersten, 1991; 

Wishart, Frisby, & Buckley, 1997), leading researchers to argue that lightness perception is 

intimately related to depth perception (Gilchrist, 1977; Gilchrist, 1980). For example, there is a 

strong bias to perceive brighter objects as closer than dim objects (Ashley, 1898; Coules, 1955; 

Farne, 1977; Kanizsa, 1976; Taylor & Summer, 1945). Regardless of the processing sequence, it 

is clear that both the geometric layout and the perceived lightness enhancement contribute to the 

perception of 2D Kanizsa figures. However, it should be noted that because the depth information 

in these 2D images is qualitative (not quantitative) in nature, observers can only indicate the sign 

of the depth (e.g. is the surface in front of or behind the inducing elements), not the amount of 

depth. Three-dimensional (3D) Kanizsa figures can provide a more robust perception of depth by 

introducing binocular disparity between inducing edges. 

 

1.4. Stereoscopic Kanizsa Figures 

 A number of investigators have shown that the apparent depth of the illusory surface in 

Kanizsa figures is greatly enhanced when they are viewed stereoscopically (Carman & Welch, 

1992; Ramachandran, 1986; Vreven & Welch, 2001). In some respects, this is not surprising 

given that one of the primary roles of the stereoscopic system is to identify and interpret surfaces 

in the environment (Anderson, Singh, & Fleming, 2002; Wilcox & Duke, 2003; Yang & Blake, 

1995). However, as illustrated in Figure 1.3, illusory surfaces that extend over regions of uniform 

luminance represent a special case of stereoscopic surface interpretation (Harris & Gregory, 

1973). In Figure 1.3 the vertical inducing edges of the 3D Kanizsa figure are rendered with 

positional disparity, consistent with the presence of a white foreground surface in 3D space. By 

manipulating the relative position and orientation of the inducing edges in each eye, dramatic 

changes can be made to the perceived shape of the 3D illusory surface (for more examples see 



8 
 

Carman & Welch, 1992). The interpretation of the surface in the 3D Kanizsa figure depends on 

the combined effect of the 2D information described above (occlusion geometry and lightness 

enhancement), as well as the magnitude of depth defined by binocular disparity. The large 

regions of homogeneous luminance in these figures pose a challenge to binocular disparity 

matching, as there are no unique features within this area to guide correspondence (Jones & 

Malik, 1992).  

 

Figure 1.3. A stereopair of a high contrast Kanizsa figure. When stereoscopically cross-fused 

the disparity information at the inducing elements generate the percept of a 3D crossed-

disparity illusory surface in the absence of luminance-defined disparity information within 

region of homogeneous luminance. 

 

 To understand how complete stereoscopic surfaces are formed in 3D Kanizsa figures it is 

important to consider both the 2D occlusion geometry and 3D (stereoscopic) depth information 

(Anderson & Julesz, 1995; Ehrenstein & Gillam, 1999). In Figure 1.4, when the two left Kanizsa 

figures are perceptually cross-fused, the illusory surface bows towards the viewer and occludes 

the four black inducing elements (i.e. modal completion). However, when the two rightmost 

Kanizsa figures are cross-fused, the disparity is reversed and the illusory surface appears to 

extend behind the plane of the four inducing elements. The surface now bows away from the 

observer, and for some observers, appears as though it is viewed through four circular apertures 

within an opaque fronto-parallel occluding surface (i.e. amodal completion, see Michotte, 1963). 

In these 3D Kanizsa configurations, the positional disparity between the vertical inducing edges 
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combines with the 2D illusory T-junctions present in each monocular image to create 

stereoscopic illusory T-junctions (Anderson, 2003). When the disparity signal at these junctions 

is uncrossed (rightmost Kanizsas in Figure 1.4) the 2D occlusion geometry (i.e. 2D T-junctions) 

and the binocular disparity signal are in conflict. In this case, the 2D illusory boundaries in each 

monocular image of the stereopair are modal (i.e. the illusory boundaries always occlude the 

inducing elements), regardless of the disparity signal. Thus, given that the top of the T-junction 

cannot act as an occluding edge the uncrossed illusory surface is incompatible with the 2D 

occlusion geometry (Nakayama & Shimojo, 1992).  

 
 

Figure 1.4. An example of crossed and uncrossed-disparity surfaces in stereoscopic Kanizsa 

figures. Cross fusing the left and center images produces the percept of an occluding 

crossed-disparity illusory surface, while fusing the center and right images produces an 

occluded uncrossed-disparity illusory surface. 

 

 

 It is well established that binocular disparity can play a significant role in the perception 

of illusory surfaces (Carman & Welch, 1992; Ramachandran, 1986; Vreven & Welch, 2001). 

Furthermore, given the sparse nature of the figures, it is not surprising that the inducer features 

are critical to the formation of the illusory 3D surface. Apart from Carman and Welch’s (1992) 

qualitative assessment and Ramachandran’s (1986) experiments that showed that 3D surface 

interpolation is involved in the perception of 3D Kanizsa figures, the underlying process that 

form these illusory surfaces has received little empirical attention. The experiments outlined here 

explored two possible approaches to 3D surface formation in illusory figures. One possibility is 
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that the local disparity information at the inducing elements is simply propagated via 

interpolation between inducers to form a coherent illusory surface. Another possibility is that the 

2D illusory boundaries are first extracted and that the relative disparity between these illusory 

boundaries (along with the disparity of the inducers) defines the surface in depth. However, these 

two processes are not necessarily mutually exclusive.  

 

1.4.1. Depth from Inducer Disparity Alone 

 If only the luminance-defined disparity at the inducing elements was used to define the 

shape of the 3D Kanizsa surface, then the disparity signal defined by the vertical inducing edges 

must be propagated across the region of uniform luminance via disparity interpolation. This 

process estimates the shape and position of regions with homogeneous luminance by assigning 

depth values based on the luminance-defined disparity of adjacent elements (Yang & Blake, 

1995). Disparity interpolation can promote the percept of 3D illusory contours and surfaces in 

stimuli with very sparse texture information (Julesz, 1971; Warren, Maloney, & Landy, 2002, 

Wilcox, 1999), or as described above, with no texture information at all (Carman & Welch, 

1992). The interpolation of disparity-defined illusory surfaces has been described as a feed-

forward process with at least two stages: (i) The initiation of 3D contour formation between 

inducing edges from the combination of partially occluded 2D features and disparity information, 

(ii) the consequent interpolation of the depth signal along the illusory boundaries and the surface 

they define (Kellman & Shipley, 1991; Mitchison & McKee, 1987a, 1987b; Ringach & Shapley, 

1996; Yang & Blake, 1995). According to this description, during modal completion of 3D 

Kanizsa figures, the crossed-disparity at the vertical edges of the inducers is propagated along the 

illusory contour between inducing elements and across the blank regions to form a 3D illusory 

surface. To do so depth values assigned to untextured regions are estimated from the initial 
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disparity signal at the inducing elements (Yang & Blake, 1995). The properties of stereoscopic 

surface interpolation have been extensively studied in previous psychophysical experiments 

(Glennerster, McKee, & Birch, 2002; Vreven & Welch, 2001; Wilcox & Duke, 2005, Yang & 

Blake, 1995).   

 

1.4.2. Depth from Illusory Contour Disparity 

 It is also possible that the depth percept from stereoscopic Kanizsa figures is the result of 

the extraction of disparity from the 2D illusory boundaries formed by the inducing edges. While 

to date it has not be shown that the visual system extracts disparity from illusory contours, this 

hypothesis is consistent with increasing evidence that illusory boundaries are encoded by the 

human visual system in the same manner as luminance-defined contours (Larsson et al., 1999; 

von der Heydt et al., 1984), share similar perceptual effects (Paradiso et al., 1989; Smith & Over, 

1979; Vogels & Orban, 1987; Wilcox & Duke, 2003), and exhibit rivalry with luminance-defined 

edges (Fahle & Palm, 1991; Harris & Gregory, 1973). While V1 has the ideal neural substrate for 

computing the geometry of curvilinear structures (Roelfsema et al., 1998), recent temporal 

studies, in conjunction with measures of neural activation, suggest that the representation of a 

coherent global percept may require concurrent activation in both V1 and higher-level areas (Lee 

& Mumford, 2003; Stanley & Rubin, 2003; VanRullen & Thorpe, 2001). To date, no direct 

evidence has shown that area V1 contains neurons that perform or encode contour interpolation; 

however, neurological studies have revealed that initial illusory contour detection in cortical area 

V2 is followed by latent responses in V1 and V2.  These responses are thought to reflect 

feedback from the initial response from higher order areas that represent information the global 

context (Lee & Nguyen, 2001; von der Heydt et al., 1984). The potential impact of mid-level 

processing on activity in V1 and V2 is consistent with emergent theories and computational 
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models of vision that support rapid recurrent feedback (Lee & Mumford, 2003). For example, 

Wokke et al. (2013) recently demonstrated the existence of this rapid feedback loop between 

lateral occipital (LO) areas and V1/V2 using transcranial magnetic stimulation. By disrupting 

processing in V1/V2 and LO at different moments during a discrimination task using 2D Kanizsa 

figures, they revealed that the two areas are involved in an inverse hierarchical feedback loop. 

These studies are often used to refute evidence of a strictly feed-forward model of contour 

interpolation. Recurrent feedback models that support concurrent activation of high-level surface 

representations and early visual areas may help explain how illusory contours can be induced by 

partially occluded surfaces without relatable inducing edges (Anderson & Julesz, 1995; Gillam & 

Nakayama, 2002). In addition, recurrent feedback hypotheses provide a framework in which 

global contributions to surface completion can resolve the border-ownership ambiguities in 

illusory surfaces (Anderson, 2007; Kogo et al., 2014).  

 If disparity signals are extracted from 2D illusory contours, the 2D interpolation of the 

illusory boundaries must be completed before the disparity of the illusory surface is determined. 

Evidence from single-unit recordings shows that stereoscopic surface representations exist in 

early visual areas. For instance, neurons in areas as early as V2 can encode disparity gradients 

(Qiu & von der Heydt, 2005). In addition, Mendola et al. (1999) demonstrated that neurons in 

areas V3 and V7 respond to both illusory Kanizsa figures and stereoscopic contours defined by 

random dot stereograms. The critical distinction between explanations of perceived 3D illusory 

surfaces based solely on conventional feed-forward mechanisms and those based on recurrent 

hierarchical feedback is the point at which binocular disparity information contributes to the 

computation of the perceived depth of the surface.  

 

1.5. Current Study 
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 The aim of the experiments presented here is to understand the nature of the disparity 

signal that underlies the perception of illusory stereoscopic surfaces. To accomplish this, I 

separately evaluated the contribution of the conventional luminance-defined disparity of the 

inducers and the putative retinal disparity of the illusory boundaries. While previous studies have 

used 2D Kanizsa figures to investigate the spatial and temporal properties of perceived shape 

from illusory boundaries, they typically report subjective ratings of ‘clarity’ (Shipley & Kellman, 

1992) or estimates of visual completion (Gold et al., 2000; Ringach & Shapley, 1996). Unlike 2D 

Kanizsa figures, 3D Kanizsa stimuli contain quantitative depth information via disparity. Thus, 

using these stimuli it is possible to assess the perceived depth of the interpolated surfaces and 

directly examine how this percept is influenced by properties of the inducing elements and 

illusory boundaries.  

 In the studies outlined here I systematically varied the 2D and 3D properties of 

stereoscopic Kanizsa configurations and assessed the impact on perceived depth. In Chapter 2, to 

ensure a reliable comparison between surface configurations, I determined the contrast of a 

stereoscopic luminance-defined surface that was approximately perceptually matched to the 

salience of a stereoscopic illusory surface. In Chapter 3, I varied the magnitude of disparity along 

the vertical inducing edge to determine the individual diplopia points for the inducing edge of the 

stereoscopic Kanizsa figure. Using individual interocular distances, perceptual matches, and 

diplopia points I created a stimulus set for each observer that consisted of a range of fused and 

diplopic stereoscopic surfaces in which the magnitude of disparity and the salience of the 

surfaces was equated. In Chapter 4, using these stimulus sets I compared the perceived depth at 

the peak of the illusory and luminance-defined surfaces to determine whether illusory contour 

interpolation follows the same trajectory as the luminance-defined template. Since the position of 

the peak of an illusory boundary in 3D is poorly constrained, it is possible that when illusory 
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contours cannot be fused, the visual system will interpolate a shallower surface curvature. If there 

is a significant change in the magnitude of perceived depth at the surface peak when the disparity 

signal at the inducers is unchanged, then disparity interpolation plays a key role in determining 

surface shape. Lastly, in Chapter 5, I determined if the variability of perceived depth between 

stimulus conditions was due to the precision of the disparity signal along the vertical surface 

edge. To assess this, I measured the precision of perceived depth estimates and determined if the 

disparity at the inducing element was sufficient to support accurate interpretation of the depth of 

the interpolated surface. Ultimately this work provides important insight into binocular disparity 

processing, and how 2D and 3D information is combined to generate stable percepts of surfaces 

in ambiguous or ill-defined stimuli. If illusory boundaries provide additional disparity 

information for binocular correspondence then the contours must be established prior to disparity 

estimation, likely reflecting concurrent feedback between early and late visual areas.  

 

1.6. General Methods 

1.6.1.   Observers 

 Seven observers (including the author) were recruited. The stereoacuity of each observer 

was assessed using the RandotTM stereoacuity test to ensure that observers could detect depth 

from binocular disparities of at least 40 seconds of arc. All observers had normal or corrected-to-

normal vision. The average interocular distance of the observers was 60mm with a range of 

58mm to 62mm. These same observers participated in all subsequent experiments. The research 

protocol used here and in all subsequent experiments was approved by the York University 

research ethics board and adheres to the tenets of the Declaration of Helsinki. 

 

1.6.2. Stimuli 
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 All Kanizsa figures were generated using OpenGL 3D graphics within the Psychtoolbox 

package for MATLAB on a Mac OS X computer (Brainard, 1997; Pelli, 1997). The figures were 

rendered as 3D objects in OpenGL using perspective projection with an asymmetric frustum 

configuration. Using perspective projection minimizes the conflict between perspective and 

binocular disparity by ensuring that the projection of the stimulus in each eye’s view is consistent 

with the curvature defined by disparity. Each 3D rendered Kanizsa figure was created by drawing 

four fronto-parallel black circles (0.81 cd/m2) with a grey occluding curved surface template with 

the same luminance as the background (50.3 cd/m2). The curvature of the luminance template 

was defined as a sine wave with an amplitude calculated from the disparity at the peak along with 

the interocular distance of the observer using a conventional formula, which relates disparity to 

predicted depth at a known viewing distance (see Howard & Rogers, 2012, pp. 152-154).  

 In a series of preliminary studies, I evaluated the perceived depth of stereoscopic illusory 

Kanizsa figures with crossed and uncrossed disparities at the vertical inducing edge. Regardless 

of the direction of disparity at the inducing edge, each monocular illusory Kanizsa surface is seen 

to lie in front of the inducing elements. As discussed in Section 1.4, when the illusory surface 

extends behind the inducing elements (uncrossed disparity) there is conflict between the disparity 

signal and the 2D monocular depth order information. Results of a preliminary study confirmed 

that this conflict degrades the perceived depth at the peak of the surface. In order to avoid the 

effects of cue conflict, I ensured that the direction of binocular disparity was always consistent 

with the 2D occlusion geometry by rendering images with crossed disparity only (Gregory & 

Harris, 1974; Lawson et al., 1974). 

 In all stimuli, the diameter of the inducers was 0.8deg and the distance between the 

centers of adjacent inducers was 1.7deg. According to these dimensions, the support ratio for 

each monocular Kanizsa figure was 0.5 when the disparity at the peak was zero; where support 



16 
 

ratio is defined as the ratio of the length of luminance-defined edge to the total edge length 

(Shipley & Kellman, 1992). To equate the disparity for all observers, the lateral separation of the 

two frustums at the virtual screen was equivalent to the observer’s interocular distance. Each 

monocular image was exported as a MATLAB mat-file, which contained the raw image matrix 

for each disparity-defined Kanizsa figure. The geometry of OpenGL’s projection matrix was 

designed to replicate the viewing geometry within our modified Wheatstone mirror stereoscope. 

The configuration of the projection matrix ensured the two frustums converged at a distance 

equivalent to the screen plane.  

 

1.6.3. Apparatus 

 Stimuli were presented using the Psychtoolbox package (Brainard, 1997; Pelli, 1997) for 

MATLAB on a Mac OS X computer. All stimuli were presented on a modified Wheatstone 

mirror stereoscope consisting of two LCD monitors (Dell U2412M) with a viewing distance of 

74cm and a fixed chin rest to maintain stable head position during testing. The monitor resolution 

was 1920 x 1200 pixels with a refresh rate of 75Hz. At this resolution and viewing distance, each 

pixel subtended 1.26 min of visual angle. Observer’s interocular distance was measured using a 

Richter digital pupil distance meterTM. All testing took place in a darkened room except for the 

light from the stereoscopic display. All subsequent experiments used the same stereoscopic 

apparatus. 

 

Chapter 2 

Lightness 

 

 

2.1 Perceived Lightness of Illusory Boundaries 
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 The perception of lightness is closely related to perceived depth (Gilchrist, 1977; 

Gilchrist, 1980). In the case of illusory boundaries, depth order can directly affect the perception 

of photometric properties and vice versa (Adelson, 1993; Knill & Kersten, 1991; Wishart, Frisby, 

& Buckley, 1997). Thus, prior to comparing the impact of luminance-defined and illusory 

contours on perceived depth it is important to equate the perceived lightness of the two types of 

surfaces. Early studies of illusory contour perception used a range of psychophysical methods to 

quantify perceived lightness. For instance, investigators have used rating scales (Jory & Day, 

1979), magnitude estimation (Halpern, 1981; Petry, Harbeck, Conway, & Levey, 1983) and 

matching tasks (Brussel, Stober, & Bodinger, 1977; Spillman, Fuld, & Neumeyer, 1984) to match 

the perceived lightness of illusory figures to a luminance-defined standard. Despite differences in 

procedures and stimuli, brightness matches appear consistent across studies (Dresp, 1992; 

Spillman et al. 1984).  

 In a preliminary experiment I asked each observer to match the salience of a luminance-

defined surface to the perceived brightness of an illusory surface. Initially I used a 2-down 1-up 

staircase procedure (Levitt, 1970), in which observers matched the luminance of a 2D luminance-

defined surface to the perceived brightness of a 2D illusory Kanizsa square (Figure 2.1). On each 

trial, the two surfaces were presented simultaneously for 320ms (the same exposure duration used 

in all subsequent depth estimation experiments). The contrast of the 2D luminance-defined 

surface was varied from trial-to-trial and observers were asked to indicate which of the two 

surfaces appeared brighter. The mean of all observers’ perceived brightness matches (n=7) were 

51.9 cd/m2 (SD=1.0 cd/m2) with a range from 50.9 to 53.5 cd/m2. These values represent the 

luminance of a 2D surface that has the same perceived brightness as an illusory surface (with the 

same spatial dimensions). The mean contrast of the brightness matches (1.7%) was consistent 

with previously reported contrast thresholds for the detection of illusory contours in 2D Kanizsa 
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figures that report detection thresholds as low as 1% to 3% (Li & Guo, 1995). Observers were 

able to make these brightness matches consistently; however, when the luminance levels obtained 

from this matching task were used to define a stereoscopic surface, observers reported that they 

had difficulties perceiving the surface. 

 

   
 

 

Figure 2.1. An illustration of the stimuli used in the 2D staircase procedure. The illusory Kanizsa 

figure is shown on the left and the luminance-defined surface with rotated inducing elements is 

shown on the right. 

 

 The effect of luminance contrast on stereoscopic thresholds is well established (Frisby & 

Mayhew, 1978; Legge & Gu, 1989; Ogle & Weil, 1958). Legge and Gu (1989) demonstrated that 

the stereoscopic threshold is approximately inversely related to the square root of the Michelson 

contrast, at contrasts ranging from 0.01 to 1.0. Closer examination of the perceptual matches 

from the preceding 2D brightness match revealed that they fall within this critical contrast range 

with a mean Michelson contrast of 0.02. At this low contrast, it has been shown that luminance 

values are close to the threshold contrast for disparity detection, which introduces considerable 

noise in both discrimination and magnitude estimation (Howard & Rogers, 2012). To avoid this 

issue, I equated the illusory and luminance-defined surfaces using a novel suprathreshold task 

described below. 

 

2.1.1 Rationale 
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 In the pilot experiment described above, some observers reported that perceived depth of 

the luminance-defined surfaces increased as the surface luminance increased. Previous studies 

that examined the relationship between contrast and perceived depth showed that lowering the 

contrast of a stimulus at a fixed disparity caused it to appear more distant (Fry, Bridgman, & 

Ellerbrock, 1949; Rohaly & Wilson, 1999; Schor & Howarth, 1986). In addition, the magnitude 

of perceived depth from disparity can directly depend on the luminance contrast of the surface 

(Chen, Chen, & Tyler, 2016). I capitalized on this by creating a two interval forced choice (2IFC) 

brightness-matching paradigm in which observers compared the perceived depth of an illusory 

stereoscopic surface and a luminance-defined surface with equivalent relative disparity along the 

inducing edge. By varying the luminance of the luminance-defined surface, I determined the 

approximate luminance value at which the perceived depths of the illusory and luminance-

defined peaks were equivalent. I used this matched luminance value in subsequent comparisons 

of illusory and luminance-defined surfaces.  

 

2.2. Methods for Experiment 2.1. 

Observers 

 See Section 1.6.1. 

Stimuli 

 The stimuli consisted of stereoscopic illusory Kanizsa figures and luminance-defined 

comparison patterns with rotated inducing elements. All stimuli were generated as described in 

Section 1.6.2. The test figures were presented at the center of the display on a grey background 

(50.3 cd/m2). Above and below the central (5.2 x 10.5deg) region an array of high contrast (65.6 

cd/m2) circles (radius = 0.21deg) were positioned on the fixation plane at a standing disparity of 



20 
 

0.42deg. The pattern of circles was randomized from trial to trial so they provided no consistent 

position cue, but on each trial they provided a strong fusion lock, and reference plane.   

 The two stimulus configurations (illusory and luminance-defined) were presented 

sequentially in a 2IFC paradigm (see Figure 2.2). The illusory Kanizsa figure was always 

presented in the first interval with a fixed crossed disparity of 0.13deg (between the fixation 

plane and the illusory peak defined by the template). In the second interval, a luminance-defined 

figure with rotated inducing elements was presented with one of nine grey levels (luminance 

ranged from 52.3 to 55.3 cd/m2). The luminance-defined surface had the same dimensions and 

relative disparity as the template used to create the illusory Kanizsa figure. To keep the 

stereoscopic information and configuration as consistent as possible (see Figure 2.1) the inducers 

were present, but rotated 180 degrees so they created no illusory surface. They were shifted 

diagonally outwards by 1.2deg, so they abutted the corners of the luminance-defined surface and 

had zero disparity relative to the fixation plane.  

 

        
 

Figure 2.2. An illustration of the stimulus configuration used in the 2IFC brightness-matching 

task. An array of circles served as the fusion field at the top and bottom of the screen that formed 

the fixation plane. The fixation plane was displayed at a fixed uncrossed disparity relative to the 

screen plane. The stimulus was presented at the center of the screen, such that the relative 

disparity of the inducing elements equaled the disparity of the fixation plane. 

 

Apparatus 
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 The apparatus was the same as described in Section 1.6.3. 

Procedure 

 Observers were asked to indicate whether the luminance-defined surface had more or less 

depth than the illusory reference figure. On each trial they initially fixated a Nonius cross 

positioned at the center of the screen and aligned the vertical contours of the cross to fixate on the 

zero disparity plane (Howard & Rogers, 2012). Once the Nonius lines were aligned observers 

pressed a gamepad button to display the illusory Kanizsa reference stimulus for 320ms. This was 

followed by the luminance-defined surface at one of nine randomly selected luminance values for 

320ms. The latency to initiate a vergence eye movement ranges from about 160 to 200ms 

depending on the stimulus configuration (Tulunay-Keesey & Jones, 1976; Westheimer & 

Mitchell, 1969; Yang, Bucci, & Kapoula, 2002), while the total time to complete a vergence eye 

movement is 800ms (Rashbass & Westheimer, 1961). A duration of 320ms ensured that there 

was sufficient time for the illusory surface to form (approximately 140 to 200ms, see Kogo, 

Liinasuo, & Rovamo, 1993; Reynolds, 1981; Ringach & Shapley, 1996) while restricting the 

amount of time observers had to complete a vergence eye movement. After viewing the illusory 

reference and luminance-defined comparison, observers pressed one of two gamepad buttons to 

indicate whether the stimulus in the second interval had more or less depth relative to the first 

interval. Each luminance value was randomly presented 30 times, for a total of 270 trials. Prior to 

the test session, observers completed a brief practice session consisting of 27 trials to familiarize 

themselves with the task.  

 

2.3 Results and Discussion 

 A cumulative Gaussian was used to fit the psychometric data and compute the point of 

subjective equality (PSE) for each observer (Figure 2.3). The analysis was performed in R using 
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the glm() function in the “stats” package and the error of the estimate was determined using 

bootstrapped confidence intervals calculated using Monte Carlo simulation methods run 1,000 

times for each dataset (Wichmann & Hill, 2001a, 2001b). The average PSE across observers was 

53.7 cd/m2 (95% CI: 53.5, 53.8) with a range from 53.4 to 54 cd/m2.  

 

 
Figure 2.3. Bars represent individual PSEs. Error bars represent bootstrapped 95% confidence 

intervals.   

 

 The PSE for each observer is plotted in Figure 2.3. The luminance value represents the 

brightness of a stereoscopic luminance-defined surface that had the same perceived depth as a 

stereoscopic illusory surface with equivalent disparity information along the inducers. These 

values were used in subsequent experiments for each observer when luminance-defined surfaces 

were compared with illusory surfaces. Unlike the estimates obtained in the initial study, when 

these matched luminance values were used to generate curved stereoscopic surfaces they 

produced a stable 3D surface that appeared perceptually equivalent to the 3D illusory surface.  
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Chapter 3 

Inducer Diplopia 

 

 

3.1 Introduction 

 In Chapter 4 I assessed the perceived depth in 3D Kanizsa figures when the inducer 

disparity was reliable and when it was degraded. To degrade the disparity signal without 

changing other stimulus details that might have influenced perception of the illusory surface, I 

simply presented the same stimuli at an inducer disparity that was difficult to fuse. Within 

Panum’s fusional area disparate stimuli appear fused and quantitative depth percepts are obtained 

(Howard, 1995; Ogle, 1964). At larger disparities, there is a point at which fusion is lost: the 

diplopia threshold. At this point observers are able to make quantitative depth estimates, but with 

less precision (Ogle, 1964). By systematically varying the relative disparity of the inducing edges 

I calculated the point at which observers no longer perceieved a perceputally fused luminance 

edge. A range of test stimuli were created by varying the amplitude of the sinusoidal surface to 

cover a range of disparities that spanned the diplopia threshold for each observer. Diplopia 

thresholds vary from person to person, so the diplopia point was determined for each observer. 

 

3.1.1 Rationale 

 The purpose of the experiment outlined below was to measure individual diplopia 

thresholds for the vertical inducing edges of the Kanizsa figure shown in Figure 3.1. I varied the 

relative disparity of the inducing edge using a method of constant stimuli and calculated the 

disparity at the tip of the inducing edge when observers reported that the inducers were no longer 

fused. In Chapter 4, I used the diplopia thresholds to select the range of test disparities for each 

observer.  
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3.2 Methods for Experiment 3.1 

Observers 

 The observers that participated in this experiment also took part in Experiment 2.1. 

Stimuli 

 Stimuli consisted of 3D illusory Kanizsa figures with the same array of high contrast 

circles used in Experiment 2.1 (see Figure 3.1). The relative disparity along the inducing edge 

increased from the corner of the occluding surface to the tip of the vertical inducing edge; I 

defined inducer disparity as the disparity between the tips of the vertical inducer edges. The 

stereoscopic Kanizsa figures were presented with one of eight crossed inducer disparities (0.06, 

0.09, 0.11, 0.14, 0.17, 0.20, 0.22, 0.25deg) for 200ms. An exposure duration of 200ms prevented 

the observer from completing a vergence eye movement while the stimulus was presented 

(Westheimer & Mitchell, 1969). The combination of the dichoptic Nonius cross, fusion field, and 

brief exposure duration helped observers maintain fixation on the depth plane containing the 

inducing elements while they performed the task.  
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Figure 3.1. An illustration of the stimulus configuration used in the inducer diplopia task. An 

array of circles served as the fusion field at the top and bottom of the screen forming the fixation 

plane. The illusory Kanizsa figure was presented at the center of the screen, such that the relative 

disparity of the outer edge of the inducing elements equaled the disparity of the fixation plane. 

Note that the inducing edges in the example above are not perceptually fused when converged on 

the fixation plane. 

 

Apparatus 

 The apparatus was the same as described in Section 1.6.3. 

Procedure 

 Diplopia thresholds were measured using a single alternative forced-choice (AFC) 

paradigm and the method of constant stimuli. Observers fixated on a Nonius cross at the center of 

the screen and, once the Nonius cross was aligned, they pressed a button to display the illusory 

Kanizsa figure for 200ms. On each trial, observers judged whether the curved vertical edge of the 

inducing element appeared single or double using the gamepad. Test disparities were randomly 

presented 30 times apiece, for a total of 240 trials. Prior to the test session, observers completed a 

brief practice session consisting of 24 trials to familiarize themselves with the stimuli and task. 

 

3.3 Results and Discussion 

 The proportion of “double” responses as a function of inducer disparity was plotted for 

each observer (Figure 3.2). A cumulative Gaussian was used to fit this psychometric data and the 
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diplopia threshold was calculated as the 50% point on the psychometric function. The analysis 

was performed in R using the glm() function in the R “stats” package. The error of the estimate 

was determined using bootstrapped confidence intervals calculated using Monte Carlo simulation 

methods run 1,000 times for each dataset (Wichmann & Hill, 2001a, 2001b).  

 
Figure 3.2. The fitted psychometric function (cumulative Gaussian) for each observer’s dataset 

(n=7). The PSE for each function represents the relative disparity between the tips of the vertical 

inducing edge at the diplopia threshold. 

 

 After a brief practice session, all observers easily identified whether the vertical inducing 

edge was perceptually diplopic or fused. The diplopia points ranged from 0.14 to 0.17deg with an 

average of 0.16deg (95% CI: 0.15 0.17). Five of the seven observers were at the upper end of this 

range between 0.16 and 0.17deg, while the remaining two observers’ thresholds were 

approximately 0.14deg. The diplopia point calculated for each observer (see Appendix A) was 

used in subsequent experiments for comparison with performance when the inducers were fused.  
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Chapter 4 

Accuracy 

 

 

4.1 Introduction 

 A variety of psychophysical paradigms have been used to quantify the perceived shape of 

2D Kanizsa figures. For example, investigators have reported subjective ratings of ‘clarity’ 

(Shipley & Kellman, 1992), estimates of visual completion (Gold et al., 2000; Ringach & 

Shapley, 1996), or orientation (Westheimer & Li, 1997). While these studies provide valuable 

information about the properties of inducing elements that dictate the perceived salienceand 

position of 2D illusory contours, to quantify the perceived depth from disparity in stereoscopic 

Kanizsa figures one must use a methodology that can be used to quantify the perceived depth at a 

given location along the surface (e.g. the peak). 

 Few studies have examined the properties of disparity-defined illusory boundaries 

generated in Kanizsa configurations. One notable series of experiments is Ramachandran’s 

(1986) assessment of the foreground and background segmentation in 3D Kanizsa figures. He 

presented a frontoparallel occluding surface defined by binocular disparity in front of a variety of 

background textures. His results demonstrate that planar stereoscopic illusory surfaces can 

capture textured background elements, which have ambiguous disparity, while similar disparity-

defined surfaces without illusory boundaries do not. This is a critical distinction. Stereoscopic 

capture tends to occur when contour elements appear to be occluded by the foreground pattern; 

disparity alone creates little, if any stereoscopic capture (Howard & Rogers, 2012). The presence 

of an illusory surface appears to be a necessary prerequisite for stereoscopic capture in these 

configurations. These experiments suggest that binocular disparity in conjunction with occlusion 

relationships at inducing elements plays a critical role in establishing 3D illusory surface shape 
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and the interpretation of the 2D geometry of background elements. In a subsequent study 

Hakkinen et al. (1998) expanded Ramachandran’s research to include curved and slanted illusory 

boundaries, demonstrating that non-planar illusory surfaces can facilitate stereoscopic capture if 

the period of the background texture is consistent with the 3D geometry defined by binocular 

disparity. Hakkinen’s results were consistent with those of Ramachandran, and emphasize the 

combined role of occlusion geometry and the disparity signal in the creation of a coherent 3D 

percept.  

 It has been established that the introduction of even small disparity differences between 

the inducing edges produces striking changes in the perceived shape of 3D curvilinear illusory 

surfaces (Carman & Welch, 1992). As discussed in Section 1.4, the disparity signal at the 

inducing edge determines the structure of the 3D illusory surface via disparity interpolation, 

whereby the unambiguous disparity signal at the vertical inducing edge is propagated along the 

vertical illusory contours between adjacent elements to form a complete surface. Despite the 

large ambiguous central region in Kanizsa configurations, the perceived shapes of these 

stereoscopic illusory surfaces demonstrate remarkable shape invariance and view stability 

(Carman & Welch, 1992). However, studies of disparity-based surface interpolation largely focus 

on the interpolation of sparse disparity-defined elements along surface edges (Mitchison & 

McKee, 1985; Yang & Blake, 1995); little empirical attention has been paid to how disparity 

interpolation propagates from a luminance edge to an illusory surface. The goal of this chapter 

was to evaluate how manipulation of the disparity signal at the inducing edge affects the 

perceived depth of the surface. To accomplish this, I used a depth magnitude estimation paradigm 

that allows observers to estimate the depth at the 3D surface peak as described below. 

 

4.1.1 Depth Magnitude Rationale 



29 
 

 A depth magnitude estimation paradigm was used to assess the perceived depth at the 

surface peak of illusory and luminance-defined surfaces at a large range of fused and diplopic 

inducer disparities. The aim of this experiment was to better understand the nature of 

interpolation of the disparity signal in these illusory surfaces. To do this, I measured the 

perceived depth magnitude at the surface peak, when the inducer edges were fused and when the 

disparity signal at the inducers was less reliable (at the diplopia point). Further, the comparison of 

the magnitude of perceived depth between illusory and luminance-defined surfaces reveals 

whether the trajectory of interpolation in the illusory surface differs from the sinusoidal curvature 

of the luminance-defined template. If there is a difference in the magnitude of perceived depth 

between the surface peaks when the disparity within the inducing region is equivalent, then 

disparity interpolation plays a key role in determining illusory surface shape. In addition, if there 

is a larger difference in the perceived location of peaks between the illusory and luminance-

defined surfaces beyond the diplopic threshold compared to the fused range, then the visual 

system interpolates the illusory boundary to a shallower surface when the disparity along the 

inducing edge is less reliable.  

 

4.2 Methods for Experiment 4.1 

Observers 

 The observers that participated in this experiment are described in Section 1.6.1. 

Stimuli 

 Three stimulus conditions, (i) Illusory Only, (ii) Low Contrast, and (iii) Combined, were 

created using the individual perceptual matches and diplopia points calculated for each observer 

in Experiments 2.1 and 3.1. The Illusory Only condition consisted of a stereoscopic Kanizsa 

figure in which only illusory contours defined the position of the surface peak. The Low Contrast 
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condition consisted of a luminance-defined stereoscopic surface with rotated inducing elements 

(see Experiment 2.1). The luminance of the central region was set to the perceptual match 

calculated for each observer in Experiment 2.1. Lastly, the Combined condition consisted of a 

stereoscopic Kanizsa figure with the perceptually matched luminance-defined surface in the 

central region. In this case, all the supporting geometry for illusory contour generation was 

present, but the surface was also defined by explicit luminance edges. Examples of each of these 

stimulus configurations and the features that define the shape of the surfaces can be seen in 

Figure 4.1. All stimuli were generated as described in Section 1.6.2. The stimulus arrangement 

was the same as that shown in Figure 3.1 with an upper and lower array of circles to aid fusion. 

Each figure was presented with one of eleven crossed inducer disparities (0, 0.03, 0.06, 0.09, 

0.12, 0.14, 0.17, 0.20, 0.22, 0.25, and 0.27deg).  
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Table 4.1 

Stimuli for Depth Magnitude Task 

Stimulus Condition Surface Features Stereopair 

Illusory Only 
 Occlusion features 

 Disparity signal at 

the inducing edge 

 

      
 

      

 

        

Low Contrast 
 Disparity signal at 

low contrast surface 

edge 

Combined 

 Occlusion features 

 Disparity signal at 

the high contrast 

inducing edge and 

low contrast surface 

edge 

Note. The stereopairs are arranged for crossed fusion.  

 

Apparatus 

 Stimuli were viewed stereoscopically using the apparatus described previously (Section 

1.6.3). Depth estimates were recorded using a purpose-built touch sensitive sensor. A rectilinear 

SoftPot membrane potentiometer (SpectraSymbol) was mounted on a thin aluminum bar. The 

sensor strip was 200mm long and 7mm wide with a resistance of 10 kOhm. The potentiometer 

allowed linear measurements along the 200mm length, with a resolution of approximately 

0.2mm. Responses were read using an analog to digital converter and a 160bit micro controller. 

Prior to testing observers rested their thumb against a rod at one end of the haptic sensor strip, 

and the rod was adjusted so the end of the sensor strip was aligned to the outer edge of the 

observer’s thumb (this compensated for differences in thumb width). During testing observers 
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pressed their index finger along the length of the sensor strip to indicate the magnitude of their 

depth estimate. A small red LED positioned in front of the stereoscopic mirrors, 10.8deg below 

the line of sight to the stimulus, illuminated when sufficient pressure was applied to the sensor 

strip. Observers were free to adjust their fingers until they were satisfied with their response and 

pressed the space bar on the computer keyboard to initiate the next trial. The recorded voltage 

was converted into millimetres using a MATLAB script. Between trials observers were asked to 

reposition their index finger to the base of the sensor, and to refrain from looking down at their 

hand while making their depth estimates. 

Procedure 

 On all trials, observers were asked to indicate the amount of depth they perceived between 

the fixation plane containing the inducing elements and the peak of the curved surface. The 

stimulus configuration and presentation protocol was the same in all conditions. Observers began 

by fixating on a Nonius fixation cross. When they perceived the cross as aligned, they pressed a 

gamepad button to display the stimulus for 320ms. The three stimulus configurations were 

assessed in separate blocks and in each block eleven test disparities were randomly presented 12 

apiece, for a total of 132 trials per condition. The test order was randomized across observers and 

between each block of trials observers received a short break. Prior to each test session, observers 

completed a brief practice session consisting of 33 trials to familiarize themselves with each of 

the stimulus conditions and apparatus. 

 

4.3 Results and Discussion 

 Figure 4.1 shows the mean estimated depth for each of the three stimulus configurations 

plotted as a function of the relative inducer disparity in degrees. A repeated-measures analysis of 

variance was used to examine the differences in perceived depth for the three stimulus conditions 
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in the fused and diplopic ranges. From Figure 4.1, it is clear that the variance of observer’s 

perceived depth estimates increases as a function of inducer disparity. This is not surprising given 

that discrimination thresholds have been shown to increase as a function of disparity (Blakemore, 

1970; McKee, Levi, & Bowne, 1990). A Levene’s test on the standardized residuals confirmed 

that the variance is indeed heterogeneous (p=0.02), which violates the assumption of 

homoscedastic variance. To avoid this violation a separate analysis of variance was performed for 

the fused and diplopic ranges (Levene’s test p>0.05). In the fused range test disparities were 0.03, 

0.06, 0.09, 0.11, and 0.14deg, while in the diplopic range they were 0.17, 0.20, 0.22, 0.25, and 

0.27deg. In the fused range the analysis revealed an expected significant effect of Inducer 

Disparity, F(1.2,7.2)=46.44, p<0.0001; 2=0.58, but no significant effect of Stimulus Condition, 

F(2,12)=0.65, p=0.54; 2=0.01, or interaction between the two variables, F(3.7,22.5)=2.05, 

p=0.13; 2=0.02. Similarly, in the diplopic range there was a highly significant effect of Inducer 

Disparity, F(4,24)=34.72, p<0.0001; 2=0.22, a lack of significant difference between Stimulus 

Conditions, F(2,12)=2.32, p=0.14, 2= 0.03, and no significant difference between stimulus 

conditions as a function of Inducer Disparity, F(8,48)=0.20, p=0.99, 2=0.001. 
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Figure 4.1. Mean depth estimates (n=7) for each of the three stimulus conditions: Illusory Only 

(diamonds), Low Contrast (triangles), and Combined (squares). The black dotted line represents 

the mean inducer diplopia point (obtained in Experiment 3.1) and the shaded region represents 

one standard error of that estimate. Error bars represent one standard error of the mean. 

 

 Analyses of the fused and diplopic data show that there was no difference in the perceived 

depth between the Illusory, Low Contrast, and Combined conditions. This result was surprising 

given the differences between these stimuli, and the information used to define the peak of the 

surfaces in each condition. However, as noted above, the variance of observers’ estimates 

increased as a function of inducer disparity, becoming quite large when the inducing edge was 

perceptually diplopic, suggesting that there might be large interobserver differences in perceived 

depth at these disparities. Inspection of the individual depth estimates confirmed this observation. 

In addition, some observers demonstrated differences between the Illusory, Low Contrast, and 
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Combined stimulus conditions, while other observers demonstrated little difference in perceived 

depth. It is possible that this disparity-dependent variability may have obscured differences 

between the surface conditions. 

 Another interesting aspect of the results shown in Figure 4.1 was that none of the three 

stimulus conditions showed any reduction in the perceived depth of the peak once the disparity of 

the inducing edge was increased beyond the diplopia point. It is well established that depth 

percepts can be obtained from both fused and diplopic stimuli (Blakemore 1970; Foley, 

Applebaum, & Richards, 1975; Ogle, 1952), but there is a point at which this is no longer true 

and observers begin to lose the ability to make quantitative depth estimates. Described by Ogle 

(1952) as the qualitative range, at these very large diplopic disparities observers are only able to 

judge the sign of depth. As disparity continues to increase, eventually depth percepts will be lost 

entirely at the upper disparity limit. However, despite the large disparity at the inducing edge the 

perceived depth continued to increase as a function of inducer disparity. It is possible that 

observers may have based their judgements on another criterion other than the depth from 

binocular disparity in the diplopic range. One important consideration when measuring the depth 

when stimuli are fully diplopic is that observers can perceive the lateral separation of the 

monocular images. It is possible that, even though observers are trying to report depth from 

disparity, their estimates are influenced by the increasing separation of the monocular features. 

The elimination of this information can be difficult given that the separation information is fully 

confounded with the binocular disparity signal (Ogle, 1953). I believe this is not a likely 

explanation for my results because one would expect a transition (i.e. abrupt change in the slope) 

in the diplopic range when observers switched to using the separation information. Instead, it is 

clear that the functions shown in Figure 4.1 increase smoothly across the test range.  
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 In a follow-up study I re-examined the relationship between disparity and perceived depth 

for these surface configurations. I used a single AFC method that required that observers 

discriminate the depth between two disparity-defined objects. N-alternative forced choice 

methods tend to produce less variable results than magnitude estimates, and could reveal 

significant differences between surface conditions that were not evident in the preceding study. In 

our AFC task, observers used a disparity probe to indicate the perceived depth at the peak of the 

surface.  

 

4.3.1 Disparity Probe Rationale 

 In this probe task, observers made a depth discrimination judgement between a small dark 

grey disk and the peak of the stereoscopic surface, which reduced the usefulness of the separation 

information. Disparity probes tend to provide very precise results because observers have a direct 

comparison and are able to rely on disparity matching, which is less variable both within and 

between observers than depth magnitude estimation. When using disparity probes it is important 

to ensure that the probe does not interfere with, or influence, the test stimulus. I anticipated that 

by reducing interobserver variability and the potential influence of separation information, this 

experiment was more sensitive to differences between the perceived locations of the peaks of the 

surfaces across conditions. 

 

4.4 Methods for Experiment 4.2 

Observers 

 The observers that participated in this experiment are described in Section 1.6.1. 

Stimuli 
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 The three surface conditions described in Section 4.2.2 were also used here. In addition, I 

included a fourth, High Contrast condition in which the surface boundaries are clearly visible. 

This stimulus consisted of a black luminance-defined stereoscopic surface (0.81 cd/m2) with 

rotated inducing elements (see Section 2.2.2). In this condition the luminance-defined surface 

was salient, with high contrast vertical edges, thus performance should be at its best. Examples of 

the four conditions can be seen in Figure 4.2. As in the previous experiment, I evaluated both 

fused and diplopic conditions. In this study the fused standard had a fixed disparity that was well 

within the fused range for all observers (0.09deg). For the diplopic standard, the reference was 

assigned the disparity equivalent to the diplopia point for each observer (Chapter 2). A disparity 

probe (luminance of 22.6cd/m2) with a diameter of 0.25deg was presented 2.1deg to the left of 

the center of the screen. This offset was shown in preliminary trials to minimize the influence of 

the probe on the interpolation of the surface. The probe was presented at one of nine crossed 

disparities with a unique step size for each observer. In the fused condition, the disparity values 

for the probe ranged from 0.06 to 0.17deg. In the diplopia conditions the disparity values of the 

probe ranged from 0.13 to 0.29deg. The step size was determined for each observer for each 

condition in a short pre-test with 5 trials per disparity level.  
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Figure 4.2. An example of the stereopairs used to generate stereoscopic surfaces for each 

stimulus condition (arranged for crossed fusion). From top to bottom the stimulus conditions are 

Illusory Only, Low Contrast, Combined, and High Contrast. 

 

Apparatus 

 The apparatus was the same as described in Section 1.6.3. 

Procedure 

 The PSE for each stimulus was measured using a 1AFC paradigm. The duration of each 

interval was 320ms and the four stimulus conditions were assessed in separate blocks. The 

disparity probe was presented at each of the nine disparity levels in random order 30 times 

apiece, for a total of 270 trials per condition. Each observer completed the four conditions using 
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the fused and diplopic standards for a total of 8 test conditions. The test order was randomized 

across observers and between each block of trials observers had a short break. On all trials 

observers were asked to indicate whether the disparity probe was positioned in front of or behind 

the peak of the surface. Observers press one of two possible gamepad buttons to make their 

response. Prior to each test session observers performed a brief practice session that consisted of 

5 trials for each test disparity to familiarize them with the task and to set the appropriate step size. 

 

4.5 Results and Discussion 

 The psychometric data obtained from each observer for each test condition was fit using a 

cumulative Gaussian. The PSE was computed for each condition at both the fused and diplopic 

standards for all observers (n=7). One observer was removed from the final data analysis due to 

an incomplete dataset, resulting in a total of six observers. The analysis was performed in R using 

the glm() function in the R stats package. Bootstrapped confidence intervals were calculated 

using Monte Carlo simulations methods run 1,000 times for each dataset (Wichmann & Hill, 

2001a, 2001b).  

 To assess the differences in the perceived peak disparity in the four stimulus conditions a 

repeated-measures analysis of variance was used to compare the effect of Stimulus Configuration 

and Disparity Range on PSE. Disparity Range was a categorical variable that compared the mean 

PSE at the diplopia threshold to the fused standard. The analysis revealed a significant interaction 

between Stimulus Configuration and Disparity Range, F(3,15)=33.33, p<0.0001, 2=0.18. This 

indicated that there was a significant difference in the disparity of the perceived peaks in the four 

surface conditions that differed between the fused and diplopia standards. To examine the 

differences in the disparity of the perceived peaks between our stimulus conditions I used 
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pairwise t-tests and Benjamini and Hochberg’s (1995) method for controlling false discovery 

rates. The differences in the stimulus conditions as a function of the type of reference (fused or 

diplopia) are discussed below.  

 

4.5.1 Fused Standard 

 The mean estimated peak disparity for the four test conditions for the fused standard can 

be seen in Figure 4.3 (individual psychometric functions are in Appendix B). For all observers 

the estimated disparity of the High and Low Contrast peaks was similar, while estimates of the 

Illusory Only and Combined surface peaks were shifted downwards. The pairwise t-tests confirm 

that all comparisons were significantly different (p<0.05), except for the difference between the 

perceived location of peaks in the Low and High Contrast conditions. 

 

Figure 4.3. Average peak disparity (n=6) for each of the four stimulus conditions: Illusory Only 

(blue), Low Contrast (grey), Combined (red), and High Contrast (black) for the fused standard. 

The horizontal black dotted line represents the luminance-defined disparity at the peak of the 

luminance template. Error bars represent one standard error of the mean. 
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 First, the comparison of the perceived location of surface peaks defined by luminance 

edges only (i.e. High & Low Contrast conditions in Figure 4.3) revealed that there was no 

difference in the magnitude of the perceived peaks. Importantly, the estimated disparity of the 

perceived peak in the high and low contrast surfaces matched the luminance-defined disparity 

present at the surface peak. This confirmed that the observers’ depth estimates of the luminance-

defined surfaces were accurate and the disparity probe did not introduce a bias2. Further, the 

results show that observers could precisely localize the perceived location of peaks in these 

luminance-defined surfaces. 

 In the Illusory Only condition (blue) in Figure 4.3, it appears that the illusory surface was 

consistently interpolated to a shallower peak than the perceptually equated luminance surface. 

This was confirmed by the statistically significant difference between the Illusory Only and Low 

Contrast condition (p<0.001). Therefore, the interpolation of the disparity signal along the 

illusory boundary followed a shallower trajectory than the sinusoidal luminance-defined 

template. This result echoes that of Warren, Maloney, and Landy (2002) who showed that 

disparity interpolation does not necessarily follow a parabolic contour. Instead it appears from 

their data that the ‘human visual spline’ fits a different class of curves than were used to generate 

the stimuli.  

 The estimates in the Combined condition (red) in Figure 4.3, were significantly different 

from estimates in both the Illusory Only and Low Contrast conditions (p<0.05). The combined 

peak was consistently localized in between the Illusory Only and Low Contrast surface peaks. 

When the surface was defined by luminance edges that occluded the inducing elements, the 

perceived location of the peak was strongly influenced by the presence of the occlusion geometry 

                                                      
2 To eliminate the possibility of an effect of contrast polarity, a control task with a subset of observers 

(n=3) was performed comparing the perceived peak of a high contrast white surface to the black surface 

used in Experiment 4.2. There was no significant difference in the magnitude of the peaks. 
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at the inducing elements. It appears that the presence of the inducers consistently reduced the 

perceived depth at the peak of the surface, even in the presence of a luminance-defined signal 

that, in isolation, was consistently localized to a larger peak disparity.  

 

4.5.2 Diplopia Standard 

 Not only did the estimated disparity of the peak increase at the diplopia point (relative to 

the fused reference), the relative locations of the surface peaks changed as well. The mean 

disparity estimates in Figure 4.4 (individual psychometric functions can be found in Appendix C) 

revealed that the perceived locations of the Illusory Only, Combined, and Low Contrast surface 

peaks were matched to a shallower probe disparity than in the High Contrast condition (p<0.001). 

In fact, all pairwise comparisons at the diplopia threshold were significantly different (p<0.05).  
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Figure 4.4. Average peak disparity (n=6) for each of the four stimulus conditions: Illusory Only 

(blue), Low Contrast (grey), Combined (red), and High Contrast (black) for the diplopia standard. 

The horizontal black dotted line represents the relative disparity at the peak of the luminance-

defined template. Error bars represent one standard error of the mean difference between each 

condition and the High Contrast condition. Thus, the between-subject variation in diplopia points 

is removed from the error term. 

 

 When the inducing edge was presented at the diplopia point, there was a significant 

difference between the perceived locations of the peaks in the High and Low Contrast conditions 

that was not seen when the standard was fused. While the perceived height of the high contrast 

peak was consistent with the disparity along the luminance-defined edge, the low contrast peak 

was perceptually shallower. The fact that this difference in perceived amplitude of the surface 

was not evident when the stereopairs were fused confirms that the interpolation process was 

disrupted at the diplopia threshold. 

 As in the fused range, disparity matches in the Combined condition using diplopic stimuli 

were consistently between the Illusory Only and Low Contrast estimates (Figure 4.4). The 

perceived height of the peak in the combined condition was significantly different from both the 
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illusory (p=0.006) and low contrast peaks estimates (p=0.029). However, unlike the fused range, 

there were substantial interobserver differences in the perceived location of the peak at the 

diplopia threshold for this condition (red bar in Figure 4.4). That is, half of the observers 

perceived the peak at the same disparity as the Illusory Only function, while the other half 

perceived the peak at a disparity similar to the Low Contrast function (see Appendix C for 

individual differences). This suggests that reducing the reliability of the disparity signal changed 

how the depth information from disparity and the occlusion features were combined to determine 

the shape of the 3D surface. 

 

4.6 Discussion 

4.6.1 Do Illusory Boundaries Interpolate to a Shallower Surface at the Diplopia Point? 

 To test my initial hypothesis that the illusory surface would interpolate to a shallower 

surface when the inducing edge was near diplopia, I compared the differences in the perceived 

peak height in the illusory and luminance surfaces when fused vs. diplopic. The mean difference 

between the perceived location of peaks in the illusory and high contrast fused conditions was 

approximately 0.039deg, while the difference at the diplopia threshold was 0.067deg. At first 

glance, it appears that the illusory surface was indeed interpolated to a shallower surface when 

the disparity was large. However, the comparison of the perceived location of the illusory surface 

peak to the luminance-defined disparity at the tip of the inducing elements (0.087deg) revealed 

that the peak of the surface was remarkably close to the disparity at the tip of the inducing edge 

for the fused standard (0.088 SE= ±0.003deg). A similar pattern of results was seen at the 

diplopia threshold where the estimated disparity of the illusory peak was approximately 0.01deg 

(SE=±0.004deg) above the disparity at the tip of the inducing edge. Regardless of the magnitude 

of disparity along the inducing edge, the illusory peak was consistently localized to a disparity 
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equivalent to the relative disparity at the tip of the inducing edge. It is possible that the trajectory 

of the disparity interpolation from the inducing edge was not as flexible as initially hypothesized. 

Instead it appears that the combination of depth cues at the inducing edge constrained the surface 

peak to a location equivalent to the largest disparity in the inducing region. This issue is 

discussed further in Section 6.3. 

 

4.6.2 Differences in the Depth Magnitude Task 

 The results of the disparity probe task used above shows clear, reliable differences in 

percepts of surfaces defined by luminance and illusory boundaries. However, no such differences 

were seen in Experiment 4.1 where depth magnitude estimates were recorded. I attribute this 

difference to the precision of the tasks used in these two studies. That is, the large variability in 

perceived depth magnitude estimates in Experiment 4.1 made it difficult to detect these 

differences. I tested this hypothesis by examining the standard deviation (SD) of the mean 

differences between our stimulus conditions in the depth magnitude and disparity probe datasets 

and approximating the SD required to detect the differences using a conventional power analysis. 

 Table D.1 (see Appendix D) compares the individual difference in the fused range 

between estimates of the illusory peak to the low contrast and combined conditions in the depth 

magnitude and disparity probe datasets. To determine if the variance in the depth magnitude 

dataset was too large to detect the differences between test conditions, I calculated the SD that 

would be necessary to detect these differences. Assuming that the perceived differences in the 

disparity probe dataset were the true differences I was trying to detect, I used the power.t.test 

function (pwr package) in R to calculate the required SD (Cohen, 1988). In the disparity probe 

dataset, the SDobserved of the difference between the illusory and combined conditions, and the 

illusory and low contrast conditions were 0.8 and 1.1, respectively. In the depth magnitude 
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dataset, the standard deviations were much larger (SDobserved=4.5 and 3.2, respectively). The 

actual differences in perceived peak height observed in the disparity probe paradigm were 

3.09mm for the illusory and combined conditions, and 5.64mm for the illusory and low contrast 

conditions. To detect these differences using a t-test, the SDrequired must be smaller than 2.2 and 

3.9, respectively (assuming α=0.05, and power=0.8). As expected, the SDobserved in the disparity 

probe data was more than precise enough to detect these differences (SDobserved=0.8 and 

SDobserved=1.1, respectively). However, in the depth magnitude dataset the SDobserved of the 

differences between the illusory and combined conditions was much too large to detect the actual 

difference (SDobserved=4.5). The SDobserved of the difference between the illusory and low contrast 

conditions (SDobserved=3.2) was just below the SD necessary for detection (SDrequired=3.9). Even 

though the SDobserved above was less than the SDrequired, the fact that the depth magnitude analysis 

collapsed the three stimulus conditions into a single variable, the combined variance was likely 

too large to achieve significance. Thus, the small differences (under 6mm) between test 

conditions detected in the disparity probe data were much too small to be detected given the large 

variance in the depth magnitude data. 

 

4.6.3 Reduction of the Perceived Peak 

 Observers could precisely localize illusory contours with the same (if not better) precision 

as a perceptually equated luminance edge. One surprising result was the degree to which the 

inducing elements reduced the perceived depth of the low contrast luminance-defined surface 

peak. Why would the presence of the features necessary for illusory boundary formation strongly 

influence the perceived location of the surface peak when there was a suprathreshold luminance-

defined disparity signal present? One possibility is that the shape information provided by the 

occlusion features and disparity signal at the inducers was more reliable than the disparity-
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defined peak of the low contrast luminance edge. As a result, when the interpolated surface was 

shallower, it was more stable. If this is true, then estimates of the illusory surface peak should be 

more precise than the perceptually equated luminance-defined surface. In Chapter 5, I evaluated 

this hypothesis by measuring observers’ ability to discriminate the perceived depth at the peak of 

these surfaces. 

 

Chapter 5 

5.1 Introduction 

 While previous research has emphasized that illusory boundaries generated by Kanizsa 

configurations share neural resources and perceptual effects with luminance-defined edges (Fahle 

& Palm, 1991; Larsson et al., 1999; von der Heydt, 1984), an observer’s ability to discriminate 

the orientation of the two contours varies with the configuration. For example, Westheimer and 

Li (1997) compared the orientation discrimination thresholds for 2D square Kanizsa figures with 

illusory or luminance-defined contours. They found that observers’ thresholds for illusory 

contours were higher than for luminance-defined contours by a factor of 2. Similar differences in 

orientation thresholds are seen for illusory boundaries generated by line terminations (Vogels & 

Orban, 1987). When observers judge the shape of an illusory surface defined by only 2D 

occlusion geometry, their discrimination thresholds are higher than observed when the surface is 

defined by a luminance edge. It is important to note that the 3D curved surfaces used in the 

current paradigm contain both 2D and 3D (binocular disparity) shape information.  

 Several studies have evaluated the reliability of disparity as a cue to surface shape. In 

particular, studies of surface slant have evaluated how changes in viewing distance affect the 

reliability of shape from disparity judgements. For example, the variability of disparity-based 
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slant estimates increases by more than a factor of 10 when the viewing distance is increased from 

near space up to 120cm (Banks, Hooge, & Backus, 2001). In addition, while stereoscopic slant 

discrimination thresholds generally increase as the magnitude of surface slant increases (Knill & 

Saunders, 2003), there are large interobserver differences. The reliability of depth percepts from 

stereoscopically defined curved convex surfaces has not received as much empirical attention as 

the perception of slanted surfaces. One notable example is Johnston’s (1991) study in which she 

assessed depth constancy using random-dot cylindrical surfaces. Her results showed that depth 

estimates were systematically distorted as function of viewing distance. Similar studies found 

low thresholds for the discrimination of curved surfaces, but they also report large biases in 

perceived shape (Brenner & van Damme, 1999). Generally, disparity thresholds for 3D curved 

luminance-defined surfaces show a gradual increase as the disparity along the contour increases, 

especially once the edge is perceptually diplopic (Vreven, McKee, & Verghese, 2002). In sum, 

despite the large interobserver differences in the reliability of perceived depth for 

stereoscopically defined curved surfaces, binocular disparity on its own can reliably define 

surface shape if the stimulus is presented at relatively short viewing distances. 

 However, the relationship between stereoscopic and monocular judgements of position 

depends on the task and stimulus configuration. That is, in configurations with sparse isolated 

targets on the fixation plane, judgements of position based on binocular disparity can be superior 

to monocular judgements (McKee et al., 1990). While in other configurations, lateral position 

judgements along the x-axis have been shown to be better than depth interval judgements along 

the z-axis (McKee, Levi, & Bowne, 1990). The precision of depth estimates has not been 

assessed for stereoscopically defined illusory figures like those used here. By measuring the 

precision of depth estimates of illusory and luminance-defined surfaces, I evaluated whether the 

differences in the location of the perceived peaks in Experiment 4.2 were due to the relative 
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reliabilities of the two surfaces. Careful control of the stimulus configuration (as described in 

Experiment 4.2 above) permitted the direct comparison of performance. If estimates of the 

illusory surface are indeed more reliable than the perceptually equated luminance edge, then the 

strong influence of the inducing elements on the perceived peak in Experiment 4.2 was due to the 

fact that the occlusion and disparity cues at the fused inducing element were consistent with a 

shallower, more reliable illusory surface. 

 

5.1.1 Rationale 

 In this experiment, I measured the relative precision of observers’ ability to localize the 

illusory and luminance-defined surface peaks. I used a 2IFC paradigm with a method of constant 

stimuli in which observers judged the relative depth between the frontoparallel plane containing 

the inducing elements and the peak of the curved surface. From the psychometric data I 

computed the just-noticeable difference (JND) for each stimulus condition. This value represents 

the smallest change in the relative disparity at the tip of the vertical inducing edge necessary for 

observers to perceive a change in the depth at the surface peak. Comparison of JNDs obtained 

using illusory and luminance-defined surfaces can reveal if observers can discriminate the 

perceived peak of interpolated illusory surfaces as precisely as a surface defined by low contrast 

luminance edges. If the presence of the inducing elements reduced the perceived location of the 

peak in the combined surface because the local shape information at the inducers was more 

reliable, then the JND of depth judgements of the illusory surface should be smaller than the low 

contrast luminance-defined surface. In addition, I predicted that the interobserver differences in 

the perceived location of the peak in the combined surface at the diplopia threshold were due to 

the reduced reliability of the signals. Thus, there should be little to no difference between the 

JNDs of the illusory and low contrast surfaces at the diplopic threshold. 
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5.2 Methods for Experiment 5.1 

Observers 

 The observers that participated in this experiment are described in Section 1.6.1. 

Stimuli 

 The four surface conditions described in Experiment 4.2 were used here (i.e. Illusory 

Only, Combined, Low and High Contrast). As in the preceding experiment, these conditions were 

tested using both a fused and diplopic standard. The stimuli were generated as described 

previously, and presented along with the fusion field as illustrated in Figure 3.1. The inducer 

disparity values used in each condition were sampled symmetrically around the two standards 

used in Experiment 4.2 (i.e. fused or diplopic). The fused standard was the same for all observers 

with a relative inducer disparity of 0.09deg between the tips of the vertical inducing edge. The 

figures were presented with one of nine crossed inducer disparities (0.03, 0.04, 0.06, 0.07, 0.09, 

0.10, 0.12, 0.13, or 0.14deg) with a step size of 0.02deg from the fused standard. In the diplopic 

condition, the standard was presented at the inducer diplopia point previously calculated for each 

observer (see Chapter 3). The figures were displayed with one of nine crossed inducer disparities 

with a 0.02deg step size, above and below the standard (i.e. -4, -3, -2, -1, diplopic standard, +1, 

+2, +3, +4 pixels). Thus, the same step size was used for all observers, but the reference disparity 

was determined by their individual diplopia point. 

Apparatus 

 The apparatus was the same as described in Section 1.6.3. 

Procedure 

 The JND for each stimulus condition was measured using a 2IFC paradigm and the 

method of constant stimuli. The standard was randomly presented in the first or second interval, 
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while the other surface was presented in the other interval at one of the nine test disparities. The 

duration of each interval was 320ms with a 750ms inter-stimulus interval during which they 

viewed a Nonius cross to realign their eyes. The four stimulus conditions were assessed in 

separate blocks and in each block the nine test disparities were randomly presented 30 times, for 

a total of 270 trials per condition. Each observer completed the four conditions at both the fused 

and diplopic standards for a total of 8 test conditions. The test order was randomized across 

observers and between each block of trials observers had a short break. On all trials observers 

were asked to indicate which of the two surfaces had more depth between the plane with the 

inducing elements and the peak of the surface. Observers pressed one of two gamepad buttons to 

indicate either “interval 1” or “interval 2.” Prior to each test session observers performed a brief 

practice session of 4 trials at each test disparity to familiarize themselves with the stimuli and 

task. 

 

5.3 Results and Discussion 

 Psychometric data was fit using a cumulative Gaussian and the JND was computed for 

each condition at both the fused and diplopic standard for all observers (n=7). An example of an 

observer’s psychometric data can be seen in Figure 5.1. The analysis was performed in R using 

glm() function in the R stats package. Bootstrapped confidence intervals were calculated using 

Monte Carlo simulations methods run 1,000 times for each dataset (Wichmann & Hill, 2001a, 

2001b). These JNDs represent the smallest amount of inducer disparity necessary for observers to 

perceive a change in the depth at the surface peak. One observer was removed from the final 

analysis because they performed at chance levels in the Low Contrast condition in both the fused 

and diplopic range. 
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Figure 5.1. An example of an observer’s psychometric data plotted as a function of inducer 

disparity in degrees. The illusory (blue), low contrast (grey), combined (red), and high contrast 

(black) conditions are shown for conditions with fused and diplopic standards (left and right plot, 

respectively). 
 

 To assess the differences in precision between stimulus conditions a repeated-measures 

analysis of variance compared the effect of Stimulus Configuration and Disparity Range on JND. 

The analysis revealed a significant effect of Stimulus Configuration, F(3,15)=12.67, p<0.001, 

2=0.37, Disparity Range, F(1,5)=15.32, p=0.011, 2=0.26, but no significant two-way 

interaction, F(3,15)=1.38, p=0.29, 2=0.06. The significant effect of Stimulus Configuration and 

Disparity Range in the preceding analysis suggests that precision estimates differed between our 

stimulus conditions within the fused and diplopic range. The lack of an interaction indicates that 

while the mean JND at the diplopic threshold was elevated compared to the fused range, the 

difference was not dependent on the surface configuration. To examine the relationship between 

the stimulus configurations more closely I used pairwise t-tests and Benjamini and Hochberg’s 

(1995) method for controlling false discovery rates. In the fused range, the Low Contrast 

condition had a significantly larger JND than the Illusory Only (p=0.024), Combined (p=0.024), 

and High Contrast conditions (p=0.026). At the diplopia threshold, the mean JND in the Low 
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Contrast condition was significantly larger than the mean JND in the High Contrast condition 

(p=0.018), and no other within-group contrasts were significant (p>0.05).  

 

5.3.1 Fused Standard 

 The mean JND for each stimulus condition when the standard was fused are plotted in 

Figure 5.2. The JNDs were consistently small which demonstrates that observers precisely 

estimated the perceived depth at the surface peak for all stimuli. For example, when the inducers 

were fused, observers were able to perceive a change in the depth of the surface peak with only a 

0.02deg change in the relative disparity at the tip of the vertical inducing edge. Further, despite 

the absence of features within the central region of the illusory surface, observers’ estimates were 

equally precise in the illusory and high contrast luminance conditions. These results, combined 

with the precision data reported in Experiment 4.2 further establish that curvilinear surfaces 

defined by illusory contours form a consistent, reliable 3D shape (Carman & Welch, 1992). 

 Importantly, these results show that precision was poorer in the low contrast luminance 

condition than in any other surface condition; thus, as predicted, the shape of the surface was less 

reliable in the low contrast condition than it was in the illusory condition. Further, if the addition 

of the fused inducing elements to the luminance-defined surface strongly influences perceived 

location of the peak by creating a more stable surface configuration, then the JND of the 

combined surface should be similar to the JND of illusory surface. In Figure 5.2, it is clear that 

this is indeed the case. When a low contrast luminance surface occludes the fused inducing 

elements (i.e. combined surface) observers could reliably localize the position of the perceived 

peak as precisely as a surface defined only by illusory boundaries. The similarity of the reliability 

of the estimates of the illusory and combined conditions suggest that the presence of occlusion 
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features and high contrast disparity signal at the fused inducers improved the precision of depth 

estimates to a level obtained using a salient, high contrast luminance-defined surface.  

 
                                                                   

 

 

 

 

Figure 5.2. The average JND for each stimulus configuration in the fused range for the four 

stimulus conditions: Illusory (blue), Low Contrast (grey), Combined (red), and High Contrast 

(black). Error bars represent one standard error of the mean.  

 

5.3.2 Diplopic Standard 

 As expected the JNDs for all surface conditions were elevated when the reference 

disparity was at the diplopia point (relative to the fused condition above). These results confirm 

that this manipulation was effective in reducing the reliability of the disparity signal. In addition, 

there was higher within and between subject variability when the inducer disparity was at the 

diplopia point. At the diplopia threshold, when the disparity information at the inducing edge was 
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less reliable, the JNDs were similar across the surface configurations; the only significant 

difference was between the low and high contrast luminance-defined surfaces (Figure 5.3). 

Compared to results obtained with fused stimuli, at the diplopia threshold there was no longer a 

difference in the precision of depth estimates between the illusory, low contrast, and combined 

surfaces. Recall in Experiment 4.2, there were interobserver differences in the perceived location 

of peaks at the diplopia threshold. As shown in Figure 5.3, it is clear that there was no longer an 

advantage of the illusory boundary over the perceptually equated luminance edge. As a result, the 

interobserver differences in the peak of the combined condition were due to individual 

differences in how the shape information at the inducing region (occlusion and disparity) was 

combined when one of these cues was less reliable (i.e. disparity in this case). 
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Figure 5.3. The average JND for each stimulus configuration at the diplopia threshold for the four 

stimulus conditions: Illusory (blue), Low Contrast (grey), Combined (red), and High Contrast 

(black). Error bars represent one standard error of the mean.  

 

 Taken together the results of Experiment 4.2 and 5.2 confirm that the presence of the 

ordinal depth signal provided by occlusion features at the inducing elements plays an important 

role in depth processing. The addition of the occlusion features at the inducers has a strong 

impact on the quantitative depth provided by the disparity signal along the vertical surface edge. 

In the fused range, when a luminance-defined surface occluded the inducing elements, depth 

estimates were influenced by both the explicit luminance-defined disparity signal and the 

occlusion features. The presence of the fused inducing elements consistently reduced the 

perceived location of the peak of the surface despite an alternative luminance-defined disparity 
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signal at the surface peak. The combination of the shape information (occlusion features and 

disparity signal) at the fused inducing elements was more reliable compared to the low contrast 

luminance signal that defines the surface edge (defined by disparity). At the diplopia threshold, 

when both the inducing elements and an alternative luminance-defined disparity signal were 

present, but less reliable, perceived depth estimates appeared to be dominated by one source or 

the other. Despite the presence of an alternative luminance-defined signal, the presence of the 

inducing elements consistently influenced the perceived depth of stereoscopic surfaces. These 

results could be the consequence of the combination of quantitative (disparity) and qualitative 

(occlusion and luminance) depth cues that define the shape of these stereoscopic surfaces. 

Previous cue combination studies have demonstrated that qualitative depth cues, such as 

familiarity, convexity (Bertamini, Martinovic, & Wuerger, 2008; Burge, Peterson, & Palmer, 

2005), and focus cues (Watt, Akeley, Ernst, & Banks, 2005) influence perceived depth from 

disparity. In the following section, I assessed whether the perceived depth of the combined 

surface was consistent with the linear combination of illusory and luminance-defined depth 

signals. 

 

5.4 Cue Combination 

 

5.4.1 Introduction 

 The pattern of results in Experiment 5.1 suggest that observers combined depth 

information in the stimuli based on the relative reliability of the individual depth cues as 

predicted by a cue combination model. I assessed this possibility by determining if the magnitude 

and precision of depth estimates in the combined surface condition were combined as predicted 

by a maximum likelihood linear cue combination model. There is a possibility that illusory 

boundaries were formed in the combined surface condition. Despite the tendency for luminance-
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defined elements to weaken illusory boundaries when they are inconsistent with or superimpose 

the illusory geometry (Gilliam & Nakayama, 2002; Kanizsa, 1979; Ringach & Shapley, 1996), 

there is some evidence of a perceived brightness enhancement in the combined surface condition 

that suggests illusory boundaries were present; however, if they did occur they were very weak. 

Even though the perceived depth in these surfaces were likely the result of the underlying cues 

from binocular disparity, occlusion, and luminance features, to simplify the comparison I 

described the combined surface as the combination of the depth from illusory and luminance-

defined boundaries. 

 

5.4.2 Linear Cue Combination 

 To assess the influence of the illusory and low contrast luminance-defined boundaries on 

the shape of the combined surface, I examined the individual contribution of each contour using 

maximum likelihood linear cue combination model for maximum reliability. This model assumes 

that the integration of two cues is optimal when observers attempt to minimize the variance of 

their depth estimates. Thus, the cue weights are proportional to the cue’s reliability (Equation 1), 

which is the inverse of the variance of that cue (Cochran, 1937).  

 𝑟𝑖 = 1
𝜎𝑖

2⁄  (1) 

 In addition, this model assumes that the underlying estimates were unbiased, that is the 

cues were normally distributed and conditionally independent (Landy, Maloney, Johnston, & 

Young, 1995). The model is defined as: 

 𝑑̂ = 𝑤𝐼𝑑𝐼 + 𝑤𝐿𝑑𝐿 (2) 

Where, 
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 𝑤𝐼 = 𝑟𝐼/(𝑟𝐿 + 𝑟𝐼)  

𝑤𝐿 = 𝑟𝐿/(𝑟𝐿 + 𝑟𝐼)  

(3) 

 Where, dI and dL are the perceived location of the peak of the surface defined by illusory 

and low contrast luminance edges, respectively. The weights, wI and wL are calculated from the 

variance of the estimates for the illusory surface, σI
2 and low contrast luminance surface, σL

2. In a 

simple linear cue combination model, the weights (wI and wl) are assumed to be proportional to 

the inverse of the variances (𝜎2
𝐼 and 𝜎2

𝐿) of the cue distributions, so greater weight is placed on 

the more reliable cues (Ernst & Banks, 2002). This produces a combined estimate with a lower 

variance than any of the single-cue estimates. Thus, by combining the information from several 

depth cues the visual system can estimate the perceived depth with greater precision than it can 

by relying on any single cue (Ernst & Banks, 2002; Knill & Saunders, 2002; Landy et al., 1995). 

 

5.4.3 Our Model 

 In the model used here, the variances of the illusory and luminance-defined depth 

estimates were determined by the 2IFC discrimination task in Experiment 5.1 and the mean of 

those depth estimates were the PSEs calculated in Experiment 4.2 (see Hillis, Watt, Landy, & 

Banks, 2004). To evaluate the contribution of illusory and luminance-defined signals to the 

perceived depth of the combined surface, the average 𝑃𝑆𝐸𝑖 and 𝜎𝑖 was calculated for the illusory, 

low contrast luminance, and combined surfaces (𝑃𝑆𝐸𝐼  𝜎𝐼, 𝑃𝑆𝐸𝐿  𝜎𝐿, and 𝑃𝑆𝐸𝐶  𝜎𝐶, respectively). 

The optimal linear model in Equation 2 was fit to each observer’s dataset, resulting in an optimal 

𝑃𝑆𝐸𝑜𝑝𝑡 and 𝜎𝑜𝑝𝑡 for each observer (n=5). The mean of the observed and predicted sigma values 

can be seen in Figure 5.4. 
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Figure 5.4. Average sigma values for perceived depth estimates of the illusory (blue), low 

contrast luminance (grey), and combined surfaces (red). The predicted sigma value (yellow) is 

calculated from the linear cue combination model in Equation 2. Error bars represent one 

standard error of the mean. 

 Comparison of the observed 𝜎𝑐 (red) to the predicted 𝜎𝑜𝑝𝑡 (yellow) in Figure 5.4 revealed 

that the SD of observers’ depth estimates in the fused range was consistent with an optimal linear 

cue combination. Examination of individual SDs revealed that the majority of observers (3 of 5) 

were highly consistent with the predicted sigma values while the remaining observers 

demonstrated slightly larger SD than predicted. However, while the diplopic range revealed a 

similar overall pattern, relative to the fused data there was greater variability in the SD of depth 

estimates. This could be due to the increased noise in the diplopic stimulus, and/or it could 

indicate that another combination rule was being applied. The differences in reliability of the 

individual cues are supported by the interobserver differences in the observed PSE for depth 

estimates of the combined surface in Experiment 4.2. The depth of the combined peak varied 

between observers at the diplopia threshold, whereby some observers perceived the combine peak 

at the same disparity as the low contrast luminance edge while others perceived the peak closer to 

the peak of the illusory surface (Appendix C).  
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 I assessed if the observed PSEs were consistent with the predictions of the linear model 

by comparing the correlation between observed and predicted PSEs (Figure 5.5). The observed 

PSEs in the illusory (t(8)=16.79, p<0.0001, r=0.99), combined (t(8)=23.24, p<0.0001, r=0.99), 

and low contrast conditions (t(8)=3.63, p<0.007, r=0.79) were all highly correlated with the 

predicted PSEs from our model. Both the illusory and combined surface conditions closely 

followed predicted values (R2
adj=0.97 and 0.98, respectively). While the correlation was still 

highly significant in the low contrast condition, the proportion of variance explained by the 

model was slightly less compared to the illusory and combined conditions (R2
adj=0.58). As shown 

in Figure 5.5, the variability of both the observed and predicted PSEs increased in the diplopic 

range. Again, this was likely due to the decreased reliability of the disparity signal in the diplopic 

range. 
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Figure 5.5. Observed PSEs for the illusory (blue triangles), low contrast luminance (grey 

squares), and combined surfaces (red diamonds) plotted as a function of the predicted PSE from 

the optimal linear model (Equation 2). In each condition, the darker and lighter symbols represent 

the data from the fused and diplopia standard, respectively. The black dotted line represents the 

theoretical PSEs predicted by the optimal linear model. 

 

 While our results were strongly correlated with predictions from a linear cue combination 

model, we should be cautious when interpreting the results. Given that the observed estimates 

were only measured at two disparities (i.e. a fused and diplopic standard); a linear model is more 

likely to be a good fit since these data were only sampled at two data points. If a more complex 

non-linear model actually described the relationship within the data, it would be necessary to 

sample a minimum of three points. In Figure 5.5, the observed estimates do appear to deviate 

from linear predictions. A repeated-measures analysis of variance confirmed that the observed 

PSEs significantly deviate from the predicted values within the three stimulus conditions, 
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F(2,8)=14.96, p=0.002; 2=0.51. Pairwise t-tests confirmed the difference between observed and 

predicted values were highly significant for all three surface conditions (p<0.001).  

 Despite the apparent consistency of variances with those predicted by a linear 

combination model in Figure 5.4, the observed PSEs exhibited a systematic bias in which the 

means of the individual cue conditions (illusory and low contrast) were underestimated, while the 

combined estimates appeared larger than predictions. This pattern was seen in both the fused and 

diplopic range. When the illusory and low contrast surfaces were combined into an intermediate 

surface, observers consistently underweight the contribution of the illusory boundaries compared 

to the perceptually equated luminance edge. One possible explanation is that illusory boundaries 

were biased towards a more conservative interpolation that reflects prior assumptions of surface 

shape. Previous studies have suggested that the visual system may have prior assumptions biased 

towards the simplest surface interpretation when an image is compatible with more than one 

interpretation; due to lack of explicit shape information or ambiguous disparity matching (Albert, 

2001; Albert & Hoffman, 2000). This assumption could be learned by passively observing the 

frequency of surface representations (Nakayama & Shimojo, 1992) or patterns in local features, 

such as the probability of contour junctions their relationship with occlusion (Anderson & Julesz, 

1995; Rubin, 2001). A consequence of this assumption could be that the illusory boundaries were 

underweighted to compensate. However, despite the plausibility of this explanation of the 

predicted PSEs, underweighting of individual cues could also be a consequence of the 

interactions between the depth cues (disparity, occlusion, and luminance) that underlie the 

perceived depth of the surface. 

 

5.4.4 Alternative Cue Combination Models 
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 While observers do appear to take into account the weights of the individual cues defined 

by the inverse of the variance, the underestimation of individual cues and overestimation of the 

combined estimate, suggest that they may not be combined linearly. This was likely due to the 

influence of other sources of depth information that were not accounted for in this simple model. 

All surface conditions were defined partly by disparity, but the luminance relationships and 

occlusion features vary between conditions. Since all surface variants share underlying depth 

cues there could be more complex interactions, such as correlation or non-independence in the 

errors of the cue distributions and possibly the interactions between individual cues could be non-

linear (Oruç, Maloney, & Landy, 2003). Kogo et al. (2014) has recently proposed a non-linear 

dynamic weighting to describe the illusory depth elicited by the combination of occlusion cues 

and the depth from binocular disparity in Kanizsa configurations. They suggest that consistent 

cues may work together to enhance the depth perception of illusory surfaces and reduce the 

ambiguity of individual cues. Other studies have suggested that global geometry, such as the 

consistency of curvature defined by 2D or 3D cues may also factor into the integration of 

individual cues beyond a simple weighted linear summation (Stevens, 1991). It is possible that 

such interactions were present in our surface conditions that reflect non-independence between 

underlying depth cues. 

 To evaluate the contribution of the underlying depth from binocular disparity, occlusion 

features, and luminance relationships it would be beneficial to systematically vary the properties 

(i.e. separation, size, contrast, polarity) of the inducing elements and surface to assess the impact 

on the perceived depth of the surface peak. For example, a future cue combination paradigm 

could assess the perceived depth of the combined surface under a variety of luminance 

relationships while holding the depth from disparity and occlusion features constant. Given the 

potential of multiple interactions between underlying depth cues, this example above would 
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provide a way of systematically assessing the influence of luminance relationships at T-junctions 

while controlling the influence of other depth cues. This is important given the complexity of 

combining quantitative (disparity) and qualitative (occlusion and luminance) depth cues, as it is 

unclear how these two sources of depth information are combined (Landy, Maloney, Johnston, & 

Young, 1995). Typically studies examining the influence of quantitative and qualitative depth 

cues examine how these cues are combined when they are consistent or in conflict since the 

qualitative cues in isolation provide no additional numeric information. When the signals conflict 

there can be individual differences in the combination and interpretation of occlusion and 

disparity information (Cavanough, 1987). Previous research has shown that qualitative pictorial 

cues, such as convexity and familiarity can influence the perceived depth from disparity at large 

viewing distances (Bertamini, Martinovic, & Wuerger, 2008; Burge, Peterson, & Palmer, 2005). 

Neurons that are sensitive to border-ownership (i.e. figure-ground relationships) of occlusion 

junctions even show preference for stereo disparity that is congruent with the preferred side of the 

contour (Qiu & von der Heydt, 2005). However, it is unclear how these two sources of depth 

information are combined since these interactions could rely on quantitative or qualitative signals 

regarding depth relationships (Kogo et al., 2014). Thus, this initial cue combination analysis 

provides a starting point for the assessment of the combination of depth from disparity, occlusion 

features, and luminance relationships in stereoscopic Kanizsa figures.  

 

Chapter 6 

Discussion 

 

 

6.1 Summary 
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 The aim of this series of experiments was to understand the nature of the disparity signal 

that underlies the perception of illusory stereoscopic surfaces. To accomplish this, I evaluated the 

contribution of the conventional luminance-defined disparity at the inducing edge to the 

perceived depth of illusory surfaces by systematically varying the 2D and 3D properties of 

stereoscopic Kanizsa configurations. In Experiment 2.1, I introduced a novel approach to equate 

the salience of a stereoscopic luminance-defined surface to an illusory surface with equivalent 

disparity in the inducing region. In Experiment 3.1, I determined how to degrade the disparity 

signal without disrupting the illusory boundaries by presenting the stereoscopic illusory Kanizsa 

figures at each observer’s diplopia point. In Experiment 4.1, I demonstrated that the magnitude of 

perceived depth in these surfaces demonstrates a consistent linear increase as a function of 

disparity with surprisingly little degradation of perceived depth in the diplopic range. Experiment 

4.2 expanded on these results by illustrating that the addition of qualitative depth cues at the 

inducing elements critically impacts estimates of suprathreshold depth from binocular disparity. 

Experiment 5.1 confirmed my earlier hypothesis that the inclusion of the fused inducing edges 

forms a more reliable surface percept by increasing the precision of depth estimates of the surface 

peak. In addition, when the disparity signal was degraded (diplopia) there were interobserver 

differences in how the qualitative depth cues and depth from disparity were combined. 

Observers’ perceived depth estimates appeared to systematically depend on the most reliable 

depth cue, but when depth from disparity was less reliable (diplopia) there were individual 

preferences for one cue over another and it was unclear how these two sources of depth 

information were combined. The linear cue combination analysis in Section 5.4 confirmed that 

observers took the variance of individual cues into account, but the method of combination may 

have been more complex than a simple linear model (i.e. non-linear or non-independent 

combination methods). 
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6.2 Contribution of 2D and 3D Illusory Boundaries 

 The original motivation of this series of studies was to evaluate if illusory contours 

provided a disparity signal that supports illusory surface formation. Given the results of 

Experiment 4.1, it was clear that the proposed paradigm would not be able to distinguish between 

these alternatives. Thus, I could not determine the individual contribution of the 2D and 3D 

illusory boundaries to the perceived location of the surface peak. I hypothesized that if the 

inducing edge was no longer perceptually fused, then the illusory percept would degrade, 

emphasizing the role of disparity interpolation in determining surface shape. However, none of 

the surface configurations in Experiment 4.1 demonstrated any loss of perceived depth, even at 

large inducer disparities. As discussed in Chapter 4, one factor that could have contributed to the 

robust percepts in the diplopic range was the presence of the separation information, which could 

have provided an additional cue that could be used to scale estimates of the perceived depth. 

However, this is an unlikely explanation given that the estimated depth increases smoothly across 

the test range (for discussion see Section 4.3.1). The continued increase in the perceived depth of 

the peak of the illusory surface, well beyond the diplopia point was surprising given that disparity 

interpolation is poorer for large edge disparities and tends to fail in stimuli with characteristics 

that are dependent on coarse stereopsis (Wurger & Landy, 1989). It is possible that the robust 3D 

surface perception was due to the presence of the supporting geometry of the 2D occlusion 

information and its interaction with the disparity signal (Anderson & Julesz, 1995). In these 

experiments I held the structure of the occlusion geometry constant (i.e. contrast, polarity, and/or 

orientation at junctions), so I could not identify the individual properties of the occlusion features 

that interacted with the disparity signal. However, the results of Experiment 4.1 prompted 
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subsequent evaluation of the way in which the 2D occlusion features modulate the use of 

disparity in defining 3D illusory surfaces. 

 

6.3 Interpolation of Illusory Boundaries 

6.3.1 Perceived Shape of Illusory Boundaries 

 The sparse central region in stereoscopic Kanizsa figures (Figure 6.1A) allows for 

multiple patterns of interpolation between adjacent inducing elements (Figure 6.1B). Previous 

investigation of the interpolation of illusory boundaries (Albert, 2001) and disparity interpolation 

(Grimson, 1981), suggest that the visual system tends to be very conservative when interpolating 

contours within ambiguous regions. Similarly, the current results demonstrated that the depth at 

the peak of curvilinear illusory boundaries was consistently shallower than the sinusoidal 

luminance-defined template used to generate the stimuli (Experiment 4.2). Comparison of the 

perceived location of the illusory surface peak to the luminance-defined disparity at the tip of the 

inducing elements revealed that regardless of the magnitude of disparity, the illusory surface peak 

was consistently localized to a disparity equivalent to the relative disparity at the tip of the 

inducing edge. These results echo the depth magnitude estimates in Experiment 4.1, where 

estimated depth was consistently 40% less than predicted from the binocular geometry at the 

peak of the luminance-defined template. Thus, regardless of the estimation method, the perceived 

illusory surface peak was highly influenced by the disparity signal at the tip of the inducing edge.  
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Figure 6.1. (A) An example of a stereoscopic Kanizsa figure used in the illusory condition. The 

right and left images are arranged for crossed fusion. (B) An illustration of the side-view of the 

stereoscopic illusory surface. The solid black lines represent the luminance-defined inducing 

edge. The curved dashed line represents the maximum interpolation according to the luminance-

defined template. The straight dashed line represents the simplest possible pattern of interpolation 

directly in between the inducing elements. Note that although only select interpolation patterns 

are illustrated, intermediate patterns of interpolation are possible. 

 

 In the series of experiments reported here the perceived depth was measured at the 

illusory surface peak. It is possible that observers did not interpolate a curved surface, but instead 

interpolate a flat surface between adjacent inducing edges. As reported by others (Carman & 

Welch, 1992; Vreven, McKee, & Verghese, 2002) and in our preliminary observations, the 

interpolated surfaces consistently appeared curved. Moreover, in a brief follow-up experiment 

observers were asked to report the perceived shape of the surface configurations; observers 

consistently reported that they perceived a continuous curved illusory surface that reached a 

Z

Y

B 

A 



70 
 

maximum depth at a disparity equivalent to the relative disparity at the tip of the inducing 

elements. This suggests the interpolation profile was curved, but the height of the surface was 

greatly reduced compared to the template used to generate the stimuli. This reduction in curvature 

was likely due to the influence of the occlusion features, but further study is needed to understand 

this issue. 

 

6.3.2 Occlusion Features and Disparity 

 Regardless of its shape, the depth defined by the disparity signal and occlusion features at 

the inducing region must be combined and interpolated across the ambiguous region to create a 

3D stereoscopic surface. Anderson (2003) proposed that the presence of an occlusion edge 

imposes restrictions on the structure of disparity from local contrast signals that guide the visual 

system’s computation of surface structure. The occlusion constraint is simply the fact that nearer 

surfaces tend to occlude more distant surfaces, and not the converse. This simple rule can have 

significant implications for the surface configurations that can arise from the local contours in 

each eyes image. Anderson proposed a simple principle called the ‘contrast depth asymmetry 

principle’ to describe how occlusion constrains disparity. He argues that the edges that generate 

the local contrast signals must be assigned distances that are greater than or equal to the disparity 

of that contrast signal. Thus, for a given luminance edge, if the disparity of the edge is crossed 

(closer in depth), only one side of the contour can be assigned to this depth; conversely, if the 

disparity is uncrossed (recedes in depth), both sides of the contour are constrained to appear at 

least this distance. This approach is useful to determine how the combination of the disparity 

signal and occlusion features creates stereoscopic illusory T-junctions that resolve the border-

ownership (e.g. figure-ground) relationship by assigning the surface to the occluding edge (for 

details see Section 1.2). Similar guidelines have been proposed in studies of disparity 
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interpolation. For example, Mitchison and McKee (1987b) coined the ‘nearest disparity rule’ that 

states when a disparity signal is interpolated across an ambiguous region, the interpolated 

disparity tends to be equivalent to the disparity of the nearest unambiguous (i.e. matched) 

element. However, Anderson (2003) only applied this principle to frontoparallel Kanizsa 

configurations. The stereoscopic illusory surfaces used here contain disparity that varies 

continuously along the vertical inducing edge, but the results are consistent with Anderson’s 

formulation and with Mitchson and McKee’s proposal that the location of the illusory surface 

peak is consistently interpolated to a disparity equivalent to the relative disparity at the nearest 

luminance-defined element. The largest luminance-defined disparity present in the inducing 

region appears to constrain the maximum interpolated disparity.  

 

6.3.3 Disparity Ownership 

 It could be argued that the pattern of depth magnitude data reported here may have been 

obtained without the interpolation of a stereoscopic surface; that is, that observers were simply 

basing their depth judgements on the maximum disparity associated with adjacent luminance-

defined features. Indeed, as discussed above, studies of stereoscopic Kanizsa figures (Anderson, 

2003), disparity interpolation (Mitchison & McKee, 1987b), and the current study all 

demonstrate that perceived depth estimates of ambiguous regions are highly constrained by the 

depth of adjacent luminance-defined elements. To evaluate this possibility, I conducted a follow-

up experiment in which observers estimated the perceived depth magnitude of the inducer and the 

surface at the tip of the inducing element. If observers were basing their perceived depth 

estimates on the disparity at the tip of the inducing edge, then depth estimates of the inducer 

should always be equivalent to the perceived depth of the surface. In this study, five observers 

were asked to report the perceived depth of the inducer and surface at the tip of the inducing 
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element at three inducer disparities (0, 0.04, and 0.09deg). Observers were shown the 

stereoscopic Kanizsa figure for the same duration and under the same viewing conditions as 

described in Experiment 4.1; however, instead of using a sensor strip, observers made their 

estimates using a virtual ruler that appeared after stimulus presentation. On each trial they were 

asked to judge either the depth of the inducer or surface (text indicating the trial type, ‘disk’ or 

‘surface’, was positioned below the stimulus). 

 The mean estimated depth of the inducer and surface are plotted as a function of inducer 

disparity in Figure 6.2. One observer was excluded due to a large overestimation at zero 

disparity. A repeated-measures analysis of variance revealed a significant interaction between the 

two conditions as a function of inducer disparity, F(2,6)=20.75, p=0.002, 2=0.42. Pairwise 

comparisons with Benjamini and Hochberg’s (1995) correction confirmed a significant difference 

in perceived depth between the two largest test disparities when estimating the depth of the 

surface (p=0.049), but no significant increase when estimating the depth of the inducer (p=0.18). 

Thus, not only were the perceived depth estimates larger when estimating the surface, the 

estimates showed a linear increase as a function of disparity while estimates of the inducer did 

not. 
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Figure 6.2. Mean depth estimates (n=4) for the inducer (black) and the surface (blue) at the tip of 

the inducing element. Error bars represent one standard error of the mean. 

 

 These results provide strong evidence that in fact observers do see a surface in these 

configurations, and that they judge its depth. Regardless of the magnitude of disparity along the 

vertical inducing edge, the depth of the high contrast inducer was near zero and demonstrated no 

increase as a function of disparity. Thus, observers were not basing their depth estimates on just 

the disparity at tip of the inducing elements, the disparity along the inducing edge was assigned 

to the illusory surface, not the inducing element. As discussed in Section 1.4, the relationship 

between the border-ownership defined by the 2D occlusion geometry and the direction of the 

depth defined by binocular disparity is critical to the formation of a stable 3D illusory surface 

(Anderson, 2003; Nakayama & Shimojo, 1992). The 2D border-ownership is resolved by the 

global occlusion geometry that assigns the horizontal and vertical inducing edges to the illusory 

surface and the outer edge of the disk to the inducer (Section 1.2). The results above demonstrate 

that this 2D border-ownership in combination with disparity ownership along the vertical 
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inducing edge is critical to defining figure-ground relationships. This conclusion is consistent 

with previous work by Kogo et al. (2014) who argued the fundamental role of 2D border-

ownership in defining the depth and lightness percepts in illusory Kanizsa figures, in addition to 

the critical role of the combination of 2D occlusion geometry and binocular disparity in defining 

the perceived depth of the surface. Thus, the 2D occlusion geometry influences the disparity 

ownership of the boundaries and their combination defines the 3D figure-ground relationships 

between the surface and the inducing elements. 

 

6.4 Combined Surfaces 

6.4.1 Introduction 

 When an alternative, luminance-defined, disparity signal was introduced to the central 

region of a Kanizsa figure, the peak was perceived to lie at an intermediate depth between the 

relative disparity at the tip of the inducing edge and the luminance-defined disparity at the surface 

peak (Experiment 4.2). Given that the magnitude of disparity along the vertical surface edge was 

equivalent in the combined and low contrast conditions, this result seems counterintuitive. 

Importantly, given that the surfaces were generated using perspective projection, the reduction in 

perceived depth in the combined surface was not likely due to conflict between the disparity 

signal and 2D occlusion geometry (see Section 1.6.2). In spite of this, the addition of a luminance 

signal in the central region of a stereoscopic Kanizsa figure reduced the height of the perceived 

peak relative to the luminance-defined peak disparity.  

 A critical difference between the combined and illusory surface configurations was that 

all T-junctions in the combined surface were explicitly defined by a change in luminance, while 

the T-junctions in the latter were illusory. Thus, unlike the illusory surface, the edge of the T-

junction at the tip of the inducing edge (and surface peak) was no longer ambiguous. The 
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perceived depth of the combined surface reflects the combination of the occlusion features at the 

tip of the inducing edge, the disparity signal along the vertical surface edge, and the luminance in 

the central region. The disparity signal was the only quantitative depth information, in this 

configuration, the addition of luminance in the central region (like the occlusion features) 

provided additional qualitative information regarding the sign of depth (Gilchrist, 1977; Gilchrist, 

1980). The depth estimates of the surface peak in Experiment 4.2 confirm that a surface defined 

by the above combination of depth cues has a reduced depth compared to the luminance-defined 

disparity present at the surface peak. While estimates of the low contrast surface peak without the 

inducing elements (defined by disparity and luminance only) were equivalent to the peak 

disparity, the addition of the inducing elements behind the surface significantly reduced the 

perceived location of the peak. One or more of the occlusion features at the inducing elements 

appeared to interact with the disparity signal along the surface edge. 

 

6.4.2 Luminance, Occlusion, and Disparity 

 While the reduction in perceived depth in the combined surface likely relied on similar 

occlusion and disparity relationships that lead to the generation of illusory boundaries, the impact 

of the occlusion geometry at the inducers on the perceived disparity at the surface peak could 

have scaled with the luminance relationships at image junctions (Adelson, 1993). As discussed in 

Chapter 2, the effects of luminance contrast on stereoscopic thresholds are well established 

(Frisby & Mayhew, 1978; Legge & Gu, 1989; Ogle & Weil, 1958). However, these factors do not 

necessarily affect suprathreshold depth estimates in the same manner (Patel, Bedell, Tsang, & 

Ukwade, 2009; Schor & Howarth, 1986). Previous studies demonstrate that lowering the 

luminance contrast at a given disparity can cause the object to appear more distant (Fry, 

Bridgman, & Ellerbrock, 1949; Rohaly & Wilson, 1999), and in some cases the magnitude of 
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perceived depth directly depends on the luminance contrast of the surface (Chen, Chen & Tyler, 

2016). In Chapter 2, I demonstrated that when the contrast of a luminance-defined surface (1.7%) 

was near contrast threshold, observers did not perceive a coherent stereoscopic illusory surface. 

However, when the contrast was doubled (3.3%) a stable 3D surface was perceived. As long as 

the contrast of the surface relative to the background luminance was above this value, the 

perceived location of the peak of the luminance-defined surface was equivalent to the luminance-

defined disparity at the surface peak (low and high contrast surfaces in Experiment 4.2). 

Luminance and disparity interact over a range of low-luminance values, but as soon as the 

luminance contrast reaches a given level (suprathreshold) the 3D surface percept was veridical; 

thus, further increases in luminance provide no additional benefit. 

 Anderson (2003) suggested that the luminance relationships at depth discontinuities (i.e. 

occlusions) could impact the interpolation of depth across ambiguous regions (Wurger & Landy, 

1989). Previous research has demonstrated in configurations with disparity-defined elements of 

varying luminance, perceived depth tends to be biased in the direction of the surface with the 

higher contrast (Foley, 1976; Foley & Richards, 1977; Rohaly & Wilson, 1999). In addition, 

when multiple disparity-defined plaid surfaces are overlaid in depth, luminance contrast can act 

as an ordinal depth cue, with higher contrast gratings appearing in front of low contrast gratings 

(Stoner & Albright, 1998). The high contrast luminance patterns may enhance perceived depth by 

improving localization of sparse elements and facilitating binocular correspondence.  

 It is possible that the local contrast signals along the vertical surface edge in the combined 

Kanizsa configurations influenced the interpolation of depth within the central region. In the 

combined surface, the vertical surface edge had a region of high contrast at the inducing edge and 

a region of low contrast between adjacent inducers. The high contrast inducing region had 

smaller disparities than the region of low contrast. If the higher contrast region of the surface 
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edge was given more weight than the low contrast region, the resulting combination would be 

reduced compared to the luminance-defined disparity at the surface peak.  

 

6.5 Conclusions 

 The results of this series of experiments demonstrate that qualitative depth cues, such as 

2D occlusion features and luminance relationships, critically impact estimates of metric depth 

from binocular disparity. Previous investigations of depth processing have emphasized the role of 

ordinal depth cues on depth from binocular disparity (Bertamini, Martinovic, & Wuerger, 2008; 

Burge, Peterson, & Palmer, 2005); the experiments reported here are the first systematic 

evaluation of the accuracy and precision of suprathreshold depth estimation in stereoscopic 

illusory surfaces. The assessment of suprathreshold depth estimates allowed this work to be 

evaluated in the context of a cue combination paradigm. Further evaluation is needed to 

appropriately model the combination of qualitative (occlusion and luminance) and quantitative 

(stereopsis) cues to depth in ambiguous configurations. I demonstrated that the 2D border-

ownership derived from occlusion features and disparity ownership determine subsequent figure-

ground relationships in three-dimensional space. Future experiments will build on these results 

by systematically exploring how the relationship between the occlusion and luminance features at 

junctions affect the interpolation of depth across the central region in a cue combination 

paradigm. The current results support growing evidence that 2D occlusion features contribute 

rich information about three-dimensional surface structure by influencing perceived depth from 

binocular disparity. 
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Appendices 

 

Appendix A 

Table A.1 

Individual Diplopia Thresholds from Experiment 2.1 

 

Observer Diplopia Point 

(deg) 

Lower 95% CI Upper 95% CI 

BH 0.174 0.168 0.18 

LD 0.168 0.157 0.178 

LW 0.167 0.158 0.176 

MC 0.165 0.155 0.175 

MG 0.172 0.165 0.18 

MJ 0.143 0.135 0.152 

AS 0.142 0.134 0.149 

Note: Diplopia point represents the relative disparity at the tip of the vertical inducing edge when 

the probability of an observer perceiving the inducing edge as no longer perceptually fused is 

50%. 
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Figure B.1. Individual functions for the High Contrast (black), Low Contrast (grey), Illusory 

Only (blue), and Combined conditions (red) in the fused range. Each function is plotted as the 

proportion of in front response as a function of probe disparity in degrees. The PSE of the 

function represents the estimated disparity of the peak of each type of surface. 
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Figure C.1. Individual functions for the High Contrast (black), Low Contrast (grey), Illusory 

Only (blue), and Combined conditions (red) at the diplopia threshold. Each function is plotted 

as the proportion of in front response as a function of probe disparity in degrees. The PSE of 

each function represents the estimated disparity of the surface peak. 
 

Appendix D 

Table D.1 

Mean Differences in Depth Magnitude and Disparity Probe Tasks 
 

  Depth Magnitude Disparity Probe 

Comparison Observer Mean Diff. (mm) PSE Diff. (deg) PSE Diff. (mm) 

Combined - Illusory Only 

 

 

BH -0.64 0.019 3.01 

LD 3.00 0.020 3.17 

AS -7.30 0.012 1.91 

LW -0.03 0.018 2.86 

MC 6.24 0.029 4.44 

MJ 0.37 0.020 3.12 

Low Contrast - Illusory Only 

 

 

BH -1.71 0.039 6.16 

LD -4.55 0.039 6.16 

AS -6.32 0.021 3.33 

LW 1.53 0.040 6.32 

MC 1.19 0.038 5.81 

MJ 0.13 0.038 5.91 

Note: All values are calculated for a fused surface with an inducer disparity of 0.087deg (i.e. fused 

standard). Mean Diff. represents the difference between the means of the comparison in the depth 

magnitude estimation task in millimetres. The PSE Diff. represents the difference between the PSEs in 

millimetres calculated using the conventional formula relating disparity to predicted depth at a known 

viewing distance (Howard & Rogers, 2012).  
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