
Top-Down Selection in

Convolutional Neural

Networks

Mahdi Biparva

A dissertation submitted to the Faculty of Graduate Studies

in partial fulfilment of the requirements

for the degree of

Doctor of Philosophy

Graduate Program in

Electrical Engineering and Computer Science

York University

Toronto, Ontario, Canada

September, 2019

c©Mahdi Biparva, 2019

Abstract

Feedforward information processing fills the role of hierarchical feature encod-

ing, transformation, reduction, and abstraction in a bottom-up manner. This

paradigm of information processing is sufficient for task requirements that

are satisfied in the one-shot rapid traversal of sensory information through

the visual hierarchy. However, some tasks demand higher-order information

processing using short-term recurrent, long-range feedback, or other processes.

The predictive, corrective, and modulatory information processing in top-down

fashion complement the feedforward pass to fulfill many complex task require-

ments. Convolutional neural networks have recently been successful in address-

ing some aspects of the feedforward processing. However, the role of top-down

processing in such models has not yet been fully understood. We propose a

top-down selection framework for convolutional neural networks to address the

selective and modulatory nature of top-down processing in vision systems. We

examine various aspects of the proposed model in different experimental set-

tings such as object localization, object segmentation, task priming, compact

neural representation, and contextual interference reduction. We test the hy-

pothesis that the proposed approach is capable of accomplishing hierarchical

ii

feature localization according to task cuing. Additionally, feature modulation

using the proposed approach is tested for demanding tasks such as segmenta-

tion and iterative parameter fine-tuning. Moreover, the top-down attentional

traces are harnessed to enable a more compact neural representation. The

experimental achievements support the practical complementary role of the

top-down selection mechanisms to the bottom-up feature encoding routines.

iii

Dedication

To my lovely wife, for her unconditional love and sacrifices ...

To my mother, for her loving heart and prayers ...

To my father, for being so generous and considerate ...

And to the one I am desperately seeking to visit one day ...

iv

Acknowledgements

I am speechless to express how grateful I am to all the people who made this

thesis possible. My sincere appreciation goes to my supervisor, Prof. John

Tsotsos, whose knowledge and patience aided me considerably during my PhD

journey. I am grateful to my supervisory committee, Prof. Richard Wildes

and Prof. Marcus Brubaker, for their supports and insightful comments. I

have been fortunate to be supervised by these wonderful people, and without

them all, I could not have finished this thesis.

I am extremely grateful to all my close friends and colleagues who made

this journey much more enjoyable and helped me through difficult times with

their sincere supports and encouragement. My special thanks go to Calden

Wloka, Markus Solbach, Toni Kunic, Mohammad Hosein Amini, Sajad Shirali-

Shahreza, and Ali Mehrkish for their endless help and support during my PhD

journey. My kind thanks go to all my previous teachers and instructors.

My deepest appreciation goes to my lovely wife, Najmeh Bordbar, who has

always been next to me throughout the most difficult and challenging moments

of my PhD program. Nothing I could ever do would repay you Najmeh for all

sacrifices you have done for me. Without your love and support, this thesis

v

would not have happened.

I would like to express my eternally sincere gratitude to my father, Rasool,

my mother, Zohreh, my sister, Zahra, and my brothers, Mohsen and Moham-

mad Amin, who remotely far from home supported me throughout these years.

I am also thankful to my father-in-law, Kamal, my mother-in-law, Zohreh, and

my sister-in-law, Maedeh for their kind and sincere supports. I would be for-

ever indebted for their unconditional love and encouragement. Thank you all

for all the sacrifices you made to help me to complete this PhD.

Last but not least, I am grateful of the blessings that the God has bestowed

upon me in this wonderful life, the opportunity to live long and healthy to see,

think, and learn what, why, and how he has created in this amazing world.

vi

Table of Contents

Abstract ii

Dedication iv

Acknowledgements v

Table of Contents vii

List of Tables xii

List of Figures xv

1 Introduction 1

2 Background 8

2.1 Introduction . 8

2.2 Object Recognition with Convolutional Networks 12

2.2.1 The Basic Building Blocks 15

2.3 Visual Attention in Deep Learning for Object Recognition . . 20

2.3.1 Early-Localization: Hypothesizing for Objectness . . . 21

vii

2.3.2 Late-Localization: Top-Down Attention 31

3 Top-Down Selection for Localization 46

3.1 Abstract . 47

3.2 Introduction . 47

3.3 Related Work . 52

3.4 Model . 53

3.4.1 STNet . 53

3.4.2 Structure of the Top-Down Processing 54

3.4.3 Stages of Attentive Selection 57

3.5 Experimental Results . 64

3.5.1 Implementation Details 65

3.5.2 Weakly Supervised Localization 67

3.5.3 Class Hypothesis Visualization 70

3.6 Conclusion . 74

4 Priming in Neural Network 75

4.1 Abstract . 76

4.2 Introduction . 76

4.3 Related Work . 79

4.4 Approach . 81

4.4.1 Training . 86

4.5 Experimental Results . 87

4.5.1 Object Detection . 88

4.5.2 Cue Aware Training 93

viii

4.6 Conclusion . 99

5 Object Segmentation Using Selective Attention 100

5.1 Abstract . 100

5.2 Introduction . 101

5.3 Related Work . 105

5.4 Selective Segmentation Network 108

5.4.1 Method Overview . 108

5.4.2 Bottom-Up Feature Encoding 110

5.4.3 Loose Spatial Detection 114

5.4.4 Attention Initialization 119

5.4.5 Top-Down Selection . 121

5.4.6 Segmentation Prediction 124

5.4.7 LSD Pre-training . 128

5.4.8 Multi-loss Training . 132

5.5 Experimental Results . 133

5.5.1 Semantic Segmentation 134

5.5.2 Ablation Studies . 144

5.5.3 Noise Interference Robustness 146

5.6 Conclusion . 149

6 Attention for Compact Neural Representation 150

6.1 Abstract . 150

6.2 Introduction . 151

6.3 Related Work . 154

ix

6.4 Attention Drives Weight Pruning 155

6.4.1 Method Overview . 157

6.4.2 Notations . 158

6.4.3 Top-Down Processing 159

6.4.4 Kernel Importance Maps 160

6.4.5 Attentive Pruning . 161

6.4.6 Retraining Strategy . 162

6.5 Experimental Results . 164

6.5.1 The MNIST Dataset 165

6.5.2 The CIFAR Dataset 167

6.6 Conclusion . 168

7 Contextual Interference Reduction 169

7.1 Abstract . 169

7.2 Introduction . 170

7.3 Selective Attention for Network Fine-Tuning 173

7.3.1 Iterative Feedforward Pass 174

7.4 Experimental Results . 179

7.4.1 Implementation Details 179

7.4.2 Wide MNIST Dataset 180

7.5 Conclusion . 190

8 Conclusions and Future Directions 191

8.1 Summary of Contributions . 192

8.2 Future Directions . 197

x

9 Bibliography 200

Appendices 228

A Supplementary Materials 228

A.1 Implementation Details of STNet 228

A.1.1 STNet Implementation for Different Types of Layers . 228

A.1.2 Generation of Class Hypothesis Maps 230

A.1.3 Experimental Results 233

A.2 Additional Priming Examples 239

xi

List of Tables

3.1 Demonstration of the STNet configurations in terms of the hy-

perparameter values. Lprop is the name of the layer at which the

attention map is calculated. OFC and OBridge are the offset val-

ues of the SI selection mode at the fully-connected and bridge

layers respectively. α is the trade-off multiplier of the SC selec-

tion mode. δpost represents the post-processing threshold value

of the attention map. 63

3.2 Comparison of the STNet localization error rate on the Ima-

geNet validation set with the previous state-of-the-art results.

The bounding box is predicted given the single center crop of the

input images with the TD processing initialized by the ground

truth category label. (1) Results calculated using the publicly

published code by [1, 2]. (2) Based on the result reported by

[2]. Otherwise, the results are reported by the reference work

cited on the left. 64

xii

5.1 The output channel size of computational units in the segmen-

tation layers is given for AlexNet and VGG at three different

levels. b, r, q are the units defined in 5.4.6. 127

5.2 Parallel and Sequential LSD performance results on the Pascal

VOC 2012 validation set once the BU network is fine-tuned on

the extended Pascal dataset. 134

5.3 Comparison of different variants of SSN using AlexNet on PAS-

CAL VOC valid 2012. We use mean pixel accuracy and mean

IoU metrics to report the performance. CAT, MAX, THD,

ADD, and MUL stands for concatenation, top-1, and thresh-

olding, additive, and multiplicative. 135

5.4 Comparison of SSN with the baseline model on PASCAL VOC

validation set using mean IoU metric. SSN++ is trained on the

extended training set. 135

5.5 Comparison of SSN with the state-of-the-art on PASCAL VOC

2012 valid set. All methods use VGGNet as the backbone net-

work. 135

5.6 Comparison of SSN with the baseline and state-of-the-art on

two additional segmentation benchmark datasets: CamVid and

Horse-Cow. The results are reported on the test sets. Note that

the DeepLab-LargeFOV* results are taken from[3]. 140

5.7 Ablation Studies on the TD modulatory role, the error sig-

nal propagation, number of gating layers into the segmentation

pipeline using AlexNet on the Pascal VOC 2012 validation set. 146

xiii

6.1 LeNet error rate and compression ratio on MNIST dataset using

the attentive connection pruning. 164

6.2 Comparison of the Compression ratio of the proposed method

with the baseline approaches using LeNet-300-100 and LeNet-

5 network architectures on MNIST. Error degradation is the

difference between the original error and the error at the end of

the retraining phase. 165

6.3 LeNet and CifarNet error rate and compression ratio on CIFAR-

10 dataset using the attentive connection pruning. 168

7.1 The classification and localization rates of the selective fine-

tuned network on the WMNIST dataset. 180

xiv

List of Figures

3.1 STNet consists of both BU and TD processing streams. In the

BU stream, features are collectively extracted and transferred to

the top of the hierarchy at which label prediction is generated.

The TD processing (bottom), on the other hand, selectively

activate part of the structure using attention processes. Fig-

ure schematically illustrates AlexNet architecture. The middle

blue boxes represent hidden and gating activity tensors on the

BU and TD pathways. The last three squares represent fully-

connected layers. Receptive fields are schematically depicted

with small red boxes. The blue circles illustrate the selection

regions that the information propagates to in the TD stream. . 56

3.2 Schematic Illustration of the sequence of interactions between

the BU and TD processing streams using the three-stage atten-

tion process. 58

xv

3.3 Modular diagram of the interactions between various blocks of

processing in both the BU and TD streams. The arrow direc-

tion shows the flow of the information to each computational

block. The layers schematically represent that the BU and TD

processing is done on feature maps with spatial and channel

dimensions. Thick arrows represent vector values while thin

arrows represent scalar values 59

3.4 Illustration of the predicted bounding boxes in comparison to

the ground truth for ImageNet images. In the top section,

STNet is successful to localize the ground truth objects. The

bottom section, on the other hand, demonstrates the failed

cases. The top, middle, and bottom rows of each section de-

pict the bounding boxes from the ground truth, ST-VGGNet,

and ST-GoogleNet respectively. 65

3.5 Demonstration of the attention-driven class hypothesis maps for

ImageNet images. In both top and bottom sections, rows from

top to bottom represent ground truth boxes on RGB images,

the CH map from ST-VGGNet, and the CH map from ST-

GoogleNet respectively. 70

xvi

3.6 The critical role of the second stage of selection is illustrated

using CH visualization. In the top row of each section, im-

ages are presented with boxes for the ground truth (blue), full-

STNet predictions (green), and second-stage-disabled predic-

tions (red). In the second and third rows of each section, CH

maps from the full and partly disabled STNet are given respec-

tively. 72

3.7 We demonstrate using ST-VGGNet the confident region of the

accompanying object highly correlating with the true object

category. The top row of each section contains images with

the ground truth (blue) and predicted (red) boxes. CH maps

highlight the most salient regions in the bottom row of each

section. 73

4.1 Visual priming: something is hidden in plain sight in this image.

One is unlikely to notice it without a cue for what it is (for an

observer that has not seen this image before). Once a cue is

given, perception is modified to allow successful detection. See

the supplementary material in Sec. A.2 for the full answer. . . 77

4.2 A neural network can be applied to an input in either an unmod-

ified manner (top), pruning the results after running (middle)

or priming the network via an external signal (cue) in image to

affect all layers of processing (bottom). 82

xvii

4.3 Overall view of the proposed method to prime deep neural net-

works. A cue about some target in the image is given by an

external source or some form of feedback. The process of prim-

ing involves affecting each layer of computation of the network

by modulating representations along the path. At the top, the

stack of layers in N are schematically illustrated by the blue

blocks. At the bottom, the coefficient parameters Wi in Np are

illustrated by the yellow blocks. 86

4.4 (a) Performance gains by priming different parts of the SSD

objects detector. Priming early parts of the network causes the

most significant boost in performance. Black dashed line shows

performance by pruning. (b) Testing variants of priming against

increasing image noise. The benefits of priming become more

apparent in difficult viewing conditions. The x axis indicates

which block of the network was primed (1 for primed, 0 for not

primed). 88

4.5 Effects of early priming: we show how mAP increases when we

allow priming to affect each layer in turn, from the very bottom

of the network. Priming early layers has a more significant effect

than doing so for deeper ones. The numbers indicate how many

layers were primed from the first and second blocks of the SSD

network, respectively. 90

xviii

4.6 Priming vs. Pruning. Priming a detector allows it to find ob-

jects in images with high levels of noise while mostly avoiding

false-alarms. Left to right (a,b): decreasing detection thresh-

olds (increasing sensitivity). Top to bottom: increasing levels of

noise. Priming (blue dashed boxes) is able to detect the horse

(a) across all levels of noise, while pruning (red dashed boxes)

does not. For the highest noise level, the original classifier does

not detect the horse at all - so pruning is ineffective. (b) Priming

enables detection of the train for all but the most severe level of

noise. Decreasing the threshold for pruning only produces false

alarms. We recommend viewing this figure in color on-line. . . 91

4.7 Effect of priming a segmentation network with different cues. In

each row, we see an input image and the output of the network

when given different cues. Top row: cues are respectively bottle,

dining table, person. Bottom row: cues are respectively bus,

car, person. Given a cue (e.g, bottle), the network becomes

more sensitive to bottle-like image structures while suppressing

others. This happens not by discarding results but rather by

affecting computation starting from the early layers. 95

xix

4.8 Comparing different methods of using a cue to improve seg-

mentation: From left to right: input image (with cue overlayed),

ground-truth (all classes), unprimed segmentation, pruning type-

2, pruning type-1, and priming. In each image, we aid the

segmentation network by adding a cue (e.g, “plane”). White

regions are marked as “don’t care” in the ground truth. . . . 96

4.9 Priming a network allows discovery of small objects which are

completely missed by the baseline method or ones with uncom-

mon appearance (last row). From left to right: input image,

ground-truth, baseline segmentation [4], primed network. . . 98

5.1 Illustration of the modular information flow of the Selective

Segmentation Network (SSN) at each processing stage of the

inference and learning phases. The stages in orange belong to

the inference phase at which given some unknown test image,

the predicted segmentation outputs are returned. The stages

in yellow represent the learning phase at which SSN parameters

are learned. The text provides details for each of the figure panels.107

5.2 Illustration of SSN consisting of multiple parts such as the

feedforward BU representation, the classification LSD module,

the TD selection network, and the up-sampling segmentation

pipeline. Arrows show the information flow from one part to

another part at the learning phase. The input and output at

each stage are labeled using the variables which are defined in

the subsequent sections. 111

xx

5.3 The BU network defined using the AlexNet and VGG-16 con-

volutional neural network architectures on the right and left

respectively. The green box over the input image is the total

receptive field size of a unit on the top feature map h. Blue

boxes are pooling layers and the black boxes are convolutional

layers with ReLU activation functions. Since the total receptive

field size is smaller than the input image size, the top feature

maps have size of greater than 1. 112

5.4 Parallel (right) and Sequential (left) architecture approaches to

design the Loose Spatial Detection (LSD) module. Each shade

of blue represents a group of layers with the intermediate layers

li, the output prediction layers ci and the output score maps

si. The top feature layer is the last layer of the BU network

that outputs the feature maps h. The layer connectivity of

the parallel and sequential choices along with the spatial size

reduction from one group to another is depicted schematically. 113

5.5 The receptive field size of three LSD groups over the input fea-

ture map h. The shades of blue represent the receptive field

and the output score map of a particular group of LSD layer. 114

xxi

5.6 Illustration of the segmentation network with different para-

metric and modulation nodes. Each block receives the hidden

(blue) and the gating (red) activity inputs. The selective gat-

ing units modulate the hidden units at the first node M . At

each layer, after input fusion, information is integrated into the

main segmentation pipeline using the second modulation node

M . We conduct experiments on three different types of modu-

lations: addition, multiplication, and concatenation. The layer

label subscript i is neglected for the sake of brevity. 125

5.7 Comparison of the segmentation predictions of SSN with FCN

on Pascal dataset. From left to right: RGB images, ground-

truth, FCN predictions, SSN predictions. 141

5.8 Comparison of the segmentation predictions of SSN with FCN

on CamVid dataset. From left to right: RGB images, ground-

truth, FCN predictions, SSN predictions. 142

5.9 Comparison of the segmentation predictions of SSN with FCN

on Horse-Cow part parsing dataset. From left to right: RGB

images, ground-truth, FCN predictions, SSN predictions. . . . 143

5.10 Demonstrating the role of the number of levels of TD and BU

modulation on the segmentation prediction. From left to right:

RGB images, ground-truth, SSN with 1 level of modulation,

SSN with 2 levels of modulation, and SSN with 3 levels of mod-

ulation respectively. 145

xxii

5.11 Robustness of SSN is measured at different interference lev-

els (σ) for the uniform (UN), salt-pepper (SP), and box oc-

clusion (BO) types. σ determines the bandwidth of the uni-

form noise (255 × σ), the probability of having salt-pepper

noise at a location, and the length of the occlusion box (σ ×

min(himage, wimage)) respectively. The modulatory role of the

depth of the TD selection is demonstrated for SSN-k with in-

puts at k number of levels into the segmentation pipeline. . . 147

5.12 Three different levels of uniform noise is added to the RGB

images. From left to right the noise level is 0.25, 0.45, 0.65

respectively. 148

5.13 Three different levels of salt-pepper noise is added to the RGB

images. From left to right the noise level is 0.25, 0.45, 0.65

respectively. 148

5.14 Three different levels of box-occlusion noise is added to the RGB

images. From left to right the noise level is 0.25, 0.45, 0.65

respectively. 148

xxiii

6.1 Schematic illustration of the proposed method for connection

pruning that leads to the reduction of the number of network

parameters. On the left side, a toy multi-layer feedforward

network is shown. On the right, the corresponding TD net-

works is given. At each layer, once the active connections w̃ are

computed using the TD selection mechanisms, they are addi-

tively accumulated into the persistent buffer V ; subsequently,

the mask tensor M is scheduled to get updated after a number

of iterations. The feedforward pass is always additively modu-

lated with the mask tensors M. The arrows show the direction

of information flow. 156

6.2 Detailed demonstration of different stages of computation of

the BU and TD passes for selective connection pruning. At each

layer, the inputs to the TD selection unit, the active connections

w̃, the additive accumulation into the persistent buffer, and the

multiplicative mask of the BU kernel weight are depicted. . . . 163

7.1 The TD network modulates the BU feature representation in

the iterative BU pass. The total loss is defined as the weighted

sum of the loss of the first and second BU passes. 177

7.2 The gating activities at each layer modulate the hidden activi-

ties in the iterative BU pass. 178

xxiv

7.3 Illustration of sample digit images in the WMNIST dataset.

The red boxes are the predicted bounding boxes using the LeNet-

5 BU pass for feature encoding and the TD selection pass for

object localization. 181

7.4 Demonstration of the effect of the additive uniform noise in the

background and the comparison of the localization performance

of the the LeNet-5 reference model (top) with the selective fine-

tuned model (bottom). The ground truth and predicted boxes

are depicted with the blue and red boxes respectively. The

additive noise is taken from a uniform distribution with a lower

and upper bounds of 0 and 100 respectively. 182

7.5 The effect of the additive noise distortion in the background

on the classification accuracy rate. Ref and SFT refer to the

reference and selectively fine-tuned models respectively. The

vertical axis represents the robustness of the fine-tuned network

at different noise levels. Robustness is calculated by the ratio

of the accuracy rates of the noisy images over the clean images.

The horizontal axis indicates the maximum amount of pixel

intensity the uniform distribution may add to the background

pixels. 183

xxv

7.6 The effect of the additive noise in the background on the local-

ization accuracy rate. Ref and SFT refer to the reference and

selective fine-tuned models respectively. The horizontal axis

indicates the maximum amount of pixel intensity the uniform

distribution may add to the background pixels. Robustness is

calculated by the ratio of the accuracy rates of the noisy images

over the clean images. 184

7.7 Random samples generated by the four noise methods: (a)

Grating: radial grating with random centers, (b) MoG: Mix-

ture of Gaussians, (c) Squares: squares with random intensity

values, and (d) RLines: short lines with random centers and

orientation. 186

7.8 Comparing the effect of different methods of generating con-

textual noise perturbation on the classification accuracy. From

left to right: (a) Grating: radial grating with random centers,

(b) MoG: Mixture of Gaussians, (c) Squares: squares with ran-

dom intensity values, and (d) RLines: short lines with random

centers and orientation. The vertical axis represent the classifi-

cation robustness metric, and the horizontal axis represent the

maximum pixel intensity the noise adds to the background. . . 187

xxvi

7.9 Comparing the effect of different methods of generating con-

textual noise perturbation on the localization accuracy. From

left to right: (a) Grating: radial grating with random centers,

(b) MoG: Mixture of Gaussians, (c) Squares: squares with ran-

dom intensity values, and (d) RLines: short lines with random

centers and orientation. The vertical axis represent the local-

ization robustness metric, and the horizontal axis represent the

maximum pixel intensity the noise adds to the background. . . 187

7.10 Comparison of the label and bounding box predictions of the

LeNet-5 reference and fine-tuned networks once the background

regions is perturbed with four different types of noise meth-

ods. In each section, the top and bottom rows represent pre-

dictions from the reference and selective fine-tuned networks.

The ground truth and predicted bounding boxes are illustrated

with blue and red boxes respectively. The ground truth and

predicted labels are shown at the top-left and top-right of their

corresponding box respectively. 188

xxvii

7.11 Comparison of the label and bounding box predictions of the

AlexNet reference and fine-tuned networks once the background

regions is perturbed with four different types of noise meth-

ods. In each section, the top and bottom rows represent pre-

dictions from the reference and selective fine-tuned networks.

The ground truth and predicted bounding boxes are illustrated

with blue and red boxes respectively. The ground truth and

predicted labels are shown at the top-left and top-right of their

corresponding box respectively. 189

A.1 Illustration of STNet localization performance for both VG-

GNet and GoogleNet. The top, middle, and bottom row of

each section contains images demonstrating the ground truth

bounding boxes, bounding box predictions of ST-VGGNet, and

ST-GoogleNet respectively. 234

A.2 Unsuccessful localization cases based on STNet bounding box

predictions are demonstrated. Multi-Instance and Correlated

Accompanying Object scenarios are the two main sources of

STNet unsuccessful localization. Each section contains image

rows for ground truth, ST-VGGNet and ST-GoogleNet bound-

ing boxes from top to bottom. 235

A.3 Class Hypothesis Visualization using STNet. In each section,

the top row contains RGB images depicting ground truth bound-

ing boxes, and the middle and bottom row contains the CH

maps from ST-VGGNet and ST-GoogleNet respectively. . . . 236

xxviii

A.4 The effect of the context inference imposed by the learned repre-

sentation is illustrated in the CH maps given in the bottom rows

of each section. The middle row contains the CH maps from the

original proposal of ST-VGGNet. The top row provides RGB

images with the color-coded bounding boxes. Blue boxes are

taken from the ground truth. Green and red boxes represent

original and partially-deactivated ST-VGGNet predictions. . . 237

A.5 Correlated accompanying objects prioritize localization of re-

gions outside the ground truth according to the learned repre-

sentation. In each section, the top row contains RGB images

with the ground truth boxes (blue). The red boxes are proposed

by the modified ST-VGGNet. 238

A.6 The location of the cat from Fig. 4.1 in Chapter 4 239

A.7 Additional effects of priming with the SSD [5] object detection

network. Each 4x4 block of images shows the detections of the

unprimed-network in red and of the primed network in blue.

From left to right, the detection threshold is decreased, allowing

less confident score to appear, while also surfacing false alarms.

From top to bottom, the level of noise increases. A primed

network detects objects in noisy image more robustly than an

unprimed one. 241

xxix

A.8 Additional effects of Priming with the deeplab[4] segmentation

network. Each four columns shows from left to right: input im-

age, ground truth segmentation of a specific class, result of un-

primed network, result of primed network using proposed method.242

xxx

Chapter 1

Introduction

Vision has long been recognized as one of the major input modalities for the hu-

man brain with striking physiological and psychophysical capabilities enabling

sensation, perception, cognition, and action. Vision consumes a large portion

of the human brain processing resources in comparison with other modalities

such as audition and olfaction. This underscores the critical role that vision

plays in the definition of an intelligent system. The human brain receives a

high volume of visual sensory data, and as a result, has developed special-

ized and complicated information processing machinery to support complex

decision situations.

The scientific community has conducted a large amount of inter-disciplinary

research in different academic fields such as neuroscience, cognitive science,

and computer science to not only find answers to questions but also discover

unknown aspects of the brain information processing system. Among various

cognitive capabilities such as learning, memory, reasoning, and planning, at-

1

tention plays a critical role. Attention enables us to selectively concentrate on

an aspect of the input stream while ignoring others. Due to the large amount

of sensory data received at any moment by the human brain, attention is effec-

tively engaged as a crucial component in the efficiency and speed of the entire

processing pipeline [6, 7, 8].

The ability to formulate spatial relationships and functional interactions of

object categories is an integral component of any intelligent machine. Different

generic recognition tasks such as object classification, localization, detection,

and segmentation are collectively important to accomplish short- and long-

range task objectives for an intelligent vision system. The recent success of

machine vision systems is impactd by the improvement in the performance of

such recognition tasks [9, 10].

The current dominant approaches to model visual recognition tasks are

mainly inspired from the feed-forward pass of information processing in the

visual cortex. Information flows from the early stages of sensory data recep-

tion to an intermediate representation and finally the top semantic-encoding

levels. While the feed-forward pass plays a central role in forming a visual

representation, this has been shown in various experimental studies to be in-

complete. It is accepted that not only does information flow forward from the

bottom to the top of the visual hierarchy, but also top-down connections prop-

agating information in the reverse direction are widely established throughout

the visual hierarchy. [11, 12, 13, 14]

In human and machine vision systems, two directions of information pro-

cessing flows are commonly recognized: a data-driven or feed-forward direc-

2

tion (Bottom-Up), and a reverse direction (Top-Down) that has a predictive,

controlling or modulatory role. The sensory input data is processed in the

Bottom-Up (BU) pathway and sequentially transformed into high-level se-

mantic information such that some task criterion is satisfied. The Top-Down

(TD) direction provides a route for knowledge, goals, priorities and context to

be included in relevant processing stages throughout the visual system. We

use feed-forward, bottom-up, and data-driven interchangeably in this docu-

ment to refer to the parametric multi-layer transformation of the input data

to the output semantic information. In the following, we introduce the con-

tributions of the thesis in sequential order. Chapter 2 will provide the basics

of the neural network machinery and then overview the related approaches to

visual attention modeling in neural networks for visual recognition tasks.

Chapter 3 - Top-Down Selection: Visual attention is one of the sources

that activates the modulatory top-down processing. The goal is that depend-

ing on task requirements, some level of the visual hierarchy needs to be mod-

ulated or tuned according to the high-level semantic information computed at

the top of the hierarchy. The propagation, formulation, and operation that

jointly develop the systematic modulation form the essence of Top-Down vi-

sual attention. The major goal of the thesis is to investigate, explore, and

formulate in a systematic approach a top-down selection mechanism for con-

volutional neural networks to facilitate attentional modulations. The critical

element of an attentional modulation mechanism is the computation of the se-

lection patterns based on which network responses at multiple layers are tuned.

Top-Down selection is among the set of mechanisms that jointly define the vi-

3

sual attention framework proposed by [7]. The role of selection mechanisms is

to determine the most important sub-set of the network processing units and

parameters according to some task criteria. We present a novel Top-Down

attention framework with hierarchical selection mechanisms for convolutional

neural networks in Chapter 3 and perform experimental evaluation on the task

of object localization.

Chapter 4 - Priming Neural Networks: Visual task priming is an early

tuning process before the feedforward information flow in the visual hierarchy.

The objective is to tune the visual hierarchy to be prepared for the expected

stimulus and thus enable the visual hierarchy to optimally process it. One

purpose of visual priming is to help detection of unnoticeable scene elements

under severe and misleading visual conditions such as contextual noise and

camouflaged objects. We propose a top-down mechanism in the convolutional

neural network framework to mimic the process of priming in the context

of object detection and segmentation in Chapter 4. This implicit top-down

mechanism shapes the bases of the subsequent chapters in which we introduce

the explicit top-down selection mechanisms for related visual tasks.

Chapter 5 - Object Segmentation Using Selective Attention: De-

spite recent success of purely feed-forward models, several aspects of perfor-

mance degradation in Bottom-Up (BU) networks have been uncovered. Re-

search on visual confusion and adversarial attacks [15, 16, 17, 18, 19] have

revealed the vulnerability of data-driven feedforward networks. Furthermore,

signal interference issues within multi-layer hierarchical representations are

well studied and reported in the literature [20, 21, 22]. Some of these con-

4

volutional neural network problems might be due to signal interference issues

within such data-driven hierarchical representation. Additionally, these mod-

els are sensitive to small input perturbations and are easily fooled for arbitrary

final label predictions. In Chapter 5, we propose to extend the TD selection

mechanism for the task of semantic segmentation. We test the hypothesis

that a convolutional neural network augmented with a TD modulatory and

controlling mechanism can achieve better data generalization and be more ro-

bust against out-of-distribution perturbations for object segmentation. The

attention-driven feature modulation is built on top of the proposed TD se-

lection mechanisms for object segmentation. We experimentally validate the

observation that the modulation of the BU features initiated by TD selection

improve the benchmark performance metrics in comparison with the baseline

model on benchmark dataset.

Chapter 6 - Attention for Compact Neural Representation: The

widespread usage of mobile platforms with improved video-recording capabil-

ities have demanded applications with intelligent visual features to be able to

process large amounts of data instantly. Neural network compression based

on some form of sparsity over the parameter space may provide a route to this

goal. The idea is to prune redundant network connections and consequently

leave the influential connections intact to maintain network inference accu-

racy while reducing the redundancy for the sake of a minor compromise of

performance loss. Our proposed attentional framework in neural networks is

extended to investigate the hypothesis whether such top-down mechanisms

are informative to drive the pruning of neural networks. We develop an

5

attention-driven connection pruning approach for the convolutional neural net-

work framework in Chapter 6 and show the parameter reduction is competitive

with the baseline approaches.

Chapter 7 - Contextual Interference Reduction: Contextual inter-

ference with the foreground target objects is one of the main shortcomings

of current neural networks. Due to the dense hierarchical parametrization of

convolutional neural networks, “cross talk” of the foreground and the back-

ground representation is inevitable [21]. The category label prediction using

convolutional networks relies on feature extraction performed uniformly across

the input image. Consequently, there is no explicit notion of contextual in-

terference reduction in such models. In Chapter 7, we propose a systematic

approach to shift learned neural representations towards the foreground target

objects in order to achieve a higher degree of representation dis-entanglement

for object classification. We define a selective fine-tuning of neural networks

using a unified bottom-up and top-down framework. A gating mechanism of

hidden activities is defined in the iterative feedforward pass. An attention-

augmented loss function is introduced that permits the network parameters

to be fine-tuned for a number of iterations. The fine-tuning using the itera-

tive pass helps the network to reduce the contextual representation emphasis.

Therefore, the label prediction relies more on the target object representation

and consequently achieves a higher degree of robustness to the background

changes. The experimental evaluations on a modified MNIST dataset reveal

not only that the results are improved but also a higher degree of robustness

to background additive noise is obtained.

6

To conclude, the significance of the research is two fold: First, we present

a unified network with both BU and TD information processing pathways. A

novel TD selection mechanism using multiple computational stages is intro-

duced. Second, we conduct research to gain more reliable insights towards the

computational role of a TD pass in the conjunction with a BU pass for differ-

ent visual tasks such as object localization, detection, and segmentation. The

significant role of the proposed TD selection mechanism is demonstrated for

different tasks with respect to baseline models and compared under different

input distortion scenarios.

7

Chapter 2

Background

In this chapter, we review the literature related to the thesis. We first define

the terminology used in the thesis in Sec. 2.1. We then introduce the bases and

foundations of the neural network framework for different visual recognition

tasks such as object classification, detection, and localization in Sec. 2.2. We

define the terminologies, computational elements, and modeling approaches

to develop neural network models for such tasks. In Sec. 2.3, previous visual

attention modeling attempts and approaches will be reviewed.

2.1 Introduction

Object recognition tasks have been heavily studied in various research disci-

plines ranging from psychology, cognitive science, and neuroscience, to com-

puter science. In computer science, the primary goal is to develop a compu-

tational machinery based on a solid understanding of different visual tasks.

The secondary goal has been to develop machine vision systems that com-

8

pete with human performance; this has proven to be very challenging. In our

definition, we refer to object recognition as a general task that involves two

different types of tasks; object instance recognition and object class recogni-

tion. The first type is a matching problem such that previously seen object

instances have to be identified under some variable imaging conditions and

partial occlusions based on a bank of visited exemplars. Image alignment

and registration processes also are often required. For example, recognizing

the face of a particular person under different conditions is defined as object

instance recognition.

The second type, also known as category-level or generic object recogni-

tion, aims to recognize instances of learned categories. The apparent difference

is that in the latter, the target instances are unseen by the recognition model

and the generalization capability is important. However, in the former, a par-

ticular instance is known and the goal is to identify it under various conditions.

Following Perona’s [23] definitions, we refer to the object instance recognition

as the Verification task and the object class recognition as either Detection or

Classification. Both detection and classification can be augmented with the

object localization task. Object localization is defined as the task of spatially

localizing a target object in the input image [23]. In other words, the answer

to the question of “where is a target object?” satisfies the localization task

requirement.

Perona [23] defines object classification as: given an image patch, what

object category label, from a set of predefined categories, best represents the

patch content? The objective is very straightforward in the sense that the

9

output is produced as the predicted label of the given image patch. The

assumption of this task obviously is that the patch should reflect the object

and the context it resides in. Depending on how much context surrounds

objects in input images, localization could be non-trivial.

Object recognition tasks performed by the human visual system in a real-

life scenario is even more challenging. An object in a real-world scene is often

perceived by a human observer in a cluttered environment with lighting and

shading variations. The detection of an instance of some object category in

a noisy cluttered environment with partial occlusion makes the task of object

detection more complicated. A detection model predicts whether instances

of some particular object category exist in the input images. Following the

requirements defined for the detection tasks [24, 25], object detection always

requires the localization of the detected instances. However, localization for

object classification is explicitly mentioned if required. The single-object lo-

calization task is one of the challenges defined for the ImageNet benchmark

dataset [24] and it explicitly requires location prediction on top of object clas-

sification.

Visual variations are transformations in the spatial domain that make

recognition very challenging. All types of visual variations can be divided

into two distinct groups: object variations and image variations. Object vari-

ations work within a category delimiting different instances based on visual

cues such as color, texture, shape, pose, and size. However, image variations

are caused by different lighting, place, atmospheric (weather), illumination,

and viewpoint conditions. Object variations can change one instance of a

10

category to another instance while image variations always keep the instance

identity intact. The variation by the viewpoint condition is separate from

the object pose variation. It is due to the fact that viewpoint variation is

caused by the external observer while the object pose variation is produced

by the structural variation of the object itself. Therefore the former is purely

independent from the nature of object categories while the latter is inherent

in object categories. Nonetheless, recovering the pose of an object is usually

preceded by an estimation of the viewpoint parameters.

Object categories can further be distinguished according to their structural

configurations. Horse, dog, chair, book categories are instances of deformable

or structured object categories. On the other hand, amorphous or unstruc-

tured categories do not have constant shape or size such as cloud, sky, grass

categories. Consequently, they can be described in terms of local appearances

based on color and textural patterns. They are called things and stuff semantic

categories respectively in [26].

The first and most critical step towards solving object recognition prob-

lems generally is the choice of visual representation for input images. Moving

from low-level raw representation of gray-scale, color, gradient, local shape

and texture cues to a mid-level feature representation is a very challenging

task. Objects could be represented in the 2D image domain based on explicit

shape and form cues, which rely on the boundary depiction of the objects dis-

tinguishing them from the background, or based on the visual appearance of

the object surface. Following each would lead to either shape-based models or

appearance-based models respectively.

11

2.2 Object Recognition with Convolutional Net-

works

By defining object classification as the task of predicting the category label of

an input image, the crucial part is to learn a visual representation suitable for

invariant object classification. Variability in this task ranges from object to

image variations. Robustness to such variations is the key aspect of a reliable

representation. Dealing with object location variation within the image frame

is very important. It could be, however, overcome by framing the object of

interest in the center of the input image or by injecting very slight shift invari-

ance into the representation model so then the object location shift would be

tolerated within the image frame. A visual hierarchy is defined as a system-

atic organization of multiple levels of feature extraction, grouping, selection,

and integration into a unified framework. The objective of the hierarchy is

to be able to represent input data according to some task requirements and

specifications.

In the neural network modeling paradigm, object classification method-

ologies consist of two main components: the visual representation and the

discriminative classifier. Visual representations are categorized based on the

depth of visual representations ranging from shallow to deep representations.

The intuition is that the depth of the visual representation would help to bet-

ter encode the semantic and appearance factors. Various attempts to visual

representation modeling for object recognition can be differentiated by the con-

sideration of the architecture criteria such as the depth of the representation

12

defined by the number of filtering, sub-sampling, pooling, and non-linearity

layers. The type of operation at each layer in addition to the intrinsic pa-

rameter settings is another aspect of representation modeling. Whether the

hierarchy parameters are defined to be hard-wired or learned in a supervised

or unsupervised manner matters when characterizing one approach from an-

other. Lastly, the modeling framework that imposes the objective criterion

onto the underlying representation plays an important role. The classification

paradigm characterizes the objective terms, the optimization routines, and the

parameter updating procedures.

A visual representation is defined as a transformation function φ(I) that

encodes the input image I to some form of vectorial representation in a high-

dimensional space. A robust nonlinear representation is capable of projecting

the input space to a feature space such that visual tasks can be performed

using a linear decision machine. Manifold learning of a visual representation

hypothesizes that a robust visual representation transforms a tangled high-

dimensional input space into a feature space such that the input data samples

lie on linearly separable manifolds.

Convolutional Neural Networks have been studied from different perspec-

tives ranging from a biological point of view in neuroscience to a computational

point of view in computer science. In analogy to the brain, the basic opera-

tion of weight sharing implemented in convolutional neural networks can be

regarded as the representation of a particular salient feature over the reti-

nal topography in one visual cortical area. The basic selectivity of neurons

achieved through their receptive field profile can be regarded as the convolu-

13

tion operation in such networks. [27] is one of the first attempts to propose

a computational model with convolutional connectivities. It was, however,

formulated to suit unsupervised learning problems. A more extensive realiza-

tion of convolutional networks in the computer vision application of isolated

character recognition was appeared in [28, 29] purposefully oriented for su-

pervised learning problems. The network architecture named LeNet-5 shows

how a well-implemented convolutional visual hierarchy with the representation

learned through a particular optimization procedure can be successful in a real

computer vision application.

The breakthrough of convolutional networks in large-scale object recogni-

tion competitions started with the inspirational work of [30], which is com-

monly referred to as AlexNet. The trained convolutional network was one of

the largest and well-implemented networks to date with the best performance

results on popular benchmark datasets. The highly GPU-optimized implemen-

tation of convolutional networks has been very highly effective. The overall

computation throughout the hierarchy of convolutional networks is such that

local parallel units can be utilized to achieve a major processing speedup in

both the learning and inference stages. GPUs are designed to have many

local parallel processing units that can be assigned to perform the computa-

tion required for multiple nodes simultaneously in a convolutional network.

The use of Rectified Linear Units (ReLU) [31] as a novel non-linearity and a

regularization method called Dropout [32] to reduce over-fitting in the fully-

connected layers are among the important breakthroughs in the advances of

neural networks.

14

2.2.1 The Basic Building Blocks

Convolutional networks are comprised of a modular combination of different

types of layers on top of each other beginning from an input layer and ending

with a score function based on which the loss function is measured according

to the label of the input data.

Convolutional networks are comprised of various stages of processing con-

secutively processed in a cascade manner on top of each other forming the

visual hierarchy. The convolution operation through a particular kernel profile

is the essence of feature selectivity. A non-linear activation function is applied

in the next stage to compute the output of model neurons (hidden units) at

each layer. This is usually followed by another type of layer called pooling and

sub-sampling layers to impose some level of gradual shift invariance.

Convolutional Layers: The first type of layer is the convolutional layer,

the core building block of convolutional networks. By analogy to the receptive

field selectivity of the neurons in visual cortex, the basic operation of weight

sharing implemented in convolutional networks leads to the representation of

a particular type of feature over the retina topography in a visual cortex area.

In other words, the basic selectivity of neurons through their receptive field

profile can be regarded as the convolution operation in such networks. The

convolution operation is the means through which the feature selectivity is

locally applied. Convolutional layers are characterized by design choices such

as kernel size, number of input feature channels, number of output feature

channels, stride, and border padding. Fully-connected (FC) layers are 1 × 1

15

layers inspired by MLP networks. Hidden nodes in FC layers are connected

to all of the hidden units in the previous layer. A matrix multiplication added

with a bias offset is needed to compute activities in a FC layer. The output

feature channels of the last FC layer is equal to the number of categories in

classification problems. It learns to encode for the class scores, which are

arbitrary real-valued numbers. There is no activation function after the last

FC layer but rather the logistic regression (for binary classification problems)

or softmax layer (for multi-label classification problems) to generate predictive

probability values.

Non-linearity Layers: The other layer type, mostly used after the con-

volution layer, is the non-linear activation function. The idea is based on the

biological inspiration of real neurons for which the firing rate of neurons is lim-

ited between zero and a positive clamping value [33]. Once the output maps

are computed by a convolutional layer, a transfer function is applied to map

the input to a proper neural response range. Sigmoid and Tanh are the most

common functions used in the early days. Rectified Linear Units (ReLU) [31]

is simply a linear function such that the values lower than a threshold are set

to zero. To overcome the shortcomings of ReLU such as the zero gradients for

value lower than zero, different ReLU variants have been proposed such as the

Parametric ReLU (PReLU) [34], the Leaky ReLU (LReLU) [35].

Hidden Normalization Layers: One modeling inspiration from the real

neuronal mechanisms observed in neuroscience research is inhibition processes

such as lateral inhibition. There are different attempts to address the need

for a similar mechanism in convolutional neural networks. Local Response

16

Normalization (LRN) [30] and Local Contrast Normalization (LCN) [36] are

among the first attempts to investigate the role of normalization layer in neu-

ral networks. They implement a similar idea with a subtle difference in terms

of the scope of normalization and also whether it is just divisive or also sub-

tractive too. Such normalization is applied after non-linearity layers in certain

layers to stabilize training and improve generalization. Unlike these two meth-

ods with small normalization scopes, Batch Normalization (BN) layer [37] is

proposed with a more global scope of normalization to mainly deal with im-

proper parameter initialization and lack of training consistency, and it usu-

ally comes after ReLU layers. Since the batch concept is not always present,

Layer [38], Instance [39], and Group [40] normalization layers are proposed

to avoid exploiting directly the batch dimension. The overall core idea is to

collect statistics across the input hidden tensors according to some grouping

approach (e.g. batch dimension in BN), and then use them to normalize the

input hidden tensors in a divisive and subtractive manner followed by some

parametric scaling and addition. [41] recently proposes a synchronized BN

layer that collects statistics and updates coefficient parameters across multi-

ple GPUs when the mini-batch size is high (e.g. 128) and each GPU holds one

input sample due to a large network or input data size.

Pooling Layers: Pooling layers are utilized as an attempt to inject small

local shift invariance into the overall representation by the gradual pooling

mechanism. Average and Max pooling [42] are the two popular widely used

pooling layers, which spatially pool information across a 2D window of hidden

units on a feature map. Properties such as kernel size and sub-sampling stride

17

are important. In contrast to the spatial pooling approaches, Maxout [43] is

regarded as a pooling operation over the inter-channel dimension. Other vari-

ants such as Probabilistic Maxout (Probout) [44], Probabilistic Max-Pooling

[45], p-norm pooling [46], and parametric p-norm pooling [47] are proposed

in the hope of improving their invariance properties. Network in Network

(NIN) [48] is proposed to incorporate a higher degree of complexity in the pro-

file selectivity of hidden units in convolutional networks. It replaces a simple

weighted summation performed by convolution with a Multi Layer Perceptron

(MLP) motivated layer to add more complexity for feature encoding. NIN is

respected as a cross-channel parametric pooling and is extended by [49] into

a new architecture using Inception modules. The idea is to use a set of 1× 1

convolution filter banks to reduce the number of input feature maps into a

lower more computationally affordable number for the subsequent k × k fil-

ter banks. A particular incarnation of the inception modular architecture is

called GoogLeNet and introduced in [49]. Residual networks [50] are proposed

as a way of overcoming the obstacle of losing gradient information in convo-

lutional networks using skip connections. Inspired by the Spatial Pyramid

Kernel Matching [51], Spatial Pyramid Pooling (SPP) [52] is defined to over-

come the variable image size issue by a pooling layer that outputs fixed-length

feature maps.

Training and Testing Protocol: A popular learning algorithm for con-

volutional neural networks is to minimize a loss function over the training set.

This is a non-linear optimization problem that is done using iterative gradi-

ent descent optimization updates. The goal is to update parameters with the

18

gradients that minimize the loss function. Basically a best direction based

on which a particular parameter should be changed is the one given by the

first partial derivative of the loss function with respect to the parameter. The

chain rule is a systematic approach to analytically compute error gradients of

network parameters. It is interchangeably referred to as Backpropagation in

the neural network community [53]. Having the input data propagated into

the feed-forward layer throughout the network at the inference phase, error

gradients of the weight parameters are analytically computed according to an

objective function and systematically propagated backward from one layer to

the next. Once gradients are computed, the gradient optimization algorithm

updates the weight parameters and repeats these steps for the next set of

training samples.

Network Regularization: As the capacity of a network in terms of free

parameters increases, the model tries to memorize the training data set rather

than to learn the underlying data distribution. This is famously known as over-

fitting and will lead to low generalization performance at the testing phase. In

order to avoid over-fitting, various regularization methods have been proposed

such as the weight-decay approach (L1- or L2-norm). It is imposed on the

objective loss function at the learning phase to regularize weight parameters.

Early stopping is also one of the early proposals. Dropout [32, 54] is proposed

to decrease the co-adaption that emerges during the training phase between

hidden units by randomly setting hidden units to zero. Adaptive Dropout [55]

uses an auxiliary network to learn the probability based on which dropout

mask is generated for each hidden uni. DropConnect [56] set the connection

19

weights rather than the hidden units to zero .

Network Representation Visualization: Understanding the hierarchi-

cal representation of convolutional neural networks plays a critical role. [57, 58]

propose to define pooling switches recorded in the feedforward pass and are

used to project back to the top layer activities to the input layer using the De-

convolution layers. [59] proposes a gradient-based visualization method that

uses automatic differentiation of the loss function with respect to the input

layer. The idea of activation maximization simply is to maximize the classifi-

cation score of a specific class label penalized with some regularization term

such as L2-norm term for the input image. The regularization terms act as

image priors that restrict the search process in the input image space to those

that can resemble well natural images. In addition to the hand-designed nat-

ural image priors [60, 61, 62]such as Gaussian blur and α-norm, [63] proposes

a learned prior based on Generative Adversarial Networks (GAN) [64]. This

learned prior provides high-quality input image search results and intermediate

hidden activity visualizations.

2.3 Visual Attention in Deep Learning for Ob-

ject Recognition

Attention in humans helps to concentrate and tune the brain’s computational

resources to fulfill task requirements within a particular time frame. Object

detection in a large context is a task that inherently demands a form of pro-

cessing concentration. In a real life scenario, object detection is regarded as

20

finding instances of a particular category in a noisy, cluttered, and complex

visual environment. The task of finding a car on the street among many dif-

ferent irrelevant object categories and then consequently be able to localize

it, is an example of the goal approached in object detection with localization.

One question that emerges at this point is whether the localization is by itself

a task separate from the detection task. Is it that first an object is detected

out of noisy context and then, upon the requirement of the task, is localized?

Or is it that detection is performed on a localized portion of input image, and

thus, localization is achieved a priori to detection? These two extreme points

form the two sides of the spectrum of approaches for object detection. We call

them late- and early-localization approaches respectively.

2.3.1 Early-Localization: Hypothesizing for Objectness

Early-localization measures some generic definition of objectness from local

and pictorial cues in an image, and then outputs an importance map of the

regions that are most likely to contain category objects. Objectness indicates

how likely a category object exists across image regions [65, 66]. A subtle ques-

tion is what is the best metric to measure objectness, and what differentiates

object categories for which ground-truth labels are provided from the unla-

beled ones. A detection system utilizes the objectness measurement to pick

the most salient regions to attend to for category prediction. Refinement over

background regions and pre-trained visual representation seems necessary to

help early-localization approaches beat the state-of-the-art in object detection.

It is worth mentioning that the weak early-localization approach is equivalent

21

to the brute-force sliding window approach to output importance maps over

which candidate regions containing objects are returned. On the other hand,

a strong early-localization approach achieves the 100% recall accuracy with a

number of bounding box proposals equivalent to the number of ground truth

bounding boxes. In other words, the highest level of recall accuracy is achieved

with the least number of proposals using the strong approach.

A measure of objectness is provided over the entire high resolution image

using a class-agnostic algorithm in order to model a level of attention for the

classifier that predicts category labels. Objectness models work in the bottom-

up fashion without utilizing any form of top-down task knowledge. They

rather collect and integrate pictorial and structural information locally from

different tracks of visual processing to find regions with a high measurement

of objectness.

Approaches for object proposal generation can be categorized into three

distinct paradigms. The first one is harnessing the image pictorial structure

locally and globally to merge the super-pixels into a hierarchy [67, 68, 69, 70].

Cutting through the hierarchy at some specific level provides a number of

bounding box proposals. We will explain this approach in more detail in Sec.

2.3.1.2. The second paradigm is measuring objectness of boxes through a learn-

ing method. It is intrinsically statistically data-driven [66, 71, 72, 73]. Using a

pre-trained visual representation, objectness is learned in a class-generic man-

ner. This is similar to the simultaneous detection and segmentation method-

ology. Further information is given in Sec. 2.3.1.3. Lastly, based on the classic

figure/ground criteria, the third paradigm uses segmentation algorithms which

22

are used to partition input images spatially into distinct regions [74, 75, 76].

The bounding boxes enclosing the partitions are proposed for object classifi-

cation. This approach is expanded in more detail in Sec. 2.3.1.3.

2.3.1.1 Metrics to Measure Objectness

Objectness detection algorithms are interchangeably referred to as bounding-

box proposal algorithms. The intuition is to use an objectness measure and

other factors to confidently propose regions in boxes that most likely span

the entire extent of the objects in an image. Three evaluation measurements

are commonly characterized in the performance comparison of different al-

gorithms. First, the recall rate is defined as the accuracy of hitting correct

ground-truth bounding boxes from the set of proposals regardless of the false

positive rate. There is always a trade-off between false negative and false pos-

itive rates. Accounting for one would impact the other. Therefore a good

cutting-point threshold is always cross-validated. However, region proposal

algorithms are mostly evaluated based on the recall rate. Precision is left over

to object classification algorithms. The main criterion is to increase the recall

as much as possible.

The second evaluation metric is the number of proposals to achieve a par-

ticular level of recall. A powerful reliable objectness detector is recognized

based on the number of proposal boxes. Apparently, as the number increases,

the object classification module takes more time and gradually shifts towards

the brute-force sliding window search mode. Hence, a decent close-to-optimal

objectness detector is the one that while maintaining a low number of propos-

23

als, hits the highest recall rate of one.

Third, the size accuracy of the proposals measures objectness detection

performance. Tightness of the proposals could be relative and gets refined

in the recognition step according to the relative shift invariability of robust

classifiers. In practice, recall rate is measured as the total number of proposed

bounding boxes that have overlaps of more than some threshold (mostly 0.5)

with the ground truth bounding boxes.

2.3.1.2 Harnessing the Pictorial Cues in a Hierarchy

Selective Search (SS) [67] is inspired by the segmentation community to use lo-

cal cues to separate figures from ground. SS combines the best of segmentation

with a selective search over various locations in the image. Complementary

grouping criteria and invariant color spaces are used to diversify the search

over the entire space for targeting better regions. SS attempts to use segmen-

tation to narrow down the large search space over locations, aspect ratios, and

sizes. Rather than the common goal of proposing a strong segmentation strat-

egy to partition regions apart, SS uses various strategies to extract knowledge

from various aspects of an image ranging from shape, color, curvature, texture.

In this regard, there is huge similarity in the representation space of SS with

saliency prediction algorithms. These image clues are grouped systematically

in a bottom-up manner to generate good object locations using a diverse set

of strategies. A fast graph-based algorithm [68] is used to initialize SS. Then

a greedy grouping algorithm is iteratively used to construct the hierarchy of

regions until the entire image is grouped into one region. Grouping is based on

24

the feature similarities of all the neighboring regions and merging of the two

most similar ones. This leads to a tree of regions with leaves as the initialized

regions and the root as the region covering the entire image. The similarity

based on a variety of complementary measures are constrained to be fast such

that the measures can be propagated through the hierarchy so then at each

level the similarity can be computed from the measures of the previous level

rather than the measure from image pixels.

One of the diversification strategies in SS is the utilization of various color

spaces with different invariance properties. The second strategy is to use four

similarity measures between regions: color, texture, region size, cross-region

similarity for combination. The combination of these four measures of similar-

ity is used to diversify the search. The third strategy is to generate different

starting regions via varying the threshold of the graph-based over-segmentation

algorithm. Different ordered sets of proposals are generated according to the

diversification strategies. Then regions are extracted for proposal based on

their overall ranking.

A multi-scale hierarchical segmentation and object hypothesis generation

system in a unified framework called Multi-scale Combinatorial Grouping

(MCG) is proposed in [69]. First, a fast normalized cuts algorithm is pro-

posed. A set of local contour cues are extracted as the input to the algorithm.

Then, a high-performance hierarchical segmentation approach that leverages

effective use of multi-scale information is employed. Finally, exploring the

combinatorial space of possible object candidates, regions are combined effi-

ciently to account for the accurate proposals. Two steps are taken to reduce

25

the number of candidates while keeping the quality. One is through combina-

torial grouping problem formulation and the other through training a random

forest regressor from the low-level bottom-up features to predict the overlap

of the region with the ground truth.

MCG differs from SS in focusing on multi-scale information rather than

color spaces to generate various hierarchies to diversify the object search.

Moreover, pixel accuracy region extraction is more considered in MCG in con-

trast to SS. MCG outputs regions whereas SS outputs directly bounding-boxes.

However, a normalized evaluation measure which consists of the overlapping

area, the number of proposals, and the execution time has to be employed

for a fair comparison of different algorithms. Object hypothesis proposals are

not meant for accurate categorization result but speed and smaller accurate

number of candidates for an optimal object recognition system. It is stated

that MCG is marginally better than SS in terms of the amount of the overlap

of the proposals with the ground truth.

The Edge Box algorithm is proposed to generate bounding boxes contain-

ing objects using edges [70]. Edges are directly used rather than segmented

regions, as an informative representation in a non-hierarchical fashion to mea-

sure if an object is enclosed in a box. The efficiency of computing edge maps

and the sparse representation have made them a promising approach. The

number of completely enclosed contours indicates the likelihood of an object

in a box. Contour straddling is considered as the sign of a partially enclos-

ing object. Thus such contours are removed during the process of scoring the

completeendres2010categoryly enclosed contours. The issue of how to search

26

the space over various positions, scales, and aspect ratio values is addressed

using the sliding window search strategy. The candidate boxes are ranked and

non-maximum suppression is used for the final proposal generation.

2.3.1.3 Data-Driven Object Hypothesis Generation

[66] proposes to train a classifier to detect a well-defined generic object class.

Then, at inference time, boxes are randomly sampled across the entire image

and the classifier is applied. Those boxes detected with high score are proposed

as the object hypothesis. The classifier would have to be able to discriminate

among well shaped objects from an amorphous background.

Closed boundary, different appearance from the immediate surrounding,

and uniqueness are the characteristics for which four measures based on image

pixels are proposed: multiscale saliency (uniqueness), color contrast (different

appearance), edge density (closed boundary), and super-pixel straddling. Re-

gardless of pixel information inside the window, the probability of a window

of particular size and location is learned.

A training set of positive and negative windows are generated randomly.

The Bayesian framework is used to maximize the posterior probability of the

objectness given the cue measures. Once the posterior distribution is fit to the

training set, the posterior predictive probability over all random windows are

calculated. Those with highest probability are selected to propose.

Representation learning using deep convolutional networks can also be used

for the object proposal generation task. [71] trains a variant of convolutional

networks to output a fixed number of bounding boxes with some confidence

27

scores for each input image in a class-agnostic paradigm. The network has

two output layers with a fixed number of candidate outputs; one predicts the

bounding box locations and the other outputs the confidence score. They use

a transformation of the representation extracted from the last hidden layer to

calculate the corresponding output value. The objective function was modified

to include the terms appropriate for this formulation.

In order to exploit the use of parallel processing using graphics process-

ing units (GPU) and decrease the computational time of region proposals for

objects, [72] proposes Region Proposal Network (RPN) to optimize the deep

visual representation of the detection network end-to-end with a relative cost

function for object proposal confidence measure and bounding coordinates in

an alternative learning paradigm. Obviously, the visual representation learned

for the detection task can be shared for the task of object proposal generation.

In this paradigm, both tasks are alternatively optimized.

Following the common practice in the community, on top of the last convo-

lutional layer, a fully-connected mini-network is attached. This small network

is slid spatially over the whole last layer. Two ultimate fully-connected layers

implementing correspondingly the proper loss function terms are defined: clas-

sification and regression layers. Each mini-network predicts for a predefined

number of anchor boxes. The classification layer predicts the binary decision of

objectness or non-objectness and the regression layer outputs four coordinate

values for each anchor.

The classification score function can be analyzed locally by sampling the

regionally-masked input image [73]. The intuition is that masking out a region

28

of the input image overlapping an instance of a specific class would cause

a significant drop of the classification score. This intuitive method can be

used for object proposal generation and also in the localization task of object

recognition.

An agglomerative hierarchical clustering of regions based on the amount of

drop, the feature and size similarity, and spatial vicinity is employed to derive

a unified saliency map for automatic localization. The cluster is initialized

with super-pixels. The pairwise clustering is based on the following criteria:

similar large drop, similar emerged representations, cover as large of the image

as possible encouraging small regions to merge, and spatial adjacency. These

terms are weighted, combined and at each iteration the pair that maximize

the sum is combined. The stopping criterion is where one region is left. The

feature similarity is the histogram intersection of the representation of the last

fully-connected layer.

2.3.1.4 Figure-Ground Segmentation for Objectness Measure

The classic approach to object segmentation is used to generate object hy-

potheses for bounding box proposals. The output of such segmentation-

based approaches partitions regions with which bounding boxes are proposed.

[74] segments input images into figure-ground partitions using a multiple-

constrained parametric min-cuts method, and then learns to group them using

the likelihood that a partition contains a complete object. A ranked list of such

figures is then generated to be refined as the object hypotheses. Features are

extracted following Gestalt psychology principles to approach visual grouping

29

using properties such as proximity, similarity, and good continuation. Graph,

region, and Gestalt properties are the three feature sets based on which the

segments are represented. A random forest regressor is used to learn the im-

portance of these features to regress the largest overlap with the ground truth

object. The predicted overlap is used to rank segments such that the similar

regions are in adjacent positions.

[75] have used output segments as input to a categorization module to

score each segment based on the category membership function. These scores

are used to refine and merge segments into one region representing one ob-

ject. Such an approach can be seen as the bottom-up/top-down segmentation

framework rather than object localization due to the high emphasis on the

accuracy of the object segmentation. The score function is a support vector

regression machine to predict the union-over-segmentation of the region with

the ground truth. [76] follows the same approach towards object hypothesis

proposals with some changes in details. One difference is the use of learned

affinity functions to guide segmentation. The ranking model is defined as a

structural optimization problem.

All three approaches attempt to generate objectness hypotheses using com-

binations of various visual cues, the locality of feature extraction, and the type

of visual representation. Regardless of how they approach visual representa-

tion for objectness, all of them precede the classification module. In other

words, object detection using objectness measure is a rapid and passive ap-

proach to localization. Once the set of proposals are generated, there is no

need to revisit the proposal module down the detection pipeline.

30

2.3.2 Late-Localization: Top-Down Attention

The late localization paradigm, on the other hand, aligns more with the bi-

ological studies of visual attention such that localization is fulfilled upon a

request based on the task requirements. Visual attention modeling plays an

important role in the completion of various visual tasks. Particularly in ob-

ject recognition, feature-based attentional modulation can bias one aspect of

objects to facilitate the recognition task. However, visual attention can also

be used for object localization. Covert and overt attention are two different

operating modes that are distinguished based the role of eye movements in

attentional engagement. The process of attending to a region in the input

visual field without eye movement defines covert attention. In other words,

the visual representation for the input data is used to address the localization

requirement while the input data is not changed.

Due to the rapid fall-off of the spatial acuity from the central regions of

the wide field of view in humans, localization of objects in the periphery is

challenging. Consequently, the several field of view changes by the human ob-

server including the body and eye movements to bring objects from periphery

into the central field for accurate localization is covered by the definition of

overt attention. The role of eye movements is to bring ambiguous regions of

the field of view into the highest level of acuity for further inspection. The

set of mechanisms for both covert and overt visual attention is outlined in a

unified framework in Selective Tuning [7].

Despite recent successes and development of the early-localization approaches

using engineering advances in deep learning, one fundamental question still

31

remains not fully answered in this paradigm. What is the reference frame in

which objectness is measured? Is there a robust approach that can reliably

predict objectness regardless of object and image variations? If there is not,

the task of early-localization using object proposal generation reduces to the

brute-force sliding window paradigm which is inefficient and slow. In the real-

life scenarios of object category detection, one obvious issue is how to locate

the object-centered reference frame properly over the visual input data with

high resolution and wide field of view. Tsotsos [77] analyzes the computational

complexity of recognition problems. He proves that visual search problems are

inherently NP-complete. Therefore, according to the available computational

resources of the brain and given the usual ordinary time frames, it is computa-

tionally impossible to find answers to such complex and dynamic problems in

the high-dimensional input space. Consequently, the brain essentially devises

approximations to harness the task knowledge to decrease the complexity and

bound the problem domain to possible regions [7].

2.3.2.1 Top-Down Approaches for Localization

Having learned the bottom-up visual representation in a feedforward manner,

the question is how to unify the top-down attentional modulation in one frame-

work. The characteristics of the representation and the computational basis

of the attention modeling are two key aspects based on which different frame-

works arise. In a classical approach, [78] has proposed a shallow representation

with two processing streams namely shape and color cues formulated in the

bag-of-words framework. Recognition of object categories is pursued by train-

32

ing a category-specific shape model and then uses the model predictions for

attentional top-down modulation to bias the weight parameters of the shape

stream for the enhancement of the recognition performance of the model.

[79], on the other hand, utilizes a Bayesian modeling approach to unify

the two streams addressing the “What” and “Where” problems in a visual

recognition system. It is stated that some of the attentional phenomena such as

bottom-up and pop-out effects, multiplicative modulation of neuronal tuning

curves, and shift in contrast responses are predicted naturally in this modeling

approach. Bayesian inference is followed to show that within this framework,

computational attention could answer the “what is where” question.

A generative model is defined using the Bayesian inference rules. The loca-

tion and category of objects are defined by stochastic variables that describe

the scene layout of an input image. Some assumptions are made to factor-

ize the joint probability of the generative model. For instance, it is assumed

that recognition is modeled for one object at a time. The other assumption

is that object and location variables are independent. Additionally, features

at all locations are modeled using latent variables such that they are inde-

pendent from each other so their probability factorizes into a simple form for

ease of probability inference. Given the probabilistic graphical model defin-

ing the factorization of the generative model, translation invariance, spatial

attention, feature-based attention, and feature pop-out are formulated based

on Bayes rules of inference. It is empirically verified using the conducted ex-

periments that the expected behavior of the model highlights some aspects of

the attentional mechanisms.

33

[80] proposes to use Deep Boltzmann Machines (DBM) [81] as the machin-

ery on which the visual representation is learned. This particular representa-

tion is then used to model covert object-based attention by the weight sharing

commonly practiced in convolutional networks. The aim is to implement DBM

such that the model weights are shared locally over feature maps at each layer

and also have depth such that the local integration of information over the

receptive field gradually evolves in higher layers.

[80] proposes a covert attention mechanism implemented on the learned

representation of a DBM. The goal is to study the role of the covert sup-

pressive attention to retain the recognition performance of the model while

increasing the level of surrounding noise in the background. The top-down

projection deterministically reconstructs the activities at each hidden layer.

The top-down reconstruction in generative models is used to tackle occlusion

and missing parts. In the feed-forward inference, each hidden layer probabil-

ity is measured using a sigmoid function given the weighted sum of the lower

layer input. However, the recurrent inference considers both the top-down and

bottom up connections. The reconstruction in recurrent inference then begins

from the top layer and descends to the early layers. It is observed experi-

mentally that for non-cluttered object samples, single feedforward inference

is sufficient. However, the representation of the cluttered object needs to be

disambiguated through recurrent inference.

The object category detection task deals with searching for an instance of a

category within a large visual field with lots of clutter in the environment. The

question that arises is whether a purely-feedforward hierarchical representa-

34

tion would suffice to solve the problem? Feedback connections are studied very

well in physiological and psychophysical experiments on the brain. Evidence

supports the hypothesis that feedback connections play important roles in all

level of the visual hierarchy [12, 11]. [22] conducted a set of psychophysical ex-

periments to show hierarchical pooling models of object recognition would fail

to account for the crowding scenario using human data. In the crowding ex-

periment, populating the target with the surrounding neighboring distractors

would deteriorate the target discriminability. The pooling models predict that

as the number of distractors increases, the target discriminability would suffer

more. However, experimentally the opposite is observed. [22] concludes that

the same way low-level processing determines high-level processing, high-level

processing determines low-level processing. In other words, global integration

of information over large parts of the visual field along with iterative recur-

rent processing consisting of both feedforward and feedback are necessary and

sufficient conditions for the object recognition task.

Knowing that a recognition system needs to consider principled ways to

recall noisy, occluded, and missing data in a top-down manner, [82, 83] pro-

pose a selective attention model inspired extending the original multi-layer

neural network model of Neocognitron [27], which is basically an example of

an associative memory model. The goal is to demonstrate that not only can

the information flow in a bottom-up manner in such associative models but

also it can reciprocally flow in a top-down manner. Therefore, at an inter-

mediate layer, there are both incoming connections from the layer below and

also outgoing connections from the layer to the layer below. The former helps

35

recognition and the latter aids reconstruction and occlusion recall. It is called

auto-associative memory models.

The bottom-up connections of the selective attention model are first learned

using a self-organizing learning method, in which there is no supervising to

guide the weighting of the connections between two neurons. Next, the weights

of the top-down connections are adjusted according to the weight values of their

corresponding bottom-up connections. Once the learning is over, the connec-

tion weights are not modifiable anymore. The bottom-up connections will be

deactivated if the top-down counterparts are not activated through the course

of time. The selective attention model operates in a simultaneous recognition

and segmentation mode. After a number of inference and reconstruction it-

erations, the pattern is not only correctly recognized and but also segmented

from the context it resides in.

In addition to the associative recall functionality of the selective attention

model, where noise and partial occlusion can be tackled, the model can also

deploy attention to one part of the input data in case of seeing two visible

stimuli simultaneously. Deploying the top-down attention of a selected top

node (mostly the highest responding node) routes through the visual hierar-

chy to reach to the segment of the input data at which the known stimulus

pattern have been appeared. This is reminiscent of a localization procedure

since deployment of the selective attention to one region of the input stimulus

narrows down the processing throughout the entire hierarchy.

Importantly, the top-down flow of processing follows the same trace of

routing as the bottom-up processing. The selection mechanism is such that

36

the top-down processing brings into the focus of attention the bottom-up pro-

cessing by gain modulating directly the activities of neurons falling inside the

routing pass and implicitly suppressing the remaining neurons. Therefore, the

top-down modulation globally affects the entire hierarchy regardless of the

routed pass.

A framework for visual attention seems to be important to close the loop for

reaching the state of being able to solve the visual task of object recognition

[84]. [21, 7] propose attention as a set of mechanisms for which the aim is

to adaptively tune search processes essential to succeed on different visual

tasks. Selective Tuning [21, 7] is a computational dynamical framework that

accounts for various mechanisms known to be required to perform visual search

approximately similar to what is observed physiologically and psychophysically

in the primate brain visual cortex. Task priming, bottom-up inference, top-

down selection, and iterative passes are the main binding stages defined in [7]

over the course of the processing time measured from the onset of stimulus. In

this dissertation, we develop and highlight the roles of these four computational

stages in convolutional neural networks for different recognition tasks. Unlike

the processing units in convolutional neural networks, the visual hierarchy in

the Selective Tuning model is comprised of neuronal dynamical computation

units which are tuned to model the firing behavior of neurons in the human

visual cortex [85, 86].

As the Selective Tuning model might echo some resemblance with the se-

lective attention model [87], one of the main divergences of these two models

from each other is the type of attentive modulation employed in each. The

37

latter uses the facilitatory mechanism of gain modulation to deploy top-down

attention over the entire hierarchy, whereas the former uses the inhibitory

mechanism of surround suppression to deploy top-down attention to a partic-

ular region of interest rather than the entire hierarchy leaving the remaining

parts unaffected. In other words, the non-attended regions of the input stim-

ulus do not disappear from the bottom-up flow of processing.

The other difference stems from the type of competition employed in each of

the two approaches. The Winner-Take-All process [88, 87] used in the selective

attention model selects the maximum responding neuron in each competition.

The output of the competition in WTA is always a single value resembling the

maximum of the competing neurons. On the other hand, the Selective Tuning

model implements a dynamic competition derived from a parametric variant

of the WTA process termed θ-WTA [7]. θ is a task specific parameter that

defines the margin based on which the winners are determined. Unlike WTA,

multiple neurons are returned as the output of the θ-WTA process according

to the value of the θ parameter. Consequently, the θ-WTA process does not

suffer from the convergence issue in the cases that there is more than one

maximum value.

2.3.2.2 Overt Attention Modeling Using Learning Methods

Attention has a controlling role to decide where to look for gathering infor-

mation to resolve the recognition task difficulties. Similarly, learning methods

are used to mimic human behavior with visual attention capabilities. For this

matter, a recognition system is composed of several components such as a

38

visual representation, a classifier, and an attentional controller modules.

Based on the hypothesis that visual attention is a systematic approach of

dealing with the massive amount of sensory stimulus, [89] proposes to utilize a

generative model based on the deep learning framework. On one side, gener-

ative models can deal with occlusion and missing parts more easily than dis-

criminative models. Furthermore, prior knowledge such as lighting can be in-

corporated in the forms of structured latent variables. On the other side, they

suffer from proper scalability to process moderate size of input data in contrast

to powerful discriminative models such as convolutional networks. This is the

motivation behind studying the possibility of visual attention modeling with

generative models. In other words, an attentional framework is proposed to

infer the region of interest over the large input image on which the generative

model is deployed to recognize object labels. The attention module in this

work is inspired by Dynamic Routing [90, 91].

Gaussian Restricted Boltzmann Machines (GRBM) are used as the core

recognition model. Stacking layer-wise GRBMs on top of each other would lead

to a Gaussian Deep Belief Network (GDBN). Such a multi-layer architecture

is used as the representation and classification model. The dynamic routing

approach has a 2D similarity transformation with four parameters, two for

position, one for rotation, and one for scale to characterize the canonical image

(region of interest) over the big image. This canonical image is the input to the

GDBN. The joint distribution of the patch window, and the transformation

parameters can be formulated such that it easily factorizes into the conditional

distribution, that models the top-down generative process of attention by a

39

Gaussian distribution, and the two priors.

[92] proposes an approach to define a learnable module to implement the

idea of dynamic routing that fits within the framework of convolutional net-

works. The module brings into account the capability of learning spatial trans-

formations based on which conceptually invariance representations to trans-

lation, scale, rotation, and warping can be achieved. Since this module is

defined to be differentiable, its parameters can be learned during the typical

learning procedure of convolutional networks without any extra supervision.

Beside having the capacity of bringing the intermediate representation to a

more understandable pose, the spatial transformer module can be seen as an

implementation of selective spatial attention that dynamically selects the best

part of the representation to fulfill inference in the subsequent layers. How-

ever, attention is always driven by the task knowledge from higher layers while

in this approach, the parameters are learned and fixated in the feed forward

manner.

The spatial transformer module consists of three collaborative sub-modules:

localization network, grid generator, and the sampler. The localization net-

work is a neural network with a few layers that takes the feature map at layer

below as the input, and produces spatial transformation parameters as the

outputs. The grid generator is responsible for calculating the output coordi-

nates at which the input feature maps has to be sampled. These coordinates

are produced using the spatial transformation parameters derived from the lo-

calization network. The sampling sub-module receives both the input feature

map and the sampling grid to generate the output feature map. It is achieved

40

by sampling the input feature map at the generated sampling coordinates using

a predefined sampling kernel. The spatial transformer is purposefully designed

to be thoroughly differentiable so then it can naturally integrate into any part

of convolutional networks.

There are some attempts in the recent literature to bring into consideration

the fact that the retina resolution falls off the farther it gets from the fovea.

In such a paradigm, the problem of object recognition changes inherently with

new highlighted issues. The very first one is how to decide on the sequence

of fixations. Thus the task of visual object recognition changes to a combi-

nation with decision making processes over sequential data. Secondly, there

must be some kind of visual short-term memory to accumulate and integrate

information from different glimpses such that the objects get identified and

noise surrounding them discarded.

A third-order RBM is proposed to learn and accumulate features over

glimpses [93]. A glimpse is the set of features extracted from the retinal

input according to [93]. Factored higher-order RBMs were first introduced in

[94] in the attempt to learn spatial transformations from two images. The

connections are between the visible units representing glimpses, the hidden

units for accumulated features, and position-dependent units to gate connec-

tions between visible and hidden units. A retinal transformation is defined to

map visual information of the input image according to the retina eccentricity

fall-off property. The classification problem simply changes to the prediction

of the image label from a few glimpses rather than the whole high resolution

image.

41

Following the same paradigm for modeling the sequences of fixations over

the retinal transformation of the input image, [95] proposes to use a neural

feedforward auto-regressive model in the replacement of RBM. The argument

to support such replacement is primarily due to the intractability of the gra-

dient estimations for RBMs. On the other hand, the proposed model has

a feed-forward architecture to target deep structures for the hope of better

representation learning [96].

The entire modeling approach using generative models shows how to unify

a fixation controller with the retinotopic representation learning under one

framework. Despite the attempt to reconcile the heavy computational de-

mand of generative models by retinotopic transformation and fixation con-

troller as means of attentional modeling, the experimental setups and results

shed serious doubt on the applicability and competence of this direction with

the fast trending developments of convolutional networks. However, the ideas

of the fixation controller and retinotopic transformation can be adapted to a

discriminative modeling paradigm.

As an attempt to model the eye movement requirement in overt attention to

collect extra information across the visual field, [97] proposes a multi-fixation

model to integrate visual information over several glimpses. The goal is to

reduce the uncertainty of the predicted category of the input image by the

proposed multi-fixation mechanism. Processing large size images for invariant

object recognition are the main issue that is addressed by learning where to

look next sequentially.

The computational complexity of convolutional networks is non-linear in

42

the number of pixels of the input image. Inspired by the observation that pro-

cessing of very large and detailed visual scene images cannot be approached

easily with such computationally demanding models, an attention-based neu-

ral network framework is proposed in [98]. Attention is thus seen as a control

mechanism to reduce the search complexity of the visual processing regardless

of the task in hand [98]. The Reinforcement learning framework is fully em-

ployed to conceptualize the visual attention modeling for object recognition as

an action/reward concept of an agent interacting with an environment. The

idea simply is to provide a general attention-based process to be applied to

different tasks.

Following the same attention modeling paradigm, [99] shows how multiple

object recognition can be achieve as the consequence of this approach. The

idea is to learn to localize and recognize by deploying attention simultaneously

for multiple objects while there is only class label available at training time.

Briefly, the model has five sub-networks working altogether. The glimpse

network is a three layer convolutional network to represent the input glimpse

patch. Its output is fed into the recurrent network which in essence is acting

as a short-term memory. The output of the recurrent network is sent to the

emission network where the decision to where the glimpse network needs to

look is made. The location of the first glimpse is chosen by a separate network

called Context network. There is a classification network where the category

label prediction is generated from the current state of the recurrent network.

The argument to compete with convolutional network using networks that

learn over sequential data using fewer parameters and less computation is

43

getting popular in recent papers. However, the object recognition task is very

hard using such shallow representations unless attention modeling is combined

with a deep representation. An integration of discriminative and generative

processing pathways is proposed to model both the what and the where prob-

lems in object recognition using the auto-encoder paradigm [100]. It creates

a coupled convolutional network in the feedforward pathway with a Deconvo-

lution network in the backward pathway. The idea simply is to harness the

most out of the reconstruction from where to learn better features to encode

the what problem. Thus it is different from any usage of the where problem

for object localization.

The learning procedure is achieved through an end-to-end optimization

of the objective function with the reconstruction penalization of the hidden

layers. A compositional loss function to account for both what and where prob-

lems consisting of three terms is defined. One is the negative log-likelihood

for discrimination, the second is the reconstruction at the input level, and

the third is the reconstruction at the middle levels of the feature maps. The

benefits gained with this middle-level reconstruction penalty term are the per-

severance of the correspondence with a particular unit in a feature map to

measure the reconstruction error and the enforcement of the middle layer to

participate in the reconstruction penalization rather than only the two end

layers.

In addition to the feedforward role that the pooling layers commonly have,

they further collect the pooling position switches to provide deterministic re-

construction in the feedback pathway. In contrast, to the sampling method of

44

contrastive divergence algorithm to train RBMs, the gradient descent of the

objective function through the popular backpropagation algorithm is enough

to train such architectures.

45

Chapter 3

Top-Down Selection for

Localization

The work in this chapter has been published previously as the following:

Mahdi Biparva and John K. Tsotsos, “STNet: Selective Tuning of Convolu-
tional Networks for Object Localization”, in The IEEE International Con-
ference on Computer Vision Workshop on Mutual Benefits of Cognitive and
Computer Vision (MBCC), 2017

and is presented here with no further changes and modifications.

46

3.1 Abstract

Visual attention modeling has recently gained momentum in developing visual

hierarchies provided by Convolutional Neural Networks. Despite recent suc-

cesses of feed-forward processing on the abstraction of concepts from raw im-

ages, the inherent nature of feedback processing has remained computationally

controversial. Inspired by the computational models of covert visual attention,

we propose the Selective Tuning of Convolutional Networks (STNet). It is com-

posed of two streams of Bottom-Up and Top-Down information processing to

selectively tune the visual representation of convolutional neural networks. We

experimentally evaluate the performance of STNet for the weakly-supervised

localization task on the ImageNet benchmark dataset. We demonstrate that

STNet not only successfully surpasses the state-of-the-art results but also gen-

erates attention-driven class hypothesis maps.

3.2 Introduction

Inspired by physiological and psychophysical findings, many attempts have

been made to understand how the visual cortex processes information through-

out the visual hierarchy [101, 102]. It is significantly supported by reliable ev-

idence [12, 22] that information is processed in both directions throughout the

visual hierarchy: The Bottom-Up (BU) pass in a hierarchical visual represen-

tation is defined as the transformation of the sensory input data into high-level

abstract semantic information through a cascade of feature extraction layers.

In a convolutional neural network, the input data is passed through a series of

47

processing layers, each composed of convolutional, pooling, and non-linearity,

from the bottom to the top of the neural network. Parametric layers in the

BU pass contains connection weight parameters that are optimized during the

training phase to minimize the task loss function. The representational power

of the BU pass is defined relative to the benchmark datasets on which the

model is trained.

The Top-Down (TD) pass, on the other hand, is based on the reverse flow

direction. The pass begins from an initial signal at the top of the hierarchy,

and it goes all the way down to the early low-level TD layers. The TD pass

does not go through any parametric layers such as convolutional layers. How-

ever, connection weights are computed locally at each TD layer using not only

the localized receptive field activities but also the network kernel filters. The

local computation has three stages: selection as a result of neural competi-

tion emerges, grouping highlights important nodes, and the final normalized

propagation update output gating nodes.

In recent years, while the learning approaches have matured, various mod-

els and algorithms have been developed to present a richer visual represen-

tation for various visual tasks such as object classification and detection, se-

mantic segmentation, action recognition, and scene understanding [103, 104].

Regardless of the algorithms used for representation learning, most attempts

benefit from BU processing paradigm, while TD processing has very rarely

been targeted particularly in the computer vision community. In recent years,

convolutional neural networks, as a BU processing structure, have shown to be

quantitatively very successful on the visual tasks targeted by popular bench-

48

mark datasets [30, 49, 50, 105].

Attempts in modeling visual attention are attributed to the TD processing

paradigm. The idea is using some form of facilitation or suppression, the visual

representation is selected and modulated in a TD manner [7, 106]. Visual

attention has two modes of execution [6, 107]: Overt attention attempts to

compensate for the lack of visual acuity throughout the entire field of view in

a perception-cognition-action cycle by the means of an eye-fixation controller.

In nutshell, the eye movement keeps the highest visual acuity at the fixation

while leaving the formed visual representation intact. Covert attention, on

the other hand, modulates the shaped visual representation, while keeping the

fixation point unchanged.

We strive to account for both the BU and TD processing in a novel unified

framework by proposing STNet, which integrates attentive selection processes

into the hierarchical representation. STNet has been experimentally evalu-

ated on the task of object localization. Unlike all previous approaches, STNet

considers the biologically-inspired method of surround suppression [77] to se-

lectively deploy high-level task-driven attention signals all the way down to

the early layers of the visual hierarchy. The qualitative results reveal the su-

periority of STNet on this task over the performance of the state-of-the-art

baselines.

We propose to use the Selective Tuning (ST) computational model of visual

attention [21, 7] as the basis for the TD selection processes that complements

the BU processes of a typical convolutional neural network. In both BU and

TD passes, the information at one particular layer is acquired from the previous

49

layer, processed at the layer, and then sent to the next layer in the hierarchy.

The flow direction, though, is different for each pass, and the previous and

next layers are accordingly defined. In the TD pass, for a layer Lk, the previous

layer is the top layer Lk+1 and the next layer is the bottom layer Lk−1 within

the hierarchy while the reverse is true for the BU pass. The BU pass benefits

from learnable connection weight parameters for feature transformation such as

convolutional kernels while the TD pass has no such type of weight parameters.

Instead, there are adaptive threshold parameters that rule the selection process

properties, which are determined as the result of competitions between input

values at each TD layer. We hereafter call processing units in the BU and TD

passes hidden and gating units respectively. Next, we explain the input, the

attention selection process, and the output of TD layer.

Every TD layer expects two input arguments: one is the hidden activities

at the layer below, which are retrieved via a localized Receptive Field (RF),

and the other is the kernel weights of the BU layer. Given these two arguments,

the input to the attention selection process is determined by the Hadamard

matrix product of the kernel weights with the localized RF activities for a par-

ticular gating unit. The product result is referred to as the Post-Synaptic (PS)

activities. PS activities are localized for each gating unit at particular layers,

spatial locations, and feature maps. The output of the selection process is also

localized. Therefore, local output values are written to their corresponding

units in the next TD layer.

Given the localized PS activities to the selection process at a particular

TD layer, we define a cascade of three computational stages. The first one

50

is proposed to reduce noise interference by pruning redundant PS activities.

The selection pattern is the result of competitions between PS units such that

the value of the top gating activity is either retained or increased. The second

stage is defined to group and select the most important input units. For a

convolutional layer, spatial contiguity matters while for a fully-connected layer,

statistical importance is measured. The final stage is defined to normalize the

selected local PS units such that they sum to one, and then propagate the

activity of the top gating unit proportional to the normalized selected PS

activities to the gating units of the next layer.

The initial gating activities at the hierarchy top layer starts with the exe-

cution of the TD pass. Consequently, a number of TD layers are sequentially

processed, and the TD pass terminates at some early layer. The gating ac-

tivities of the final TD layer are retrieved and post-processed to produce the

desired task output. This proposed formulation of a TD selection mechanism

for convolutional neural networks is called STNet [108].

Various approaches based on error gradient propagation with respect to

the input variable are dominant for object localization and representation vi-

sualization [1, 109, 2]. These approaches use dense TD traversal to early layers

and at a late post-processing stage, perform selection of salient regions for ob-

ject localization. STNet, on the other hand, is inherently selective throughout

the visual hierarchy. This property implies sparse representation and faster

TD traversal while improving the localization accuracy.

We evaluate the performance of the proposed network on the weakly-

supervised object localization task [59, 110]. In this task, the ultimate goal is

51

to localize objects within the input image with no extra parameter fine-tuning.

STNet outperforms the state-of-the-art methods on this task [108]. The eval-

uation is measured using the Intersection-over-Union (IoU) metric. If the IoU

of the proposed box with the ground truth box is greater than some threshold

value (0.5), that prediction is marked a successful prediction. The localiza-

tion accuracy is then the average number of successful predictions across the

unseen validation set.

3.3 Related Work

Various attempts have been made to model an implicit form of covert attention

on convolutional neural network s for representation visualization and weakly-

supervised object localization. [59] proposes to maximize the class score over

the input image using the backpropagation algorithm for the visualization pur-

poses. [58] introduces an inverted convolutional neural network to propagate

backward hidden activities to the early layers. Harnessing the superiority of

global AVERAGE pooling over global MAX pooling to preserve spatial cor-

relation, [1] has defined a weighted sum of the activities of the convolutional

layer feeding into the global pooling layer. Recently, an explicit notion of

covert visual attention has gained interest in the computer vision community

[109, 2] for the weakly-supervised localization task. Having interpreted ReLU

activation and MAX pooling layers as feedforward control gates, [109] pro-

poses feedback control gate layers which are activated based on the solution

of an optimization problem. Inspired closely by Selective Tuning model of

52

visual attention, [2] formulates TD processing using a probabilistic interpre-

tation of the Winner-Take-All (WTA) mechanism. In contrast to all these

attempts that the TD processing is densely deployed in the same fashion as

BU processing, we propose a highly sparse and selective TD processing in this

work.

The localization approach in which the learned representation of the vi-

sual hierarchy is not modified is commonly referred to as weakly supervised

object localization [59, 110, 1, 109, 2]. This is in contrast with the supervised

localization approach in which the visual representation is fine-tuned to better

cope with the new task requirements. Additionally, unlike the formulation

for the semantic segmentation task [111, 112, 113], bounding box prediction

forms the basis of performance measure. We evaluate experimentally STNet

in this paradigm and provide evidence that selective tuning of convolutional

neural networks better addresses object localization in the weakly-supervised

regime.

3.4 Model

3.4.1 STNet

An integration of the conventional bottom-up processing by convolutional neu-

ral networks with the biologically-plausible attentive top-down processing in

a unified model is proposed in this work. STNet consists of two interactive

streams of processing: The BU stream has the role of forming the represen-

tation throughout the entire visual hierarchy. Information is very densely

53

processed layer by layer in a strict parallel paradigm. The BU pathway pro-

cesses information at each layer using a combination of basic operations such

as convolution, pooling, activation, and normalization functions. The TD

stream, on the other hand, develops a projection of the task knowledge onto

the formed hierarchical representation until the task requirements are fulfilled.

Depending on the type of the task knowledge, the projections may be realized

computationally using some primitive stages of attention processing. The cas-

cade flow of information throughout both streams is layer by layer such that

once information at a layer is processed, the layer output is fed into the next

adjacent layer as the input according to the hierarchical structure.

Any computational formulation of the visual hierarchy representing the

input data can be utilized as the structure of the BU processing stream as

long as the primary visual task could be accomplished. Convolutional neu-

ral networks trained in the fully supervised regime for the primary task of

object classification are the main focus of this chapter. Having STNet com-

posed of a total of L layers, the BU processing structure is composed of

∀l ∈ {0, . . . , L},∃ zl ∈ RHl×W l×Cl
, where zl is the three dimensional feature

volume of hidden nodes at layer l with the dimension of width W l, height H l

and C l number of channels.

3.4.2 Structure of the Top-Down Processing

Based on the topology and connectivity of the BU processing stream, an inter-

active structure for the attentive TD processing is defined. According to the

task knowledge, the TD processing stream is initiated and consecutively tra-

54

versed downward layer by layer until the layer that satisfies task requirements

is reached. A new type of node is defined to interact with the hidden nodes

of the BU processing structure. According to the TD structure, gating nodes

are proposed to collectively determine the TD information flow throughout

the visual hierarchy. Furthermore, they are very sparsely active since the TD

processing is tuned to activate relevant parts of the representation.

The TD processing structure consists of ∀l ∈ {0, . . . , L}, ∃gl ∈ RHl×W l×Cl
,

where gl is the three dimensional (3D) gating volume at layer i having the exact

size of its hidden feature volume counterpart in the BU processing structure.

We define the function RF (z) to return the set of all the nodes in the layer

below that falls inside the receptive field of the top node according to the

connectivity topology of the BU processing structure.

Having defined the structural connectivity of both the BU and TD process-

ing streams, we now introduce the attention procedure that locally processes

information to determine connection weights of the TD processing structure

and consequently the gating node activities at each layer. Once the informa-

tion flow in the BU processing stream reaches the top of the hierarchy at layer

L, the TD processing is initiated by setting the gating node activities of the

top layer as illustrated in Fig. 3.1. Weights of the connections between the top

gating node gL and all the gating node in the layer below within the RF (gL)

are computed using the attentive selection process. Finally, the gating node

activities of layer L − 1 are determined according to the connection weights.

This attention procedure is consecutively executed layer by layer downward to

a layer at which the task requirements are fulfilled.

55

Bottop-Up Processing

Top-Down Processing

Initiating A
ttentive S

e lection
Initiating A

ttentive S
e lection

Figure 3.1: STNet consists of both BU and TD processing streams. In the
BU stream, features are collectively extracted and transferred to the top of the
hierarchy at which label prediction is generated. The TD processing (bottom),
on the other hand, selectively activate part of the structure using attention
processes. Figure schematically illustrates AlexNet architecture. The middle
blue boxes represent hidden and gating activity tensors on the BU and TD
pathways. The last three squares represent fully-connected layers. Receptive
fields are schematically depicted with small red boxes. The blue circles il-
lustrate the selection regions that the information propagates to in the TD
stream.

56

3.4.3 Stages of Attentive Selection

Weights of the connections of the BU processing structure are learned by the

backpropagation algorithm [53] in the training phase. For the TD processing

structure, however, weights are computed in an immediate manner using the

deterministic and procedural selection process from the Post-Synaptic (PS)

activities. We define ∀ glw,h,c ∈ gl , PS(glw,h,c) = RF (zlw,h,c) � klc, where

PS(g) is the Hadamard product (element-wise) of two similar-size matrices,

one representing the receptive field activities, and the other, the kernel at

channel c and layer l.

The selection process has three stages of computation. Each stage pro-

cesses the input PS activities and then feeds the selected activities to the next

stage. In the first stage, noisy redundant activities that interfere with the def-

inition of task knowledge are pruned away. Second, among the remaining PS

activities, the most informative group of activities are marked as the winners

of the selection process at the end of the second stage. In the third stage,

the winner activities are normalized. Once multiplicatively biased by the top

gating node activity, the activities of the bottom gating nodes are updated

consequently. Fig. 3.2 schematically illustrates the flow sequence beginning

from passing PS activities from the BU stream to the attention process and

then propagating weighted activities of the top gating node to the lower layer.

Fig. 3.3 demonstrates the different computational building blocks of the at-

tention process module in detail. Different computational operations in the

BU and TD processing streams along with passing PS activities to the TD

stream are shown in the figure.

57

B
o

tt
o

p
-U

p
 P

ro
ce

ss
in

g

To
p

-D
o

w
n

 P
ro

ce
ss

in
g

Attention Process

Attention Process

Figure 3.2: Schematic Illustration of the sequence of interactions between the
BU and TD processing streams using the three-stage attention process.

Stage 1: Interference Reduction

The main critical issue to accomplish successfully any visual task is to

be able to distinguish relevant regions from irrelevant ones. Winner-Take-All

(WTA) is a biologically-plausible mechanism that implements a competition

between input activities. At the end of the competition, the winner retains

its activity, while the rest become inactive. The Parametric WTA (P-WTA)

using the parameter θ is defined as P -WTA(PS(g), θ) = {s | s ∈ PS(g), s ≥

WTA(PS(g))− θ}. The role of the parameter θ is to establish a safe margin

from the winner activity to avoid under-selection such that multiple winners

will be selected at the end of the competition. It is critical to have some near

optimal selection process at each stage to prevent the under- or over-selection

extreme cases.

We propose an algorithm to tune the parameter θ for an optimal value at

which the safe margin is defined based a biologically-inspired approach. It is

biologically motivated that once the visual attention is deployed downward to

a part of the formed visual hierarchy, those nodes falling on the attention trace

58

1st Stage2nd Stage3rd Stage

x Sum ReLU

BU Processing

TD Processing

gLgL−1

hL
xL−1

wL bL

Figure 3.3: Modular diagram of the interactions between various blocks of
processing in both the BU and TD streams. The arrow direction shows the
flow of the information to each computational block. The layers schematically
represent that the BU and TD processing is done on feature maps with spa-
tial and channel dimensions. Thick arrows represent vector values while thin
arrows represent scalar values

will eventually retain their node activities regardless of the intrinsic selective

nature of attention mechanisms [114, 7]. In analogy to this biological finding,

the Activity Preserve (AP) algorithm optimizes for the distance from the sole

winner of the WTA algorithm at which if all the PS activities outside the

margin are pruned away, the top hidden node activity will be preserved.

Algorithm 1 specifies the upper and lower bounds of the safe margin. The

upper bound is clearly indicated by the sole winner given by the WTA algo-

rithm, while the lower bound is achieved by the output of the AP algorithm.

Consequently, the P-WTA algorithm returns all the PS activities that fall

within this range specified by the upper and lower bound values. They are

highlighted as the winners of the first stage of the attentive selection process

defined by the set W 1st. We will refer to the set of winners at the end of the 1st

59

and 2nd stage with W 1st and the set W 2nd terms respectively. Basically, W 1st

returned from P-WTA algorithm, contains those nodes within the receptive

field that most participate in the calculation of the top node activity. There-

fore, they are the best candidates to initiate the attentive selection processes

of the layer below. The size of the set of winners at this point, however, is still

large. Apparently, further stages of selection are required to prohibit interfer-

ence and redundant TD processing caused by the over-selection phenomenon.

Algorithm 1 Parametric WTA Optimization

1: NEG(PS) = {s | s ∈ PS(g), s ≤ 0}
2: POS(PS) = {s | s ∈ PS(g), s > 0}
3: SUM(NEG) =

∑
ni∈NEG(PS) ni

4: buffer = SUM(NEG)
5: i = 0
6: while i ≤ |POS(PS)|, buffer < ε do
7: buffer+ = SORT (POS(PS))[i]
8: i+ = 1
9: end while
10: return SORT (POS(PS))[i− 1]

Stage 2: Similarity Grouping

In the second stage, the ultimate goal is to apply a more restrictive selec-

tion procedure in accordance with the rules elicited from the task knowledge.

Grouping of the winners according to some similarity measure serves as the

basis of the second stage of the attentive selection process. Two modes of selec-

tion at the second stage are proposed depending on whether the current layer

of processing has a spatial dimension or not: Spatially-Contiguous(SC) and

Statistically-Important(SI) selection modes respectively. The former is appli-

cable to the Convolutional layers and the latter to the Fully-Connected(FC)

layers in a typical convolutional neural network.

60

There is no ordering information between the nodes in the FC layers.

Therefore, one way to formulate the relative importance between nodes is

using the statistics calculated from the sample distribution of node activi-

ties. SI selection mode is proposed to find the statistically important activ-

ities. Based on an underlying assumption that the node activities have a

Normal distribution, the set of winners of the second stage is determined by

W 2nd = {s| s ∈ W 1st, s > µ+α ∗ σ}, where µ and σ are the sample mean and

standard deviation of W 1st respectively. The best value of the coefficient α is

searched over the range {−3,−2,−1, 0,+1,+2,+3} in the second stage based

on a search policy meeting the following criteria: First, the size of the winner

set W 2nd at the end of the SI selection mode has to be non-zero. Second,

the search iterates over the range of possible coefficient values in a descend-

ing order until |W 2nd| 6= 0. Furthermore, an offset parameter O is defined to

loosen the selection process at the second stage once these criteria are met.

For instance, if α is +1 at the end of the SI selection mode, the loosened α

will be −1 for the offset value of 2. The effects of loosening SI selection mode

is experimentally demonstrated in Sec. 3.5.

Convolutional layers, on the other hand, benefit from stacks of two di-

mensional feature maps. Although the ordering of feature maps in the third

dimension is not meant to encode for any particular information, 2D feature

maps individually highlight spatial active regions of the input domain pro-

jected into a particular feature space. In other words, the spatial ordering is

always preserved throughout the hierarchical representation. With the spatial

ordering and the task requirement in mind, SC selection mode is proposed to

61

determine the most spatially contiguous region of the winners based on their

PS activities.

SC selection mode first partitions the set of winners W 1st into groups of

connected regions. A node has eight immediate adjacent neighbors. A con-

nected region Ri, therefore, is defined as the set of all nodes that are recur-

sively in the neighborhood of each other. Out of all the number of connected

regions, the output of the SC selection mode is the set of nodes W 2nd that

falls inside the winner connected region. It is determined by the index i such

that î = arg maxi α ∗ (
∑

rj∈Ri
PSrj(g)) + (1 − α) ∗ (|Ri|), where PSrj(g) is

the PS activity of node rj among the set of all PS activities of the top node

g. It shows the overall strength of the winner region. The value of multiplier

α is cross-validated in the experimental evaluation stage for the best balance

between the strength and size of the winner regions. |Ri| is the total number

of nodes in the winner connected region i and shows the size of region. α = 1

implies a selection policy that only relies on the strength of the connected

regions while α = 0 only counts the size of the regions into account. Lastly,

SC selection mode returns the final set of winners W 2nd = {s| s ∈ Rî}. The

argument that W 2nd could better address task requirements in comparison to

W 1st is experimentally supported in 3.5.

Having determined the set of winners W 2nd out of the set of all nodes

falling inside the receptive field of the top node RF (g), it is straightforward

to compute values of the both active and inactive weight connections of the

TD processing structure. The inactive weight connections have value zero. In

Stage 3, the mechanism to set the values of the active weight connections from

62

Architecture Lprop OFC OBridge α δpost
ST-AlexNet pool1 3 3 0.2 µA
ST-VGGNet pool3 2 0 0.2 µA
ST-GoogleNet pool2/3x3 s2 0 - 0.2 µA

Table 3.1: Demonstration of the STNet configurations in terms of the hyper-
parameter values. Lprop is the name of the layer at which the attention map is
calculated. OFC and OBridge are the offset values of the SI selection mode at
the fully-connected and bridge layers respectively. α is the trade-off multiplier
of the SC selection mode. δpost represents the post-processing threshold value
of the attention map.

W 2nd will be described.

Stage 3: Attention Signal Propagation

Gating nodes are defined to encode for attention signals using multiple level

of activities. The top gating node propagates the attention signal proportional

to the normalized connection weights to the layer below. Having the set of

winners W 2nd for the top gating node g, PSW 2nd(g) is the set of PS activities

of the corresponding winners. The set of normalized PS activities is defined

as PSnorm = {ŝ| s ∈ PSW 2nd(g), ŝ = s/
∑

si∈PSW2nd (g)
si}. Weight values of

the active TD connections are specified as follows: ∀ i ∈ W 2nd, wig = PSinorm,

where wig is the connection from the top gating node g to the gating node i

in the layer below, and PSinorm is the PS activity of the winner node i.

At each layer, the attentive selection process is performed for all the active

top gating nodes. Once the winning set for each top gating node is determined

and the normalized values of the corresponding connection weights to the layer

below are computed, the winner gating nodes of the layer below are updated as

follows: ∀i ∈ {1, . . . , |gl|}, ∀j ∈ {1, . . . , |W 2nd
i |}, gl−1j + = wji∗gli. The updating

rule ensures that the top gating node activity is propagated downward such

63

Model AlexNet VGGNet GoogleNet
Oxford[59] - - 44.6
CAM[1] 48.31 48.11 48.12

Feedback[109] 49.6 40.2 38.8
MWP[2] 41.71 40.61 38.7
STNet 40.3 40.1 38.6

Table 3.2: Comparison of the STNet localization error rate on the ImageNet
validation set with the previous state-of-the-art results. The bounding box is
predicted given the single center crop of the input images with the TD pro-
cessing initialized by the ground truth category label. (1) Results calculated
using the publicly published code by [1, 2]. (2) Based on the result reported
by [2]. Otherwise, the results are reported by the reference work cited on the
left.

that it is multiplicatively biased by weight values of the active connections.

3.5 Experimental Results

Top-down visual attention seems necessary for the completion of sophisticated

visual tasks for which only Bottom-Up information processing is not sufficient.

This implies that tasks such as object localization, visual attribute extraction,

and part decomposition require more processing time and resources. STNet,

as a model benefiting from both streams of processing, is experimentally eval-

uated on object localization task in this work.

STNet is implemented using Caffe [115], a library originally developed

for convolutional neural network s. AlexNet [30], VGGNet(16) [59], and

GoogleNet [49] are the three convolutional neural network architectures that

are applied to define the BU processing structure of STNet. The model weight

parameters are retrieved from the publicly available convolutional neural net-

work repository of Caffe Model Zoo in which they are pre-trained on ImageNet

64

Figure 3.4: Illustration of the predicted bounding boxes in comparison to the
ground truth for ImageNet images. In the top section, STNet is successful
to localize the ground truth objects. The bottom section, on the other hand,
demonstrates the failed cases. The top, middle, and bottom rows of each
section depict the bounding boxes from the ground truth, ST-VGGNet, and
ST-GoogleNet respectively.

2012 classification training dataset [116]. For the rest of the paper, we refer

to STNet utilized with AlexNet as the base architecture of the BU structure

as ST-AlexNet. This similarly applies to VGGNet and GoogleNet.

3.5.1 Implementation Details

Bounding Box Proposal: Having an input image fed into the BU processing

stream, a class specific attention map for category k at layer l is created. It is a

resultant of the TD processing stream initiated from the top gating layer with

the one-hot encoding of category k. Once the attention signals are completely

propagated downward to layer l, the class specific attention map is defined

by collapsing the gating volume gl ∈ RHl×W l×Cl
at the third dimension into

the attention map Alk ∈ RHl×W l
as follows: Alk =

∑
i∈Cl gli, where C l is the

number of gating sheets at layer l, and gli is a 2D gating sheet. We propose to

65

post-process the attention map by setting all the small collapsed values below

the sample mean value of the map to zero.

We propose to predict a bounding box from the thresholded attention map

Âlk using the following procedure. Apparently, the predicted bounding box is

supposed to enclose an instance of the category k. If layer l is somewhere in

the middle of the visual hierarchy, Âlk is transformed into the spatial space of

the input layer. In the subsequent step, a tight bounding box around the non-

zero elements of the transformed Âlk is calculated. Nodes inside the RF of the

gating nodes at the boundary of the predicted box are likely to be active if the

TD attentional traversal further continues processing lower layers. Therefore,

we choose to pad the tight predicted bounding box with the half size of the

accumulated RF at layer l. We calculate accurately the accumulated RF size of

each layer according to the intrinsic properties of the BU processing structure

such as the amount of padding and striding of the layer.

Search over Hyperparameters: There a few number of hyperparame-

ters in STNet that are experimentally cross-validated using one held-out parti-

tion of the ImageNet validation set. It contains 1000 images which are selected

from the randomly-shuffled validation set. The grid search over the hyperpa-

rameter space finds the best-performing configuration for each convolutional

neural network architecture.

The SI selection mode is experimentally observed to perform more effi-

ciently once the offset parameter O is higher than zero. The offset parameter

has the role of loosening the selection process for the cases under-selection is

very dominant. Furthermore, we define the bridge layer as the one at which

66

the 3D volume of hidden nodes collapses into a 1D hidden vector. SI selection

procedure is additionally applied to the entire gating volume of the bridge

layer in order to prevent the over-selection phenomenon. Except GoogleNet,

the other two architectures have a bridge layer. Further implementation de-

tails regarding all three architectures are given in the supplementary material

in Sec. A.1.

Hyperparameters such as the layer at which the best localization result is

obtained, the multiplier of the SC selection mode, and the threshold value for

the bounding box proposal procedure are all set by the values obtained from

the cross-validation on the held-out partition set for all three convolutional

neural network s. Having the best STNet configurations given in Table 3.1,

we measure STNet performance on the entire ImageNet validation set.

3.5.2 Weakly Supervised Localization

The significance of the attentive TD processing in STNet is both quantitatively

and qualitatively evaluated on the ImageNet 2015 benchmark dataset for the

object localization task. The experimental setups and procedures have been

considerably kept comparative with previous works.

Dataset and evaluation: Localization accuracy of STNet is evaluated

on the ImageNet 2015 validation set containing 50,000 images of variable sizes.

The shortest side of each image is reduced to the size of the STNet input layer.

A single center crop of the size equal to the input layer is then extracted and

sent to STNet for bounding box prediction. In order to remain comparative

with the previous experimental setups for the weakly supervised localization

67

task [109, 2], the ground truth label is provided to initiate the TD processing.

A localization prediction considers to be correct if the Intersection-over-Union

(IoU) of the predicted bounding box with the ground truth is over 0.5.

Quantitative results: STNet localization performance surpasses the pre-

vious works with a comparative testing protocol on the ImageNet dataset. For

all three BU architectures, Table 3.2 indicates that STNet quantitatively is on

par with previous state-of-the-art approaches [59, 1, 109, 2] in two of the three

cases considered, while in the third case modestly outperforms the previous

best by 1.4%. The results imply that not only has the localization accuracy

improved but also fewer nodes are active in the TD processing stream. The

finding is in sharp contrast to all the previous approaches that densely prop-

agate down information in the TD stream. STNet, on the other hand, is

hierarchically selective intrinsically. This helps sparse processing in the TD

stream and consequently implies faster processing speed.

Comparison with Previous Works: One of the factors distinguishing

STNet from other approaches is the selective nature of the TD processing.

In gradient-based approaches such as [59, 110, 117, 60], the gradient signals,

which are computed with respect to the input image rather than the weight

parameters, are deployed densely downward to the input layer. This approach

suffers from an unconstrained propagation of gradient signals throughout the

visual hierarchy. As a result, a good localization can be obtained through a

harsh final thresholding. Deconvnet [58] is proposed to reverse the same type

and extent of processing as the feedforward pass originally for the purpose

of visualization. The Feedback model [109] defines a dense feedback structure

68

that is iteratively optimized using a secondary loss function to maintain the la-

bel predictability of the entire network. Similarly, attention signals are densely

propagated through positive weight connections biased by the normalized PS

activities in the MWP model [2, 118]. Additionally, MWP suffers from the

lack of the three-stage attentive selection process and leave the object local-

ization to the last stage at which strong thresholding is necessary to obtain

reliable bounding box predictions. In contrast, the TD structure of STNet

remains fully inactive except for a small portion that leads to the attended

region of the input image. We empirically verify that not only has the local-

ization accuracy been improved in STNet, but also on average around 0.3%

of the TD structure is active. This implies comparative localization results

can be obtained with faster speed and less wasted amount of computation in

the TD processing stream. Furthermore, it is worth noting that ST-AlexNet

localization performance is very close to the two other high capacity models

despite the shallow depth and simplicity of the network architecture.

Qualitative Analysis: The qualitative results provide insights on the

strengths and weakness of STNet as illustrated in Fig. 3.4. Investigating

the successful and failed cases, we are able to identify two extreme scenarios:

under-selection and over-selection scenarios. The under-selection scenario is

caused by the inappropriate learned representation or improper configuration

of the TD processing, while the over-selection scenario mainly is due to ei-

ther multi-instance or what we call Correlated Accompanying Object cases. A

large bounding box enclosing multiple objects is proposed as a result of over-

selection. Neither streams of STNet are tuned to systematically deal with

69

Figure 3.5: Demonstration of the attention-driven class hypothesis maps for
ImageNet images. In both top and bottom sections, rows from top to bottom
represent ground truth boxes on RGB images, the CH map from ST-VGGNet,
and the CH map from ST-GoogleNet respectively.

these extreme scenarios.

3.5.3 Class Hypothesis Visualization

We show that gating node activities can further be processed to visualize the

salient regions of input images for an activated category label. Following a

similar experimental setup to the localization task in Table 3.1, an attention-

driven Class Hypothesis (CH) map is created from the transformed thresholded

attention map. We simply increment by one the pixel values inside the accu-

mulated RF box centered at each non-zero pixel of the attention map. Once

iterated over all non-zero pixels, the CH map is smoothed out using a Gaussian

filter with the standard deviation σ = 6. Fig. 3.5 qualitatively illustrates the

performance of STNet to highlight the salient parts of the input image once

the TD processing stream is initiated with the ground truth category label.

Further details regarding the visualization experimental setups are given in

the supplementary material in Sec. A.1.

70

Comparison of convolutional neural networks: We observed in Sec.

3.5.2 that the localization performance of the ST-GoogleNet surpasses both

ST-AlexNet and ST-VGGNet. The qualitative experimental results using CH

maps in Fig. 3.5 further shed some light on the inherent nature of this dis-

crepancy. Both AlexNet and VGGNet benefit from a coherently increasing

RF sizes along the visual hierarchy such that at each layer all hidden nodes

have a similar RF size. Consequently, the scale at which features are ex-

tracted coherently changes from layer to layer. On the other hand, GoogleNet

is always taking advantage of intermixed multi-scale feature extraction at each

layer. Additionally, 1x1 convolutional layers act as high capacity parametrized

modules by which any affine mixture of features could be computed. In the

TD processing, we treat such layers as regular fully-connected layers in all

experiments.

Context Interference: The learned representation of convolutional neu-

ral networks strongly relies on the background context over which the category

instances are superimposed for the category label prediction of the input im-

age. This is expected since the learning algorithm does not impose any form

of spatial regularization during the training phase. Fig. 3.6 depicts the results

of the experiment in which we purposefully deactivated the second stage of

the selection process at FC layers. Furthermore, the winner with the highest

PS activity is remained active among all winners and the rest are set inactive

at the end of the first stage of FC layers such that there is always one win-

ner at each layer. Deactivating the second stage on the convolutional layers

deteriorates the capability of STNet to sharply highlight the salient regions

71

Figure 3.6: The critical role of the second stage of selection is illustrated using
CH visualization. In the top row of each section, images are presented with
boxes for the ground truth (blue), full-STNet predictions (green), and second-
stage-disabled predictions (red). In the second and third rows of each section,
CH maps from the full and partly disabled STNet are given respectively.

relevant to objects in the TD processing stream. The results implies that the

learned representation heavily relies on the features collected across the entire

image regardless of the ground truth. The SC mode of the second stage helps

STNet to visualize the coherent and sharply localized confident regions. The

CH visualization demonstrates the essential role of the second stage to deal

with the redundant and distracting context noise for the localization task.

Correlated Accompanying Objects: The other shortcoming of the

learned representation emphasized by CH visualization is that the BU pro-

cessing puts high confidence on the features collected from the regions belong-

72

Figure 3.7: We demonstrate using ST-VGGNet the confident region of the
accompanying object highly correlating with the true object category. The
top row of each section contains images with the ground truth (blue) and
predicted (red) boxes. CH maps highlight the most salient regions in the
bottom row of each section.

ing to correlated accompanying objects. They happen to co-occur extremely

frequently with the the ground truth objects in the training set on which

convolutional neural network s are pre-trained. Similar to the previous exper-

iment, the modified version of the first stage for FC layers is used, while the

convolutional layers benefit from the original 3-stage selection process. Fig-

ure 3.7 reveals how STNet misleadingly localize with the highest confidence

the accompanying object that highly correlates with the ground truth object.

As soon as the visual representation confidently relates the correlated accom-

panying object with the true category label, over-selecting for the bounding

box prediction will be inevitable. The multi-instance scenario and such cases

are the two sources of the over-selection phenomenon in the localization task.

We credit these two sources of over-selection to the pre-trained representation

obtained from the unconstrained backpropagation learning algorithm.

73

3.6 Conclusion

We proposed an innovative framework consisting of the Bottom-Up and Top-

Down streams of information processing for the task of object localization. We

formulated the Top-Down processing as a cascading series of local attentive

selection processes each consisting of three stages: First inference reduction,

second similarity grouping, and third attention signal propagation. We demon-

strated experimentally the efficiency, power, and speed of STNet to localize

objects on the ImageNet dataset supported by the quantitative results that

are on par with the state-of-the-art. Class Hypothesis maps are introduced to

qualitatively visualize attention-driven class-dependent salient regions. Hav-

ing investigated the difficulties of STNet in object localization, we believe the

visual representation of the Bottom-Up stream is one of the shortcomings of

this framework. The significant role of the selective Top-Down processing

in STNet could be foreseen as a promising approach applicable in a similar

fashion to other challenging computer vision tasks.

74

Chapter 4

Priming in Neural Network

The work in this chapter has been published previously as the following:

Amir Rosenfeld, Mahdi Biparva, John K. Tsotsos, “Priming Neural Net-
works”, in The IEEE International Conference on Computer Vision and
Pattern Recognition (CVPR) Workshop on Mutual Benefits of Cognitive
and Computer Vision (MBCC), 2018

and is presented here with minor changes and modifications.

The contributions to this work are distributed among conceptualization,

formulation, coding, and documentation. Amir Rosenfeld and Mahdi Biparva

contributed equally to the conceptualization and abstraction of the novel idea

in this work. The modeling and formulation of a possible implementation of

the novel idea is equally contributed by the first two authors. Mahdi Biparva

contributed 20% to the coding of the proposed formulation and conducting ex-

perimental evaluations while Amir Rosenfeld gets the credit for 80% contribu-

tion to this part. Lastly, Mahdi Biparva contributed 30% to the documentation

of the work and the rest is done by Amir Rosenfeld.

75

4.1 Abstract

Visual priming is known to affect the human visual system to allow detection

of scene elements, even those that may have been near unnoticeable before,

such as the presence of camouflaged animals. This process has been shown to

be an effect of top-down signaling in the visual system triggered by the said

cue. In this paper, we propose a mechanism to mimic the process of priming in

the context of object detection and segmentation. We view priming as having

a modulatory, cue dependent effect on layers of features within a network. Our

results show how such a process can be complementary to, and at times more

effective than simple post-processing applied to the output of the network,

notably so in cases where the object is hard to detect such as in severe noise.

Moreover, we find the effects of priming are sometimes stronger when early

visual layers are affected. Overall, our experiments confirm that top-down

signals can go a long way in improving object detection and segmentation.

4.2 Introduction

Psychophysical and neurophysiological studies of the human visual system con-

firm the abundance of top-down effects that occur when an image is observed.

Such top-down signals can stem from either internal (endogenous) processes

of reasoning and attention or external (exogenous) stimuli- i.e. cues - that

affect perception (cf. [7], Chapter 3 for a more detailed breakdown). External

stimuli having such effects are said to prime the visual system, and poten-

tially have a profound effect on an observer’s perception. This often results

76

Figure 4.1: Visual priming: something is hidden in plain sight in this image.
One is unlikely to notice it without a cue for what it is (for an observer that
has not seen this image before). Once a cue is given, perception is modified
to allow successful detection. See the supplementary material in Sec. A.2 for
the full answer.

77

in an “Aha!” moment for the viewer, as he/she suddenly perceives the image

differently; Fig. 4.1 shows an example of such a case. We make here the dis-

tinction between 3 detection strategies: (1) free viewing, (2) priming and (3)

pruning. Freely viewing the image, the default strategy, likely reveals nothing

more than a dry grassy field near a house. Introducing a cue about a target in

the image results in one of two possibilities. The first, also known as priming,

is modification to the computation performed when viewing the scene with

the cue in mind. The second, which we call pruning - is a modification to

the decision process after all the computation is finished. When the task is

to detect objects, this can mean retaining all detections that match the cue,

even very low confidence ones and discarding all others. While both are vi-

able ways to incorporate the knowledge brought on by the cue, priming often

highly increases the chance of detecting the cued object. Viewing the image

for an unlimited amount of time and pruning the results is less effective; in

some cases, detection is facilitated only by the cue. We claim that priming

allows the cue to affect the visual process from early layers, allowing detection

where it was previously unlikely to occur in free-viewing conditions. This has

also recently gained some neurophysiological evidence [119].

We propose a mechanism to mimic the process of visual priming in deep

neural networks in the context of object detection and segmentation. The

mechanism transforms an external cue about the presence of a certain class in

an image (e.g., “person”) to a modulatory signal that affects all layers of the

network. This modulatory effect is shown via experimentation to significantly

improve object detection performance when the cue is present, more so than

78

a baseline which simply applies post-processing to the network’s result. Fur-

thermore, we show that priming early visual layers has a greater effect than

doing so for deeper layers. Moreover, the effects of priming are shown to be

much more pronounced in difficult images such as very noisy ones.

We investigate the modulatory role of the priming mechanism to support

the argument that a TD mechanism properly gates the flow of hidden activities

in the BU pass. As a result, the gating mechanism incorporates robustness

against noise inference and remain more resilience against such visual distur-

bance. The priming mechanism motivates the effectiveness of a TD gating

mechanism for object segmentation and supports the hypothesis that interfer-

ence robustness is achievable.

4.3 Related Work

Context has been very broadly studied in cognitive neuroscience [120, 121, 122,

123, 124, 125, 126] and in computer vision [127, 128, 129, 130, 131, 132, 133].

It is widely agreed [134] that context plays crucial role for various visual tasks.

Attempts have been made to express a tangible definition for context due to

the increased use in the computer vision community [129, 130].

Biederman et al. [120] hypothesizes object-environments dependencies into

five categories: probability, interposition, support, familiar size, and position.

Combinations of some of these categories would form a source of contextual in-

formation for tasks such as object detection [130, 134], semantic segmentation

[135], and pose estimation [136]. Context consequently is the set of sources

79

that partially or collectively influence the perception of a scene or the objects

within [137].

Visual cues originated from contextual sources, depending on the scope

they influence, further direct visual tasks at either global or local level [129,

130]. Global context such as scene configuration, imaging conditions, and

temporal continuity refers to cues abstracted across the whole scene. On the

other hand, local context such as semantic relationships and local-surroundings

characterize associations among various parts of similar scenes.

Having delineated various contextual sources, the general process by which

the visual hierarchy is modulated prior to a particular task is referred to as vi-

sual priming [7, 138]. A cue could be provided either implicitly by a contextual

source or explicitly through other modalities such as language.

There has been a tremendous amount of work on using some form of top-

down feedback to contextually prime the underlying visual representation for

various tasks [123, 124, 125, 126]. The objective is to have signals generated

from some task such that they could prepare the visual hierarchy oriented

for the primary task. [134] proposes contextual priming and feedback for

object detection using the Faster R-CNN framework [72]. The intuition is to

modify the detection framework to be able to generate semantic segmentation

predictions in one stage. In the second stage, the segmentation primes both

the object proposal and classification modules.

Instead of relying on the same modality for the source of priming, [139, 140]

proposes to modulate features of a visual hierarchy using the embedding of the

language model trained on the task of visual question answering [141, 142]. In

80

other words, using feature-wise affine transformations, [140] multiplicatively

and additively modulates hidden activities of the visual hierarchy using the

top-down priming signals generated from the language model, while [134] ap-

pends directly the semantic segmentation predictions to the visual hierarchy.

Recently, [135] proposes to modulate convolutional weight parameters of a

neural network using segmentation-aware masks. In this regime, the weight

parameters of the model are directly approached for the purpose of priming.

Although all these methods modulate the visual representation, none has

specifically studied the explicit role of category cues to prime the visual hierar-

chy for object detection and segmentation. In this work, we strive to introduce

a consistent parametric mechanism into the neural network framework. The

proposed method allows every portion of the visual hierarchy to be primed for

tasks such as object detection and semantic segmentation. It should be noted

that this use of priming was defined as part of the Selective Tuning (ST) model

of visual attention [21]. Other aspects of ST have recently appeared as part of

classification and localization networks as well [108, 2], and our work explores

yet another dimension of the ST theory.

4.4 Approach

Assume that we have some network N to perform a task such as object de-

tection or segmentation on an image I. In addition, we are given some cue

h ∈ Rn about the content of the image, where n varies depending on the

cue based on which the priming is performed. We next describe pruning and

81

Feature
Extraction

Task
Prediction

Input
Image

(a) Feedforward

Input
Image

(b) Pruning Cue

Feature
Extraction

Feature
Extraction

Input
Image

(c) Priming

Cue

Feature
Extraction

Feature
Extraction

Feature
Extraction

Task
Prediction

Feature
Extraction

Feature
Extraction

Task
Prediction

Feature
Extraction

Figure 4.2: A neural network can be applied to an input in either an unmod-
ified manner (top), pruning the results after running (middle) or priming the
network via an external signal (cue) in image to affect all layers of processing
(bottom).

priming, how they are applied and how priming is learned. We assume that h

is a binary encoding of them presence of some target(s) (e.g, objects) - though

this can be generalized to other types of information. For instance, an explicit

specification of color, location, orientation, etc, or an encoded features repre-

sentation as can be produced by a vision or language model. Essentially, one

can either ignore this cue, use it to post-process the results, or use it to affect

the computation. These three strategies are presented graphically in Fig. 4.2.

Pruning. In pruning, N is fed an image and we use h to post-process

the result. In object detection, all bounding boxes output by N whose class

is different than indicated by h are discarded. For segmentation, assume N

outputs a score map of size C × H ×W , where C is the number of classes

82

learned by the network, including a background class, H and W are the height

and width of the output score map. We propose two methods of pruning,

with complementary effects. The first type increases recall by ranking the

target class higher: for each pixel (x,y), we set the value of all score maps

inconsistent with h to be −∞ , except that of the background. This allows

whatever detection of the hinted class to be ranked higher than other which

previously masked it. The second type simply sets each pixels which was

not assigned by the segmentation the target class to the background class.

This decreases recall but increases the precision. These types of pruning are

demonstrated in Fig. 4.8 and discussed below.

Priming Our approach is applicable to any network N with a convolu-

tional structure, such as a modern network for object detection, e.g. [5]. To

enable priming, we freeze all weights in N and add a parallel branch Np. The

role of Np is to transform an external cue h ∈ Rn to modulatory signals which

affect all or some of the layers of N . Np has P parametric layers which are set

according to the priming specification and the number of layer in N . Given

the external cue h, Np gate the appropriate coefficient weights to modulate in

information propagation in N . Namely, let Li be some layer of N. Denote the

output of Li by xi ∈ RCi×Hi×Wi where Ci is the number of feature planes and

Hi,Wi are the height and width of the feature planes. Denote the jth feature

plane of xi by xij ∈ RHi×Wi . Np modulates each feature plane xij by applying

the function

fij(xij, h) = x̂ij. (4.1)

83

The function fij always operates in a spatially-invariant manner - for each

element in a feature plane, the same function is applied. In other words, The

function fij multiplicatively modulates the feature units on each feature plane

j at layer i regardless of the spatial correlations between features. The in-

tuition is that convolutional kernel filters are taking care of feature encoding

in the spatial domain and the priming mechanism is only responsible to bias

for critical feature planes. This implies the complementary role of the prim-

ing mechanism to the feature encoding in neural networks. Obviously, the

spatially-invariant formulation cannot prime spatially feature planes. Cur-

rently, the assumption is that feature transformation in neural networks is

capable of separating appearance features of objects into separate planes so

then once a plane is primed, we implicitly target a particular spatial regions.

Other than that, currently the limitation of the priming mechanism is that

there is no explicit spatial priming mechanism. We define the function fij

specifically using a simple residual function, that is

x̂ij = αij · xij + xij, (4.2)

where the coefficients αi = [αi1, . . . , αici]
T are determined by a linear trans-

formation of the cue:

αi = Wi ∗ h, (4.3)

where Wi ∈ RCi×C such that Ci is the number of feature planes at layer i

and C is the number of target classes that N learns to predict. the coefficient

84

αik specifies how much the feature units on feature plane k are multiplicatively

modulated. Np has the set of learnable parameters {W1, . . . ,WP} where Wi

is the tensor of coefficient parameters that are learned during the network

training using the stochastic optimization algorithm. The parameters basically

specify that given the top-down signaling cue h, how the feature planes need

to be adjusted to better accommodate for the task requirements. An overall

view of the proposed method is presented in Fig. 4.3.

Types of Modulation The modulation in eq. 4.2 simply adds a calcu-

lated value to the feature plane. We have experimented with other types of

modulation, namely non-residual ones (e.g, purely multiplicative), as well as

following the modulated features with a non-linearity (ReLU), or adding a

bias term in addition to the multiplicative part. The single most important

dominant ingredient to reach good performance was the residual formulation -

without it, training converged to very poor results. The formulation in eq. 4.2

performed best without any of the above listed modifications. We note that an

additive model, while having converged to better results, is not fully consistent

with biologically plausible models ([21]) which involve suppression/selection of

visual features, however, it may be considered a first approximation.

Types of Cues The simplest form of a cue h is an indicator vector of

the object(s) to be detected, i.e, a vector of 20 zeros and 1 in the coordinate

corresponding to “horse”, assuming there are 20 possible object classes, such

as in Pascal [143]. We call this a categorical cue because it explicitly carries

semantic information about the object. This means that when a single class

k is indicated, αi becomes the kth column of Wi.

85

Figure 4.3: Overall view of the proposed method to prime deep neural net-
works. A cue about some target in the image is given by an external source
or some form of feedback. The process of priming involves affecting each layer
of computation of the network by modulating representations along the path.
At the top, the stack of layers in N are schematically illustrated by the blue
blocks. At the bottom, the coefficient parameters Wi in Np are illustrated by
the yellow blocks.

4.4.1 Training

To learn how to utilize the cue, we freeze the parameters of our original network

N and add the network block Np. During training, with each training example

(Ii, yi) fed into N we feed hi into Np, where Ii is an image, yi is the ground-

truth set of bounding boxes and hi is the corresponding cue. The output

and loss functions of the detection network remain the same, and the error is

propagated through the parameters of Np. Fig. 4.3 illustrates the network.

Np is very lightweight with respect to N , as it only contains parameters to

transform from the size of the cue h to at most K =
∑

i ki where ki is the

number of output feature planes in each layer of the network.

Multiple Cues Per Image. Contemporary object detection and seg-

mentation benchmarks [25, 143] often contain more than one object type per

image. In this case, we may set each coordinate in h to 1 iff the corresponding

class is present in the image. However, this tends to prevent Np from learn-

86

ing to modulate the representation of N in a way which allows it to suppress

irrelevant objects. Instead, if an image contains k distinct object classes, we

duplicate the training sample k times and for each duplicate set the ground

truth to contain only one of the classes. This comes at the expense of a longer

training time, depending on the average number k over the dataset.

4.5 Experimental Results

We evaluate our method on two tasks: object detection and object class seg-

mentation. In each case, we take a pre-trained deep neural network and explore

how it is affected by priming or pruning. Our goal here is not necessarily to

improve state-of-the-art results but rather to show how use of top-down cues

can enhance performance. Our setting is therefore different than standard

object-detection/segmentation scenarios: we assume that some cue about the

objects in the scene is given to the network and the goal is to find how it can

be utilized optimally. Such information can be either deduced from the scene,

such as in contextual priming [134, 144] or given by an external source, or even

be inferred from the task, such as in question answering [141, 142].

Our experiments are conducted on the Pascal VOC [143] 2007 and 2012

datasets. For priming object detection networks we use pre-trained models of

SSD [5] and yolo-v2 [145] and for segmentation we use the FCN-8 segmenta-

tion network of [146] and the DeepLab network of [4]. We use the YellowFin

optimizer [147] in all of our experiments, with a learning rate of either 0.1 or

0.01 (depending on the task). Additional qualitative experimental results are

87

0000 0001 0010 0011 0100 0111 1000 1100 1110 1111
H

0.855

0.860

0.865

0.870

m
AP

(a)

0 10 20 30 40 50 60 70 80 90 100
noise

0.2

0.4

0.6

0.8

m
AP

H
1111
1110
1100
1000
0111
0100
0011
0010
0001
0000

(b)

Figure 4.4: (a) Performance gains by priming different parts of the SSD objects
detector. Priming early parts of the network causes the most significant boost
in performance. Black dashed line shows performance by pruning. (b) Testing
variants of priming against increasing image noise. The benefits of priming
become more apparent in difficult viewing conditions. The x axis indicates
which block of the network was primed (1 for primed, 0 for not primed).

also provided in Sec. A.2.

4.5.1 Object Detection

We begin by testing our method on object detection. Using an implementation

of SSD [5], we apply a pre-trained detector trained on the trainval sets of Pascal

2012+2007 to the test set of Pascal 2007. We use the SSD-300 variant as

described in the paper. In this experiment, we trained and tested on what we

cal PAS#: this is a reduced version of Pascal-2007 containing only images with

a single object class (but possibly multiple instances). We use this reduced

dataset to test various aspects of our method, as detailed in the following

subsections. Without modification, the detector attains a mAP (mean-average

precision) of 81.4% on PAS#(77.4% on the full test set of Pascal 2007). Using

simple pruning as described above, this increases to 85.2%. This large boost

in performance is perhaps not surprising, since pruning effectively removes all

detections of classes that do not appear in the image. The remaining errors

88

are those of false alarms of the “correct” class or mis-detections.

4.5.1.1 Deep vs Shallow Priming

We proceed to the main result, that is, how priming affects detection. The

SSD object detector contains four major components: (1) a pre-trained part

made up of some of the layers of vgg-16 [148] (a.k.a the “base network” in the

SSD paper), (2) some extra convolutional layers on top of the vgg-part, (3)

a localization part and (4) a class confidence part. We name these part vgg,

extra, loc and conf respectively.

To check where priming has the most significant impact, we select dif-

ferent subsets of these components and denote them by 4-bit binary vectors

si ∈ {0, 1}4, where the bits correspond from left to right to the vgg, extra,

localization, and confidence parts. For example, s = 1000 means letting Np

affect only the earliest (vgg) part of the detector, while all other parts remain

unchanged by the priming (except indirectly affecting the deeper parts of the

net). We train Np on 10 different configurations: these include priming from

the deepest layers to the earliest: 1111, 0111, 0011, 0001 and from the earliest

layer to the deepest: 1000, 1100, 1110. We add 0100 and 0010 to check the

effect of exclusive control over middle layers and finally 0000 as the default

configuration in which Np is degenerate and the result is identical to pruning.

Fig 4.4 (a) shows the effect of priming each of these subsets of layers on PAS#.

Priming early layers (those at the bottom of the network) has a much more

pronounced effect than priming deep layers. The single largest gain by priming

a single component is for the vgg part: 1000 boosts performance from 85% to

89

--- 01_00
02_00
03_00
04_00
05_00
06_00
07_00
08_00
09_00
10_00
11_00
12_00
13_00
14_00
15_00
15_01
15_02
15_03
15_04
15_05
15_06
15_07
15_08

configuration

0.86

0.87
m

AP

Figure 4.5: Effects of early priming: we show how mAP increases when we
allow priming to affect each layer in turn, from the very bottom of the network.
Priming early layers has a more significant effect than doing so for deeper ones.
The numbers indicate how many layers were primed from the first and second
blocks of the SSD network, respectively.

87.1%. A smaller gain is attained by the extra component: 86.1% for 0100.

The performance peaks at 87.3% for 1110, though this is only marginally

higher than attained by 1100 - priming only the first two parts.

4.5.1.2 Ablation Study

Priming the earliest layers (vgg+extra) of the SSD object detector brings the

most significant boost in performance. The first component described above

contains 15 convolutional layers and the second contains 8 layers, an overall

total of 23. To see how much we can gain with priming on the first few layers,

we checked the performance on PAS# when training on the first k layers only,

for each k ∈ {1, 2, . . . 23}. Each configuration was trained for 4000 iterations.

Fig. 4.5 shows the performance obtained by each of these configurations, where

i j in the x-axis refers to having trained the first i layers and the first j layers of

90

σ
=

0

thresh=0.5 thresh=0.2 thresh=0.1 thresh=0.01

σ
=

25
σ

=
50

σ
=

10
0

(a)

σ
=

0

thresh=0.5 thresh=0.2 thresh=0.1 thresh=0.01

σ
=

25
σ

=
50

σ
=

10
0

(b)

Figure 4.6: Priming vs. Pruning. Priming a detector allows it to find objects
in images with high levels of noise while mostly avoiding false-alarms. Left
to right (a,b): decreasing detection thresholds (increasing sensitivity). Top
to bottom: increasing levels of noise. Priming (blue dashed boxes) is able to
detect the horse (a) across all levels of noise, while pruning (red dashed boxes)
does not. For the highest noise level, the original classifier does not detect the
horse at all - so pruning is ineffective. (b) Priming enables detection of the
train for all but the most severe level of noise. Decreasing the threshold for
pruning only produces false alarms. We recommend viewing this figure in color
on-line.

the first and second parts respectively. We see that the very first convolutional

layer already boosts performance when primed. The improvement continues

steadily as we add more layers and fluctuates around 87% after the 15th layer.

The fluctuation is likely due to randomness in the training process. This

further shows that priming has strong effects when applied to very early layers

of the network.

91

4.5.1.3 Detection in Challenging Images

As implied by the introduction, perhaps one of the cases where the effect

of priming is stronger is when facing a challenging image, such as adverse

imaging conditions, low lighting, camouflage, noise. As one way to test this,

we compared how priming performs under noise. We took each image in the

test set of Pascal 2007 and added random Gaussian noise chosen from a range

of standard deviations, from 0 to 100 in increments of 10. The noisy test

set of PAS# with variance σ is denoted PAS#
N(σ). For each σ, we measure

the mAP score attained by either pruning or priming. Note that none of our

experiments involved training with corrupted images - these are only used for

testing. We plot the results in Fig. 4.4 (b). As expected, both methods suffer

from decreasing accuracy as the noise increases. However, priming is more

robust to increasing levels of noise; the difference between the two methods

peaks at a moderate level of noise, that is, σ = 80, with an advantage of

10.7% in mAP: 34.8% compared to 24.1% by pruning. The gap decreases

gradually to 6.1% (26.1% vs 20%) for a noise level of σ = 100. We believe

that this is due to the early-layer effects of priming on the network, selecting

features from the bottom up to match the cue. Fig 4.6 shows qualitative

examples, comparing priming versus pruning: we increase the noise from top

to bottom and decrease the threshold (increase the sensitivity) from left to

right. We show in each image only the top few detections of each method to

avoid clutter. Priming allows the detector to find objects in images with high

levels of noise (see lower rows of a,b). In some cases priming proves to be

essential for the detection: lowering the un-primed detector’s threshold to a

92

minimal level does not increase the recall of the desired object (a, 4th row);

in fact, it only increases the number of false alarms (b, 2nd row, last column).

Priming, on the other hand, is often less sensitive to a low threshold and the

resulting detection persists along a range thereof.

4.5.2 Cue Aware Training

In this section, we also test priming on an object detection task as well as

segmentation with an added ingredient - multi-cue training and testing. In

Sec. 4.5.1 we limited ourselves to the case where there is only one object class

per image. This limitation is often unrealistic. To allow multiple priming cues

per image, we modify the training process as follows: for each training sample

< I, gt > containing object classes c1, . . . ck we split the training example for

I to k different tuples < Ii, hi, gti >, i ∈ {1 . . . k}, where Ii are all identical to

I, hi indicate the presence of class ci and gti is the ground-truth gt reduced to

contain only the objects of class ci - meaning the bounding boxes for detection,

or the masks for segmentation. This explicitly coerces the priming network Np

to learn how to force the output to correspond to the given cue, as the input

image remains the same but the cue and desired output change together. We

refer to this method multi-cue aware training (CAT for short), and refer to

the unchanged training scheme as regular training.

4.5.2.1 Multi-Cue Segmentation

Here, we test the multi-cue training method on object class segmentation. We

begin with the FCN-8 segmentation network of [146]. We train on the training

93

split of SBD (Berkeley Semantic Boundaries Dataset and Benchmark) dataset

[149], as is done in [150, 4, 151, 146]. We base our code on an unofficial

PyTorch1 implementation2. Testing is done of the validation set of Pascal

2011, taking care to avoid overlapping images between the training set defined

by [149] 3, which leaves us with 736 validation images. The baseline results

average IOU score of 65.3%. As before, we let the cue be a binary encoding

of the classes present in the image. We train and test the network in two

different modes: one is by setting for each training sample (and testing) the

cue so hi = 1 if the current image contains at least one instance of class i and 0

otherwise. The other is the multi-cue method we describe earlier, i.e , splitting

each sample to several cues with corresponding ground-truths so each cue is a

one-hot encoding, indicating only a single class. For both training strategies,

testing the network with a cue creates a similar improvement in performance,

from 65.3% to 69% for regular training and to 69.2% for multi-cue training.

The main advantage of the multi-cue training is that it allows the priming

network Np to force N to focus on different objects in the image. This is

illustrated in Fig. 4.7. The top row of the figure shows from left to right an

input image and the resulting segmentation masks when the network is cued

with classes bottle, diningtable and person. The bottom row is cued with bus,

car, person. The cue-aware training allows the priming network to learn how

to suppress signals relating to irrelevant classes while retaining the correct

class from the bottom-up.

1http://pytorch.org/
2https://github.com/wkentaro/pytorch-fcn
3for details, please refer to https://github.com/shelhamer/fcn.berkeleyvision.

org/tree/master/data/pascal

94

http://pytorch.org/
https://github.com/wkentaro/pytorch-fcn
https://github.com/shelhamer/fcn.berkeleyvision.org/tree/master/data/pascal
https://github.com/shelhamer/fcn.berkeleyvision.org/tree/master/data/pascal

Figure 4.7: Effect of priming a segmentation network with different cues. In
each row, we see an input image and the output of the network when given
different cues. Top row: cues are respectively bottle, dining table, person.
Bottom row: cues are respectively bus, car, person. Given a cue (e.g, bottle),
the network becomes more sensitive to bottle-like image structures while sup-
pressing others. This happens not by discarding results but rather by affecting
computation starting from the early layers.

Types of Pruning. As mentioned in Sec. 4.4, we examine two types

of pruning to post-process segmentation results. One type removes image re-

gions which were wrongly labeled as the target class, replacing them with

background and the other increases the recall of previously missed segmen-

tation regions by removing all classes except the target class and retaining

pixels where the target class scored higher than the background. The first

type increases precision but cannot increase recall. The second type increases

recall but possibly hinders precision. We found that both types results in a

similar overall mean-IOU. Figure 4.8 shows some examples where both types

of pruning result in segmentations inferior to the one resulting by priming:

post-processing can increase recall by lowering precision (first row, column d)

or increase precision by avoiding false-detections (second and fourth row, col-

95

(a) input (b) gt (c) regular (d) prune-2 (e) prune-1 (f) priming

Figure 4.8: Comparing different methods of using a cue to improve segmenta-
tion: From left to right: input image (with cue overlayed), ground-truth (all
classes), unprimed segmentation, pruning type-2, pruning type-1, and prim-
ing. In each image, we aid the segmentation network by adding a cue (e.g,
“plane”). White regions are marked as “don’t care” in the ground truth.

96

umn e), priming (column f) increases both recall and precision. The second,

and fourth rows missing parts of the train/bus are recovered while removing

false classes. The third and fifth rows previously undetected small objects are

now detected. The person (first row) is segmented more accurately.

DeepLab. Next, we use the DeepLab [4] network for semantic-segmentation

with ResNet-101 [50] as a base network. We do not employ a CRF as post-

processing. The mean-IOU of the baseline is 76.3%. Using Priming, increases

this to 77.15%. While in this case priming does not improve as much as in

the other cases we tested, we find that it is especially effective at enabling

the network to discover small objects which were not previously segmented by

the non-primed version: the primed network discovers 57 objects which were

not discovered by the unprimed network, whereas the latter discovers only 3

which were not discovered by the former. Fig. 4.9 shows some representa-

tive examples of where priming was advantageous. Note how the bus, person,

(first three rows) are segmented by the primed network (last column). We

hypothesize that the priming process helps increase the sensitivity of the net-

work to features relevant to the target object. The last row shows a successful

segmentation of potted plants with a rather atypical appearance.

4.5.2.2 Multi-Cue Object Detection

We apply the CAT method to train priming on object detection as well. For

this experiment, we use the YOLOv2 method of [145]. The base network we

used is a port of the original network, known as YOLOv2 544x544. Trained

97

Figure 4.9: Priming a network allows discovery of small objects which are
completely missed by the baseline method or ones with uncommon appearance
(last row). From left to right: input image, ground-truth, baseline segmenta-
tion [4], primed network.

98

on the union of Pascal 2007 and 2012 datasets, it is reported by the authors

to obtain 78.6% mAP on the test set of Pascal 2007. The implementation

we use4 reaches a slightly lower 76.8%, with a PyTorch port of the network

weights released by the authors. We use all the convolutional layers of DarkNet

(the base network of YOLOv2) to perform priming. We freeze all network

parameters of the original detection network and train a priming network

with the multi-cue training method for 25 epochs. When using only pruning,

performance on the test-set improves to 78.2% mAP. When we include priming

as well, this goes up to 80.6%,

4.6 Conclusion

We have presented a simple mechanism to prime neural networks, as inspired

by psychological top-down effects known to exist in human observers. We

have tested the proposed method on two tasks, namely object detection and

segmentation, using two methods for each task, and comparing it to simple

post-processing of the output. Our experiments confirm that as is observed in

humans, effective usage of a top-down signal to modulate computations from

early layers not only improves robustness to noise but also facilitates better

object detection and segmentation, enabling detection of objects which are

missed by the baselines without compromising precision, notably so for small

objects and those having an atypical appearance.

4https://github.com/marvis/pytorch-yolo2

99

https://github.com/marvis/pytorch-yolo2

Chapter 5

Object Segmentation Using

Selective Attention

5.1 Abstract

Convolutional neural networks model the transformation of the input sensory

data at the bottom of a network hierarchy to the semantic information at the

top of the visual hierarchy. Feedforward processing is sufficient for some ob-

ject recognition tasks. Top-Down selection is potentially required in addition

to the Bottom-Up feedforward pass. It can, in part, address the shortcoming

of the loss of location information imposed by the hierarchical feature pyra-

mids. We propose a unified 2-pass framework for object segmentation that

augments Bottom-Up convolutional neural networks with a Top-Down selec-

tion network. We utilize the top-down selection gating activities to modulate

the bottom-up hidden activities for segmentation predictions. We develop an

100

end-to-end multi-task framework with loss terms satisfying task requirements

at the two ends of the network. We evaluate the proposed network on bench-

mark datasets for semantic segmentation, and show that networks with the

Top-Down selection capability outperform the baseline model. Additionally,

we shed light on the superior aspects of the new segmentation paradigm and

qualitatively and quantitatively support the efficiency of the novel framework

over the baseline model that relies purely on parametric skip connections.

5.2 Introduction

In both human and machine vision systems, two directions of information

flow have been commonly considered, a data-driven or feedforward direction

(Bottom-Up), and a reverse direction (Top-Down) that has a predictive, con-

trolling or modulatory role. In the Bottom-Up (BU) pathway, the sensory

input data is processed and sequentially transformed into high-level semantic

information such that some task criterion is satisfied at the inference phase,

while during the training phase, the error gradient signals are calculated ac-

cording to a loss function and gradients are propagated down to the early lay-

ers for the updating of the network’s weight parameters. Convolutional neural

networks model the BU pathway for visual tasks such as object classification,

detection, and segmentation.

The TD pathway, on the other hand, inherently characterizes modulatory

and controlling roles and leverages selection mechanisms. TD selection ap-

proaches have been used for tasks such as object localization, object segmen-

101

tation, and network visualization. Selective Tuning [21, 7] is a computational

model of visual attention, and is an early attempt to establish the applicability

of a TD selection pass along with a BU feedforward pass for basic visual tasks

in dynamical networks. In chapter 3 we have shown that Selective Tuning of

convolutional neural networks (STNet) succeeds to formulate a neural network

framework with a selective TD mechanism and is evaluated for the object lo-

calization task [108]. STNet validates the effective role of the TD selection

pass to localize relevant regions covering the object features. In this chap-

ter, we investigate the role of TD selective attention in convolutional neural

networks and the feature modulation of BU hidden activities for the task of

object segmentation. We attempt to complement the STNet-for-localization

formulation in this chapter with feature modulation of BU hidden activities.

This chapter strives to examine whether feature modulation derived from a

TD selective pass is successful for the demanding object segmentation task.

The purpose behind TD feature modulation is to select and modify the

data interpretations represented by the hidden BU activities. Therefore, for

a subsequent processing stage such as object segmentation, the TD selection

patterns modulate the BU feature encoding activities. As a result, the sub-

sequent segmentation process will benefit from both of the densely-encoded

bottom-up flow of information and the sparsely-selective top-down patterns of

modulation.

Dominant approaches for object segmentation are generally densely para-

metric in a fully-convolutional manner. Multiple up-sampling convolutional

layers are leveraged to predict up-scaled category maps at the final segmenta-

102

tion layer. Approaches such as skip connections, multi-level feature augmen-

tation, and discriminative attention are proposed to produce fine-grained seg-

mentation. All such approaches enforce up-sampling of predicted score maps

of a pre-trained network through a number of parametric layers in a purely

feedforward manner. While they have reached a promising performance level,

we show the up-sampling part does not need to be densely parametric. Rather,

a successful hierarchical TD selection through the BU network can be helpful

to modulate rich feature maps for segmentation map predictions.

We propose the Selective Segmentation Network (SSN) to systematically

study the use of the TD selection pass for the object segmentation task. SSN

consists of the BU pass that utilizes a typical convolutional neural network

with multiple layers of feature extraction. To deal with the multi-instance

and multi-scale issues in the experimental evaluation, we define a control-

ling module called Loose Spatial Detection (LSD) that examines high-level

semantic information and loosely predicts the locations and scales at which

TD attention needs to be activated. Once important locations and scales are

determined, attention signals are set and the TD selection pass is activated.

The TD selection mechanism has three stages of processing at each layer that

relies on two stages of local competitions and one stage of normalization for

gating activity propagation. Gating activities at each layer are computed and

the selection is passed to the lower layer until some early layer in the visual

hierarchy is reached.

The TD pass systematically computes selection patterns over relevant hid-

den features of the BU network. We develop our investigation around the

103

hypothesis that the TD selection patterns are reliable as a source of hidden

feature modulation for segmentation. We propose to have the information

flow of hidden feature activities modulated by the TD gating activities into

the segmentation pipeline for the final output predictions. We study the ef-

fect of three types of modulation at different stages of computation on the

prediction performance of SSN. The segmentation pipeline forms a cascade of

parametric blocks each consisting of a number of processing units. Each block

performs operations such as input feature modulation, channel reduction, and

parametric feature fusion. At each layer the modulated input information

from the BU and TD passes is integrated into the segmentation pipeline and

then using parametric transformation is passed to the layer below. After a few

layers, the final segmentation maps are predicted at the bottom of the visual

hierarchy.

SSN benefits from a multi-task formulation. We define two loss functions:

one at the top of the visual hierarchy where the LSD module outputs the

label predictions for attention signal initialization and one at the bottom of

the visual hierarchy where the segmentation output maps are generated. The

former loss measures the capability of the BU network and LSD module to

jointly predict the starting points for TD pass initialization. The latter loss

measures the performance of SSN to predict segmentation maps.

Learning in SSN has two phases: in the first phase, the pre-trained pa-

rameters of the BU network and the uniformly initialized parameters of the

LSD modules are jointly fine-tuned using the first loss function before being

loaded into the complete SSN framework. In the second phase, SSN is loaded

104

with the parameters obtained in the first phase, and the entire segmentation

network is trained with the two loss functions using the Stochastic Gradient

Descent (SGD) algorithm.

SSN is qualitatively and quantitatively evaluated on the visual task of

semantic segmentation. Semantic segmentation [152, 153, 25, 154] is the task

of predicting pixel-level category labels given a pre-defined list of object classes.

Unlike the object localization task that outputs a number of bounding boxes

enclosing category instances, semantic segmentation returns a segmentation

map containing a category label at each pixel.

We illustrate that SSN improves the baseline model for the evaluation

performance on three benchmark datasets: Pascal VOC, CamVid, and Horse-

Cow datasets. We conduct ablation studies to shed light on aspects of feature

modulation using TD selection such as feature entanglement and noise inter-

ference. Experimental results reveal that the modulatory nature of the TD

pass helps to untangle the underlying feature representations to some degree

and improves the results of the segmentation metrics under input perturbation

scenarios such as additive noise and box occlusion.

5.3 Related Work

There are two main classes of previous research that are related to our own, and

a brief overview will be provided under the headings of Semantic Segmentation

and Top-Down Approaches.

Semantic Segmentation: The Fully-Convolutional Network (FCN) [146]

105

has been a pioneer to introduce convolutional encoder-decoder networks that

benefit from parametric skip connections and fractionally-strided convolutions

to gradually up-sample in a parametric fashion the output of the label predic-

tion layer at the top of a regular convolutional neural network. The architec-

ture implements an information bottleneck using the encoding network which

is basically an extension of a multi-layer classifier and the decoding network

that up-samples the semantic label predictions of the encoding network into

the output segmentation map. The FCN approach has been extended with

novel approaches for performance improvements [155, 156, 157, 158, 152, 3].

These approaches are mainly involved with modifications and extensions such

as novel network architectures (e.g . residual networks [50]), addition of ex-

tra parametric layers and dense connectivity, multi-scale augmentation, and

multi-level supervision to improve the segmentation prediction accuracy spe-

cially for small and fine-detailed objects. These approaches have shown success

in terms of the evaluation performance metrics. We attempt to study the com-

plementary role of Top-Down selection to such encoder-decoder frameworks.

Furthermore, unlike the FCN model, the skip connections are no longer densely

merged into the decoding segmentation pipeline. The modulation of hidden

activities using the TD activities is introduced in this work in the hope of

achieving higher performance results and robustness to out-of-distribution in-

put perturbations.

106

BU Visual Hierarchy

LSD
BU Visual Hierarchy

LSD
BU Visual Hierarchy

LSD

Attention
Signal
Init.

TD

BU Visual Hierarchy

Segmentation

LSD
BU Visual Hierarchy

LSD

Attention
Signal
Init.

TD

BU Visual Hierarchy

Segmentation

(a) BU Network

(b) LSD Predictions

(c) Attention Initialization

(d) TD Network

(e) Segmentation Pipeline

(g) Anchor Generation

(h) SSN Training

LSD
BU Visual Hierarchy

LOSS LSD

LOSS LSD

LO
SS

 S
EG

LO
SS

 S
EG

LSD
BU Visual Hierarchy

(f) LSD Pre-training

LOSS LSD

Anchors

Attention
Signal
Init.

TD

Attention
Signal
Init.

Anchors

Figure 5.1: Illustration of the modular information flow of the Selective Seg-
mentation Network (SSN) at each processing stage of the inference and learn-
ing phases. The stages in orange belong to the inference phase at which given
some unknown test image, the predicted segmentation outputs are returned.
The stages in yellow represent the learning phase at which SSN parameters
are learned. The text provides details for each of the figure panels.

107

5.4 Selective Segmentation Network

The Selective Segmentation Network (SSN) consists of three major processing

units: the BU network, the TD network, and the segmentation network: 1)

the BU representation is the core visual hierarchy that consists of multiple

parametric layers, 2) the TD selection mechanism produces gating activities

using attentional traces throughout the visual hierarchy, and 3) the attentive

segmentation network modulates hidden activities with gating activities at a

number of different levels and merges them into a unified representation with

gradual up-sampling for the final segmentation prediction. We are going to

provide a procedural model overview in Sec. 5.4.1 explaining different stages

of processing in SSN at the inference and learning phases briefly. In the sub-

sequent sections, each stage will be explained with mathematical formulation

and implementation details.

5.4.1 Method Overview

Fig. 5.1 demonstrates the computational stages of SSN at the inference and

learning phases. We first begin with the stages involved in the inference phase

and then move on to the learning phase. In the inference phase the information

flows into SSN sequentially as follows. In Fig. 5.1 (a), the BU feedforward

feature representation is defined by a convolutional neural network. The input

image is transformed by multiple feature extraction layers into semantic in-

formation for some particular task prediction. Details are given in Sec. 5.4.2.

In Fig. 5.1 (b), the LSD module is defined to deal with the multi-instance

108

and multi-scale issues in semantic segmentation. The objective of LSD is to

predict the top output units at which TD selection mechanisms need to be ac-

tivated. Details are given in Sec. 5.4.3. In Fig. 5.1 (c), based on the prediction

scores returned by LSD, the attention signal initialization unit determines the

positions and scales to which attention must be deployed. We propose three

different initialization strategies for which the details are given in Sec. 5.4.4.

In Fig. 5.1 (d), TD selection begins from the initialization signal and traverses

downward in a layer-by-layer manner. TD selection at each layer produces

gating activities representing feature importance across spatial positions and

channels. They influence the flow of hidden activities into the segmentation

network. Details are given in Sec. 5.4.5. In Fig. 5.1 (e), the last stage of

the inference phase is the segmentation prediction. At this point, both of the

BU hidden and TD gating activities are produced for the input image and are

the input to the segmentation pipeline. It has multiple levels of feature mod-

ulation, channel reduction, feature fusion, and spatial up-sampling. Further

details are given in Sec. 5.4.6.

In the learning phase, we deal with the optimization of the SSN parameters

for semantic segmentation given the new input data domain and task require-

ments. In the first learning stage as depicted in Fig. 5.1 (f), LSD pre-training

is defined to adapt the feature representation of the BU network according to

the LSD layers prior to the segmentation stage. In Fig. 5.1 (g), in order to

optimize the BU and LSD parameters, proper target variables need to be pro-

duced from the provided ground truth bounding boxes. The LSD pre-training

and anchor generation are explained in detail in Sec. 5.4.7. In Fig. 5.1 (h),

109

the full SSN model is trained in the multi-loss setting using the LSD and seg-

mentation loss functions. The former sits at the top of the hierarchy while the

latter is at the bottom. The ground truth segmentation mask is the target

variable used for the segmentation loss function. Details for the multi-loss

setting are given Sec. 5.4.8.

Fig. 5.2 illustrates different parts of SSN in the learning phase all together,

the information flow from one processing unit to another one, and the outputs

at the top and the bottom of the hierarchy in more details. The input and out-

put at each stage are labeled using the notations developed in the subsequent

sections. It also depicts the joint loss function for the training of the entire net-

work in an end-to-end manner using the SGD optimization algorithm. In the

following, we explain the sequence of computational stages for the inference

and learning phases in more detail.

5.4.2 Bottom-Up Feature Encoding

Definition: Information processing in SSN begins with the BU network that

encodes the low-level input sensory data into high-level output semantic infor-

mation at the top of the network. The BU network consists of multiple layers

of feature extraction such as convolutional layers, non-linear transfer functions,

and pooling layers. The spatial resolutions of the output maps throughout the

network are gradually decreased while the feature channel size is increased.

BU layers are defined according to a pre-defined network architecture such as

AlexNet [30] or VGG-16 [59]. Part (a) of Fig. 5.1 illustrates the BU feature

encoding as the first stage in the inference phase.

110

CLS

LSD

Bounding
Box

Anchor
Generation

LOSS LSD

TD TD TD TD

Segment
Mask

LO
SS

 S
EG

LO
SS

 T
O

TA
L

SG
D

 O
p

ti
m

iz
at

io
n

Anchor
Calculation

Attention
Signal
Init.

h

p(o)

y

p(s)t

d

a

n

gigi-1gi-2

gi-1
gi-2gi-3

hhi-1hi-2hi-3

Figure 5.2: Illustration of SSN consisting of multiple parts such as the feed-
forward BU representation, the classification LSD module, the TD selection
network, and the up-sampling segmentation pipeline. Arrows show the infor-
mation flow from one part to another part at the learning phase. The input
and output at each stage are labeled using the variables which are defined in
the subsequent sections.

Formulation: The training set D = {(xi, yi)}Ni=1 contains N samples such

that each sample consists of an input image x ∈ R3×H×W and the ground truth

y. The ground truth y = (yB, yS) contains the bounding box annotations

yB of the category instances in the input image and the segmentation target

mask yS ∈ R1×H×W , where H is the input image height, W is the input

image width. A pixel element on the segmentation mask at the vertical and

horizontal position (h,w) has a category label yBhw ∈ {0, 1, . . . , K − 1} for

K different category labels including the background label 0. The BU pass

consists of a multi-layer feedforward convolutional network

h = f(x;WBU), (5.1)

where f is a cascade of neural network layers, such as convolutional and pooling

111

512512

64

128

256
512

512
512 512

256 256

128

64

co
n
v1
_1

p
o
o
l1

co
n
v2
_
1

p
o
o
l2

co
n
v3
_
1

co
n
v3
_
2

co
n
v3
_
3

hco
n
v1
_
2

co
n
v2
_
2

p
o
o
l3

co
n
v4
_
1

co
n
v4
_
2

co
n
v4
_
3

p
o
o
l4

co
n
v5
_
1

co
n
v5
_
2

co
n
v5
_
3

BU Network (Vgg-16)

256

co
n
v1

p
o
o
l1

co
n
v2

p
o
o
l2

co
n
v3
_
1

co
n
v3
_
2

co
n
v3
_
3

h

64

192
384 256

BU Network (AlexNet)

Figure 5.3: The BU network defined using the AlexNet and VGG-16 convo-
lutional neural network architectures on the right and left respectively. The
green box over the input image is the total receptive field size of a unit on
the top feature map h. Blue boxes are pooling layers and the black boxes are
convolutional layers with ReLU activation functions. Since the total receptive
field size is smaller than the input image size, the top feature maps have size
of greater than 1.

layers, and is parameterized with the set of connection weights WBU depending

on the underlying network architecture, x is the input image to the network,

and h ∈ RCf×Hf×Wf is the hidden activity map at the top of the network with

feature channel size Cf and spatial size Hf ×Wf . In a nutshell, the BU pass

gradually transforms the raw input data using a number of parametric layers

into a high-level semantic information for label predictions.

Implementation Details: In this work, we use AlexNet [30] and VGG-16

[59] network architectures to define the ordering, connectivity and parametriza-

tion of the BU layers. The former has a smaller number of layers while the

latter has more layers with parameters. In this work, we use AlexNet as a

proof-of-concept network due to the simplicity of the architecture and fewer

number of parameters. We first begin experimenting with SSN using AlexNet

and then later extent to VGG to validate the experimental evaluation results

112

Top Feature Layer of BU Network Top Feature Layer of BU Network

c1
c2 c3 c1 c2 c3

l1 l2 l3

l1

l2

l3

s1 s3

s
s2

s1 s3s2

s

Figure 5.4: Parallel (right) and Sequential (left) architecture approaches to
design the Loose Spatial Detection (LSD) module. Each shade of blue repre-
sents a group of layers with the intermediate layers li, the output prediction
layers ci and the output score maps si. The top feature layer is the last layer
of the BU network that outputs the feature maps h. The layer connectivity of
the parallel and sequential choices along with the spatial size reduction from
one group to another is depicted schematically.

and demonstrate the generalization to a larger network. As illustrated in Fig.

5.3, the BU network based on the two architectures has the following set of lay-

ers respectively: {conv1, pool1, conv2, pool2, conv3 1, conv3 2, conv3 3} and

{conv1 1, conv1 2, pool1, conv2 1, conv2 2, pool2, conv3 1, conv3 2, conv3 3,

pool3, conv4 1, conv4 2, conv4 3, pool4, conv5 1, conv5 2, conv5 3}. The fea-

ture channel of the hidden maps at each layer are given in Fig. 5.3. The

last layer of the BU network is Conv3 3 and Conv5 3 in the two architectures

respectively. For the input image size 320× 320, the hidden activity output h

has the spatial size 20× 20 in the both architectures.

113

Top Feature Layer of BU Network

s1 s3

s
s2

Figure 5.5: The receptive field size of three LSD groups over the input feature
map h. The shades of blue represent the receptive field and the output score
map of a particular group of LSD layer.

5.4.3 Loose Spatial Detection

Motivation and Objective: The BU network is initially loaded with a net-

work trained for object classification on Imagenet benchmark dataset [24]. The

definition of object classification is to recognize one single category instance

in the input image. Thus, there is always one instance of one category in the

input image. Consequently, classification models are required to return one

single label output for an input image. The output unit apparently has a total

receptive field as large as the input image size so then the entire image is cov-

ered. In object detection [24] and semantic segmentation [153], on the other

hand, this is no longer the case and the input image is defined to have larger

spatial size and may contain multiple instances of different object categories at

various spatial locations and scales. Namely, the input data domain in these

two tasks has multi-instance and multi-scale characteristics. As a result, the

multi-instance and multi-scale aspects must be addressed by detection and seg-

mentation models. Object detection approaches such as FRCNN [72] and SSD

114

[5] devise sliding-window approaches on the feature embedding space at the

top of the visual hierarchy to produce label predictions at all possible spatial

positions. The multi-scale issue in SSD [5] is addressed by defining multiple

classification output layers at different levels of the visual hierarchy such that

each has a wider receptive field and consequently covers a larger portion of the

input image and is capable of predicting larger objects.

In this work, we also need to address the following aspects of the input

data for semantic segmentation. SSN needs to be able to trigger TD selection

for the positions and scales at which there are category instances. Following

the same modeling approach as in SSD, we propose to deal with the multi-

instance and multi-scale characteristics in semantic segmentation using the

Loose Spatial Detection (LSD) module. It triggers the activation of the TD

network at different positions and scales. LSD is a controlling unit that deter-

mines whether TD selection needs to start from an output unit at a particular

position and scale.

Definition: LSD contains C groups of parametric layers. In each group,

there are a number of convolutional and pooling layers and the last output

prediction layer has a particular total receptive field size and output spatial

size. The total receptive field size of a layer is a spatial span in the input image

space that a unit on the output maps of the layer covers. The output of a layer

has a 2D spatial size which is calculated according to the hyperparameter

settings of the layer. Settings such as kernel filter size, marginal padding of

the input activities to the layer, and sub-sampling rate (stride) specifies the

spatial size of the output map. For instance, a layer with kernel filter size

115

5 has a wider total receptive field size in comparison to the kernel size 3.

We define the combination and ordering of LSD layers in each group such

that the total receptive field size of the units on the output prediction maps

increases from the first group to the next while the output map spatial size

decreases respectively. This is achieved using a combination of convolutional

and pooling layers with appropriate kernel size, stride, and padding values.

Fig. 5.5 schematically demonstrates the outputs of an LSD with three groups

such that an node in the output score map s1 has a smaller receptive field

size while the number of nodes is larger. As we move to the next two groups,

the receptive field size increases and the number of nodes in the output maps

decreases. As illustrated in Fig. 5.1 (b), the LSD module is used right after

the end of the BU pass of information processing in the second stage of the

inference phase.

Formulation: h, the output of the final BU layer at the top of BU network,

is fed into LSD

s = c(h;WLSD), (5.2)

where s ∈ RK×A is the output score map with A units such that at each

unit, predictions for K category labels are produced, and WLSD is the set of

LSD weight parameters. LSD module c(h;WLSD) = {(li, ci)}Ci=0 adds C extra

groups of layers on top of the BU network where li is the set of intermediate

parametric layers in group i and ci is the final output prediction (classification)

layer returning the output score map s such that s = {si}Ci=0, s ∈ RK×A, A =∑C
i=0 |si|. |si| is the total number of output units returned by the classification

116

layer ci. We refer to the last output layers in LSD as output prediction,

discrimination, or classification layers interchangeably.

We propose to experiment with two possible approaches to define the con-

nectivity of layers in the LSD module as illustrated in Fig. 5.4: the sequential

and parallel architecture designs depicted in the right and left parts respec-

tively.

As the name of the two design choices imply, the LSD output predictions

are computed using a combination of parallel or sequential groups of layers.

In the former, the C groups process the input feature maps h in a disjoint

and parallel manner while in the latter, a group with a larger receptive field

sits on top of the other with a smaller receptive field. Additionally, in the

sequential case the parametric feature representation is shared among all of

the other underlying groups by passing the output of one group as the input to

the next one. In the parallel design, on the other hand, each group maintains a

separate feature representation on top of the input feature maps h to produce

the output predictions. So the feature representation throughout one group is

not shared with the layers in another group.

In the sequential design, the set of intermediate layers li not only pass

information to the set of intermediate layers li+1 of the next group but also

feeds into the classification layer ci to output label score maps si. Each unit in

si returns the confidence scores for K + 1 category labels. The category with

the highest score is basically the category for which the TD selection needs

to begin at this unit. Each set of intermediate layers li = {ui, oi} contains a

convolutional layer ui with kernel size 1×1 followed by a convolutional layer oi

117

with kernel size 3×3. In the parallel design, on the other hand, each set li only

feeds into the classification layer ci and contains a number of convolutional and

pooling layers.

The parallel and sequential LSD types are schematically demonstrated in

Fig. 5.4 for three groups of layers. The output h of the top feature layer in

the BU networks is fed into the groups of layers. Boxes in different shades of

blue represent the set of intermediate layers li for i = {0, 1, 2}. They output

information into the final prediction layers ci for the prediction of the score

maps s. The output maps si are returned by the prediction layer ci such that

|si| < |si+1| the output score map size of the first group is smaller than the

second and the second smaller than the third group.

Implementation Details:

LSD has three groups of layers each of which has a set of intermediate layers

followed by a final prediction layer. We define the number of groups C to be

three as it is sufficient to fully cover the small, medium, and large category

objects. The three sets of intermediate layers respectively consist of {c1x1,

c1x1}, {c3x3-p2-d2, c1x1, c3x3-p1}, and {m3x3-s2, c3x3-p2-d2, c1x1, c3x3-

p1}. c, s, p, d, m stands for a convolutional layer, stride, padding, dilation,

and max pooling values respectively. c3x3-s2-p2-d2 defines a convolutional

layer with the kernel size 3x3, stride 2, marginal padding 2, and dilation 2.

For the sake of brevity, the default values of s1, p0, and d1, are ignored. Both

of the sequential and parallel LSD predictors have layers with the same set of

settings and hyperparameters. They only differ in terms of the ordering and

connectivity of the groups with respect to each other. The input to LSD is

118

taken from the intermediate layer conv5 and conv5 3 in AlexNet and VGG

respectively. The output score map s is used by the attention initialization

unit in the inference phase and the LSD loss function in the learning phase.

5.4.4 Attention Initialization

Definition: Once the LSD module is finished computing the output predic-

tion tensor s, we need to determine the set of elements for which the TD

selection mechanisms need to be activated in the third stage of the inference

phase as illustrated in part (c) of Fig. 5.1. We propose to experiment with

three different initialization strategies described in the following. The atten-

tion initialization module receives the LSD output tensor s and produces an

initialization signal according to one of the three strategies. The TD selection

pass is initialized by an input attention signal d such that d = {di|di ∈ RK}Ai=0.

d contains the same number of elements as s does and is initially a tensor of

zero elements. The initialization strategy determines the category for which

the TD selection mechanism will be activated for a particular element di. This

is achieved by the one-hot encoding representation described as follows. There

might be elements for which there is no TD selection activated.

Ground Truth Strategy: This strategy sets the elements of the attention

signal d to one according to the ground truth anchor labels which are used for

LSD prediction training described in 5.4.7:

dGT = {dij = 1|j = ti}Ai=0, (5.3)

119

where ti holds a category label for which the anchor i is determined to have

the highest IoU with a ground truth bounding box of an object of the category.

The goal of this strategy is to measure the performance of the LSD module to

activate the TD pass according to the ground truth target values rather than

the LSD output confidence scores.

Top-1 Strategy: This strategy is the most straightforward approach to

initialize the attention signal. It finds the category label of the maximum

output score value and then set the signal value for the category label to one:

dtop−1 = {dij = 1|j = argmaxksik}Ai=0, (5.4)

in which si ∈ RK is the LSD score element returned by the LSD module. The

reliability of LSD is verified when the final segmentation performance of SSN

initialized using this strategy is close to the ground truth strategy. It implies

LSD has learned to determine the units for which TD selection is essential

to be activated so then the segmentation network benefits from a rich set of

modulated features.

Thresholding Strategy: There is no purpose in imposing the TD selec-

tion process in spatial regions where there is little confidence that a target is

present (this would be a false alarm). Therefore, in order to reduce redundant

TD selection imposed by false alarms, we threshold the maximum confidence

scores using a cross-validated thresholding value θattention:

dθ = {dij = 1|j = argmaxksik, sij > θattention}Ai=0. (5.5)

120

It reduces the redundancy in TD pass and consequently lowers the inter-

ference imposed by misleading noisy features for the segmentation pipeline.

Additionally, this strategy reduces the processing time required for the com-

pletion of the TD selection pass and hence the overall SSN processing time

decreases. s contains the probability confidence values ranging from zero to

one. We cross-validate a range of thresholding value θattention and find that

θattention = 0.9 is tight enough to improve the segmentation accuracy and main-

tain the TD selectivity. This value is used during the experimental evaluation.

5.4.5 Top-Down Selection

Definition: The TD network computes the selection patterns through which

the gating of the BU activities into the segmentation network is performed.

The TD selection mechanisms are activated using the attention signal initial-

ization module. Once the initialization signal tensor is set, the TD selection

network starts processing the BU hidden activities to compute the gating ac-

tivities at each layer and then the selection is passed to the layer below. This

process continues until the TD pass stops at some early layer of the visual

hierarchy. The information flow in the inference phase from the initialization

module to the TD network is illustrated in part (d) of Fig. 5.1. Further de-

tails are given in Fig. 5.2 by depicting the TD selection mechanism at each

layer and the information flow from one layer to another layer in the TD net-

work. The gating information flows from the top layers to the intermediate

and early layers in the TD pass. It is shown in STNet model [108] that the TD

gating activities are sufficiently representative for object localization, and we

121

hypothesize that they are reliable to select features for object segmentation.

We experimentally support the hypothesis and show that the gating activities

indeed improve the segmentation accuracy over the baseline model without a

similar gating mechanism.

Formulation: We follow STNet [108] formulation for the TD selection

pass. The TD pass begins from the elements di, which are set to one by

the initialization module. Those that are zero will not participate in the TD

traversal. We define the TD network as

g = n(d, h,WBU ,WLSD), (5.6)

in which n = {ni}Vi=J | gi = ni(gi+1, hi, wi) is a set of sequential TD layers

called one after each other, d is the input attention signal, h is the set of the

BU hidden activities at all layers, and WBU and WLSD are the set of kernel

parameters of the BU network and the LSD module respectively. At every

TD layer, gi+1 and gi are the input and output gating maps respectively, hi is

the hidden activity map passed from the BU layer i, and wi is the kernel filter

weights of the BU convolutional layer. J is the penultimate layer in the visual

hierarchy such that gJ+1 = d, hJ = s and V is the level at which the TD pass

ends.

The selection mechanism ni is implemented by three computational stages.

All three stages are performed in the local scope of the receptive field of a

node. The computation in the stages is based on the element-wise multipli-

cation of the hidden activities falling inside the receptive field and the kernel

filter weights. We call this set Post-Synaptic (PS) activities hereafter. The

122

first stage takes care of noise interference reduction by running a competition

among PS activities, and determining the set of winners. It has an adaptive

thresholding mechanism to implement a local competition between PS activi-

ties. The second stage performs grouping and selection of the winners accord-

ing to spatial and statistical criteria for the convolutional and fully-connected

layers. Lastly, the third stage normalizes PS activities of the selected group

such that they sum to one and propagates the gating activity proportional to

the normalized PS values to the localized gating units in the layer below. The

gating maps at each layer represent the selection patterns that will be used

for feature modulation in the segmentation pipeline.

Implementation Details: The TD selection is computed at each layer

of the visual hierarchy, gating activities are determined and the selection is

passed to the next layer, which is below the current one. Layer by layer

selection is executed until a particular stopping layer is met. The pool1 and

pool3 layers are the stopping layer V in AlexNet- and VGG-based BU networks

respectively.

Unlike STNet model, SSN does not have any fully-connected layers. All the

fully-connected layers are replaced with the convolutional layers that have ker-

nel size 1×1. We refer to 1×1 convolutional layers as collapsed convolutional

layers hereafter. Collapsed convolutional layers are technically fully-connected

layers that are applied over two-dimensional feature maps rather than a one-

dimensional feature vector. To address this requirement, we implemented the

TD selection stages for collapsed convolutional layers using the stages for fully-

connected layers.

123

The TD pass has one hyperparameter at each layer in the second selection

stage while the first and the last stages do not have any hyperparameter. The

second stage of the TD pass in STNet for the collapsed convolutional layers has

a statistically-motivated thresholding value that determines how tight or loose

the selection is. We replace it with the Winner-Take-All (WTA) mechanism

since the nature of the object segmentation in this work is different from the

object localization STNet was developed for. For the typical convolutional

layers, there is a fusion factor that determines how much emphasis should be

given to the spatial contiguity or the total activity strength. In STNet, it is

called α. We experimentally choose to set α = 0.2.

5.4.6 Segmentation Prediction

Definition: The BU representation and TD selection integrate into a unified

pipeline in the segmentation network. The segmentation network is defined to

learn the spatial and feature correlations of the modulated feature activities

by parametric up-sampling of the feature planes for the final segmentation

predictions. Hidden activities in the BU layers represent input sensory data

according to an optimization policy such that an objective loss function is min-

imized. However, the spatial resolution is reduced along the visual hierarchy

due to the gradual increase in the receptive field sizes and sub-sampling rates.

Rather than adding parametric sub-sampling layers in a brute-force manner

to generate segmentation predictions similar to FCN-based approaches, TD

selection fills the gap between the spatial acuity and semantic richness by

computing selective gating activities at each layer of the hierarchy. These

124

Conv 3x3 Conv 3x3

M

Conv 3x3

MConv 3x3

Conv 3x3 Conv 3x3

M

Conv 3x3

MConv 3x3

Conv 3x3

M

Conv 3x3

M

gh

bBU bTD

b

ob

or

op

r

p

o

q

Figure 5.6: Illustration of the segmentation network with different parametric
and modulation nodes. Each block receives the hidden (blue) and the gating
(red) activity inputs. The selective gating units modulate the hidden units at
the first node M . At each layer, after input fusion, information is integrated
into the main segmentation pipeline using the second modulation node M .
We conduct experiments on three different types of modulations: addition,
multiplication, and concatenation. The layer label subscript i is neglected for
the sake of brevity.

activities are used to modulate hidden activities in the spatial and feature

dimensions at multiple levels. Part (e) of Fig. 5.1 schematically illustrates

the information flow from the BU network for feature encoding to the LSD

for multi-instance and multi-scale label predictions. Attention initialization

and TD network produce the selection patterns at multiple levels of the hi-

erarchy. Lastly, the segmentation network produces the segmentation output

maps through a number of parametric layers. This is the last stage of the in-

ference phase and the segmentation output map is used to predict the category

label of each pixel of the input image.

125

Fig. 5.2 shows that the segmentation network has a number of processing

layers. Each layer receives two inputs one from the corresponding BU layer

and one from the corresponding TD layer. The inputs are transformed, fused,

and up-sampled using a number of parametric building blocks at each layer.

All of these block are necessary to form a representation given the inputs for

the segmentation prediction.

Formulation: Once the two BU and TD passes are completed, Informa-

tion is passed to the segmentation network

o = m(hi, gi;Wseg), (5.7)

in which m = {(bi, ri, pi, qi)}Mi=0 consists of M segmentation layers, Wseg is the

set of segmentation weight parameters, hi and gi are the hidden and gating

activities at layer i respectively, and o is the segmentation output map which

will be used in the segmentation loss function in Sec. 5.4.8.

The BU hidden activities hi and the TD gating activities gi have two differ-

ent data distributions, one is densely active and the other sparsely active due

to the selective nature of the TD mechanisms. Therefore, the parametric layers

obi = bi(b
BU
i (hi,W

BU
seg), bTDi (gi,W

TD
seg)) are used to learn an appropriate trans-

formation of the two inputs before the TD modulation of BU activities. Three

types of modulation are defined for the fusion of the TD and BU activities:

b(u, v) = u � v|� ∈ {⊕,�,	}, ⊕ tensor summation, � tensor multiplication,

	 tensor concatenation.

After the modulation unit bi, there is a parametric layer ori = ri(o
b
i ;W

r
seg),

a concatenation layer opi = pi(o
r
i , oi−1) | p(u, v) = u 	 v to fuse the incoming

126

Network level 1 level 2 level 3

AlexNet

name conv3 3 pool2 pool1
input 256 192 64

b 128 96 48
r 128 96 48
q 96 48 32

VGG

name conv5 3 pool4 pool3
input 512 512 256

b 384 256 128
r 384 256 128
q 256 128 64

Table 5.1: The output channel size of computational units in the segmentation
layers is given for AlexNet and VGG at three different levels. b, r, q are the
units defined in 5.4.6.

information at layer i into the information at layer i + 1 in the segmentation

pipeline, and lastly another parametric layer oi = qi(o
p
i ;W

q
seg) followed by a

spatial up-sampling layer. The modulation type �, the number of segmentation

levels M , and other hyper-parameters are cross-validated in the experimental

evaluation in Sec. 5.5. All these building blocks at a segmentation layer are

illustrated in Fig. 5.6 with details such as the information flow from one

computational unit to another one, the name and the computation type of

each unit.

Implementation Details: The output channel size of each computation

block at a segmentation layer is given in Table 5.1. All of the convolutional

layers in the segmentation network have the kernel size of 3x3 with stride 1,

padding 1, and dilation 0 unless otherwise mentioned. As illustrated in Fig.

5.6, hi and gi are the two inputs to the segmentation layer i. They are first

fed into bBU or bTD, which are 3 × 3 convolutional layers, to reduce the fea-

127

ture channel size for a compact feature representation. Next, the outputs are

fused into one feature tensor by the modulation operation bi which can be

tensor concatenation, addition, or multiplication. The output of the modula-

tion unit is sent into the convolutional layer ri to further reduce the feature

redundancy before getting fused into the main segmentation pipeline. The

feature tensor ori at this point is merged into the main segmentation pipeline

using the feature concatenation unit pi along the feature channel dimension.

The concatenation of ori is with the segmentation activities oi+1 passed from

the segmentation layer i + 1. At the first level, the LSD label predictions are

used for the concatenation. This helps the error gradient signals computed

using the segmentation loss function to reach to the LSD module and conse-

quently flow downward through the BU visual hierarchy. This brings faster

optimization convergence during the training phase. Next, the convolutional

layer ql reduce the feature channel size further while the output spatial size is

increased using a bilinear up-sampling layer by the factor of 2. oi is the out-

put of the segmentation layer i and the input tensor for the next segmentation

layer i− 1. The details on the number of segmentation levels and the output

channel size of each computational block is given in the Table 5.1. We follow

this layer definitions in the experimental evaluation in Sec. 5.5.

5.4.7 LSD Pre-training

Definition:

The learned feature representation of the pre-trained convolutional neural

network loaded on the BU network needs to be adapted to the new data domain

128

and visual task of semantic segmentation. The BU network parameters are

initialized by the parameters of a convolutional neural network pre-trained

on the Imagenet [24] dataset for the task of object classification. The input

images in Imagenet contain one single instance of an object category. The

label prediction output of the classification network has the size of K × 1× 1

since the input image size is smaller than the overall network receptive field.

As a result, the loss function is measured only on one set of label predictions

for all categories. SSN, on the other hand, deals with input images that may

contain multiple instances of the pre-defined labeled categories. Additionally,

due to the larger size of the input images, the network returns output maps

with spatial sizes greater than 1. This shift of domain and task requires a

preliminary stage of fine-tuning of the BU network using the loss function

defined on the LSD module.

The BU network needs to learn to accommodate for the new task and do-

main requirements in this first stage of the learning phase as is depicted in part

(f) of Fig. 5.1. We define the objective function LLSD(p̂, t) = 1
ND

∑A
i LD(p̂i, ti)

on top of the LSD module to minimize the loss of the prediction distribution

p̂ for the target label t. p̂ is computed using the Softmax transfer function

from the output score maps s. The SGD optimization algorithm updates the

BU and LSD weight parameters using the gradient signals computed by the

backpropagation algorithm.

We will fine-tune the pre-trained BU network following a class-specific ap-

proach inspired from the SSD object detection model [5]. For an input image

xi, there is a set of bounding box annotations yBi in the dataset D which needs

129

to be utilized to generate appropriate target labels for the training of the LSD

module.

Unlike the dominant object detection models, SSN only needs to loosely

know if a LSD output unit is required for activating a TD selection mechanism

or not. Therefore, it is not needed in SSN to have multiple scale, aspect ratio,

and offset value predictions at each output unit. The LSD module in SSN

only requires to output category label predictions which are harnessed later

on by the attention initialization unit for the activation of a number of TD

selection mechanisms. Part (g) of Fig. 5.1 demonstrates the role of the anchor

processing unit for the computation of the LSD loss function.

Formulation: For the training of LSD, we generate target labels t =

{ti}Ai=0 to fine-tune the weight parameters of the BU network and the LSD

module. We follow an anchor generation approach commonly practiced for

object detection in [5, 72]. We define an anchor aij for each LSD output unit j

at the group layer i, and calculate its box coordinates from the total receptive

field size at that level. We then propose to set the target labels according to

the following policy:

tij =


k IoU(aij, y

B
k) > θpos

0 IoU(aij, y
B
k) < θneg

,

where k ∈ {1, . . . K}. the target tij is assigned to a category label for which

the Intersection-over-Union (IoU) metric of the corresponding anchor box aij

with a ground truth box gk for the category k is over the positive threshold

value θ[pos]. It is zero if the IoU metric is below the the negative threshold value

130

θ[neg]. We always ensure that there is at least one anchor set for a ground truth

bounding box.

Implementation Details: Following the experimental setting in [72] and

preliminary experimental results, we choose to set θpos = 0.5 and θneg = 0.3

in the experimental evaluation phase. A target label has the category label

of the box overlapping with the corresponding anchor if the IoU value of the

box with the anchor is above θpos. It has the background label zero if the IoU

of the two is below θneg. We set the otherwise to the don’t-care label value

255. Once all of the target labels are set for the bounding boxes annotations of

the mini-batch samples, we randomly keep a maximum number of 128 target

labels per mini-batch samples such that the ratio between the negatives and

positives is at most 1:3 while the rest are set to 255. We set the element-wise

cross-entropy loss function LLSD to exclude the loss terms of the output units

for which the target labels are set to 255.

Given an input image, the LSD output units are computed using a feed-

forward pass and the target labels are determined using the ground truth

bounding boxes. We fine-tune the parameters of the BU network and the LSD

module using the SGD optimizer with the initial learning rate 10−3, momen-

tum 0.9, weight decay 0.0005, and batch size 4 for 15 epochs. We evaluate

the performance of LSD using similar segmentation metrics namely the mean

pixel and the mean IoU performance metrics. Once the LSD pre-training is

converged, we train the SSN model using the multi-loss function described in

Sec. 5.4.8.

131

5.4.8 Multi-loss Training

Definition: SSN training using the multi-loss function is the last stage of the

learning phase as illustrated in part (h) of Fig. 5.1. The BU network and

LSD module parameters are loaded with the converged set of parameters in

the LSD pre-training stage. The optimization algorithm considers two loss

functions at the opposite ends of the visual hierarchy. The SSN parameters

of the converged model is used in the inference phase for the segmentation

prediction of unknown test images.

Formulation: SSN has output layers at the two ends of the visual hi-

erarchy. The first receives the LSD score maps s as inputs at the top of

the visual hierarchy and outputs a discrete probability distribution p̂(s) =

{Softmax(si0, . . . , siK−1)}Ai=0 over K categories including the background. On

the other side at the bottom of the hierarchy, segmentation output map o

is fed into another output layer and returns similarly a discrete probability

distribution p̃(d) = {Softmax(di0, . . . , diK−1)}H×Wi=0 , where H and W are the

height and width of the input image. The overall multi-loss objective function

is a weighted sum of the LSD loss LD and the segmentation loss LS terms

LTotal(p̂, t, p̃, y) =
1

ND

∑
i

LD(p̂i, ti) + α
1

NS

∑
i

LS(p̃i, yi), (5.8)

in which both of the loss functions LD and LS are defined using the element-

wise negative log likelihood (NLL) function for the true target labels ti and

the segmentation mask ySi respectively, and ND = A and NS = H ×W .

Implementation Details: The output of the last up-sampling layer is

132

the input of the final segmentation prediction module. This module simply

consists of one 3x3 and one 1x1 convolutional layers: the former keeps the

feature channel size intact, and the other reduces it to the number of category

labels K. The output of this module is the confidence scores used by a Softmax

layer to produce multinomial probability values. Similar to LSD pre-training

procedure, we use an element-wise cross-entropy loss function to optimize the

set of all of the weight parameters of SSN WSSN = {Wseg,WLSD,WBU}.

Since we have a multi-loss objective function, the error gradient signals are

propagated from the two ends of SSN: the first loss term propagates error sig-

nals from the top of the visual hierarchy all the way to the input layer, while

the second loss propagates the error signals from the bottom of the visual

hierarchy. The error signals measured from the segmentation loss propagate

into the BU network according to the modulatory patterns generated by the

TD gating activities. This has an important impact on the underlying rep-

resentation of the BU network. While the LSD loss keeps the representation

fidelity of the BU network, the second loss term updates the parameters of

the hierarchical transformation for a more robust and adapted segmentation

prediction.

5.5 Experimental Results

We evaluate the performance of SSN on object segmentation to support the

role of a top-down selection mechanism in neural network approaches. Seman-

tic segmentation is the task that is defined to predict segmentation masks of

133

Model
Parallel Sequential

m Accuracy m IoU m Accuracy m IoU
AlexNet 54.3 39.8 52.6 39.1
VGGNet 66.7 55.6 67.1 53.6

Table 5.2: Parallel and Sequential LSD performance results on the Pascal VOC
2012 validation set once the BU network is fine-tuned on the extended Pascal
dataset.

a pre-defined number of semantic categories [152, 153, 25, 154]. Challenging

benchmark datasets such as PASCAL VOC [159], the Cambridge-driving La-

beled Video (CamVid) [160], and Horse-Cow Parsing [161] datasets are used

for experimental evaluation of SSN.

SSN is implemented using PyTorch1 [162], an open source deep learning

platform which is well-known for its automatic differentiation engine. The TD

pass is integrated into the main implementation using the open-source CUDA

library provided by2 STNet [108]. LSD pre-training begins with the Imagenet

pre-trained models provided by the PyTorch Model Zoo repository. The core

architecture of the BU network in all of our experiments are defined based on

either AlexNet [30] or VggNet [59] networks.

5.5.1 Semantic Segmentation

Dense image labeling such as semantic segmentation requires pixel-level pre-

dictions. In this section, we first measure the performance of a variety of

SSN configurations on predicting accurately object segmentation of various

categories of the input images. Later, we provide the comparison with the

1https://pytorch.org/
2https://github.com/mbiparva/stnet-object-localization

134

https://pytorch.org/
https://github.com/mbiparva/stnet-object-localization

SSN Variant mean Accuracy mean IoU
SSN-GT 53.7 41.9
SSN-MAX 51.9 40.4
SSN-THD 53.5 41.4
SSN-THD-CAT 50.6 40.2
SSN-THD-ADD 53.5 41.4
SSN-THD-MUL 54.1 42.1

Table 5.3: Comparison of different variants of SSN using AlexNet on PAS-
CAL VOC valid 2012. We use mean pixel accuracy and mean IoU metrics
to report the performance. CAT, MAX, THD, ADD, and MUL stands for
concatenation, top-1, and thresholding, additive, and multiplicative.

Network Model Mean Accuracy Mean IoU

AlexNet

FCN - 39.8
SSN 54.1 42.1
FCN++ - 48.0
SSN++ 55.8 49.4

VGGNet

FCN - 56.0
SSN 64.6 58.7
FCN++ 75.9 62.7
SSN++ 76.8 64.3

Table 5.4: Comparison of SSN with the baseline model on PASCAL VOC
validation set using mean IoU metric. SSN++ is trained on the extended
training set.

Method mean IoU (%)
FCN [146] 62.7
DeepLab [163] 64.2
G-FRNet [3] 68.7
DeepLab-ASPP [152] 68.9
SSN(ours) 64.3

Table 5.5: Comparison of SSN with the state-of-the-art on PASCAL VOC
2012 valid set. All methods use VGGNet as the backbone network.

135

baseline model and discuss the aspects the superiority originates from.

Dataset and Evaluation: A popular and challenging benchmark dataset

for semantic segmentation is PASCAL VOC 2012 [159, 143]. The dataset con-

tains 1464 training and 1449 validation sample images. Each image may have

a number of instances of 21 object categories (including the background cate-

gory). To enable comparisons with previous works, the training set is expanded

with extra labeled data [149]. We measure the segmentation performance us-

ing the mean pixel accuracy and mean IoU metrics [146]. In the training

phase, we resize sample images to have the smallest side of 320 and then take

a random crop of size 320x320. In the evaluation phase, we resize images to

have the largest side of 320 and pad the smallest side of the RGB image the

mean pixel values and the segmentation mask with don’t care pixel values.

We follow this strategy for all the experiments in this work.

Quantitative Results: We first fine-tune the Imagenet pre-trained AlexNet

and VggNet networks using the LSD training protocol on the extended Pascal

VOC 2012 dataset. The performance results are given in Table 5.2 using the

two evaluation metrics. The performance metric results using the parallel LSD

outperforms the sequential one for both of the convolutional neural network

model. Since the problem in LSD formulation is merely a classification task,

the parallel LSD benefits from the separation and independence of label pre-

dictors and consequently survives over-fitting to the training set. We stick to

the parallel LSD configuration for the rest of experimental evaluation.

We report the performance of different setups of SSN using the AlexNet

architecture in Table 5.3. First, we measure the effect of the attention signal

136

initialization strategy on the SSN performance. Apparently, the GT initializa-

tion strategy is superior over the other two since it minimizes redundancy and

noise interference imposed by TD selection from false alarm units. Mean IoU

of 40.4 in the max strategy increases to 41.4 in the thresholding strategy. This

indicates that the false alarm interference is reduced by thresholding units

with prediction confidence below the θattention of 0.90.

Next, we investigate the effect of the modulation types of the segmentation

network. The selective nature of the TD gating activities is supported since

the multiplicative modulation outperforms the other two types. This is rem-

iniscent of the surround suppression phenomenon in human vision predicted

in the Selective Tuning model of visual attention [7]. Using the multiplicative

modulation, BU hidden units that are not selected by the TD gating units do

not participate in the computation of the segmentation network and therefore

information flow is blocked or reduced in such units. This underlines how a

hierarchical selective mechanism can dynamically suppress redundancy in the

visual representation and lead to more robust task predictions. We use the

thresholding initialization strategy and multiplicative modulation for the rest

of experiments.

Comparison with the baseline: The best variant of SSN is trained on

PASCAL VOC 2012 training set and the extra data of [149] using both of the

network architectures. The performance is reported on the PASCAL VOC

2012 validation set in Table 5.4. Samples in the validation set are excluded

from the extended training set. The SSN performance is compared with the

baseline model of FCN [146]. The first goal is to introduce a well-established

137

TD selection mechanism and highlights the aspects that lead to improvements

over the FCN model. FCN introduced dense and parametric skip connections

from early layers for parametric up-sampling of label scores of a classifier for

segmentation. In all cases in Table 5.4, SSN improves the mean IoU results

over FCN for both of the architectures.

The quantitative results verify the modulatory role of the TD selection

mechanism in SSN. SSN benefits from an architecture that employs TD selec-

tion to begin from high-level semantic layers and traverse to intermediate-level

feature representations. The TD traversal outputs selection patterns at each

layer that highlight important regions and features along the visual hierarchy.

The results emphasize that a systematic hierarchical gating of the informa-

tion flow from the early feedforward layers into the segmentation pipeline has

positive impact on the evaluation metrics.

Comparison with the state-of-the-art: We compare the best segmen-

tation performance of SSN on the PASCAL VOC 2012 validation set with the

performance of the state-of-the-art methods in Table 5.5. SSN outperforms

FCN by 1.6% and is par with DeepLab which benefits from features such as

multi-scale prediction method and Atrous (strided) convolutional layers with

large field of views. The multi-scale method concatenate feature maps form the

early layers with the network’s last layer feature map. This helps the last fea-

ture maps to gain extra information to compromise for the lost of information

imposed by the hierarchical feature encoding. SSN, on the other hand, does

not benefit from multi-scale skip connections but rather relies on the TD se-

lection mechanism to route through the network and highlights the important

138

features for segmentation. G-FRN and DeepLab-ASPP are by approximately

4% more accurate in predicting semantic segmentation in comparison with

SSN. This is mainly due to the fact that SSN does not benefit from the fea-

tures such as the stage-wise supervision in [3] and the Atrous Spatial Pyramid

Pooling (ASPP) in [152]. The former provides strong supervision at multiple-

levels of the feature hierarchy using different loss functions. This facilitates the

error gradient propagation throughout the network hierarchy. ASPP employs

parallel branches with different atrous rates at the top fully-connected layers

to cover a wide range of filed of views. SSN uses none of these features and

this explains the reason it falls behind these two methods.

Additional Experimental Evaluation: To further support experimen-

tally the role of the TD mechanism for the attentive segmentation framework

of SSN, we compare performance of SSN and FCN on two challenging datasets:

CamVid and Horse-Cow datasets. CamVid has 701 frames of urban driving

extracted from high resolution video recordings. Following [164, 165, 166], we

consider 11 large semantic categories, down-sample images by a factor of two

(i.e. 480x360), and split them into the training (367), validation (100), test

sets (233). Horse-Cow part parsing dataset contains semantic labeling of four

body parts (head, leg, tail, body). Following [161], we split the dataset into

294 training and 227 test images. We follow the resizing and padding protocol

introduced for PASCAL dataset.

The results in Table 5.6 reveals the efficiency of the TD selection to ob-

tain segmentation robustness is consistent across different datasets. SSN im-

proves on the mean IoU metric values of FCN for CamVid and Horse-Cow

139

Network Model Mean Accuracy Mean IoU

CamVid
FCN 66.4 57.0
DeepLab-LargeFOV* - 61.6
G-FRNet[3] - 68.0
SSN 73.9 64.7

Horse-Cow
FCN 77.3 63.1
DeepLab-LargeFOV* - 62.7
G-FRNet[3] - 68.1
SSN 77.2 65.2

Table 5.6: Comparison of SSN with the baseline and state-of-the-art on two
additional segmentation benchmark datasets: CamVid and Horse-Cow. The
results are reported on the test sets. Note that the DeepLab-LargeFOV*
results are taken from[3].

datasets and is on par on the mean accuracy metric values. We further com-

pare the performance of SSN on these two benchmark datasets with DeepLab-

LargeFOV [163] and G-FRNet [3]. SSN outperforms DeepLab on the Horse-

Cow and CamVid datasets. However, similar to the results of the PASCAL

VOC dataset, SSN cannot compete with G-FRNet on these two datasets due

to the extra design features G-FRNet benefits from. The evaluation results on

these dataset are consistent with the previous experiments on the PASCAL

VOC dataset. This reveals that the role of TD selection mechanism generalizes

across different benchmark datasets for semantic segmentation.

Qualitative Results: We qualitatively compare SSN with the baseline

FCN model on PASCAL, Cam-Vid, Horse-Cow part parsing datasets in fig-

ures 5.7, 5.8, 5.9 respectively. The selectivity and modulatory role of the TD

processing on the BU processing for the lateral connections is clearly depicted

in cases the small object instances in the far distance are missed by FCN to be

segmented successfully. Additionally, SSN is capable of predicting the shape of

140

Figure 5.7: Comparison of the segmentation predictions of SSN with FCN on
Pascal dataset. From left to right: RGB images, ground-truth, FCN predic-
tions, SSN predictions.

141

Figure 5.8: Comparison of the segmentation predictions of SSN with FCN
on CamVid dataset. From left to right: RGB images, ground-truth, FCN
predictions, SSN predictions.

142

Figure 5.9: Comparison of the segmentation predictions of SSN with FCN on
Horse-Cow part parsing dataset. From left to right: RGB images, ground-
truth, FCN predictions, SSN predictions.

143

the segment masks and filling in the large regions in comparison to the FCN

results. These aspects reveals the role of the TD selection in SSN to route

relevant information from the BU pathway into the segmentation network.

5.5.2 Ablation Studies

We conduct further experiments to highlight aspects of SSN and emphasize the

critical role of the TD selection. First, we show the performance deteriorates if

either of the TD and BU inputs are blocked from feeding into the segmentation

network. In the upper part of Table 5.7, performance drops from 42.1 for SSN

with the segmentation network benefiting from the two inputs (BU and TD

activities) to 40.2 for only BU hidden inputs and to 39.7 for only the TD

gating inputs. Both inputs have complementary roles for the segmentation

performance of SSN. The BU input benefits from the parametric distributed

representation while the TD input has a predictive selective characteristic.

Once these two jointly are in place, the segmentation performance of SSN is

superior to the either once individually used.

Additionally, we emphasize the role of the number of levels of processing

in the segmentation network on the SSN performance in the lower part of

Table 5.7. The segmentation pipeline with one level has the least performance

accuracy while as the number of levels increases, the segmentation performance

improves. This finding underlines that SSN benefits from the selectivity of the

TD mechanisms on the high-level to the intermediate layer representations of

the BU network for accurate object segmentation. The intermediate layers

have fine details while the top layers have coarse structures. The relevance of

144

Figure 5.10: Demonstrating the role of the number of levels of TD and BU
modulation on the segmentation prediction. From left to right: RGB images,
ground-truth, SSN with 1 level of modulation, SSN with 2 levels of modulation,
and SSN with 3 levels of modulation respectively.

145

Model mean Accuracy mean IoU
SSN 54.1 42.1
SSN-BU 51.3 40.2
SSN-TD 49.4 39.7
SSN-1 51.5 40.7
SSN-2 52.9 41.6
SSN-3 54.1 42.1

Table 5.7: Ablation Studies on the TD modulatory role, the error signal prop-
agation, number of gating layers into the segmentation pipeline using AlexNet
on the Pascal VOC 2012 validation set.

the selectivity of the lower layer hidden activities imposed by the TD gating

activities is supported by the results in this experiment. This is in line with

the hypothesis that the TD selection process is capable of activating units in

the spatial and channel dimensions for the modulation of the BU features for

the dense pixel-level labeling task of semantic segmentation. In Fig. 5.10,

it is demonstrated that as the number of levels of modulation increases, the

predictions become more accurate. False positive predictions are corrected and

the shape of segmentation regions becomes more accurate. For instance, in

the bird example, the shape of the segmentation for the bird becomes close the

the ground truth once we have 3 levels of modulation in SSN. The qualitative

results additionally highlight the modulatory role of the TD selection on the

segmentation performance results.

5.5.3 Noise Interference Robustness

We test the robustness of SSN against two types of visual confusion: noise

interference and partial occlusion. We conduct experiments to study the ef-

fects of the additive uniform noise, salt-and-pepper noise, and box occlusion

146

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Interference level

20

40

60

80

100
Ro

bu
st

ne
ss

 (%
)

UN-SSN-3
SP-SSN-3
BO-SSN-3
UN-SSN-2
SP-SSN-2
BO-SSN-2
UN-SSN-1
SP-SSN-1
BO-SSN-1

Figure 5.11: Robustness of SSN is measured at different interference levels
(σ) for the uniform (UN), salt-pepper (SP), and box occlusion (BO) types.
σ determines the bandwidth of the uniform noise (255 × σ), the probability
of having salt-pepper noise at a location, and the length of the occlusion box
(σ × min(himage, wimage)) respectively. The modulatory role of the depth of
the TD selection is demonstrated for SSN-k with inputs at k number of levels
into the segmentation pipeline.

on SSN performance. Fig. 5.11 illustrates the role of the gating mechanisms

derived by TD selection at the early layers to gain increased level of robustness

on perturbed data samples. SSN with three levels of attentive segmentation

obtains the highest degree of robustness compared with smaller number of

levels. This is consistent across not only the two types of additive noise inter-

ference, but also partial box occlusion. Figures 5.12, 5.13, and 5.14 illustrates

qualitatively how three levels of noise degrades the segmentation performance

of SSN. The figures present the experimental setups that we used to study the

147

Figure 5.12: Three different levels of uniform noise is added to the RGB images.
From left to right the noise level is 0.25, 0.45, 0.65 respectively.

Figure 5.13: Three different levels of salt-pepper noise is added to the RGB
images. From left to right the noise level is 0.25, 0.45, 0.65 respectively.

Figure 5.14: Three different levels of box-occlusion noise is added to the RGB
images. From left to right the noise level is 0.25, 0.45, 0.65 respectively.

148

noise interference robustness of SSN with 3 different modulation levels.

5.6 Conclusion

The Top-Down selective attention is a well-known processing component of

the human vision system. We introduce a unified Bottom-Up and Top-Down

framework that not only benefits from a feedforward representation but also a

backward selective modulation mechanism for the task of object segmentation

in this chapter. We define a parametric semantic controller to predict for the

activation of TD mechanisms at the top of the visual hierarchy. We demon-

strate how the TD gating activities modulate the BU activities for object

segmentation through different stages of the information processing. The ex-

perimental evaluation results supports the role of the TD selection to improve

the baseline performance results.

149

Chapter 6

Attention for Compact Neural

Representation

6.1 Abstract

Deep neural networks have evolved to become power demanding and conse-

quently difficult to apply to small-size mobile platforms. Network parameter

reduction methods have been introduced to systematically deal with the com-

putational and memory complexity of deep networks. We propose to examine

the ability of attentive connection pruning to deal with redundancy reduc-

tion in neural networks as a contribution to the reduction of computational

demand. In this chapter, we describe a Top-Down attention mechanism that

is added to a Bottom-Up feedforward network to select important connec-

tions and subsequently prune redundant ones at all parametric layers. Our

method not only introduces a novel hierarchical selection mechanism as the

150

basis of pruning but also remains competitive with previous ad hoc methods

in experimental evaluation. We conduct experiments using different network

architectures on popular benchmark datasets to show high compression rate

is achievable with negligible loss of accuracy.

6.2 Introduction

The human brain receives a tremendously large amount of raw sensory data at

every second. How the brain deals efficiently and accurately with the amount

of input data to accomplish short- and long-range tasks is the target of various

research studies. [77, 21] analyze the computational complexity of visual tasks

and suggest the brain employs approximation solutions to overcome some of

the difficulties presented due to the vast amount of input sensory data.

Neural networks have been successful on various computational tasks in vi-

sion, language, and speech processing. Such networks are defined using a large

number of parameters arranged in multiple layers of computation. Despite

achieving good performance on benchmark datasets, parametric redundancy

is known to be widespread, hence not suitable for real-time mobile applica-

tions. Tensor processing, memory usage, and power consumption of mobile

devices are limited and consequently neural networks must be accelerated and

compressed for such mobile applications [167]. Model compression reduces the

number of parameters and primitive operations and consequently improve the

computation speed at inference phase [167].

Moreover, due to the over-fitting phenomenon, over-parameterized models

151

suffer from low generalization and therefore must be regularized. Such mod-

els learn dataset biases very quickly, memorize data distribution, and conse-

quently lack proper generalization. One way to regularize parametric models

is by imposing sparsity-imposing terms and consequently pruning a number of

parameters to zero and keeping a sparse subset of them [168, 169].

Neural network compression is defined as a systematic attempt to reduce

parametric redundancies in dense and multi-layer networks while maintaining

generalization performance with the least accuracy drop. Parametric redun-

dancy in such networks is empirically investigated in [170]. Various neural

network compression approaches such as weight clustering [171, 172, 173],

low-rank approximation [170, 174], weight pruning [175, 176, 177, 171, 178,

179, 180], and sparsity via regularization [181, 169, 182] are introduced to re-

duce parameter redundancy for lower computational and memory complexity.

Pruning methods have shown to be computationally favorable while relying

on straightforward heuristics and ad hoc approaches to schedule and devise

pruning patterns. These compression approaches rely on defining some mea-

sure of importance based on which a significant subset of weight parameters

are kept and the rest are pruned permanently.

STNet [108] introduces a selective attention approach in convolutional neu-

ral networks for the task of object localization. STNet leverages a small portion

of the entire visual hierarchy to route through all parametric layers to localize

the most important regions of the input images for a top label category. The

selection process is hierarchical and provides a reliable source of weight prun-

ing. The experimental results of STNet for object localization reveal that a

152

sparse subset of the network units and weight parameters are sufficient for a

successful localization result. We propose a novel attentive pruning method

based on STNet to achieve compact neural representation using Top-Down

selection mechanisms. Following [108], we define a neural network to benefit

from two passes of information processing, Bottom-Up (BU) and Top-Down

(TD). The BU pass is data-driven. It begins from raw input data, goes through

multiple layers of feature transformation, and finally predicts abstract task-

dependent outputs. On the other hand, the TD pass is initialized from high

level attention signals, goes through selection layers, and outputs kernel im-

portance activities. The importance activities are computed by three variable

inputs in the TD selection pass: one is the hidden responses, the other is the

kernel filters, the last is the top attention signals. We show that all of the

three sources of TD selection are crucial for strong network pruning.

Attentive pruning relies on kernel importance activities to decide on prun-

ing patterns. We feed neural networks with input data, and then activate TD

selection to output kernel importance activities at every layer. These activi-

ties are accumulated and scheduled to generate pruning patterns. We evaluate

the attentive pruning method using various network architectures on bench-

mark datasets. The competitive evaluation results reveal the selective nature

of the TD mechanisms over the kernel filters. This complements the impor-

tance of the gating activities for visual tasks such as object localization and

segmentation.

153

6.3 Related Work

Low-rank approximation, weight pruning, imposing sparsity through regu-

larizers, and weight clustering are various approaches to reduce the number

of learnable parameters in convolutional neural networks and other training-

based systems. [170, 174] seek to find low-rank approximation of the weight

kernel tensors by singular value decomposition. They achieve minimal per-

formance degradation on large networks. These techniques are also compu-

tationally expensive and slow. [171, 172, 173] propose to cluster weights into

a smaller number of groups that are representative of the original network.

[181, 169, 182] investigate the role of the sparsity-induced regularization terms

such as L1-norm on the loss function.

Weight pruning methods have been investigated from the early days of

neural networks [183]. [179, 180] propose to prune the network connections

based on the second-order derivatives of the loss function. The high compu-

tational complexity of computing the Hessian matrix on larger networks is a

shortcoming of such methods. On the other hand, magnitude-based pruning

[175, 176, 178] is fast, simple, and competitive with the baseline approaches.

[177] recently proposes to compute the second derivatives of a reconstruction

error minimization loss at each layer based on which the pruning is performed.

All of these pruning methods use a retraining phase once a number of weights

are set inactive for the subsequent steps. The number of pruning phases and

the number of retraining iterations after a pruning phase to regain the same

level of performance generalization are two important aspects of these meth-

ods. We study the role of the selective attention introduced in STNet [108] for

154

the task of weight pruning in neural networks. The selective attention mech-

anism defines stages of local competitions based on which a selection pattern

over the network connections is generated at each layer. We propose the al-

gorithm using which these patterns be harnessed for the determination of the

weight pruning. The experimental evaluation reveals a competitive compres-

sion ratio and error rate after retraining with the baseline methods.

6.4 Attention Drives Weight Pruning

We define neural networks with Bottom-Up (BU) and Top-Down (TD) in-

formation passes. The former transforms input data into high-level semantic

information. On the other hand, the TD pass begins from class predictions

and computes the kernel importance responses at each layer. The TD selection

process relies on three main sources of information. We propose to compute

the important connections that the TD attentional traces use to route through

the visual hierarchy. In this work, we introduce a novel approach such that

the pruning mechanism relies on the accumulated kernel importance responses

while the baseline models solely consider kernel filters of the feedforward pass.

The kernel importance responses are computed using the local competitions

that receives three variable inputs: the kernel weights, the hidden activities,

and the gating activities. The kernel weights are learned in the pre-training

phase. The hidden activities represent the hierarchical feature representation

of the underlying layers for some specific input data. Therefore, the calcu-

lated kernel importance responses take into consideration not only the kernel

155

x1 x2 x3 x4 x5 x6 x7

h1 h2 h3 h4 h5

z1 z2 z3

c1 c2 c3

g1 g2 g3 g4 g5 g6 g7

ḡ1 ḡ2 ḡ3 ḡ4 ḡ5

ĝ1 ĝ3

ģ1 ģ2 ģ3

B
o

tt
o

m
-U

p To
p

-D
o

w
n

Predict Class Label

Selection

Selection

Init. Attention Signal

Selection

ĝ2

M V

M

M

V

V

Pruning
Scheduler

Figure 6.1: Schematic illustration of the proposed method for connection prun-
ing that leads to the reduction of the number of network parameters. On the
left side, a toy multi-layer feedforward network is shown. On the right, the
corresponding TD networks is given. At each layer, once the active connec-
tions w̃ are computed using the TD selection mechanisms, they are additively
accumulated into the persistent buffer V ; subsequently, the mask tensor M is
scheduled to get updated after a number of iterations. The feedforward pass
is always additively modulated with the mask tensors M. The arrows show the
direction of information flow.

weights but also the input hidden activities. The baseline pruning methods

only rely on the magnitude thresholding while the proposed method gener-

alizes the baselines to include the hidden activities. Furthermore, the kernel

importance responses are category-specific. The important subset of weight

parameters are determined not only for some specific input but also some

particular label category. The TD selection pass starts from a category initial-

ization signal. Consequently, all the TD selection mechanisms are informative

of that particular category initialization. The category-specific nature of the

attentive pruning method further reduces the non-relevant pruning and there-

fore, speeds up the convergence in the retraining phase.

156

6.4.1 Method Overview

Figure 6.1 demonstrates schematically the information flow at different com-

putational stages of the proposed method. First, given some input x at the

bottom of the visual hierarchy shown on the left part of Fig. 6.1, the feature

extraction is done using the parametric layers and the output hidden activities

h, z, c are computed at each layer until the top score layer is reached and the

BU pass ends. The Predict Class Label block is a multi-class transfer function

such that softmax() outputs the class probability prediction given the input

data. Then, the attention signal initialization determines the label category

for which the TD pass (shown on the right side) will be activated. Once the at-

tention signal is set, the selection mechanism within the local receptive field of

the initialized category node is activated. According to the competition result,

a number of important outgoing connections on the TD layer are activated.

Then, the gating activity of the category node proportional to the activated

connection weights propagates downward to the next gating layer. This is

illustrated by the outgoing solid (activated) and dashed (deactivated) connec-

tions from ǵ to ĝ in Fig. 6.1. At this stage, the kernel importance responses V

for the top layer are updated with the activated connection patterns in an ad-

ditive manner. This layer-wise computation continues at all of the subsequent

lower layers until the TD selection pass ends at the input layer and returns

the gating activities g. The kernel importance accumulation is iterated for a

number of randomly-chosen input samples until a pruning phase is set by the

scheduling strategy depicted by the yellow Pruning Scheduler module at the

bottom of the figure. The pruning mask M , then, is updated based on the so-

157

far-accumulated kernel importance responses. The pruning masks are initially

set to one, meaning no kernel weight is pruned before the first scheduled mask

update. Over different pruning phases, they start to gradually become zero.

6.4.2 Notations

A multi-layer neural network f : RH×W → R is at the core of the BU pass.

The training set D = {(xi, yi)}Ni=1 has N samples such that the input data is

x ∈ RH×Wan input image with heightH and widthW and y ∈ {0, 1, . . . , K−1}

is the ground truth label for K different classes. We define the BU pass as a

feedforward network

h = f(x;W), (6.1)

in which f = {fj}Lj=0 is a network with L layers, x and h are the input and

output of the network, and W = {Wj}Lj=0 is the set of network parameters at

L layers. We define the feature transformation hl = f(hl−1;Wl) at layer l such

that f(x;W) = W Tx is a linear transformation f : RM → RN of the input x

by the weight matrix W ∈ RM×N for fully-connected layers. The convolutional

layers apply convolutions using the kernel filter W .

The BU network output h is fed into a Softmax transfer function ŷ =

softmax(h) to compute the multinomial probability values ŷ. The cross-

entropy loss function is used with the Stochastic Gradient Descent (SGD)

optimization algorithm to update network parameters.

158

6.4.3 Top-Down Processing

The role of the Top-Down (TD) pass is to traverse downward into the visual

hierarchy by routing through the most significant weight connections of the

network. TD pass begins from an initialization signal d ∈ RK generated

according to the ground truth label y. It traverses down layer by layer by

selecting through network connections

g = t(d, h,W), (6.2)

in which h = {hi}Li=0 is the set of BU hidden activities, network parameters

W = {Wi}Li=0, and g = {gi}Li=0 is the set of kernel importance responses at L

layers. The attention signal is initialized based on the ground truth label of

the input image. It sets the signal unit for the category label corresponding

to the ground truth to one and keep the rest zero

d = {dj=y = 1, dj 6=y = 0, }.

The TD pass at each layer computes the importance responses using three

computational stages defined in STNet [108]. the first stage takes care of

noise interference reduction, the second one perform grouping and selection,

and the last stage normalizes and propagates the gating activities to the next

layer.

159

6.4.4 Kernel Importance Maps

The output hidden activities at a layer are computed by a linear multiplication

of the kernel weight matrix and the input hidden activities h = W Tx for fully-

connected layers. The extension to convolutional layers is straightforward

using convolution operations and are ignored for the sake of brevity. Each

output unit hi receives a weighted sum of the input vector x according to the

weight parameter vector wi .

The TD selection mechanism al−1 = t(glj, x
l, wlj) for the output unit j

operates on the input hidden activities xl, the weight parameters wlj connecting

all the input units to unit j, and the input gating unit glj. The selection

mechanism t is only executed for non-zero gl units. The output of the selection

mechanism contains two entities al−1 = {gl−1, w̃l}, where gl−1 is the output

gating activities which is the source of TD selection at the layer below, and

w̃l is the kernel importance responses at layer l. Hereafter, we drop l for

sake of notation brevity. The kernel importance responses are accumulated

for all N samples in the training set and used in selective pruning for network

compression.

We categorize all the previous pruning approaches as class-agnostic pruning

methods since they determine the connections to prune regardless of the target

categories they are interested in. Our proposed attentive pruning method,

however, is class-specific since the TD pass begins from some class hypothesis

signal and routes through the network hierarchy accordingly. Therefore, the

computed kernel responses are representative of the subset of the network

connections that are most important for the true category label predictions.

160

Additionally, network parameters are trained according to the input data

distribution. The BU information flows into the network hierarchy by mea-

suring the numeric relation between an input unit xi and a connection weight

wji that connects the input unit i to the output unit j. If both the input

and the weight have high activity, the output will have high value too. Being

motivated by this insight, we show that the TD selection process produces ker-

nel importance maps by considering both of the input and the kernel weights.

Kernel importance is measured based on whether the input units and the ker-

nel weights are both positively related. This generalizes the previous works in

which the kernel weights are individually considered for connection pruning.

6.4.5 Attentive Pruning

We define an attentive pruning method using the kernel importance responses

W̃ . The importance responses W̃ t at iteration t is accumulated into a per-

sistent buffer V t = V t−1 + W̃ t−1. The binary pruning mask m defines the

pattern using which the kernel weights are permanently pruned. The function

r determines the pruning mask m. r is a thresholding function that sets the

binary values of m:

r(u; a) =


0 u ≤ a

1 a < u

, (6.3)

where a = m(u) + λσ(u). λ is a multiplicative factor, m(u) is the mean, and

σ(u) is the standard deviation of the input u. We set the binary mask ml at

layer l by setting u = V t
l and ml = r(u; a). We run the BU and TD passes

161

for a number of iterations after which the attentive pruning starts to compress

the network parameters. Once the set of mask binary tensors m = {mi}li=0

are determined after each pruning phase, the feedforward BU pass is modified

using the binary pattern in the mask tensors:

h = m�W Tx, (6.4)

where a� b is the element-wise (Hadamard) product of a with b.

Fig. 6.2 illustrates the BU and TD interactions in detail. At the layer i for

instance, the TD selection mechanism receives the three inputs: the hidden

activities hi−1, the kernel weights wi, and the gating activities gi. Once the

selection is completed, the kernel importance maps w̃ are set for the down-

ward gating activity propagation. Additionally, they are used to additively

update the persistent buffer Vi. The pruning pattern of the kernel weights wi

is determined according to the binary pruning mask Mi. The mask is updated

according to the pruning scheduler unit. Once the scheduler set the updating

on, the thresholding function r updates the mask binary elements given the

input persistent tensor. This procedure is applied to every layer the pruning

is defined to be applied.

6.4.6 Retraining Strategy

At every iteration, using the samples in the mini-batch, we have sequentially

the following computational stages: a feedforward BU pass, attention signal

initialization, a TD pass, and an updating of the persistent buffer V using

162

hi-1 hiWi

Mi

gi-1 giŴi

Vi

TD Selection

hi+1Wi+1

Mi+1

gi+1Ŵi+1

Vi+1

TD Selection

hi+2Wi+2

Mi+2

gi+2Ŵi+2

Vi+2

TD Selection

Pruning
Scheduler

Figure 6.2: Detailed demonstration of different stages of computation of the
BU and TD passes for selective connection pruning. At each layer, the inputs
to the TD selection unit, the active connections w̃, the additive accumulation
into the persistent buffer, and the multiplicative mask of the BU kernel weight
are depicted.

the kernel importance responses W̃ . After a number of initial iterations to

accumulate kernel importance responses into the persistent buffer, we start

pruning the network connections for several times. The network is retrained

from the first occurrence of pruning onward. This helps the network retain its

level of accuracy for label prediction over multiple stage of connection pruning.

Retraining is inevitable due to the high pruning rate of the network weight

parameters. The network needs some iterations to shift its representational

capability for a high level of label prediction accuracy. The retraining allows

the adaptation to the reduced parameter space. It follows the exact optimiza-

tion settings used for the pre-training of the network prior to the network

compression.

163

Model Top-1 error Parameters Compression
LeNet-300-100-reference 3.3% 267K -
LeNet-300-100-pruned 3.8% 5.2K 58×
LeNet-5-reference 2.1% 83K -
LeNet-5-pruned 3.2% 4.7K 102×

Table 6.1: LeNet error rate and compression ratio on MNIST dataset using
the attentive connection pruning.

6.5 Experimental Results

In this section, we conduct experiments to evaluate the compression ratio of

the attentive pruning method. The compression ratio is defined as the ratio

of the total number of mask units over the total number of the non-zero mask

units (active connections). We use the Pytorch deep learning framework 1

[162] to implement the model for the experiments of this work. The layers

of the TD pass are implemented using the code provided by 2 STNet [108].

We choose the learning rate 10−3, momentum 0.9, weight decay 0.0005, and

mini-batch size 64 for the SGD optimizer unless otherwise mentioned. We

follow the network pruning protocol and experimental setup established in

[175, 176, 177] in this work to evaluate the compression performance of the

proposed approach. The goal is to achieve a high compression ratio while

maintaining classification generalization performance with negligible perfor-

mance compromise. Harsh pruning of network connections mostly degrades

the network capability to recover high level of category label prediction and

this results into a collapsed network with an improper representation capac-

ity. We monitor the performance of the networks throughout the experimental

1https://pytorch.org/
2https://github.com/mbiparva/stnet-object-localization

164

https://pytorch.org/
https://github.com/mbiparva/stnet-object-localization

Method Network Dataset Error-degradation Compression Ratio
Han et al. [175] LeNet-300-100 MNIST 0.19% 12×
Guo et al. [176] LeNet-300-100 MNIST 0.23% 56×
Dong et al. [177] LeNet-300-100 MNIST 0.20% 66×
Ours LeNet-300-100 MNIST 0.50% 58×
Han et al. [175] LeNet-5 MNIST 0.09% 12×
Guo et al. [176] LeNet-5 MNIST 0.09% 108×
Dong et al. [177] LeNet-5 MNIST 0.39% 111×
Ours LeNet-5 MNIST 0.90% 102×

Table 6.2: Comparison of the Compression ratio of the proposed method with
the baseline approaches using LeNet-300-100 and LeNet-5 network architec-
tures on MNIST. Error degradation is the difference between the original error
and the error at the end of the retraining phase.

evaluation on the held-out validation set and report the compression ratio and

performance after pruning on the test set.

6.5.1 The MNIST Dataset

One of the popular datasets widely used in the machine learning community

to experimentally evaluate novel methods is MNIST dataset. It contains gray-

scale images of handwritten digits and is used for category classification.

We define the BU network for the MNIST dataset according to two classic

network architectures: LeNet-300-100 [29] and LeNet-5 [29]. The former con-

sists of three fully-connected layers with output channel sizes of 300, 100, 10

successively and contains 267K learnable parameters. We train it for 10 epochs

to obtain the reference model for the BU network. Lenet-5, on the other hand,

has two convolutional layers at the beginning. Similarly, it is trained for 10

epochs. It has 431K learnable parameters.

After the first epoch that the persistent buffers are accumulated, we start

pruning the network connections for the next 7 consecutive epochs. The mul-

165

tiplicative factor λ is set to the following values [0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0].

We continue retraining the network for 25 epochs after the final pruning stage.

We follow this pruning protocol for both of the LeNet architectures. Error rate

and the compression ratio of the networks are given in Table 6.1. The results

confirm the selectivity nature of the TD mechanism in the parameter space of

the BU network. According to the experiment results, the kernel importance

responses are shown a reliable source of connection pruning using LeNet ar-

chitectures on MNIST. The proposed model is capable of reducing the number

of kernel weights 58 and 102 times for LeNet300 and LeNet-5 respectively for

negligible performance accuracy drops.

Comparison with the state-of-the-art: We compare the compression

performance of the proposed attentive pruning mechanism with the baseline

approaches on MNIST in Table 6.2. The experimental results reveal that the

proposed approach outperforms two of the baseline approaches [175, 176] using

the LeNet architectures while remain competitive with [177]. It should be

noted that [177] uses the computationally expensive second order derivatives

of a layer-wise error function to derive the pruning policy while we only rely

on the important kernel responses derived from the TD selection mechanisms.

[177] exhaustively relies on second-order derivatives at each layer while we

chose to determine kernel responses in a hierarchical manner. However, the

proposed method can outperform [175, 176] that use magnitude pruning of

weight parameters. This supports the role of the TD selection mechanisms to

determine the most important parameters of neural networks as the source of

a pruning procedure.

166

6.5.2 The CIFAR Dataset

CIFAR-10 dataset [184] contains RGB images of the same size and scale as

MNIST dataset. The dataset consists of natural images of 10 semantic cat-

egories for object classification. In comparison with MNIST, the goal is to

benchmark classifier performance on a higher level of complexity using CIFAR-

10. We evaluate the performance of the proposed method using three network

architectures on this dataset: LeNet-5, CifarNet and AlexNet. CifarNet3 [184]

is a multi-layer network with three convolutional layer and two fully-connected

layers. It has larger number of parameters than LeNet-5. AlexNet [30] has 5

convolutional and 2 fully-connected layers.

We empirically choose a slightly different pruning and re-training policy

for the CIFAR-10 dataset since it has a lot more complexity and care must

be taken for connection pruning. First, we change the mini-batch size to

16. The multiplicative factor λ is set only to 0.5. However, unlike the MNIST

pruning protocol, we prune layers individually. We observed in the preliminary

experiments that this approach helps maintain the label prediction accuracy

with the minimal performance compromise while keep the compression ratio

high. This policy helps the network to maintain its representation capability

for the classification task and avoid deteriorating learning collapses. We first

accumulate the kernel importance responses in the persistent buffer for one

epoch. Next, for every 4 epochs, we prune the connections of one layer starting

from the first parametric layer at the bottom to the last one at the top of the

BU network. Once the pruning of the last layer is done, we continue re-training

3https://code.google.com/archive/p/cuda-convnet/

167

https://code.google.com/archive/p/cuda-convnet/

Model Top-1 error Parameters Compression
Lenet-5-reference 38.2% 83K -
Lenet-5-pruned 39.4% 8.3K 10×
CifarNet-reference 30.4% 84K -
CifarNet-pruned 31.1% 7.6K 11×
AlexNet-reference 23.5% 390K -
AlexNet-pruned 24.8% 13K 29×

Table 6.3: LeNet and CifarNet error rate and compression ratio on CIFAR-10
dataset using the attentive connection pruning.

of the pruned network for 40 epochs and then report the compression ratio in

Table 6.3. For all of the three networks, the attentive pruning method is able

to maintain the reference network error rate and achieve high compression

ratio.

6.6 Conclusion

We propose a novel pruning method to reduce the number of parameters of

multi-layer networks. The attentive pruning method relies not only a feedfor-

ward feature representation pass but also a selective top-down pass. The TD

pass computes the most important parameters of the kernel filters according

to a selected category label. Additionally, the hidden activities at each layer

participate in the stages of the TD selection mechanism. This ensures both

the top semantic information and input data representation play roles in the

stages of kernel importance computation. We evaluate the compression ratio

of the proposed method on two classification datasets and show the improve-

ment on three popular network architectures. The network achieves a high

compression ratio with minimal compromise of generalization performance.

168

Chapter 7

Contextual Interference

Reduction

7.1 Abstract

The issue of the contextual interference with the foreground target objects is

one of the main shortcomings of the hierarchical feature representations such as

convolutional neural networks. Due to the dense hierarchical parametrization

of convolutional neural networks and the utilization of convolution and sub-

sampling layers in the feedforward manner, foreground and background rep-

resentations are inevitably mixed up and visual confusion is eminent. Tsotsos

et al. [21] refers to this as the Crosstalk issue in neural networks. Feedforward

neural networks trained for object classification have shown successful appli-

cation of localization through Top-Down mechanisms. Despite the success of

localizing objects in the cluttered natural images using such feedforward net-

169

works, the context has still significant role in the final label prediction [185,

108, 19]. Additionally, research studies have revealed evidence on widespread

visual confusion on convolutional neural networks [16, 185, 17, 19, 186]. A

systematic approach to shift learned neural representations from the emphasis

on the contextual regions to the foreground target objects can help achieve a

higher degree of representation disentanglement. We propose a selective fine-

tuning approach for neural networks using a unified bottom-up and top-down

framework. A gating mechanism of hidden activities imposed by Top-Down

selection mechanisms is defined in the iterative feedforward pass. An attention-

augmented loss function is introduced during which the network parameters

are fine-tuned for a number of iterations. The fine-tuning using the iterative

pass helps the network to reduce the reliance on the contextual representa-

tion throughout the visual hierarchy. Therefore, the label prediction relies

more on the target object representation and consequently achieve a higher

degree of robustness to the background changes. The experimental evaluations

on a modified MNIST dataset reveals not only that the results are improved

but also a higher degree of robustness to the background perturbation using

additive noise is obtained.

7.2 Introduction

Iterative feedforward and feedback processes are recognized to play important

roles in the information processing of the human brain [12, 187]. To this end,

the Selective Tuning model [7, 21, 188] defines multiple computational stages

170

in artificial dynamical networks such as the preliminary stage of visual task

priming, the early stage of bottom-up neuronal encoding, the selective stage of

top-down attention, and finally the re-interpretation and iterative bottom-up

passes.

Feedforward neural networks currently suffer from different vulnerabilities

such as visual confusion [108, 19, 185], and adversarial attacks [16, 17, 186] due

to the unconstrained and data-driven nature of the training method in such

networks. Semantic objects of unlabeled categories are confusingly mixed up

with the representation of labeled categories. [108] demonstrates the cases in

which the top-down localization leads to the selection of unlabeled object cat-

egories with high co-occurrence to labeled categories. Similar types of visual

confusion is reported for object detection in [19]. Human and machine robust-

ness against input distortions is also studied [185]. It is revealed that even in

the gist representation provided by the feedforward feature encoding, humans

are still competent to deal with input noise distortions while neural networks

fall behind. The neural networks, as highly parametric learning machines,

are strongly prone to overfitting to the data distribution of the benchmark

datasets and consequently achieve low generalization to unseen and distorted

data samples. Addition of extra regularization terms to appropriate objective

functions [189] and sparsification of gradients [190, 191, 17] are two approaches

to improve robustness against visual vulnerabilities and generalization perfor-

mance.

We suggest that implicit concentration of the learning method potential

on target objects can help to reduce the contextual interference in neural net-

171

works. Since the spatial extent of objects is gradually lost within the visual

hierarchy in neural networks (the Blurring problem defined in [7]), a TD se-

lection mechanism is essential to constraint the focus of the learning method

on relevant spatial regions and feature channels. We hypothesize that training

a neural network with iterative BU passes driven from TD attentive mecha-

nisms will achieve a more robust representation and improve the localization

and categorization prediction metrics.

STNet [108] introduces a unified framework with BU and TD passes. The

framework has shown success for tasks such as object localization, object seg-

mentation, and compact neural representation in chapters 3, 5, and 6 respec-

tively. Building on top of this two-pass framework, we propose a novel iterative

framework that benefits from selection patterns generated in the TD pass for

the modulation of the feature extraction layers in the iterative BU pass. We

show that using a novel multi-loss objective function, the network learns to

concentrate the focus of attention on the relevant aspects for feature repre-

sentation. This helps the network to escape unreliable local minima in which

the localization accuracy is low and the context has been utilized wrongly for

label prediction. We demonstrate a notion of overfitting when a network is

trained to predict category labels while unable to localize objects accurately

using the learned representation. The proposed augmented loss function, de-

rived from the iterative framework, has an implicit regularization impact on

the entire learning algorithm. The experimental evaluation reveals that not

only the localization but also classification accuracy rates are improved. The

ablation studies demonstrate that the proposed model achieves a higher degree

172

of robustness to the contextual perturbation and hence verifies the attentive

capability to focus on relevant encoding aspects.

7.3 Selective Attention for Network Fine-Tuning

We define a neural network framework that consists of the Bottom-Up (BU)

feature representation and the Top-Down (TD) modulatory selection. The

BU network is a regular multi-layer feature extraction model. Having defined

a training set D = {(xi, yi)}Ni=1 of N number of input image x ∈ RH×W and

ground truth category labels y ∈ {0, . . . , K−1} for K categories, a mini-batch

of training samples are fed into the BU network for category label prediction:

s = f(x;W), (7.1)

where x is the set of input images, W is the set of BU network parameters, and

s is the output confidence scores of all classes. After multiple-layers of para-

metric feature transformation f , the confidence score s is returned to a softmax

probability distribution p = softmax(s) for multinomial category label pre-

dictions. f = {fi}Li=1 is a multi-layer neural network with L layers. It contains

the set of feature transformation functions fi such that hi = fi(hi−1;wi). The

hidden activities of the previous layer hi−1 is the input and hi is the output of

the layer. It is worth mentioning that h0 = x and hL = s.

Following STNet [108], the TD pass starts from a top initialization signal

and ends at the bottom of the visual hierarchy. It contains a selection mecha-

nism at every layer consisting of 3 stages of computation: 1) noise interference

173

reduction, 2) grouping and selection 3) normalization and propagation. We

define the TD network

g = u(d,H,W), (7.2)

where u = {ui}Li=1 is a set of selection layers, d ∈ RK is the initialization

signal, and H = {hi}Li=1 is the set of the BU hidden activities. d = δiy is

defined using Kronecker delta. It is a non-zero vector with all elements zero

except the one at the ground truth label y. Particularly, at layer l, the selection

layer gl−1 = u(gl, hl−1, wl) gets the gating activities gl, the hidden activities

at the previous layer hl−1, and the kernel filter parameters wl. It outputs the

gating activities gl−1 at the end of the selection stages.

We try to shift the visual representation of the BU network to concen-

trate on the feature channels and spatial regions of the target object in the

foreground rather than the context in the background. Using the TD pass

initialized from the ground truth category labels, the gating activities at each

layer are selective for the subset of features that are significantly important

for the category label predictions. During the selective fine-tuning phase, the

network learns to focus on the network parameters that are gated by the TD

pass.

7.3.1 Iterative Feedforward Pass

Having defined the feedforward BU and the selective TD passes, we define the

iterative BU pass using the gating activities computed in the TD pass. For a

mini-batch of samples, the BU pass is first activated, the hidden activities are

174

computed, and the output label prediction is returned. Next, the initialization

signal is set using the ground truth label, and then the TD pass is triggered

to begin. The gating activities are computed layer by layer until the TD pass

stops at the input layer. Then, we define the iterative BU pass consisting of L

layers similar to the initial feedforward pass such that at the layer i, the gated

hidden activities ti are

ti = α ∗ h̃i � g̃i + β ∗ h̃i, (7.3)

where a � b is the Hadamard product of a with b, h̃i is the input hidden ac-

tivities, and g̃i = n(gi) is the normalized gating activities using the function n

such that g̃ has a minimum and maximum activities of zero and one respec-

tively. α and β are the multiplicative factors to control the numeric level of the

hidden and gating activities respectively. They are set to one unless otherwise

mentioned. Having ti computed, the output hidden activities at layer i+ 1 is

computed

h̃i+1 = f(ti;wi+1). (7.4)

Using the confidence score output s̃ = f(x;W), the multinomial probability

prediction of the iterative pass is p̃ = softmax(s̃). We propose an attention-

augmented loss function with two terms LF and LS:

LT (p, p̃, y) =
1

N

∑
i

LF (pi, yi) + α
1

N

∑
i

LS(p̃i, yi), (7.5)

where p and p̃ are the class probabilities using the first and iterative BU passes

175

respectively, and y is the ground truth class label. α is the factor that defines

the emphasis on either term. It is set to one unless otherwise stated. LF and

LS are the cross-entropy loss functions for the true target labels yi and the

probability predictions pi and p̃i of the first and iterative feedforward passes

respectively. The cross entropy loss function L̂ is defined as:

L̂(pi, yi) = −
N∑
i=1

K∑
k=1

1{y(i) = k} log p(y(i) = k | x(i);W), (7.6)

where the indicator function 1{a = b} is one if a = b and zero otherwise.

p(y(i) = k | x(i);W) = pki is the softmax prediction probability of class k

given the input sample xi and the network parameter W . The first term in

the definition of LT maintains the representational fidelity to the pre-trained

BU network while the second term enforces the concentration of the learning

algorithm on the TD attention traces. This encourages the network to learn

to separate the representations of the background context from the foreground

target objects. This hypothesis is examined in experimental evaluation and the

observations supporting the role of attention to untangle the representation

are demonstrated in Sec. 7.4.

The Stochastic Gradient Descent (SGD) optimization method is used for

the training of the neural network. The error gradients are computed using the

loss function and propagated backward to the input layer. The weight gradi-

ents are accumulated using the computation graphs generated in the first and

iterative BU passes. They each contribute separately to the accumulation of

gradients to update weight parameters at each SGD updating iteration. Impor-

tantly, the error gradients through the iterative BU pass are back-propagated

176

BU Feat. Representation

Iterative BU

TD Selection
Init Att.
Signal

LF

LS

LTotal

x

x

Figure 7.1: The TD network modulates the BU feature representation in the
iterative BU pass. The total loss is defined as the weighted sum of the loss of
the first and second BU passes.

according to the gating patterns that impacted the feedforward information

flow in the iterative BU pass. This gating mechanism helps the optimization

algorithm focus on the spatial regions and feature channels that most con-

tributed to the prediction of the input samples at the first pass. The gradient

signals are masked at each layer according to the selection patterns formed

by the gating activities. Over various updating iterations, the network learns

the representation using which a higher degree of robustness to contextual

perturbation is obtained.

Figure 7.1 depicts the flow of the information from the BU feature repre-

sentation into the TD selective attention block. Once the TD pass ends at

the end of the visual hierarchy, the iterative BU pass is started given the same

mini-batch of input data. The iterative feedforward pass has modulatory units

that change the information flow according to the gating activity responses.

The iterative pass, therefore, forms a visual representation with an emphasis

on the attended regions and feature channels. The confidence score outputs of

177

hi-1 hiWi

gi-1

TD Selection

gi

hi+1Wi+1

TD Selection

gi+1

Figure 7.2: The gating activities at each layer modulate the hidden activities
in the iterative BU pass.

the two feedforward passes define the LF and LS loss terms that are combined

in Eq. 7.5 to define the total loss function LT . Once the loss value is com-

puted, the computation graph is used in the SGD optimization algorithm to

calculate the parameter gradients of the entire network. The SGD optimiza-

tion algorithm aims to minimize LT in the fine-tuning phase. This basically

means that the negative log-likelihood functions derived from the confidence

score outputs at the end of the two feedforward passes needs to be reduced.

This further implies that the learned representation needs to maintain the

class probability prediction capability at a high level of accuracy in the two

feedforward passes. Not only does the first feedforward pass is important sim-

ilar to a regular fine-tuning approach, but also the emphasis to the important

aspects of the learned representation is increased by the attentive TD gating

mechanisms in the iterative feed forward pass. Fig. 7.2 provides in detail the

information flow in the BU pass, the TD pass, and the modulatory interaction

of the TD pass with the iterative BU pass. At each layer, the gating activities

gi modulates the hidden activities hi in the second BU pass. The result then

is passed to the parametric transformation function.

178

7.4 Experimental Results

We evaluate the proposed selective fine-tuning of neural networks on a modi-

fied MNIST dataset called Wide-MNITS (WMNIST). MNIST is a handwritten

digit classification dataset. The gray-scale image samples in the dataset con-

tain handwritten digits of category zero to nine. We pre-train the BU network

on WMNIST for 15 epochs before the evaluation of the proposed method.

Once, the BU network is selectively fine-tuned for a number of epochs, we

measure the robustness of the final network to the background noise pertur-

bation. The experimental results reveal that the attention-augmented loss

function improves the accuracy rate while obtain stronger robustness to noise

perturbation.

7.4.1 Implementation Details

We define two choices of convolutional neural network architecture for the BU

network: LeNet-5 [29] or AlexNet [30]. The TD network is defined by ex-

tending the implementation of STNet [108] for object localization to consider

the new requirements of the iterative BU pass. We define the BU and TD

framework in PyTorch deep learning framework 1 [162]. The dynamic graph

engine in Pytorch allows the active gating of the hidden activities in the iter-

ative pass to be systematically implemented. The SGD optimization method

uses the learning rate 10−3, momentum 0.9, weight decay 0.0005, and mini-

batch size 64 unless otherwise mentioned for the pre-training and fine-tuning

phases. Having the pre-trained BU network loaded, using the selective fine-

1https://pytorch.org/

179

https://pytorch.org/

Model classification localization
LeNet-5-reference 94.0% 96.4%
LeNet-5-sft 97.5% 99.1%
AlexNet-reference 97.1% 98.2%
AlexNet-sft 99.3% 99.8%

Table 7.1: The classification and localization rates of the selective fine-tuned
network on the WMNIST dataset.

tuning method, we update the network parameters for 15 epochs and then

report the accuracy metric in Table 7.1.

7.4.2 Wide MNIST Dataset

The experimental evaluation is designed to examine the role of the background

context for the category label prediction of the foreground target object. The

role of the background representation is explicitly highlighted by considering

a relatively large context in the input data distribution.

Dataset and Evaluation: MNIST dataset contains 28 × 28 gray-scale

digit images. We increase the size of images by expanding the background

context such that images have the size 64 × 64. We additionally randomize

the location of digits in images. In addition to the ground truth labels, while

expanding image samples based on the aforementioned protocol, we also ex-

tract the tightest bounding box around the digit shape. We use both types of

ground truth to measure the performance of the proposed method using the

0-1 classification and the IoU (0.5) localization accuracy rates.

Quantitative Results: The evaluation result for the LeNet-5 and AlexNet

using the classification and localization metrics are reported in Table 7.1. The

180

Figure 7.3: Illustration of sample digit images in the WMNIST dataset. The
red boxes are the predicted bounding boxes using the LeNet-5 BU pass for
feature encoding and the TD selection pass for object localization.

selectively fine-tuned neural networks report improved performance results.

The results underline the role of the TD selective pass on network parame-

ter optimization using the attention-augmented loss function. Not only the

localization but also the classification results are improved once the network

is fine-tuned using the proposed approach. Fig. 7.3 illustrates sample images

with the predicted bounding boxes as the means of object localization using

the LeNet-5 network architecture. The bounding boxes are predicted using

the localization approach presented in STNet [108]. Since the gating activities

at the input layer are used for box predictions and the input images are gray-

181

Figure 7.4: Demonstration of the effect of the additive uniform noise in the
background and the comparison of the localization performance of the the
LeNet-5 reference model (top) with the selective fine-tuned model (bottom).
The ground truth and predicted boxes are depicted with the blue and red
boxes respectively. The additive noise is taken from a uniform distribution
with a lower and upper bounds of 0 and 100 respectively.

scale, we only need to find a tight enclosing box around all of the non-zero

gating units. We do not use any pruning strategy to remove units with small

gating values.

Ablation Analysis: We study further the role of the selective fine-tuning

method on the separation of the foreground from the background representa-

tions. We use additive uniform noise in the background to study the impact

of the context interference on the target object classification and localization

predictions. We gradually increase the upper bound of the uniform noise func-

tion to measure the robustness of the reference and fine-tuned models in sever

situations. Fig. 7.5 demonstrates the amount of classification robustness ob-

tained using the selective models over the reference models for different levels

of background additive noise. For both LeNet-5 and AlexNet network archi-

tectures, the selective fine-tuning brings a significant level of robustness to

the reference models. This result indicates that during selective fine-tuning,

182

20 40 60 80 100 120 140
Noise level

0

20

40

60

80

100

Ro
bu

st
ne

ss
 (%

)

Ref-LeNet5
SFT-LeNet5
Ref-AlexNet
SFT-AlexNet

Figure 7.5: The effect of the additive noise distortion in the background on the
classification accuracy rate. Ref and SFT refer to the reference and selectively
fine-tuned models respectively. The vertical axis represents the robustness of
the fine-tuned network at different noise levels. Robustness is calculated by
the ratio of the accuracy rates of the noisy images over the clean images. The
horizontal axis indicates the maximum amount of pixel intensity the uniform
distribution may add to the background pixels.

the network learns to focus further on the features encoding of the foreground

target objects and blocking contextual interference. In addition to the classi-

fication task, Fig. 7.6 reveals the localization accuracy is also maintained over

different levels of additive noise using the proposed method. Fig. 7.4 qualita-

tively illustrates the cases the reference model fails to deal with the background

noise. It underlines the fact that in the reference model the representation of

the background context is entangled with the foreground target object. This

explains why a simple form of contextual perturbation quickly destroys the lo-

calization and classification performance of the reference model. The selective

fine-tuning approach, however, obtains a higher degree of robustness in such

183

20 40 60 80 100 120 140
Noise level

0

20

40

60

80

100

Ro
bu

st
ne

ss
 (%

)

Ref-LeNet5
SFT-LeNet5
Ref-AlexNet
SFT-AlexNet

Figure 7.6: The effect of the additive noise in the background on the localiza-
tion accuracy rate. Ref and SFT refer to the reference and selective fine-tuned
models respectively. The horizontal axis indicates the maximum amount of
pixel intensity the uniform distribution may add to the background pixels.
Robustness is calculated by the ratio of the accuracy rates of the noisy images
over the clean images.

sever cases. Apparently, the network learns through the selectivity of the TD

attention to concentrate on the foreground representation.

We further experiment with different types of noise generation functions

to validate the generalization achieved by the selective fine-tuning approach.

We choose four different noise sources based on which we choose to perturb

the background regions as follows: (1) Grating: this is the radial grating

method with a center coordinate randomly chosen for every input image. (2)

MoG: this is a mixture of K Gaussian distributions such that each Gaussian

has a random center coordinate and orientation. We choose K=50 since it

provides smooth and irregular noise patterns. (3) Squares: this generates a

K×K grid of squares with random pixel intensity values. We choose K=8 since

184

it generates large enough square blocks that distinguishes them from random

uniform noise patterns. (4) RLines: this generates K short line segments with

random center coordinates and orientations. We choose K=100 to cover the

entire background regions with enough number of noise patterns. Figure 7.7

illustrates four random samples generated by these noise generation methods.

These noise methods have chosen such that they cover a variety of shape

patterns from small scale to large scale with different line structures and curva-

tures. We would like to measure the sensitivity of the reference and fine-tuned

networks on the samples perturbed with the background noise generated by

these methods. Similar to the experiment with the random uniform noise, we

report the robustness results to these four noise methods on the LeNet-5 and

AlexNet networks for the classification and localization evaluation metrics in

Fig. 7.8 and Fig. 7.9 respectively.

The results reveal that the generalization against contextual noise achieved

by the proposed fine-tuning method is persistent across all of the four noise

sources for classification and localization. The robustness for Grating and

Squares is less than for RLines due to the larger scale of noise patterns. Sim-

ilar to the uniform noise patterns, RLines have small scale random elements.

Both Grating and Squares show consistent robustness gain once the selective

fine-tuning is used. MoG is the only method that benefits from smooth and

continuous shape patterns. The proposed method still provides slight robust-

ness gain in comparison with the reference networks. Though, the gap is small

for AlexNet, we observe improvement for LeNet-5. The qualitative results for

this experimental evaluation setup is illustrated in Fig. 7.10 and Fig. 7.11 for

185

(a) Grating (b) MoG

(c) Squares (d) RLines

Figure 7.7: Random samples generated by the four noise methods: (a) Grat-
ing: radial grating with random centers, (b) MoG: Mixture of Gaussians, (c)
Squares: squares with random intensity values, and (d) RLines: short lines
with random centers and orientation.

LeNet-5 and AlexNet respectively. They show the predicted bounding boxes

of the reference and the proposed fine-tuned networks on the perturbed input

samples using the four different noise methods. The results support the hy-

pothesis that the TD selective gating method is capable of focusing the learn-

ing capacity of the network on the important aspects so then the prediction

performance is less affected by the contextual perturbations. The qualitative

results illustrates the cases in which the reference network fails to predict the

class labels and bounding boxes accurately due to the background noise dis-

turbance. On the other hand, the selective fine-tuned counterpart provides a

more robust representation and it maintains prediction performance despite

significant background noise patterns. This generalizes across all four different

noise methods for both LeNet-5 and AlexNet networks.

186

20 40 60 80 100 120 140
Noise level

0

20

40

60

80

100

Ro
bu

st
ne

ss
 (%

)

Ref-LeNet5
SFT-LeNet5
Ref-AlexNet
SFT-AlexNet

(a) Grating

20 40 60 80 100 120 140
Noise level

0

20

40

60

80

100

Ro
bu

st
ne

ss
 (%

)

Ref-LeNet5
SFT-LeNet5
Ref-AlexNet
SFT-AlexNet

(b) MoG

20 40 60 80 100 120 140
Noise level

0

20

40

60

80

100

Ro
bu

st
ne

ss
 (%

)

Ref-LeNet5
SFT-LeNet5
Ref-AlexNet
SFT-AlexNet

(c) Squares

20 40 60 80 100 120 140
Noise level

0

20

40

60

80

100

Ro
bu

st
ne

ss
 (%

)

Ref-LeNet5
SFT-LeNet5
Ref-AlexNet
SFT-AlexNet

(d) RLines

Figure 7.8: Comparing the effect of different methods of generating contex-
tual noise perturbation on the classification accuracy. From left to right: (a)
Grating: radial grating with random centers, (b) MoG: Mixture of Gaussians,
(c) Squares: squares with random intensity values, and (d) RLines: short lines
with random centers and orientation. The vertical axis represent the classifi-
cation robustness metric, and the horizontal axis represent the maximum pixel
intensity the noise adds to the background.

20 40 60 80 100 120 140
Noise level

0

20

40

60

80

100

Ro
bu

st
ne

ss
 (%

)

Ref-LeNet5
SFT-LeNet5
Ref-AlexNet
SFT-AlexNet

(a) Grating

20 40 60 80 100 120 140
Noise level

0

20

40

60

80

100

Ro
bu

st
ne

ss
 (%

)

Ref-LeNet5
SFT-LeNet5
Ref-AlexNet
SFT-AlexNet

(b) MoG

20 40 60 80 100 120 140
Noise level

0

20

40

60

80

100

Ro
bu

st
ne

ss
 (%

)

Ref-LeNet5
SFT-LeNet5
Ref-AlexNet
SFT-AlexNet

(c) Squares

20 40 60 80 100 120 140
Noise level

0

20

40

60

80

100

Ro
bu

st
ne

ss
 (%

)

Ref-LeNet5
SFT-LeNet5
Ref-AlexNet
SFT-AlexNet

(d) RLines

Figure 7.9: Comparing the effect of different methods of generating contex-
tual noise perturbation on the localization accuracy. From left to right: (a)
Grating: radial grating with random centers, (b) MoG: Mixture of Gaussians,
(c) Squares: squares with random intensity values, and (d) RLines: short lines
with random centers and orientation. The vertical axis represent the localiza-
tion robustness metric, and the horizontal axis represent the maximum pixel
intensity the noise adds to the background.

187

(a) Grating

(b) MoG

(c) Squares

(d) RLines

Figure 7.10: Comparison of the label and bounding box predictions of the
LeNet-5 reference and fine-tuned networks once the background regions is per-
turbed with four different types of noise methods. In each section, the top and
bottom rows represent predictions from the reference and selective fine-tuned
networks. The ground truth and predicted bounding boxes are illustrated with
blue and red boxes respectively. The ground truth and predicted labels are
shown at the top-left and top-right of their corresponding box respectively.

188

(a) Grating

(b) MoG

(c) Squares

(d) RLines

Figure 7.11: Comparison of the label and bounding box predictions of the
AlexNet reference and fine-tuned networks once the background regions is per-
turbed with four different types of noise methods. In each section, the top and
bottom rows represent predictions from the reference and selective fine-tuned
networks. The ground truth and predicted bounding boxes are illustrated with
blue and red boxes respectively. The ground truth and predicted labels are
shown at the top-left and top-right of their corresponding box respectively.

189

7.5 Conclusion

Attention helps humans to learn in distracting and interfering situations. The

selective nature of attentional processes are very well established in human

vision studies. We propose a selective learning method for neural networks

that has TD attentive mechanisms. We define an iterative feedforward pass

using the modulation of the first feedforward pass with the TD gating activi-

ties. We experimentally test the impact of the background context when the

network is trained with the proposed method. The evaluation results on a

modified MNIST dataset indicate that the selection mechanism indeed con-

strains the learning capacity of the network on relevant aspects of the visual

representation for target semantic abstractions. Over time, the network pa-

rameters converge to the state that has reduced contextual interference and

improved robustness against distortions such as additive noise perturbations

of the background regions. The qualitative and quantitative results support

the role of the selective fine-tuning using the iterative feedforward pass and an

augmented loss function.

190

Chapter 8

Conclusions and Future

Directions

In this thesis, we define a novel Top-Down (TD) selection formulation over a vi-

sual hierarchy represented by multi-layer neural networks. We strive to model

the TD selection formulation in a principled approach according to the target

visual tasks. We hypothesize that the use of the TD attentive mechanisms

will play effective roles in deep neural networks. We develop an implementa-

tion of the proposed TD selection mechanism for various visual tasks such as

object localization and segmentation. We shed light on the critical aspects of

such a hierarchical selection mechanism through various experimental setups

and ablation studies in several visual tasks. The selective and modulatory

roles of the proposed TD mechanism on the network feedforward responses

are investigated. We speculate future research directions to further elucidate

the complementary role of a TD selection mechanism for Bottom-Up (BU)

191

feedforward networks.

8.1 Summary of Contributions

Chapter 3: We first test the hypothesis that whether TD processing is capa-

ble of spatially localizing objects in natural input images using convolutional

neural networks. We investigate the role of hierarchical selective processing

that begins from semantic task signals and gradually descends to lower layers.

The question is whether such TD processing is capable of routing successfully

through the visual hierarchy, activating important attentional traces, and fi-

nally reaches to the location where the instance of an object category can be

found. We propose a unified BU and TD framework called STNet that is

successful in localizing objects. We test STNet in the weakly-supervised ob-

ject localization experimental setting on the ImageNet 2015 validation dataset

using the IoU (0.5) evaluation metric. The proposed model is on par with

the state-of-the-art using VGGNet, and GoogleNet with the localization er-

ror rates of 40.1, 38.6 respectively and outperforms the state-of-the-art using

AlexNet with 40.3. STNet leverages the power of the multi-layer feature en-

coding by convolutional neural networks in the BU pass. The BU pass is

unified with a novel TD selection approach formulating the TD selection as a

cascading series of local attentive selection processes each consisting of three

computational stages: (1) inference reduction, (2) similarity grouping, and (3)

attention signal normalization and propagation. These computational stages

are encapsulated in a new custom layer that defines the building-block of the

192

TD network in STNet. The first stage performs a type of local competition

implemented using an adaptive thresholding policy. The second stage defines

either a spatial or statistical local grouping strategy. The third stage selects

the final winners of the second stage and propagates normalized gating activ-

ities of the top nodes to lower layer nodes.

Chapter 4: We hypothesize that visual task priming, as a form of TD pro-

cessing, has a critical role in demanding scenarios such as detection of scene

elements that are nearly unnoticeable. We test whether there is a systematic

approach to alter, tune, and prime the computational routines of the visual

hierarchy derived by convolutional neural networks. The experimental re-

sults on object detection and object segmentation on the PASCAL VOC 2007

and 2012 datasets reveal that the proposed approach with the TD task cuing

mechanism is capable of improving the baseline results. The priming of the

DeepLab semantic segmentation model leads to an improvement of the mean

IoU metric from 76.3% to 77.15% using ResNet-101 as the base network. For

object detection, once the YOLOv2 model is equipped with the priming mech-

anism, the baseline performance of 76.8% mAP is improved to 80.6% using

priming. The priming mechanism also addresses demanding situations such

as detection under heavy noise distortion. For Gaussian noise with standard

deviation of 80, the priming approach obtains 34.8% in mAP compared to the

baseline result of 24.1%. The proposed method adds novel modulation units

to the feedforward layers to weight feature planes according to the priming

cues. The modulation units have weight parameters that are learned in a pre-

liminary training phase. In the test phase, the task cuing mechanism signals

193

the modulation units to tune the feedforward information flow by weighting

the hidden activities organized in the feature planes according to the learned

parameters.

Chapter 5: We hypothesize that the feature selectivity of the TD mech-

anisms proposed in STNet for object localization and task priming are also

useful for the tasks that require pixel-level semantic label predictions such as

semantic segmentation. We examine the role of the proposed TD attention

to modulate BU hidden activities for object segmentation prediction. The

question is whether the selection patterns generated by the TD mechanisms

are reliable to gate features into segmentation layers at multiple levels of the

visual hierarchy. The Selective Segmentation Network (SSN) is evaluated ex-

perimentally on three challenging semantic segmentation benchmark datasets:

PASCAL VOC 2012, CamVid, and Horse-Cow Parsing datasets. Using the

mean IoU metric, SSN defined by the base network of VGGNet improves a

baseline results of 62.7%, 57.0%, and 64.1% to 64.3%, 57.0%, and 65.2% on

the three datasets respectively. Additionally, SSN gains further robustness to

uniform, salt-pepper, and box-occlusion additive noise functions. First, we

re-define the unified BU and TD information processing framework proposed

in STNet to handle the requirements of object segmentation. Second, the

modulation units are defined to gate BU feature maps using TD activities at

multiple layers. A segmentation network is defined to receive modulated fea-

ture activities and fuse them into a parametric up-sampling pipeline for the

segmentation output prediction. Additionally, a network block is defined to

predict the activation of TD selection mechanisms at different location in a

194

multi-scale manner. Lastly, a multi-loss function is defined to optimize the

network parameters for segmentation and TD activation predictions.

Chapter 6: We hypothesize that the TD processing is capable of selecting

not only important feature activities for localization and segmentation but also

the critical kernel weight parameters for network pruning and representation

redundancy reduction. The research question is whether the accumulation

of the kernel importance responses is a reliable source of generating pruning

patterns to reduce the number of active kernel parameters. The experimental

results on MNIST and CIFAR-10 datasets using popular base networks reveals

that the TD selection mechanisms can be leveraged for compact neural repre-

sentations. On MNIST, the attentive network pruning approach achieves the

compression ratio of 58× and 102× using LeNet-300-100 and LeNet-5 respec-

tively. On CIFAR-10, the compression ratio is 10× and 29× using LeNet-5 and

AlexNet respectively. We define a novel task-driven pruning method by TD se-

lection mechanisms. The activated connections in the TD selection traversals

are pooled and stored in persistent buffers using which periodic pruning pro-

ceeded by retraining phases are scheduled for a number of iterations. Unlike

the ad hoc baseline pruning approaches that determine pruning masks based

on purely kernel weights, the proposed method relies on values derived from

not only the kernel weights but also the hidden feature activities in addition

to the task-driven TD gating activities.

Chapter 7: We hypothesize that fine-tuning of TD-attention-augmented

neural networks using iterative feedforward passes improves the label predic-

tion and localization performance in sample images with large background

195

context. Moreover, this systematically shifts the focus of the final learned

representation away from the features encoding the background context for

the sake of a more disentangled target object representation. We investigate

how much robustness the neural networks gain once the learning is constrained

by the TD attentional traces. We train and test the proposed method on a

modified version of the MNIST dataset. We randomly zero-pad sample images

in MNIST such that the size of images is 64 × 64 and the handwritten digits

are randomly located in the input images. The baseline label prediction and

localization results improves from 94.0% and 96.4% to 97.5% and 99.1% for

LeNet-5 and from 97.1% and 98.2% to 99.3% and 99.8% for AlexNet respec-

tively. Furthermore, the network fine-tuned using the attentive approach gains

significant robustness against contextual perturbation under various levels of

additive noise to the background regions. Using the proposed TD processing,

an iterative Bottom-Up pass of feature encoding is defined such that in the

first pass, the features are encoded using the core multi-layer neural network.

The TD pass produces the hierarchical gating activities using which the second

iterative pass will be modulated. In the iterative pass, the modulation units

weight the hidden feature activities in the channel and spatial dimensions.

The additive skip connections are used to stabilize the learning process. A

two-pass loss function is defined by adding the loss term measured in the first

pass with the one in the iterative pass. We update network parameters based

on the accumulated gradient signals generated by the multi-loss function.

196

8.2 Future Directions

The hierarchical TD selection approach proposed in this work opens up wide

varieties of future research directions. In chapter 3, we introduce a novel multi-

stage selection process in neural networks that conduct competitions on local

activities retrieved from the receptive fields of hidden units. Based on different

task knowledge, other selection rules can be investigated to satisfy the task

requirements. For instance, for object localization, computational stages to

formulate shape priors can defined to enforce characteristics such as object

aspect ratio, object parts, and appearance attributes.

Further, the formulation of the selection stages using parametric methods

can be investigated in the future. The selection process could be formulated by

parametric density estimation models such as the mixture of Gaussian models

to learn parametric selection strategies.

Additionally, a soft-selection mechanism can be tested instead of a para-

metric winner-take-all mechanism. In this case, all the nodes in the receptive

field will participate in the top-down propagation of gating activities rather

than a small number of them.

The other future direction is that the first stage of the selection process can

be replaced with a histogram-based strategy rather than an adaptive thresh-

olding currently being used. This will increase the processing speed of the

top-down pass since there is no need to find the thresholding value in the first

stage using the sorting and cumulative-sum algorithms.

Tasks related to video understanding requires spatio-temporal feature rep-

resentations that encode features not only in the spatial but also the temporal

197

dimensions. Temporal localization in tasks such as action detection is a very

critical requirement. One straightforward future direction is to investigate the

role of the TD selection pass over the spatio-temporal feature hierarchy for

action localization.

Recently, tasks such as visual question answering and visual caption gen-

eration move beyond classical modeling of object recognition problems and

require a multi-modal setting. In such settings, the goal is to align and match

the feature representation of one input modality with another one for the fulfill-

ment of the task requirements. For instance, in visual caption generation, the

language model needs a selection mechanism that collects the feature encoding

across the spatial dimensions at salient regions to generate captions best de-

scribe the input image. The variant of the TD selection approach potentially

can be utilized to route information according to multi-stage computational

mechanisms and select relevant features at multiple levels. The object localiza-

tion capability of the TD mechanisms can provide relevant features for caption

generation.

Finally, multi-task learning in dynamic environments plays a critical role in

the development of an intelligent system. The end goal is to use a core feature

hierarchy that can be utilized for the predictions of multiple relevant tasks.

Our proposed TD selection mechanism can be extended in this scenario to

implement a gating mechanism that alters and tunes the base representation

according to the task cuing. For instance, if the multi-task setting is to predict

category labels and attributes of object categories, then the role of the TD

selection mechanism is to tune the base network for the attribute prediction

198

of different categories. For instance, the visual hierarchy should be tuned for

attribute predictions of car instances differently from bus instances.

These are the most important future directions that will provide more in-

sights about the underlying characteristics of top-down processing along with

the bottom-up processing in convolutional neural networks. Further investi-

gation of attentive processes in neural networks can help improve our under-

standing of the representational characteristics in such models derived using

learning approaches. Additionally, attention mechanisms can provide dynamic

processing in neural networks which is required for active perception in vision

systems.

199

Chapter 9

Bibliography

[1] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba, “Learning

deep features for discriminative localization,” in IEEE Conference on

Computer Vision and Pattern Recognition, June 2016.

[2] J. Zhang, Z. Lin, J. Brandt, X. Shen, and S. Sclaroff, “Top-down neural

attention by excitation backprop,” in European Conference on Computer

Vision, pp. 543–559, Springer, 2016.

[3] M. A. Islam, M. Rochan, N. D. Bruce, and Y. Wang, “Gated feedback

refinement network for dense image labeling,” in IEEE Conference on

Computer Vision and Pattern Recognition, pp. 4877–4885, IEEE, 2017.

[4] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L.

Yuille, “Deeplab: Semantic image segmentation with deep convolu-

tional nets, atrous convolution, and fully connected crfs,” arXiv preprint

arXiv:1606.00915, 2016.

200

[5] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C.

Berg, “Ssd: Single shot multibox detector,” in European Conference on

Computer Vision, pp. 21–37, Springer, 2016.

[6] M. Carrasco, “Visual attention: The past 25 years,” Vision Research,

vol. 51, no. 13, pp. 1484–1525, 2011.

[7] J. K. Tsotsos, A computational perspective on visual attention. MIT

Press, 2011.

[8] S. Frintrop, E. Rome, and H. I. Christensen, “Computational visual at-

tention systems and their cognitive foundations: A survey,” ACM Trans-

actions on Applied Perception (TAP), vol. 7, no. 1, p. 6, 2010.

[9] X. Zhang, Y.-H. Yang, Z. Han, H. Wang, and C. Gao, “Object class

detection: A survey,” ACM Computing Surveys (CSUR), vol. 46, no. 1,

p. 10, 2013.

[10] A. Borji, M.-M. Cheng, H. Jiang, and J. Li, “Salient object detection:

A benchmark,” IEEE transactions on image processing, vol. 24, no. 12,

pp. 5706–5722, 2015.

[11] C. D. Gilbert and M. Sigman, “Brain states: top-down influences in

sensory processing,” Neuron, vol. 54, no. 5, pp. 677–696, 2007.

[12] C. D. Gilbert and W. Li, “Top-down influences on visual processing,”

Nature Reviews Neuroscience, vol. 14, no. 5, pp. 350–363, 2013.

201

[13] F. Baluch and L. Itti, “Mechanisms of top-down attention,” Trends in

Neurosciences, vol. 34, no. 4, pp. 210–224, 2011.

[14] R. Desimone and J. Duncan, “Neural mechanisms of selective visual

attention,” Annual Review of Neuroscience, vol. 18, pp. 193–222, Jan.

1995.

[15] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfel-

low, and R. Fergus, “Intriguing properties of neural networks,” arXiv

preprint arXiv:1312.6199, 2013.

[16] A. Nguyen, J. Yosinski, and J. Clune, “Deep neural networks are easily

fooled: High confidence predictions for unrecognizable images,” in IEEE

Conference on Computer Vision and Pattern Recognition, pp. 427–436,

2015.

[17] N. Akhtar and A. Mian, “Threat of adversarial attacks on deep learning

in computer vision: A survey,” arXiv preprint arXiv:1801.00553, 2018.

[18] N. Carlini and D. Wagner, “Towards evaluating the robustness of neural

networks,” arXiv preprint arXiv:1608.04644, 2016.

[19] A. Rosenfeld, R. Zemel, and J. K. Tsotsos, “The elephant in the room,”

arXiv preprint arXiv:1808.03305, 2018.

[20] J.-M. Jolion and A. Rosenfeld, “A pyramid framework for early vision:

Multiresolutional computer vision,” 1994.

202

[21] J. K. Tsotsos, S. M. Culhane, W. Y. K. Wai, Y. Lai, N. Davis, and

F. Nuflo, “Modeling visual attention via selective tuning,” Artificial In-

telligence, vol. 78, no. 12, pp. 507 – 545, 1995. Special Volume on Com-

puter Vision.

[22] M. H. Herzog and A. M. Clarke, “Why vision is not both hierarchical and

feedforward,” Frontiers in Computational Neuroscience, vol. 8, p. 135,

2014.

[23] P. Perona, Visual recognition circa 2008, pp. 55–68. Cambridge univer-

sity press, 2009.

[24] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,

A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “Im-

agenet large scale visual recognition challenge,” International Journal of

Computer Vision, vol. 115, pp. 211–252, sep 2015.

[25] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,

P. Dollár, and C. L. Zitnick, “Microsoft coco: Common objects in

context,” in European Conference on Computer Vision, pp. 740–755,

Springer, 2014.

[26] H. Caesar, J. Uijlings, and V. Ferrari, “Coco-stuff: Thing and stuff

classes in context,” in Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pp. 1209–1218, 2018.

203

[27] K. Fukushima, “Neocognitron: A self-organizing neural network model

for a mechanism of pattern recognition unaffected by shift in position,”

Biological Cybernetics, vol. 202, 1980.

[28] Y. LeCun and Y. Bengio, “Convolutional networks for images, speech,

and time series,” The Handbook of Brain Theory and Neural Networks,

vol. 3361, no. 10, p. 1995, 1995.

[29] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learn-

ing applied to document recognition,” Proceedings of the IEEE, vol. 86,

pp. 2278–2324, Nov 1998.

[30] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification

with deep convolutional neural networks,” in Advances in Neural Infor-

mation Processing Systems, pp. 1097–1105, 2012.

[31] V. Nair and G. E. Hinton, “Rectified linear units improve restricted

boltzmann machines,” International Conference on Machine Learning,

no. 3, pp. 807–814, 2010.

[32] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R.

Salakhutdinov, “Improving neural networks by preventing co-adaptation

of feature detectors,” arXiv preprint arXiv:1207.0580, 2012.

[33] H. R. Wilson, Spikes, decisions, and actions: the dynamical foundations

of neurosciences. Oxford University Press, 1999.

204

[34] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:

Surpassing human-level performance on imagenet classification,” arXiv

preprint arXiv:1502.01852, 2015.

[35] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities im-

prove neural network acoustic models,” in International Conference on

Machine Learning, vol. 30, 2013.

[36] K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun, “What is the

best multi-stage architecture for object recognition?,” in IEEE Interna-

tional Conference on Computer Vision, pp. 2146–2153, IEEE, 2009.

[37] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep net-

work training by reducing internal covariate shift,” arXiv preprint

arXiv:1502.03167, 2015.

[38] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” arXiv

preprint arXiv:1607.06450, 2016.

[39] D. Ulyanov, A. Vedaldi, and V. Lempitsky, “Instance normalization: The

missing ingredient for fast stylization,” arXiv preprint arXiv:1607.08022,

2016.

[40] Y. Wu and K. He, “Group normalization,” in Proceedings of the Euro-

pean Conference on Computer Vision (ECCV), pp. 3–19, 2018.

[41] C. Peng, T. Xiao, Z. Li, Y. Jiang, X. Zhang, K. Jia, G. Yu, and

J. Sun, “Megdet: A large mini-batch object detector,” in Proceedings

205

of the IEEE Conference on Computer Vision and Pattern Recognition,

pp. 6181–6189, 2018.

[42] M. Riesenhuber and T. Poggio, “Hierarchical models of object recogni-

tion in cortex,” Nature Neuroscience, pp. 1019–1025, 1999.

[43] I. J. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville, and Y. Ben-

gio, “Maxout networks,” arXiv preprint arXiv:1302.4389, 2013.

[44] J. T. Springenberg and M. Riedmiller, “Improving deep neural networks

with probabilistic maxout units,” arXiv preprint arXiv:1312.6116, 2013.

[45] H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng, “Convolutional deep

belief networks for scalable unsupervised learning of hierarchical repre-

sentations,” in International Conference on Machine Learning, pp. 609–

616, ACM, 2009.

[46] X. Zhang, J. Trmal, D. Povey, and S. Khudanpur, “Improving deep

neural network acoustic models using generalized maxout networks,” in

IEEE International Conference on Acoustics, Speech and Signal Process-

ing (ICASSP), pp. 215–219, IEEE, 2014.

[47] C. Gulcehre, K. Cho, R. Pascanu, and Y. Bengio, “Learned-norm pool-

ing for deep feedforward and recurrent neural networks,” in Machine

Learning and Knowledge Discovery in Databases, pp. 530–546, Springer,

2014.

[48] M. Lin, Q. Chen, and S. Yan, “Network in network,” arXiv preprint

arXiv:1312.4400, 2013.

206

[49] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Er-

han, V. Vanhoucke, and A. Rabinovich, “Going deeper with convolu-

tions,” in IEEE Conference on Computer Vision and Pattern Recogni-

tion, pp. 1–9, 2015.

[50] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for im-

age recognition,” in IEEE Conference on Computer Vision and Pattern

Recognition, pp. 770–778, 2016.

[51] S. Lazebnik, C. Schmid, and J. Ponce, “Beyond bags of features: Spa-

tial pyramid matching for recognizing natural scene categories,” in

IEEE Conference on Computer Vision and Pattern Recognition, vol. 2,

pp. 2169–2178, IEEE, 2006.

[52] K. He, X. Zhang, S. Ren, and J. Sun, “Spatial pyramid pooling in

deep convolutional networks for visual recognition,” arXiv preprint

arXiv:1406.4729, 2014.

[53] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal

representations by error propagation,” tech. rep., DTIC Document, 1985.

[54] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and

R. Salakhutdinov, “Dropout: a simple way to prevent neural networks

from overfitting.,” Journal of Machine Learning Research, vol. 15, no. 1,

pp. 1929–1958, 2014.

207

[55] J. Ba and B. Frey, “Adaptive dropout for training deep neural networks,”

in Advances in Neural Information Processing Systems, pp. 3084–3092,

2013.

[56] L. Wan, M. Zeiler, S. Zhang, Y. L. Cun, and R. Fergus, “Regularization

of neural networks using dropconnect,” in International Conference on

Machine Learning, pp. 1058–1066, 2013.

[57] M. D. Zeiler, G. W. Taylor, and R. Fergus, “Adaptive deconvolutional

networks for mid and high level feature learning,” in IEEE International

Conference on Computer Vision, pp. 2018–2025, IEEE, 2011.

[58] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolu-

tional networks,” in European Conference on Computer Vision, pp. 818–

833, Springer, 2014.

[59] K. Simonyan, A. Vedaldi, and A. Zisserman, “Deep inside convolutional

networks: Visualising image classification models and saliency maps,”

arXiv preprint arXiv:1312.6034, 2013.

[60] J. Yosinski, J. Clune, A. Nguyen, T. Fuchs, and H. Lipson, “Under-

standing neural networks through deep visualization,” arXiv preprint

arXiv:1506.06579, 2015.

[61] A. Mahendran and A. Vedaldi, “Visualizing deep convolutional neural

networks using natural pre-images,” International Journal of Computer

Vision, vol. 120, no. 3, pp. 233–255, 2016.

208

[62] A. Nguyen, J. Yosinski, and J. Clune, “Multifaceted feature visualiza-

tion: Uncovering the different types of features learned by each neuron

in deep neural networks,” arXiv preprint arXiv:1602.03616, 2016.

[63] A. Nguyen, A. Dosovitskiy, J. Yosinski, T. Brox, and J. Clune, “Syn-

thesizing the preferred inputs for neurons in neural networks via deep

generator networks,” in Advances in Neural Information Processing Sys-

tems, pp. 3387–3395, 2016.

[64] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,

S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,”

in Advances in neural information processing systems, pp. 2672–2680,

2014.

[65] B. Alexe, T. Deselaers, and V. Ferrari, “What is an object?,” in IEEE

Computer Vision and Pattern Recognition, pp. 73–80, IEEE, 2010.

[66] B. Alexe, T. Deselaers, and V. Ferrari, “Measuring the objectness of

image windows,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 34, no. 11, pp. 2189–2202, 2012.

[67] J. R. Uijlings, K. E. van de Sande, T. Gevers, and A. W. Smeulders, “Se-

lective search for object recognition,” International Journal of Computer

Vision, vol. 104, no. 2, pp. 154–171, 2013.

[68] P. F. Felzenszwalb and D. P. Huttenlocher, “Efficient graph-based image

segmentation,” International Journal of Computer Vision, vol. 59, no. 2,

pp. 167–181, 2004.

209

[69] P. Arbelaez, J. Pont-Tuset, J. Barron, F. Marques, and J. Malik, “Multi-

scale combinatorial grouping,” in IEEE Conference on Computer Vision

and Pattern Recognition, pp. 328–335, IEEE, 2014.

[70] C. L. Zitnick and P. Dollár, “Edge boxes: Locating object proposals

from edges,” in European Conference on Computer Vision, pp. 391–405,

Springer, 2014.

[71] D. Erhan, C. Szegedy, A. Toshev, and D. Anguelov, “Scalable object

detection using deep neural networks,” in IEEE Conference on Computer

Vision and Pattern Recognition, pp. 2155–2162, IEEE, 2014.

[72] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time

object detection with region proposal networks,” in Advances in Neural

Information Processing Systems, pp. 91–99, 2015.

[73] L. Bazzani, A. Bergamo, D. Anguelov, and L. Torresani, “Self-taught

object localization with deep networks,” in IEEE Winter Conference on

Applications of Computer Vision (wacv), pp. 1–9, IEEE, 2016.

[74] J. Carreira and C. Sminchisescu, “Constrained parametric min-cuts for

automatic object segmentation,” in IEEE Conference on Computer Vi-

sion and Pattern Recognition, pp. 3241–3248, IEEE, 2010.

[75] F. Li, J. Carreira, and C. Sminchisescu, “Object recognition as ranking

holistic figure-ground hypotheses,” in IEEE Conference on Computer

Vision and Pattern Recognition, pp. 1712–1719, IEEE, 2010.

210

[76] I. Endres and D. Hoiem, “Category independent object proposals,” in

European Conference on Computer Vision, pp. 575–588, Springer, 2010.

[77] J. K. Tsotsos, “Analyzing vision at the complexity level,” Behavioral

and Brain Sciences, vol. 13, no. 03, pp. 423–445, 1990.

[78] F. S. Khan, J. van de Weijer, and M. Vanrell, “Modulating shape fea-

tures by color attention for object recognition,” International Journal of

Computer Vision, vol. 98, no. 1, pp. 49–64, 2012.

[79] S. Chikkerur, T. Serre, C. Tan, and T. Poggio, “What and where: A

bayesian inference theory of attention,” Vision Research, vol. 50, no. 22,

pp. 2233–2247, 2010.

[80] D. P. Reichert, P. Series, and A. J. Storkey, “A hierarchical generative

model of recurrent object-based attention in the visual cortex,” in Inter-

national Conference on Artificial Neural Networks, pp. 18–25, Springer,

2011.

[81] R. Salakhutdinov and G. E. Hinton, “Deep boltzmann machines,” in In-

ternational Conference on Artificial Intelligence and Statistics, pp. 448–

455, 2009.

[82] K. Fukushima, “A hierarchical neural network model for associative

memory,” Biological Cybernetics, vol. 50, no. 2, pp. 105–113, 1984.

[83] K. Fukushima, “A neural network model for selective attention in visual

pattern recognition,” Biological Cybernetics, vol. 55, no. 1, pp. 5–15,

1986.

211

[84] D. B. Walther and C. Koch, “Attention in hierarchical models of object

recognition,” Progress in Brain Research, vol. 165, pp. 57–78, 2007.

[85] A. L. Rothenstein and J. K. Tsotsos, “Attentional modulation and

selection–an integrated approach,” PloS one, vol. 9, no. 6, p. e99681,

2014.

[86] O. J. Avella Gonzalez and J. K. Tsotsos, “Short and long-term atten-

tional firing rates can be explained by st-neuron dynamics,” Frontiers in

neuroscience, vol. 12, p. 123, 2018.

[87] K. Fukushima, “Artificial vision by multi-layered neural networks:

Neocognitron and its advances,” IEEE Transactions on Neural Net-

works, vol. 37, pp. 103–119, 2013.

[88] C. Koch and S. Ullman, “Shifts in selective visual attention: towards

the underlying neural circuitry,” in Matters of intelligence, pp. 115–141,

Springer, 1987.

[89] Y. Tang, N. Srivastava, and R. R. Salakhutdinov, “Learning generative

models with visual attention,” in Advances in Neural Information Pro-

cessing Systems, pp. 1808–1816, 2014.

[90] C. H. Anderson and D. C. Van Essen, “Shifter circuits: a computational

strategy for dynamic aspects of visual processing,” Proceedings of the

National Academy of Sciences, vol. 84, no. 17, pp. 6297–6301, 1987.

[91] B. A. Olshausen, C. H. Anderson, and D. C. Van Essen, “A neurobiolog-

ical model of visual attention and invariant pattern recognition based on

212

dynamic routing of information,” The Journal of Neuroscience, vol. 13,

no. 11, pp. 4700–4719, 1993.

[92] M. Jaderberg, K. Simonyan, A. Zisserman, et al., “Spatial trans-

former networks,” in Advances in Neural Information Processing Sys-

tems, pp. 2017–2025, 2015.

[93] H. Larochelle and G. E. Hinton, “Learning to combine foveal glimpses

with a third-order boltzmann machine,” in Advances in Neural Informa-

tion Processing Systems, pp. 1243–1251, 2010.

[94] R. Memisevic and G. E. Hinton, “Learning to represent spatial transfor-

mations with factored higher-order boltzmann machines,” Neural Com-

putation, vol. 22, no. 6, pp. 1473–1492, 2010.

[95] Y. Zheng, R. S. Zemel, Y.-J. Zhang, and H. Larochelle, “A neural autore-

gressive approach to attention-based recognition,” International Journal

of Computer Vision, vol. 113, no. 1, pp. 67–79, 2014.

[96] H. Larochelle and I. Murray, “The neural autoregressive distribution

estimator,” in International Conference on Artificial Intelligence and

Statistics, pp. 29–37, 2011.

[97] M. Ranzato, “On learning where to look,” arXiv preprint

arXiv:1405.5488, 2014.

[98] V. Mnih, N. Heess, A. Graves, et al., “Recurrent models of visual atten-

tion,” in Advances in Neural Information Processing Systems, pp. 2204–

2212, 2014.

213

[99] J. Ba, V. Mnih, and K. Kavukcuoglu, “Multiple object recognition with

visual attention,” arXiv preprint arXiv:1412.7755, 2014.

[100] J. Zhao, M. Mathieu, R. Goroshin, and Y. Lecun, “Stacked what-where

auto-encoders,” arXiv preprint arXiv:1506.02351, 2015.

[101] E. A. DeYoe and D. C. Van Essen, “Concurrent processing streams in

monkey visual cortex,” Trends in Neurosciences, vol. 11, no. 5, pp. 219–

226, 1988.

[102] D. J. Kravitz, K. S. Saleem, C. I. Baker, L. G. Ungerleider, and

M. Mishkin, “The ventral visual pathway: an expanded neural frame-

work for the processing of object quality,” Trends in Cognitive Sciences,

vol. 17, no. 1, pp. 26–49, 2013.

[103] A. Andreopoulos and J. K. Tsotsos, “50 years of object recognition: Di-

rections forward,” Computer Vision and Image Understanding, vol. 117,

no. 8, pp. 827–891, 2013.

[104] A. L. S. Dickinson, Object categorization: computer and human vision

perspectives, ch. The evolution of object categorization and the challenge

of image abstraction, pp. 1–37. Cambridge University Press, 2009.

[105] R. Girshick, “Fast r-cnn,” in IEEE International Conference on Com-

puter Vision, December 2015.

[106] K. Lee and H. Choo, “A critical review of selective attention: an inter-

disciplinary perspective,” Artificial Intelligence Review, vol. 40, no. 1,

pp. 27–50, 2013.

214

[107] E. Kowler, “Eye movements: The past 25years,” Vision Research,

vol. 51, no. 13, pp. 1457–1483, 2011.

[108] M. Biparva and J. K. Tsotsos, “Stnet: selective tuning of convolutional

networks for object localization.,” in ICCV Workshops, pp. 2715–2723,

2017.

[109] C. Cao, X. Liu, Y. Yang, Y. Yu, J. Wang, Z. Wang, Y. Huang, L. Wang,

C. Huang, W. Xu, D. Ramanan, and T. S. Huang, “Look and think

twice: Capturing top-down visual attention with feedback convolutional

neural networks,” in IEEE International Conference on Computer Vi-

sion, pp. 2956–2964, December 2015.

[110] M. Oquab, L. Bottou, I. Laptev, and J. Sivic, “Is object localization for

free? - weakly-supervised learning with convolutional neural networks,”

in IEEE Conference on Computer Vision and Pattern Recognition, June

2015.

[111] D. Pathak, P. Krahenbuhl, and T. Darrell, “Constrained convolutional

neural networks for weakly supervised segmentation,” in IEEE Interna-

tional Conference on Computer Vision, pp. 1796–1804, 2015.

[112] G. Papandreou, L.-C. Chen, K. P. Murphy, and A. L. Yuille, “Weakly-

and semi-supervised learning of a deep convolutional network for seman-

tic image segmentation,” in IEEE International Conference on Com-

puter Vision, ICCV ’15, (Washington, DC, USA), pp. 1742–1750, IEEE

Computer Society, 2015.

215

[113] P. O. Pinheiro and R. Collobert, “From image-level to pixel-level labeling

with convolutional networks,” in IEEE Conference on Computer Vision

and Pattern Recognition, pp. 1713–1721, 2015.

[114] J. H. Reynolds and R. Desimone, “The role of neural mechanisms of

attention in solving the binding problem,” Neuron, vol. 24, no. 1, pp. 19–

29, 1999.

[115] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,

S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for

fast feature embedding,” in ACM International Conference on Multime-

dia, pp. 675–678, ACM, 2014.

[116] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Ima-

genet: A large-scale hierarchical image database,” in IEEE Conference

on Computer Vision and Pattern Recognition, pp. 248–255, IEEE, 2009.

[117] A. Mahendran and A. Vedaldi, “Understanding deep image representa-

tions by inverting them,” in IEEE Conference on Computer Vision and

Pattern Recognition, pp. 5188–5196, 2015.

[118] S. Adel Bargal, A. Zunino, D. Kim, J. Zhang, V. Murino, and S. Sclaroff,

“Excitation backprop for rnns,” in IEEE Conference on Computer Vi-

sion and Pattern Recognition, pp. 1440–1449, 2018.

[119] M. V. Bartsch, K. Loewe, C. Merkel, H.-J. Heinze, M. A. Schoenfeld,

J. K. Tsotsos, and J.-M. Hopf, “Attention to color sharpens neural pop-

216

ulation tuning via feedback processing in the human visual cortex hier-

archy,” Journal of Neuroscience, vol. 37, no. 43, pp. 10346–10357, 2017.

[120] I. Biederman, R. J. Mezzanotte, and J. C. Rabinowitz, “Scene percep-

tion: Detecting and judging objects undergoing relational violations,”

Cognitive psychology, vol. 14, no. 2, pp. 143–177, 1982.

[121] I. Biederman, On the semantics of a glance at a scene. 1981.

[122] A. Oliva and A. Torralba, “The role of context in object recognition,”

Trends in cognitive sciences, vol. 11, no. 12, pp. 520–527, 2007.

[123] E. Tulving, D. L. Schacter, et al., “Priming and human memory sys-

tems,” Science, vol. 247, no. 4940, pp. 301–306, 1990.

[124] G. S. Wig, S. T. Grafton, K. E. Demos, and W. M. Kelley, “Reductions

in neural activity underlie behavioral components of repetition priming,”

Nature neuroscience, vol. 8, no. 9, pp. 1228–1233, 2005.

[125] t. E. Palmer, “The effects of contextual scenes on the identification of

objects,” Memory & Cognition, vol. 3, no. 5, pp. 519–526, 1975.

[126] A. Hollingworth, “Does consistent scene context facilitate object per-

ception?,” Journal of Experimental Psychology: General, vol. 127, no. 4,

p. 398, 1998.

[127] C. Galleguillos and S. Belongie, “Context based object categorization:

A critical survey,” Computer vision and image understanding, vol. 114,

no. 6, pp. 712–722, 2010.

217

[128] S. K. Divvala, D. Hoiem, J. H. Hays, A. A. Efros, and M. Hebert, “An

empirical study of context in object detection,” in Computer Vision and

Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, pp. 1271–

1278, IEEE, 2009.

[129] A. Torralba, K. P. Murphy, W. T. Freeman, and M. A. Rubin, “Context-

based vision system for place and object recognition,” in null, p. 273,

IEEE, 2003.

[130] A. Torralba, “Contextual priming for object detection,” International

journal of computer vision, vol. 53, no. 2, pp. 169–191, 2003.

[131] A. Rabinovich, A. Vedaldi, C. Galleguillos, E. Wiewiora, and S. Belongie,

“Objects in context,” in Computer vision, 2007. ICCV 2007. IEEE 11th

international conference on, pp. 1–8, IEEE, 2007.

[132] J. Yao, S. Fidler, and R. Urtasun, “Describing the scene as a whole:

Joint object detection, scene classification and semantic segmentation,”

in Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Con-

ference on, pp. 702–709, IEEE, 2012.

[133] K. P. Murphy, A. Torralba, and W. T. Freeman, “Using the forest to

see the trees: A graphical model relating features, objects, and scenes,”

in Advances in neural information processing systems, pp. 1499–1506,

2004.

218

[134] A. Shrivastava and A. Gupta, “Contextual priming and feedback for

faster r-cnn,” in European Conference on Computer Vision, pp. 330–

348, Springer, 2016.

[135] A. W. Harley, K. G. Derpanis, and I. Kokkinos, “Segmentation-aware

convolutional networks using local attention masks,” in IEEE Interna-

tional Conference on Computer Vision, pp. 5038–5047, 2017.

[136] J. Carreira, P. Agrawal, K. Fragkiadaki, and J. Malik, “Human pose esti-

mation with iterative error feedback,” in Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pp. 4733–4742,

2016.

[137] T. M. Strat, “Employing contextual information in computer vision,”

DARPA93, pp. 217–229, 1993.

[138] M. I. Posner, M. J. Nissen, and W. C. Ogden, “Attended and unat-

tended processing modes: The role of set for spatial location,” Modes of

perceiving and processing information, vol. 137, p. 158, 1978.

[139] H. de Vries, F. Strub, J. Mary, H. Larochelle, O. Pietquin, and

A. Courville, “Modulating early visual processing by language,” arXiv

preprint arXiv:1707.00683, 2017.

[140] E. Perez, F. Strub, H. De Vries, V. Dumoulin, and A. Courville, “Film:

Visual reasoning with a general conditioning layer,” in AAAI Conference

on Artificial Intelligence, 2018.

219

[141] S. Antol, A. Agrawal, J. Lu, M. Mitchell, D. Batra, C. Lawrence Zitnick,

and D. Parikh, “Vqa: Visual question answering,” in Proceedings of

the IEEE International Conference on Computer Vision, pp. 2425–2433,

2015.

[142] J. Johnson, B. Hariharan, L. van der Maaten, L. Fei-Fei, C. L. Zit-

nick, and R. Girshick, “CLEVR: A diagnostic dataset for compo-

sitional language and elementary visual reasoning,” arXiv preprint

arXiv:1612.06890, 2016.

[143] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisser-

man, “The pascal visual object classes (voc) challenge,” International

Journal of Computer Vision, vol. 88, no. 2, pp. 303–338, 2010.

[144] H. Katti, M. V. Peelen, and S. Arun, “Object detection can be im-

proved using human-derived contextual expectations,” arXiv preprint

arXiv:1611.07218, 2016.

[145] J. Redmon and A. Farhadi, “YOLO9000: Better, Faster, Stronger,”

arXiv preprint arXiv:1612.08242, 2016.

[146] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for

semantic segmentation,” in IEEE Conference on Computer Vision and

Pattern Recognition, pp. 3431–3440, 2015.

[147] J. Zhang, I. Mitliagkas, and C. Ré, “YellowFin and the Art of Momentum

Tuning,” arXiv preprint arXiv:1706.03471, 2017.

220

[148] K. Simonyan and A. Zisserman, “Very deep convolutional networks for

large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[149] B. Hariharan, P. Arbeláez, L. Bourdev, S. Maji, and J. Malik, “Semantic

contours from inverse detectors,” in International Conference on Com-

puter Vision, 2015.

[150] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid scene parsing

network,” arXiv preprint arXiv:1612.01105, 2016.

[151] J. Dai, K. He, and J. Sun, “Boxsup: Exploiting bounding boxes to super-

vise convolutional networks for semantic segmentation,” in Proceedings

of the IEEE International Conference on Computer Vision, pp. 1635–

1643, 2015.

[152] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,

“Deeplab: Semantic image segmentation with deep convolutional nets,

atrous convolution, and fully connected crfs,” IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol. 40, no. 4, pp. 834–848,

2018.

[153] M. Everingham, S. A. Eslami, L. Van Gool, C. K. Williams, J. Winn,

and A. Zisserman, “The pascal visual object classes challenge: A ret-

rospective,” International Journal of Computer Vision, vol. 111, no. 1,

pp. 98–136, 2015.

[154] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Be-

nenson, U. Franke, S. Roth, and B. Schiele, “The cityscapes dataset for

221

semantic urban scene understanding,” in IEEE Conference on Computer

Vision and Pattern Recognition, pp. 3213–3223, 2016.

[155] H. Noh, S. Hong, and B. Han, “Learning deconvolution network for

semantic segmentation,” in IEEE International Conference on Computer

Vision, pp. 1520–1528, 2015.

[156] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,

“Semantic image segmentation with deep convolutional nets and fully

connected crfs,” in International Conference on Learning Representa-

tions, 2015.

[157] Y. Wang, J. Liu, Y. Li, J. Yan, and H. Lu, “Objectness-aware seman-

tic segmentation,” in ACM International Conference on Multimedia,

pp. 307–311, ACM, 2016.

[158] L.-C. Chen, Y. Yang, J. Wang, W. Xu, and A. L. Yuille, “Attention to

scale: Scale-aware semantic image segmentation,” in Ieee Conference on

Computer Vision and Pattern Recognition, pp. 3640–3649, 2016.

[159] M. Everingham, S. M. A. Eslami, L. Van Gool, C. K. I. Williams,

J. Winn, and A. Zisserman, “The pascal visual object classes challenge:

a retrospective,” International Journal of Computer Vision, vol. 111,

pp. 98–136, jun 2014.

[160] G. J. Brostow, J. Fauqueur, and R. Cipolla, “Semantic object classes

in video: A high-definition ground truth database,” Pattern Recognition

Letters, vol. 30, no. 2, pp. 88–97, 2009.

222

[161] J. Wang and A. L. Yuille, “Semantic part segmentation using composi-

tional model combining shape and appearance,” in IEEE Conference on

Computer Vision and Pattern Recognition, pp. 1788–1797, 2015.

[162] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,

A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in

pytorch,” in NIPS 2017 Autodiff Workshop: The Future of Gradient-

based Machine Learning Software and Techniques, 2017.

[163] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,

“Semantic image segmentation with deep convolutional nets and fully

connected crfs,” arXiv preprint arXiv:1412.7062v4, 2016.

[164] A. Kundu, V. Vineet, and V. Koltun, “Feature space optimization for

semantic video segmentation,” in IEEE Conference on Computer Vision

and Pattern Recognition, pp. 3168–3175, 2016.

[165] V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet: A deep con-

volutional encoder-decoder architecture for image segmentation,” IEEE

transactions on pattern analysis and machine intelligence, vol. 39, no. 12,

pp. 2481–2495, 2017.

[166] P. Sturgess, K. Alahari, L. Ladicky, and P. H. Torr, “Combining appear-

ance and structure from motion features for road scene understanding,”

in British Machine Vision Conference, BMVA, 2009.

223

[167] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing

deep neural networks with pruning, trained quantization and huffman

coding,” Internation Conference on Learning Representation, 2016.

[168] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning struc-

tured sparsity in deep neural networks,” in Advances in Neural Infor-

mation Processing Systems 29 (D. D. Lee, M. Sugiyama, U. V. Luxburg,

I. Guyon, and R. Garnett, eds.), pp. 2074–2082, Curran Associates, Inc.,

2016.

[169] H. Zhou, J. M. Alvarez, and F. Porikli, “Less is more: Towards com-

pact cnns,” in European Conference on Computer Vision, pp. 662–677,

Springer, 2016.

[170] M. Denil, B. Shakibi, L. Dinh, N. De Freitas, et al., “Predicting param-

eters in deep learning,” in Advances in Neural Information Processing

Systems, pp. 2148–2156, 2013.

[171] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing

deep neural networks with pruning, trained quantization and huffman

coding,” International Conference on Learning Representations, 2016.

[172] W. Chen, J. Wilson, S. Tyree, K. Weinberger, and Y. Chen, “Compress-

ing neural networks with the hashing trick,” in International Conference

on Machine Learning, pp. 2285–2294, 2015.

224

[173] E. Park, J. Ahn, and S. Yoo, “Weighted-entropy-based quantization for

deep neural networks,” in Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, pp. 5456–5464, 2017.

[174] E. L. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fergus, “Ex-

ploiting linear structure within convolutional networks for efficient evalu-

ation,” in Advances in neural information processing systems, pp. 1269–

1277, 2014.

[175] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and con-

nections for efficient neural network,” in Advances in neural information

processing systems, pp. 1135–1143, 2015.

[176] Y. Guo, A. Yao, and Y. Chen, “Dynamic network surgery for efficient

dnns,” in Advances In Neural Information Processing Systems, pp. 1379–

1387, 2016.

[177] X. Dong, S. Chen, and S. Pan, “Learning to prune deep neural networks

via layer-wise optimal brain surgeon,” in Advances in Neural Information

Processing Systems, pp. 4857–4867, 2017.

[178] J.-H. Luo, J. Wu, and W. Lin, “Thinet: A filter level pruning method

for deep neural network compression,” in Proceedings of the IEEE inter-

national conference on computer vision, pp. 5058–5066, 2017.

[179] Y. LeCun, J. S. Denker, and S. A. Solla, “Optimal brain damage,” in

Advances in neural information processing systems, pp. 598–605, 1990.

225

[180] B. Hassibi and D. G. Stork, “Second order derivatives for network prun-

ing: Optimal brain surgeon,” in Advances in neural information process-

ing systems, pp. 164–171, 1993.

[181] B. Liu, M. Wang, H. Foroosh, M. Tappen, and M. Pensky, “Sparse

convolutional neural networks,” in Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pp. 806–814, 2015.

[182] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning structured

sparsity in deep neural networks,” in Advances in neural information

processing systems, pp. 2074–2082, 2016.

[183] R. Reed, “Pruning algorithms-a survey,” IEEE transactions on Neural

Networks, vol. 4, no. 5, pp. 740–747, 1993.

[184] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from

tiny images,” tech. rep., Citeseer, 2009.

[185] S. Dodge and L. Karam, “Can the early human visual system compete

with deep neural networks?,” in Proceedings of the IEEE International

Conference on Computer Vision, pp. 2798–2804, 2017.

[186] A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial examples in the

physical world,” arXiv preprint arXiv:1607.02533, 2016.

[187] J. Hupé, A. James, B. Payne, S. Lomber, P. Girard, and J. Bullier, “Cor-

tical feedback improves discrimination between figure and background

by v1, v2 and v3 neurons,” Nature, vol. 394, no. 6695, p. 784, 1998.

226

[188] J. K. Tsotsos, A. J. Rodŕıguez-Sánchez, A. L. Rothenstein, and

E. Simine, “The different stages of visual recognition need different at-

tentional binding strategies,” Brain research, vol. 1225, pp. 119–132,

2008.

[189] D. Varga, A. Csiszárik, and Z. Zombori, “Gradient regulariza-

tion improves accuracy of discriminative models,” arXiv preprint

arXiv:1712.09936, 2017.

[190] X. Sun, X. Ren, S. Ma, and H. Wang, “meprop: Sparsified back prop-

agation for accelerated deep learning with reduced overfitting,” arXiv

preprint arXiv:1706.06197, 2017.

[191] D. Alistarh, T. Hoefler, M. Johansson, N. Konstantinov, S. Khirirat, and

C. Renggli, “The convergence of sparsified gradient methods,” in Ad-

vances in Neural Information Processing Systems, pp. 5975–5985, 2018.

227

Appendix A

Supplementary Materials

A.1 Implementation Details of STNet

In this section, we provide the implementation details of STNet for the three

Convolutional Neural Network (ConvNet) architectures: AlexNet, VGGNet,

and GoogleNet. We discuss the realization of the TD selective process for

different types of layers. We discuss the experimental results in Sec. A.1.3.

A.1.1 STNet Implementation for Different Types of Lay-

ers

We provide details on the implementation of STNet for various types of layers

encountered in the three ConvNet architectures.

Max Pooling Layer: The Max Pooling layer could be regarded as a BU

Winner-Take-All (WTA) computation where the maximum node activity is

selected. Since the gating flow of the BU information is defined in a hard

228

manner, it would be against the inherent nature of the learned representation

to select other nodes but the maximum one in the TD processing stream.

Therefore, we decide to stick to the the maximum node selection regime and

propagate the top gating node activity to gating node correspondence of the

maximum node within it’s receptive field (RF).

Average Pooling Layer: This type is only encountered in GoogleNet

where the convolutional lower part of the network meets the fully-connected

(FC) upper part. In other words, the last spatially-ordered hidden layer of

the network is squeezed into the hidden vector of the first FC layer using an

average pooling layer. We experimentally evaluated what would be the best

way of treating the average pooling acting as the link between the lower body

and upper body of the network. We decided to choose WTA as the mechanism

to select the gating node at the layer below which the top gating node activity

will be propagated. It should be noted that in both AlexNet and VGGNet, we

defined the concept of the bridge layer at which the lower convolutional body

is connected to the upper FC body of the network. However, in GoogleNet, the

average pooling layer instead of a FC layer is utilized to connect the lower to

the upper. Therefore, GoogleNet does not benefit from the additional level of

selection specifically defined for the bridge layer. We experimentally observed

that the average pooling layer in GoogleNet is very sensitive to changes in the

selection process of the TD processing stream.

ReLU Layer: Since ReLU layers only cut off all the negative activities

of the BU processing stream, the TD processing stream simply bypasses the

layer and copies the gating node activities of the top layer to the layer below.

229

Convolutional/Fully-connected Layer: These two types are very much

detailed in the main paper. Three stages of the attentive selection process are

defined to deal with these two layers. TD processing is implicitly applied to the

parts of the visual representation where feature transformation is parametrized

such as convolutional layers. It is noteworthy to indicate that in GoogleNet,

1x1 convolutional layers are very dominant throughout the visual hierarchy.

Based on the results obtained in the cross-validation stage, we decided to treat

such layers the same as we do the FC layers. The sole discrepancy is that at

the 2nd stage of the attention selection, all the winner nodes marked by the 1st

stage are selected instead of utilizing the SI selection mode in the FC layers.

This implies that despite 1x1 convolutional layers do not strive for spatial

correlation encoding among their receptive fields, maximal selection of of the

nodes in their flat receptive fields provide a significantly better localization

result.

Local Response Normalization (LRN) Layer: This layer simply nor-

malize the information flow of the BU processing from the layer below to the

top layer over some RF. Therefore, it is straightforward to skip LRN layers in

the TD processing by transferring the top gating node activities to the layer

below.

A.1.2 Generation of Class Hypothesis Maps

We provide details on the procedure proposed to create Class Hypothesis (CH)

maps. Following a similar experimental setup to the localization task, the

attention map is extracted from a gating layer. Pixel values in the attention

230

map happen to be very sparsely non-zero. We create the CH map with an

equal number of pixels to the attention map filled with zero values. Then, we

propose an updating procedure that is iteratively applied to all the non-zero

pixels of the attention map as follows. On the CH map, we increment the

values of all the pixels falling within the square window centered at the pixel

corresponding to a non-zero pixel on the attention map. The size of the window

is set to the accumulated RF size of the particular layer the attention map is

extracted from. Once all the non-zero pixels on the attention map are visited,

the CH map is filtered using a smoothing Gaussian kernel with a standard

deviation σ = 6. Finally, the CH map is visualized as a heat map with the

red color representing the maximum value and blue the minimum. In what

follows, we provide further details on the modified configurations of STNet

for two CH visualization experiments: 1- Context Interference, 2- Correlated

Accompanying Objects.

Context Interference: In this experiment, we attempt to highlight the

role of the context inference in the localization performance of the TD process-

ing according to the learned representation. The second stage of the selection

process in STNet is proposed to tackle this level of contextual noise. Therefore,

to show it’s efficiency to address the problem, we deactivated the second stage

throughout the TD structure. Furthermore, the first stage on the FC layers

are modified to implement the WTA mechanism. Consequently, at each FC

layer in this regime, there is only one gating node active and the rest remain

inactive. This is seen to emphasize the role of the second stage in dealing with

the context inference problem.

231

Correlated Accompanying Objects: We keep the modified version of

the first stage for FC layers in this experimental setup, while the second stage

on the convolutional layers are taken back into place. The goal is to show that

the most confident high-level node at each FC layer will end up localizing a

correlated object very frequently accompanying the ground truth category.

232

A.1.3 Experimental Results

In this section, we provide the high resolution qualitative results of successful

bounding box predictions, unsuccessful bounding box predictions, CH visual-

ization using the original STNet, CH visualization for the Context Inference

experiment, and CH visualization for the Correlated Accompanying Objects

experiment in Fig. A.1, A.2, A.3, A.4, and A.5 respectively. Following a nam-

ing convention, ST-VGGNet, for instance, is referred to as STNet with the

utilization of VGGNet in the BU processing stream.

233

Figure A.1: Illustration of STNet localization performance for both VGGNet
and GoogleNet. The top, middle, and bottom row of each section contains
images demonstrating the ground truth bounding boxes, bounding box pre-
dictions of ST-VGGNet, and ST-GoogleNet respectively.

234

Figure A.2: Unsuccessful localization cases based on STNet bounding box
predictions are demonstrated. Multi-Instance and Correlated Accompanying
Object scenarios are the two main sources of STNet unsuccessful localization.
Each section contains image rows for ground truth, ST-VGGNet and ST-
GoogleNet bounding boxes from top to bottom.

235

Figure A.3: Class Hypothesis Visualization using STNet. In each section, the
top row contains RGB images depicting ground truth bounding boxes, and
the middle and bottom row contains the CH maps from ST-VGGNet and
ST-GoogleNet respectively.

236

Figure A.4: The effect of the context inference imposed by the learned rep-
resentation is illustrated in the CH maps given in the bottom rows of each
section. The middle row contains the CH maps from the original proposal of
ST-VGGNet. The top row provides RGB images with the color-coded bound-
ing boxes. Blue boxes are taken from the ground truth. Green and red boxes
represent original and partially-deactivated ST-VGGNet predictions.

237

Figure A.5: Correlated accompanying objects prioritize localization of regions
outside the ground truth according to the learned representation. In each
section, the top row contains RGB images with the ground truth boxes (blue).
The red boxes are proposed by the modified ST-VGGNet.

238

Figure A.6: The location of the cat from Fig. 4.1 in Chapter 4

A.2 Additional Priming Examples

Figure A.6 reveals the location of the cat in the image originally shown in Fig.

4.1.

We further provide some additional results of the proposed method.

Figure A.7 contains some additional results with a primed vs unprimed

object detection network (in this case, [5]) in images of varying levels of noise.

In many cases, the primed network (blue boxes) remains robust to high levels

of noise (lower images in each block) and lowering the confidence threshold

does not introduce false detections which are introduced by doing so for the

unprimed network.

239

Figure A.8 contains some additional images of priming the DeepLab [4]

segmentation framework. The figure shows groups of four images, with the

input image, ground-truth, result of unprimed network and result of primed

network.

240

Figure A.7: Additional effects of priming with the SSD [5] object detection
network. Each 4x4 block of images shows the detections of the unprimed-
network in red and of the primed network in blue. From left to right, the
detection threshold is decreased, allowing less confident score to appear, while
also surfacing false alarms. From top to bottom, the level of noise increases. A
primed network detects objects in noisy image more robustly than an unprimed
one.

241

Figure A.8: Additional effects of Priming with the deeplab[4] segmentation
network. Each four columns shows from left to right: input image, ground
truth segmentation of a specific class, result of unprimed network, result of
primed network using proposed method.

242

	Abstract
	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Background
	Introduction
	Object Recognition with Convolutional Networks
	The Basic Building Blocks

	Visual Attention in Deep Learning for Object Recognition
	Early-Localization: Hypothesizing for Objectness
	Late-Localization: Top-Down Attention

	Top-Down Selection for Localization
	Abstract
	Introduction
	Related Work
	Model
	STNet
	Structure of the Top-Down Processing
	Stages of Attentive Selection

	Experimental Results
	Implementation Details
	Weakly Supervised Localization
	Class Hypothesis Visualization

	Conclusion

	Priming in Neural Network
	Abstract
	Introduction
	Related Work
	Approach
	Training

	Experimental Results
	Object Detection
	Cue Aware Training

	Conclusion

	Object Segmentation Using Selective Attention
	Abstract
	Introduction
	Related Work
	Selective Segmentation Network
	Method Overview
	Bottom-Up Feature Encoding
	Loose Spatial Detection
	Attention Initialization
	Top-Down Selection
	Segmentation Prediction
	LSD Pre-training
	Multi-loss Training

	Experimental Results
	Semantic Segmentation
	Ablation Studies
	Noise Interference Robustness

	Conclusion

	Attention for Compact Neural Representation
	Abstract
	Introduction
	Related Work
	Attention Drives Weight Pruning
	Method Overview
	Notations
	Top-Down Processing
	Kernel Importance Maps
	Attentive Pruning
	Retraining Strategy

	Experimental Results
	The MNIST Dataset
	The CIFAR Dataset

	Conclusion

	Contextual Interference Reduction
	Abstract
	Introduction
	Selective Attention for Network Fine-Tuning
	Iterative Feedforward Pass

	Experimental Results
	Implementation Details
	Wide MNIST Dataset

	Conclusion

	Conclusions and Future Directions
	Summary of Contributions
	Future Directions

	Bibliography
	Appendices
	Supplementary Materials
	Implementation Details of STNet
	STNet Implementation for Different Types of Layers
	Generation of Class Hypothesis Maps
	Experimental Results

	Additional Priming Examples

