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Abstract 

 Type 2 diabetes mellitus (T2DM) prevalence continues to increase worldwide.  Changes in β-cell 

function and mechanisms behind the aberrant insulin secretion found in T2DM patients are still poorly 

understood. Cholesterol is a vital molecule to all cellular systems, being an important factor regulating 

membrane fluidity and a number of signalling pathways. In this study, a series of experiments are 

conducted on the mouse insulinoma cell line, MIN6, limiting exogenous cholesterol through use of lipid 

free serum, as well as limiting endogenous cholesterol sources through the use of 3-hydroxy-3-methyl-

glutaryl-CoA reductase and 7-dehydrocholesteral reductase inhibitors. The results show a marked 

decrease in both cholesterol content as well glucose stimulated insulin secretion in the drug-treated 

groups. A series of promoter assays, RT-PCR experiments and western blot analysis determined 

disruption in site-directed surface expression of important channel proteins involved in insulin secretion, 

and potentially a change in insulin degradation enzyme activity. 
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1.0 Introduction 

 

1.1 Diabetes Mellitus 
 

Diabetes mellitus is a group of metabolic diseases that has shown a steady, and alarming, 

increase in prevalence over the past few years. In 2000 there was an estimated 171 million incidences of 

diabetes worldwide, and in 2011, the number almost doubled to 336 million cases (International 

Diabetes Federation, 2012; Diabetes Care, 2004). This growing pandemic has been closely linked to 

changes in lifestyle and the trend of increasing obesity in more developed countries. In North America 

alone, it is estimated that a child born in 2000 stands a one in three chance of being diagnosed with 

diabetes at some point within his or her lifespan (Canadian Diabetes Association, 2012). Diabetes 

mellitus comes in varying degrees of severity but is always characterized by chronic hyperglycemia and 

some sort of dysfunction in the pancreas. This disease comes in several forms, the two most common 

being type 1 (T1DM) and type 2 diabetes mellitus (T2DM), with gestational (GDM) being a fairly rare 

third type of diabetes mellitus, and finally monogenic/miscellaneous diabetes being the last and very 

uncommon ‘form’ of diabetes mellitus. As previously mentioned, the pathogenesis of diabetes mellitus 

is thought to revolve around the pancreas, specifically the islets found within the organ. The islets are 

comprised of a number of cells, but the focus of study has always been on the functionality of the -cell, 

which is largely responsible for systemic fuel homeostasis (Ismail-Beigi, 2012; Ashcroft and Rorsman, 

2012; Seino et al., 2011). As seen in figure 1, -cells produce and secrete a hormone called insulin into 

the vascular system, which then helps to regulate blood-glucose levels. Diabetes arises at some point on 

this physiological control system, be it at the start (within the -cells and pancreas), during delivery 

(within the vascular system), or in the uptake of the hormone (peripheral tissue resistance).  
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The current criteria for diagnosis revolve around the measurement of glycated hemoglobin in a 

patient’s blood. Elevated glycated hemoglobin, or HbA1c for short (typically termed A1C), is symptomatic 

of a diabetic condition. A1C values greater than 6.5% in the blood constitutes a patient with diabetes, 

and how chronically elevated it is will determine how aggressive a treatment regimen will be. The four 

types of diabetes mellitus will now be more thoroughly described. 
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Figure 1. Insulin production and secretion from pancreatic β-cells. A simplified image showing the pancreas as 

well as organization of the β-cell containing islets of Langerhans. The islets are organized in small clusters, highly 

vascularized and distributed throughout the pancreas. As seen in the above image, β-cells secret insulin directly 

into blood vessels which then reach peripheral organs and tissues, such as the depicted muscle fiber. In healthy 

pancreases, this is done in response to elevated glucose in the circulatory system 

Reprinted from National Institutes of Health, by T. Winslow, L. Kibuik, 2014, Retrieved from 

http://stemcells.nih.gov/info/scireport/pages/chapter7.aspx. ©2001. Reprinted with permission. 

  

http://stemcells.nih.gov/info/scireport/pages/chapter7.aspx
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1.1.1 Type 1 diabetes mellitus 
 

T1DM is the result of an autoimmune disorder that targets pancreatic -cells leading to 

insufficient insulin synthesis and severely impaired glucose uptake by peripheral tissues (Rother, 2007). 

This form of diabetes mellitus accounts for approximately 5-10% of all cases of diabetes and is often 

developed during early childhood until about mid-adulthood. The high prevalence in pre-adult patients 

was the reason why T1DM was originally termed ‘juvenile diabetes’ (Ashcroft and Rorsman, 2012). As a 

result of the lack of insulin synthesis occurring in T1DM patients, the most common mode of treatment 

was by insulin injection, inhalation, or with the use of insulin pumps. Current technology has changed 

T1DM from being categorized as a fatal disease, to one where the patient can live a fairly normal life, as 

long as glucose levels were managed throughout the day with controlled administrations of insulin. 

Constant monitoring of A1C levels as well as diet and lifestyle changes, however, are still required to 

maintain a patient’s health.   

 

1.1.2 Type 2 diabetes mellitus 
 

T2DM conversely, accounts for the vast majority of all diabetes cases, being exhibited in 

approximately 90% of all persons affected by this disease. It develops between early and late adulthood, 

and a large number of factors determine its onset. The cause of this form of diabetes mellitus is not due 

to a body’s immune response to its own -cells, but instead largely because of insulin resistance in 

peripheral tissues (Rother, 2007). Its higher incidence in adult patients as well as the presence of 

seemingly normal -cell activity, gave this type of diabetes the names ‘adult-onset diabetes’ or ‘non-

insulin-dependent diabetes’. However, since those names were first coined, multiple advancements 

have been made that slightly disagree with them. Current research has found that T2DM often 
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manifests years before diagnosis, and there is now an emerging consensus that type 2 diabetes is a 

multifactorial disease, involving environmental, lifestyle, and perinatal risk factors, as well as genetic 

predisposition (DeFronzo and Abdul-Ghani, 2011; Portha et al., 2011; Rother, 2007). Additionally, there 

has been accumulating evidence that impaired insulin release may in fact play a large role in this 

disease’s development, suggesting the possibility that -cell dysfunction may precede the disease as 

opposed to being a result of it (Ashcroft and Rorsman, 2012). However, how the interaction between 

impaired -cell activity and peripheral insulin resistance works, is still not fully understood. Additionally, 

the way we perceive the disease has also evolved, especially considering the fact that within recent 

years, many genes have been identified that significantly increase the risk of T2DM development. It has 

come to the point that many can regard T2DM as a “polygenic” type of diabetes with environmental 

factors that also play a significant role. Currently, there are more than forty genes identified that show 

some level of correlation with T2DM onset and susceptibility, the majority of which are important to 

insulin synthesis, secretion, and -cell function (Bonne-fond et al., 2010).  

Another significant advancement in the T2DM research front has been the growing trend of 

current treatment regimens becoming progressively specific for each unique case, as individual patient 

responses can vary greatly depending on the cause of their T2DM onset. Treatments range from a wide 

array of orally ingested drugs, depending on patient conditions (i.e. statins, metformin, sulphonylurea 

drugs, beta-blockers, aspirin therapy etc.), medical nutrition therapy (controlled diet with restricted 

caloric and fat intake as well as carbohydrate consumption), increased physical activity and exercise, and 

in some extraneous cases, even bariatric surgery (Ashcroft and Rorsman, 2012; Diabetes Care, 2010; 

Buchwald et al., 2009). Although this thesis will not focus on T2DM therapy, the aforementioned 

treatments will be explained in further detail in section 1.2.   
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1.1.3 Gestational diabetes mellitus 
 

Another, and fairly uncommon, type of diabetes is gestational diabetes mellitus (GDM). This 

type of diabetes mellitus develops when hyperglycemia occurs in women who are pregnant as a result 

of hormonal changes leading to decreased insulin sensitivity. Often the symptoms of elevated blood 

sugar levels subside upon giving birth, but women diagnosed with GDM remain at increased risk of 

developing T2DM within the following five to ten years (Portha et al., 2011). Thus, patients with GDM 

are closely monitored for several months after giving birth. The treatment approach to GDM is fairly 

standard and consists of blood glucose control and a combination of exercise and diet restrictions to hit 

target A1C levels. The target A1C for most pregnant women is about 6.0%. However, despite 

successfully controlling GDM, multiple birth giving issues may still arise. The baby may often be much 

larger than normal and might require a caesarean as opposed to traditional birthing methods. 

Additionally, the newborn baby often suffers from hypoglycemia and hyperinsulinemia, so these 

conditions must be taken into account during GDM treatment and birthing (Canadian Diabetes 

Association, 2012). There have been some correlational studies linking GDM and a positive family 

history, as well as incidences of GDM in families with multiple T2DM cases. However, why and how GDM 

develops is still largely unpredictable and not well understood.  

 

1.1.4 Monogenic and miscellaneous diabetes 
 

There remain a few other types of diabetes mellitus, but these are very uncommon and are 

often associated with genetic defects, other diseases and infections. Thus they are typically grouped into 

a ‘fourth’ type of diabetes mellitus (Public Health Agency of Canada, 2011). A large number of 

monogenic diabetes types have already been identified through genetic studies, with over forty genes 
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catalogued to date (Smith et al., 2010; Stoy et al., 2010; Temple and Shield, 2010; Flanagan et al., 2009; 

Osbak et al., 2009). Some monogenic forms of diabetes mellitus have actually been previously 

misdiagnosed as T2DM or T1DM, for example maturity-onset diabetes of the young (MODY) and 

neonatal diabetes (ND). MODY is most commonly caused by mutations in the HNF1A gene or the GCK 

gene, which code for a transcription factor homeobox and the enzyme glucokinase, respectively. It has 

been erroneously diagnosed as T1DM in the past, and it was not until more recent research revealed 

that the causes were quite different. ND, on the other hand, is characterized by gain of function 

mutations in genes coding for the ATP-sensitive potassium- channel, which greatly reduced 

depolarization probability of -cells. In the past, it was also often misdiagnosed, but as T1DM. With 

advancements in research and technology as well as a greater understanding of diabetes mellitus, it was 

later distinguished from T1DM since no anti--cell antibodies were found in patients with ND. Some 

viruses also have the ability to cause diabetes through auto-reactivity. The coxsackie virus is one 

example, and infection leads to insulin-dependent diabetes mellitus (Horwitz et al., 1998). After entry 

and inflammation of wounds, the coxsackie virus can cause an auto-immune response to islet cells 

within the patient’s body. These are just some examples of monogenic and miscellaneous diabetes, and 

since the main focus of my research is specifically T2DM and how cholesterol acts in the development of 

T2DM symptoms, the rest of my thesis will focus on that.  
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1.2 Current Research on T2DM 
 

Within the last two decades, a great deal of progress has been made in elucidating the nature of 

this growing pandemic and the contributing factors involved in its development (Andreassi et al., 2011; 

Ashcroft and Rorsman, 2012). T2DM has become an extremely well-researched pathology, not only 

because of its high prevalence, but also because T2DM has been linked to a variety of other diseases 

such as cardiovascular and periodontal disease, as well as some cancers (Anderson et al., 2012; Castillo 

et al., 2012; Lakschevitz et al., 2012; Narne et al., 2012). Even with this recent flurry of research, there 

remains much about T2DM etiology that is disagreed upon or unclear. Before addressing these however, 

some well-established characteristics about T2DM, which are generally accepted as fact in the scientific 

community will first be described.  

First, it is known that insulin resistance is a core defect in T2DM (Ashcroft and Rorsman, 2012; 

Bajaj and DeFronzo, 2003; DeFronzo, 2009), as well as that a decrease in -cell mass can often be seen 

in the diabetic pancreas (Butler et al., 2003; Rahier et al., 2008). Additionally, it has been found that 

lifestyle as well as a positive family history greatly influences the probability of developing T2DM 

(Bergman, 2005; Kayshap et al., 2003). But how exactly do these factors influence T2DM onset, how 

significant of a role do they play, and how best to treat T2DM patients? These have been the questions 

that have created much debate between great researchers throughout the world and will be explored in 

this section.  

The questions being debated in the scientific community have fuelled current research on T2DM 

and have afforded us with a clearer and more accurate understanding of the disease and its etiology. 

Some findings have even greatly changed our perception of T2DM, proving previous definitions of the 

disease insufficient. For example, it was recently believed that T2DM’s symptoms were attributed solely 
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to peripheral tissue resistance to insulin, which in turn caused -cells to become exhausted from over-

production and become dysfunctional over time. This would suggest that -cells mass and function 

change as a result of T2DM, but do not play a significant role in its development. However, now there is 

growing evidence that it may be in fact impaired -cell function and reduced -cell mass that precedes 

and contributes to T2DM onset (Ashcroft and Rorsman, 2012; Walker et al., 2011). But which factor is 

more important in T2DM etiology and why? Like previous findings, this remains in heated debate.  

 

1.2.1 Pancreatic islets: -cell mass and function  
 

The pancreas is integral to glycemic control in the body, as it is not only the site of insulin 

production and secretion, but also where glucagon is stored and secreted. Islets are the functional units 

in the pancreas, and they are scattered throughout the organ and play a central role in fuel homeostasis. 

As previously mentioned, -cells are the insulin producing cells found in the pancreatic islets. Insulin 

plays an important role in reducing blood-glucose levels by signalling peripheral tissues to increase 

uptake of glucose from the blood. Glucagon, however, possess a reciprocal role, where it acts to 

stimulate a number of catabolic processes and mobilize glucose and free fatty acids, ultimately 

increasing blood-glucose levels. Glucagon is synthesized and secreted from the -cells of pancreatic 

islets. When speaking of T2DM, -cells are often referred to exclusively, and the role of -cells often 

overlooked or ignored since it is thought that -cell activity is regulated by insulin (Ismail-Beigi F, 2012).  

In patients with T2DM, it is consistently found that they possess a significant, but varying reduction, in -

cell mass. Up to a 60% reduction has been found in some T2DM patients when comparing persons of 

similar weight and age that have T2DM or are healthy. Additionally, it was not decreased -cell 

cytoplasmic volume that was found in diabetic patients, but instead a decreased number of total cells, 
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hinting at the possibility of uncontrolled cell apoptosis being a contributing factor to T2DM development 

(Butler et al., 2003). However, it remains to be determined whether the decrease in number of -cells 

occurred before T2DM onset and contributed to its development, or was the result of the disease. To 

shed a little light on the subject, a different group led by Bjoern Menge (2008) carried out a series of 

studies on patients that had undergone hemi-pancreatectomies. This group was researching the 

regenerative capabilities of human pancreases versus rodent pancreases, and if regeneration played any 

part in recovering a non-diabetic phenotype after partial pancreatectomy. The findings from their 

research showed that of the seven healthy donors to have undergone a hemi-pancreatectomy, six 

developed some degree of impaired fasting glucose (IFG). Thus even with half of the pancreas gone, 

progressed T2DM was not a resultant disease despite IFG occurring. However, it should be noted that 

the aim of the study was to assess regeneration of -cells, so no longitudinal studies were carried out to 

see whether these patients eventually developed T2DM as a result of losing ~50% of their pancreases. 

Menge suggested that a steady deterioration of glycemic control would likely occur as a result of 

patients undergoing hemi-pancreatectomies in the long-term. So it seems that there still exists the 

possibility that reduced -cell mass may indeed cause IFG, and perhaps lead to T2DM. But as previously 

stated, this is not definitive and hardly conclusive.  

There have been multiple other groups that have conducted studies to find the relationship 

between -cell mass and T2DM development. Rahier et al. (2008) has found much only slight 

decrements in patients with T2DM, whereas Del Guerra et al. (2005) have found a difference of ~10% in 

-cell mass between diabetic and non-diabetic patients. Although there is much disagreement in the 

importance of -cell mass in T2DM etiology, one consistent finding is that of the cell’s function being 

severely impaired in all T2DM patients, most notably glucose stimulated insulin secretion (Ashcroft and 

Rorsman, 2012; Walker et al., 2011; DeFronzo and Abdul-Ghani, 2011). One group has found that the 

decreased functionality of the -cell stems from a number of genetic alterations, from the glucose 
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transporter 2 (Glut-2) to glucokinase (GK) (Del Guerra et al., 2005). The findings that show insulin 

secretion from T2DM islet cells is severely impaired, even when accounting for decreased -cell mass, 

strongly suggest that function may potentially hold a more significant role in T2DM etiology than mass. 

This is also mirrored in my own results, showing that under restricted cholesterol conditions attempting 

to mimic T2DM, glucose stimulated insulin secretion (GSIS) is significantly reduced.  

 

1.2.2 T2DM Risk Factors 
 

As previously mentioned, -cell mass and function are not the only factors involved in T2DM 

onset and susceptibility. Important genes involved with the GSIS response (such as Glut-2 and GK) have 

already been implicated in the diminishing of T2DM patients’ ability to carry out normal glycemic 

control. There have also been a multitude of meta-studies that link several polymorphisms in high risk 

loci with the development of T2DM, genes important in insulin sensitivity, secretion, and even proinsulin 

conversion to insulin (Kirchhooff et al., 2008; Staiger et al., 2007). In addition to that, it has been found 

that positive family history plays a significant role in T2DM onset, shown in the dramatic experiments 

conducted by Kashyap et al. (2003) where it was demonstrated that persons with first-degree relatives 

possessing T2DM displayed significantly decreased insulin secretion when challenged with infusion of 

triglyceride emulsions. Correlational studies linking fetal birth-weight and T2DM risk have also been 

carried out, with low birth weight showing increased incidence of T2DM development when compared 

to high birth weight (Harder et al., 2007). Thus, it becomes very apparent that a multitude of factors can 

affect the T2DM etiology; however the strongest and most reliable predictor of T2DM remains obesity.  
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1.2.3 Obesity and Diabetes Mellitus 
 

There are some who believe that obesity is the single most relevant risk factor to the 

development of T2DM. This assumption may not be too far off, as somewhere between 60% to 90% of 

all known T2DM cases appear to be related to obesity or weight gain (Anderson et al., 2003). 

Additionally, the marked increase in T2DM prevalence is highly correlated with a comparably steep 

increase in obesity prevalence (Flegal et al., 1998). According to Masato Kasuga (2006), T2DM develops, 

in general, when pancreatic -cells are unable to produce and secrete enough insulin to meet the 

metabolic demands of a patient. As seen in figure 2, obese patients have increased free fatty acids 

(FFAs) throughout their body, and in turn this increased weight and stress on the patient causes a 

cascade of hormone as well as inflammation responses (Prentki and Madiraju, 2011). These factors are 

thought to lead to insulin resistance, and in turn, compensation by -cells via increased insulin synthesis 

and secretion. Eventually, it is thought that -cells become exhausted, and then ultimately cease being 

fully functional.  
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Figure 2. Development of type 2 diabetes due to obesity. Depicted above is the proposed relationship of 

increased fatty intake and the outcomes of a fat-rich diet. Adipokines, free fatty acids (FFAs) and inflammatory 

elements are released due to increased adipocytes. These factors all contribute to Insulin resistance, and 

ultimately, failure and even death of β-cells. 

Reprinted from “Insulin resistance and pancreatic Beta cell failure,” by M Kasuga, 2006, J Clin Invest. 116(7):1756-

1760. ©2006. Reprinted with permission. 
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The risk involved with being obese is well demonstrated in an excellent longitudinal study 

carried out by Colditz and colleagues. The study looked at incidences of diabetes in age adjusted weight 

groups, measured as body mass index (BMI), as well as positive family history and what the relative risk 

of developing diabetes was when those factors were independent, and when they were together. For 

these studies, BMI was calculated for an individual as [mass (in kilograms)] / [height (in meters)]2. Colditz 

et al. (1995) wanted to assess the impact of BMI at age 18, weight gain after age 18, and attained BMI at 

age 30 to 55, on the risk of developing diabetes in women. Over 100,000 female registered nurses were 

part of the study which was launched in 1976, at which point participants were also screened ensuring 

that none had diabetes at the time of the study. Follow up examinations were conducted every two 

years and the study was concluded 14 years later in 1990. At this point it was obvious to Colditz and and 

colleagues that very startling results were obtained.  A BMI of <22kg/m2 was standardized to a relative 

risk (RR) of 1 and adjusted for age 18. When comparing the RR for participants with a BMI >35.0 at ages 

30 to 55, the difference was extremely elevated, sitting at 93.2. Additionally, when correlating the 

impact of weight gain and family history on the risk of developing T2DM, the risk was constantly 

doubled in participants that encountered moderate weight gain and had at least 1 parent or sibling with 

a known case of diabetes mellitus. The risk was exponentially increased if both parents had cases of 

diabetes or if a parent and a sibling had diabetes. In more current studies, these trends were verified 

when it was found that an inverse relationship existed between the amount of fat content in the 

pancreas and the efficiency of GSIS responses. Additionally, in the same study it was determined that 

reducing pancreatic fat saw a significant increase in glucose tolerance and GSIS (Tushuizen et al., 2007). 

It has long been established that a real and alarming relationship exists between diabetes and obesity, 

and current approaches to treating diabetes often address both pathologies.  
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1.2.4 Current therapies for T2DM 
 

As T2DM progresses in patients, blood-glucose levels continually rise and the functionality of 

pancreatic -cells further diminish. Despite all the recent advances in clinical research, there remains 

some debate on how to best approach the general treatment of diabetic patients. A group led by Ralph 

A. DeFronzo (2011) believes that the key to T2DM treatment lies within early detection and treatment of 

impaired glucose tolerance (IGT), a symptom that often precedes a T2DM diagnosis. His group has found 

that pharmacological approaches decrease IGT conversion to T2DM uniformly, and at a much higher 

incidence than any lifestyle changes do (i.e. weight loss, exercise etc.). Thus the emphasis on T2DM 

treatment is prevention and with aggressive drug administration during IGT. However, many of the 

T2DM cases today go largely undetected until it has fully progressed. Although prevention would be 

fairly ideal, it is not always feasible. Most other groups approach T2DM from a curative perspective, and 

attempt to find the most successful treatment regimen for the most common causes. Contrary to 

DeFronzo’s view, many tend to lean towards the argument that lifestyle changes are the best way to 

both prevent, and treat, T2DM (Seino et al., 2011; Anderson, 2003). Schwartz and Kohl (2010) suggests 

that even a modest reduction in weight improves glycemic control, blood pressure, and other 

cardiovascular risk factors significantly. However, they also emphasize the great influence that delaying 

treatment has on diabetic patients. Patients with a longer duration of untreated or improperly treated 

diabetes mellitus do not experience the benefits of intensive therapies to the same extent as those who 

receive treatment in a timely manner. This is even despite the fact that target A1C levels are reached in 

both groups.  

Most treatments currently in practice make use of pharmacological agents that mimic insulin (or 

is synthesized insulin), take advantage of the glucose lowering effects of certain receptor or channel 

inhibitors and agonists (i.e. glucagon-like peptide-1 (GLP-1), sulfonylureas) or attempt to slow glucose 
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biosynthesis and reduce its storage (i.e. metformin). Some drugs work so effectively that hypoglycemia 

and other adverse side effects of drug administration may cause more harm than benefit at times.  The 

oldest and most notorious class of drugs that falls under this category are sulfonylureas. They have been 

in use for many decades now, employed shortly after its discovery in 1942 by chemist Marcel Janbon. 

This compound acts on ATP-dependent potassium channels in the -cell and prevents its opening, 

causing hyperpolarization and ultimately, increased insulin secretion (Davis and Granner, 2001). The 

actual binding site for this drug is found on a protein complex called SUR1, or sulfonylurea receptor-1, 

which is closely linked to the potassium channel. The significantly increased probability and duration of 

insulin release greatly reduces blood glucose levels, but also has a very high risk of hypoglycemia 

incidence associated with it. Sulfonylurea induced hypoglycemia (SIH) is a well-known serious side effect 

of sulfonylurea usage, and is attributed to the fact that there is a lack of regulation in its activity. It has 

been recently estimated that sulfonylureas carry with them up to a 10-fold increased risk of causing 

hypoglycemia when compared to other drugs, which is the leading cause of hospital complications when 

treating diabetic patients (Holstein et al., 2010).  

Around the same time that sulfonylureas became popularly used to treat T2DM, another class of 

drug was also discovered. Metformin was introduced after the first set of successful clinical trials in 

1957, although it did not become popularly prescribed in Canada until over a decade after. Metformin 

lowers blood glucose levels by inhibiting hepatic gluconeogenesis as opposed to increasing circulating 

insulin. Additionally, it helps sensitize peripheral tissue glucose uptake by increasing insulin receptor 

activity on these cells, allowing for a reduction in blood glucose even during fasting (Kirpichnikov et al., 

2002). There are much fewer incidences of hypoglycemia as well as less overall adverse side effects, 

when comparing this class of drugs to sulfonylureas. These are the reasons why metformin is typically 

used as the standard drug for base line T2DM blood glucose control, and works well as both a 

monotherapy and part of a combination therapy approach (International Diabetes Federation, 2005).  
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More recently, another class of drugs have been discovered and developed that helps 

potentiate insulin secretion similarly to sulfonylureas, but without the adverse side effects. Glucagon-

like peptide-1 (GLP-1) was discovered in the mid-1970s and was determined to be a very effective 

insulinotropic hormone that carried out important functions in food digestion, feelings of satiety, insulin 

secretion, glucose disposal, as well as suppression of plasma glucagon levels (Kieffer and Habener, 

1999). Since then, a lot of effort has gone into creating stable GLP-1 analogs for oral consumption. 

Current GLP-1 mimetics and analogs have been found to greatly improve systemic fuel homeostasis by 

affecting glucose metabolism at various sites and in multiple cell types. In addition to greatly increasing 

insulin secretion and circulation, an important difference between GLP-1 analogs and sulfonylureas is 

that GLP-1 will only lower blood glucose levels in the presence of glucose. Hypoglycemia as a result is 

rarely, if ever, a side effect of GLP-1 drug administration (Leech et al., 2011).  

One of the most remarkable findings to date, however, has come about only within the past two 

decades. As previously mentioned, obesity and diabetes are strongly correlated and in up to 90% of 

T2DM cases, the patients are also obese (Buchwald et al., 2009). Bariatric surgery had been in practice 

since the early 1990s to aid with weight loss in obese diabetic patients (Shimizu et al., 2012). However, 

there have been stunning beneficial effects seen in bariatric patients that exceeded even the results 

obtained through strict dieting, weight management, and exercise. In one meta-analysis conducted by 

Shimizu and colleagues (2012), remission of T2DM occurred in up to 86.8% of diabetic patients that had 

undergone bariatric surgery, with the rest of the patients enjoying some degree of improved glycemic 

control. Additionally, following bariatric surgery, Shimizu pointed out that more stable long-term weight 

loss and no serious excessive weight loss was experienced by the 477 patients included in his analysis. 

Similar statistics were found in 2009 by a group led by Henry Buchwald. He found that 79.3% of all 

patients undergoing some form of bariatric surgery enjoyed complete resolution of T2DM, with 98.9% 

enjoying either resolution or great glycemic control improvements. Bariatric surgery has also been 



18 
 

recently declared by the International Diabetes Federation as an accepted form of treatment of T2DM 

for patients with a BMI of 35 kg/m2 or more (Buchwald et al., 2005). However, there are still a significant 

proportion of T2DM patients that are not good candidates for bariatric surgery, as they are neither 

obese nor overweight. So although there is currently a treatment that allows for complete resolution of 

this disease, much progress can still be made in finding a cure for all cases of T2DM.  

 

1.3 Glucose Stimulated Insulin Secretion 
  

Glucose stimulated insulin secretion (GSIS) is the primary mechanism involved in maintaining 

systemic fuel homeostasis. Insulin secretion occurs in response to elevated blood glucose 

concentrations and regulates when energy, in the form of glucose, is mobilized and when it is stored 

(Rorsman, 2005). During the last few years, breakthroughs in genetics have afforded ways of identifying 

genes that carry with them a high risk of T2DM susceptibility. With the advent of genome-wide 

association (GWA) studies, multiple gene mutations could be identified that T2DM patients often 

possess. One of the most striking findings from these studies was that the vast majority of T2DM risk 

genes were involved in GSIS and -cell function in some way, as opposed to insulin sensitivity or 

adiposity (Schäfer et al., 2011). Because of this, not only is the study of GSIS important in the 

understanding of T2DM development, but it is also the main focus of my thesis work.  
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Figure 3a. Secretion due to localized calcium influx. A schematic showing the relative location of Ca2+ channels to 
secretory granules (SG) containing insulin. This organization emphasizes the need for localized increases of Ca2+ 
ions into the β-cell to allow for successful fusion of SGs and subsequent release of insulin into the blood vessels 
surround the islets of Langerhans.   

 

 

 

 

 

 

 

 

 

Figure 3b. Glucose stimulated insulin secretion. Simplified diagram of a glucose stimulated insulin secretion event 
in the pancreatic β-cell of a mouse: 

1. Glucose in the bloodstream is taken up into the β-cell via Glut-2 transporter and quickly phosphorylated 
by glucose kinase (GCK). 

2. Through glycolysis as well as Kreb’s cycle, ADP is converted to ATP. 
3. Increased ATP will bind the ATP-sensitive potassium (Katp) channel, inhibiting it and preventing K+ ion 

efflux. 
4. Membrane resistance increases as K+ ions build up in the cytoplasmic face of the plasma membrane. 
5. This depolarization of the membrane reaches L-type voltage-gated Ca2+ channels, opening them and 

allowing for a quick and large influx of Ca2+ ions into the cell. This triggers the fusion of insulin granules 
and subsequent release of insulin into the circulatory system.  

6. A persistent depolarization due to Ca2+ influx and K+ ion accumulation will cause the membrane to reach 
positive values, triggering the opening of voltage-gated K+ channels (KV) and efflux of K+ ions. This allows 
the cell to return to resting membrane potentials and also stops insulin secretion. 

Figures adapted from “Diabetes Mellitus and the B-Cell: The Last Ten Years,” by FM. Ashcroft and P. Rorsman, 

2011. Cell Press. 148(6):1160-1171. ©2013. Reprinted with permission. 
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1.3.1 Glucose, Glycolysis, and GSIS 
 

As previously mentioned GSIS occurs as a result of elevated blood glucose, which is due to the 

recent consumption of a meal or to energy mobilization in the body. Because of the -cell’s important 

role in regulating glucose uptake, the cell itself can catabolize glucose at a much higher threshold than 

peripheral cells. That is to say the -cell has more glucose transporters than any other cell type, and can 

take up glucose beyond the physiological Km that other cell types stay beneath (German, 1992). The 

primary method by which the pancreatic -cells can regulate how much insulin must be secreted and 

synthesized is by sensing the catabolic intermediates and products of glucose metabolism, but most 

notably, the concentration of glucose-6-phosphate (Macdonald et al., 2005).  

The process of GSIS begins when glucose is first taken up by the -cell from the vascular system 

via the Glut-2 transporter. Once in the cell cytoplasm, glucose is quickly converted to glucose-6-

phosphate by the enzyme glucokinase. At this point, glucose has been primed and can undergo 

glycolysis to create multiple metabolic products, including pyruvate and adenosine triphosphate (ATP). 

The quantity of ATP, other catabolic intermediates, and even glucose itself, serve as indicators to the -

cell of the quantity of glucose in the blood stream and will ‘tailor’ how much insulin is secreted and 

synthesized as a result (Crobett, 2006). For GSIS specifically to occur, ATP-dependent potassium 

channels sense the increase in ATP by binding with it at the Kir subunit of the channel. This results in the 

closing of their pores, preventing any potassium ions from escaping out of the -cell. The localized 

increase in membrane resistance (Rm) causes voltage-gated calcium channels to open, allowing for a 

strong acute influx of calcium ions into the cell (refer to figure 3a). Calcium influx is the trigger for both 

mobilization as well as fusion of secretory granules that house insulin and proinsulin. Once the 

membrane reaches a critical threshold of depolarization, voltage-dependent potassium channels open 

and allow for potassium ion efflux to resume, repolarizing the cell and bringing the membrane 



21 
 

resistance back down to resting levels. This decrease in membrane resistance also closes voltage-gated 

calcium channels and ceases insulin secretion (Rorsman, 2005; Olofsson et al., 2002). This was a brief 

summary of the events that comprise GSIS, however prior to exploring the more detailed aspects of 

insulin secretion the three main channels involved will be further explored.  

 

1.3.2 Ion Channels in the -cell 
 

The -cell’s ability to secrete insulin is wholly dependent on electrochemical changes that occur 

in localized sites within the cell. These changes are mediated by a series of ion channels, all of which 

play an important part in action potential generation and membrane resistance (Rorsman et al., 2011; 

Drews et al., 2010; Yang and Berggren, 2004). In this section, three channels will be briefly described, 

exploring their structure, function, as well as specific roles in glucose stimulated insulin secretion.  

 

ATP-Sensitive Potassium Channels (KATP) 

 KATP channels are responsible for the coupling of cell metabolism to electrical activity along the 

-cell membrane. When the -cell is exposed to low concentrations of glucose, the KATP channels remain 

open and continue producing K+ ion efflux (Clark and Proks, 2010). This ion efflux suppresses electrical 

activity by allowing membrane resistance to remain very low, essentially determining the -cell’s resting 

membrane potential of approximately -60 mV (Ashcroft et al., 1984). This low electrical resistance 

persists during fasted states when glucose is not abundant enough in the blood to elicit an electrical 

response. However, when the concentration of glucose in the blood reaches approximately 7 mM or 

greater, this decreases the open probability of KATP channels. This decreased potassium ion efflux is in 
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fact caused by a large gain in ATP to ADP ratio due to increased glucose metabolism. The more glucose 

taken up by the -cell, the larger the increase in ATP and the more KATP channels become closed at one 

time (Rorsman, 2008). When KATP channels are inhibited, a large membrane resistance is generated as 

positive ions accumulate along the cell membrane. This membrane resistance is what regulates if a GSIS 

response occurs and how strong it will be (Ashcroft, 2005). It should be noted that KATP channels are not 

only limited to the -cell, but can be found also in other pancreatic islet cells as well as throughout the 

body (Gopel et al., 2000; Rorsman et al., 2008). KATP channels are abundant at the synapses of neurons 

to regulate neurotransmitter secretion, they help modulate glucose uptake into skeletal muscle, 

regulate hepatic glucose output as well as play a regulatory role in appetite (McTaggart et al., 2010).  

 The molecular structure of this channel protein is that of a hetero-octameric complex, with four 

Kir6.x and four SUR subunits. Kir6.x subunits are considered ‘inwardly rectifying’ channels and exist in 

four isoforms, numbered 1 through 4. The fact they are called inward rectifiers is because they conduct 

positive charges (potassium ions) in the inward direction of a cell (Inagaki et al., 1995). The KATP channel 

found within pancreatic -cell contains the Kir6.2 isoform from the Kir6.x family of channel proteins. The 

physical binding site for ATP is at the large C-terminus of the Kir6.2 subunit, and binding causes the 

channel to close (Tanabe et al., 1999). The other half of the KATP channel is comprised of four SUR 

subunits, which as previously mentioned, stands for ‘sulfonylurea receptor’. This is because 

sulfonylureas bind with high affinity to these sites and exact a similar response to that of ATP on the 

Kir6.2 subunit. SUR subunits are part of the ABC class of channel proteins (ATP Binding Cassettes) and 

serve a regulatory role in KATP channel activity (Inagaki et al., 1995; Aguilar-Bryan et al., 1995). SUR 

subunits exist in three isoforms, named SUR1, SUR2A, and SUR2B, and the -cell contains solely the 

SUR1 type (Aguilar-Bryan et al., 1995). It is also worth noting that sulfonylureas have long been used to 

treat T2DM because of its ability to elicit a strong stimulatory response from the -cell. Loss of function 

KATP channel mutations are the most common cause of congenital hyperinsulinism (HI) and conversely, 
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mutations that reduce KATP sensitivity to ATP lead to severe forms of neonatal diabetes, and in some 

cases, neurological complications (Thomas et al., 1996). These examples serve to highlight the 

importance of KATP channels’ regulatory action in the -cell, and the devastating effects that occur when 

its ability as metabolic sensors become compromised (McTaggart et al., 2010). 

 

Voltage-Gated Calcium Channels (Cav) 

 Voltage-gated calcium channels mediate a wide variety of critical cellular processes throughout 

the human body. They are important in exocytotic events, cell proliferation, signalling pathways, gene 

expression, and cell cycle regulation (Drews et al., 2010). Within the -cell, voltage-gated calcium 

channels are distributed in very organized microdomains along the plasma membrane. They are situated 

in clusters and are co-localized with secretory granules containing insulin, allowing for highly 

concentrated increases in Ca2+ ions to occur near the vesicles (Barg et al., 2001). Cav channel activity is 

extremely important in regulating insulin secretion, as Ca2+ ion influx is a necessity for fusion events to 

occur (Yang and Berggren, 2006). As the name implies, Cav activity is dependent on the electrical state of 

the cell. Once the -cell has depolarized to approximately -50 mV due to KATP channel closing, Cav 

channels open allowing for a strong influx of Ca2+ ions into the cell (Ashcroft et al., 1989). This increased 

Cav activity has also been shown to plateau at approximately -20 mV, at which point it may potentially 

start to pump Ca2+ ions out of the cell. A very interesting observation was made in 2008 that implicated 

a loss of localization of Cav with SNARE proteins potentially playing a large part in the development of a 

diabetic phenotype (Xia et al., 2008). One proposed explanation of this result is based on the 

understanding that the organization of Cav into microdomains are found in cholesterol-rich membrane 

rafts, and thus a reduction in cholesterol could potentially explain an abnormality in insulin secretion 

(Xia et al., 2004).  
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 The Cav is comprised of multiple subunits: A pore-forming α1 subunit that contains a voltage 

sensor, and auxiliary β, γ, and α2δ subunits, which modulate channel activity (Catterall, 2000; Davies et 

al., 2007). There are in fact three closely related families of Cav proteins that are determined by the 

nature of their α1 subunits, and thus, how the pore acts when electrical activity occurs in the cell. The 

first is the Cav1, numbered 1.1-1.4, the second being Cav2, numbered 2.1-2.3, and last, Cav3, numbered 

3.1-3.3. All four isoforms of the Cav1 family of channel proteins are said to be of an L-type, or “long-

lasting”, form of the channel. The Cav2 family fall under the category of P/Q-type (CaV2.1), N-type 

(CaV2.2), and R-type (CaV2.3), which all have a very high-voltage requirement for activity. Cav3.1-3.3 

channels are all considered to be T-type channels, which require very small depolarizations to activate, 

but are also ‘transient’ with their opening (Catterall et al., 2005). Since persistent changes in Ca2+ ion 

concentrations are required for glucose stimulated insulin secretion, it is generally agreed upon that 

Cav1 channels are the most significant contributors to the Ca2+ ion influx required for insulin secretory 

granule fusion (Satin et al., 1995). Although many of the other isoforms of Cav channels are present, 

experiments have found that when L-type Ca2+ channel activity is blocked, glucose stimulated insulin 

secretion is almost completely diminished, again emphasizing the Ca2+ ion influx contribution of Cav1 

channels over the other isoforms in the β-cell (Braun et al., 2008).   

 

Voltage-Gated Potassium Channels (Kv) 

The pancreatic β-cell expresses multiple types of voltage-gated potassium channels (Kv 

channels), all of which have been known to contribute to its K+ ion flux in varying degrees (Yan et al., 

2004). There have been five subfamilies of Kv channels (Kv1, 2, 3, 6, and 9) detected so far in primary β-

cells, which can be further split into two groups based on their distinct electrophysiological profiles. The 

first, consisting of Kv1.4, 3.3, and 3.4, are active at more negative values than the other groups of Kv 
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channels and have a self-inactivating current called A-currents. Channels with A-currents have activity 

starting at approximately -40 mV, with maximal channel inactivation at around +30 mV. The ion flux in 

these channels become progressively smaller as membrane potential becomes more positive, thus 

contributing less to K+ ion flux as the β-cell becomes more depolarized (Smith et al., 1989).  The second 

group of Kv channels are without inactivation, and possess a delayed rectifier current (Macdonald et al., 

2001). The most predominant form of this Kv delayed rectifier channel in both human and rodent β-cells 

is Kv2.1. Kv2.1 channels were found to be the most significant contributor to potassium currents during 

Cav action potentials, allowing the β-cells to return back to resting voltage. Also, these channels are 

often co-localized in cholesterol-rich lipid rafts with Cav, SNARE proteins required for fusion, and insulin 

secretory granules, emphasizing their importance in the β-cell’s glucose response (Xia et al., 2004).  

This family of protein channels is characterized by six transmembrane regions with multiple 

subunits coming together to create functional pores. Kv1, 2, and 3 bind together as homo- or hetero-

tetramers whereas Kv6 and 9 often play modulatory roles in Kv2 and 3 channels by co-assembly with 

them (Kerschensteiner and Stocker, 1999). Kv channels play a critical role in the repolarization of the β-

cell after glucose stimulated insulin secretion, and because of this, heavily influences serum insulin 

levels. They are often the target of hormones and neurotransmitters, such as glucose-dependent 

insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1), which modify the rate of 

repolarization by diminishing Kv currents (MacDonald et al., 2002; Kim et al., 2005). As previously 

mentioned, Kv channel activity is required to repolarize the β-cell, which essentially stops fusion of 

secretory granules by closing Cav channels. Thus, Kv channel activity is only present when the cell is 

significantly depolarized, and absent when the cell is at rest. Because of this, Kv channels possess a fairly 

unique role in that they can be manipulated to exert an effect specifically when high glucose 

concentrations are found in the serum. As a result it has been the focus of multiple pharmacological 

studies in order to find more ways to treat diabetes mellitus.  
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1.3.3 SNAREs and their Role in Glucose Stimulated Insulin Secretion 
 

SNARE proteins (soluble N-ethyl-maleimide-sensitive fusion protein attachment protein 

receptor) are strongly believed to mediate all intracellular fusion events between vesicles and target 

phospholipid membranes (Chen and Scheller, 2001). Because of this role, SNAREs play a very important 

part in allowing normal cellular functions and even membrane growth, to occur. For example, SNAREs 

and their associated proteins allow the trafficking of essential cellular materials between organelles as 

well as the secretion and uptake of a wide variety of important molecules into, or from, the extracellular 

space. Additionally, because of fusion events, cell and organelle membranes can change and shift in size, 

and the transfer, secretion, or uptake of molecules never compromise cellular or organelle 

compartmentalization (Ramakrishnan et al., 2012). Every fusion event involves a series of very 

coordinated cellular activities and is often triggered by a change in Ca+ ion concentrations (Heidelberger 

et al., 1994). The β-cell’s high rate of insulin secretion and vesicle trafficking make it a very good cell 

model candidate to study SNARE activity. Conversely, any changes in the normal expression and function 

of SNAREs and associated proteins can have a very large impact on β-cell function and insulin secretion. 

Before vesicles can fuse with membranes, they must first be recognized, tethered and docked. 

In order for this to occur correctly, vesicles are “targeted” and will fuse only to the correct membrane 

and location for which its contents should be released into (Pfeffer, 1999).  In order for tethering and 

docking to be specific, specialized proteins that can interact with each other exist on both the vesicle as 

well as the pre-synaptic membrane region. The proteins involved in this process are syntaxin 1A (STX1A), 

synaptosomal-associated protein of 25 kDa (SNAP-25) and vesicle-associated membrane protein (VAMP, 

or synaptobrevin), all of which are members of the SNARE superfamily (Jahn and Fasshauer, 2012).  The 
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defining features of these proteins are their extended coiled-coil domains that associate together to 

form a strong SNARE complex between the vesicle and pre-synaptic membrane (Weber et al., 1998). 

This complex is integral in the cell’s ability to bring two membranes together and to overcome the high 

energy requiring process of fusion pore formation (Li et al., 2007). The structure of a SNARE core 

complex is that of two coils of SNAP-25 intertwined with one coil of each STX1A and VAMP, forming a 

“zippered” four α-helix stranded coiled-coil super structure (Sutton et al., 1998). VAMP is a synaptic 

vesicle protein whereas STX1A and SNAP-25 are localized in the pre-synaptic membrane. As the SNARE 

complex ‘zippers’, it pulls both vesicle and pre-synaptic membrane closer together, with the assembly of 

the complex being associated with a significant release of energy as membrane fusion begins 

(Wiederhold and Fassahauer, 2009). Synaptotagmins are a family of membrane-trafficking proteins that 

are also a very important in exocytosis (Gustavsson et al., 2009). They are proteins found on a pre-

synaptic vesicle’s membrane and have been determined to play an important role in Ca2+-triggered 

fusion. Although not a primary contributor to the SNARE complex structure, synaptotagmins have been 

found to bind to pre-synaptic membranes in the presence of Ca2+ ions. Most believe that this interaction 

allows synaptotagmin to bridge itself between the phospholipid heads of each bilayer and induce fusion 

(Jeremic et al., 2004).  Additionally, it has been established by numerous groups that CaV bind directly to 

the core SNARE complex which ensures that Ca2+ ions can quickly induce the exocytotic machinery in a 

localized area along the β-cell membrane (Atlas, 2001; Wiser et al., 1997). In addition, SNARES and their 

associated proteins have also been found to interact with Kv channels, serving as a site of modulation for 

electrical activity (Xia et al., 2004). This relationship emphasizes the interplay between various 

membrane proteins as well as the importance of SNAREs not only in the actual fusion of vesicles 

containing insulin, but also in the regulation and modulation of glucose stimulated insulin secretion.  
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1.3.4 Biphasic Insulin Secretion and Secretory Granule Mobilization 
  

Up to this point, it has become apparent that insulin secretion is a very complex and multi-

faceted process. It involves a vast array of proteins to work cohesively for a successful glucose response 

to occur. In addition to requiring functional ion channels, SNARE proteins, and proper localization of 

exocytotic machinery via lipid rafts, the actual response itself employs two different pools of insulin 

containing secretory granules (Yang and Berggren, 2006). These two pools of granules are what give 

insulin secretion a biphasic profile, with the first wave of secretion coming from the ‘readily releasable 

pool’, or RRP, and the second the ‘reserve pool’, or RP. The first phase of insulin secretion occurs as a 

fast immediate response to an increase in glucose from basal concentrations of 5 mM to approximately 

10 mM (Rorsman et al., 2000). Roughly 95% of secretory granules in a β-cell exist in the RP, whereas less 

than 5% are members of the RRP pool. To elicit the first wave of insulin secretion, the β-cell does not 

necessarily need to be stimulated using metabolites of glucose; instead it can begin as a result of 

membrane depolarization from other factors such as sulfonylureas or an elevated extracellular 

concentration of K+ ions (Henquin, 2000; Rorsman et al., 2000). Oddly enough, one of the first indicators 

of T2DM development is an impaired first phase insulin secretion and precedes other manifestations of 

this disease (Cerasi, 1992). The RRP pool of granules has been proposed to exist very close to the 

membrane and already ‘primed’ for quick release. Total internal reflective fluorescence microscopy 

(TIRFm) has helped to validate this theory by providing direct evidence that the initial phase of a glucose 

response involves granules that are already docked at the membrane (Ohara-Imaizumi et al., 2007). This 

is what gives glucose stimulated insulin secretion a very strong, but quick, initial burst of insulin in this 

characteristic first phase. The second phase of insulin secretion involves the mobilization of the RP of 

granules towards the membrane, where they can then be primed, docked, and its contents released. A 

series of ATP, Ca2+ ions, vesicle mobilization and temperature-dependent processes precedes the 
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secretion of insulin in this second phase. These processes are widely believed to account for the small 

delay seen between first and second phase insulin secretion, and since the pool is comprised of many 

more granules, this second phase can persist for far longer than the first phase (Rorsman and Renstrom, 

2003).  

 

1.4 Cholesterol  
  

Cholesterol has long been established as a tightly regulated and essential molecule to virtually 

all cellular systems (Goedeke and Fernandez-Hernando, 2012). Any disturbances in cholesterol 

homeostasis result in a wide variety of pathologies including a number of cardiovascular diseases and 

metabolic syndromes, including diabetes. Cholesterol is vital in modulating membrane fluidity and 

permeability, in addition to being the precursor of all known steroid hormones and bile acids. It has also 

been found to play important roles in cellular trafficking, signalling pathways, and cell proliferation and 

growth (Fernandez et al., 2004; Fernandez et al., 2005). Because of all these important cholesterol-

dependent processes, it is of little wonder that cholesterol content and homeostasis has been a central 

focus in the research carried out in this thesis. In order to fully appreciate the impact of cholesterol 

content on glucose stimulated insulin secretion, the fundamentals of cholesterol and its regulation will 

first be explored.  
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Figure 4. Cholesterol biosynthetic pathway beginning with Acetyl-CoA. In this simplified diagram, the 

intermediates and enzymes of interest to this thesis have been included. As seen in the top of the diagram, statins 

are responsible for the inhibition of HMG-CoA reductase, the enzyme which converts HMG-CoA to mevalonate. In 

red are the steps in the committed cholesterol pathway, which starts with squalene. It is in this portion of the 

cholesterol pathway that all intermediates lead up to only cholesterol. As seen in the bottom of the diagram, AY 

9944 inhibits the last step prior to completing cholesterol, and acts on the enzyme 7-dehydrocholesterol (DHC) 

reductase.  
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1.4.1 Cholesterol Biosynthesis, Trafficking, and Homeostasis 
  

There are two ways by which an animal cell can acquire cholesterol. The first is through 

exogenous uptake of circulating cholesterol in the form of apolipoprotein B-containing lipoproteins (i.e. 

low-density lipoprotein, or LDL), and the second is through a tightly regulated biosynthetic pathway 

available to almost all animal cell-types (Bloch, 1992; Brown and Goldstein, 1986). Extracellular sources 

of cholesterol require LDL particles to be delivered via the blood stream at which point they are taken 

into the cell through receptor-mediated endocytosis (Brown and Goldstein, 1986). Endogenous 

synthesis of cholesterol is also a very significant source of cholesterol, and at times virtually the only 

source for certain cell types such as neurons. A series of transcriptional and post-transcriptional 

feedback mechanisms are in place to help regulate intracellular levels of cholesterol and maintain 

homeostatic concentrations, emphasizing the importance this molecule to cellular function and growth 

(Brown and Goldstein, 1997).  

 

 Cholesterol Biosynthesis and Nuclear Regulation 

Since cholesterol obtained through diet is for the most part limited, cholesterol biosynthesis 

makes up the large majority of cholesterol content in mammalian cells. Approximately 50% of the body’s 

endogenous cholesterol is synthesized strictly in the liver, with the other half occurring in all the other 

extra-hepatic cells (Dietschy et al., 1993). Cholesterol biosynthesis occurs at the endoplasmic reticulum 

(ER) and undergoes a 19-step process involving 9 different enzymes, starting with the conversion of 

acetyl-CoA to HMG-CoA (refer to figure 4). The rate-limiting step of this synthetic pathway is where 

HMG-CoA is reduced to mevalonate, which also happens to be the target of the class of clinically-used 

drugs called statins (Jasinka et al., 2007). The entire process is much more complex than what is shown 
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in figure 4, with multiple branching pathways occurring from various cholesterol biosynthesis 

intermediates; however the focus of this thesis will be on the direct pathway to cholesterol formation. 

Following the synthesis of cholesterol in the ER, the newly made cholesterol is targeted for transport to 

the plasma membrane as well as alternate membranes such as endosomes (Bauman et al., 2005). 

Cholesterol concentrations are kept at homeostasis in part through the conversion of cholesterol into 

cholesterol esters, carried out by acyl-CoA acyl-transferases. These esters are stored in the cell’s 

cytoplasm as lipid droplets and are easily accessed by the cell using cholesterol ester hydrolases (Chang 

et al., 1997). This ester conversion is a rapid and reversible reaction, allowing for the storage as well as 

access to free cholesterol as the cell requires it (Brown and Goldstein, 1980). Cholesterol accounts for 

approximately 20%-25% of lipid content in plasma membranes, but the ER contains roughly 1% of 

cholesterol in terms of lipid content (Lange, 1991). This is in large part due to the immediate trafficking 

of cholesterol from the ER to the Golgi for further use by the cell.  

Cholesterol content in the ER membrane is a very important biomarker that controls one of two 

main nuclear receptor mechanisms regulating cholesterol biosynthesis. Sterol regulatory binding 

proteins (SREBPs) are important for the transcription of gene products required for cholesterol 

biosynthesis. SREBPs only become active when low sterol levels exist in the ER membrane. Two 

chaperone proteins are essential for the transport of SREBP to the Golgi, where SREBP can be cleaved 

and released to act as a nuclear signal. One protein is called SREBP cleavage-activating protein (SCAP), 

which is an escort protein that aids in the transport of SREBP to the Golgi, and the other is insulin-

induced gene (INSIG), which is an anchor protein found on the ER membrane (Goldstein et al., 2006). 

Binding of cholesterol to SCAP and the binding of 25-hydroxycholesterol to INSIG causes these two 

chaperone proteins to form a strong complex with each other, preventing them from interacting with 

SREBP (Sun et al., 2007). If both cholesterol and 25-hydroxycholesterol are found in low levels in the ER, 

SCAP and INSIG dissociate from each other and activate SREBP. At this point, SREBP is released from the 
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ER and processed in the Golgi, where it can then act as a nuclear signal to stimulate the transcription of 

genes such as HMG-CoA reductase and LDL receptor (Goldstein et al., 2006). 

The other major form of transcriptional regulation of cholesterol involves oxysterols and 

receptors in the cell, namely the liver X receptor (LXR) (Goldstein et al., 2006; Schropfer Jr., 2000). 

Oxysterols are a class of cholesterol derivatives that have multiple actions in a cell including the down 

regulation of HMG-CoA reductase activity and activation of LXRs. LXRs are important receptors that 

activate genes involved in the reduction of excess cellular cholesterol concentrations (Beaven and 

Tontonoz, 2006). One of these gene groups belongs to the reverse cholesterol transport pathway, which 

helps remove cholesterol from peripheral cells and also increases biliary cholesterol secretion (Tontonoz 

and Mangelsdorf, 2003).  

 

 Cholesterol Uptake, Secretion and Trafficking 

Dietary intake of cholesterol is also a very important source of this valuable lipid and as a result, 

the uptake of exogenous cholesterol is a very well regulated and complex process. Cholesterol from 

food is initially absorbed by the enterocytes of the small intestine and then transported to the liver for 

further processing and packaging. To describe this process briefly, enterocytes will package dietary 

cholesterol along with triglycerides into particles called chylomicrons. These chylomicrons reach hepatic 

tissue via the lymph and are taken up by the hepatocytes. The liver will then further process the 

chylomicrons and package them into very low density lipoproteins (VLDL), which get processed further 

in the circulatory system into low density lipoproteins (LDL) (Grundy, 1983). LDL particles are then taken 

up by the cell via receptor-mediated endocytosis using LDL receptors (LDLr). Once the LDL particle is 

inside, cholesterol molecules are liberated from the LDL complex within a lysosome and become readily 

useable by the cell. This is the pathway that is most commonly used by peripheral cells to obtain 
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exogenous sources of cholesterol when cellular concentrations are low. It should be noted however, 

that because most cells possess the ability to synthesize cholesterol as well as have a ready supply of 

circulating cholesterol typically being available, there are many cases where cholesterol can over-

accumulate in a cell. As previously mentioned, cholesterol efflux is a very important aspect of 

cholesterol homeostasis that allows the removal of excess cholesterol in bulk. Cholesterol is a very 

difficult molecule to break down and there is a limited quantity of cholesterol esters a cell is capable of 

keeping within its cytoplasm. Similar to dietary intake of cholesterol, cholesterol removed from cells 

must re-enter the liver in order to be expelled or eventually re-used. This process is referred to as 

reverse cholesterol transport (RCT) and greatly aids in the homeostatic control of physiological 

concentrations of cholesterol (Glomset and Norum, 1973).  

High density lipoproteins (HDL) is the main particle associated with cholesterol exchange and is 

the only acceptor of cholesterol released from extra-hepatic cells. HDL serves important roles in the two 

pathways that mediate cholesterol efflux. The first method of cholesterol removal is through passive 

diffusion. This pathway involves the removal of cholesterol from a cell’s plasma membrane and the 

diffusion of it directly into a nearby HDL particle. Many factors are required for this diffusion to occur, 

such as compartments on the plasma membrane’s extracellular face as well as enzymes attached 

directly to HDL (Yokoyama, 2000). The enzyme lecithin-cholesterol acyltransferase (LCAT) has been 

implicated in this process and exists on the surface of lipoproteins such as HDL. The proposed 

mechanism by which LCAT facilitates the transfer of membrane cholesterol into HDL particles is by the 

conversion of free cholesterol into cholesterol esters. These esterified cholesterol molecules are then 

sequestered into the HDL particle and delivered to the liver (Jonas, 2000). The second method of reverse 

cholesterol transport is mediated by ApoA-I, the major apoprotein found in HDL particles, and ATP-

Binding Cassete-1 (ABCA1), a very important transporter protein required for the formation of HDL. 

ABCA1 is essential for both methods of cholesterol efflux, and this is exemplified with Tangiers disease, a 
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condition in which a person possesses low plasma HDL. The mutation was mapped back to the Abca1 

gene and when ABCA1 was reduced, over-abundance in cellular cholesterol became a characteristic 

phenotype (Brooks-Wilson et al., 1999). In this pathway, the HDL particle itself is internalized into the 

target cell via phospholipids and cholesterol complexes formed at the cell surface. Once in the cell 

cytoplasm, the HDL particle reforms and is then targeted to intracellular membranes, where the ApoA-I 

becomes lapidated. The HDL particle then undergoes re-secretion back into the circulation where it is 

targeted to the liver (Neufeld et al., 2004; Takahashi and Smith, 1999).  

 

1.4.2 Lipid Rafts and Caveolae 
  

The cell membrane is best characterized as a fluid bilayer containing well over 2000 species of 

lipids with distinct properties (Barenholz, 2000). Some of these lipids prefer to interact with hydrophobic 

protein regions, others prefer to associate with each other and some even act in an exclusionary 

manner. Because of these diverse properties, formations of distinct lipid structures arise and create 

what are referred to as phase separations (Binder et al., 2003). Cholesterol, along with sphingolipids, is a 

very important component in the formation of liquid-ordered (Lo) phases along the cell membrane 

which are otherwise known as lipid rafts. Lo phases are organized structures or domains that exist 

within a sea of more fluid membrane regions, which are referred to as liquid-disordered phases (Ld). 

These cholesterol-sphingolipid interactions are so strong that they are resistant to most detergents used 

to disrupt cell membranes. Because of this stability, lipid rafts commonly associate with protein 

structures that require close proximity with other proteins for functionality or to serve as targets for 

regulation. These roles were determined using the fact that lipid rafts participate actively in signal 

transduction pathways in the cell as well as having been implicated in the structural organization of ion 
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channels and SNARE proteins in the β-cell and cardiomyocyte membranes (Maguy et al., 2006; Xia et al., 

2008).  

 Caveolae are small invaginations within a cell membrane that are rich in sphingolipids, 

cholesterol, and caveolin (Helms and Zurzolo, 2004). They have the distinct property of also being 

detergent resistant and are considered a sub-type or specialized form of lipid rafts. As seen in figure 5, 

caveolae possess a static flask-shaped form which arises from the coalescence of smaller rafts. Caveolin-

1 makes this specialized structure possible by oligmerizing with itself and forming the cytoplasmic face’s 

caveolin coat (refer to fig. 5 B) (Rothberg et al, 1992). Many receptors and channel proteins involved in 

the insulin secretion response have been found to colocalize with lipid rafts or caveolae, such as GLUT 

transporters, insulin receptors and voltage-gated potassium and calcium channels (Bickel, 2002; Xia et 

al., 2008). Caveolin knockout mice have also been shown to confer a degree of insulin resistance, as well 

as further studies that propose a regulatory relationship between caveolin and insulin receptors 

(Capozza et al., 2005; Karlsson et al., 2002; Yamamoto et al., 1998).  

 

1.4.3 Cholesterol and Lipid Rafts in β-cell Dysfunction 
  

There have been numerous studies conducted looking at the effects of increasing, as well as 

decreasing, lipid content in the β-cell and how it affects function. More recently, a study conducted by 

Bogan and his colleagues (2012) determined that across a variety of β-cell lines, the insulin granule 

possesses the highest concentration of cholesterol when compared to all other cellular and organelle 

membranes. 
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Figure 5. Common lipid raft and caveolae structural organization in mammalian cells. In A) the lipid raft is seen 

with a high concentration of sphingolipids and cholesterol when compared to the rest of the membrane. In B) the 

caveolae is seen also with high sphingolipid and cholesterol content, in addition to caveolin organized throughout 

the cytoplasmic face of the caveolae.  

Reprinted from “Caveolae: From Cell Biology to Animal Physiology,” by B.  Razani, SE. Woodman, MP. Lisanti, 2002, 

Pharm. Rev. 54 (3):431-467. ©2002. Reprinted with permission. 
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Thus, when lipids like cholesterol were increased or even decreased in the β-cell, the most obvious 

effects were found to be in mechanisms involving the insulin granule, from trafficking, maturation, as 

well as secretion. Bogan suggested that an increase in cholesterol caused an increase in granular size, 

which in turn prevented normal docking and fusion of insulin granules (Bogan et al., 2012). Oddly, a 

decrease in β-cell function was also witnessed when cholesterol was significantly reduced in the β-cell 

(Tsuchiya et al., 2010), and in one instance, the reduction in cholesterol was also associated with 

increased granular size resulting in decreased secretion (Sturek et al., 2010). Although some findings do 

appear to potentially contradict each other, the foundation on which the conclusion was built on 

remains the same; a disruption in cholesterol homeostasis bears severe adverse effects on β-cell 

function and insulin secretion. 

Recent findings have also established a strong connection between necessary machinery 

required for a GSIS response and lipid rafts. As with the case of voltage-gated calcium channels, many 

proteins involved in signal transduction have a localization requirement for a stimulus to become 

effective (Yang and Berggren, 2006). Numerous other studies have proven repeatedly that channels are 

targeted to lipid rafts, and that the loss of these rafts is associated with diminished effects of the target 

protein. For example, lipid raft studies in HEK293 cells showed that when cholesterol was reduced in the 

cell, a loss of colocalization of voltage gated potassium channels with their associated receptors 

occurred (Oldfield et al., 2009). Additionally, in the case of β-cells in particular, voltage-gated calcium ion 

channels were found to colocalize with SNARE proteins required for exocytosis, and when this 

colocalization was disturbed, secretion was notably diminished (Xia et al., 2007; Xia et al., 2008). This 

relationship between reduced cholesterol and impaired glucose secretion is the basis of the many meta-

studies conducted that explore the connection between statin usage and the development of diabetic 

phenotypes. In the next section, the results of vast meta-studies conducted on clinical trials involving 
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statin use and diabetes risk will be explored, allowing us a practical and applicable perspective on the 

relationship of cholesterol reduction and T2DM.  

 

1.5 Statins and Diabetes 
 

Although it has been well over a century since high cholesterol was first discovered to increase 

risk of cardiovascular disease, it was not until the mid-1900s that a cholesterol biosynthesis pathway 

inhibitor was found. However, the first naturally occurring inhibitors were far too toxic to be used in a 

clinical setting and it took almost three decades after that to find a usable alternative. In 1978, a team 

working at the Merck laboratories discovered a compound they could isolate from fermented 

Aspergillus terreus broth. They called this compound mevinolin, and it proved to be a potent inhibitor of 

3-hydroxy-3-methyl-glutaryl-CoA reductase (HMG-CoA), a vital enzyme in the cholesterol biosynthetic 

pathway. Later, the official market name of this compound became lovastatin, creating the general term 

‘statin’ for all future HMG-CoA inhibitors (Tobert, 2003). Shortly after the last stages of clinical trials, 

statins have grown to become the most widely prescribed cardiovascular disease medication around the 

world (Mills et al., 2011). Originally thought of as a wonder drug with no negative side-effects, statin 

therapy has recently been looked at from a much more critical light. Oddly enough, the criticism started 

shortly after statins were thought to have additional benefits that went beyond fighting cardiovascular 

disease. One of the earliest reports to assess the risk and benefits associated with long term statin use 

had actually found statins to not only effectively decrease incidences of cardiovascular injury, but also to 

decrease the risk of developing T2DM (Freeman et al., 2001). The West of Scotland Coronary Prevention 

Study, or WOSCOPS, suggested that there existed a protective effect with pravastatin usage in 

preventing new onset diabetes. To further support this theory, research conducted on Zucker rats also 
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found a significant reduction in diabetes susceptibility (Wong et al., 2006). This triggered a multitude of 

further research and meta-analyses to verify this protective effect. However, virtually all studies after 

WOSCOPS had in fact found the opposite to be true; statin usage was associated with a small, but 

significant risk, of developing T2DM.  

 

1.5.1 Meta-Analyses Linking Statin Use and New Onset Diabetes 
  

Since the turn of the century, there have been well over a dozen major randomized clinical trials 

assessing both the benefits and risks of statin use. In light of the immense amount of data collected 

from all these studies, a series of meta-analyses were conducted to determine what all the results 

meant from a clinical standpoint. From the perspective of how well statins performed to reduce 

cardiovascular event rates, all studies were unanimous in agreeing that the benefit statins provided was 

significant (Colbert et al., 2012; Goldfine, 2012; Preiss et al., 2011; Preiss and Sattar, 2011; Sattar et al., 

2010). However, when looking at the risk to the development of new onset diabetes, the studies were in 

slight disagreement as to what the severity of the risk was. Despite the differences in perceived risk, 

almost all the meta-analyses did agree at the end that the benefit to cardiovascular disease did 

outweigh the overall risk of developing diabetes.  The existence of a connection between statin 

treatment and new onset diabetes has repeatedly been established however, and much can be learned 

about the nature of diabetes by considering the findings of both statin trials as well as the meta-analyses 

that arise from them.  

In 2010, a major collaborative analysis of statin trials was carried out by Naveed Sattar and a 

multitude of other prominent researchers. What they determined across 13 trials involving 91,140 

participants, was that patients using statin therapy experienced an overall 9% increased risk in 
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developing new onset diabetes incidences (Sattar et al., 2010), with some of the studies reporting values 

as high as a 25% increased incidence of physician diagnosed diabetes (Ridker et al., 2008). As if to 

reinforce this relationship between statins and diabetes, a follow up analysis of new statin trials that 

surveyed specifically for diabetes risk was conducted. In that study, Sattar and colleagues confirmed a 

dose-dependent effect with statin usage as well as differences in the risk of new onset diabetes when 

different statins with higher potencies were used (Preiss and Sattar, 2011). They found that the overall 

risk increased from 9% to 12% when patients were prescribed intensive-dose statin therapy. However, 

when assessing the only placebo-controlled trials using statins, the rate was much higher. There are two 

major clinical trials to date that involve a placebo group. The first is the Stroke Prevention by Aggressive 

Reduction in Cholesterol Levels (SPARCL) investigation which was conducted in 2006. This statin trial 

randomly assigned 4,721 patients who had experienced a cardiovascular complication within one to six 

months prior to the study to either an intensive statin dose or placebo group (Amarenco et al., 2006). 

After the trial was concluded, 3803 patients that did not possess diabetes at baseline were examined to 

see if any symptoms had arisen. 166 patients on an 80 mg atorvastatin dose developed diabetes, 

whereas only 115 did that were in the placebo group. This translated to a 44% increase in new onset 

diabetes incidence in the high dose statin group, indicating that the use of statins significantly increased 

risk (Waters et al., 2011). The conclusion of this study was that for every 10 patients protected from a 

cardiovascular complication event, 7 additional cases of diabetes occurred. The second trial to include a 

placebo group had found even more compelling values of statin’s risk in developing diabetes. The 

Justification for the Use of Statins in Primary Prevention: An Intervention Trial Evaluating Rosuvastatin 

(JUPITER) trial was conducted in 2010 and involved almost 17,000 participants (Mora et al., 2010). This 

trial had been conducted to see if there were any gender specific outcomes from undergoing statin 

therapy, of which none were found. However, the final conclusion of the trial was that for every 10 

patients protected from a cardiovascular complication event (either male of female), 9 patients 
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developed diabetes (Preiss and Sattar, 2011). As previously mentioned, another point of interest was 

that of the differences between certain statins. Rosuvastatin, the most powerful type of statin, showed 

an 18% increase in overall risk of developing new onset diabetes, whereas a modest strength statin, 

pravastatin, yielded only a 3% increased risk (Preiss and Sattar, 2011). Additionally, the drastically 

different risk assessments found in the JUPITER trial versus the other statin trials could partially be 

attributed to an assessment made exclusively on rosuvastatin use. Regardless of the outcomes, the 

meta-analyses conducted on recent major statin trials all point to a significant and real relationship 

between statin use and new onset diabetes.   

 

1.5.2 Other Cholesterol Biosynthesis Inhibitors: AY 9944 
  

Within this thesis more than just statins were used to see the effects of restricting endogenous 

sources of cholesterol. The drug AY 9944 was also employed and showed very strong results that 

appeared to be even more drastic than the results obtained with statin usage. Unlike statins which 

inhibit the initial step of cholesterol biosynthesis, AY 9944 targets the enzyme 7-dehydrocholesterol 

reductase (DHCR7) which catalyzes the last step of cholesterol biosynthesis; the conversion of 7-

dehydrocholesterol to cholesterol (refer to figure 4). Understanding the implications of using AY 9944 

versus statins then became a very important task. There have been noted mutations of the DHCR7 

enzyme in humans manifesting into the disease called Smith-Lemli-Opitz syndrome (SLOS), an autosomal 

recessively inherited disorder. SLOS is a severe defect that leads to very low plasma cholesterol levels 

and elevated levels of 7-dehydrocholesterol (Gedam et al., 2012). Associated symptoms are mental 

retardation, facial dysmorphism, cardiac and renal complications, polydactyly and oligodactyly, with an 

overall failure to thrive and develop. Patients with homozygous mutations in the DHCR7 gene die during 
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early childhood (Gedam et al., 2012). These devastating symptoms emphasize the importance of 

cholesterol in cellular structure, essential mechanisms, and signalling pathways. However, it also 

demonstrates how accumulation of 7-dehydrocholesterol in the cell can be very toxic. Fairly recently, a 

group conducted a series of experiments on DHCR7 knockout mice and assayed for cellular and 

physiological effects of 7-dehdryocholesterol accumulation as well as the reduction of available 

cholesterol. One interesting finding was that 7-dehydrocholesterol accumulation appeared to trigger 

increased proteolysis of HMG-CoA reductase, which further exacerbated the effects of inhibiting or 

knocking out DHCR7 (Fitzky et al., 2001). 

 

1.6 Experimental Aims and Hypothesis  
 

 If current research is any indication of the state of a β-cell after disturbing cholesterol 

homeostasis, it is evident that either cholesterol overloading or inhibition plays a part in the 

development of diabetic-like symptoms. The aims of my research are first to establish a base line 

reference from which I can assess the degree of cholesterol reduction in the MIN6 mouse pancreatic β-

cell under varying experimental conditions. Afterward, the effects of the reduction on glucose 

stimulated insulin secretion as well as overall β-cell function and health were assayed. Using a variety of 

techniques, from ELISA, patch-clamp, and RT-PCR, a deeper understanding of the impact that 

cholesterol reduction has on the development of T2DM-like symptoms using the MIN6 cells was 

determined. 
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1.6.1 General Hypothesis 
 

Cholesterol plays a number of important roles in the cell, including being a vital component to 

membrane integrity, localization of proteins, cell trafficking, signaling, and gene transcription. Xia et al. 

(2004) have proposed that reducing cholesterol, which is a key component in lipid raft formation, will 

compromise the structural stability of microdomains within the plasma membrane dedicated to insulin 

secretion. Additionally, it has been suggested that integral to these microdomains are lipid-protein 

interactions that allow for proper signaling between protein complexes within the cell that help fusion 

events occur (Helsm and Zurzolo, 2004; Seino et al., 2011). My hypothesis is cholesterol reduction will 

have over-arching effects on β-cell electrical activity, specifically by affecting the mRNA profiles of 

important SNARE proteins, insulin, and ion channels, all contributing to the reduction of glucose 

stimulated insulin secretion.    
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2.0 Methods 

 

2.1 Cell Culture 
  

Mouse insulinoma cell line 6 (MIN6) cells were maintained in Dulbecco’s Modified Eagle Media 

(DMEM; 25 mM glucose) from Wisent, QC, enriched with 10% v/v fetal bovine serum (Invitrogen, 

Burlington, ON), 1X penicillin/streptomycin (Invitrogen), and 4.86 x 10-5 M β-mercaptoethanol (Sigma-

Aldrich, Oakville ON) in 500 ml DMEM. A volume of 10 ml enriched DMEM per 10 cm dish was kept 

standard for cell maintenance, in a 5.0% CO2 incubator.   

 

2.2 Cell Passage 
 

Cells were passaged when cell confluency was high (~85%).  Cells were removed from the dish 

with the use of 1.5 ml of 0.5% v/v trypsin (Invitrogen) per 10 cm dish, and then collected in 3 ml 

enriched DMEM and centrifuged at 1600 g in a Thermo Scientific 4600 RPM Sorvall centrifuge (Thermo 

Scientific, Rockford IL, USA) for 2 minutes. Afterwards, each dish of cells collected was passed into fresh 

10 cm dishes or 6-well plates. The number of dishes and plates depended on pellet size.  
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2.3 Trypan Blue Cell Viability Assay 

  

After cells were treated in 6-well dishes for 24-48 hours, the media was aspirated then the cells 

washed once with 1X PBS to minimize serum staining. After the wash, 400 µl of fresh sterile 1X PBS was 

added to the well, followed by 200 µl of 0.4% trypan blue (Invitrogen). This mixture was allowed to 

incubate for 3 minutes. One field of vision was counted at a time, with cells that possessed a blue 

cytoplasm indicating a dead cell versus one that excluded the blue color. Five fields of vision per well per 

treatment was averaged to give the mean cell viability per treatment sample group. There were 3 wells 

per treatment group. 

 

2.4 Western Blot 
 

After MIN6 cells were plated into 6-well dishes and treated with statins or AY 9944 for 48 hours, 

they were then washed once with 1X PBS and 1 ml of clean 1X PBS added to each well. Cells were then 

scraped off using a rubber scraper and dispensed into sterile Eppendorf tubes. The tubes were then 

centrifuged for 5 minutes at 3000 g, and the supernatant removed. 50 µl of immune-precipitation (IP) 

buffer (150 mM NaCl, 20 mM Tris-HCl pH 7.4, 1 mM EDTA, 1mM EGTA with 1% Triton-X100) was then 

added to the pellets. Samples underwent Bradford assay to determine protein content and 20 g of 

protein, along with a protein ladder, was loaded into a 1X sodium dodecyl (lauryl) sulfate-

polyacrylamide gel (SDS-PAGE). Gel electrophoresis was then carried out and proteins were transferred 

onto a polyvinylidene difluoride-plus (PVDF) membrane (Fisher Scientific Ltd., Nepean ON). Primary 

antibodies were used to bind to the protein of interest on the membrane; Kv2.1 at 1:1000 dilution 

(Abcam, ON, Canada), Cav1.2 at 1:500 dilution (Alomone Labs Jerusalem, Israel), and β-actin at 1:5000 
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dilution (Cell Signalling Technology Inc., MA, USA). The secondary antibody used were anti-mouse or 

anti-rabbit HRP conjugated antibodies at the concentration of 1:20,000 (Jackson Immuno Research 

Laboratories, PA, USA). The proteins on the PVDF membranes were visualized via chemiluminescence 

using ECL (GE Healthcare, Mississauga ON) and captured on X-ray film (Eastman Kodak Co., Rochester 

NY, USA). Using ImageJ (NIH, United States), densitometry was performed on these films. 

 

2.5 Cholesterol Isolation 
  

MIN6 cells were treated for 48 hours with specified drug (i.e. AY 9944, statins). After the 48 hour 

period, media was removed and cells washed twice with cold 1X PBS. 1 ml PBS was then added and the 

cells were scraped off and collected into an Eppendorf tube. 200 µl of the collected cells were then 

placed into a different tube to run a Bradford assay. All tubes were then centrifuged at 3000 rpm for 5 

minutes, and the supernatant was discarded. Tubes for cholesterol assays had 50 µl 2:1 chloroform-

methanol and 100 µl PBS added to them, while the tubes for Bradford assays had 50 µl IP buffer (150 

mM NaCl, 20 mM Tris-HCl pH 7.4, 1 mM EDTA, 1mM EGTA with 1% Triton-X100), with protease inhibitor 

(Roche, Manheim, Germany) added to them. Bradford tubes were then set aside in at -70 °C for later 

use, and the cholesterol assay tubes mixed and set on ice for 10 minutes. Cholesterol samples were then 

centrifuged at 10,000 rpm for 5 minutes at 4°C. The top layer of the supernatant (PBS) was discarded, 

and the remaining 2:1 chloroform-methanol mixture was vacuum dried with a steady nitrogen stream. 

200 µl cholesterol assay buffer (Cayman Chemical Company, Ann Arbor MI, USA) was then added to the 

dry cholesterol. This could be stored at -70 °C or used immediately.   
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2.6 Cholesterol Assay  
  

A cholesterol standard was made from the provided cholesterol stock according to the 

manufacturer’s protocol (Cayman Chemical Company). 50 µl of standard and samples (made from the 

protocol in 2.4 Cholesterol Collection) was loaded into each well of a 96-well plate. 50 µl of the assay 

cocktail was also added to each well and the plate covered. The plate was then incubated for 30 minutes 

at 37°C protected from light. After incubation the plate was read using a Fluoroscan Ascent plate reader 

(Thermo Scientific, Rockford IL, USA). The data was read using a fluorescence excitation wavelength of 

560 nm and an emission wavelength of 590 nm, and analyzed using the Ascent Fluoroscan software.  

 

2.7 Glucose-Stimulated Insulin Secretion (GSIS) Assay 
 

 Cells were seeded into multiple 6-well plates and grown to a confluency of approximately 60% 

prior to drug administration. Triplicates for each drug group were prepared (3 wells per drug) and cells 

washed once with 1X PBS after 24 hours prior to adding fresh treatment media. The cells were then 

incubated for 48 hours with FBS and LPS enriched media containing either 10 µM AY 9944 (Sigma-

Aldrich), 10 µM pravastatin (Sigma-Aldrich), 10 µM Atorvastatin (Tocris Bioscience, Ellisville MO, USA), 

or no drug at all. After 48 hours, cells were washed with 1X PBS and incubated for 2 hours in 1 mM low 

glucose DMEM media (Sigma-Aldrich). During this time, KRB buffer was prepared (129 mM NaCl, 5 mM 

NaHCO3, 4.8 mM KCl, 2.5 mM CaCl2, 1.2 mM KH2PO4, 2.4 mM MgSO4, 10 mM HEPES, and 0.1% BSA). A 

volume of 50 ml low glucose KRB (1 mM glucose) and 50 ml high glucose KRB (16.7 mM glucose) were 

prepared in separate tubes. After the 2 hour incubation, the cells were then washed once with 1X PBS 

and 500 µl low glucose KRB added to each well. The plates were then incubated for 30 minutes. After 30 
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minutes, the media was aspirated from each well and 1 ml of low glucose KRB added, this was then 

incubated for 1 hour. The media was then collected and spun down at 3000 rpm for 5 minutes. 500 µl of 

the supernatant was kept and stored at -20°C for later analysis. 1 ml of high glucose KRB was then added 

to each well and incubated again for 1 hour, then collected and spun down at 3000 rpm for 5 minutes. 

Again, 500 µl of the supernatant was kept and stored at -20°C. The plates were then washed once with 

cold 1X PBS then 1 ml of sterile 1X PBS was added. Each well was then scraped and collected into two 

tubes filled with 500 µl each of the cell lysate. One tube would be kept for a Bradford assay, which was 

spun down for 5 minutes at 3000 rpm, supernatant removed, and 50 µl of IP buffer added (150 mM 

NaCl, 20 mM Tris-HCl pH 7.4, 1 mM EDTA, 1mM EGTA with 1% Triton-X100). The other set of tubes were 

then sonicated at 15% amplitude for 20 seconds to homogenize the sample, using a Fisher Scientific 

Sonic Dismembrator 500 (Fisher Scientific Company, Ottawa ON). These samples were used to 

quantitate the amount of total insulin content in the cells and stored at -20°C.  

 

2.8 ELISA Assay 
 

 ELISA was performed using the samples obtained from the GSIS assays. 96 well plates were 

coated using 100 µl/well of D6C4 insulin-proinsulin, rat-mouse antibody (Hy-Test Ltd., Turku, Finland) 

diluted in 1X PBS for a working concentration of 2 µg/ml. The plate was then stored overnight at 4 °C. 

The contents were discarded and the plate was then tap-dried. Afterward, 300 µl of blocking buffer (1% 

BSA, 5% sucrose in 1X PBS) was added to each well and the plate incubated for 2 hours at room 

temperature. The blocking buffer was then discarded and the plate tap-dried, and then placed in a 

ventilation hood for 1 hour. The coated 96 well plate was then wrapped in foil and kept at 4 °C overnight 

for storage.  



50 
 

 A stock sample of insulin was diluted in ELISA dilution buffer (1% BSA in 1X PBS) to create a 

standard. Collected samples of cell supernatant and whole cells were diluted in dilution buffer for 

readings within the standard curve. The samples and standards were then loaded into a 96 well plate for 

a final volume of 100 µl/well. This was then incubated on a rocker for 1 hour at room temperature. After 

incubation, the wells were emptied and tap-dried. Wash buffer (0.1% Tween-20 in 1X PBS) was then 

added at a volume of 200 µl/well, placed on an orbital rocker for 2 minutes, then dried. This was 

repeated 3 times. D3E7-HRP secondary antibody (Hy-Test Ltd., Turku, Finland) was then loaded at a 

volume of 100 µl/well with a concentration of 0.5 µg/ml in ELISA dilution buffer. The plate was then 

incubated again at room temperature for 1 hour on a rocker. After incubation, 100 µl of ready to use 

Pierce TMB-ELISA (Thermo Scientific) was added to each well and incubated at room temperature for 

10-15 minutes, or until a significant color change was detected. The plates were then read using a DTX 

880 Beckman Coulter 96-well plate multimode detector for absorbance at 450 nm (Beckman Coulter, 

Mississauga ON). The data was then analyzed using Beckman Coulter’s multimode analysis software.  

 

2.9 DNA Amplification 
  

An Eppendorf tube containing approximately 50 µl of competent DH5α bacterial cells were 

thawed and 1 µl of the plasmid DNA to be amplified was added (see sections 2.10 and 2.11 below for 

plasmid details). The tube was then gently mixed and placed on ice for 30 minutes. The bacteria was 

heat shocked by being placed in a 37°C water bath for 30 seconds then back on ice for 2 minutes. 200 µl 

LB medium (1% w/v tryptone, .5% w/v yeast extract, 1% w/v NaCl, pH to 7.0) was then added to the 

tube and incubated at 37 °C for 1 hour with vigorous shaking (250 rpm). 50 µl was pipetted onto 

antibiotic treated LB plates (3 g agar, 200 ml LB medium, 20 mg kanamycin or ampicillin) and incubated 
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at 37 °C overnight. A single colony was picked and allowed to grow for 8 hours in a tube containing 5 ml 

of selective LB medium at 37°C with vigorous shaking (250 rpm). The tube was then transferred into a 

pre-weighed 50 ml tube containing 45 ml of selective LB medium and allowed to grow overnight (12-16 

hours). After the incubation time, the tube was weighed again to obtain the pellet wet weight. If the 

contents of the tube weighed ~3 g/liter, the tube was centrifuged at 6000g for 15 minutes at 4 °C. The 

supernatant was then removed, keeping only the pellet. 

A Promega PureYield Plasmid Midiprep system (Promega Corporation, Madison WI, USA) was 

then used to isolate the plasmid DNA from the pellet obtained from the previous steps. 3 ml Cell 

Resuspension Solution was added to the harvested pellet followed by 3 ml Cell Lysis Solution. The tube 

was then inverted 4 times to mix. 5 ml Neutralization Solution was then added to stop the lysis reaction. 

The lysate was centrifuged at 15000g for 15 minutes and then the supernatant carefully decanted into a 

PureYield clearing column. The lysate was then vacuumed through the clearing column and into a 

binding column which captured the DNA. Afterward, 5 ml Endotoxin Removal Wash was added and 

vacuumed through the column, followed by 20 ml Column Wash Solution. The DNA was then eluted into 

a sterile Eppendorf tube using 500 µl Nuclease-Free water and the concentration measured using a 

NanoDrop system (Thermo Scientific). 

 

2.10 Luciferase Promoter Assay 
 

 MIN6 cells were passed into 6-well plates and incubated overnight in regular FBS enriched 

media. Once the confluency reached approximately 60% per well, the cells could be used for 

transfection. A mixture of 2 µl Lipofectamine-2000 (Invitrogen), 1 µg plasmid DNA and 0.1 µg Renilla 

DNA (details below), was added for every 1 ml of total Opti-Mem media (Invitrogen). This mixture was 
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allowed to incubate at room temperature for 30 minutes prior to adding to the cells. After the 

incubation time, the plated cells were aspirated and washed once with 1X PBS before adding 1 ml of the 

DNA containing Opti-Mem mixture to each well. The plates were then incubated overnight in a 37°C 

incubator. After this period, the transfection mixture was aspirated from the plates and appropriate 

treatment media was added to the wells. The cells were then incubated for 48 hours, changing the 

treated media after 24 hours. After the treatment period, the cells were washed twice with cold 1X PBS 

and then 300 µl of lysis buffer was added to each well (20 mM Tris at pH 7.4 with 0.1% Triton-X100). The 

cells were then collected using rubber scrapers into labeled Eppendorf tubes and vortexed for 10 

seconds. The tubes were then centrifuged at 12,000 rpm in 4°C for 10 minutes. 20 µl of the supernatant 

was then added to 5 ml luminometer tubes to be used for both the luciferase and Renilla luciferase 

readings. A Promega Luciferase Assay System (Promega Corporation, Madison WI, USA) was used to 

determine luminescence of all the samples on an EG&G Berthold – Lumat LB 9507 luminometer 

(Berthold Technologies GmbH & Co. KG, Bad Wildbad, Germany).  

 Test Plasmids 

The cells were transfected with one of three luciferase containing plasmids fused with either the 

rat insulin-1 promoter, L-type Ca2+ channel α1C subunit promoter, or the Kv2.1 promoter. Ins715-Luc was 

the reporter plasmid used to assay for rat insulin-1 promoter activity. It contained the gene promoter 

fragment from -715 to +31 bp of the rat ins-1 gene, cloned into the SmaI site of a basic pGL2 vector from 

Promega (courtesy of Dr. Michiyo Amemiya-Kudo; Amemiya-Kudo et al., 2005). The L-type Ca2+ channel 

α1C subunit reporter plasmid was created by inserting the -1727 to +220 bp region of Isoform A of the 

CACNA1C gene into a pGL3 vector (Promega). The fragment was inserted into the poly-linker region 

using the BamHI restriction site (courtesy of Dr. Stanley Nattel; Pang et al., 2003). Finally, the KV2.1 

reporter plasmid was generated using the KCNB1 gene from mouse which was 1601 bp in length. It was 
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inserted into the pGL2 vector (Promega) at the KpnI and XhoI restriction sites (courtesy of Dr. David 

McKinnon; Rosati et al., 2008). Each sample was also transfected with a Renilla luciferase plasmid (phRL-

SV40) at a 1,000 fold lower concentration than the test plasmids, to act as an internal control.  

 

2.11 Secreted Alkaline Phosphatase (SeAP) Luciferase Assay 
 

 Cells were passed into 6-well plates and incubated overnight in regular FBS enriched media. 

Once the confluency reached approximately 60% per well, the cells could be used for transfection. A 

mixture of 2 µl Lipofectamine-2000, 1 µg plasmid DNA (Genecopoeia, Rockville MD, USA) was added for 

every 1 ml of total Opti-Mem media. This mixture was allowed to incubate at room temperature for 30 

minutes prior to adding to the cells. After the incubation time, the plated cells were aspirated and 

washed once with 1X PBS before adding 1 ml of the DNA containing Opti-Mem mixture to each well. The 

plates were then incubated overnight in a 37°C incubator. After this period, the transfection mixture was 

aspirated from the plates and appropriate treatment media was added to the wells. The cells were then 

incubated for 48 hours, changing the treated media after 24 hours. The media was then collected and 

used in the Secrete-Pair Assay Kit protocol as provided by Genecopoeia. Briefly, a buffer mixture was 

prepared to cause fluorescence of the secreted Gaussia luciferase from the cell. 100 µl of this buffer 

mixture was then added to a luminometer tube holding 20 µl of the collected cell media. The tubes were 

then read on an EG&G Berthold – Lumat LB 9507 luminometer and the values recorded. Afterward, the 

collected cell media was heated to 65°C for 10 minutes then cooled on ice. A buffer mixture to detect 

secreted alkaline phosphate (SeAP) was then added at a volume of 100 µl to luminometer tubes 

containing 20 µl of heated cell media. These samples were then read on an EG&G Berthold – Lumat LB 

9507 luminometer and again, recorded. The SEAP values were used to normalize the obtained Gaussia 
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luciferase luminescence readings. Gaussia luciferase was attached to the promoter sequence of interest, 

whereas SEAP was attached to a constitutively expressed promoter region on the same plasmid.  

 

 Test Plasmids 

  Cells were transfected with one of four different pEZX-PG04 (see appendix figure A1) vectors 

fused with promoter sequences. The vector itself contained Gaussia luciferase downstream of the 

promoter of interest, followed by Secreted Alkaline Phosphotase (SeAP) downstream of a CMV 

promoter to act as an internal control. The test promoters were syntaxin 1A (brain) (STX1A), 978 bp in 

length; potassium inwardly-rectifying channel, subfamily J, member 11 (KCNJ11), 1417 bp in length; 

synaptosomal-associated protein 25 kDa (Snap25), 1287 bp in length; or a negative control clone which 

was a pEZX-PG04 vector with no test promoter. 

 

2.12 RNA Isolation 
 

Cells were plated into 6-well plates and treated with drug or no drug for 48 hours. Afterward, 

the media was aspirated and then the cells were washed once with 1X PBS. A RNeasy Mini kit from 

Qiagen was used for the RNA isolation (Qiagen Inc., Mississauga ON). 350 µl of Buffer RLT containing 1% 

v/v β-mercaptoethanol was added to each well and the cell lysate was collected using a rubber scraper. 

The cell lysate was then transferred to an Eppendorf tube and vortexed for 10 seconds to mix. 350 µ of 

70% ethanol was then added to each tube and was mixed by pipetting. The entire contents of each tube 

(700 µl) was then transferred into an RNeasy mini spin column and centrifuged at 10,000 rpm for 15 

seconds. 700 µl of Buffer RW1 was then pipetted into the RNeasy column and centrifuged again for 15 
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seconds at 10,000 rpm to wash. 500 µl of Buffer RPE was added, and again centrifuged for 15 seconds at 

10,000 rpm, followed by the addition of another 500 µl of Buffer RPE for a second wash. The RNeasy 

spin column was then placed on top of a new eppendorf tube. 40 µ of RNase-free water was added and 

then collected by centrifuging again at 10,000 rpm for 1 minute. The concentration was measured 

afterward using a NanoDrop, ensuring that the A260 : A230 ratio was greater than 1.7, the A260 : A280 ratio 

was between 1.8-2.0, and the concentration determined by the A260 was greater than 40 µg/ml. 

 

2.13 cDNA Synthesis 
 

Using isolated RNA from the protocol described above in 2.12, cDNA was synthesized using the 

Qiagen RT2 First Strand Kit (Qiagen). Briefly, 0.8 µg total RNA was added to 2 µl buffer GE and brought to 

a total volume of 10 µl using high grade RNase-free water. This mixture was then incubated at 42 °C for 

5 minutes then placed immediately on ice for 1 minute. This eliminated genomic DNA. 10 µl of reverse-

transcription mix was then added to each tube of the genomic DNA elimination mixture and incubated 

at 42 °C for 15 minutes, followed by a 5 minute incubation at 95 °C to stop the reaction. 90 µl of high 

grade RNase-free water was then added to each tube containing cDNA. The samples were stored at -20 

°C or used immediately.   

 

2.14 RT-qPCR Array 
 

Using the cDNA made via the protocol described above in 2.13, a PCR component mix was made 

by adding high-grade RNase free water and RT2 SYBR Green Mastermix (Qiagen) roughly in a 4:46:50 



56 
 

ratio respectively, as suggested by the manufacturer. A customized PCR array 100-well disc was 

purchased from SABiosciences and used for all PCR-Array runs. The genes of interest for this custom 

array included Slc2a2 (Glut-2 transporter), Kcnb1 (Kv2.1 channel), Abcc8 (SUR sub-unit of the KATP 

channel), Cacna1c (Cav1.2 α1C subunit), Cacna1d (Cav1.2 α1D subunit), Kcnj11 (KATP channel), Ins1 

(insulin-1), Ins2 (insulin-2), Hmgcr (HMG-CoA reductase), Dhcr7 (7-dehydrocholesterol reductase), Fdft1 

(squalene synthase), Stx1a (syntaxin-1a), Stx4a (syntaxin-4a), Snap25, Snap23, Vamp1 (synaptobrevin-1), 

Vamp2 (synaptobrevin-2), Abca1 (ATP Binding Cassette A1), Ldlr (low density lipoprotein receptor), and 

GAPDH (glyceraldehyde-3-phosphate dehydrogenase) to serve as the reference gene. A positive control 

(Qiagen’s Positive PCR Control – PPC) and a negative control (Qiagen’s Reverse Transcriptase Control – 

RTC), were also included in each sample to ensure the polymerase chain reaction occurred succesfully. 

25 µl of the complete PCR components mixtures of each treatment group were then added to individual 

wells containing all the aforementioned gene primer templates. The custom array disc was then sealed 

using a Qiagen heat sealer, and loaded into a Rotogene-Q thermocycler for reading (Qiagen). The disc 

was first centrifuged at room temperature at 1000 g to ensure all bubbles in the wells were removed. 

Afterward, the cycling conditions were designated prior to starting the PCR-Array run. The cycles 

involved were one 10 minute cycle at 95 °C to activate the HotStart DNA Taq polymerase then 

afterward, forty repetitions of 15 s at 95 °C followed by 1 minute at 60 °C, cycles. Fluorescence was 

measured during the forty cycles of amplification.  

Interpretation of the acquired data was done using the web-based RT² Profiler™ PCR Array Data 

Analysis program (http://www.sabiosciences.com/pcrarraydataanalysis.php). GAPDH was chosen as the 

reference gene used as an internal control, while either FBS or LDPS groups with no drugs, were 

designated as the control group.   

 

http://www.sabiosciences.com/pcrarraydataanalysis.php
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2.15 Patch-Clamp 
 

MIN6 cells were treated and incubated for 48 hours with a drug concentration of 10 µM in 1 ml 

FBS or LPS in 35 mm plates. Following the 48 hour treatment period, the serum was removed and 

replaced with 1 ml of external bath solution (140 mM NaCl, 4 mM KCl, 1 mM CaCl2, 1 mM MgCl2, 10 mM 

glucose and 5 mM HEPES) used for patch clamp. Micropipettes were pulled from 4 inch glass filaments 

manufactured by World Precision Instruments (Sarasota FL, USA) with an inner diameter of 1.12 µm 

using a Sutter Instruments Co. Model P-97 micropipette puller (Novato CA, USA). The micropipettes 

were then heat polished at 90°C using a World Precision Instruments MF-200 microforge to remove 

contaminants and to smooth the edges of the tip. All micropipettes were used the same day that they 

were made in order to reduce the risk of dust and debris clogging the tip. Micropipettes were filled with 

approximately 200-300 µl of 0.2 µm filtered internal pipette solution (140 mM KCl, 1 mM MgCl2, 5 mM 

EGTA, 10 mM HEPES and 5 mM MgATP) using a 1 ml syringe. Micropipettes were then inserted into a 

HEKA pipette holder connected to a HEKA EPC 10 patch clamp amplifier. Using a syringe connected to 

the pipette holder via tubing, positive pressure was applied to the micropipette before entering the bath 

solution to ensure any debris on the surface of the bath solution did not penetrate into the pipette tip. 

Individual cells were observed through a Nikon Eclipse TE2000-S microscope at 40x and, using a Burleigh 

PCS-5000 micromanipulator, the pipette was positioned to be directly over the cell membrane until a 

slight reduction in current pulses became noticeable, which indicated that the pipette tip was touching 

the membrane causing the seal resistance to increase. At this point, negative pressure was applied via 

the syringe in combination with hyperpolarizing the pipette to -80 mV in order to form a gigaseal (1 giga-

ohm seal). Using the digital controls in the PulseFIT software package, the fast capacitance (C-fast) was 

adjusted for. The patch membrane was then broken by applying brief and gentle bursts of negative 

pressure. This provided access to the interior of the cell and caused an increase in capacitance to be 
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observed. Compensation for cell capacitance was achieved by adjusting the slow capacitance (C-slow) 

and R-series controls in PulseFIT. Current was then measured in response to voltage changes from -80 

mV to 80 mV in increments of 10 mV.  Currents were normalized to cell size using the slow capacitance 

values and a current-voltage relationship was plotted for each treatment group. 

 

2.16 Statistical Analysis 

Data was analyzed using Microsoft Excel (Microsoft; Redmond, WA, USA) and GraphPad Prism 5 

(GraphPad Software, Inc.; La Jolla, CA, USA) software.  Data were analyzed using one-way analysis of 

variance (ANOVA) followed by the Student-Newman-Keuls test. A p value of less than 0.05 was 

interpreted to be an indicator of statistical significance.  Data are expressed as mean ± standard error of 

the mean (SEM) unless otherwise indicated. 
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3.0 Results 

3.1 Manipulation of Cellular Cholesterol 
 

The purpose of my thesis was to assess the effects of modifying cholesterol within a β-cell.  Thus 

being able to verify and quantitatively assess the degree of cholesterol reduction under varying 

treatments was of the utmost importance. It not only laid the groundwork for my analysis and 

interpretation of all future experiments, but it also provided the option of viewing data with the 

intention of establishing a potential correlational relationship with cholesterol content. Finally, the 

cholesterol assays also let me confirm the efficacy of the treatment groups (and drugs) used in my 

experiments. 

Cholesterol availability was manipulated by limiting the two ways through which the β-cell could 

obtain cholesterol. The first method of cellular cholesterol acquisition was through endogenous means, 

namely the cholesterol biosynthetic pathway. This pathway was inhibited using one of three different 

drugs in each treatment group. Two of the treatment groups involved use of statins. Statins selectively 

inhibit the rate limiting enzyme, 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGCR) (refer to fig. 4). 

The two statins I used in my thesis are atorvastatin, which is used clinically for intensive lipid lowering 

therapy, and pravastatin, which is typically used for patients that need to achieve only a moderate 

decrease in lipid content (Doggrell, 2004). Structurally, atorvastatin is more hydrophobic and pravastatin 

is more water soluble. The third drug (AY 9944) was used to selectively inhibit the last enzyme in 

cholesterol biosynthesis pathway, 7-dehydroxycholesterol reductase or DHCR7  (refer to fig. 4). AY 9944 

is not used clinically, but is regularly employed for research on DHCR7-related pathologies, such as 

Smith-Lemli-Opitz Syndrome (Herman, 2003; Honda et al., 1998; Kolf-Clauw, 1996; Xu et al., 2012).  
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The second method by which I limited cellular cholesterol availability was through the use of 

lipid-free serum (LPS) in cell media. This eliminated the exogenous source of cholesterol by removing all 

lipids in the extracellular space. Additionally, for assays looking at both exogenous and endogenous 

manipulation of cholesterol availability, the aforementioned drugs were administered while cells were 

incubated in LPS media.  

 As seen in figure 6, all treatment groups, when compared to the control group of MIN6 cells 

grown in FBS media, displayed a significant (p < 0.05) reduction in total cholesterol content. Additionally, 

the treatment groups involving both drug administration and restrictive LPS enriched media usage 

displayed a further reduction in total cholesterol content than any other treatment groups, and did not 

significantly differ between the three drugs (atorvastatin, pravastatin, AY 9944). When comparing the 

efficacy of drug usage in FBS supplemented media, the reduction was uniform across all three drugs 

used as well, and more interestingly, did not reduce total cholesterol any lower than the cells with no 

drug but only LPS media.  
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Figure 6. Cholesterol Content in treated MIN6 cells. Control groups were cells cultured in media with 

either FBS or LPS (Lipid Depleted Serum). LPS control (9.5±0.2 g cholesterol/mg protein, p < 0.05, n=3), 

pravastatin in FBS (9.7±0.8 g cholesterol/mg protein , p < 0.05, n=3), atorvastatin in FBS (9.6±0.6 g 

cholesterol/mg protein, p < 0.05, n=3), and AY9944 in FBS (9.5±0.3 g cholesterol/mg protein, p < 0.05, 

n=3) were all equally reduced when compared to the FBS control group (12.8±0.2 g cholesterol/mg 

protein, n=3). A further reduction in cholesterol was seen in treatment groups containing drug and LPS 

serum. This reduction was significantly lower than FBS serum control, but only AY-LPS was significantly 

lower than both AY-FBS and LPS alone (p < 0.05). Pravastatin in LPS was reduced to 7.4±0.6 g 

cholesterol/mg protein (p < 0.01, n=3), atorvastatin in LPS was 6.8±0.8 g cholesterol/mg protein (p < 

0.01, n=3), and AY9944 6.6±0.8 g cholesterol/mg protein (p <0 .01, n=3) when compared to FBS serum 

control.  
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3.2 Cell Viability Assays 
 

 After establishing the degree of cholesterol reduction under the varying treatment groups, I 

conducted a series of experiments to ensure that the changes seen in cholesterol content did not induce 

any cell toxicity or increased cell death. The trypan blue exclusion test uses a very simple approach to 

visualizing overall cell health in a particular culture. The principle with which it works off of is that live 

cells possess intact membranes capable of excluding dyes (such as trypan blue, eosin etc.), whereas 

dead cells possess compromised membranes and are unable to keep dyes out (Strober, 1997). 6-well 

plates were incubated with a diluted trypan blue mixture, but washed prior in an attempt to minimize 

serum staining (which was not always achievable as seen in Figures 8a-e). However, it was still quite 

easy to distinguish cell staining from serum staining when trypan blue stock was diluted with 1X PBS, so 

this posed as a small issue. Several fields of vision were used to obtain mean cell viability, as seen in 

figure 7. The only significant reduction in cell viability was witnessed in the AY 9944 drug group, roughly 

a 10% reduction in cell viability (from 85.4 ± 3.1% for control MIN6 cells in FBS, to 75.0 ± 5.2% in AY 9944 

treated cells). Cells treated with either pravastatin or atorvastatin were not significantly affected by 

their respective drug administration, however, AY 9944 results had to be viewed a bit more critically.  As 

such I could still remain confident that cell death had little to no influence on the collected data.  
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Figure 7. Cell Viability in treated MIN6 cells. Trypan blue exclusion test results did not significantly differ 

between treatment groups and the FBS control group (85.4±1.4% viability, n=5) except for cells treated 

with AY9944 (75.0±2.3%, p <0.05, n=5) which differed from all other groups significantly, except for 

atorvastatin (p = 0.182).  
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Figures 8a-e. Light microscopy images of trypan blue exclusion test. Light microscopy images of a field 

of view count for each treatment group (A: FBS, B: LPS, C: 10 µM pravastatin, D: 10 µM atorvastatin, E: 

10 µM AY9944). Serum staining is seen as dark blue in the background. Dead cells are circular and filled 

with the trypan blue dye. Healthy MIN6 cells have excluded the dye and possess a dark, solid blue 

outline along their membrane.  
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3.3 Glucose-Stimulated Insulin Secretion and Insulin Content 
  

In order to assess the effects that limiting cholesterol availability had on β-cell function, glucose-

stimulated insulin secretion (GSIS) assays were conducted. The data obtained from GSIS assays and 

insulin content assays provided tremendous insight on the differential effects of my treatment groups, 

and to what degree the β-cell’s ability to mount a response to glucose challenges were reduced. Data 

was obtained for both basal insulin secretion (1 mM glucose KRB buffer) and glucose stimulation (16.7 

mM glucose KRB buffer) conditions. Since 5 mM glucose is typically seen as the threshold for healthy 

cells to mount a response to glucose (Ashcroft, 2004), the 16.7 mM glucose KRB buffer solution should 

have elicited a very strong reaction in the cells. As seen in figure 9, every treatment group aside from 

LPS enriched media alone without drug, had a significantly reduced glucose stimulation secretion 

response, whereas only the AY 9944 in FBS group displayed a signifcant change in basal insulin secretion. 

Additionally, all drugs in LPS media saw a further reduction in high glucose secretion when compared to 

their FBS enriched counterpart. This implied that limiting both exogenous and endogenous sources of 

cholesterol may have had a compounded effect on the ability of a β-cell to mount a response to glucose 

challeneges, despite LPS enriched media not displaying any significant reductions in GSIS when 

compared to the FBS control. The only exception to this was AY 9944 treated cells, where both AY 9944 

in delipidated (LPS) and regular FBS enriched media were not significanty different.  
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Figure 9. Glucose stimulated insulin secretion profiles of all treatment groups. Secretion was measured 

as a percent of total insulin content. Basal (1 mM glucose in KRB buffer) secretion is displayed as the 

blue columns, and high glucose stimulation (16.7 mM glucose in KRB buffer) secretion is displayed as the 

red columns. The only change in basal secretion occurred in the AY 9944 in FBS supplemented media 

treatment group (1.48 ± 0.23 % of total content). Changes in glucose stimulated secretion (16.7 mM 

glucose) was seen in all drug treatment groups, PR (5.58 ± 0.55 %) and AS (4.90 ± 0.46 %), with a further 

reduction in the LPS enriched groups, PR-L (3.86 ± 0.19 %), AS-L (3.05 ± 0.26 %), AY-L (2.23 ± 0.58 %), as 

well as AY 9944 in FBS (2.67 ± 0.45 %); p < 0.05, n = 3-9.  * p<0.0.5 ** p<0.01 from FBS high glucose 

treated group.  
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 Because of the differences seen in the secretion profiles of the treatment groups, the insulin 

content was measured to see if the changes were due to a decrease in overall content. As seen in figure 

10, insulin content was normalized to overall protein content. Only four of the groups were found to 

have significantly reduced insulin content when compared to cells cultured normally in FBS enriched 

media (2.03 ± .06 µg insulin/mg protein). Pravastatin in LPS media (PR-L) was 1.26 ± 0.02 µg insulin/mg 

protein, atorvastatin in LPS media (AS-L) was 1.29 ± 0.07 µg insulin/mg protein, AY9944 in FBS media 

(AY) was 1.58 ± 0.12 µg insulin/mg protein, and AY9944 in LPS media (AY-L) was 1.170 ± 0.12 µg 

insulin/mg protein. The data suggests that the treatment groups with the most significant reduction in 

glucose stimulated secretion also had the only significantly different insulin content from the control 

group. However, the pravastatin and atorvastatin in FBS media could not be explained in this way, which 

had also seen a more modest, but significant, reduction in glucose stimulated secretion.  
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Figure 10. Insulin Content in treated MIN6 cells. Insulin content of each treatment group was 

normalized to protein content of each sample collected. Significant reductions in insulin content were 

seen in AY 9944 treated MIN6 cells (1.58 ± 0.12 µg insulin/mg protein), and in the cells grown in the 

presence of either statin or AY 9944 and delipidated serum (LPS) (PR-L, 1.26 ± 0.02 µg insulin/mg 

protein; AS-L, 1.29 ± 0.07 µg insulin/mg protein; AY-L, 1.17 ± 0.12 µg insulin/mg protein).  * p < 0.05, n = 

3-6.  
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3.4 Luciferase Assays 
  

After establishing that a change in GSIS profiles resulted in select treatment groups, it became of 

great interest to determine at what point within the secretion process this could be attributed to.  I first 

examined whether manipulating cellular cholesterol in MIN6 cells affected the transcription of a number 

of proteins important for regulating insulin secretion. Promoter assays were carried out to search for 

any aberrant promoter activity of genes important both in the transduction of the electrical signal 

(CaV1.2, KV1.2, Kir6.2 (KCNJ11) and synthesis of insulin required for secretion. Additionally, genes 

(STX1A, SNAP25) involved in the exocytotic fusion events became of great interest, as cholesterol is an 

important component of fusion pores.  

 Looking at the promoter activity of the insulin gene was the logical first step, as a trend did 

appear to exist between specific treatment groups’ reduced secretion and decreased insulin content 

(see figures 9 and 10).  The reduction in insulin promoter activity was also reflected in the insulin 

content assays. However, the remarkable reduction in promoter activity found in the AY 9944 group 

(38.6% the activity of the control group) was not reflected in the insulin content results.    

 

 The promoter activity of the Cav1.2 gene did not change significantly (Figure 12), except with a 

reduction in the AY 9944 group (~22%). However that is not to say that any changes in actual cellular 

content of this calcium channel or the localization of it, did not occur as a result of drug treatment with 

either statin or AY 9944. The Kv2.1 promoter activity assays however, displayed a great deal of changes 

due to drug treatment or LPS-enriched media alone. This subunit is part of the voltage-gated potassium 

channel responsible for stopping secretion.   
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Figure 11. Insulin Promoter Activity. Gene promoter activity was measured as fold activation relative to 

the target gene’s promoter activity under control conditions (MIN6 cells grown in FBS media). Three 

groups displayed reduced insulin-1 gene promoter activity, atorvastatin (AS; 0.69 ± 0.05, p < 0.01, n = 6), 

AY 9944 (AY; 0.39 ± 0.09, p < 0.01, n = 3), and AY 9444 in LPS media (AY-L; 0.63 ± 0.01, p < 0 .01, n = 3).  * 

p < 0.05 and ** p<0.01 compared to FBS group. 
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Figure 12. Voltage-Gated Calcium Channel Promoter Activity. The gene promoter activity for the 1C 

subunit of the L-type voltage-gated Ca2+ channel, CaV1.2, was measured as fold activation relative to the 

target gene’s promoter activity under control conditions.  The gene promoter activity was significantly 

reduced only in the AY 9944-treated group (AY; 0.78 ± 0.04, * p < 0.01, n = 3).   
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Figure 13. Voltage-gated Potassium Channel Promoter Activity. Promoter activity was measured as fold 

activation relative to the target gene’s promoter activity under control conditions (FBS-enriched, no 

drug). Both LPS (0.703 ± .09, p < 0.05, n = 3) and PR (0.632 ± .087, p < 0.01, n = 3) were reduced by 

approximately 1/3 of normal activity, whereas AS (0.36 ± .031, p < 0.01, n = 3) and AY (0.342 ± .022, p < 

0.01, n = 3), were reduced by more than half the fold activation of control.  * p  < 0.05 and ** p < 0.01 

from FBS group. 
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Dual Luciferase 

 Dual luciferase assays were used to determine promoter activity of the remaining genes of 

interest. This new system employed the use of secreted alkaline phosphatase to normalize Gaussia 

luciferase signal across all samples collected. This method was used because of the availability of 

multiple reporters of interest from Genecopoeia®. The KCNJ11 is the corresponding gene for the 

channel subunit, Kir6.2, of the ATP-sensitive potassium channel. This channel is essentially responsible 

for the initiation of the secretion response. As seen in figure 14, reporter activity for this gene was 

unaffected by drug treatment with the exception of MIN6 cells treated with atorvastatin.  Surprisingly, 

there was approximately a 1.5-2 times enhancement of KCNJ11 promoter activity.  Neither pravastatin 

nor AY9944 had any effect of KCNJ11 promoter activity. 

 The remaining reporter assays then looked specifically at SNARE proteins involved in the actual 

fusion of insulin-containing secretory granules.   The reporter assays for the two SNARE proteins (STX-

1A and SNAP25) involved in insulin granule fusion did not show any changes in reporter activity under 

any treatment group. The significance of this finding will be further discussed later on.  
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Figure 14. ATP-Sensitive Potassium Channel Promoter Activity. Promoter activity was measured as fold 

activation relative to the target gene’s promoter activity under control conditions (FBS-enriched, no 

drug). Inwardly-rectifying potassium channel, subfamily J, member 11 (KCNJ11) promoter activity 

displayed little changes from the control group except when treated with atorvastatin (AS) in either FBS 

or LPS enriched media. AS (1.96 ± .306, p < 0.05, n = 3) and AS-L (1.56 ± .239, p < 0.05, n = 3) showed a 

significant increase in promoter activity, when compared control conditions. * p <0.05 from FBS group 
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Figure 15. Syntaxin-1A Promoter Activity. Promoter activity was measured as fold activation relative to 

the target gene’s promoter activity under control conditions (FBS-enriched, no drug). All treatment 

groups were performed 3-4 times.   Syntaxin-1A promoter activity was not affected by any treatment 

group.  

 

 

 

 

 

 

 

 

Figure 16. SNAP25 Promoter Activity. Promoter activity was measured as fold activation relative to the 

target gene’s promoter activity under control conditions (FBS-enriched, no drug). All treatment groups 

were repeated with an n = 3-4.   No significant changes in the activity of the promoter regulating 

SNAP25 were seen in any groups.  
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3.5 RT-qPCR Array Fold Regulation Analysis 

  

To further explore the results obtained from the numerous gene reporter studies conducted to 

better understand potential expression changes in important proteins involved in insulin secretion, a 

large RT-qPCR Array experiment was designed. The analysis of mRNA content in cells treated with the 

different drugs, or drugs in LPS enriched media, could provide more insight on how much influence the 

changes at the transcriptional level had on the resulting GSIS profiles seen in figure. 9. The following 

series of fold regulation scatter plots were set to detect a minimum 2-fold change in mRNA content of 

the specific genes of interest (gene list available in appendix A.13.). Figures 17a-f show mRNA content 

change in treatment groups when the control group is normally cultured cells in FBS enriched DMEM cell 

media. Figures 18a-c show mRNA content changes in LPS enriched media treatment groups, when 

compared to normally cultured cells in LPS enriched DMEM cell media. Table 1 and 2 summarize the 

total fold changes (numerically) of the mRNA content of the different treatment groups.  

Atorvastatin had the most profound affect on the message level.  Significant increases were 

measured for the mRNA levels of the voltage-gated calcium channel, 1D (Cacna1d), SNARE protein 

syntaxin1A (Stx1a), and the message for the enzymes in the cholesterol biosynthesis pathway, Hmgcr 

(HMG-CoA reductase), Dhcr7 (7-dehydrocholesterol reductase) and Fdft1 (farnesyl-diphosphate 

farnesyltransferase 1; also known as squalene synthase) when compared to MIN6 cells grown in control 

media.  Reductions in the relative mRNA content for cholesterol efflux transporter, Abca1, was also seen 

(figure 17b).  In contrast, no changes were observed with any of the mRNA levels in the pravastain 

group (figure 17a), and only Abca1 message content was decreased in MIN6 cells treated with AY9944 

(figure 17c). 
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I hypothesized that treatment of MIN6 cells with the statins or AY9944 in delipidated serum-

containing media would lead to greater changes in mRNA levels when compared to cells grown in 

delipidated media alone because of the previous results displaying a compounded effect of drug use and 

lipid restriction in the media. As seen in figures 18a-c and Table 2, pravastain, atorvastatin and AY9944 

induced significant reductions (3- to 16.5-fold) in Abca1, as well as Kcnj11 and Vamp2 (AY9944).  

Surprisingly, only atorvastatin elicited a significant increase in the mRNA content of Hmgcr, Dhcr7, Fdft1 

and Ldlr (low-density lipoprotein receptor). 

Lastly, I did not observe any change in the mRNA levels of Kcnb1 (KV2.1), Cancna1c (CaV1.2), Ins1 

(insulin-1 gene) or Ins2 (insulin-2 gene) as seen with the promoter assays when referring to any of the 

aforementioned results. 
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Figure 17a.  Fold changes in mRNA content in MIN6 cells treated with pravastatin in FBS media (y-axis) 

relative to cells grown control FBS medium (x-axis).  The outside lines denote a 2-fold up- or down-

regulation of mRNA levels. 
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Figure 17b. Fold changes in mRNA content in MIN6 cells treated with atorvastatin in FBS media (y-axis) 

relative to cells grown control FBS media (x-axis).  The outside lines denote a 2-fold up- or down-

regulation of mRNA levels. Specific fold changes are identified by the red arrows (upregulated) or green 

arrow (downregulated). 
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Figure 17c. Fold changes in mRNA content in MIN6 cells treated with AY9944 in FBS media (y-axis) 

relative to cells grown control FBS media (x-axis).  The outside lines denote a 2-fold up- or down-

regulation of mRNA levels. Specific fold changes are identified by the red arrows (upregulated) green 

arrow (downregulated). 
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Figure 17d. Fold changes in mRNA content in MIN6 cells treated with pravastatin in LPS media (y-axis) 

relative to cells grown control FBS media (x-axis).  The outside lines denote a 2-fold up- or down-

regulation of mRNA levels. Specific fold changes are identified by the red arrows (upregulated). 
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Figure 17e. Fold changes in mRNA content in MIN6 cells treated with atorvastatin in LPS media (y-axis) 

relative to cells grown control FBS media (x-axis).  The outside lines denote a 2-fold up- or down-

regulation of mRNA levels. Specific fold changes are identified by the red arrows (upregulated) or green 

arrow (downregulated). 
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Figure 17f. Fold changes in mRNA content in MIN6 cells treated with AY9944 in LPS media (y-axis) 

relative to cells grown control FBS media (x-axis).  The outside lines denote a 2-fold up- or down-

regulation of mRNA levels.  Specific fold changes are identified by the red arrows (upregulated) green 

arrow (downregulated). 
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Figure 18a. Fold changes in mRNA content in MIN6 cells treated with pravastatin in LPS media (y-axis) 

relative to cells grown LPS media (x-axis).  The outside lines denote a 2-fold up- or down-regulation of 

mRNA levels.  Specific fold changes are identified by the green arrow (downregulated). 
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Figure 18b. Fold changes in mRNA content in MIN6 cells treated with atorvastatin in LPS media (y-axis) 

relative to cells grown control LPS media (x-axis).  The outside lines denote a 2-fold up- or down-

regulation of mRNA levels. Specific fold changes are identified by the red arrows (upregulated) or green 

arrow (downregulated). 
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Figure 18c. Fold changes in mRNA content in MIN6 cells treated with AY9944 in LPS media (y-axis) 

relative to cells grown control LPS media (x-axis).  The outside lines denote a 2-fold up- or down-

regulation of mRNA levels. Specific fold changes are identified by the red arrows (upregulated) green 

arrow (downregulated). 
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Table 1. Summary of Fold Regulation Changes – Normalized to FBS Control 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

LPS

Gene Symbol Fold Regulation P-value

Abca1 4.6214 0.000129

PR

NO CHANGES ABOVE 2 FOLD

PR-L

Gene Symbol Fold Regulation P-value

Hmgcr 2.8712 0.001398

Fdft1 2.1848 0.005538

AS

Gene Symbol Fold Regulation P-value Gene Symbol Fold Regulation P-value

Cacna1d 2.3014 0.016876 Abca1 -2.181 0.000169

Hmgcr 3.1821 0.000026

Dhcr7 4.077 0.000014

Fdft1 3.2378 0.00002

Stx1a 2.775 0.162995

Stx4a 2.0598 0.005872

Ldlr 2.8929 0.000184

Genes Over-Expressed in 

Test Group:

Genes Over-Expressed in Genes Under-Expressed in 

Test Group:

Test Group:

Test Group:

Genes Over-Expressed in 
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Table 1, continued 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

AS-L

Gene Symbol Fold Regulation P-value

Hmgcr 6.6231 0.000034

Dhcr7 6.0524 0.000088

Fdft1 6.9403 0.000261

Ldlr 3.7711 0.000254

AY

Gene Symbol Fold Regulation P-value Gene Symbol Fold Regulation P-value

Abca1 -2.7943 0.000111

AY-L

Gene Symbol Fold Regulation P-value Gene Symbol Fold Regulation P-value

Hmgcr 3.2659 0.024798 Kcnj11 -2.3174 0.009977

Fdft1 3.3694 0.025561 Vamp2 -2.0922 0.014558

Stx4a 2.3743 0.186175

Snap25 2.0705 0.145231

Vamp1 3.5677 0.047309

Genes Over-Expressed in Genes Under-Expressed in 

Test Group:

Genes Over-Expressed in 

Test Group:

Genes Over-Expressed in Genes Under-Expressed in 

Test Group:
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Table 2. Summary of Fold Regulation Changes – Normalized to LPS Control 

 

 

 

 

 

 

 

PR-L

Gene Symbol Fold Regulation P-value Gene Symbol Fold Regulation P-value

Abca1 -3.0175 0.001856

AS-L

Gene Symbol Fold Regulation P-value Gene Symbol Fold Regulation P-value

Hmgcr 4.0255 0.000838 Abca1 -16.5451 0.000439

Dhcr7 5.55 0.001577

Fdft1 5.1724 0.000227

Ldlr 3.1113 0.000176

AY-L

Gene Symbol Fold Regulation P-value Gene Symbol Fold Regulation P-value

Fdft1 2.5111 0.079098 Kcnj11 -2.5847 0.000289

Stx4a 2.055 0.28946 Vamp2 -2.0946 0.001112

Vamp1 2.8962 0.125864 Abca1 -6.2912 0.000165

Genes Under-Expressed in 

Test Group:

Genes Over-Expressed in Genes Under-Expressed in 

Test Group:

Genes Over-Expressed in Genes Under-Expressed in 

Test Group:

Genes Over-Expressed in 
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3.6 Immunoblotting 
  

Western blotting was conducted on two ion channels important in regulating GSIS in pancreatic β-cells; 

the voltage-gated calcium channel (CaV1.2) and voltage-gated potassium channel, KV2.1. A sample blot 

of 3 different trials is shown.  Densitometry was then conducted on the resultant blots using ImageJ 

(NIH, United States), which could calculate the differences in the density of a blot’s protein signal versus 

background. Figure 21-22. show the mean fold densitometry of each channel when compared to FBS 

control. The results depicted below show that although the Kv2.1 western blots did not have any 

statistically significant changes in protein content of the voltage-gated potassium channel, the Cav1.2 

western blots did find some changes. Both LPS and AY treatment groups displayed significant increases 

in Cav1.2 protein content (3.01 ± 0.238 fold densitometry ratio, n = 4, p < 0.01; and 2.78 ± 0.266 fold 

densitometry ratio, n = 3, p < 0.01, respectively), however the other treatment groups lacked such a 

response.  
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Figure 20. Western blot depicting Cav1.2 subunit and Kv2.1 subunit protein content. Voltage-gated 

calcium channels were measured using the Cav1.2 subunit, depicted as the top row at a size of 240 kDa. 

The voltage-gated potassium channels were measured using the Kv2.1 subunit, depicted as the center 

row at 100 kDa. The last row was the loading control for each well, β-actin, at 42 kDa. Densitometry 

measurements were taken to quantitatively access the differences in protein content for each channel 

as well as loading control. Western blots were repeated three times for each treatment group. Both LPS 

and AY treatment groups displayed significant increases in Cav1.2 protein content (3.01 ± 0.238 fold 

densitometry ratio, n = 4, p < 0.01; and 2.78 ± 0.266 fold densitometry ratio, n = 3, p < 0.01, 

respectively). 
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Figure 21. Densitometry results for Kv2.1 subunit protein content. Fold densitometry ratios were 

calculated by taking the background density of the blot and determining the density of the protein 

signal. All treatment groups’ fold densitometry ratios were calculated against their corresponding 

loading control, then normalized to the FBS control. After determining densitometry ratios over a 

sample size of three, none of the treatment groups displayed any significant changes in protein content 

(refer to Figure A.12.) 
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Figure 22. Densitometry results for Cav1.2 subunit protein content. Fold densitometry ratios were 

calculated by taking the background density of the blot and determining the density of the protein 

signal. All treatment groups’ fold densitometry ratios were calculated against their corresponding 

loading control, then normalized to the FBS control. After determining densitometry ratios over a 

sample size of three, the LPS (delipidated serum media only) group was found to increase voltage-gated 

calcium content by 3.01 ± 0.238 fold densitometry ratio (n = 4, p < 0.01), and the AY 9944 in normal FBS 

serum group increased by 2.78 ± 0.266 fold densitometry ratio (n = 3, p < 0.01).   
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3.7 Patch-Clamp Analysis 
  

Patch-clamp experiments were conducted looking at whole-cell voltage clamped current on 

treated MIN6 cells. Below is a current-voltage relationship graph of voltage-gated potassium channel 

currents under different drug treatments for 48 hours. Potassium channels were activated by stepping 

to different voltages. It is important to note that patch-clamp analysis measures only functional ion 

channels at the surface membrane.  In MIN6 cells, the primary voltage-gated potassium channel is KV2.1 

(Ashcroft, 2005). From figure 23, the results clearly indicate reduced voltage-gated potassium channel 

function in MIN6 cells treated with any of the drug groups (statins or AY 9944). The least affected were 

cells grown LPS media, having almost the same current-voltage curve as the control FBS group. At 80 

mV, the drug groups have half or significantly less than half the current than control MIN6 cells. 
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Figure 23. Current-voltage relationship graph of Kv2.1 channels under different treatment groups in 

FBS. Currents were measured using the whole-cell patch clamp technique while keeping voltage 

clamped. MIN6 cells treated with either 10 µM statin (atorvastatin or pravastatin) or AY 9944 exhibited 

significantly reduced Kv2.1 activity compared to control FBS and LPS cells. Sample size was between n = 

4-5, and treatment was for 48 hours.  
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4.0 Discussion 

 

4.1 Experimental Rationale 
  

In this thesis, a large variety of experiments were carried out in order to obtain a better 

understanding of the effects that limiting both endogenous and exogenous sources of cholesterol had 

on β-cell function. In light of this, I feel that it is both important and beneficial to explore the rationale 

behind each of the conducted experiments, and to discuss the significance of the findings of each 

individually before consolidating the information into a final conclusion.  

 

4.1.1 Cell Viability Assays 
  

The trypan blue exclusion test (refer to section 2.3) was conducted mainly for two reasons. The 

first was to confirm that cell death did not play any significant role in the observed changes in either the 

genetic regulation/expression of proteins of interest, or in the cholesterol content and resultant changes 

in GSIS profiles in the various treatment groups. The second reason was to confirm the findings of 

Tsuchiya et al. (2010), who claimed that 48 hour treatment of MIN6 cells with LPS enriched media 

exceeded 30% cell necrosis, and that treatment with statin led to over 50% cell necrosis (cf Tsuchiya et 

al., 2010, supplemental figure 2). However, the results seen in figure 7 of my experiments suggest that 

cell viability does not significantly change from normally cultured cells in FBS enriched media in any of 

my treatment groups, except for AY 9944, which elicited only a modest reduction in viability.  
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4.1.2 Cholesterol Assays 
  

The second set of experiments conducted was aimed at establishing the degree of cholesterol 

reduction that occurred in response to statin or AY 9944 treatment. These assays were integral in 

establishing any potential correlational relationships that could exist between cholesterol content and 

aberrant insulin secretion. It was also able to measure the degree of reduction when only exogenous 

sources of cholesterol (LPS enriched media) was limited, along with compounded effects of limiting both 

exogenous and endogenous sources (LPS and drug). As seen in figure 6, cholesterol reduction was 

uniform among the different drugs, as well as the compounded reduction seen when drugs were 

administered in lipid free media. Thus, it was established that a reduction in cholesterol was seen 

throughout my treatment groups, all of which also saw a change in GSIS secretion profiles.  

 

4.1.3 GSIS Assays 
  

The glucose-stimulated insulin secretions assays were an extremely important aspect of my 

thesis research as these assays directly measured the functional capacity of the β-cells after treatment 

with drugs or lipid free serum, or both. The values obtained from the GSIS assays were able to 

communicate any changes in basal insulin secretion as well as the cell’s ability to respond to glucose 

challenges. However, given the nature of the experimental design, one of the limiting factors was that I 

was unable to tease apart the amount of insulin released in first phase versus second phase of biphasic 

insulin secretion. The experiment called for an incubation time on treated MIN6 cells of approximately 1 

hour, however, first phase secretion lasts for approximately 8 minutes, and second phase persists 

beyond the 35 minute mark (Straub and Sharp, 2002). Despite that, total insulin secretion was still 

measured as a percentage of total insulin content. This still conveyed a great deal of information when 
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also taking into account any differences in total content among the treatment groups. As seen in figure 

9, all treatment groups (except for LPS enriched media only), displayed a significant reduction in glucose 

stimulated insulin secretion when compared to normally cultured MIN6 cells in FBS enriched media. 

However, contrary to the findings in my cholesterol assays, the reduction in GSIS profiles was not 

uniform across all groups. There clearly exists other factors that contribute to β-cell dysfunction beyond 

the degree of cholesterol reduction seen within the cell.  

 

4.1.4 Luciferase Assays 
  

After having had established that treatment groups experiencing a cholesterol reduction also 

saw decreases in ability to secrete insulin in response to glucose, it became of great interest to 

determine where the basis of this dysfunction existed. A paper published by Amemia-Kudo et al. (2005) 

discovered that the insulin promoter was a novel target for SREBP-1c nuclear proteins, which are 

important in cholesterol regulation. Promoter activity could provide insight into whether or not my 

treatment groups had similar effects on other gene targets involved in the GSIS response. As seen in 

figures 11 – 16, promoter activity did in fact change in certain treatment groups. The promoters that 

were assayed for were either involved with insulin synthesis (Ins-1), ion channels important in signal 

transduction (CaV1.2, KV2.1, KATP), or SNARE proteins that helped mediate insulin granule fusion and 

secretion (STX-1A, SNAP 25). The obtained results provided a great deal of insight on changes in 

promoter activity; however, as we all know, changes in gene promoters do not necessarily translate to 

changes in mRNA expression.  
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4.1.5 RT-PCR Arrays 
  

RT-PCR array plates were then designed and ordered that could measure mRNA levels of various 

important genes involved in the multiple stages of the GSIS response. This not only allowed me to cross-

reference promoter activity results with mRNA content, but also allowed me to look at a variety of other 

genes of interest (such as Vamp1/2, DHCR7, Fdft1, HMGCR, and ABCA1). The nature of RT-PCR arrays 

made high throughput data collection possible, and really provided that extra bit of information to infer 

how much of an effect a change in promoter activity had on the expression of some proteins’ mRNA. As 

previously mentioned, the threshold for recognizing a change in mRNA expression was set at 2-fold as 

per the minimum suggested threshold by the manufacturer. As seen in figures 17-19, a large amount of 

mRNA content changes did in fact occur in many of the treatment groups. The significance of these 

changes will be discussed, along with the significance of other experiments, in section 4.2.  

 

4.1.6 Immunoblotting Experiments 
 

Western blotting was performed for KV2.1 and CaV1.2 protein subunits. The intention was to 

determine whether the changes (if any) seen within the promoter assays or the RT-PCR arrays translated 

to changes in cellular channel protein content. These immunoblotting experiments could potentially 

help conclude the information gathered from previous experiments, or infer that changes to the 

secretion or current occur post-translationally. Given the time-constraints, Western blots were not 

created for ATP-dependant potassium channel subunits, Kir6.2 or SUR1.  

 

 



100 
 

4.1.7 Patch-Clamp Experiments 
  

Patch-clamp experiments were then conducted to determine if any of the treatment groups 

caused functional or surface expression changes of the specific channel protein. It should be noted 

however, that given the stimulating conditions used to assess channel function, results could not infer if 

changes in signal-coupling between different ion channels (e.g. voltage-dependent calcium channel 

activity is required for voltage-dependent potassium currents) were disrupted. The patch-clamp method 

could only determine if statin treatment or AY 9944 treatment had any direct effects on channel 

function, independent of the glucose stimulated insulin secretion signal transduction pathway that 

occurs from ATP-sensitive potassium channels, opening voltage-dependent calcium channels which 

would finally open voltage-gated potassium channels.   

 

4.2 Results Analysis 
 

 In this section, the significance of the changes seen in each experiment will be taken into 

perspective in reference to other findings, both from my experiments as well as current research from 

other groups.  

 

4.2.1 Cholesterol Reduction and GSIS Profiles 
 

As seen in Figure 6, the reduction of cholesterol in all groups treated with drug in FBS enriched 

media, was comparable to the reduction in the LPS control (no drug, only LPS enriched media). These 

results imply that pharmacological means of inhibiting cellular cholesterol could potentially result in a 
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similar reduction as limiting exogenous sources of cholesterol for 48 hours. When cells were treated 

with both drug and LPS enriched media, the statins atorvastatin (AS) and pravastatin (PR), did not see a 

statistically significant further reduction when compared to either LPS control or with their drug in FBS 

counterparts (p > .05). However, the effect was almost doubled for AY-L. Sample size was the limiting 

factor for the drug in LPS groups, with a repetition of n=3. Further experiments should include more 

repetitions to verify whether or not these groups do in fact see a statistically significant increased 

reduction than drug in FBS alone (like the AY-L group did). The consistently lower cholesterol content 

seen in figure 6 does however imply the possibility of this relationship existing.  

When viewing cholesterol reduction with reference to altered GSIS profiles, several relationships 

can be teased apart from the comparison. For example, the reduction in cholesterol between all drug 

groups in FBS serum are statistically different from FBS control, but the same when comparing them 

with each other. However, when viewing Figure 9, a difference in severity of impaired GSIS exists 

between some of the drug groups. Cells treated with AY 9944 in FBS media show a significantly reduced 

ability to secrete insulin in response to 16.7 mM glucose when compared to pravastatin, but not 

atorvastatin. However, no significant differences between the two statins themselves are apparent. 

Additionally, the LPS-serum only group does not appear to significantly differ from FBS control cells, 

despite cholesterol being similarly reduced in LPS as it is with drug in FBS groups. Thus, it is fair to 

conclude that a reduction in cholesterol via pharmacological means is in fact associated with a reduction 

in a β-cell’s ability to secret insulin in response to glucose. The only group that also displayed a potential 

reduction in basal insulin secretion is AY in FBS serum. It should also be noted that the degree of 

reduction in cholesterol content may not be the only factor contributing to the reduced secretion, as LPS 

serum only had a similar loss of cellular cholesterol as drug in FBS, but did not see the same aberrant 

secretion profile. Lastly, AY 9944 appeared to have the most drastic changes in secretion, but displayed 

the same degree in cholesterol reduction as the two statin groups.  



102 
 

4.2.2 GSIS Profiles and Genetic Expression Changes 
  

The promoter and RT-qPCR array experiments were conducted in hopes of better understanding 

the factors involved in the reduced GSIS capacity of my treated cells. The first promoter of interest was 

the Ins-1 insulin gene promoter, which would allow me to see if treatment conditions had any effect on 

insulin transcriptional regulation. When comparing figure 10 to figure 11, changes in promoter activity 

generally agree well with observed changes in insulin content. Barring the AS and AS-L treatment 

groups, statistically significant reductions in promoter activity when compared to the FBS control group 

resulted in reductions of total cellular insulin. However, when taking into account the data from RT-PCR 

arrays, no changes greater than 2-fold occurred in ins-1 mRNA product. This could possibly be explained 

by the fact that Ins-1 promoter activity fold activation was only reduced by 0.5 or more in one treatment 

group, AY (0.386 ± .086, p < 0.01, n = 3). Regardless, it appears that whatever causes the changes in total 

insulin occurs post-translationally, as promoter activity reduction does not appear to affect the mRNA 

load of insulin, and mRNA load does not correspond to insulin content of certain treatment groups. One 

possible explanation to this is that insulin degradation enzyme (IDE) may increase its activity within the 

β-cell when secretion is reduced due to statin or AY 9944 treatment. As it has been well established, IDE 

not only targets insulin but is also largely responsible for the breaking down of amyloid structures in 

pancreatic islets, helping to also regulate amylin turnover (Bennett et al., 2000; Yfanti et al., 2008). 

Insulin can be degraded within any cell that has the ability to respond to it, including the pancreatic β-

cell (Harada et al., 1993). Islet amyloid deposits have been found in over 90% of T2DM patients upon 

autopsy and have been implicated in the progressive β-cell failure commonly seen in these patients 

(Marzban and Verchere, 2004). Because IDE can target both insulin as well as amyloid structures, the 

addition of insulin to amyloid being exposed to IDE has an inhibitory effect on amyloid degradation 

(Yfanti et al., 2008). The reduction of insulin within the cells that have undergone statin or AY 9944 
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treatment has broader implications than my current research can explain, and is something I would 

strongly recommend for future research.  

 Another focus of my research was to assess the changes that may have occurred to SNARE 

protein expression within treated MIN6 mouse insulinoma cells. Syntaxin-1A and SNAP 25 are the two 

commonly found plasma membrane SNARE proteins involved in GSIS (Daniel et al., 1999; Ohara-

Imaizumi et al., 2004), so preliminary promoter assays on SNARE proteins focused exclusively on those 

two. It should also be noted that the extent of my research investment into SNARE protein changes in 

statin or AY 9944 treated cells extended only as far as promoter and RT-PCR array experiments, and 

immunoblotting experiments could go a long way into confirming those results. When viewing figure 15 

and figure 16, no significant changes were apparent in STX-1A and SNAP 25 promoter activity in any of 

the treatment groups. However, when looking at the RT-PCR array data, some changes in SNARE mRNA 

content can be seen in AY 9944 and atorvastatin treatment groups (refer to figure 19a-b). For 

atorvastatin treated cells, STX-4A was increased by 2.06 fold (p < 0.01), and in AY 9944 in LPS media, the 

changes were limited to vesicle associated proteins, VAMP 1 and VAMP 2 (3.57 fold increase, p < 0.05; 

2.09 fold decrease, p < 0.05, respectively). I speculated that this might have occurred because although 

VAMP2 is normally the vesicle associated protein employed in insulin producing cells, it was reduced as 

a result of treatment and the less commonly used VAMP protein was upregulatd (VAMP2).  

 The approximate 2-fold increase in STX-4A mRNA was interesting since that particular syntaxin 

isoform has been implicated in serving as important a role as STX-1A in β HC-9, a hyperplastic mouse 

insulin secreting cell line (Saito et al., 2003). The increased mRNA load of STX-4A in MIN6 (also a mouse 

insulin secreting cell line) may be indicative of a compensating mechanism to increase secretion 

capacity. However it is still curious as to why this was not seen in any other treatment group including 

atorvastatin in delipidated media, begging the question that if more trials were done (n > 4) if this 2-fold 
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increase would no longer be significant. The changes seen in AY 9944 in delipidated media was also very 

intriguing as VAMP-2, which is well known to facilitate fusion pore formation in pancreatic β-cells, is 

reduced but VAMP-1, which has not been known to play an important part in GSIS, was increased 

(Regazzi et al., 1995). Regardless, much more research should be invested into exploring the changes in 

SNARE protein content and expression in statin and AY 9944 treated insulin-secreting cells. 

  

4.2.3 Ion Channels and Electrophysiology Changes 
 

 Three ion channels were looked at extensively given the time constraints. They were the 

voltage-gated calcium channels, voltage-gated potassium channels, and the ATP-dependent potassium 

channels. For the voltage-gated calcium channel, the L type α1C subunit was looked at specifically for 

promoter activity, mRNA content, and protein content (with the addition of the α1D CaV1.3 subunit for 

RT-PCR arrays). For the voltage-gated potassium channel, the voltage gated channel, Shab-related 

subfamily, member 1 protein was looked at for promoter activity, mRNA content, protein content, and 

electrical activity. The ATP-dependent potassium channel was the last channel of interest but only 

mRNA content and promoter activity was assayed for the Kir6.2 subunit (protein content for this subunit 

was not determined).  

The promoter assays for the CaV1.2 subunit displayed little to no change in activity, with the AY 

group displaying a marginal decrease in promoter activity (0.78 ± 0.04 fold activation of the promoter, p 

< 0.01, n = 3). This lack of large significant changes in promoter activity was mirrored in the RT-PCR array 

data, where no changes in the α1C subunit mRNA was seen. Interestingly, in the AS treatment group, an 

approximate increase of 2.3 fold in mRNA content (p < 0.05, n = 3) occurred in the α1D subunit. Western 

blot results, however, noted that there were significant increases in the total cellular protein content in 
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both the LPS and AY groups for the α1C subunit, by 3.01 ± 0.24 fold densitometry ratio (n = 4, p < 0.01), 

and 2.78 ± 0.27 fold densitometry ratio (n = 3, p < 0.01), respectively. Even when viewing the graph 

showing relative change in protein content, despite the other groups not being significant, there 

appears to be an upward trend in protein content of the voltage-gated calcium channel (refer to figure 

22). The only probable exception to this trend is pravastatin, which may potentially be because 

pravastatin is by far one of the mildest statins currently on the market. Unfortunately, this channel was 

not tested for any electrical activity changes. The impact that these changes have on the reduced GSIS 

efficiency found in some of my treatment groups, could be much easier assessed once patch-clamp data 

could be obtained for this channel.  

 The voltage-gated potassium channel results, however, were a bit more puzzling. When viewing 

the changes in promoter activity (refer to figure 13), there is a very significant and noticeable decrease 

in KV2.1 promoter activity across all treatment groups. The mildest changes occurred in the LPS and PR 

groups (0.70 ± 0.09, p < 0.05, n = 3; and 0.63 ± .09, p < 0.01, n = 3, respectively), with more drastic 

reductions in fold activation found in the AS and AY groups (0.36 ± 0.03, p < 0.01, n = 3; and 0.34 ± 0.02, 

p < 0.01, n = 3, respectively). The RT-qPCR data however, showed no significant changes in mRNA 

content across all treatment groups, not reflecting the drastic reductions in promoter activity. Even 

when referring to the western blot data, there were no significant changes in protein content of this 

channel subunit. It should be noted that, similar to the calcium α1C subunit, a trend appeared to exist of 

increasing protein content in the densitometry data, with the exception of the PR group (refer to figure 

21.). Unlike the other two channels, extensive path-clamp experiments were also conducted to assess 

channel currents of voltage-dependent potassium channels after treatment with either statin or AY 

9944. When viewing figure 23, it is apparent that a reduction in whole-cell potassium currents occur in 

the drug treatments. It is important to note however, that these experiments were only able to assess 

the functionality of Kv2.1 channels and not assess the electrical activity of it during a GSIS response. 
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Thus, one of the most intriguing results arise from this, as protein content does not seem to be 

influenced by promoter activity, and yet a reduction in channel function is seen despite having the same 

channel protein content as the FBS control group. This could be attributed to various different reasons, 

but I suspect that either localization of channel microdomains or channel regulation should be the more 

likely explanations for this perceived result.  

 Finally, the ATP-sensitive potassium channels presented with increases in promoter activity in 

atorvastatin groups. Both AS and AS-L displayed increased activity (1.96 ± .31, p < 0.05, n = 3; and 1.56 ± 

0.24, p < 0.05, n = 3, respectively) despite no increases in mRNA content. In fact, the only significant 

change found in the mRNA content of the Kir6.2 subunit of the KATP channel was a 2.32 fold decrease (p 

< 0.01) in the AY-L treatment group. Unfortunately, neither immunoblot experiments to determine 

channel protein content, nor patch-clamp experiments to determine functional changes in cell currents, 

were carried out for this channel. Carrying out both would greatly benefit the understanding of the 

effects of statin or AY 9944 drug administration in β-cell function.  

 

4.2.4 KV2.1 Results Discussion  
  

Given that the voltage-dependent potassium channel subunit, KV2.1, underwent the most 

comprehensive study (from promoter activity to whole-cell current and channel function experiments), I 

believe the reasons behind the perceived results merited further discussion. As previously eluded to, 

post-translational causes seemed to have the most significant effect on the perceived changes in protein 

content and whole-cell current generated by this KV channel. I believe that these post-translational 

causes are in fact due to a disruption in channel localization and surface expression. It is already well 

established that localization of ion channels with secretory granules, SNARE proteins, and with each 
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other, is required for normal β-cell function (Barg et al., 2001; Bickel, 2002; Xia et al., 2004; Xia et al., 

2008). To further reinforce this idea, Kv2.1 specifically has been found to target SNARE proteins such as 

Syntaxin-1 when being inserted into the membrane of insulin secreting β-cells (Leung et al., 2003; 

Singer-Lahat et al., 2008). It has also been recently demonstrated that even in neurons, Kv2.1 trafficking 

can be very site-specific and directed, with a multitude of signal peptides, anchor protein interactions, 

and lipid interactions helping to polarize channel distribution as well as retain membrane configuration 

(Jensen et al., 2011). Thus, it is within reason to propose the idea that the recycling of this channel, 

along with other important ion channels in the β-cell, is site specific and directed. With the loss of lipid 

raft integrity, presumably due to a reduction in cellular cholesterol, many anchor proteins and lipid-lipid 

interactions may dissipate along with it. The ion channel proteins expressed in the β-cell have been 

known to have a general half-life from 90 seconds to upwards of 20 minutes (Jindal et al., 2008; Thion et 

al., 1996; Yan et al., 2005). If loss of site-directed insertion also led to loss of directed recycling, 

increased retention of ion channels far beyond their functional life-span could ensue, potentially 

explaining the reduced electrical activity seen in the treated MIN6 cell KV2.1 whole cell currents. 

Additionally, prolonged retention could also explain the seemingly normal channel protein content, 

even despite the reduced promoter activities for some of the treated cells. Experiments directed at 

determining the validity of these hypotheses could very well help in expanding the current 

understanding of the effects of reducing cholesterol in pancreatic β-cells.  
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4.3 Conclusions 
  

The treatment of MIN6 pancreatic β-cells with either statin (atorvastatin or pravastatin) or AY 

9944 has clear detrimental effects on glucose stimulated insulin secretion. The severity of these effects 

are most evident in cells treated with AY 9944, with milder reductions with atorvastatin treatment, and 

least of all pravastatin treatment. Changes in insulin, as well as ion channel proteins important to insulin 

secretion, are most likely due to post-translational modifications. Disruption in localization, directed 

surface expression of channel proteins, as well as channel protein recycling have been proposed to play 

the biggest parts in the reduced functionality of the MIN6 β-cell after cholesterol biosynthesis inhibition. 

These would all arise from the fact that the microdomains housing the channel complexes have been 

disrupted due to a reduction in cellular cholesterol. Additionally, IDE activity increasing within the β-cell 

due to reduced insulin secretion could also play a part in exacerbating the perceived effects. 

Additionally, this could also potentially explain the increased amyloid formation typical of T2DM 

patients. A wide array of future experiments will be proposed to help verify these theories and will also 

hopefully lead to an increase in the present knowledge of statin effects on T2DM development.  
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4.4 Future Experiments 
 

4.4.1 Assays to Determine Changes in IDE Activity  
 

One of the first observations made when viewing my results was the change in insulin content 

without any detectable changes in insulin mRNA. This observation led me to believe that insulin 

degradation enzyme (IDE) had increased activity within the pancreatic β-cell when the cells were treated 

with either statin or AY 9944. Additionally, as previously mentioned in section 4.2.2, amylin turnover is 

highly dependent upon IDE activity. Thus, increased IDE activity within the β-cell could potentially be 

one of the factors involved in increased amyloid formation characteristically seen in T2DM diseased 

islets. A variety of experiments could be designed and conducted to detect changes in IDE activity within 

the pancreatic islet. However, I would strongly recommend the use of mice for these experiments, as 

being able to run these experiments on cultured islets could provide a much more accurate picture of 

the physiological effects of statin or AY 9944 treatment.  

Co-immunoprecipitation can be done on different fractions of collected islets, involving either 

precipitating both IDE with insulin in the fraction containing the β-cell, versus precipitating both IDE with 

amylin in the extracellular fraction. Changes in relative amounts between the two, in addition to 

measuring amyloid formation, could provide compelling evidence that changes in IDE activity exist, and 

that amyloid formation ensues as a result of this change.  

Another way to view changes in IDE expression would be to carry out RT-qPCR on IDE mRNA, or 

promoter assays on the gene reporter responsible for IDE transcription. Changes in reporter activity or 

changes in IDE mRNA could also indicate a change in insulin degradation rate in statin or AY 9944 

treated cells.   
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4.4.2 Pulse-Chase Assays to Determine Ion Channel half-life 
  

The pulse-chase assay could provide a tremendous amount of insight into the half-life of all ion 

channels that have been proposed to exist within the lipid-raft microdomains responsible for GSIS. One 

of my speculations into the contributing factors of the reduced GSIS capacity of statin and AY 9944 

treated cells, is the reduction in directed site-specific surface expression of important proteins and 

channels. Thus if insertion into the membrane is directed, such as using anchor proteins ankyrin-G and 

βIV spectrin for NaV channels in neurons (Jensen et al., 2011), disruption of differential surface 

expression could also lead to aberrant recycling of these proteins. To determine any changes in the half-

life of the proteins of interest, I would propose an experiment similar to the one conducted by Hitesh et 

al. (2008) where a pulse-chase assay was carried out on the KV1.5 channel. After a pulse with radioactive 

labeled amino acid, and subsequent chase with an abundance of non-labeled amino acid, the channel of 

interest can be collected using anti-channel antibody. In 5-15 minute intervals, cells can be collected 

after the chase, and a scintillation counter can be used to measure the amount of radioactive label. 

After normalizing to protein content, the reduction in amount of radioactive label can tell us if channel 

proteins were recycled at a much later time than the control treatments’ channels. Alternatively, 

immunocytochemistry could be used to assay for the same thing. 
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4.4.3 TIRFm to Determine Changes in Surface Expression of Channels and Secretion 
 

 Total internal reflection fluorescence microscopy (TIRFm) provides a multitude of benefits when 

wishing to assess events that occur exclusively along the cell’s plasma membrane. Because the 

membrane is the plane of focus when using this method of microscopy, background noise is greatly 

diminished as signals from fluorophores are apparent only once they reach the membrane or are very 

close to it. This provides a great deal of information on structural localization, dynamics, and 

organization of proteins of interest, and excludes the background fluorescence that occurs within the 

cell cytoplasm away from the membrane. This is made possible because TIRF primarily illuminates only 

fluorophores very close (i.e. within 100 nm) to the cover-slip sample interface (i.e. the membrane 

surface). Any fluorophores away from the cover-slip-sample interface has its signal decay exponentially 

the further it is from the z plane, and thus greatly increases the signal-to-noise ratio.  

Additionally, because of the nature of TIRF microscopy, fixation of dead cells is not necessarily a 

requirement for good imaging. This allows the assessment of protein dynamics and localization while 

the cell is still alive, and will give a better picture of membrane structural organization without the use 

of detergents and other invasive reagents. TIRF microscopy would be an excellent method to make use 

of in order to study not only the localization and structural organization of important ion channels 

involved in glucose-stimulated insulin secretion, but also to assess the impact of certain treatments on 

the separate phases of insulin secretion and to quantitatively assess the changes in number of fusion 

events over specific time points after a cell is stimulated by glucose or other ions.  

 However, we are not limited to conducting the study of spatial organization of ion channels and 

assessment of changes in fusion profiles in the different phases of insulin secretion as separate 

experiments. They can also be done in tandem to assess the relative location of these ion channel 
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organizations to that of the actual site of insulin secretion and to assess the changes in secretion profiles 

due to any detectable changes in protein organization. This can provide additional insight on the cellular 

dynamics behind insulin secretion and how different treatments may potentially cause these secretory 

‘complexes’ to act as a result of changes in cholesterol homeostasis.  

 

4.4.4 Completion of Current Experiments on Remaining Channels 
 

Lastly, I strongly recommend the completion of my previously conducted experiments for the 

two remaining channels. KATP channels would greatly benefit from protein content analysis (western 

blot) as well as both CaV and KATP channels undergoing patch-clamp technique to analyze functional 

changes. Being able to analyze those two channels the same way that KV channels were could go a long 

way in determining if similar trends existed with those two ion channels as well. And if this was the case, 

it could be eluded to that the effects of the statin or AY 9944 treatment extended to all the channels 

involved in the lipid raft microdomains proposed to be responsible for the GSIS response.   
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Appendix 

 

A.1. Statistical Analysis – Cholesterol Content 

 
 

Multiple Comparisons – Cholesterol Content 

(I) Groups (J) Groups Mean 

Difference  

(I-J) 

Std. Error Sig. 95% Confidence Interval 

Lower Bound Upper Bound 

FBS LPS 3.349501* .814145 .014 .53081 6.16819 

PR 3.106117* .814145 .026 .28743 5.92481 

PR-L 5.472525* .814145 .000 2.65383 8.29122 

AS 3.207836* .814145 .020 .38914 6.02653 

AS-L 5.979707* .814145 .000 3.16102 8.79840 

AY 3.302296* .814145 .016 .48360 6.12099 

AY-L 6.237608* .814145 .000 3.41892 9.05630 

PR FBS -3.349501* .814145 .014 -6.16819 -.53081 

LPS .243384 .814145 1.000 -2.57531 3.06208 

PR-L 2.366408 .814145 .136 -.45228 5.18510 

AS .101718 .814145 1.000 -2.71697 2.92041 

AS-L 2.873590* .814145 .044 .05490 5.69228 

AY .196179 .814145 1.000 -2.62251 3.01487 

AY-L 3.131491* .814145 .024 .31280 5.95018 

PR-L FBS -5.472525* .814145 .000 -8.29122 -2.65383 

LPS -2.123024 .814145 .222 -4.94172 .69567 

PR -2.366408 .814145 .136 -5.18510 .45228 

AS -2.264689 .814145 .168 -5.08338 .55400 

AS-L .507182 .814145 .998 -2.31151 3.32587 

AY -2.170229 .814145 .203 -4.98892 .64846 

AY-L .765083 .814145 .977 -2.05361 3.58377 

AS FBS -3.207836* .814145 .020 -6.02653 -.38914 

LPS .141666 .814145 1.000 -2.67703 2.96036 

PR -.101718 .814145 1.000 -2.92041 2.71697 

PR-L 2.264689 .814145 .168 -.55400 5.08338 

AS-L 2.771872 .814145 .056 -.04682 5.59056 

AY .094460 .814145 1.000 -2.72423 2.91315 

AY-L 3.029772* .814145 .031 .21108 5.84846 
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AS-L FBS -5.979707* .814145 .000 -8.79840 -3.16102 

LPS -2.630206 .814145 .077 -5.44890 .18849 

PR -2.873590* .814145 .044 -5.69228 -.05490 

PR-L -.507182 .814145 .998 -3.32587 2.31151 

AS -2.771872 .814145 .056 -5.59056 .04682 

AY -2.677411 .814145 .069 -5.49610 .14128 

AY-L .257901 .814145 1.000 -2.56079 3.07659 

AY FBS -3.302296* .814145 .016 -6.12099 -.48360 

LPS .047205 .814145 1.000 -2.77149 2.86590 

PR -.196179 .814145 1.000 -3.01487 2.62251 

PR-L 2.170229 .814145 .203 -.64846 4.98892 

AS -.094460 .814145 1.000 -2.91315 2.72423 

AS-L 2.677411 .814145 .069 -.14128 5.49610 

AY-L 2.935312* .814145 .038 .11662 5.75400 

AY-L FBS -6.237608* .814145 .000 -9.05630 -3.41892 

LPS -2.888106* .814145 .043 -5.70680 -.06941 

PR -3.131491* .814145 .024 -5.95018 -.31280 

PR-L -.765083 .814145 .977 -3.58377 2.05361 

AS -3.029772* .814145 .031 -5.84846 -.21108 

AS-L -.257901 .814145 1.000 -3.07659 2.56079 

AY -2.935312* .814145 .038 -5.75400 -.11662 

LPS FBS -3.349501* .814145 .014 -6.16819 -.53081 

PR -.243384 .814145 1.000 -3.06208 2.57531 

PR-L 2.123024 .814145 .222 -.69567 4.94172 

AS -.141666 .814145 1.000 -2.96036 2.67703 

AS-L 2.630206 .814145 .077 -.18849 5.44890 

AY -.047205 .814145 1.000 -2.86590 2.77149 

AY-L 2.888106* .814145 .043 .06941 5.70680 

*. The mean difference is significant at the 0.05 level. 
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A.2. Statistical Analysis – Cell Viability 
 

(I) 

Groups 

(J) 

Groups 

Mean 

Difference 

(I-J) 

Std. Error Sig. 95% Confidence Interval 

Lower Bound Upper Bound 

FBS LPS -.001000 .032444 1.000 -.09809 .09609 

PR -.002200 .032444 1.000 -.09929 .09489 

AS .028800 .032444 .898 -.06829 .12589 

AY .103800* .032444 .033 .00671 .20089 

LPS FBS .001000 .032444 1.000 -.09609 .09809 

PR -.001200 .032444 1.000 -.09829 .09589 

AS .029800 .032444 .886 -.06729 .12689 

AY .104800* .032444 .030 .00771 .20189 

PR FBS .002200 .032444 1.000 -.09489 .09929 

LPS .001200 .032444 1.000 -.09589 .09829 

AS .031000 .032444 .871 -.06609 .12809 

AY .106000* .032444 .028 .00891 .20309 

AS FBS -.028800 .032444 .898 -.12589 .06829 

LPS -.029800 .032444 .886 -.12689 .06729 

PR -.031000 .032444 .871 -.12809 .06609 

AY .075000 .032444 .182 -.02209 .17209 

AY FBS -.103800* .032444 .033 -.20089 -.00671 

Cholesterol Content - Descriptives 

 N Mean Std. 

Deviation 

Std. 

Error 

95% Confidence Interval for 

Mean 

Minimum Maximum 

Lower Bound Upper Bound 

FBS 3 12.83004 .335356 .193618 11.99697 13.66311 12.446 13.065 

LPS 3 9.48054 .423161 .244312 8.42935 10.53173 9.001 9.800 

PR 3 9.72393 1.309063 .755788 6.47203 12.97582 8.285 10.845 

PR-L 3 7.35752 .986036 .569288 4.90807 9.80697 6.340 8.308 

AS 3 9.62221 1.036767 .598577 7.04674 12.19768 8.439 10.370 

AS-L 3 6.85034 1.372685 .792520 3.44040 10.26027 5.905 8.425 

AY 3 9.52775 .565089 .326254 8.12399 10.93151 8.964 10.094 

AY-L 3 6.59244 1.303098 .752344 3.35536 9.82951 5.106 7.540 

Total 24 8.99810 2.121556 .433061 8.10224 9.89395 5.106 13.065 
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LPS -.104800* .032444 .030 -.20189 -.00771 

PR -.106000* .032444 .028 -.20309 -.00891 

AS -.075000 .032444 .182 -.17209 .02209 

*. The mean difference is significant at the 0.05 level. 

 
 
 

Cell Viability - Descriptives 

 N Mean Std. 

Deviation 

Std. 

Error 

95% Confidence Interval for Mean Minimum Maximum 

Lower Bound Upper Bound 

FBS 5 .85380 .030866 .013804 .81547 .89213 .812 .895 

LPS 5 .85480 .060899 .027235 .77918 .93042 .769 .918 

PR 5 .85600 .037041 .016565 .81001 .90199 .795 .885 

AS 5 .82500 .066705 .029831 .74218 .90782 .782 .943 

AY 5 .75000 .051720 .023130 .68578 .81422 .695 .810 

Total 25 .82792 .062562 .012512 .80210 .85374 .695 .943 

 
 
 
 

A.3. Statistical Analysis – Glucose Stimulated Insulin Secretion 
 
 
Low Glucose 
 

(I) 

Groups 

(J) 

Groups 

Mean 

Difference 

(I-J) 

Std. Error Sig. 95% Confidence Interval 

Lower 

Bound 

Upper 

Bound 

FBS LPS .0032500 .0036835 .992 -.008962 .015462 

PR -.0039000 .0036835 .976 -.016112 .008312 

PR-L -.0059667 .0045113 .917 -.020924 .008990 

AS -.0019500 .0036835 1.000 -.014162 .010262 

AS-L -.0061333 .0045113 .905 -.021090 .008824 

AY .0136833* .0036835 .019 .001471 .025896 

AY-L .0064333 .0045113 .880 -.008524 .021390 

DMSO .0010000 .0045113 1.000 -.013957 .015957 

LPS FBS -.0032500 .0036835 .992 -.015462 .008962 

PR -.0071500 .0036835 .592 -.019362 .005062 

PR-L -.0092167 .0045113 .526 -.024174 .005740 

AS -.0052000 .0036835 .885 -.017412 .007012 
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AS-L -.0093833 .0045113 .503 -.024340 .005574 

AY .0104333 .0036835 .144 -.001779 .022646 

AY-L .0031833 .0045113 .998 -.011774 .018140 

DMSO -.0022500 .0045113 1.000 -.017207 .012707 

PR FBS .0039000 .0036835 .976 -.008312 .016112 

LPS .0071500 .0036835 .592 -.005062 .019362 

PR-L -.0020667 .0045113 1.000 -.017024 .012890 

AS .0019500 .0036835 1.000 -.010262 .014162 

AS-L -.0022333 .0045113 1.000 -.017190 .012724 

AY .0175833* .0036835 .001 .005371 .029796 

AY-L .0103333 .0045113 .376 -.004624 .025290 

DMSO .0049000 .0045113 .972 -.010057 .019857 

PR-L FBS .0059667 .0045113 .917 -.008990 .020924 

LPS .0092167 .0045113 .526 -.005740 .024174 

PR .0020667 .0045113 1.000 -.012890 .017024 

AS .0040167 .0045113 .992 -.010940 .018974 

AS-L -.0001667 .0052092 1.000 -.017437 .017104 

AY .0196500* .0045113 .003 .004693 .034607 

AY-L .0124000 .0052092 .327 -.004871 .029671 

DMSO .0069667 .0052092 .912 -.010304 .024237 

AS FBS .0019500 .0036835 1.000 -.010262 .014162 

LPS .0052000 .0036835 .885 -.007012 .017412 

PR -.0019500 .0036835 1.000 -.014162 .010262 

PR-L -.0040167 .0045113 .992 -.018974 .010940 

AS-L -.0041833 .0045113 .990 -.019140 .010774 

AY .0156333* .0036835 .005 .003421 .027846 

AY-L .0083833 .0045113 .645 -.006574 .023340 

DMSO .0029500 .0045113 .999 -.012007 .017907 

AS-L FBS .0061333 .0045113 .905 -.008824 .021090 

LPS .0093833 .0045113 .503 -.005574 .024340 

PR .0022333 .0045113 1.000 -.012724 .017190 

PR-L .0001667 .0052092 1.000 -.017104 .017437 

AS .0041833 .0045113 .990 -.010774 .019140 

AY .0198167* .0045113 .003 .004860 .034774 

AY-L .0125667 .0052092 .311 -.004704 .029837 

DMSO .0071333 .0052092 .901 -.010137 .024404 

AY FBS -.0136833* .0036835 .019 -.025896 -.001471 

LPS -.0104333 .0036835 .144 -.022646 .001779 

PR -.0175833* .0036835 .001 -.029796 -.005371 
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PR-L -.0196500* .0045113 .003 -.034607 -.004693 

AS -.0156333* .0036835 .005 -.027846 -.003421 

AS-L -.0198167* .0045113 .003 -.034774 -.004860 

AY-L -.0072500 .0045113 .794 -.022207 .007707 

DMSO -.0126833 .0045113 .150 -.027640 .002274 

8 FBS -.0064333 .0045113 .880 -.021390 .008524 

LPS -.0031833 .0045113 .998 -.018140 .011774 

PR -.0103333 .0045113 .376 -.025290 .004624 

PR-L -.0124000 .0052092 .327 -.029671 .004871 

AS -.0083833 .0045113 .645 -.023340 .006574 

AS-L -.0125667 .0052092 .311 -.029837 .004704 

AY .0072500 .0045113 .794 -.007707 .022207 

DMSO -.0054333 .0052092 .978 -.022704 .011837 

DMSO FBS -.0010000 .0045113 1.000 -.015957 .013957 

LPS .0022500 .0045113 1.000 -.012707 .017207 

PR -.0049000 .0045113 .972 -.019857 .010057 

PR-L -.0069667 .0052092 .912 -.024237 .010304 

AS -.0029500 .0045113 .999 -.017907 .012007 

AS-L -.0071333 .0052092 .901 -.024404 .010137 

AY .0126833 .0045113 .150 -.002274 .027640 

AY-L .0054333 .0052092 .978 -.011837 .022704 

 
 
High Glucose 

 

(I) 

Groups 

(J) 

Groups 

Mean 

Difference 

(I-J) 

Std. Error Sig. 95% Confidence Interval 

   Lower             Upper 

  Bound            Bound 

FBS LPS .0113792 .0071242 .799 
 

-0.01224 

 

 
0.034999 

 

PR .0258088* .0071242 .024 .002189 .049428 

PR-L .0429973* .0087253 .001 .014069 .071925 

AS .0326748* .0071242 .002 .009055 .056294 

AS-L .0511430* .0087253 .000 .022215 .080071 

AY .0549073* .0071242 .000 .031288 .078527 

AY-L .0593477* .0087253 .000 .030420 .088276 

DMSO -.0031980 .0087253 1.000 -.032126 .025730 

LPS FBS -.0113792 .0071242 .799 -.034999 .012240 

PR .0144297 .0071242 .538 -.009190 .038049 
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PR-L .0316182* .0087253 .024 .002690 .060546 

AS .0212957 .0071242 .104 -.002324 .044915 

AS-L .0397638* .0087253 .002 .010836 .068692 

AY .0435282* .0071242 .000 .019909 .067148 

AY-L .0479685* .0087253 .000 .019041 .076896 

DMSO -.0145772 .0087253 .759 -.043505 .014351 

PR FBS -.0258088* .0071242 .024 -.049428 -.002189 

LPS -.0144297 .0071242 .538 -.038049 .009190 

PR-L .0171885 .0087253 .573 -.011739 .046116 

AS .0068660 .0071 .987 -.016754 .030486 

AS-L .0253342 .0087 .125 -.003594 .054262 

AY .0290985* .0071242 .007 .005479 .052718 

AY-L .0335388* .0087253 .013 .004611 .062467 

DMSO -.0290068* .0087253 .049 -.057935 -.000079 

PR-L FBS -.0429973* .0087253 .001 -.071925 -.014069 

LPS -.0316182* .0087253 .024 -.060546 -.002690 

PR -.0171885 .0087253 .573 -.046116 .011739 

AS -.0103225 .0087253 .955 -.039250 .018605 

AS-L .0081457 .0100751 .996 -.025257 .041549 

AY .0119100 .0087253 .903 -.017018 .040838 

AY-L .0163503 .0100751 .786 -.017053 .049753 

DMSO -.0461953* .0100751 .002 -.079598 -.012792 

AS FBS -.0326748* .0071242 .002 -.056294 -.009055 

LPS -.0212957 .0071242 .104 -.044915 .002324 

PR -.0068660 .0071242 .987 -.030486 .016754 

PR-L .0103225 .0087253 .955 -.018605 .039250 

AS-L .0184682 .0087253 .480 -.010460 .047396 

AY .0222325 .0071242 .078 -.001387 .045852 

AY-L .0266728 .0087253 .090 -.002255 .055601 

DMSO -.0358728* .0087253 .007 -.064801 -.006945 

AS-L FBS -.0511430* .0087 .000 -.080071 -.022215 

LPS -.0397638* .0087253 .002 -.068692 -.010836 

PR -.0253342 .0087253 .125 -.054262 .003594 

PR-L -.0081457 .0100751 .996 -.041549 .025257 

AS -.0184682 .0087253 .480 -.047396 .010460 

AY .0037643 .0087253 1.000 -.025164 .032692 

AY-L .0082047 .0100751 .996 -.025198 .041608 

DMSO -.0543410* .0100751 .000 -.087744 -.020938 

AY FBS -.0549073* .0071242 .000 -.078527 -.031288 
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LPS -.0435282* .0071242 .000 -.067148 -.019909 

PR -.0290985* .0071242 .007 -.052718 -.005479 

PR-L -.0119100 .0087253 .903 -.040838 .017018 

AS -.0222325 .0071242 .078 -.045852 .001387 

AS-L -.0037643 .0087253 1.000 -.032692 .025164 

AY-L .0044403 .0087253 1.000 -.024488 .033368 

DMSO -.0581053* .0087253 .000 -.087033 -.029177 

AY-L FBS -.0593477* .0087253 .000 -.088276 -.030420 

LPS -.0479685* .0087253 .000 -.076896 -.019041 

PR -.0335388* .0087253 .013 -.062467 -.004611 

PR-L -.0163503 .0100751 .786 -.049753 .017053 

AS -.0266728 .0087 .090 -.055601 .002255 

AS-L -.0082047 .0100751 .996 -.041608 .025198 

AY -.0044403 .0087253 1.000 -.033368 .024488 

DMSO -.0625457* .0100751 .000 -.095949 -.029143 

DMSO FBS .0031980 .0087253 1.000 -.025730 .032126 

LPS .0145772 .0087253 .759 -.014351 .043505 

PR .0290068* .0087253 .049 .000079 .057935 

PR-L .0461953* .0100751 .002 .012792 .079598 

AS .0358728* .0087253 .007 .006945 .064801 

AS-L .0543410* .0100751 .000 .020938 .087744 

AY .0581053* .0087253 .000 .029177 .087033 

AY-L .0625457* .0100751 .000 .029143 .095949 

 
Low Glucose 
 

 
 

Glucose Stimulated Insulin Secretion - Descriptives 

 Mean Std. 

Deviation 

Std. Error 95% Confidence Interval for Mean Minimum Maximum 

Lower Bound Upper Bound 

FBS .028500 .0047887 .0019550 .023475 .033525 .0210 .0344 

LPS .025250 .0074693 .0030493 .017411 .033089 .0150 .0325 

DMSO .027500 .0037041 .0021385 .018299 .036701 .0247 .0317 

PR .032400 .0071764 .0029297 .024869 .039931 .0211 .0402 

PR-L .034467 .0023459 .0013544 .028639 .040294 .0326 .0371 

AS .030450 .0065650 .0026801 .023560 .037340 .0201 .0366 

AS-L .034633 .0049339 .0028486 .022377 .046890 .0308 .0402 

AY .014817 .0056796 .0023187 .008856 .020777 .0076 .0222 

AY-L .022067 .0106819 .0061672 -.004469 .048602 .0127 .0337 
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High Glucose 
 

 
 

 

A.4. Statistical Analysis – Insulin Content 
 

(I) 

Treatment 

(J) 

Treatment 

Mean 

Difference 

(I-J) 

Std. Error Sig. 95% Confidence Interval 

Lower Bound Upper Bound 

FBS LPS .0515184 .1251703 1.000 -.363471 .466508 

DMSO .1430946 .1533017 .989 -.365162 .651351 

PR .2339352 .1251703 .638 -.181055 .648925 

PR-L .7736126* .1533017 .000 .265356 1.281869 

AS .0352541 .1251703 1.000 -.379736 .450244 

AS-L .7391245* .1533017 .001 .230868 1.247381 

AY .4461257* .1251703 .027 .031136 .861116 

AY-L .8603438* .1533017 .000 .352087 1.368601 

LPS FBS -.0515184 .1251703 1.000 -.466508 .363471 

DMSO .0915762 .1533017 1.000 -.416681 .599833 

PR .1824167 .1251703 .867 -.232573 .597407 

PR-L .7220941* .1533017 .001 .213837 1.230351 

AS -.0162643 .1251703 1.000 -.431254 .398726 

AS-L .6876061* .1533017 .002 .179349 1.195863 

AY .3946072 .1251703 .073 -.020383 .809597 

AY-L .8088253* .1533017 .000 .300569 1.317082 

DMSO FBS -.1430946 .1533017 .989 -.651351 .365162 

LPS -.0915762 .1533017 1.000 -.599833 .416681 

PR .0908405 .1533017 1.000 -.417416 .599097 

FBS .081600 .0187824 .0076679 .061889 .101311 .0564 .1036 

LPS .070233 .0119676 .0048857 .057674 .082793 .0563 .0856 

DMSO .084800 .0077505 .0044747 .065547 .104053 .0770 .0925 

PR .055800 .0134398 .0054868 .041696 .069904 .0374 .0716 

PR-L .038633 .0033501 .0019342 .030311 .046956 .0353 .0420 

AS .048950 .0113257 .0046237 .037064 .060836 .0354 .0687 

AS-L .030500 .0044978 .0025968 .019327 .041673 .0254 .0339 

AY .026717 .0111094 .0045354 .015058 .038375 .0135 .0402 

AY-L .022267 .0099962 .0057713 -.002565 .047099 .0134 .0331 

Total .053057 .0241992 .0037340 .045516 .060598 .0134 .1036 
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PR-L .6305179* .1770176 .028 .043634 1.217402 

AS -.1078405 .1533017 .998 -.616097 .400416 

AS-L .5960299* .1770176 .044 .009146 1.182914 

AY .3030310 .1533017 .569 -.205226 .811288 

AY-L .7172492* .1770176 .008 .130365 1.304134 

PR FBS -.2339352 .1251703 .638 -.648925 .181055 

LPS -.1824167 .1251703 .867 -.597407 .232573 

DMSO -.0908405 .1533017 1.000 -.599097 .417416 

PR-L .5396774* .1533017 .031 .031421 1.047934 

AS -.1986810 .1251703 .805 -.613671 .216309 

AS-L .5051894 .1533017 .052 -.003067 1.013446 

AY .2121905 .1251703 .745 -.202799 .627180 

AY-L .6264086* .1533017 .007 .118152 1.134665 

PR-L FBS -.7736126* .1533017 .000 -1.281869 -.265356 

LPS -.7220941* .1533017 .001 -1.230351 -.213837 

DMSO -.6305179* .1770176 .028 -1.217402 -.043634 

PR -.5396774* .1533017 .031 -1.047934 -.031421 

AS -.7383584* .1533017 .001 -1.246615 -.230102 

AS-L -.0344880 .1770176 1.000 -.621372 .552396 

AY -.3274869 .1533017 .468 -.835744 .180770 

AY-L .0867312 .1770176 1.000 -.500153 .673616 

AS FBS -.0352541 .1251703 1.000 -.450244 .379736 

LPS .0162643 .1251703 1.000 -.398726 .431254 

DMSO .1078405 .1533017 .998 -.400416 .616097 

PR .1986810 .1251703 .805 -.216309 .613671 

PR-L .7383584* .1533017 .001 .230102 1.246615 

AS-L .7038704* .1533017 .002 .195614 1.212127 

AY .4108715 .1251703 .054 -.004118 .825861 

AY-L .8250896* .1533017 .000 .316833 1.333346 

AS-L FBS -.7391245* .1533017 .001 -1.247381 -.230868 

LPS -.6876061* .1533017 .002 -1.195863 -.179349 

DMSO -.5960299* .1770176 .044 -1.182914 -.009146 

PR -.5051894 .1533017 .052 -1.013446 .003067 

PR-L .0344880 .1770176 1.000 -.552396 .621372 

AS -.7038704* .1533017 .002 -1.212127 -.195614 

AY -.2929989 .1533017 .611 -.801256 .215258 

AY-L .1212193 .1770176 .999 -.465665 .708104 

AY FBS -.4461257* .1251703 .027 -.861116 -.031136 

LPS -.3946072 .1251703 .073 -.809597 .020383 
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DMSO -.3030310 .1533017 .569 -.811288 .205226 

PR -.2121905 .1251703 .745 -.627180 .202799 

PR-L .3274869 .1533017 .468 -.180770 .835744 

AS -.4108715 .1251703 .054 -.825861 .004118 

AS-L .2929989 .1533017 .611 -.215258 .801256 

AY-L .4142181 .1533017 .186 -.094039 .922475 

AY-L FBS -.8603438* .1533017 .000 -1.368601 -.352087 

LPS -.8088253* .1533017 .000 -1.317082 -.300569 

DMSO -.7172492* .1770176 .008 -1.304134 -.130365 

PR -.6264086* .1533017 .007 -1.134665 -.118152 

PR-L -.0867312 .1770176 1.000 -.673616 .500153 

AS -.8250896* .1533017 .000 -1.333346 -.316833 

AS-L -.1212193 .1770176 .999 -.708104 .465665 

AY -.4142181 .1533017 .186 -.922475 .094039 

*. The mean difference is significant at the 0.05 level. 

 

 

Descriptives – Insulin Content 

 Mean Std. 

Deviation 

Std. 

Error 

95% Confidence Interval for Mean Minimum Maximum 

Lower Bound Upper Bound 

FBS 2.0302 .14042 .05733 1.8828 2.1775 1.82 2.16 

LPS 1.9787 .24188 .09875 1.7248 2.2325 1.65 2.30 

DMSO 1.8871 .10802 .06236 1.6188 2.1554 1.80 2.01 

PR 1.7962 .18982 .07750 1.5970 1.9954 1.59 2.15 

PR-L 1.2566 .02902 .01676 1.1845 1.3287 1.24 1.29 

AS 1.9949 .28032 .11444 1.7007 2.2891 1.63 2.35 

AS-L 1.2911 .12469 .07199 .9813 1.6008 1.15 1.39 

AY 1.5841 .29912 .12211 1.2701 1.8980 1.17 1.90 

AY-L 1.1698 .20427 .11794 .6624 1.6773 1.02 1.40 

Total 1.7409 .35950 .05547 1.6289 1.8529 1.02 2.35 
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A.5. Statistical Analysis – Cav1.2 Promoter Activity 
 

(I) 

Treatment 

(J) 

Treatment 

Mean 

Difference (I-J) 

Std. 

Error 

Sig. 95% Confidence Interval 

Lower Bound Upper Bound 

FBS LPS .06833 .03784 .421 -.0562 .1929 

PR .12300 .03784 .053 -.0015 .2475 

AS .06633 .03784 .448 -.0582 .1909 

AY .22033* .03784 .001 .0958 .3449 

LPS FBS -.06833 .03784 .421 -.1929 .0562 

PR .05467 .03784 .616 -.0699 .1792 

AS -.00200 .03784 1.000 -.1265 .1225 

AY .15200* .03784 .016 .0275 .2765 

PR FBS -.12300 .03784 .053 -.2475 .0015 

LPS -.05467 .03784 .616 -.1792 .0699 

AS -.05667 .03784 .586 -.1812 .0679 

AY .09733 .03784 .150 -.0272 .2219 

AS FBS -.06633 .03784 .448 -.1909 .0582 

LPS .00200 .03784 1.000 -.1225 .1265 

PR .05667 .03784 .586 -.0679 .1812 

AY .15400* .03784 .015 .0295 .2785 

AY FBS -.22033* .03784 .001 -.3449 -.0958 

LPS -.15200* .03784 .016 -.2765 -.0275 

PR -.09733 .03784 .150 -.2219 .0272 

AS -.15400* .03784 .015 -.2785 -.0295 

*. The mean difference is significant at the 0.05 level. 

 
Descriptives – Cav1.2 Promoter Activity 

 Mean Std. 

Deviation 

Std. 

Error 

95% Confidence Interval for Mean Minimum Maximum 

Lower Bound Upper Bound 

FBS 1.0000 .00000 .00000 1.0000 1.0000 1.00 1.00 

LPS .9317 .04786 .02763 .8128 1.0506 .88 .97 

PR .8770 .05367 .03099 .7437 1.0103 .83 .93 

AS .9337 .02669 .01541 .8674 1.0000 .91 .96 

AY .7797 .06969 .04024 .6065 .9528 .71 .84 

Total .9044 .08562 .02211 .8570 .9518 .71 1.00 
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A.6. Statistical Analysis – Kv2.1 Promoter Activity 
 

(I) 

Treatment 

(J) 

Treatment 

Mean 

Difference (I-J) 

Std. 

Error 

Sig. 95% Confidence Interval 

Lower Bound Upper Bound 

FBS LPS .29733* .08270 .031 .0252 .5695 

PR .36767* .08270 .009 .0955 .6398 

AS .63967* .08270 .000 .3675 .9118 

AY .65767* .08270 .000 .3855 .9298 

LPS FBS -.29733* .08270 .031 -.5695 -.0252 

PR .07033 .08270 .908 -.2018 .3425 

AS .34233* .08270 .014 .0702 .6145 

AY .36033* .08270 .010 .0882 .6325 

PR FBS -.36767* .08270 .009 -.6398 -.0955 

LPS -.07033 .08270 .908 -.3425 .2018 

AS .27200 .08270 .050 -.0002 .5442 

AY .29000* .08270 .036 .0178 .5622 

AS FBS -.63967* .08270 .000 -.9118 -.3675 

LPS -.34233* .08270 .014 -.6145 -.0702 

PR -.27200 .08270 .050 -.5442 .0002 

AY .01800 .08270 .999 -.2542 .2902 

AY FBS -.65767* .08270 .000 -.9298 -.3855 

LPS -.36033* .08270 .010 -.6325 -.0882 

PR -.29000* .08270 .036 -.5622 -.0178 

AS -.01800 .08270 .999 -.2902 .2542 

*. The mean difference is significant at the 0.05 level. 

 

 
Descriptives – Kv2.1 Promoter Activity 

 Mean Std. 

Deviation 

Std. 

Error 

95% Confidence Interval for Mean Minimum Maximum 

Lower Bound Upper Bound 

FBS 1.0000 .00000 .00000 1.0000 1.0000 1.00 1.00 

LPS .7027 .15659 .09041 .3137 1.0917 .59 .88 

PR .6323 .15021 .08673 .2592 1.0055 .53 .80 

AS .3603 .05300 .03060 .2287 .4920 .32 .42 

AY .3423 .03743 .02161 .2493 .4353 .32 .39 

Total .6075 .26565 .06859 .4604 .7546 .32 1.00 
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A.7. Statistical Analysis – Insulin Promoter Activity 

 

Multiple Comparisons – Ins-1 Promoter Activity 

(I) 

Treatment 

(J) 

Treatment 

Mean 

Difference (I-

J) 

Std. 

Error 

Sig. 95% Confidence Interval 

Lower 

Bound 

Upper 

Bound 

FBS LPS -.168333 .052915 .058 -.34011 .00344 

PR .157667 .074833 .433 -.08526 .40059 

PR-L -.224333 .074833 .087 -.46726 .01859 

AS .304833* .059161 .000 .11278 .49688 

AS-L -.150333 .074833 .492 -.39326 .09259 

AY .614000* .074833 .000 .37107 .85693 

AY-L .365000* .074833 .001 .12207 .60793 

LPS FBS .168333 .052915 .058 -.00344 .34011 

PR .326000* .074833 .003 .08307 .56893 

PR-L -.056000 .074833 .995 -.29893 .18693 

AS .473167* .059161 .000 .28112 .66522 

AS-L .018000 .074833 1.000 -.22493 .26093 

AY .782333* .074833 .000 .53941 1.02526 

AY-L .533333* .074833 .000 .29041 .77626 

PR FBS -.157667 .074833 .433 -.40059 .08526 

LPS -.326000* .074833 .003 -.56893 -.08307 

PR-L -.382000* .091652 .005 -.67952 -.08448 

AS .147167 .079373 .590 -.11050 .40483 

AS-L -.308000* .091652 .038 -.60552 -.01048 

AY .456333* .091652 .001 .15881 .75386 

AY-L .207333 .091652 .345 -.09019 .50486 

PR-L FBS .224333 .074833 .087 -.01859 .46726 

LPS .056000 .074833 .995 -.18693 .29893 

PR .382000* .091652 .005 .08448 .67952 

AS .529167* .079373 .000 .27150 .78683 

AS-L .074000 .091652 .991 -.22352 .37152 

AY .838333* .091652 .000 .54081 1.13586 

AY-L .589333* .091652 .000 .29181 .88686 

AS FBS -.304833* .059161 .000 -.49688 -.11278 

LPS -.473167* .059161 .000 -.66522 -.28112 

PR -.147167 .079373 .590 -.40483 .11050 

PR-L -.529167* .079373 .000 -.78683 -.27150 
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Descriptives – Insulin-1 Promoter Activity 

 Mean Std. 

Deviation 

Std. Error 95% Confidence Interval for Mean Minimum Maximum 

Lower Bound Upper Bound 

FBS 1.00000 .000000 .000000 1.00000 1.00000 1.000 1.000 

LPS 1.16833 .159129 .053043 1.04602 1.29065 .838 1.358 

PR .84233 .069745 .040267 .66908 1.01559 .763 .894 

PR-L 1.22433 .077700 .044860 1.03132 1.41735 1.139 1.291 

AS .69517 .121984 .049800 .56715 .82318 .604 .921 

AS-L 1.15033 .152317 .087940 .77196 1.52871 1.004 1.308 

AY .38600 .149790 .086481 .01390 .75810 .278 .557 

AY-L .63500 .016523 .009539 .59396 .67604 .618 .651 

Total .93333 .274046 .043883 .84450 1.02217 .278 1.358 

AS-L -.455167* .079373 .000 -.71283 -.19750 

AY .309167* .079373 .010 .05150 .56683 

AY-L .060167 .079373 .994 -.19750 .31783 

AS-L FBS .150333 .074833 .492 -.09259 .39326 

LPS -.018000 .074833 1.000 -.26093 .22493 

PR .308000* .091652 .038 .01048 .60552 

PR-L -.074000 .091652 .991 -.37152 .22352 

AS .455167* .079373 .000 .19750 .71283 

AY .764333* .091652 .000 .46681 1.06186 

AY-L .515333* .091652 .000 .21781 .81286 

AY FBS -.614000* .074833 .000 -.85693 -.37107 

LPS -.782333* .074833 .000 -1.02526 -.53941 

PR -.456333* .091652 .001 -.75386 -.15881 

PR-L -.838333* .091652 .000 -1.13586 -.54081 

AS -.309167* .079373 .010 -.56683 -.05150 

AS-L -.764333* .091652 .000 -1.06186 -.46681 

AY-L -.249000 .091652 .155 -.54652 .04852 

AY-L FBS -.365000* .074833 .001 -.60793 -.12207 

LPS -.533333* .074833 .000 -.77626 -.29041 

PR -.207333 .091652 .345 -.50486 .09019 

PR-L -.589333* .091652 .000 -.88686 -.29181 

AS -.060167 .079373 .994 -.31783 .19750 

AS-L -.515333* .091652 .000 -.81286 -.21781 

AY .249000 .091652 .155 -.04852 .54652 

*. The mean difference is significant at the 0.05 level. 
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A.8. Statistical Analysis – Syntaxin 1A Promoter Activity (Dual Luciferase) 

 

(I) 

Treatment 

(J) 

Treatment 

Mean 

Difference (I-J) 

Std. 

Error 

Sig. 95% Confidence Interval 

Lower Bound Upper Bound 

FBS LPS .02500 .10021 1.000 -.3096 .3596 

PR .09750 .10021 .974 -.2371 .4321 

PR-L .10250 .10021 .966 -.2321 .4371 

AS .00333 .10824 1.000 -.3581 .3647 

AS-L -.14000 .10824 .892 -.5014 .2214 

AY .03750 .10021 1.000 -.2971 .3721 

AY-L .14750 .10021 .814 -.1871 .4821 

LPS FBS -.02500 .10021 1.000 -.3596 .3096 

PR .07250 .10021 .995 -.2621 .4071 

PR-L .07750 .10021 .993 -.2571 .4121 

AS -.02167 .10824 1.000 -.3831 .3397 

AS-L -.16500 .10824 .787 -.5264 .1964 

AY .01250 .10021 1.000 -.3221 .3471 

AY-L .12250 .10021 .916 -.2121 .4571 

PR FBS -.09750 .10021 .974 -.4321 .2371 

LPS -.07250 .10021 .995 -.4071 .2621 

PR-L .00500 .10021 1.000 -.3296 .3396 

AS -.09417 .10824 .986 -.4556 .2672 

AS-L -.23750 .10824 .392 -.5989 .1239 

AY -.06000 .10021 .999 -.3946 .2746 

AY-L .05000 .10021 1.000 -.2846 .3846 

PR-L FBS -.10250 .10021 .966 -.4371 .2321 

LPS -.07750 .10021 .993 -.4121 .2571 

PR -.00500 .10021 1.000 -.3396 .3296 

AS -.09917 .10824 .981 -.4606 .2622 

AS-L -.24250 .10824 .367 -.6039 .1189 

AY -.06500 .10021 .998 -.3996 .2696 

AY-L .04500 .10021 1.000 -.2896 .3796 

AS FBS -.00333 .10824 1.000 -.3647 .3581 

LPS .02167 .10824 1.000 -.3397 .3831 

PR .09417 .10824 .986 -.2672 .4556 

PR-L .09917 .10824 .981 -.2622 .4606 

AS-L -.14333 .11571 .911 -.5297 .2430 

AY .03417 .10824 1.000 -.3272 .3956 
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Descriptives – Syntaxn 1A Promoter Activity (Dual Luciferase) 

 Mean Std. 

Deviation 

Std. Error 95% Confidence Interval for Mean Minimum Maximum 

Lower Bound Upper Bound 

FBS 1.0000 .00000 .00000 1.0000 1.0000 1.00 1.00 

LPS .9750 .10247 .05123 .8119 1.1381 .86 1.08 

PR .9025 .06652 .03326 .7967 1.0083 .81 .96 

PR-L .8975 .18804 .09402 .5983 1.1967 .70 1.15 

AS .9967 .14224 .08212 .6433 1.3500 .90 1.16 

AS-L 1.1400 .22650 .13077 .5774 1.7026 .90 1.35 

AY .9625 .16091 .08045 .7065 1.2185 .80 1.18 

AY-L .8525 .15305 .07653 .6090 1.0960 .75 1.08 

Total .9590 .14686 .02681 .9042 1.0138 .70 1.35 

 
 
 

AY-L .14417 .10824 .877 -.2172 .5056 

AS-L FBS .14000 .10824 .892 -.2214 .5014 

LPS .16500 .10824 .787 -.1964 .5264 

PR .23750 .10824 .392 -.1239 .5989 

PR-L .24250 .10824 .367 -.1189 .6039 

AS .14333 .11571 .911 -.2430 .5297 

AY .17750 .10824 .723 -.1839 .5389 

AY-L .28750 .10824 .189 -.0739 .6489 

AY FBS -.03750 .10021 1.000 -.3721 .2971 

LPS -.01250 .10021 1.000 -.3471 .3221 

PR .06000 .10021 .999 -.2746 .3946 

PR-L .06500 .10021 .998 -.2696 .3996 

AS -.03417 .10824 1.000 -.3956 .3272 

AS-L -.17750 .10824 .723 -.5389 .1839 

AY-L .11000 .10021 .951 -.2246 .4446 

AY-L FBS -.14750 .10021 .814 -.4821 .1871 

LPS -.12250 .10021 .916 -.4571 .2121 

PR -.05000 .10021 1.000 -.3846 .2846 

PR-L -.04500 .10021 1.000 -.3796 .2896 

AS -.14417 .10824 .877 -.5056 .2172 

AS-L -.28750 .10824 .189 -.6489 .0739 

AY -.11000 .10021 .951 -.4446 .2246 
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A.9. Statistical Analysis – SNAP 25 Promoter Activity (Dual Luciferase) 

 
 

(I) 

Treatment 

(J) 

Treatment 

Mean 

Difference (I-J) 

Std. 

Error 

Sig. 95% Confidence Interval 

Lower Bound Upper Bound 

FBS LPS -.07000 .13047 .999 -.5056 .3656 

PR .14750 .13047 .943 -.2881 .5831 

PR-L -.04250 .13047 1.000 -.4781 .3931 

AS -.09000 .14093 .998 -.5605 .3805 

AS-L -.07667 .14093 .999 -.5472 .3938 

AY .00000 .13047 1.000 -.4356 .4356 

AY-L -.21000 .13047 .740 -.6456 .2256 

LPS FBS .07000 .13047 .999 -.3656 .5056 

PR .21750 .13047 .707 -.2181 .6531 

PR-L .02750 .13047 1.000 -.4081 .4631 

AS -.02000 .14093 1.000 -.4905 .4505 

AS-L -.00667 .14093 1.000 -.4772 .4638 

AY .07000 .13047 .999 -.3656 .5056 

AY-L -.14000 .13047 .956 -.5756 .2956 

PR FBS -.14750 .13047 .943 -.5831 .2881 

LPS -.21750 .13047 .707 -.6531 .2181 

PR-L -.19000 .13047 .821 -.6256 .2456 

AS -.23750 .14093 .696 -.7080 .2330 

AS-L -.22417 .14093 .751 -.6947 .2463 

AY -.14750 .13047 .943 -.5831 .2881 

AY-L -.35750 .13047 .163 -.7931 .0781 

PR-L FBS .04250 .13047 1.000 -.3931 .4781 

LPS -.02750 .13047 1.000 -.4631 .4081 

PR .19000 .13047 .821 -.2456 .6256 

AS -.04750 .14093 1.000 -.5180 .4230 

AS-L -.03417 .14093 1.000 -.5047 .4363 

AY .04250 .13047 1.000 -.3931 .4781 

AY-L -.16750 .13047 .895 -.6031 .2681 

AS FBS .09000 .14093 .998 -.3805 .5605 

LPS .02000 .14093 1.000 -.4505 .4905 

PR .23750 .14093 .696 -.2330 .7080 

PR-L .04750 .14093 1.000 -.4230 .5180 

AS-L .01333 .15066 1.000 -.4897 .5163 

AY .09000 .14093 .998 -.3805 .5605 
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AY-L -.12000 .14093 .988 -.5905 .3505 

AS-L FBS .07667 .14093 .999 -.3938 .5472 

LPS .00667 .14093 1.000 -.4638 .4772 

PR .22417 .14093 .751 -.2463 .6947 

PR-L .03417 .14093 1.000 -.4363 .5047 

AS -.01333 .15066 1.000 -.5163 .4897 

AY .07667 .14093 .999 -.3938 .5472 

AY-L -.13333 .14093 .977 -.6038 .3372 

AY FBS .00000 .13047 1.000 -.4356 .4356 

LPS -.07000 .13047 .999 -.5056 .3656 

PR .14750 .13047 .943 -.2881 .5831 

PR-L -.04250 .13047 1.000 -.4781 .3931 

AS -.09000 .14093 .998 -.5605 .3805 

AS-L -.07667 .14093 .999 -.5472 .3938 

AY-L -.21000 .13047 .740 -.6456 .2256 

AY-L FBS .21000 .13047 .740 -.2256 .6456 

LPS .14000 .13047 .956 -.2956 .5756 

PR .35750 .13047 .163 -.0781 .7931 

PR-L .16750 .13047 .895 -.2681 .6031 

AS .12000 .14093 .988 -.3505 .5905 

AS-L .13333 .14093 .977 -.3372 .6038 

AY .21000 .13047 .740 -.2256 .6456 

 

Descriptives – SNAP 25 Reporter Activity (Dual Luciferase) 

 Mean Std. 

Deviation 

Std. Error 95% Confidence Interval for Mean Minimum Maximum 

Lower Bound Upper Bound 

FBS 1.0000 .00000 .00000 1.0000 1.0000 1.00 1.00 

LPS 1.0700 .17493 .08746 .7916 1.3484 .92 1.32 

PR .8525 .04031 .02016 .7884 .9166 .81 .90 

PR-L 1.0425 .06994 .03497 .9312 1.1538 .95 1.11 

AS 1.0900 .24759 .14295 .4750 1.7050 .90 1.37 

AS-L 1.0767 .23352 .13482 .4966 1.6568 .87 1.33 

AY 1.0000 .29687 .14844 .5276 1.4724 .75 1.43 

AY-L 1.2100 .21726 .10863 .8643 1.5557 .89 1.37 

Total 1.0400 .18875 .03446 .9695 1.1105 .75 1.43 

 
 
 

 



145 
 

A.10. Statistical Analysis – KCNJ11 Promoter Activity (Dual Luciferase) 
 
 

(I) 

Treatment 

(J) 

Treatment 

Mean 

Difference (I-J) 

Std. 

Error 

Sig. 95% Confidence Interval 

Lower Bound Upper Bound 

FBS LPS -.14000 .15083 .980 -.6436 .3636 

PR -.14000 .15083 .980 -.6436 .3636 

PR-L -.15750 .15083 .962 -.6611 .3461 

AS -.96000* .16292 .000 -1.5039 -.4161 

AS-L -.55667* .16292 .042 -1.1006 -.0127 

AY .05000 .15083 1.000 -.4536 .5536 

AY-L .11250 .15083 .994 -.3911 .6161 

LPS FBS .14000 .15083 .980 -.3636 .6436 

PR .00000 .15083 1.000 -.5036 .5036 

PR-L -.01750 .15083 1.000 -.5211 .4861 

AS -.82000* .16292 .001 -1.3639 -.2761 

AS-L -.41667 .16292 .224 -.9606 .1273 

AY .19000 .15083 .904 -.3136 .6936 

AY-L .25250 .15083 .703 -.2511 .7561 

PR FBS .14000 .15083 .980 -.3636 .6436 

LPS .00000 .15083 1.000 -.5036 .5036 

PR-L -.01750 .15083 1.000 -.5211 .4861 

AS -.82000* .16292 .001 -1.3639 -.2761 

AS-L -.41667 .16292 .224 -.9606 .1273 

AY .19000 .15083 .904 -.3136 .6936 

AY-L .25250 .15083 .703 -.2511 .7561 

PR-L FBS .15750 .15083 .962 -.3461 .6611 

LPS .01750 .15083 1.000 -.4861 .5211 

PR .01750 .15083 1.000 -.4861 .5211 

AS -.80250* .16292 .001 -1.3464 -.2586 

AS-L -.39917 .16292 .267 -.9431 .1448 

AY .20750 .15083 .859 -.2961 .7111 

AY-L .27000 .15083 .633 -.2336 .7736 

AS FBS .96000* .16292 .000 .4161 1.5039 

LPS .82000* .16292 .001 .2761 1.3639 

PR .82000* .16292 .001 .2761 1.3639 

PR-L .80250* .16292 .001 .2586 1.3464 

AS-L .40333 .17417 .329 -.1782 .9848 

AY 1.01000* .16292 .000 .4661 1.5539 
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AY-L 1.07250* .16292 .000 .5286 1.6164 

AS-L FBS .55667* .16292 .042 .0127 1.1006 

LPS .41667 .16292 .224 -.1273 .9606 

PR .41667 .16292 .224 -.1273 .9606 

PR-L .39917 .16292 .267 -.1448 .9431 

AS -.40333 .17417 .329 -.9848 .1782 

AY .60667* .16292 .022 .0627 1.1506 

AY-L .66917* .16292 .009 .1252 1.2131 

AY FBS -.05000 .15083 1.000 -.5536 .4536 

LPS -.19000 .15083 .904 -.6936 .3136 

PR -.19000 .15083 .904 -.6936 .3136 

PR-L -.20750 .15083 .859 -.7111 .2961 

AS -1.01000* .16292 .000 -1.5539 -.4661 

AS-L -.60667* .16292 .022 -1.1506 -.0627 

AY-L .06250 .15083 1.000 -.4411 .5661 

AY-L FBS -.11250 .15083 .994 -.6161 .3911 

LPS -.25250 .15083 .703 -.7561 .2511 

PR -.25250 .15083 .703 -.7561 .2511 

PR-L -.27000 .15083 .633 -.7736 .2336 

AS -1.07250* .16292 .000 -1.6164 -.5286 

AS-L -.66917* .16292 .009 -1.2131 -.1252 

AY -.06250 .15083 1.000 -.5661 .4411 

*. The mean difference is significant at the 0.05 level. 

 

Descriptives – KCNJ11 Promoter Activity (Dual Luciferase) 

 Mean Std. 

Deviation 

Std. Error 95% Confidence Interval for Mean Minimum Maximum 

Lower Bound Upper Bound 

FBS 1.0000 .00000 .00000 1.0000 1.0000 1.00 1.00 

LPS 1.1400 .09345 .04673 .9913 1.2887 1.00 1.19 

PR 1.1400 .02944 .01472 1.0932 1.1868 1.10 1.17 

PR-L 1.1575 .10372 .05186 .9925 1.3225 1.07 1.29 

AS 1.9600 .52915 .30551 .6455 3.2745 1.36 2.36 

AS-L 1.5567 .41356 .23877 .5293 2.5840 1.20 2.01 

AY .9500 .04320 .02160 .8813 1.0187 .91 1.01 

AY-L .8875 .10372 .05186 .7225 1.0525 .81 1.04 

Total 1.1883 .36897 .06736 1.0506 1.3261 .81 2.36 
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A.11. Statistical Analysis – KV2.1 Densitometry Analysis 
 
 

Multiple Comparisons – Kv2.1 Immunoblot Results 

(I) Treatment (J) Treatment Mean 

Difference (I-J) 

Std. 

Error 

Sig. 95% Confidence Interval 

Lower 

Bound 

Upper 

Bound 

FBS LPS -1.18626 .46227 .225 -2.7447 .3721 

PR .08925 .46227 1.000 -1.4692 1.6477 

PR-L -.66617 .46227 .828 -2.2246 .8922 

AS -.83989 .49931 .698 -2.5232 .8434 

AS-L -.82755 .49931 .712 -2.5108 .8557 

AY -.58265 .49931 .932 -2.2659 1.1006 

AY-L -.30400 .49931 .998 -1.9873 1.3793 

LPS FBS 1.18626 .46227 .225 -.3721 2.7447 

PR 1.27551 .46227 .162 -.2829 2.8339 

PR-L .52009 .46227 .943 -1.0383 2.0785 

AS .34638 .49931 .996 -1.3369 2.0297 

AS-L .35871 .49931 .995 -1.3246 2.0420 

AY .60361 .49931 .920 -1.0797 2.2869 

AY-L .88226 .49931 .647 -.8010 2.5655 

PR FBS -.08925 .46227 1.000 -1.6477 1.4692 

LPS -1.27551 .46227 .162 -2.8339 .2829 

PR-L -.75542 .46227 .726 -2.3138 .8030 

AS -.92913 .49931 .590 -2.6124 .7541 

AS-L -.91680 .49931 .605 -2.6001 .7665 

AY -.67190 .49931 .870 -2.3552 1.0114 

AY-L -.39325 .49931 .992 -2.0765 1.2900 

PR-L FBS .66617 .46227 .828 -.8922 2.2246 

LPS -.52009 .46227 .943 -2.0785 1.0383 

PR .75542 .46227 .726 -.8030 2.3138 

AS -.17371 .49931 1.000 -1.8570 1.5096 

AS-L -.16138 .49931 1.000 -1.8447 1.5219 

AY .08352 .49931 1.000 -1.5998 1.7668 

AY-L .36217 .49931 .995 -1.3211 2.0454 

AS FBS .83989 .49931 .698 -.8434 2.5232 

LPS -.34638 .49931 .996 -2.0297 1.3369 

PR .92913 .49931 .590 -.7541 2.6124 

PR-L .17371 .49931 1.000 -1.5096 1.8570 
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AS-L .01233 .53379 1.000 -1.7872 1.8118 

AY .25723 .53379 1.000 -1.5423 2.0567 

AY-L .53588 .53379 .968 -1.2636 2.3354 

AS-L FBS .82755 .49931 .712 -.8557 2.5108 

LPS -.35871 .49931 .995 -2.0420 1.3246 

PR .91680 .49931 .605 -.7665 2.6001 

PR-L .16138 .49931 1.000 -1.5219 1.8447 

AS -.01233 .53379 1.000 -1.8118 1.7872 

AY .24490 .53379 1.000 -1.5546 2.0444 

AY-L .52355 .53379 .972 -1.2759 2.3230 

AY FBS .58265 .49931 .932 -1.1006 2.2659 

LPS -.60361 .49931 .920 -2.2869 1.0797 

PR .67190 .49931 .870 -1.0114 2.3552 

PR-L -.08352 .49931 1.000 -1.7668 1.5998 

AS -.25723 .53379 1.000 -2.0567 1.5423 

AS-L -.24490 .53379 1.000 -2.0444 1.5546 

AY-L .27865 .53379 .999 -1.5209 2.0781 

AY-L 
 

FBS .30400 .49931 .998 -1.3793 1.9873 

LPS -.88226 .49931 .647 -2.5655 .8010 

PR .39325 .49931 .992 -1.2900 2.0765 

PR-L -.36217 .49931 .995 -2.0454 1.3211 

AS -.53588 .53379 .968 -2.3354 1.2636 

AS-L -.52355 .53379 .972 -2.3230 1.2759 

AY -.27865 .53379 .999 -2.0781 1.5209 

 
 
 
 

 

A.12. Statistical Analysis – CaV1.2 Densitometry Analysis 
 

 

Multiple Comparisons – Cav1.2 Immunoblot Results 

(I) Treatment (J) Treatment Mean 

Difference (I-

J) 

Std. 

Error 

Sig. 95% Confidence Interval 

Lower 

Bound 

Upper 

Bound 

FBS LPS -2.00910* .39613 .001 -3.3445 -.6737 

PR -.26765 .39613 .997 -1.6031 1.0678 

PR-L -.94000 .39613 .306 -2.2754 .3954 
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AS -.66904 .42787 .765 -2.1115 .7734 

AS-L -.83764 .42787 .531 -2.2801 .6048 

AY -1.78233* .42787 .009 -3.2248 -.3399 

AY-L -1.08091 .42787 .240 -2.5233 .3615 

LPS 
 

FBS 2.00910* .39613 .001 .6737 3.3445 

PR 1.74145* .39613 .006 .4060 3.0769 

PR-L 1.06910 .39613 .180 -.2663 2.4045 

AS 1.34006 .42787 .081 -.1024 2.7825 

AS-L 1.17146 .42787 .168 -.2710 2.6139 

AY .22676 .42787 .999 -1.2157 1.6692 

AY-L .92819 .42787 .409 -.5142 2.3706 

PR FBS .26765 .39613 .997 -1.0678 1.6031 

LPS -1.74145* .39613 .006 -3.0769 -.4060 

PR-L -.67235 .39613 .689 -2.0078 .6631 

AS -.40139 .42787 .978 -1.8438 1.0410 

AS-L -.56999 .42787 .876 -2.0124 .8724 

AY -1.51468* .42787 .035 -2.9571 -.0722 

AY-L -.81326 .42787 .566 -2.2557 .6292 

PR-L FBS .94000 .39613 .306 -.3954 2.2754 

LPS -1.06910 .39613 .180 -2.4045 .2663 

PR .67235 .39613 .689 -.6631 2.0078 

AS .27096 .42787 .998 -1.1715 1.7134 

AS-L .10237 .42787 1.000 -1.3401 1.5448 

AY -.84233 .42787 .524 -2.2848 .6001 

AY-L -.14091 .42787 1.000 -1.5833 1.3015 

AS 
 

FBS .66904 .42787 .765 -.7734 2.1115 

LPS -1.34006 .42787 .081 -2.7825 .1024 

PR .40139 .42787 .978 -1.0410 1.8438 

PR-L -.27096 .42787 .998 -1.7134 1.1715 

AS-L -.16860 .45741 1.000 -1.7106 1.3734 

AY -1.11329 .45741 .278 -2.6553 .4287 

AY-L -.41187 .45741 .983 -1.9539 1.1302 

AS-L FBS .83764 .42787 .531 -.6048 2.2801 

LPS -1.17146 .42787 .168 -2.6139 .2710 

PR .56999 .42787 .876 -.8724 2.0124 

PR-L -.10237 .42787 1.000 -1.5448 1.3401 

AS .16860 .45741 1.000 -1.3734 1.7106 

AY -.94470 .45741 .467 -2.4867 .5973 

AY-L -.24328 .45741 .999 -1.7853 1.2988 
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AY FBS 1.78233* .42787 .009 .3399 3.2248 

LPS -.22676 .42787 .999 -1.6692 1.2157 

PR 1.51468* .42787 .035 .0722 2.9571 

PR-L .84233 .42787 .524 -.6001 2.2848 

AS 1.11329 .45741 .278 -.4287 2.6553 

AS-L .94470 .45741 .467 -.5973 2.4867 

AY-L .70142 .45741 .781 -.8406 2.2434 

AY-L FBS 1.08091 .42787 .240 -.3615 2.5233 

LPS -.92819 .42787 .409 -2.3706 .5142 

PR .81326 .42787 .566 -.6292 2.2557 

PR-L .14091 .42787 1.000 -1.3015 1.5833 

AS .41187 .45741 .983 -1.1302 1.9539 

AS-L .24328 .45741 .999 -1.2988 1.7853 

AY -.70142 .45741 .781 -2.2434 .8406 

*. The mean difference is significant at the 0.05 level. 
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A.13. RT-PCR Array Gene List 

 
Gene 

Symbol 
Alias Refseq # Official Full Name 

Slc2a2 AI266973/Glut-2/Glut2 NM_031197 Solute carrier family 2 (facilitated 
glucose transporter), member 2 

Kcnb1 Kcr1-1/Kv2.1/Shab NM_008420 Potassium voltage gated channel, 
Shab-related subfamily, member 1 

Abcc8 D930031B21Rik/SUR1/Sur NM_011510 ATP-binding cassette, sub-family C 
(CFTR/MRP), member 8 

Cacna1c Cav1.2/Cchl1a1 NM_009781 Calcium channel, voltage-
dependent, L type, alpha 1C 
subunit 

Cacna1d 8430418G19Rik/C79217/Cacnl
1a2/Cchl1a/Cchl1a2/D-LTCC 

NM_028981 Calcium channel, voltage-
dependent, L type, alpha 1D 
subunit 

Kcnj11 Kir6.2/mBIR NM_010602 Potassium inwardly rectifying 
channel, subfamily J, member 11 

Ins1 Ins-1/Ins2-rs1 NM_008386 Insulin I 
Ins2 AA986540/Ins-

2/InsII/Mody/Mody4/proinsulin 
NM_008387 Insulin II 

Hmgcr HMG-CoAR/MGC103269/Red NM_008255 3-hydroxy-3-methylglutaryl-
Coenzyme A reductase 

Dhcr7 AA409147 NM_007856 7-dehydrocholesterol reductase 
Fdft1 SQS/SS NM_010191 Farnesyl diphosphate farnesyl 

transferase 1 
Stx1a HPC-1 NM_016801 Syntaxin 1A (brain) 
Stx4a Stx4/Syn-4/Syn4 NM_009294 Syntaxin 4A (placental) 

Snap25 Bdr/SNAP-25/sp NM_011428 Synaptosomal-associated protein 
25 

Snap23 23kDa/AA408749/SNAP-
23/Sndt/Syndet 

NM_009222 Synaptosomal-associated protein 
23 

Vamp1 Syb-1/Syb1/VAMP-1/lew NM_009496 Vesicle-associated membrane 
protein 1 

Vamp2 Syb-2/Syb2/sybII NM_009497 Vesicle-associated membrane 
protein 2 

Abca1 Abc1 NM_013454 ATP-binding cassette, sub-family A 
(ABC1), member 1 

Ldlr Hlb301 NM_010700 Low density lipoprotein receptor 
Ghrl 2210006E23Rik/MTLRP/MTLR

PAP/m46 
NM_021488 Ghrelin 

Mboat4 GOAT/Gm171 NM_001126314 Membrane bound O-
acyltransferase domain containing 
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4 
Gapdh Gapd/MGC102544/MGC10254

6/MGC103190/MGC103191/M
GC105239 

NM_008084 Glyceraldehyde-3-phosphate 
dehydrogenase 

RTC RTC SA_00104 Reverse Transcription Control 
PPC PPC SA_00103 Positive PCR Control 

 
 


