
A HYBRID APPROACH FOR LARGE-SCALE PRODUCT CATEGORIZATION
BASED ON WEIGHTED KNN AND LSTM-BPV

HAOHAO HU

A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES
IN PARTIAL FULFILMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF ARTS

GRADUATE PROGRAM IN INFORMATION SYSTEMS AND TECHNOLOGY
YORK UNIVERSITY

TORONTO, ONTARIO
AUGUST 2019

c© HAOHAO HU, 2019

Abstract

In modern e-commerce systems, large volumes of new items are being added to the

product list everyday, which calls for automatic product categorization. In this thesis we

propose a weighted K-Nearest Neighbour (KNN) based classification system for solving

large-scale e-commerce product taxonomy classification problem. We use information

retrieval (IR) model as similarity function in our weighted KNN algorithm. Among all

IR models used in this study, we achieved highest classification performance through

using information-based (IB) model as similarity function in the KNN algorithm. More-

over, our proposed method can improve the overall performance when combining pre-

diction results with those from advanced neural network based method, namely Long

Short-Term Memory with Balanced Pooling Views (LSTM-BPV). The hybrid system

could achieve results comparable to the state of the art (SotA). We also get good re-

sults by fine-tuning pre-trained Bidirectional Encoder Representations from Transform-

ers (BERT) model.

ii

Acknowledgements

I would like to thank the supervisor of this thesis Professor Jimmy Xiangji Huang for his

guidance and continuous support. Without his help, this thesis would not be completed

and I would not have the opportunities to participate in various learning activities related

to information technology. I would also like to thank Dr. Xing Tan for giving me helpful

advice. I would also like to thank Runjie Zhu, Yuqi Wang and Professor Wenying Feng

(from Trent University) for collaborating with me in our preliminary work in 2018 SIGIR

eCom Data Challenge. I would also like to thank Professor George Georgopoulos and

Professor Xiaohui Yu for being a member of my supervisory committee. Additionally, I

would like to thank my colleagues in Information Retrieval and Knowledge Management

(IRKM) Laboratory for their help and support.

In addition, I gratefully acknowledge the support by NSERC (Natural Sciences and

Engineering Research Council of Canada) CREATE (Collaborative Research and Train-

ing Experience Program) award in ADERSIM (Advanced Disaster, Emergency and Ra-

pid-response Simulation), ORF-RE (Ontario Research Fund - Research Excellence) aw-

ard in BRAIN (Big Data Research, Analytics, and Information Network) Alliance, and

the York Research Chairs Program.

Additionally, I would like to thank Michael Skinner and Google AI Language Team

for making the implementation codes of LSTM-BPV and BERT publicly available. I

would also like to thank Rakuten Institute of Technology Boston (RIT-Boston) for orga-

nizing 2018 SIGIR eCom Data Challenge and providing me with the SIGIR eCom Data

Challenge Dataset and evaluation script.

Finally, I would like to thank my family for continuous love and support.

iii

Table of Contents

Abstract ii

Acknowledgements iii

Table of Contents iv

List of Tables viii

List of Figures x

Abbreviations xii

1 Introduction 1

1.1 Background . 1

1.2 Motivation and Research Problems . 2

1.3 Main Contributions . 3

1.4 Outline . 5

2 Preliminaries 6

2.1 Text Classification . 6

2.2 Neural Network Approaches for Text Classification 7

2.3 Document Representation . 10

2.3.1 Traditional Bag-of-words Representation 10

2.3.2 Sparse One-hot Character/Word Vectors 12

2.3.3 Dense/Distributed Character/Word/Paragraph/Document Vector 12

iv

2.3.4 Contextualized Embeddings 14

2.4 Large-scale E-commerce Product Taxonomy Categorization 15

2.5 KNN Classification . 16

2.6 IR . 19

2.6.1 Hand-crafted IR Model . 19

2.6.2 Traditional Learning-to-rank (L2R) IR Model 19

2.6.3 Neural IR Model . 20

2.7 IR Models Used in This Study . 21

2.7.1 BM25 . 22

2.7.2 LM . 23

2.7.3 VSM with TF-IDF Weight . 25

2.7.4 IB Model . 26

2.7.5 Cosine Similarity of Doc2vec Embeddings 29

2.8 KNN Text Classification Using IR Model 30

2.9 Neural IR Models for Modelling E-commerce Product Similarity 31

2.10 Fine-tuning Pre-trained Model for Text Classification 31

2.11 Fine-tuning Pre-trained BERT Model for Large-scale Product Taxonomy

Classification . 34

2.12 Overview of 2018 SIGIR eCom Data Challenge 34

2.12.1 Winner’s Solution . 34

2.12.2 Other Top Participants’ Solutions 38

2.12.3 Conclusion from Top Participants’ Solutions 39

3 Methodology 40

3.1 A Weighted KNN Classifier for Product Categorization 40

3.2 The Classifier in Action . 44

v

3.3 Advantages of IR Model Based Weighted KNN for Large-scale E-com-

merce Product Classification . 49

3.4 A Hybrid Approach Based on Weighted KNN and LSTM-BPV to Pr-

oduct Classification . 50

3.5 Advantages of the Hybrid System for Product Classification 51

4 Experiments 53

4.1 Dataset . 53

4.2 Experimental Set-ups . 54

4.3 Evaluation Metrics . 55

4.4 Baselines . 56

4.5 Tuning k in KNN . 57

4.6 Tuning BM25 Model . 58

4.7 Using Different IR Models as Similarity Function in Weighted-KNN . . 59

5 Analyses and Discussions 65

5.1 Comparing KNN with Different IR Models 65

5.2 Impact of Removing Stopwords . 66

5.3 Impact of Replacing Digits with “0” 67

5.4 Impact of Removing Infrequent Words 67

5.5 Impact of Using Standard Filter for Normalization 67

5.6 Comparing KNN with Different Weighting Schemes 68

5.7 Combining Prediction Results of KNN with LSTM-BPV Networks . . . 69

5.8 Fine-tuning Trained LSTM-BPV Network on WINNER-VAL 73

5.9 Fine-tuning Pre-trained BERT Model 74

5.10 Fine-tuning BERT with Larger Batch Size 77

5.11 Comparing the Performance of Pre-trained BERT and OpenAI GPT . . 77

vi

6 Conclusions and Future Work 83

6.1 Conclusions . 83

6.2 Impact of My Thesis Work . 84

6.3 Future Work . 86

Bibliography 88

Appendix A: A Part of the Training Dataset 102

Appendix B: The Instructions of the KNN Classification System Based on Lu-

cene 107

Appendix C: The Instructions of the KNN Classification System Based on

Gensim Doc2vec API 108

Appendix D: The Instructions of the Hybrid System Based on LSTM-BPVs

and Weighted KNN 110

Appendix E: The Instructions of the Classification System Based on BERT

Model 111

Appendix F: Proof regarding the hybrid approach 112

vii

List of Tables

2.1 Test Dataset, performance comparison of different teams in the Stage 2

of SIGIR eCom Data Challenge. Our team is printed in bold. 35

3.1 Top 10 matches obtained given the query 45

3.2 Distinct Category id paths, corresponding categories and category scores

within top k(k=1/3/5/7/10) documents’ category id paths 46

3.3 pseudo code of the KNN classifier in action 46

3.4 pseudo code of the main system in action 47

4.1 a subset of the Test Dataset, performance comparison of KNN with

BM25 as similarity function and different k values 57

4.2 2-in-2-TEST, performance comparison of KNN with different IB mod-

els with default parameters. The highest weighted-F1 is printed in bold. 62

4.3 2-in-2-TEST, performance comparison of KNN with Doc2vec cosine si-

milarity with different window size and different training method. The

highest weighted-F1 is printed in bold. 63

4.4 2-in-2-TEST, performance comparison of KNN with different IR mod-

els. The highest weighted-F1 is printed in bold. 63

4.5 1-in-2-TEST, performance comparison of KNN with different IR mod-

els. The highest weighted-F1 is printed in bold. 64

5.1 Test Dataset, performance comparison of ensembles and base models.

The highest value is printed in bold. 73

viii

5.2 WINNER-VAL/Test Dataset, performance comparison of BERT-base

and OpenAI GPT. The highest weighted-F1 achieved on each dataset is

printed in bold. 78

ix

List of Figures

2.1 Example of documents and query on VSM, by Riclas - Own work, CC

BY 3.0, https://commons.wikimedia.org/w/index.php?curid=9076846 . 11

2.2 CBOW and Skipgram for training Word2vec word embedding, by Aelu-

013 [CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0)],

from Wikimedia Commons . 13

3.1 A Weighted KNN Product Classification System 41

3.2 An earring item need to be categorized. Picture source: https://www.ra-

kuten.com/shop/sabrina-silver/product/TE3873/ 43

4.1 Characteristics of product taxonomy in SIGIR eCom Data Challenge

Dataset . 55

4.2 2-in-2-TEST, sensitivity of weighted-F1/weighted-P/weighted-R to b in

BM25 model . 59

4.3 2-in-2-TEST, sensitivity of weighted-F1/weighted-P/weighted-R to µ in

Dirichlet Language Model . 60

4.4 2-in-2-TEST, sensitivity of weighted-F1/weighted-P/weighted-R to λ in

Jelinek-Mercer Language Model . 61

4.5 2-in-2-TEST, sensitivity of weighted-F1/weighted-P/weighted-R to c in

NormalizationH1 within IB-SPL-ADF-NormH1 62

5.1 2-in-2-TEST, sensitivity of weighted-F1/weighted-P/weighted-R to α in

weighted KNN with weighted category and smoothing 70

x

5.2 WINNER-VAL, sensitivity to λ in the ensemble of KNN with IB-SPL-

ADF-NormH1 and LSTM-BPV/B-LSTM-BPV 79

5.3 WINNER-VAL/Test Dataset, sensitivity to LSTM-BPV’s number of

epochs fine-tuned . 80

5.4 WINNER-VAL/Test Dataset, sensitivity to BERT’s number of epochs

fine-tuned . 81

5.5 WINNER-TRAIN, the training loss curve of fine-tuning BERT-large un-

cased with batch size of 256 and learning rate of 2.5×10−4 for 40 epochs.

(pink line): raw plot; (red line): with 0.6 smoothing 82

xi

Abbreviations

Here is a list of abbreviations used in this thesis:

AbLSTM: Attention-based LSTM

AI: Artificial Intelligence

BERT: Bidirectional Encoder Representations from Transformers

BLSTM: Bidirectional LSTM

B-LSTM-BPV: Bidirectional ensemble of a forward LSTM-BPV and a backward

LSTM-BPV

BM25: Best Match 25

BoW: Bag-of-Words

CAN: Collaborative and Adversarial Network

CA-RNN: Context-aligned RNN

CLSM: Convolutional Latent Semantic Model

CNN: Convolutional Neural Network

CoLA: Corpus of Linguistic Acceptability

CRTER: CRoss TERm

CV: Computer Vision

DeepCN: Deep Categorization Network

DF: Document Frequency

DNN: Deep Neural Network

DSSM: Deep Structured Semantic Models

ELMo: Embeddings from Language Models

F1: F1 score

xii

GloVe: Global Vectors

GPT: Generative Pre-Training

HBM: High Bandwidth Memory

IB model: Information-based model

IDF: Inverse Document Frequency

IR: Information Retrieval

KNN: K-Nearest Neighbour

K-NRM: Kernel based Neural Ranking Model

LL: Log-Logistic

LLSF: Linear Least-Square Fit

LM: Language Model

LSA: Latent Semantic Analysis

LSTM: Long Short-Term Memory

LSTM-BPV: Long Short-Term Memory with Balanced Pooling Views

LtR: Left-to-Right

L2R: Learning-to-Rank

ML: Machine Learning

MLE: Maximum Likelihood Estimator

MLM: Masked Language Model

MLP: MultiLayer Perceptron

MT: Machine Translation

NIST: National Institute of Standards and Technology

NLM: Neural Language Model

NLP: Natural Language Processing

NSP: Next Sentence Prediction

1NN: 1-Nearest Neighbour

xiii

OOV: Out-of-Vocabulary

P: Precision

POS: Part-of-Speech

PRF: Pseudo-Relevance Feedback

PV-DBOW: Paragraph Vector Distributed Bag of Words

PV-DM: Paragraph Vector Distributed Memory

R: Recall

RNN: Recurrent Neural Network

RSV: Retrieval Status Value (or relevance score)

R2L: Right-to-Left

SGD: Stochastic Gradient Descent

SGDM: SGD with (Nesterov’s) Momentum

SGDR: SGD with warm Restarts

SIGIR:Special Interest Group on Information Retrieval

SotA: State of the Art

SPL: Smoothed Power-Law

SST-2: Stanford Sentiment Treebank (with 2 target classes)

SVD: Singular-Value Decomposition

SVM: Support Vector Machine

TextCNN: Text Convolutional Neural Network

TF: Term Frequency

TPU: Tensor Processing Unit

TREC: Text REtrieval Conference

TTF: Total Term Frequency (or collection frequency)

ULMFiT: Universal Language Model Fine-Tuning

UNSPSC: United Nations Standard Product and Service Code

xiv

VM: Virtual Machine

VSM: Vector Space Model

xv

Chapter 1

Introduction

In this chapter, we will introduce the background, motivation, problem definition and

main contributions of our research. We will also present an outline of the remaining part

of this thesis.

1.1 Background

As the fast-paced development of the internet, there has been a huge rise of the e-

commerce market. Online shopping platforms, such as Alibaba, Amazon and Taobao,

provide not only goods meeting consumers’ specific needs, but also products that are

basically everyone’s daily consumption in life. Almost all the e-commerce platforms

aim at updating their shopping lists and inventories at their fastest speed to target cer-

tain consumers in order to win a bigger proportion of the market. Also, e-commerce

websites usually classify products into a taxonomy tree consisting of multiple levels. A

product taxonomy tree typically contains more than 1000 leaf nodes, i.e. classes. So, the

technologies adopted to efficiently and effectively categorize a product’s category within

taxonomy tree become more important. This would help the system operators or mer-

chants to add in or delete certain items from their product lists. It would also be easier for

system operators or managers to deal with data analysis and data management in future.

1

1.2 Motivation and Research Problems

The motivation of this research is to combine recently developed information retrieval

(IR) models and conventional KNN approach for efficient and effective e-commerce

product taxonomy classification. Compared to other methods like Support Vector Ma-

chine (SVM), it would be relatively easy to incorporate our approach into modern e-

commerce websites, as they already have product search systems. Also, we would like

to compare the effectiveness of different IR models through using them as similarity

function in our KNN algorithm.

Problem Definition: The problem to solve in this thesis is to predict a product’s

category id path ci in a product taxonomy tree, which consists of N possible category id

paths {c1, . . . , cN}, given the product’s title pti.

Large-scale product taxonomy classification has the following challenges:

The first challenge is that there are many classes (leaf nodes) in the taxonomy. For

example, the SIGIR eCom Data Challenge Dataset have 3,008 target classes (distinct

category id paths). This makes computational cost high, especially for more complex

algorithms (e.g. Support Vector Machine (SVM)). In contrast, our proposed method

generally involves less computational cost, because it is instance-based and thus its com-

putational cost is independent of the number of classes.

The second challenge is that the product titles have various lengths. As an example,

according to [50], the product titles in the SIGIR eCom Data Challenge Dataset have

minimum and maximum word-level length of 1 and 58 respectively. This makes it less

efficient to be tackled with neural network approaches, since excessive padding (i.e. “0”)

has to be used so that examples within a mini-batch or even training set are of equal

length. In contrast, our proposed method requires no padding and thus is more efficient.

The third challenge is that there is possibility of error during manual labelling of

a product’s class. This is partly because, according to [50], labelling is usually done

2

by merchants in an e-commerce setting. Also, there is no strict rule/gold standard in

labelling. This problem lies in the dataset itself, and we could address it by providing

merchants with more product labelling examples deemed correct by experts.

The fourth challenge is that the size of product catalog is usually quite large. For

example, according to [50], the size of Rakuten’s product catalog is much greater than 1

million. Because of such heavy workload, we need relatively good and fast product clas-

sification algorithms to help merchants label products more efficiently and effectively.

Our proposed KNN method is fast, relatively good and scalable, where new training in-

stances could be easily added into the weighted-KNN system to improve classification

performance.

The fifth challenge is that the distribution of products over category is skewed/unbal-

anced. For example, top categories/classes may have over 10,000 product titles, while

many other classes may only have less than 100 product titles. Such unbalanced data dis-

tribution could be tackled with oversampling or undersampling. In our proposed method,

we address this issue with weighted-KNN algorithm, where the category with highest

category score instead of highest number of instances within top k training products

({pti(1), . . . , pti(k)}) most similar to a given test product title ti is deemed its predicted

category ci.

1.3 Main Contributions

The main contributions of our thesis are listed as follows:

Firstly, we introduced an end-to-end weighted KNN-based system for large-scale e-

commerce product taxonomy classification. The weighted KNN algorithm in the system

uses IR model as similarity function. The system could serve as a fast and relatively

good baseline. Also, the system would probably achieve better results with more recently

developed neural IR models like that in [8] as similarity function in KNN.

3

Secondly, we compared and analysed performance of classification on the SIGIR

eCom Data Challenge Dataset using different IR models (i.e. Best Match (BM) 25

[78], Language Models (LM) [104], Vector Space Model (VSM) with TF-IDF Weight,

Information-based (IB) Models [10] and cosine similarity of Doc2vec embeddings [46])

as similarity function in our weighted-KNN system. In a sense, this serves as a bench-

mark of the effectiveness of these IR models. Among these IR models, we found that

IB Model and cosine similarity of Doc2vec embeddings obtained the highest and lowest

classification performance respectively.

Thirdly, we used ensemble of our approach and SotA LSTM-BPV(s) [84], and we

could improve the overall classification performance of constituent LSTM-BPV(s) by

around 0.5% in terms of weighted-F1 score (weighted-F1). This suggests that word-level

matching in our KNN system is helpful for character-level neural network. In a sense,

this also shows the usefulness of our weighted-KNN system. We also applied fine-tuning

technique to boost the classification performance of LSTM-BPV(s) and ensembles.

Lastly, we conducted experiments to get better performance on product classification

by fine-tuning the pre-trained BERT-large uncased model [15]. To the best of our knowl-

edge, this is the first attempt at applying the technique of fine-tuning pre-trained neural

language model (NLM) on large-scale product classification task. The model is able

to obtain good performance after being fine-tuned for 40 epochs. However, although

it could achieve similar results with the ensembles above, we also found this method

requires high computational cost and generalizes slowly on this product categorization

task. Furthermore, we examined the effect of using larger batch size to fine-tune the

BERT model and confirmed that using smaller batch size can improve training perfor-

mance.

4

1.4 Outline

The remaining part of this thesis is organized as follows: we will first introduce technical

preliminaries related to our study and compare related work with our work in Chapter

2. After that, we will describe our proposed method in Chapter 3. This is followed by

experiments in Chapter 4, result analyses and discussions in Chapter 5 and conclusion

in Chapter 6. A part of the SIGIR eCom Data Challenge Training Dataset is shown

in Appendix A. The instructions for running our KNN classification system based on

Lucene are included in Appendix B. We also put the instructions of our KNN classifier

based on Gensim Doc2vec in Appendix C. The instructions for doing experiments with

the hybrid classification system based on our KNN algorithm and LSTM-BPV(s) are

included in Appendix D. We also included the instructions of the classification system

based on pre-trained BERT-large uncased model in Appendix E.

5

Chapter 2

Preliminaries

In this chapter, we will introduce the technical preliminaries relating to our work and

compare our work with other existing work most related to our work. We will also

present an overview of top participants’ approaches to solving the e-commerce product

taxonomy classification problem in 2018 SIGIR eCom Data Challenge.

2.1 Text Classification

Product taxonomy categorization is a subtask of text classification, which is a classic task

in machine learning (ML) and artificial intelligence (AI). The task has many real-world

applications, such as spam email detection, sentiment analysis (or opinion mining) and

news categorization. Generally, text classification is to automatically classify a text doc-

ument Di ∈ C (C is the set of documents or document collection, C = {D1, . . . , D|C|})

as one predefined category (or class) clsi ∈ Y (Y is the set of all predefined classes

Y = {cls1, . . . , cls|Y |}). For multi-label text classification, such as twitter classification,

a text document is classified as one or more classes. Generally, text documents need to

be transformed into useful numerical vector representation for classification. A wide va-

riety of methods have been proposed and adopted so far for text classification, including

classic methods such as KNN [96, 24], SVM [38], Linear Least-Square Fit (LLSF) [97],

6

decision tree [11] and Bayesian Classifier [58, 76]. More specifically, proposed in 1994,

LLSF [97] tries to find an optimal transformation between bag-of-words (BoW) docu-

ment representations Di and their corresponding category representations yi. In 1998,

[38] proposed to use SVM for classifying text. They found that SVMs could outperform

all existing methods, including KNN. Their experiments were conducted on 2 datasets

and the higher number of target classes within these datasets is 90. Also, in recent years,

neural network based methods, such as fastText [41], Text Convolutional Neural Net-

work (TextCNN) [42] and Recurrent Neural Network (RNN) [92, 12], have been used

in text classification and set new records in this task. A recent trend for text classifica-

tion is to pre-train a NLM on free text (unsupervised learning) and then fine-tune it for

classification (supervised learning) [15, 30, 99]. As a brief introduction, a NLM learns

to predict a word based on its context. For example, a right-to-left (R2L) NLM learns to

predict a word xi based on words after it within a text sequence [xi+1, . . . , xn]. As lan-

guage modelling only requires readily available unlabelled text as training data, it helps

to reduce human labour.

2.2 Neural Network Approaches for Text Classification

Here we give a brief overview of popular neural network methods for text classification:

LSTM classifier is based on Long Short-Term Memory (LSTM) [29], a refined RNN

[40]. RNN has been shown to obtain good performance on sequential input, such as time

series. LSTM is better at tackling gradient vanishing problem than traditional RNN. In

recent years, LSTM [29] gained its popularity in text classification because of its rela-

tive simplicity and ability to better capture long term dependency in text sequence than

traditional RNN. Generally, in LSTM classifier, each word or character in a sentence is

mapped to a word/character embedding as input to LSTM layer(s) sequentially. The last

layer of the classifier is a classification layer. Bidirectional LSTM (BLSTM) [21] is a

7

variant of LSTM. It performs better than LSTM, because it is trained on 2 directions,

i.e. the forward and reverse direction, whereas LSTM is trained on 1 direction. The

output of BLSTM layer is the concatenation of final hidden states in both directions.

Later, various modifications were applied to LSTM for better classification performance:

In 2015, word-level LSTM was applied to 5 text classification benchmarks for the first

time and it obtained relatively good results [12]. In addition, [12] experimented with

character-level LSTM for classifying Wikipedia pages. In 2016, [39] proposed “region

embedding + pooling” based on LSTM with one-hot word vector as input (i.e. no word

embedding layer). The LSTM emits a hidden state at each time step of a document,

and max-pooling over these hidden states was used to get the final document represen-

tation. [39] also proposed other simplifications of the model to accelerate training, such

as removing input/output gates of LSTM. In 2018, [30] proposed concat pooling, which

involves augmenting the last hidden state of LSTM layer with max-pooling and mean-

pooling representations of intermediate hidden states. According to [30], concat pool-

ing’s purpose is to provide more useful information for classification, as the key words

for classification can occur in any place of a document and just the final hidden state is

not enough because of possible information loss. Later, in [84], balanced pooling views

(BPV) was proposed. Compared to concat pooling [30], BPV [84] has additional con-

catenation of min-pooling representations in the output of LSTM layer, which results in

better performance of classification.

TextCNN [42] is based on convolutional neural network (CNN) [47]. CNN is good

at capturing local dependencies. The TextCNN network consists of embedding layer that

maps input words to word embeddings, 1-Dimensional convolutional layer with multiple

filters (which are similar to word n-grams), max pooling layer, fully connected layer and

softmax (or classification) layer.

FastText classifier [41] is a 2-layer shallow neural network and its input is a sentence.

8

Multiple features within a sentence, i.e. character n-grams and word n-grams, are turned

into dense vectors and averaged to produce the sentence representation in hidden layer.

As a brief introduction, a character n-gram is formed by n continuous characters within

a word. For example, “nufa” is a character 4-gram in “manufacture”. Similarly, a word

n-gram is formed by n continuous words within a sentence. For example, “sleeping”

and “cat is” are word unigram and bigram in “A cat is sleeping” respectively. The use

of character n-gram helps to capture morphological information, so the classifier would

become more tolerant to typos like “enviroment”. Additionally, using word n-gram can

help to capture local dependencies. The sentence representation is then fed into a softmax

classifier. The network can be trained asynchronously using multiple CPUs.

Bidirectional Encoder Representations from Transformers (BERT) model [15], based

on Transformer [91] architecture, is a pre-trained NLM. Transformer model, originally

proposed for tackling machine translation (MT) problem, is a recently developed neural

network approach that uses self-attention mechanism instead of conventional convolu-

tion/recurrent mechanism to capture local/long-term dependencies. Self-attention mod-

els inner dependencies of a sequence of text, i.e. queries qi ∈ Rdk , keys ki ∈ Rdk

and values vi ∈ Rdv (specifically for Transformer, ki = vi) all come from the embed-

ding representation of same text sequence X = [x1, . . . ,xn] (but this sequence can be

2 sentences for sentence pair classification). Specifically, Transformer uses multi-head

attention consisting of several scaled dot-product attention in parallel. The raw attention

weight for vi given qj is calculated as follows:

rw(vi,qj) =
qj.ki√
dk
, (2.1)

where . is dot product. BERT can be modified to do text classification by adding a classi-

fication layer on the top of it. The input embedding is the sum of WordPiece embedding,

segment embedding and position embedding. Different from OpenAI GPT [73], a pre-

trained left-to-right (LtR) NLM based on Transformer architecture, where the LtR NLM

9

is trained to only predict a word xi based on its previous words [x1, . . . , xi−1] within a text

sequence, the BERT [15] is pre-trained to predict a word based on other words within

a sentence, which is called masked language model (MLM). The BERT model is also

pre-trained to predict whether two sentences drawn from the training text are adjacent

sentences within a document or not, which is called next sentence prediction (NSP).

2.3 Document Representation

Both text classification and IR requires representing a document as useful numerical

features such as a vector or a matrix. Different methods may use different document

representations. They are listed as follows:

2.3.1 Traditional Bag-of-words Representation

Bag-of-words (BoW) representation is widely adopted as inverted index in search sys-

tems and utilized in many classic text classification methods, such as KNN, LLSF [97],

Naive Bayes Classifier and SVM. Each documentDj is mapped to a document vector Dj

of dimension |VC | (size of vocabulary or number of distinct terms in document collection

C)(Dj ∈ R|VC |). In this thesis, we use “term” and “word” interchangeably. A term/word,

containing 1 or more characters, is the basic building block of a text document. The

TF-IDF weight [79] is a common feature used in BoW document representation. So, a

document Dj can be represented as:

Dj = (tfidf1j, . . . , tfidf|VC |j), (2.2)

where tfidfij = TF (wi, Dj)× IDF (wi) = TF (wi, Dj)× log (N
DF (wi)

) (TF (wi, Dj) is

the term frequency (TF) (or number of occurrences) of term wi in Dj , IDF (wi) is the

inverse document frequency (IDF) ofwi,N is the number of documents in document col-

lection C, DF (wi) (document frequency (DF)) is the number of documents containing

10

wi in C):

DF (wi) = |{Dj ∈ C|wi ∈ Dj}| (2.3)

So, a term-document matrix M would look like this:

M =
[
D′1 | · · · | D′j | · · · | D′N

]
, (2.4)

where D′j is the transpose of Dj. Apart from TF-IDF weight, other IR models, such

as BM25, can also be used to represent a document as bag of words. |VC | is usually

very large in modern search systems, typically over 1 million. An example of query

and documents in VSM is shown in Figure 2.1. Although feature selection can be used

to reduce the dimension, the computational cost is still high due to large feature size.

Also, the limitation of such representation is that the positional information of words in

a document is ignored. In the following two kinds of representations, such positional

information can be retained if character/word vectors are concatenated.

Figure 2.1: Example of documents and query on VSM, by Riclas - Own work, CC BY

3.0, https://commons.wikimedia.org/w/index.php?curid=9076846

11

2.3.2 Sparse One-hot Character/Word Vectors

A one-hot vector is a vector that has only one 1 and all others are 0, e.g. (0, 1, 0, 0, 0).

For sparse one-hot character vector, each unique character ci is represented as a unique

one-hot vector ci ∈ R|Vchar| (|Vchar| is the size of character-level vocabulary or number of

distinct characters in document collection C). Similarly, for sparse one-hot word vector,

each unique word wi is represented as a unique one-hot vector wi ∈ R|VC | (|VC | is the

size of word-level vocabulary or number of distinct words in document collection C). As

such character/word vectors in a document come in sequence, they can be concatenated

to become the document’s representation. The downside of sparse word vector is that the

dimension |VC | can be very large, which leads to high computational cost and generally

large memory requirement. In face of this problem, the following approach has been

developed:

2.3.3 Dense/Distributed Character/Word/Paragraph/Document Vector

Distributed representations include dense character vector, dense word vector [65, 70],

dense paragraph vector [46] and distributed document vector [14, 46]. A traditional ap-

proach to getting dense document vector/embedding is Latent Semantic Analysis (LSA)

[14], where distributed document embeddings are derived from singular-value decom-

position (SVD) on term-document matrix. Dimension of dense word vectors (i.e. word

embeddings) is typically set within the range [100, 500]. Historically, distributed word

embeddings were trained using a multiclass classifier like softmax. Generally, distributed

word embedding had not gained popularity due to the high computational cost involved

during training until in recent years researchers proposed fast and efficient methods for

training it, such as hierarchical softmax [67, 65] and negative sampling [65]. In [65],

word embeddings are trained using shallow neural networks in two ways, as shown in

12

Figure 2.2:

Figure 2.2: CBOW and Skipgram for training Word2vec word embedding, by Aelu-

013 [CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0)], from Wikimedia

Commons

The first way is Continuous Bag-of-Words (CBOW), where the surrounding words

within the context (a user-defined window of size c around a word) of a word wt, i.e.

[wt−c, ..., wt−1, wt+1, ..., wt+c], are trained to predict that word. The training objective is

to maximize the average log probability:

1

T

T∑
t=1

∑
−c≤j≤c,j 6=0

log p(wt|wt+j), (2.5)

where T is the number of words in the training corpus, c is the window size.

The second way is Skipgram, where a word wt is trained to predict its surrounding

words within its context, i.e. [wt−c, ..., wt−1, wt+1, ..., wt+c]. The training objective is to

maximize the average log probability:

1

T

T∑
t=1

∑
−c≤j≤c,j 6=0

log p(wt+j|wt), (2.6)

where T is the number of words in the training corpus, c is the window size.

Since [65], more enhanced versions of word embedding have been proposed. For

example, WordPiece embedding [93] is a good balance between word embedding and

13

character embedding. Similar to character n-gram features, rare words are split into

sub-word units, i.e. word pieces. This helps to fix out-of-vocabulary (OOV) problem.

Another example is fastText embedding [5], which is similar to the Skipgram word em-

bedding in [65], with additional character n-gram features within a word that is helpful

for capturing morphological information.

As for document embedding, recently [22] proposed a new document embedding

approach: firstly, word embeddings are trained using Skipgram with negative sampling

[65], then IDF values are calculated for all words. After that, they use K-means algorithm

to cluster all words with their word embeddings. Each cluster’s vector is the sum of word

embeddings of words within the cluster, and its cluster frequency is the sum of IDF values

of words within the cluster. After calculating cluster vectors and cluster frequencies, a

document’s vector is made by concatenating all its cluster vectors and cluster frequencies.

Distributed character/word vector is the backbone of many NLP tasks, including text

classification. They are usually better than sparse one-hot character/word vectors, as

they can capture semantics. Word embeddings of words of similar meaning usually have

high cosine similarity. Distributed word/character embeddings are used in many text

classification approaches, such as fastText [41] and TextCNN [42]. Distributed charac-

ter/word/document embeddings can be learned in an unsupervised manner, which can

benefit from large amounts of text data available on the Internet.

2.3.4 Contextualized Embeddings

More recently, contextualized embeddings have been developed to better capture contex-

tual information within a sentence. They can be produced from LSTM encoder trained

for MT [61], with GloVe vectors [70] as input. However, this is still supervised pre-

training. As for unsupervised pre-training of contextualized embeddings, they can also

be generated from NLMs based on LSTM [71] or Transformer [15] with character or

14

WordPiece embeddings as input, respectively. For example, Embeddings from Language

Models (ELMo) [71] are derived from character-convolution-based bidirectional NLMs

with two layers. Pre-trained contextualized embeddings like ELMo [71] can be inte-

grated into existing approaches to improve performance.

2.4 Large-scale E-commerce Product Taxonomy Categorization

Large-scale product taxonomy classification has been studied since the rise of e-com-

merce websites. Properly categorizing a new product as a dynamically updated category

within a taxonomy tree is of critical importance for e-commerce. Algorithms in support

automated process for classification need to be straightforward, scalable and flexible to

allow labelling errors and noises. The product taxonomy can actually be flattened for

categorizing. Generally, there are two approaches to tackling such product taxonomy

classification problem:

The first one is hierarchical classification, also referred to as “gate-and-expert” ap-

proach. The idea is to “divide and conquer”. For example, [82] proposed a two-level

classification: they first discover latent groups consisting of similar target classes through

finding dense subgraphs within the confusion graph of all target classes, and then they

train a coarse-level classifier (i.e. KNN) to classify items into those coarse groups. In

each coarse group, a fine-level classifier (i.e. SVM) is used to classify items into target

classes within the group. The approach calls for additional parameter tuning, i.e. the

threshold value that controls the size of latent groups. Their method could obtain 0.754

in terms of accuracy in eBay Dataset (20,000+ classes). [22] also proposed a two-level

approach utilizing an ensemble of classifiers at the coarse level.

The second approach is flat classification, also referred to as “end-to-end” classifica-

tion, where classification is done in one system which uses raw text as input and gener-

ates predicted class as output. For example, in [44], a binary linear classifier model was

15

trained for each target category. The predicted probability of each class are compared

and the one with highest probability is deemed the predicted class. Their best result was

obtained (0.88 in terms of F1 in Yahoo Dataset (319 classes)) using the average of all

dense word vectors [65] in a product title as feature for model training. [7] proposed

to use multi-class SVM with margin re-scaling and loss normalization. Their experi-

ments were conducted on United Nations Standard Product and Service Code (UNSPSC)

dataset with 1,073 target classes. [7] also proposed a new evaluation metric for practical

product taxonomy classification, namely average revenue loss. This metric takes both

product revenue and distance of the true category and predicted category within product

taxonomy into account. In [23], deep categorization network (DeepCN) was proposed.

DeepCN consists of several word-level RNNs, one for each item metadata attribute (e.g.

item name). The output of these RNNs is concatenated and then fed into 2 fully con-

nected layers, followed by a classification layer. [23] found their approach was better

than single RNN and BoW based Bayesian networks in terms of accuracy on a large

dataset with 4,116 target classes.

2.5 KNN Classification

We chose the weighted KNN, a classic classification algorithm, as our major classifi-

cation approach. KNN for classification can be traced back to as early as 1950s [86].

It is also referred to as lazy learning or instance-based learning. KNN is traditionally a

simple algorithm that stores all the available candidates for classification, and it classifies

each new candidate based on the similarity function. KNN algorithm is based on feature

similarity measurement. Specifically, let Y be the set of all predefined classes:

Y = {cls1, . . . , cls|Y |},

16

where |Y | is the number of predefined classes. Let a be a data point we want to classify.

a’s ith nearest neighbour is a(i) whose class and weight is y(a(i)) and wa(i) respectively.

The most intuitive KNN classifier is to set the k = 1, i.e. the 1-Nearest Neighbour

(1NN) classifier which assigns point a to the class of its closest neighbour a(1) in the

feature space,

ŷ(a) = y(a(1)), (2.7)

where ŷ(a) is the predicted class of a, y(a(1)) is a’s first nearest neighbour’s class.

Generally, for weighted KNN classification, the data point a is classified as the class

with the largest added weight:

ŷ(a) = clsj, (2.8)

where

k∑
i=1

(wa(i) × 1{y(a(i))=clsj}) = max
u∈{1,...,|Y |}

k∑
i=1

(wa(i) × 1{y(a(i))=clsu}), (2.9)

where 1{y(a(i))=clsj} is an indicator function, which equals to 1 if y(a(i)) = clsj and to 0

otherwise.

A wide range of methods have been proposed to weigh a given data point a’s ith

nearest neighbour a(i), e.g. based on their rankings i, the distances d between a(i) and a

or their similarity scores Sim with a, etc.:

wa(i) =f(i, d(a, a(i)), Sim(a, a(i))), (2.10)

Three variants of weighted KNN were used in our experiments, and they are listed as

follows:

1. Weighted KNN: The weight for a(i) in Equation 2.9 is simply its similarity score

with a:

wa(i) =Sim(a, a(i)) (2.11)

17

2. KNN with simple voting: KNN classifier (simple voting) can be considered as a

special case of weighted KNN classifier where each of a’s k nearest neighbours

has a weight of 1
k

and all others weigh zero. So, the weight for a(i) in Equation 2.9

is as follows:

wa(i) =
1

k
(2.12)

3. Biweight kernel weighted KNN [28]: The weight for a(i) in Equation 2.9 is calcu-

lated using its similarity score with a and also the (k + 1)th neighbour’s similarity

score with a:

wa(i) =
15

16
(1− (

Sim(a, a(k+1))

Sim(a, a(i))
)2)2 (2.13)

This method considers the relative similarity so that the weights fall into the range

[0, 15
16
).

Since 90s, KNN has been used in many text classification applications [59, 45, 98].

[98] conducted controlled experiments on a multi-label news story classification task to

compare 5 classification approaches, namely SVM, KNN, neural network, LLSF [97]

and Naive Bayes (NB) classifier. [98] found that although KNN is simple, it can perform

as well as LLSF and SVM in news story classification. To tackle class imbalance, [52]

used SMOTE method, where KNN search is used to generate new minority instances.

A wide range of weighting schemes of KNN have been proposed and applied so

far. We adopted weighted KNN instead of KNN based on simple majority voting, as

according to [80], weighting by similarity often outperforms simple voting. This was also

confirmed in our experiments (we will compare different weighting schemes of KNN in

Section 5.6).

18

2.6 IR

We use IR model as similarity function in our weighted KNN algorithm. IR is a general

term used to describe the process of getting relevant documents in descending order of

relevance from document collection based on a user’s query. In terms of text retrieval,

an IR model is a ranking function that assigns similarity (or relevance) score (retrieval

status value) RSV (Di, Qj) of a text document Di and given text query Qj .

There are 3 strands of IR model nowadays:

2.6.1 Hand-crafted IR Model

Hand-crafted IR models, such as BM25 [78], LM [104], VSM with TF-IDF [79] and IB

Model [10], are ranking formulae designed by computer scientists. These models usually

rank documents based on statistical features, such as TF, DF and document length. How-

ever, the common problem of the above models is that they use BoW representation that

cannot take word positional information into account. Another problem is the keyword

mismatch due to typo or synonyms. The above problems can be partially solved using

character/word n-grams. Although using character n-grams can alleviate keyword mis-

match due to typo, it is usually computationally expensive. Furthermore, although using

word n-grams can partially capture word positional information and local dependencies,

it is generally computationally expensive.

2.6.2 Traditional Learning-to-rank (L2R) IR Model

Traditional L2R IR models utilize ML methods to learn a ranking function based on

training data. For example, [17] proposed Rank-SVM, similar to SVM, for multi-label

text classification. The training data can be a set of tuples, each tuple consists of a query, a

relevant text document and an irrelevant document. A L2R model can use multiple hand-

19

crafted IR models as query-document features. A L2R model can also use document

features like document length and query features like query length.

2.6.3 Neural IR Model

Compared to traditional L2R IR models, neural IR models, based on neural networks,

can usually capture the semantics and word positional information better. Such mod-

els usually use word/character/document embeddings for representing documents. For

example, cosine similarity of Doc2vec document embeddings [46] was used for IR in

[46], which we also use as similarity function in our KNN classification system. A neu-

ral IR model can use pre-trained word embeddings for document representation, which

requires less computational cost compared to training them from scratch. For example,

[81] proposed a L2R model for re-ranking sentences, and CNN was used for generating

intermediate sentence representations based on pre-trained word embeddings.

Recent years have seen many studies of neural L2R IR models, partly because of

popularity of neural network. According to [6], they can be categorized into 2 strands,

i.e. distributed [32, 83, 66] or local-interaction [66, 95]. Generally, distributed IR models

use cosine similarity of query vector and document vector for document ranking, while

local-interaction IR models take word-by-word interaction of query and document into

account.

In 2013, [32] proposed Deep Structured Semantic Models (DSSM). Different from

previous latent semantic models, DSSM utilizes clickstream data for supervised learning

and it consists of multiple nonlinear layers. A new technique to reduce the dimensionality

of a BoW document vector, namely character n-gram based word hashing, was also

proposed.

In 2014, [83] proposed convolutional latent semantic model (CLSM), which captures

local contextual information of word n-grams and global contextual information of sen-

20

tence through convolution and max pooling respectively. In addition, the model uses

clickstream data for training.

In 2016, [66] proposed Duet model that consists of both local-interaction model and

distributed model. Both the 2 constituent models are based on deep neural network

(DNN). The local-interaction model takes exact term match and proximity into account,

while the distributed one captures semantic properties like synonyms. Duet model is able

to perform better than its constituent models.

Later, in [95], kernel based neural ranking model (K-NRM) was proposed. Instead of

exact matching as in traditional IR models, in K-NRM, semantic matching (“soft match”)

is achieved through the use of kernel pooling. This technique uses kernels to count word

matches at different similarity levels and provides soft TF as features for ranking. Their

experiments were also based on a query log.

A subtask of IR is to model similarity of sentences. In recent years, various neural

L2R IR models have been proposed and adopted to model similarity of sentence pairs.

[8] proposed a context-aligned RNN (CA-RNN) model. The model uses a novel context

alignment gating mechanism for capturing contextual information of the aligned words

in 2 sentences. Later, [9] proposed a Collaborative and Adversarial Network (CAN)

based on LSTM. The model contains a novel common feature extractor, consisting of a

generator that generates features from a sentence within a sentence pair and discriminator

that learns to predict whether generated features come from the first sentence or the

second sentence in the sentence pair.

2.7 IR Models Used in This Study

Here is a list of IR models we use as similarity measure in our weighted KNN algorithm:

21

2.7.1 BM25

BM25 is a well-known weighting function employed by the Okapi system [77]. As

shown in previous TREC experiments, BM25 and its extensions provide very effective

retrieval performance on the TREC collections [25, 78, 35, 33, 107]. As our work uses

BM25 to calculate the similarity between two specific product titles, we present a brief

overview on BM25 and its successors here. The supervisor of this thesis Professor Huang

was instrumental in the research reported in [25], and has been working and contributing

consistently on the subject for two decades to follow, in theory and in application. More

specifically, as recorded in [36], BM25 with 2 new query expansion methods and Okapi

system won Huang and his team the first place in the Genomics/biomedical track among

all 135 entrants from around the world in the TREC (Text REtrieval Conference) confer-

ence organized by National Institute of Standards & Technology (NIST). In [34], single

text classifier or co-training text classifier was applied to Pseudo-Relevance Feedback

(PRF) to improve the performance of IR. Term proximity for enhancement of BM25

was proposed in [27], with solidly verified improvement on effectiveness. [106] pro-

posed pseudo term (or Cross Term) to model term proximity for boosting retrieval per-

formance and thus the bigram CRoss TERm Retrieval (CRTER) model based on BM25.

Meanwhile, [56] proposed an integrated sampling technique incorporating both oversam-

pling and undersampling, with an ensemble of SVMs to improve the prediction perfor-

mance. In [18], an ensemble method of SVM and Clustering based on Self-Organized

Ant Colony Network (CSOACN), i.e. Combining Support Vectors with Ant Colony

(CSVAC), was proposed for network intrusion detection.

To get a document Dj’s BM25 score given a query Q, a weighting function for each

query term qi ∈ Q and the document Dj is first calculated as follows:

w(qi, Dj) =
(k1 + 1)× TF (qi, Dj)

K + TF (qi, Dj)
× (k3 + 1)×QTF (qi)

k3 +QTF (qi)
× IDF (qi), (2.14)

22

where IDF (qi) = log (1 +
N −DF (qi) + 0.5

DF (qi) + 0.5
), N is the number of documents in the

document collection C:

N = |C| = |{D1, . . . , D|C|}|,

DF (qi) is the DF of qi. K = k1 × [(1 − b) + b × dlDj
/avdl]. dlDj

is the word-level

document length of Dj:

dlDj
=

|VDj
|∑

i=1

TF (wi, Dj), (2.15)

where VDj
is the set of distinct terms occurring in Dj:

VDj
= {w1, . . . , w|VDj

|},

TF (wi, Dj) is the TF of wi in Dj , avdl is the average document length in C:

avdl =

∑N
i=1 dlDi

N
, (2.16)

k1, k3 and b are parameters. TF (qi, Dj) is the TF of qi in Dj , and QTF (qi) is the TF of

qi in Q. The document Dj’s BM25 similarity score given a query Q is then calculated as

the sum of Dj’s weight for each Q’s term:

BM25(Q,Dj) =

|Q|∑
i=1

w(qi, Dj), (2.17)

where w is the term weight obtained from the above Equation 2.14, |Q| is the number of

terms in Q.

2.7.2 LM

A probabilistic LM approach [72] constructs a LM MDj
for a document Dj and tries

to estimate the probability of a query Q being generated from the LM of the document

P (Q|MDj
). Then it ranks documents according to their corresponding probabilities.

23

Smoothing is a technique for LM that tunes maximum likelihood estimator (MLE) to

tackle the problem of data sparseness. A MLE for calculating the probability of term wi

being generated from document LM MDj
is:

PMLE(wi|MDj
) =

TF (wi, Dj)

dlDj

, (2.18)

where TF (wi, Dj) is the TF of wi in Dj , dlDj
is the word-level document length of Dj .

There are two smoothing methods we used in our experiments, i.e. Bayesian smooth-

ing using Dirichlet priors [104] and the Jelinek-Mercer method [104]. In this thesis, we

refer to the LM using the above 2 smoothing methods as Dirichlet LM and Jelinek-

Mercer LM respectively. To get a document Dj’s LM score given a query Q, a proba-

bility P (qi|MDj
) for each query term qi ∈ Q and the document Dj is first calculated as

follows:

For Dirichlet LM:

P (qi|MDj
) =

TF (qi, Dj) + µPMLE(qi|MC)

dlDj
+ µ

, (2.19)

where TF (qi, Dj) is the TF of qi inDj , µ is a smoothing parameter, dlDj
is the word-level

document length of Dj , P (qi|MC) is the MLE of qi being generated from the collection

LM MC :

PMLE(qi|MC) =

∑N
k=1 TF (qi, Dk)∑N

k=1 dlDk

, (2.20)

where N is the number of documents in C.

For Jelinek-Mercer LM:

P (qi|MDj
) =(1− λ)PMLE(qi|MDj

) + λPMLE(qi|MC), (2.21)

where PMLE(qi|MDj
) is the MLE of qi being generated by MDj

:

PMLE(qi|MDj
) =

TF (qi, Dj)

dlDj

, (2.22)

24

TF (qi, Dj) is the TF of qi in Dj , λ is a smoothing parameter, dlDj
is the word-level doc-

ument length of Dj , PMLE(qi|MC) is the MLE of qi being generated from the collection

LM, as in Equation 2.20.

The probability of document LM MDj
generating a query Q is then calculated as the

sum of probability of document LM MDj
generating each Q’s term:

P (Q|MDj
) =

|Q|∑
i=1

P (qi|MDj
), (2.23)

where P (qi|MDj
) is obtained from the above Equation 2.19 or Equation 2.21, |Q| is the

number of terms in Q (word-level length of Q).

2.7.3 VSM with TF-IDF Weight

VSM for IR is a general approach that uses cosine similarity of query vector Q and

document vector Dj for ranking:

CosineSimilarity(Q,Dj) =
Q.Dj

|Q||Dj|
, (2.24)

where Q.Dj is the dot product of query vector and document vector, |Q| and |Dj| are

their Euclidean norms.

Lucene’s VSM with TF-IDF weight was used in our experiments. BM25 also belongs

to VSM. Lucene’s implementation of VSM with TF-IDF weight refined the traditional

VSM, taking document length into account. Matches with longer documents are less

precise, so they should contribute less to VSM score.

So, to get a document Dj’s VSM-TFIDF score given a query Q, a weighting function

for each query term qi ∈ Q and the document Dj is first calculated as follows:

w(qi, Dj) =
√
TF (qi, Dj)× IDF (qi)2 ×

1√
dlDj

=
√
TF (qi, Dj)× (1 + log

N + 1

DF (qi) + 1
)2 × 1√

dlDj

, (2.25)

25

where TF (qi, Dj) is the TF of qi in Dj , dlDj
is the word-level document length of Dj ,

DF (qi) is the DF of qi in document collection C, N is the number of documents in C.

The document Dj’s VSM-TFIDF similarity score given a query Q is then calculated

as the sum of Dj’s weight for each Q’s term:

V SM -TFIDF (Q,Dj) =

|Q|∑
i=1

w(qi, Dj), (2.26)

where w is the term weight obtained from the above Equation 2.25, |Q| is the number of

terms in Q.

2.7.4 IB Model

IB (Information-based) models [10] are based on information theory. They are based

on the assumption that a term having high probability of occurring in the document

collection gives little information for a document. The general ranking function of IB

models is as follows:

RSV (Q,Dj) =
∑
qi∈Q

−QTF (qi) logP (X ≥ TFnorm(qi, Dj)|λqi), (2.27)

where QTF (qi) is the TF of qi in Q, TFnorm(qi, Dj) is the normalized TF of qi in Dj

and λqi is the parameter of qi’s probability distribution in document collection C.

[10] proposed 2 power law distributions for calculating

P (X ≥ TFnorm(qi, Dj)|λqi) in Equation 2.27:

1. Log-Logistic (LL) Distribution:

The LL distribution’s definition:

PLL(X < x|r, β) = xβ

xβ + rβ
(X ≥ 0) (2.28)

26

The authors set β = 1, the Equation 2.27 becomes:

RSV (Q,Dj) =
∑
qi∈Q

−QTF (qi) logPLL(X ≥ TFnorm(qi, Dj)|λqi)

=
∑
qi∈Q

−QTF (qi) log
λqi

TFnorm(qi, Dj) + λqi

(2.29)

2. Smoothed Power-Law (SPL) Distribution:

The authors defined the following SPL distribution:

f(x;λ) =
− log λ

1− λ
λ

x
x+1

(x+ 1)2
(0 < λ < 1)

P (X > x|λ) =
∫ ∞
x

f(x;λ)dx =
λ

x
x+1 − λ
1− λ

, (2.30)

where f refers to the probability density function. With the SPL distribution, the

Equation 2.27 becomes:

RSV (Q,Dj) =
∑
qi∈Q

−QTF (qi) logPSPL(X ≥ TFnorm(qi, Dj)|λqi)

=
∑
qi∈Q

−QTF (qi) log
λ

TFnorm(qi,Dj)

TFnorm(qi,Dj)+1

qi − λqi
1− λqi

(2.31)

The probability distribution parameter λqi in Equation 2.27 can be set as follows:

1. ATF (average term frequency): the average number of occurrences (or TF) of qi in

the collection C:

λqi =
TTF (qi, C)

N
=

∑N
k=1 TF (qi, Dk)

N
, (2.32)

where N is the number of documents in C, TTF (qi, C) is the total term frequency

(TTF) of qi in C, TF (qi, Dk) is the TF of qi in Dk.

27

2. ADF (average document frequency): the average number of documents containing

qi in the collection C:

λqi =
DF (qi)

N
, (2.33)

where N is the number of documents in C, DF (qi) is the DF of qi in C.

The normalized TF TFnorm(qi, Dj) in Equation 2.27 can be calculated as follows:

1. Normalization H1 (NormH1) [2]: This model assumes uniform distribution of TF:

TFnorm(qi, Dj) = TF (qi, Dj)× c×
avdl

dlDj

, (2.34)

where TF (qi, Dj) is the TF of qi in Dj , avdl is the average document length in

C, dlDj
is the word-level document length of Dj , c is a parameter (default to 1 in

Lucene).

2. Normalization H2 (NormH2) [2]: This model assumes that TF is inversely related

to document length:

TFnorm(qi, Dj) = TF (qi, Dj)× log (1 + c× avdl

dlDj

), (2.35)

where TF (qi, Dj) is the TF of qi in Dj , avdl is the average document length in

C, dlDj
is the word-level document length of Dj , c is a parameter (default to 1 in

Lucene).

3. Normalization H3 (NormH3) [2]: This is TF normalization with Dirichlet Priors,

similar to Equation 2.19:

TFnorm(qi, Dj) =
TF (qi, Dj) + µ

∑N
k=1 TF (qi,Dk)∑N

k=1 dlDk

dlDj
+ µ

, (2.36)

where TF (qi, Dj) is the TF of qi in Dj , µ is a smoothing parameter (default to

800 in Lucene), dlDj
is the word-level document length of Dj , N is the number of

documents in C.

28

4. Normalization Z (NormZ) [3]: This is TF normalization based on Pareto-Zipf dis-

tributions:

TFnorm(qi, Dj) =TF (qi, Dj)× (
avdl

dlDj

)z, (2.37)

where TF (qi, Dj) is the TF of qi in Dj , avdl is the average document length in C,

z is a parameter (default to 0.3 in Lucene), dlDj
is the word-level document length

of Dj .

5. No Normalization: This is to use the original TF:

TFnorm(qi, Dj) =TF (qi, Dj) (2.38)

2.7.5 Cosine Similarity of Doc2vec Embeddings

Similar to word embedding [65], in [46], sentence/paragraph/document embeddings co-

uld be trained in two ways:

The first one is Paragraph Vector Distributed Memory (PV-DM), where paragraph id

and the context words (words within a sliding window of user-defined constant size c

before a word), i.e. [wt−c, ..., wt−1] are trained to predict that word wt.

The second way is Paragraph Vector Distributed Bag of Words (PV-DBOW), where

a paragraph id is trained to predict randomly sampled words within a randomly sampled

context of size c in the paragraph.

As mentioned in the definition of VSM, the cosine similarity of a query’s document

embedding Q and a document’s document embedding Dj can be calculated with Equa-

tion 2.24.

29

2.8 KNN Text Classification Using IR Model

We chose to use IR model for KNN searching, because it can quickly find nearest neigh-

bours of a query with inverted index. The initial attempt of using IR model for nearest

neighbour searching was presented in [59], where, similar to VSM with TF-IDF Weight,

traditional BoW representation was used and each searchable term wi (i.e. a single word

or a capitalized word pair) was given a weight

1

TTF (wi, C)
, (2.39)

where TTF (wi, C) is the TTF of wi in the training corpus C (i.e. collection frequency).

Our work used the same weighting scheme of KNN as that in [59], i.e. a document

is weighted by similarity score between it and the given query (as shown in Equation

2.11). However, our work differs from [59] in the following aspects: we used different

IR models; their classification task (i.e. multi-label news story classification) is different

from ours; while they removed stop words and 72 common words from the document

collection, we used whole document as query (we will analyse the effect of removing

stop words in Section 5.2).

IR model based KNN text classification is also considered in [87]. [87] focused on

short Web snippet classification (with 8 target classes) and used a few important words

in a document as query. In contrast, we used the whole document as query. We think

preserving the whole product title as query can yield better prediction results, as product

titles are usually short and the number of classes is large (e.g. 3008 target classes in the

SIGIR eCom Data Challenge Dataset), which was confirmed in our experiments (as in

Section 5.2). Also, [87] only used default IR model of Lucene (i.e. VSM with TF-IDF

weight) for searching, while we compared classification performance of a range of IR

models. In addition, their classification task is different from ours. Furthermore, in their

task, they found KNN with simple majority voting performs better than weighted KNN,

30

which is different from our findings. This suggests that the best KNN weighting scheme

is probably dependent on the task-specific dataset.

2.9 Neural IR Models for Modelling E-commerce Product Similar-

ity

In recent years, due to the need of effective product searching in E-commerce websites,

neural network based approaches, such as K-NRM [95], have also been used in modelling

product similarity. [6] proposed task modelling techniques to construct a large-scale e-

commerce dataset for product similarity modelling. They evaluated several supervised

neural IR models’ (i.e. CLSM [83], DSSM [32], Duet [66], K-NRM [95]) performance

on the dataset. They found K-NRM could outperform the baseline (i.e. VSM with TF-

IDF weight) significantly, reducing 33% error rate of the baseline, while distributed mod-

els could not be as good as the baseline.

Generally, using supervised neural IR model requires training dataset that is manually

labelled or derived from clickstream data (supervised learning), whereas our approach

do not (unsupervised learning). Most of IR models in this study belong to unsupervised

hand-crafted IR model, except for cosine similarity of Doc2vec document embedding

[46], which is an unsupervised neural IR model.

2.10 Fine-tuning Pre-trained Model for Text Classification

In the field of AI, in particular computer vision (CV) and natural language processing

(NLP), transfer learning has been a popular research topic. By definition, transfer learn-

ing means to apply what we have learned in one situation to another learning situation.

Hence, usually in the new learning situation, we could learn more easily and quickly.

Similar to human, in this way, we can train a model with less examples, which saves

31

human labour cost in manual labelling.

In recent years, a new research trend of transfer learning of NLP is to build a universal

model capable of adapting to various downstream NLP tasks like part-of-speech (POS)

tagging at a little cost of architecture modification. Language modelling has been widely

adopted as a pre-training task, because it only requires readily available text corpus for

unsupervised pre-training.

In [12], 2 unsupervised pre-training tasks for RNN (e.g. LSTM), namely language

modelling and sequence autoencoding, were proposed. [12] also found that pre-training

LSTM leads to better stability of training.

In [30], Universal Language Model Fine-tuning (ULMFiT) was proposed. Their

proposed method is as follows: they first pre-trained a NLM AWD-LSTM [62] on a

general-domain corpus, namely Wikitext-103 (103 million words) [63]. Then, they fine-

tuned the NLM on a specific NLP task. After that, 2 linear blocks were added to turn

the model into a task-specific classifier. Finally, the classifier was fine-tuned on the

specific task. Apart from this method, [30] also proposed several fine-tuning techniques,

namely discriminative fine-tuning and gradual unfreezing. Their method could obtain

high performance on 6 text classification benchmarks. Among these benchmarks, the

largest number of target classes is 14 and the least number of examples is 5,500. [30]

also found that fine-tuning is better than training from scratch, especially on a small

dataset.

Different from [30], [73] proposed to pre-train LtR NLM based on Transformer [91]

architecture. In [73], the OpenAI GPT model was pre-trained on BooksCorpus (800

million words) dataset and then fine-tuned for a specific supervised task. The model

has been evaluated in 12 NLP tasks including 2 text classification problems, namely the

Stanford Sentiment Treebank (SST-2) (with 2 target classes) and the Corpus of Linguistic

Acceptability (CoLA) (with 2 target classes).

32

In [15], the BERT model, also based on Transformer [91], was pre-trained on 2 large

text corpuses (i.e. BooksCorpus and Wikipedia (2,500 million words)) for 2 novel pre-

training tasks, namely MLM and NSP task.

Later, [74] proposed to pre-train a much larger Transformer-based NLM, namely

GPT-2 (1.5 billion parameters), than BERT-large model in [15] (340 million parameters)

on a huge web text corpus, namely WebText (40Gb in terms of file size). This model

could reach SotA performance in zero-shot setting (i.e. without fine-tuning on task-

specific dataset) on 7 out of 8 language modelling benchmarks. The model has not

been applied to text classification yet. [74] also mentioned that because the model is so

powerful that they would not make it publicly available to prevent malicious use of it.

Later in 2019, [101] proposed a new evaluation metric, i.e. codelength, to calculate

how fast a model learns in a new task by using knowledge gained from previous training.

[101] also found that although recently developed general NLP models like BERT [15]

and ELMo [71] could obtain new SotA performance, fine-tuning them still requires large

amounts of supervised/unsupervised training examples and they could easily forget ac-

quired knowledge from previous training. In this thesis, we also got similar conclusions

from our experiments with BERT-large uncased model [15].

Later in June 2019, XLNet [99], extending Transformer-XL [13], was proposed. It

uses a permutation language modeling objective to enable better capturing of bidirec-

tional contextual information. XLNet, pretrained on 126Gb text corpuses, achieved new

SotA on 7 text classification benchmarks.

Later in July 2019, Robustly optimized BERT approach (RoBERTa)[55] was pro-

posed based on BERT [15]. It was pretrained longer on longer sequences, with larger

batch size and larger text corpuses. They also removed NSP task. Additionally, dynamic

masking pattern was applied to the training data. RoBERTa could achieve new SotA

single model performance on SST and CoLA.

33

2.11 Fine-tuning Pre-trained BERT Model for Large-scale Product

Taxonomy Classification

Motivated by the recent success of BERT [15] in various NLP tasks including text classi-

fication and text pair classification, we conducted experiments based on it to see whether

it can effectively use pre-trained knowledge to tackle this product taxonomy classifica-

tion task. Although it has been adopted to tackle several text classification problems like

SST-2 and CoLA, to the best of our knowledge, it has not been applied to large-scale

product taxonomy classification task like this task (with 3008 target classes) yet.

2.12 Overview of 2018 SIGIR eCom Data Challenge

We [31] participated in 2018 SIGIR eCom Data Challenge1, and the task is to classify a

product into the taxonomy tree only based on its title. The final results of all participants

are shown in Table 2.1. The participants were ranked according to weighted-F1. Here,

we give an overview of top participants’ approaches to solving the product classification

problem:

2.12.1 Winner’s Solution

The winner of the Data Challenge [84] used an ensemble of 3 pairs of Bidirectional

Long Short-Term Memory with Balanced Pooling Views (B-LSTM-BPV) networks (i.e.

6 LSTM-BPV networks in total) for end-to-end classification. Each LSTM-BPV network

takes character embeddings as input and contains 2 LSTM layers, with random dropout

after the embedding layer, between LSTM layers and after the LSTM output. The second

LSTM layer’s output is a concatenation of the final hidden state hT , mean-pooling, max-

1https://sigir-ecom.github.io/data-task.html

34

https://sigir-ecom.github.io/data-task.html

Ranking Team Weighted-
Precision

Weighted-
Recall

Weighted-
F1 Score

1 mcskinner 0.8697 0.8418 0.8513
2 MKANEMAS 0.8425 0.8427 0.8399
3 tiger 0.8397 0.8428 0.8379
4 Uplab 0.8368 0.8419 0.8366
5 JCWRY 0.8528 0.8172 0.8295
6 neko 0.8267 0.8305 0.8256
7 Ravenclaw 0.8289 0.8114 0.8175
8 Uplab-2 0.8186 0.8243 0.8173
9 ssdragon 0.8226 0.8163 0.8172
10 RITB-Baseline 0.8276 0.8077 0.8142
11 inception 0.8259 0.8077 0.8139
12 Tyche 0.8599 0.7644 0.8004
13 minimono 0.8019 0.8023 0.7994
14 Topsig 0.7921 0.8014 0.7941
15 VanGuard 0.7899 0.7917 0.7884
16 HSJX-ITEC-YU 0.7809 0.7821 0.7790
17 Waterloo 0.7802 0.7857 0.7781
18 CorUmBc 0.7745 0.7712 0.7690
19 Sam-chan 0.7718 0.7745 0.7666
20 Tyken2018 0.7654 0.7603 0.7509
21 Or 0.7419 0.7250 0.7245
22 Coumodo 0.7275 0.7140 0.7107
23 Uplab-3 0.6698 0.6588 0.6509
24 the1owl 0.5947 0.6277 0.5682
25 sherlock 0.5855 0.5091 0.5025
26 B4 toku 0.4340 0.4751 0.4144
27 Hawk 0.2679 0.0561 0.0642
28 Fractal AIML 0.0148 0.0152 0.0150

Table 2.1: Test Dataset, performance comparison of different teams in the Stage 2 of
SIGIR eCom Data Challenge. Our team is printed in bold.

35

pooling and min-pooling representations of all hidden states H = {h1, . . . ,hT}, which

is called balanced pooling views (BPV)(traditional LSTM [12] layer’s output is only the

final state hT):

hc = [hT ,meanpool(H),maxpool(H),minpool(H)], (2.40)

where [] means concatenation. After random dropout, this representation is fed to a

linear layer for classification. The network training method used is Stochastic Gradient

Descent with Momentum (SGDM) [88], with a 1cycle learning schedule [85] that allows

fast convergence. [84] also optimized the weighted-F1 by setting a probability threshold

for each target class. Such optimizing technique can boost weighted-precision (weighted-

P) substantially at the expense of weighted-recall (weighted-R). Let t be a test product

title. Specifically, the final prediction is made with two approaches listed as follows:

The first one is Best-wins (no F1 optimizing): The category id path dcq with highest

raw probability is deemed the predicted category id path:

Pensemble(t ∈ dcq) = max
j∈{1,...,3008}

Pensemble(t ∈ dcj) (2.41)

The second one is F1 tuning/optimizing [84]: In this approach, softmax probability

instead of raw probability is used:

Pensemble,smax(t ∈ dci) =
ePensemble(t∈dci)−maxq∈{1,...,3008} Pensemble(t∈dcq)∑3008
j=1 e

Pensemble(t∈dcj)−maxq∈{1,...,3008} Pensemble(t∈dcq)
(2.42)

To optimize F1, [84] set a probability threshold τdci for each category id path dci,

below which the probability is not counted:

if Pensemble,smax(t ∈ dci) < τdci , Pensemble,smax(t ∈ dci) := 0 (2.43)

The threshold τdci is estimated as follows:

36

1. The number of true instances of dci is estimated as the total of probability of a test

instance tj belonging to dci in test dataset TE:

ntrue(dci) =

|TE|∑
j=1

Pensemble,smax(tj ∈ dci), (2.44)

where |TE| is the number of test instances in TE.

2. Then {Pensemble,smax(tj ∈ dci)|j ∈ {1, . . . , |TE|}} is sorted in descending order,

which is denoted as

{Pensemble,smax,sorted(tq ∈ dci)|q ∈ {1, . . . , |TE|}}

3. After that, [84] calculates the cumulative sum set {
∑q

k=1 Pensemble,smax,sorted(tk ∈

dci)|q ∈ {1, . . . , |TE|}} from

{Pensemble,smax,sorted(tq ∈ dci)|q ∈ {1, . . . , |TE|}}

4. After that, P, R and F1 for the top k instances with highest probabilities

{Pensemble,smax,sorted(tq ∈ dci)|q ∈ {1, . . . , k}} are estimated as follows:

Precision(dci@k) =

∑k
j=1 Pensemble,smax,sorted(tj ∈ dci)

k
, (2.45)

Recall(dci@k) =

∑k
j=1 Pensemble,smax,sorted(tj ∈ dci)

ntrue(dci)
, (2.46)

F1(dci@k) =
2× Precision(dci@k)×Recall(dci@k)
Precision(dci@k) +Recall(dci@k)

(2.47)

5. [84] then finds the maximum estimated F1 and uses the corresponding probability

as the threshold:

τdci =Pensemble,smax,sorted(tj ∈ dci), (2.48)

where j = argmaxk∈{1,...,|TE|}F1(dci@k).

37

After thresholding, the category id path dcq with highest softmax probability is seen

as the predicted category id path:

Pensemble,smax(t ∈ dcq) = max
j∈{1,...,3008}

Pensemble,smax(t ∈ dcj) (2.49)

2.12.2 Other Top Participants’ Solutions

The second winner of the competition [89] used an ensemble network consisting of a

multi-kernel TextCNN based on word embeddings, a Bidirectional LSTM (BLSTM) with

soft attention based on word embeddings and a multilayer perceptron (MLP) based on

ad-hoc features generated from words. An external dataset, i.e. Amazon Product Data,

was also used to generate ad-hoc features. The output of the 3 networks is flattened,

concatenated and passed into a linear layer.

The third winner of the competition [102] also used ensemble strategy. They first

pre-trained fastText word embeddings [5] on the merged set of the Training and the Test

Dataset. End-to-end models, namely fastText and Attention-based LSTM (AbLSTM),

were trained. Also, 2 types of hierarchical tree classification models were adopted: 1)

The first type is an ensemble of 8 fastText or AbLSTM models, each predicts a category

id and searches the tree in top-down order. 2) The second one is also an ensemble of 8

fastText/AbLSTM models, but it differs from the first one, where each model predicts a

combination of category ids from top to the current level. Their final submission is based

on the weighted voting of 6 models.

The fourth winner of the contest [19] tried using 3 approaches, namely an end-to-end

classifier (i.e. SVMs with TF-IDF unigram and bigram features), a hierarchical classifier

and a CNN with Glove [70] pre-trained word embedding, to solve this classification task.

They obtain best classification results using SVMs with TF-IDF unigram and bigram

features.

In [37], the fifth winner of the contest, an ensemble of 5 models based on CNN was

38

used. They utilized multiple features as input to the ensemble, i.e. named entity types,

POS tags, document embeddings [46], pre-trained or supervised word embeddings [65]

and supervised character one-hot embeddings. To overcome unbalanced data distribu-

tion, they also used oversampling and threshold moving (i.e. raw prediction probabilities

are divided by class size (number of instances belonging to a given class in training

dataset)) techniques.

The sixth winner of the contest [48] proposed to tackle the product taxonomy clas-

sification problem through sequence generation, which makes it possible to generate

category id paths that do not occur in training dataset. Specifically, they used ensemble

of attentional sequence-to-sequence (seq2seq) models based on RNN.

2.12.3 Conclusion from Top Participants’ Solutions

From the methods of top participants, we can see that using ensemble strategy can effec-

tively boost the product classification performance. Also, we can see that neural network

based approaches are popular and can yield good results.

39

Chapter 3

Methodology

In this chapter, we will explain product categorization through weighted KNN algorithm

with IR model as similarity function (pseudo code in Table 3.3), with an example pro-

vided. The framework in support of the classifier will also be presented (illustration in

Figure 3.1 and pseudo code in Table 3.4). We will also discuss the advantages of our

KNN approach. After that, we will present our hybrid method where we combine pre-

diction results of our KNN algorithm with LSTM-BPV(s) [84]. Finally, we will examine

the advantages of the hybrid system.

3.1 A Weighted KNN Classifier for Product Categorization

In our program, k of our KNN classifier is a parameter that controls the number of nearest

neighbours contributing to prediction. The input of our KNN algorithm is a query (test

title), a specific IR model, k and the training document collection. And the output of our

KNN algorithm is the category id path with highest category score (i.e. the most relevant

category id path) among category id paths of training titles most similar to the query.

We chose to use a flat (end-to-end) classification approach to solving the given problem

instead of a hierarchical one for its simplicity and effectiveness.

An IR model relevance score (retrieval status value (RSV)) is calculated for each

40

Figure 3.1: A Weighted KNN Product Classification System

title pti in the training dataset and a title tj in the test dataset. In KNN paradigm, the

similarity score of our approach is the IR model relevance score between an item title in

the test dataset and an item title in the training dataset. The higher the relevance score,

the more similar a training title and a test title. We tried setting different values of k in

KNN to see whether or not predicting based on individual match (i.e. 1NN) is better

than on multiple matches, as the individual match may be an outlier (tuning of k will be

examined in Section 4.5). The pseudo code of our weighted KNN algorithm is shown in

Table 3.3. Specifically, the algorithm works as follows:

Suppose pi is an instance/example (i.e. product) in the training dataset TR. pi con-

tains product title pti and product category id path ci. tj is a product title in the test

41

dataset TE. N is the number of products in TR. When k = 1, we assign the category

id path c1 of the top 1 matched training title (document), i.e. the title pt1 with highest IR

model relevance score given that test title (query) tj , as the predicted category id path ĉj:

ĉj = c1, (3.1)

where RSV (tj, pt1) = maxm∈{1,2,...,N}RSV (tj, ptm).

Generally, when k > 1, we assign the category id path with highest category score

among returned top n (n ≤ k, since it is possible that the number of matches is less

than k) products’ category id paths {c1, c2, ..., cn}. Specifically, the algorithm finds the

distinct category id paths {dc1, dc2, ..., dci} ⊂ {c1, c2, ..., cn} (i ≤ n) and calculates their

category scores {Cat(dc1), Cat(dc2), ..., Cat(dci)}, where

Cat(dcm) =
n∑
i=1

RSV (tj, pti)× 1{pti∈dcm}, (3.2)

where 1{pti∈dcm} is an indicator function, which equals to 1 if pti ∈ dcm and to 0 oth-

erwise. The distinct category id path dcm with the highest category score among the

category id paths of the top n matched training titles given a test title is deemed the

predicted category id path ĉj:

ĉj = dcm, (3.3)

where Cat(dcm) = maxq∈{1,2,...,i}Cat(dcq).

In some rare occasions, when the distinct category id paths have the same category

scores within the top matched training titles, we assign the category id path of the higher

ranked matched training title(s) as predicted category id path. For example, if

Cat(dc1) = Cat(dc2) = max
q∈{1,2,...,i}

Cat(dcq), (3.4)

then dc1 is deemed the predicted category id path ĉj .

If no match is found (n = 0), we assign “2296>3597>689” as predicted category

id path, which corresponds to “Media>Music >Pop” (we manually deduced this from

42

training data and Rakuten website2). This is because no match means the title is short

and distinct, which generally belongs to “Media>Music” big category. Additionally,

according to [48], this big category contains 25 distinct categories, among which “Pop”

has the largest number of examples. Generally, without prior knowledge, it would be

difficult even for human to predict the genre of a music product based on its short title.

Figure 3.2: An earring item need to be categorized. Picture source: https://www.ra-

kuten.com/shop/sabrina-silver/product/TE3873/

Example: Here is an example to show how a product is categorized in our KNN sys-

tem. We choose to use BM25 model as similarity function of KNN here for illustration

purpose. We set k1 = 1.2, b = 0.92 in BM25. As shown in Fig.3.2, given this item

(query) in test dataset:

"Sterling Silver Dangle Ball Earrings w/ Brilliant Cut CZ

Stones & Yellow Topaz-colored Crystal Balls, 1"" (26 mm)

tall"

2https://www.rakuten.com

43

https://www.rakuten.com

If we set k = 10, then the searcher will return the item’s top 10 matches in training

set according to BM25 similarity score of a document and the query in descending order

as shown in Table 3.1 below.

As an illustration, the term weight for the matched term “sterling” (q1) in the top 1

document (D1) is calculated as follows:

w(q1, D1) =
(k1 + 1)× TF (q1, D1)

k1 × [(1− b) + b× dl/avdl] + TF (q1, D1)
× (k3 + 1)×QTF (q1)

k3 +QTF (q1)
×

log (1 +
N −DF (q1) + 0.5

DF (q1) + 0.5
)

=
(1.2 + 1)× 1

1.2× [(1− 0.92) + 0.92× 18/11.566] + 1
× (8 + 1)× 1

8 + 1
×

log (1 +
800000− 16528 + 0.5

16528 + 0.5
)

= 3.0329628

(3.5)

The weighted KNN algorithm then calculates the category scores of the categories

within these matches. As shown in Table 3.2 below, “1608>2320>2173>2878” (corre-

sponding to “Clothing, Shoes & Accessories>Jewelry & Watches>Earrings>Stud Ear-

rings”) has the highest category score among the top 1/3/5/7/10 matches’ categories.

Thus, the category “1608>2320>2173>2878” is assigned as the predicted category id

path when our KNN algorithm’s k is set to 1/3/5/7/10. We have manually verified on the

Rakuten website3 that this prediction is correct.

3.2 The Classifier in Action

Based on the classifier above, we actually implemented a system for the classifier in ac-

tion. Figure 3.1 is a pictorial description of the KNN system, where ovals are functional

3https://www.rakuten.com

44

https://www.rakuten.com

Ran-
king

Product Title Category Id
Path

BM25 score

1 “Sterling Silver Marquise Shape Dangle
Earrings with Brilliant Cut CZ Stones, 1
1/16 in. (26 mm) tall”

1608>2320>
2173>2878

56.89168

2 “Sterling Silver Floral Dangle Chandelier
Earrings with Brilliant Cut CZ Stones, 1
1/4 in. (31 mm) tall”

1608>2320>
2173>2878

51.909283

3 “Sterling Silver Curvy Hoop Earrings
with Brilliant Cut CZ Stones, 13/16 in.
(21 mm)”

1608>2320>
2173>2878

42.515083

4 “Sterling Silver French Clip Black Onyx
Bar Earrings with Brilliant Cut CZ
Stones, 5/8 in. (16 mm) tall”

1608>2320>
2173>2878

41.787933

5 “Sterling Silver Square-shaped Stud Ear-
rings (7 mm) & Pendant (12mm tall) Set,
with Princess Cut Blue Sapphire-colored
CZ Stones”

1608>2320>
2173>3881

40.36754

6 “Sterling Silver Double Wire Knot Lace
Post Earrings with Brilliant Cut CZ
Stones, 1 7/16 in. (36 mm)”

1608>2320>
2173>2878

39.01934

7 “High Polished Sterling Silver 3/4”” (18
mm) tall Heart Cut Out Pendant, with
Brilliant Cut CZ Stones, with 18”” Thin
Box Chain”

1608>2320>
498>1546

37.43821

8 “High Polished Sterling Silver 7/16”” (11
mm) tall Bead Charm, with Brilliant Cut
CZ Stones, with 18”” Thin Box Chain”

1608>2320>
2495>3682

37.43036

9 “Sterling Silver Black Onyx Ring with
Brilliant Cut CZ Stones, 1/4 in. (6 mm)
wide, size 7”

1608>2320>
3648

36.71535

10 “High Polished Sterling Silver 11/16””
(17 mm) tall Flower Cut Out Pendant,
1.5mm Brilliant Cut CZ Stones, with
18”” Thin Box Chain”

1608>2320>
498>1546

36.443573

Table 3.1: Top 10 matches obtained given the query

45

Candidate
Category
Id Path

Candidate Category k Value

1 3 5 7 10
1608>-
2320 >
2173>
2878

Clothing, Shoes & Ac-
cessories > Jewelry &
Watches > Earrings
> Stud Earrings

56.89 151.32 193.10 232.12 232.12

1608>-
2320 >
498>
1546

Clothing, Shoes & Ac-
cessories > Jewelry &
Watches > Pendants &
Necklaces > Pendants

0 0 0 37.44 73.88

1608>-
2320 >
2173>
3881

Clothing, Shoes & Ac-
cessories > Jewelry &
Watches > Earrings
> Earring Sets

0 0 40.37 40.37 40.37

1608>-
2320 >
3648

Clothing, Shoes & Ac-
cessories > Jewelry &
Watches > Rings

0 0 0 0 36.72

1608>-
2320 >
2495>
3682

Clothing, Shoes & Ac-
cessories > Jewelry &
Watches > Accessories
> Individual Charms

0 0 0 0 37.43

Table 3.2: Distinct Category id paths, corresponding categories and category scores
within top k(k=1/3/5/7/10) documents’ category id paths

function KNN IRModel(ir model, q,DC, k) returns predicted category id path
input: ir model: an IR model to use for generating relevance score

q: the query (test title)
DC: the document collection of product titles and corresponding category
id paths
k: the k value in KNN algorithm

local variables: pj: the jth matched training product containing ptj (product title)
and cj(its corresponding category id path)
ĉ: the predicted category id path of q

search q in DC with ir model and get top n (n ≤ k) matches
{pt1, pt2, ..., ptn} ⊂ DC and corresponding {c1, c2, ..., cn}

if n equals 0 then
set ĉ as “2296>3597>689”

else
set ĉ as the category id path with highest category score among {c1, c2, ..., cn}

end if
return ĉ

Table 3.3: pseudo code of the KNN classifier in action

46

procedure Main program(ir model, TR, TE, k) returns prediction file
input: ir model: an IR model to use for generating relevance score

TR: the training dataset
TE: the test dataset
k: the k value for KNN algorithm

local variables: pj: the jth training product containing ptj (product title) and
cj (its corresponding category id path)
tj: the jth test product title
ĉj: the predicted category id path of tj

for each pj ∈ TR do
preprocess ptj
tokenize ptj
normalize ptj
lowercase ptj
index ptj
store (ptj, cj) in DocumentCollection

end for
for each tj ∈ TE do

preprocess tj and store it in temp t
get ĉj through KNN IRModel(ir model, temp t, DocumentCollection, k)
write tj and ĉj in prediction file

end for

Table 3.4: pseudo code of the main system in action

47

components, cylinder is index and rounded rectangles are data input/output in interac-

tion with the KNN system. Specifically, input product title can be effectively categorized

through searching the index of product titles in training dataset. Training data are pre-

processed, analysed to get a word-based index. Given a query (product title), the system

calculates the IR model relevance scores (RSV) of the given product title and training

titles, and classifies it as the category id path with highest category score among its most

relevant product title(s)’ category id paths in training set. The implementation is in JAVA.

We tried different approaches and strategies for minimizing the classification error and

matching the product titles to categories with high accuracy.

More precisely, as shown in Figure 3.1 and Table 3.4, the major flow of the product

classification system is as follows:

First, the training dataset TR (product titles with category id paths) in tsv (tab-

separated values) format is read line by line as document input. Each document pj ∈ TR

has two fields, one for product title ptj and one for category id path cj . Second, docu-

ments’ product titles ptj are preprocessed. Specifically, “w/out” is replaced by “without”,

“w/” is replaced by “with”, “&” is replaced by “and”, “’” is replaced by “feet”, “””” is

replaced by “inches” and “:” is replaced by “ : ”. After that, documents’ product titles

ptj and category id paths cj are indexed in text field and string field respectively. Product

titles ptj in text fields are analysed by Lucene Standard Analyser. Specifically, they are

tokenized by Lucene’s standard tokenizer, before being normalized by Lucene’s standard

filter (for example, “bags” is replaced with “bag”) and turned into lowercase (case fold-

ing) by lowercase filter. In contrast, category id paths cj in string fields are not analysed,

since they are target categories for later classification. After that, the test dataset TE

(product titles without category id paths) is read line by line as query input. Test titles

tj ∈ TE are preprocessed in the same way as training product titles. Then, as shown in

Table 3.3, the KNN searcher searches the index with test title tj with the IR model to get

48

top n (n ≤ k) most relevant training titles {pt1, ..., ptn} and their corresponding category

id paths {c1, ..., cn}. This is followed by our KNN voting algorithm (as shown in Table

3.3) that returns the category id path with highest category score among these training

title(s)’ category id paths {c1, c2, ..., cn} as predicted category id path ĉj . Searching and

category prediction are done using multiple threads (e.g. 16) in parallel. Finally, test

titles and their predicted category id paths are written in a tsv file.

3.3 Advantages of IR Model Based Weighted KNN for Large-scale

E-commerce Product Classification

In [82], the coarse-level classifier is weighted KNN algorithm based on eBay search

system, which can classify an item in less than 100ms. However, our work is different

from [82]: they used a different weighting scheme (i.e. reciprocal of the rank position)

and dynamically updated k with dynamic threshold depending on similarity of a given

item and its nearest neighbour. We have tried several weighting schemes and the one in

use in our system performs best in the validation set (we will compare them in Section

5.6). In addition, our work is straightforward compared to [82] and we used IR models as

similarity function of KNN for the product classification task (which are different from

the similarity function used in [82], i.e. cosine similarity of top features selected with

information gain criterion). Furthermore, our IR model based approach does not require

feature selection in [82], as we will show in Section 5.2 and 5.4, feature selection is

probably not a good strategy of improving product classification performance.

In our previous work [31], we just used 1 IR model (i.e. BM25) as similarity function

in KNN with simple voting. In contrast, in this thesis, we used weighted KNN instead

and compared different IR models’ classification performance, and we proposed to en-

hance classification performance by combining prediction results of our weighted KNN

49

classifier and SotA LSTM-BPV(s) [84].

One benefit of our KNN system is its scalability: when new training examples come

in, the system simply updates an existing index. In contrast, as we will show in Section

5.8 and 5.10, neural network based methods often require careful fine-tuning and are

usually prone to catastrophic forgetting.

Another benefit of this KNN system is its ease of implementing, as e-commerce

websites already have product search systems. According to [6], some large e-commerce

companies have even developed proprietary search systems.

Additionally, compared to other complicated methods like BERT, the prediction re-

sults generated from our KNN system are easy to interpret, which is important especially

in an e-commerce setting.

3.4 A Hybrid Approach Based on Weighted KNN and LSTM-BPV

to Product Classification

To enhance classification performance, we use linear interpolation to combine the predic-

tion results of our KNN system with the winner solution in SIGIR eCom Data Challenge,

namely LSTM-BPV(s) [84]. Specifically, the method works as follows:

Let dcj be the predicted category id path given a test product title t predicted by our

KNN system. First, we estimate the probability of a test product title t belonging to the

category id path dcj predicted by our KNN algorithm as follows:

PKNN(t ∈ dcj) = max
i∈{1,...,3008}

PLSTM -BPV s(t ∈ dci) + 0.1, (3.6)

where PLSTM -BPV s(t ∈ dci) is the raw probability of t belonging to a category id path

dci generated from LSTM-BPV network(s). We add a 0.1 to ensure that there would not

be 2 equal maximum probabilities. Then, the combined raw probability is calculated as

50

follows:

Pensemble(t ∈ dcj) = (1− λ)× PLSTM -BPV s(t ∈ dcj) + λ× PKNN(t ∈ dcj), (3.7)

where PLSTM -BPV s(t ∈ dcj) is the raw probability of t belonging to dcj generated from

LSTM-BPV network(s) and λ is a tuning parameter that controls how much we rely on

our KNN system’s prediction.

In addition, please note that other raw probabilities are unchanged, i.e.:

Pensemble(t ∈ dci) = PLSTM -BPV s(t ∈ dci), (3.8)

where i ∈ {1, . . . , j−1, j+1, . . . , 3008}. After calculating the combined raw probability,

the final prediction is made with two approaches the same as in [84] based on all raw

probabilities (as shown in Subsection 2.12.1).

The instructions of the hybrid system are shown in Appendix D (we modified the

implementation codes from Michael Skinner4, which are in PyTorch [69]).

3.5 Advantages of the Hybrid System for Product Classification

A wide range of ensemble methods have been developed in the field of ML so far, because

they can effectively improve classification performance (as we have discussed in Section

2.12, many top participants used ensemble strategy). For details, [16] provided a good

review on different ensemble methods. Generally, according to [16], there are 5 strands

of methods to generate ensemble classifiers, namely Bayesian voting, to manipulate the

training examples, to manipulate the input features, to manipulate the output targets and

to inject randomness.

There are many ways to combine prediction results of classifiers within an ensem-

ble. In [94], 3 approaches of ensemble, namely fixed rule, meta-classifier and weighted

4https://github.com/mcskinner/ecom-rakuten

51

https://github.com/mcskinner/ecom-rakuten

combination, were used for sentiment classification task (a subtask of text classification).

[94] found that weighted combination is the most attractive choice. Their weighted com-

bination method involves finding the best weights by training a perceptron network.

In the ensemble of LSTM-BPV networks [84], the raw probabilities from individual

networks were averaged to make the combined predictions:

Pensemble(t ∈ dcj) =
∑n

i=1 PLSTM -BPV,i(t ∈ dcj)
n

, (3.9)

where n is the number of networks in the ensemble, PLSTM -BPV,i(t ∈ dcj) is the raw

probability of product title t belonging to category id path dcj generated from the ith

LSTM-BPV network in the ensemble. This combination method is equivalent to sum

rule and belongs to fixed rule approach.

In this thesis, we used the linear interpolation method to combine prediction results

of our weighted KNN algorithm and ensemble of LSTM-BPV networks. This method

is similar to weighted combination in [94], except that we manually tuned the weights

(only 1 parameter (i.e. λ) to tune). One benefit of our ensemble strategy is that the

hybrid system is able to take both word-level morphological information from exact

match (through KNN) and character-level global semantic information of a product title

(through LSTM-BPV(s)) into account. Although LSTM-BPV is better than conventional

LSTM and capable of capturing more semantic signals that are beneficial to classifica-

tion than LSTM, adding morphological signals from word-level exact match can make

it even better. In a sense, this ensemble strategy is similar to that in Duet model [66],

where morphological and semantic information are considered by 2 constituent models,

namely local-interaction model and distributed model, respectively.

52

Chapter 4

Experiments

In this chapter, we will introduce the dataset involved in our experiments, experimental

set-ups, evaluation methods and baselines. Then, we will evaluate our system’s perfor-

mance on SIGIR eCom Data Challenge Dataset. In addition, we will introduce parameter

tuning of k in KNN algorithm and of b in BM25. We will also conduct further exper-

iments by using different IR models other than BM25 as similarity function in KNN

classifier, and we will examine parameter tuning of these models.

4.1 Dataset

The SIGIR eCom Data Challenge Dataset contains Training Dataset and Test Dataset.

The Training Dataset (“rdc-catalog-train.tsv”) has 800,000 product titles and correspond-

ing category id paths, and the Test Dataset has 200,000 product titles (“rdc-catalog-

test.tsv”). The gold standard for Test Dataset was named “rdc-catalog-gold.tsv”. These

files can be downloaded via this link5. A part of the Training Dataset is shown in Ap-

pendix A. The Data Challenge competition was organized by Rakuten Institute of Tech-

nology Boston (RIT-Boston).

According to our analysis, there are 3008 distinct category id paths in the Training

5https://docs.google.com/forms/d/e/1FAIpQLSfwcBlO Z aEXSbohScyj1YRRds
PULagEn28YYtca2ZkY5Ocw/viewform

53

https://docs.google.com/forms/d/e/1FAIpQLSfwcBlO_Z_aEXSbohScyj1YRRdsPULagEn28YYtca2ZkY5Ocw/viewform
https://docs.google.com/forms/d/e/1FAIpQLSfwcBlO_Z_aEXSbohScyj1YRRdsPULagEn28YYtca2ZkY5Ocw/viewform

Dataset. The maximum depth of the product taxonomy is 8, i.e. 8 levels. For example,

“1608 > 2320 > 2173 > 2878” is of depth 4. The distribution of distinct category id

paths over depth is shown in Figure 4.1a. The number of nodes (e.g. “2320” is a node in

level 2) in each level of the product taxonomy is shown in Figure 4.1b. We can see that

most of the category id paths are of depth 4.

According to [50], the average and maximum word-level title length in the Dataset

is 10.93 and 58 respectively. Also, [50] found the average and maximum character-level

title length in the Dataset is 68.44 and 255 respectively. In addition, according to our

experiments, the maximum WordPiece-level title length in the Dataset is 161.

For conducting further experiments with our KNN classifier, we split the Training

Dataset into 2 training sets (i.e. 1-in-2-TRAIN and 2-in-2-TRAIN) of the same number

of examples (i.e. 400,000 examples). Specifically, the Training Dataset with 800,000

examples was first split into 10 equal size subsets sequentially (so the 1st subset contains

the first 80,000 examples), then the 1st, 3rd, 5th, 7th, 9th subsets were combined to

make 1-in-2-TRAIN and the remaining subsets were combined to make 2-in-2-TRAIN.

We then removed training sets’ product category id paths to make two testing sets, i.e.

1-in-2-TEST and 2-in-2-TEST, respectively.

For doing experiments with LSTM-BPV(s) and BERT, we also used the validation

set (200,000 instances extracted from the Training Dataset) and the training set (the re-

maining part of the Training Dataset, 600,000 examples) from the winner solution [84],

denoted as WINNER-VAL and WINNER-TRAIN respectively.

4.2 Experimental Set-ups

Experiments were mainly done on a commercial server, with 64GB RAM and 6-core

2GHz CPU. Our implementation of KNN system is written in Java, and the instructions

for doing experiments with it are shown in the Appendix B. Lucene is an open-source

54

1 2 3 4 5 6 7 8

0

500

1,000

1,500

DepthN
um

be
ro

fd
is

tin
ct

ca
te

go
ry

id
pa

th
s

(a) Distribution of distinct category id paths

over depth

1 2 3 4 5 6 7 8

0

500

1,000

1,500

Level

N
um

be
ro

fn
od

es
(b) Number of nodes at each level of the product

taxonomy

Figure 4.1: Characteristics of product taxonomy in SIGIR eCom Data Challenge Dataset

IR software library which is able to do full text indexing and full text searching. This

architecture is built on a document with fields of text (e.g. title field and abstract field).

We conduct our experiments on the top of the Lucene API to get a full product list search

for accurate product categorization. We also conduct experiments with Gensim [75], an

open-source topic modelling library.

4.3 Evaluation Metrics

In this classification problem, the empirical results are evaluated with weighted-P, weig-

hted-R and weighted-F1 respectively. The evaluation is based on exact category id path

match. Because of the imbalanced distribution of classes in the dataset, weighted-{P, R

and F1} are more appropriate than other evaluation methods like macro-{P, R and F1}.

The P for a class clsi is the fraction of the number of correctly predicted instances of the

55

class tp(clsi) and the number of instances predicted as the class tp(clsi) + fp(clsi):

P (clsi) =
tp(clsi)

tp(clsi) + fp(clsi)
(4.1)

The R for a class clsi is the fraction of the number of correctly predicted instances of the

class tp(clsi) and the number of true instances of the class ni = tp(clsi) + fn(clsi):

R(clsi) =
tp(clsi)

ni
=

tp(clsi)

tp(clsi) + fn(clsi)
(4.2)

The F1 for a class clsi is the harmonic mean of P and R for the class:

F1(clsi) =
2× P (clsi)×R(clsi)
P (clsi) +R(clsi)

(4.3)

Letm be the total number of classes in the dataset,N be the total number of instances

in the dataset: N =
∑m

i=1 ni After P, R and F1 are calculated for each class, the weighted-

{P, R and F1} can be calculated as follows:

Weighted-P =
m∑
i=1

ni
N
P (clsi), (4.4)

Weighted-R =
m∑
i=1

ni
N
R(clsi), (4.5)

Weighted-F1 =
m∑
i=1

ni
N
F1(clsi) (4.6)

4.4 Baselines

The baseline methods we used are listed as follows:

The first one is fastText classifier [41]. Its hyperparameters are set as follows: “

dim = 300, minn = 4, maxn = 10, wordNgrams = 3, neg = 10, loss = ns,

epoch = 3000, thread = 30”. The hyperparameter setting and preprocessing method

are the same as those of RITB Baseline [50], which ranked 10th in the Data Challenge

56

(as shown in Table 2.1). We consider it as a strong baseline, as the number of epochs

set is quite large (whereas the standard setting for number of epochs is within the range

[5, 50]).

The second one is 1NN with document concatenation, a variation on our proposed

KNN method, where product titles of the same category id path are concatenated into a

single document. So, the total number of documents equals the number of distinct cate-

gory id paths in training dataset. The system searches through these huge documents and

use the corresponding category id path of the top document as prediction. We used op-

timized IB Model (IB-SPL-ADF-NormH1) (c = 1.5) as similarity function in 1NN, and

replaced all digits (regular expression: “\d+”, e.g. “88”) with “0” during preprocessing.

4.5 Tuning k in KNN

We tried setting different values of k in KNN to see whether or not predicting based on

individual match (k = 1) is better than on several matches (k > 1), since the individual

match may be an outlier. In particular, k was set to 1, 3, 5, 7, 50 and 100.

Model k Value Weighted-P Weighted-R Weighted-F1
KNN-BM25 1 0.78 0.78 0.78
KNN-BM25 3 0.79 0.78 0.78
KNN-BM25 5 0.78 0.78 0.78
KNN-BM25 7 0.78 0.78 0.77
KNN-BM25 50 0.71 0.73 0.71
KNN-BM25 100 0.67 0.70 0.67

Table 4.1: a subset of the Test Dataset, performance comparison of KNN with BM25
as similarity function and different k values

The results in Table 4.1 show the official results of our primary submissions. In our

experiment, with the setting of parameter k = 3 and BM25 as similarity function in KNN

classification algorithm, our program achieved 0.79, 0.78 and 0.78 for the weighted-{P,

R and F1} respectively in a subset of the Test Dataset. This subset (containing the first

57

20,000 product titles in the Test Dataset) is the one used for evaluation in the Stage 1 of

the SIGIR eCom Data Challenge6. In the Stage 2 of the Data Challenge, the performance

of our KNN-based system with k = 3 and BM25 as similarity function in the Test Dataset

is shown in Table 2.1 (we ranked the 16th). As shown in Table 4.1, the results of k=1,

3 and 5 are roughly the same, because the top document matches of a query are highly

similar to each other and thus have high probability of belonging to the same category.

Also, the results for k = 3 rather than k = 1 is the best one among different settings of

k, because the top 3 documents have high probability of having the same RSV with the

query and thus the top 1 document’s category may be an outlier. Generally, we can see

that the prediction result declines as k increases, since titles with lower similarity are less

likely to belong to the same category, as shown in the Example in Section 3.1.

4.6 Tuning BM25 Model

Apart from tuning k in KNN, we have tuned the parameters of the BM25 IR model to

get better classification performance. We found a slight difference in between the tuning

of the parameters. Specifically, with the same setting of k = 1 in KNN algorithm, by

setting k1 = 1.2, b = 0.35, we achieved slightly lower results of (0.78, 0.77, 0.77) for

weighted-{P, R and F1} respectively than those of the default parameters (k1 = 1.2,

b = 0.75), i.e. (0.78, 0.78, 0.78) for weighted-{P, R and F1} respectively in the subset of

the Test Dataset.

We conducted parameter tuning by fixing k value in KNN to 3, k1 in BM25 to 1.2

and changing the value of b in BM25, with 1-in-2-TRAIN and 2-in-2-TEST as training

set and tuning set respectively. We found the optimal weighted-F1 is obtained when

b = 0.92 or 0.93, as shown in Figure 4.2. We can also see that weighted-R is consistently

higher than weighted-F1 and weighted-P.

6https://sigir-ecom.github.io/data-task.html

58

https://sigir-ecom.github.io/data-task.html

0 0.2 0.4 0.6 0.8 1
0.73

0.74

0.75

0.76

bw
ei

gh
te

d-
F1

/w
ei

gh
te

d-
P/

w
ei

gh
te

d-
R

weighted-F1 score
weighted-precision

weighted-recall

Figure 4.2: 2-in-2-TEST, sensitivity of weighted-F1/weighted-P/weighted-R to b in

BM25 model

4.7 Using Different IR Models as Similarity Function in Weighted-

KNN

Apart from the BM25 model, we also used other IR models as similarity function in our

weighted KNN classifier to see whether the classification performance can be improved

or not. We tuned the parameters of the IR models with 1-in-2-TRAIN and 2-in-2-TEST

as training set and tuning/test set respectively. Specifically, we tried the following IR

models:

The first one is Lucene’s implementation of VSM with TF-IDF weight (default set-

ting). As this model is parameter-free, we do not need parameter tuning.

The second one is Lucene’s implementation of Dirichlet LM [104]. We tuned the

parameter µ of the model. We found the optimal weighted-F1 is obtained when µ = 0.1

or 0.01, as shown in Figure 4.3. In contrast, the lowest weighted-F1 is obtained when

there is no smoothing at all (µ = 0). When µ > 0.1, the weighted-F1 gradually decreases

59

0 40 80 120 160 200
0

0.2

0.4

0.6

0.8

µw
ei

gh
te

d-
F1

/w
ei

gh
te

d-
P/

w
ei

gh
te

d-
R

weighted-F1 score
weighted-precision

weighted-recall

Figure 4.3: 2-in-2-TEST, sensitivity of weighted-F1/weighted-P/weighted-R to µ in

Dirichlet Language Model

as µ increases.

The third one is Lucene’s implementation of Jelinek-Mercer LM [104]. We tuned the

parameter λ of the model. We found the optimal weighted-F1 is obtained when λ = 0.2,

0.25 or 0.3, as shown in Figure 4.4. We found when λ ∈ [0.1, 0.75], the weighted-F1

varies little. When λ > 0.3, the weighted-F1 gradually decreases as λ increases.

The fourth one is Lucene’s implementation of IB Models [10]. We chose distribu-

tion, distribution parameter and TF normalization method according to the results ob-

tained from IB models with default parameters, as shown in Table 4.2. We found the

one using SPL distribution (as in Equation 2.31), average number of documents where a

word occurs (ADF) as the distribution’s parameter λ (as in Equation 2.33) and Normal-

izationH1, i.e. normalization model assuming a uniform distribution of TF (Equation

2.34), obtained the highest results. Then, we further tuned the normalization parameter

c in Equation 2.34 and found the best result is obtained when c is set to 1.5, as shown in

Figure 4.5.

60

0 0.2 0.4 0.6 0.8 1
0.74

0.75

0.76

λw
ei

gh
te

d-
F1

/w
ei

gh
te

d-
P/

w
ei

gh
te

d-
R

weighted-F1 score
weighted-precision

weighted-recall

Figure 4.4: 2-in-2-TEST, sensitivity of weighted-F1/weighted-P/weighted-R to λ in

Jelinek-Mercer Language Model

The fifth IR model is the cosine similarity of Gensim’s [75] Doc2vec embeddings

[46]. We have built a similar product classification system with Gensim’s [75] Doc2vec

[46] document embedding cosine similarity as similarity function in weighted KNN algo-

rithm. The instructions for doing experiments with it are shown in the Appendix C. The

system used the same preprocessing method as we mentioned in Chapter 3.2, plus replac-

ing all digits (regular expression: “\d+”, e.g. “808”) with “numericals ”. But during anal-

ysis, only tokenization and case folding is done, i.e. no normalization. Testing is done

using 16 threads in parallel. After hyperparameter tuning by training Doc2vec model on

1-in-2-TRAIN and testing on 2-in-2-TEST, the best result is obtained with the following

hyperparameter setting:“dm = 0, vector size = 300, dbow words = 0, dm concat =

1, dm tag count = 1, window = 10,min count = 2, epochs = 500, hs = 1”, as in

Table 4.4 and 4.5. Different from reported in [46], PV-DBOW was found to perform

better than PV-DM in this product classification task (as in Table 4.3). We tuned the

window size, running 100 epochs, with the same setting for other hyperparameters, as

61

IR Model Weighted-P Weighted-R Weighted-F1
IB-SPL-ADF-NormH1 0.7564 0.7595 0.7557
IB-SPL-ADF-NormH2 0.7545 0.7600 0.7547
IB-SPL-ADF-NormH3 0.7347 0.7434 0.7339
IB-SPL-ADF-NormZ 0.7459 0.7533 0.7461
IB-SPL-ADF-NoNormalization 0.7321 0.7398 0.7298
IB-LL-ADF-NormH1 0.7499 0.7570 0.7506
IB-LL-ADF-NormH2 0.7477 0.7554 0.7484
IB-LL-ADF-NormH3 0.7384 0.7469 0.7381
IB-LL-ADF-NormZ 0.7428 0.7510 0.7430
IB-LL-ADF-NoNormalization 0.7344 0.743 0.7333
IB-SPL-ATF-NormH1 0.7562 0.7591 0.7555
IB-SPL-ATF-NormH2 0.7543 0.7598 0.7546
IB-SPL-ATF-NormH3 0.7352 0.7438 0.7344
IB-SPL-ATF-NormZ 0.7461 0.7534 0.7463
IB-LL-ATF-NormH1 0.7498 0.7569 0.7506
IB-LL-ATF-NormH2 0.7477 0.7553 0.7484
IB-LL-ATF-NormH3 0.7386 0.7471 0.7384
IB-LL-ATF-NormZ 0.7429 0.751 0.7431

Table 4.2: 2-in-2-TEST, performance comparison of KNN with different IB models with
default parameters. The highest weighted-F1 is printed in bold.

0 1 2 3 4
0.75

0.76

0.77

cw
ei

gh
te

d-
F1

/w
ei

gh
te

d-
P/

w
ei

gh
te

d-
R

weighted-F1 score
weighted-precision

weighted-recall

Figure 4.5: 2-in-2-TEST, sensitivity of weighted-F1/weighted-P/weighted-R to c in Nor-

malizationH1 within IB-SPL-ADF-NormH1

62

shown in Table 4.3. We use concatenation of context vectors instead of sum or average

to preserve word positional information. We found removing very rare words by setting

min count = 2 can help to improve performance in terms of weighted-F1 by around

0.001. This is because these words are noise that hinders generalization of the model.

As cosine similarity is within the range [−1, 1], we also used a threshold of 0.6 to pre-

vent dissimilar items from contributing to prediction in KNN, which helped to improve

weighted-F1 by 0.0011. Hierarchical softmax was used to train the model, since it is

better for infrequent words compared to negative sampling.

Training method Window size Weighted-P Weighted-R Weighted-F1
PV-DBOW 9 0.7185 0.7287 0.721
PV-DBOW 10 0.7191 0.7292 0.7216
PV-DBOW 11 0.7185 0.7283 0.7208
PV-DM 9 0.0598 0.0622 0.0595
PV-DM 5 0.0832 0.0894 0.0851

Table 4.3: 2-in-2-TEST, performance comparison of KNN with Doc2vec cosine si-
milarity with different window size and different training method. The highest weighted-
F1 is printed in bold.

Model Weighted-P Weighted-R Weighted-F1
KNN-IB-SPL-ADF-NormH1 0.7558 0.7603 0.7559†‡

KNN-IB-SPL-ADF-NormH1-digits-
to-0

0.758 0.7632 0.7583†‡

KNN-BM25 0.7545 0.7581 0.7541†‡

KNN-VSM 0.7586 0.7553 0.7546†‡

KNN-Dirichlet-LM 0.7499 0.757 0.7506†‡

KNN-JelinekMercer-LM 0.7499 0.7574 0.7507†‡

KNN-Doc2vec cosine similarity 0.7309 0.738 0.7322†‡

fastText 0.7903 0.7754 0.7807
1NN-IB-SPL-ADF-NormH1-digits-to-
0-concatenation-by-category

0.7509 0.6578 0.6755

Table 4.4: 2-in-2-TEST, performance comparison of KNN with different IR models.
The highest weighted-F1 is printed in bold.

63

Model Weighted-P Weighted-R Weighted-F1
KNN-IB-SPL-ADF-NormH1 0.7574 0.7619 0.7574†‡

KNN-IB-SPL-ADF-NormH1-digits-
to-0

0.7592 0.7641 0.7595†‡

KNN-BM25 0.7563 0.76 0.756†‡

KNN-VSM 0.76 0.7564 0.7558†‡

KNN-Dirichlet-LM 0.7518 0.7588 0.7525†‡

KNN-JelinekMercer-LM 0.7515 0.7588 0.7522†‡

KNN-Doc2vec cosine similarity 0.7323 0.7388 0.7333†‡

fastText 0.7911 0.7766 0.7819
1NN-IB-SPL-ADF-NormH1-digits-to-
0-concatenation-by-category

0.754 0.663 0.6808

Table 4.5: 1-in-2-TEST, performance comparison of KNN with different IR models.
The highest weighted-F1 is printed in bold.

64

Chapter 5

Analyses and Discussions

In this chapter, we will analyse the results obtained in Chapter 4. Also, we will perform

various ablation analyses, such as analyzing the effect of removing stopwords, the effect

of using different KNN weighting schemes and the effect of replacing digits with “0”

during preprocessing. In the last 5 sections, we will introduce our experiments with

LSTM-BPV networks and BERT models, examine the effect of batch size in fine-tuning

BERT, and compare the performance of BERT pre-trained model [15] and that of OpenAI

GPT pre-trained model [73].

5.1 Comparing KNN with Different IR Models

Using the same training set (1-in-2-TRAIN), test set (2-in-2-TEST) and k = 3 for

weighted KNN, the best results from different IR models as KNN’s similarity function

are shown in Table 4.4. In addition, using the same training set (2-in-2-TRAIN), test set

(1-in-2-TEST) and k = 3 for weighted KNN, the best results from different IR models

as KNN’s similarity function are shown in Table 4.5.

As shown in Table 4.4 and Table 4.5, fastText obtained the highest performance. This

is probably because compared to most of IR models used by our KNN algorithm, it ad-

ditionally takes word n-gram and character n-gram into account. Such information in

65

local dependencies and morphological information helps fastText outperform our KNN

method. Another reason is that it has been trained for an unusually large number of

epochs (3000). In contrast, 1NN with document concatenation obtained the lowest re-

sults, as shown in Table 4.4 and Table 4.5. This is probably because in this method, docu-

ments are much more lengthy and thus contain more noise, which makes it more difficult

to match them precisely with query. We also conduct 2-tailed paired t-test (α = 0.05) on

weighted-F1 of our proposed methods and those of 1NN with document concatenation

baseline, and we use “†” in Table 4.4 and Table 4.5 to indicate a significant difference

between them. We also use “‡” in Table 4.4 and Table 4.5 to indicate a significant dif-

ference between our proposed methods and fastText. It is also interesting to note that the

weighted-R obtained by KNN with IR Models are consistently higher than weighted-F1

obtained by them.

Furthermore, among all IR models used by our KNN algorithm, IB Model, i.e. IB-

SPL-ADF-NormH1, and cosine similarity of Doc2vec embeddings obtained the highest

and lowest performance in terms of weighted-F1 respectively. The IB model works better

than BM25, which is in line with the observation in [10]. The neural IR model (i.e.

cosine similarity of Doc2vec embedding) could not get good results, probably because

all terms are treated equally instead of weighted based on their prominence (e.g. IDF)

within the document collection (like in VSM with TF-IDF weight) (this is in line with

the observation in [22]).

5.2 Impact of Removing Stopwords

We have also compared results of using the stopword filter in Lucene’s standard analyser

to those of not using it. We found that using stopword filter would slightly reduce the

results (around 0.002 in F1), partly because after stop word removal, documents (training

titles) may have no term. Also, this suggests that some stopwords are useful for product

66

classification.

5.3 Impact of Replacing Digits with “0”

We have also tried reducing feature space by replacing all digits (regular expression:

“\d+”, e.g. ”356”) with “0”. We found that doing so would at least double the running

time of our KNN system and significantly increase the Weighted-F1 (p = 0.0424 in 2-

tailed paired t-test (α = 0.05)) (as shown in Table 4.4 and 4.5). This shows that numbers

are noise for product taxonomy classification.

5.4 Impact of Removing Infrequent Words

We have also compared results of setting different minimum DF threshold in our KNN

classifier. DF for a wordwi is the number of documents containing that word in document

collection C. A word whose DF is less than DF threshold (DF (wi) < DFthreshold)

would be removed. We used the same IR model, i.e. IB-SPL-ADF-NormH1, and set

KNN’s k = 3. We found that using a DF threshold of 2 could slightly improves the

performance by 0.0001 in terms of weighted-F1 (although this is quite small difference).

This is because very rare word is likely to be noise. However, when DF threshold is set

larger than 3 (i.e. 3, 4, 5, 6, 10 and 100), the performance would degrade in terms of

weighted-F1.

5.5 Impact of Using Standard Filter for Normalization

We found when there is no normalization by standard filter during analysis, the results

in terms of weighted-F1 will slightly decrease (about 0.0002). On one hand, this means

normalization has little effect on the performance, probably because most of product ti-

67

tles are noun phrases, which require little normalization. On the other hand, this suggests

that normalization can help product classification.

5.6 Comparing KNN with Different Weighting Schemes

Originally, we [31] implemented a KNN with simple voting where the number of occur-

rences of a distinct category among top k matched products’ categories was used instead

of category score. And that one produced slightly lower results (about 0.0006 lower in

weighted-F1) compared to the current weighted KNN we use (using the same training

set (1-in-2-TRAIN), test set (2-in-2-TEST) and k = 3). This is because categories follow

an unbalanced distribution and thus a category with large number of examples is more

likely to win in KNN with simple voting.

We also implemented biweight kernel weighted KNN [28], where the category score

is calculated as follows instead of using Equation 3.2:

Cat(dcm) =
n−1∑
i=1

15

16
× (1− (

RSV (tj, ptn)

RSV (tj, pti)
)2)2 × 1{pti∈dcm}, (5.1)

This produces slightly lower results (about 0.002 in weighted-F1) compared to the cur-

rent weighted KNN we use (using the same training set (1-in-2-TRAIN), test set (2-in-2-

TEST) and k = 3). This is probably because the kernel function’s range is [0, 15
16
), which

narrows the difference between very relevant document and not that relevant document.

Another reason is that the nth nearest neighbour cannot contribute to KNN voting.

Furthermore, inspired by the smoothing used in language models, to better tackle the

problem of unbalanced category distribution, we implemented a weighted-KNN algo-

rithm with weighted category and smoothing, where each category is further weighted

inversely proportional to its number of occurrences in the training set. The category score

is calculated as follows instead of using Equation 3.2:

68

Cat(dcm) = ((1− α) 128

Npt∈dcm
+ α

128

Navg

)
n∑
i=1

RSV (tj, pti)× 1{pti∈dcm}, (5.2)

where α is a smoothing parameter, Npt∈dcm is the number of instances belonging to dcm

in the training set, Navg =
|TR|

|{dci|ptj∈dci,ptj∈TR}| (the average number of instances belong-

ing to a category in training set TR) and {dci|ptj ∈ dci, ptj ∈ TR} is the set of distinct

categories in TR. As shown in Figure 5.1, with α = 0.95, we got the optimal weighted

F1, slightly higher (0.0005 higher in weighted-F1) than the current weighted KNN we

use (using the same training set (1-in-2-TRAIN), test set (2-in-2-TEST) and k = 3). In

contrast, with other values of α (α ≤ 0.9), the results are not better than the current

weighted KNN we use (Equation 3.2), which is actually a special case of this weighted

KNN with weighted category and smoothing (by setting α to 1). This is probably because

rare categories are boosted too much. Nevertheless, our experiments suggest that incor-

porating category distribution information can improve the classification performance,

which is in line with [90, 51]. The drawback is, however, that we need to tune an addi-

tional parameter (i.e. α).

5.7 Combining Prediction Results of KNN with LSTM-BPV Net-

works

We conducted parameter tuning of λ in Equation 3.7, using the WINNER-VAL and

WINNER-TRAIN as testing/tuning set and training set respectively. The training of

LSTM-BPV networks was mainly done on Paperspace Notebooks with Nvidia P100 or

V100 GPU (16Gb memory) acceleration. We modified and used the implementation

codes7 from [84]. The instructions for conducting experiments with the ensembles are

7https://github.com/mcskinner/ecom-rakuten

69

https://github.com/mcskinner/ecom-rakuten

0 0.2 0.4 0.6 0.8 1
0.73

0.74

0.75

0.76

0.77

αw
ei

gh
te

d-
F1

/w
ei

gh
te

d-
P/

w
ei

gh
te

d-
R

weighted-F1 score
weighted-precision

weighted-recall

Figure 5.1: 2-in-2-TEST, sensitivity of weighted-F1/weighted-P/weighted-R to α in

weighted KNN with weighted category and smoothing

shown in Appendix D. We first trained a single forward LSTM-BPV network with default

hyperparameters (i.e. number of training epochs = 40, max learning rate = 0.8,

learning rate factor = 20, highest momentum = 0.95, lowest momentum =

0.85, size of character embedding = 50, number of hidden units within a

LSTM layer = 512) as our base model. We then trained a reverse LSTM-BPV network

with default settings and used a bidirectional ensemble of this network and the first one,

denoted as B-LSTM-BPV, as another base model. The sensitivity of λ is shown in Figure

5.2.

The green line in Figure 5.2 shows the performance of our weighted KNN system

with IB-SPL-ADF-NormH1 model as similarity function on WINNER-VAL. As we can

see, generally, the performance in terms of weighted-F1 slightly decreases as λ increases

within the range [0, 0.9] when using base model LSTM-BPV without F1 optimizing,

and we get the maximum F1 when setting λ = 0. However, when using base model

B-LSTM-BPV without F1 tuning, we get the maximum F1 when λ = 0.2.

70

When using base model LSTM-BPV with F1 optimizing, the performance of the en-

semble slightly fluctuates within the range [0, 0.9], and the maximum is obtained with

λ = 0.6. Similarly, when using base model B-LSTM-BPV with F1 tuning, we get the

maximum value of weighted-F1 when λ = 0.6. When λ increases within the range

[0.9, 0.96], the weighted-F1 performance of both ensembles with F1 tuning drops dra-

matically, before gradually decreasing within [0.96, 1]. When λ is set higher than 0.91,

the ensemble could not perform better than its consitituent KNN system. This is proba-

bly because, mathematically, the f1-tuning ensemble’s prediction’s probability of a given

test title t belonging to a specific dcm predicted by our KNN system Pensemble(t ∈ dcm)

is guaranteed to be higher than the original maxi∈{1,...,3008} PLSTM -BPV s(t ∈ dci) when

λ > 0.9091 (proof attached in Appendix F) and thus the ensemble’s prediction is too

much affected by its constituent KNN system. In contrast, when λ increases within the

range [0.9, 1], the weighted-F1 performance of both ensembles without F1 tuning first

drops a bit before λ reaching 0.99, and after that it drops dramatically. We think this

is because the ensemble’s prediction is too much predominated by its constituent KNN

system.

Nevertheless, when λ is within the range [0, 0.91], independent of whether the base

model LSTM-BPV/B-LSTM-BPV is tuned to optimize weighted-F1 or not, combining

with LSTM-BPV network or B-LSTM-BPV networks can improve the performance of

our KNN system.

Moreover, when λ = 0.6, the ensembles could outperform their base models (LSTM-

BPV/1 pair of B-LSTM-BPV/2 pairs of B-LSTM-BPVs/3 pairs of B-LSTM-BPVs) on

the Test Dataset, as shown in Table 5.1. In this table, we also show the improvement rate

in weighted-F1 when using ensemble instead of its base model in the brackets. Generally,

we observe an average of around 0.001 or 0.004 increase in weighted-F1 compared to

different base models when combining our system’s prediction with them with or without

71

F1 optimization respectively (however, the differences are not significant according to 2-

tailed paired t-test (α = 0.05) on weighted-F1). This suggests that word-level matching

of our system can help character-level neural networks generalize better. Interestingly,

the increase of weighted-F1 with F1 tuning is always greater than that without F1 tuning.

Model Tune F1
or not

Weighted-
P

Weighted-
R

Weighted-
F1

KNN with IB-SPL-ADF-
NormH1 (used whole Training
Dataset)

not ap-
plicable

0.7866 0.7887 0.7851

LSTM-BPV false 0.8097 0.8152 0.8094
ensemble of LSTM-BPV and
KNN

false 0.8108 0.8162 0.8104
(+0.13%)

LSTM-BPV-fine-tuned false 0.8114 0.8164 0.8098
ensemble of LSTM-BPV-fine-
tuned and KNN

false 0.8132 0.8183 0.8117
(+0.23%)

LSTM-BPV true 0.8332 0.8095 0.8179
ensemble of LSTM-BPV and
KNN

true 0.8421 0.8121 0.8236
(+0.69%)

LSTM-BPV-fine-tuned true 0.8467 0.8054 0.8212
ensemble of LSTM-BPV-fine-
tuned and KNN

true 0.8571 0.8091 0.8282
(+0.85%)

B-LSTM-BPV false 0.8257 0.8304 0.8246
ensemble of B-LSTM-BPV and
KNN

false 0.8269 0.8314 0.8256
(+0.12%)

B-LSTM-BPV-fine-tuned false 0.8267 0.8309 0.8243
ensemble of B-LSTM-BPV-fine-
tuned and KNN

false 0.8282 0.8324 0.8258
(+0.18%)

B-LSTM-BPV true 0.848 0.8247 0.8324
ensemble of B-LSTM-BPV and
KNN

true 0.8557 0.8262 0.8371
(+0.55%)

B-LSTM-BPV-fine-tuned true 0.8592 0.8199 0.8345
ensemble of B-LSTM-BPV-fine-
tuned and KNN

true 0.8681 0.8226 0.8403
(+0.70%)

2 pairs of B-LSTM-BPV false 0.8329 0.8369 0.8308
ensemble of 2 pairs of B-LSTM-
BPV and KNN

false 0.8335 0.8376 0.8315
(+0.085%)

2 pairs of B-LSTM-BPV-fine-
tuned

false 0.8333 0.8368 0.8301

ensemble of 2 pairs of B-LSTM-
BPV-fine-tuned and KNN

false 0.8349 0.8383 0.8316
(+0.18%)

2 pairs of B-LSTM-BPV true 0.8541 0.831 0.8383
ensemble of 2 pairs of B-LSTM-
BPV and KNN

true 0.8612 0.8320 0.8423
(+0.48%)

72

2 pairs of B-LSTM-BPV-fine-
tuned

true 0.8639 0.8259 0.8394

ensemble of 2 pairs of B-LSTM-
BPV-fine-tuned and KNN

true 0.8719 0.8275 0.8444
(+0.59%)

3 pairs of B-LSTM-BPV false 0.8347 0.8385 0.8324
ensemble of 3 pairs of B-LSTM-
BPV and KNN

false 0.8357 0.8394 0.8333
(+0.11%)

3 pairs of B-LSTM-BPV-fine-
tuned

false 0.8351 0.8385 0.8318

ensemble of 3 pairs of B-LSTM-
BPV-fine-tuned and KNN

false 0.8366 0.8397 0.8330
(+0.16%)

3 pairs of B-LSTM-BPV true 0.8553 0.8329 0.8397
ensemble of 3 pairs of B-LSTM-
BPV and KNN

true 0.8626 0.8341 0.8440
(+0.51%)

3 pairs of B-LSTM-BPV-fine-
tuned

true 0.8655 0.8280 0.8412

ensemble of 3 pairs of B-LSTM-
BPV-fine-tuned and KNN

true 0.8729 0.8293 0.8457
(+0.54%)

fastText (RITB-Baseline) [50]
(trained on whole Training
Dataset)

not ap-
plicable

0.8276 0.8077 0.8142

BERT-large false 0.8386 0.8358 0.8356
BERT-large true 0.8420 0.8341 0.8350

Table 5.1: Test Dataset, performance comparison of ensembles and base models. The
highest value is printed in bold.

5.8 Fine-tuning Trained LSTM-BPV Network on WINNER-VAL

In this section, we fine-tuned LSTM-BPV network trained with WINNER-TRAIN (

600, 000 examples) from last section on WINNER-VAL (200,000 examples) to get

higher performance in the Test Dataset. In this way, the model could be trained on

the whole Training Dataset. Specifically, we fine-tuned the model with the same hyper-

parameters as those during model training, except max learning rate set to 0.08, batch

size set to 32 and number of epochs noe set to 1/4/5/6/8/10/15/20 (thus, we got 8 fine-

tuned models). This is because fine-tuning usually requires smaller batch size, smaller

learning rate and smaller noe. We report the empirical results on WINNER-VAL and

Test Dataset in Figure 5.3. The green/yellow line in Figure 5.3 shows the performance

73

of our weighted KNN system with IB-SPL-ADF-NormH1 model as similarity function

on WINNER-VAL/Test Dataset respectively (the performance on Test Dataset is bet-

ter than that on WINNER-VAL, as we used full Training Dataset (800,000 examples)

instead of WINNER-TRAIN (600,000 examples)).

As shown in Figure 5.3, the performance of the model improves consistently in WIN-

NER-VAL as number of fine-tuning epoch noe increases. This is because during fine-

tuning, the WINNER-VAL is used for training as well as validation. However, in the

Test Dataset, the performance in terms of weighted-F1 first peaks when noe = 5 and

then decreases as noe increases, which suggests that when noe > 5, the model begins to

overfit on WINNER-VAL. We found fine-tuning the model for 5 epochs could improve

absolute weighted-F1 by 0.04%/0.33% without/with F1 tuning respectively. Further-

more, the increase in weighted-F1 with F1 tuning is again greater than that without F1

tuning, which suggests the F1 tuning method is effective and robust.

We also fine-tuned other LSTM-BPV models from last section for 5 epochs in the

same way. We present the results in Table 5.1. As shown in the table, combining

our KNN algorithm with base models could consistently improve performance in Test

Dataset. Furthermore, sometimes fine-tuning models degraded the performance in terms

of weighted-F1 without F1 tuning (as shown in B-LSTM-BPV and 2 pairs of B-LSTM-

BPV in the table). This is probably because the ensemble model forgot knowledge gained

from WINNER-TRAIN as it acquired new knowledge. And this phenomenon is similar

to catastrophic forgetting during continual training (i.e. a model is trained continuously

on different tasks) observed in [101].

5.9 Fine-tuning Pre-trained BERT Model

Let H be the number of hidden units in a layer, i.e. hidden size, in the Transformer,

C be the number of target classes. We used BERT-large uncased pre-trained model for

74

fine-tuning, the number of layers in the model is L = 24, hidden size is H = 1024

and number of attention heads is A = 16. In particular, we add a fully-connected linear

layer (or classification layer) W ∈ RC×H (C = 3008 in this product classification task)

on the top of the deep bidirectional Transformer (This method was presented in [15] for

tackling single sentence classification problem). The instructions for using this classifier

are presented in Appendix E (we modified the implementation codes from Google AI

Language Team8).

We can achieve similar results to those of LSTM-BPV models by fine-tuning a single

pre-trained BERT model. Specifically, we used the same validation set and training set

as those in Section 5.7 (i.e. WINNER-VAL and WINNER-TRAIN). Our experiments

relating to BERT were conducted on a Google Cloud Virtual Machine (VM) with pre-

emptible Tensor Processing Unit (TPU) v3 (128Gb High Bandwidth Memory (HBM)).

We used the same optimizer as in [15], i.e. Adam [43]. The hyperparameters used are

as follows: learning rate set to 5 × 10−5, learning rate warmup portion set to 0.1, linear

decaying of learning rate after warmup, batch size set to 64. We chose a relative small

batch size, as the minimum effective batch size for a TPU is 64 and according to [60],

using smaller batch size often enables faster convergence, which is also confirmed in

our experiments (we will examine this in Section 5.10). We first used a max sequence

length of 128 for the first 3 epochs, after that we used 176 instead (this would have little

effect on final classification performance, as most of the product titles’ WordPiece-level

lengths are less than 128 and we fine-tuned the model for many epochs). We chose max

sequence length to be a multiple of number of attention heads (A = 16) for efficient

computing. We trained a total of 40 epochs.

We used a continuing training scheme that evaluates the performance in the 5th, 8th,

10th, 15th, 20th, 30th and 40th epoch. So the learning rate actually decreased to 0 and

8https://github.com/google-research/bert

75

https://github.com/google-research/bert

then restarted in the end of the 5th, 8th, 10th, 15th, 20th, 30th and 40th epoch, which

is similar to Stochastic Gradient Descent with Warm Restarts (SGDR) [57]. This may

produce slightly different results compared to typical learning rate scheme that reduce

learning rate to 0 at the end of the whole training process. We report classification per-

formance of BERT to number of fine-tuning epochs on both WINNER-VAL and Test

Dataset in Figure 5.4.

As shown in Figure 5.4, we achieved high performance in terms of weighted-F1 after

fine-tuning for 5 epochs. Generally, we can see that training more epochs boosts the

performance in terms of weighted-F1. In both WINNER-VAL and Test Dataset, the

performance of F1 tuned is better than that of no F1 tuning only when number of epochs

e ≤ 20. Interestingly, when e ≥ 30, the performance of BERT with F1 tuning in terms

of weighted-F1 is slightly lower than that of BERT without F1 tuning, which is not as

expected. This is probably because the model has almost reached its full potential, as

the performance only increased slightly (less then 0.0007 in terms of absolute increase

in weighted-F1 in both cases) during the last 10 epochs, i.e. when e ∈ [30, 40]. The

performance of this single model (as shown in Table 5.1) is slightly better than a bidi-

rectional ensemble of 2 LSTM-BPVs regardless of whether the ensemble is F1 tuned or

not. However, the fine-tuned BERT model’s performance is still slightly worse than that

of a F1-tuned bidirectional ensemble of 4 LSTM-BPVs in terms of weighted-F1.

As advertised in [15], this method is straightforward and requires only a few modi-

fications to the model architecture for text classification. The performance is also com-

parable to the SotA. However, the computational cost is still quite high. Fine-tuning

the pre-trained BERT-large uncased model for 1 epoch takes around 40 minutes on a

newly-developed Cloud TPU v3, although we set 1,000 batches per training loop. This

is probably because of large model size of BERT and relatively small batch size used for

fine-tuning. Another reason is that, because products’ titles have various length (from

76

1 to 161 in terms of WordPiece-level length), the fixed sequence length requirement in

BERT causes excessive use of padding and thus makes computation less efficient.

5.10 Fine-tuning BERT with Larger Batch Size

We tried using larger batch size for fine-tuning BERT-large uncased model to use TPU

more efficiently and thus to reduce training time. Specifically, we used the same hyper-

parameters as those in the previous section, except for batch size (256) and learning rate

(2.5 × 10−4) (this learning rate is still small, slightly more than linearly increasing the

learning rate in the previous section with respect to batch size (2 × 10−4)). We got the

loss curve (training loss (vertical axis) versus number of iterations (horizontal axis)) of

fine-tuning the model on WINNER-TRAIN, as shown in Figure 5.5. We can see that,

with a smoothing of 0.6, the training loss first gradually decreases within the first 17.5

epochs (approximately), and after that it diverges drastically (so we stopped training af-

ter fine-tuning it for around 24.5 epochs). This suggests that smaller batch size can offer

more stable training performance, which is in line with [60].

5.11 Comparing the Performance of Pre-trained BERT and OpenAI

GPT

Apart from BERT model, we also tried fine-tuning pre-trained OpenAI GPT model [73]

for this classification task. We fine-tuned the OpenAI GPT model for 3 epochs (noe = 3)

using SGDM [88] optimizer. We used a batch size of 80, and peak learning rate was tuned

to be 0.000625. We used a 1cycle learning scheme, as in [85], with highest momentum

set to 0.95, lowest momentum set to 0.85 and learning rate factor set to 20. We compare

it with BERT-base uncased model [15] here, as they have the same size and similar

structure. We only fine-tuned pre-trained BERT-base model for 1 epoch (noe = 1) with

77

Adam optimizer, batch size of 120 and learning rate of 0.00025. We used learning rate

warmup for the first 500 steps and linear decaying of learning rate afterwards. For both

models, we used a max sequence length of 70. The results in WINNER-VAL and Test

Dataset are shown in Table 5.2.

Model Tune F1
or not

noe Dataset Weighted-
P

Weighted-
R

Weighted-
F1

OpenAI
GPT

false 3 WINNER-
VAL

0.64 0.6995 0.6581

BERT-base false 1 WINNER-
VAL

0.6799 0.7285 0.6934

OpenAI
GPT

true 3 WINNER-
VAL

0.7136 0.6906 0.693

BERT-base true 1 WINNER-
VAL

0.743 0.7203 0.7234

OpenAI
GPT

false 3 Test
Dataset

0.642 0.7012 0.6596

BERT-base false 1 Test
Dataset

0.6792 0.7286 0.693

OpenAI
GPT

true 3 Test
Dataset

0.7141 0.6917 0.6939

BERT-base true 1 Test
Dataset

0.7429 0.7201 0.7228

Table 5.2: WINNER-VAL/Test Dataset, performance comparison of BERT-base
and OpenAI GPT. The highest weighted-F1 achieved on each dataset is printed in bold.

As shown in the table, it is clear that pre-trained BERT-base model is better than

pre-trained GPT model, as it converged faster (1 epoch versus 3 epochs) and obtained

higher performance. This observation is in line with that in [15]. According to [15],

such difference is caused by the difference in the size of pre-training datasets (BERT was

pre-trained on larger training corpus) and the difference in pre-training tasks (BERT’s

pre-trained tasks are MLM and NSP, whereas OpenAI GPT’s is LtR NLM).

78

0 0.10.20.30.40.50.60.70.80.9 1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

λ

w
ei

gh
te

d-
F1

sc
or

e
WINNER-VAL, sensitivity of weighted-F1 to λ

KNN-LSTM-BPV-no-tune

KNN-LSTM-BPV-tune-F1

KNN-B-LSTM-BPV-tune-F1

KNN-B-LSTM-BPV-no-tune

KNN with IB-SPL-ADF-NormH1

0 0.10.20.30.40.50.60.70.80.9 1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

λ

w
ei

gh
te

d-
pr

ec
is

io
n

WINNER-VAL, sensitivity of weighted-P to λ

KNN-LSTM-BPV-no-tune

KNN-LSTM-BPV-tune-F1

KNN-B-LSTM-BPV-tune-F1

KNN-B-LSTM-BPV-no-tune

KNN with IB-SPL-ADF-NormH1

0 0.10.20.30.40.50.60.70.80.9 1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

λ

w
ei

gh
te

d-
re

ca
ll

WINNER-VAL, sensitivity of weighted-R to λ

KNN-LSTM-BPV-no-tune

KNN-LSTM-BPV-tune-F1

KNN-B-LSTM-BPV-tune-F1

KNN-B-LSTM-BPV-no-tune

KNN with IB-SPL-ADF-NormH1

Figure 5.2: WINNER-VAL, sensitivity to λ in the ensemble of KNN with IB-SPL-ADF-

NormH1 and LSTM-BPV/B-LSTM-BPV

79

0 5 10 15 20
0.77
0.8

0.85

0.9

0.95

1

number of epochs

w
ei

gh
te

d-
F1

sc
or

e

WINNER-VAL/Test Dataset, sensitivity of weighted-F1 to number of epochs

LSTM-BPV-no-F1-tune-winner-val

LSTM-BPV-F1-tuned-winner-val

LSTM-BPV-no-F1-tune-test-dataset

LSTM-BPV-F1-tuned-test-dataset

KNN IB-SPL-ADF-NormH1-winner-val

KNN IB-SPL-ADF-NormH1-test-dataset

0 5 10 15 20
0.77
0.8

0.85

0.9

0.95

1

number of epochs

w
ei

gh
te

d-
pr

ec
is

io
n

WINNER-VAL/Test Dataset, sensitivity of weighted-P to number of epochs

LSTM-BPV-no-F1-tune-winner-val

LSTM-BPV-F1-tuned-winner-val

LSTM-BPV-no-F1-tune-test-dataset

LSTM-BPV-F1-tuned-test-dataset

KNN IB-SPL-ADF-NormH1-winner-val

KNN IB-SPL-ADF-NormH1-test-dataset

0 5 10 15 20
0.77
0.8

0.85

0.9

0.95

1

number of epochs

w
ei

gh
te

d-
re

ca
ll

WINNER-VAL/Test Dataset, sensitivity of weighted-R to number of epochs

LSTM-BPV-no-F1-tune-winner-val

LSTM-BPV-F1-tuned-winner-val

LSTM-BPV-no-F1-tune-test-dataset

LSTM-BPV-F1-tuned-test-dataset

KNN IB-SPL-ADF-NormH1-winner-val

KNN IB-SPL-ADF-NormH1-test-dataset

Figure 5.3: WINNER-VAL/Test Dataset, sensitivity to LSTM-BPV’s number of epochs

fine-tuned

80

0 5 10 15 20 25 30 35 40
0.77
0.78
0.79
0.8
0.81
0.82
0.83
0.84

number of epochs

w
ei

gh
te

d-
F1

sc
or

e

WINNER-VAL/Test Dataset, sensitivity of weighted-F1 to number of epochs

BERT-no-F1-tune-winner-val

BERT-F1-tuned-winner-val

BERT-no-F1-tune-test-dataset

BERT-F1-tuned-test-dataset

KNN IB-SPL-ADF-NormH1-winner-val

KNN IB-SPL-ADF-NormH1-test-dataset

0 5 10 15 20 25 30 35 40
0.77
0.78
0.79
0.8
0.81
0.82
0.83
0.84
0.85

number of epochs

w
ei

gh
te

d-
pr

ec
is

io
n

WINNER-VAL/Test Dataset, sensitivity of weighted-P to number of epochs

BERT-no-F1-tune-winner-val

BERT-F1-tuned-winner-val

BERT-no-F1-tune-test-dataset

BERT-F1-tuned-test-dataset

KNN IB-SPL-ADF-NormH1-winner-val

KNN IB-SPL-ADF-NormH1-test-dataset

0 5 10 15 20 25 30 35 40
0.77
0.78
0.79
0.8
0.81
0.82
0.83
0.84

number of epochs

w
ei

gh
te

d-
re

ca
ll

WINNER-VAL/Test Dataset, sensitivity of weighted-R to number of epochs

BERT-no-F1-tune-winner-val

BERT-F1-tuned-winner-val

BERT-no-F1-tune-test-dataset

BERT-F1-tuned-test-dataset

KNN IB-SPL-ADF-NormH1-winner-val

KNN IB-SPL-ADF-NormH1-test-dataset

Figure 5.4: WINNER-VAL/Test Dataset, sensitivity to BERT’s number of epochs fine-

tuned

81

Figure 5.5: WINNER-TRAIN, the training loss curve of fine-tuning BERT-large un-

cased with batch size of 256 and learning rate of 2.5 × 10−4 for 40 epochs. (pink line):

raw plot; (red line): with 0.6 smoothing

82

Chapter 6

Conclusions and Future Work

In this chapter, we will conclude this thesis with conclusions, the impact of this work and

our future research direction.

6.1 Conclusions

In this thesis, we proposed a product taxonomy classification system based on weighted

KNN with an IR model as similarity function. The system is fast and scalable compared

to other methods such as fastText, although the performance is slightly lower than them.

This suggests that our proposed method can serve as a fast and relatively good baseline.

Within the IR models we used as similarity function in our KNN algorithm, IB Model

and cosine similarity of Doc2vec document embedding obtained the highest and lowest

classification performance, respectively. In addition, we proposed a hybrid approach

that combines our KNN system with advanced neural network method, i.e. LSTM-

BPV(s). This approach could improve the overall classification results of LSTM-BPV(s)

and achieved performance comparable to the SotA (0.8457 in terms of weighted-F1 in

the Test Dataset, trained on the Training Dataset) in this product taxonomy classifica-

tion task. Apart from this, we conducted experiments with the pre-trained BERT-large

uncased model and also obtained good results after fine-tuning it for 40 epochs (0.8356

83

in terms of weighted-F1 in the Test Dataset, trained on WINNER-TRAIN).

6.2 Impact of My Thesis Work

In my thesis work, we found the following insights:

The first insight is that IR model can be used as similarity function in weighted KNN

algorithm to generate relatively good prediction results on this product categorization

task. We can probably improve the classification performance through using supervised

neural IR model like K-NRM [95] as similarity function in KNN. According to [6], K-

NRM [95] could reduce 33% ranking errors compared to VSM with TF-IDF weight.

Using supervised IR model would require constructing new training dataset based on SI-

GIR eCom Data Challenge Dataset. For example, the new dataset could be formulated

for a text sequence pair regression task, where a pair of product titles of the same category

id path is given value of 1 and that of different category id path is given value of 0. And

a more feasible way may be to fine-tune a pre-trained NLM like BERT for product sim-

ilarity modelling instead of training from scratch. However, in terms of computational

efficiency, we are still unsure if this would be better than just training or fine-tuning a

SotA neural network model for product classification, since the new dataset for prod-

uct similarity modelling would be much larger (e.g. 10×) than the original dataset. In

addition, according to [6], because of high computational cost, local-interaction models

like K-NRM [95] can only be used to re-rank a list of product titles (e.g. 100) retrieved

with other fast IR models like BM25, while distributed models can do both retrieval and

ranking. So, there is a trade-off between computational cost and ranking performance.

For fast online prediction and relatively good ranking performance, we think using local-

interaction model for re-ranking is not better than distributed model, as product titles are

usually short and semantic match will be difficult if titles are first retrieved by a conven-

tional IR model like BM25.

84

The second insight is that combining our word-level IR model based weighted KNN

system with SotA character-level neural network(s), namely LSTM-BPV(s), can effec-

tively boost the overall performance of LSTM-BPV(s) in terms of weighted-{P, R and

F1}, which demonstrates the effectiveness of our KNN system. According to [26], an-

other reason why the hybrid ensemble could be better than its constituent LSTM-BPV(s)

is that the 2 approaches are accurate (i.e. error rate better than random guessing) and

diverse (i.e. are different in a lot of aspects). Their main difference is: the KNN system

captures word-level morphological information of a product title through exact match

(“hard match”), while LSTM-BPV captures character-level global semantic information

of a product title, similar to semantic match (“soft match”).

The third insight is that fine-tuning a pre-trained BERT model is a straightforward

approach to obtaining good results in this product classification task. The drawback is,

however, the relatively large computational cost involved. This is partly because of the

large size of BERT-large uncased model and small batch size used for fine-tuning. This

is also because input of fixed sequence length is needed by the model and thus excessive

padding has to be used. For better accuracy and faster training, like in [13], we could

use adaptive input representations [4] and adaptive softmax [20]. Both the 2 methods

exploit the Zipfian distribution of words to reduce memory footprint and computational

cost, and thus enable faster training. (As a brief introduction, according to [80], Zipf’s

Law states that a term’s collection frequency TTF (wi) is proportional to its inverse rank

within the vocabulary (TTF (wi) ∝ 1
i
) (i.e. w1 has the highest number of occurrences

in the document collection (collection frequency)).) We could also use better pre-trained

BERT model for fine-tuning, such as the recently developed RoBERTa [55].

The fourth insight is that even BERT-large uncased model’s [15] general linguistic

understanding is not enough. Although the model is large in size with 340 million pa-

rameters and has been pre-trained on 2 large text corpuses, it took 40 epochs to fine-tune

85

the model to reach performance comparable to the SotA. This suggests that the model’s

knowledge acquired from general-domain pre-training is still not enough for fast adapta-

tion to the product taxonomy classification task. Hence, we need to improve the model’s

general language understanding. One possible direction is to pre-train or fine-tune the

model on larger text corpus and to increase model size, but this might be only feasible for

large IT companies (like in [74]) due to the relatively large computational cost involved.

Another direction is to modify the model architecture for better language modelling. For

example, in 2019, [13] proposed Transformer-XL to learn dependencies beyond a fixed-

length context. Through re-using hidden states from the previous fixed-length segments,

Transformer-XL [13] is able to capture longer-term dependencies than Transformer and

RNN.

The fifth insight is that fine-tuning a trained model is usually a more time-saving way

compared to training a model from scratch, although we still need to tune hyperparam-

eters. But usually such tuning can be done more quickly than that during training from

scratch. We could firstly set a small batch size (e.g. 32 or 64), a smaller learning rate

(e.g. 10× smaller than the learning rate used during model training) and a small number

of epochs (e.g. 5). However, sometimes it is still difficult to fine-tune a trained model

because of the possibility of catastrophic forgetting. We think that to prevent this from

happening, a proper validation set should be used during fine-tuning.

6.3 Future Work

For future work, we are going to incorporate word associations and word positional infor-

mation into our analysis. For example, we may use dependence models, such as CRTER

(CRoss TERm) [106] and Context-sensitive Proximity Model [105], as similarity func-

tion in our weighted KNN algorithm. We may also use recently developed supervised

neural IR models (e.g. [8]) as similarity measure in our weighted KNN algorithm. We

86

are also going to use other weighting schemes of KNN to improve our KNN system’s

classification performance.

Another possible future direction is to use ensemble strategy to improve classification

performance. The reason is that, modern L2R IR models, such as the one used in Google

Search, usually incorporate many features (e.g. PageRank score [68]) more than single

IR model (e.g. BM25) used in our experiments. This means using ensemble of several

diverse IR models as similarity function in our KNN algorithm can probably improve the

classification performance. Also, as we have already obtained good results through com-

bining our KNN system and LSTM-BPV(s), we may try using ensemble of our method

and other SotA methods.

Furthermore, it is interesting to fine-tune a pre-trained NLM like BERT [15] for prod-

uct similarity modelling task first and then fine-tune it for product classification. We are

also interested in developing a neural IR model based on a pre-trained NLM, e.g. by

fine-tuning the NLM for product classification first and then for learning to rank.

We also plan to evaluate our implemented systems and proposed methods on more

datasets, including some real document collections (e.g. [36, 53, 54, 108, 49]), and to

apply our implemented system in real-world applications (e.g. [103, 64, 100]).

87

Bibliography

[1] ABADI, M., BARHAM, P., CHEN, J., CHEN, Z., DAVIS, A., DEAN, J., DEVIN,

M., GHEMAWAT, S., IRVING, G., ISARD, M., ET AL. Tensorflow: A System

for Large-scale Machine Learning. In 12th {USENIX} Symposium on Operating

Systems Design and Implementation ({OSDI} 16) (2016), pp. 265–283.

[2] AMATI, G. Probability Models for Information Retrieval Based on Divergence

from Randomness. PhD thesis, University of Glasgow, 2003.

[3] AMATI, G., AND VAN RIJSBERGEN, C. J. Term Frequency Normalization via

Pareto Distributions. In European Conference on Information Retrieval (2002),

Springer, pp. 183–192.

[4] BAEVSKI, A., AND AULI, M. Adaptive Input Representations for Neural Lan-

guage Modeling. arXiv preprint arXiv:1809.10853 (2018).

[5] BOJANOWSKI, P., GRAVE, E., JOULIN, A., AND MIKOLOV, T. Enriching Word

Vectors with Subword Information. Transactions of the Association for Computa-

tional Linguistics 5 (2017), 135–146.

[6] BRENNER, E. P., ZHAO, J., KUTIYANAWALA, A., AND YAN, Z. End-to-End

Neural Ranking for eCommerce Product Search. Proceedings of SIGIR eCom 18

(2018).

[7] CHEN, J., AND WARREN, D. Cost-sensitive Learning for Large-scale Hierarchi-

cal Classification. In Proceedings of the 22nd ACM International Conference on

88

Conference on Information & Knowledge Management (2013), ACM, pp. 1351–

1360.

[8] CHEN, Q., HU, Q., HUANG, J. X., AND HE, L. CA-RNN: Using Context-

aligned Recurrent Neural Networks for Modeling Sentence Similarity. In Thirty-

Second AAAI Conference on Artificial Intelligence (2018).

[9] CHEN, Q., HU, Q., HUANG, J. X., AND HE, L. CAN: Enhancing Sentence

Similarity Modeling with Collaborative and Adversarial Network. In The 41st

International ACM SIGIR Conference on Research & Development in Information

Retrieval (2018), ACM, pp. 815–824.

[10] CLINCHANT, S., AND GAUSSIER, E. Information-based Models for Ad Hoc IR.

In Proceedings of the 33rd International ACM SIGIR Conference on Research and

Development in Information Retrieval (2010), ACM, pp. 234–241.

[11] CRAWFORD, S. L., FUNG, R. M., APPELBAUM, L. A., AND TONG, R. M.

Classification Trees for Information Retrieval. In Machine Learning Proceedings

1991. Elsevier, 1991, pp. 245–249.

[12] DAI, A. M., AND LE, Q. V. Semi-supervised Sequence Learning. In Advances

in Neural Information Processing Systems (2015), pp. 3079–3087.

[13] DAI, Z., YANG, Z., YANG, Y., COHEN, W. W., CARBONELL, J., LE, Q. V.,

AND SALAKHUTDINOV, R. Transformer-XL: Attentive Language Models Be-

yond a Fixed-Length Context. arXiv preprint arXiv:1901.02860 (2019).

[14] DEERWESTER, S., DUMAIS, S. T., FURNAS, G. W., LANDAUER, T. K., AND

HARSHMAN, R. Indexing by Latent Semantic Analysis. Journal of the American

Society for Information Science 41, 6 (1990), 391–407.

89

[15] DEVLIN, J., CHANG, M.-W., LEE, K., AND TOUTANOVA, K. BERT: Pre-

training of Deep Bidirectional Transformers for Language Understanding. arXiv

preprint arXiv:1810.04805 (2018).

[16] DIETTERICH, T. G. Ensemble Methods in Machine Learning. In International

Workshop on Multiple Classifier Systems (2000), Springer, pp. 1–15.

[17] ELISSEEFF, A., AND WESTON, J. A Kernel Method for Multi-labelled Classifica-

tion. In Advances in Neural Information Processing Systems (2002), pp. 681–687.

[18] FENG, W., ZHANG, Q., HU, G., AND HUANG, J. X. Mining Network Data for

Intrusion Detection through Combining SVMs with Ant Colony Networks. Future

Generation Comp. Syst. 37 (2014), 127–140.

[19] GOUMY, S., AND MEJRI, M.-A. Ecommerce Product Title Classification.

[20] GRAVE, E., JOULIN, A., CISSÉ, M., JÉGOU, H., ET AL. Efficient Softmax

Approximation for GPUs. In Proceedings of the 34th International Conference

on Machine Learning-Volume 70 (2017), JMLR. org, pp. 1302–1310.

[21] GRAVES, A., AND SCHMIDHUBER, J. Framewise Phoneme Classification with

Bidirectional LSTM and Other Neural Network Architectures. Neural Networks

18, 5-6 (2005), 602–610.

[22] GUPTA, V., KARNICK, H., BANSAL, A., AND JHALA, P. Product Classification

in E-commerce Using Distributional Semantics. arXiv preprint arXiv:1606.06083

(2016).

[23] HA, J.-W., PYO, H., AND KIM, J. Large-scale Item Categorization in E-

commerce Using Multiple Recurrent Neural Networks. In Proceedings of the

90

22nd ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining (2016), ACM, pp. 107–115.

[24] HAN, E.-H. S., KARYPIS, G., AND KUMAR, V. Text Categorization Using

Weight Adjusted K-nearest Neighbor Classification. In Pacific-asia Conference

on Knowledge Discovery and Data Mining (2001), Springer, pp. 53–65.

[25] HANCOCK-BEAULIEU, M., GATFORD, M., HUANG, X., ROBERTSON, S. E.,

WALKER, S., AND WILLIAMS, P. W. Okapi at TREC-5. In Proceedings of

The Fifth Text REtrieval Conference, TREC 1996, Gaithersburg, Maryland, USA,

November 20-22, 1996 (1996).

[26] HANSEN, L. K., AND SALAMON, P. Neural Network Ensembles. IEEE Trans-

actions on Pattern Analysis & Machine Intelligence, 10 (1990), 993–1001.

[27] HE, B., HUANG, J. X., AND ZHOU, X. Modeling Term Proximity for Proba-

bilistic Information Retrieval Models. Inf. Sci. 181, 14 (2011), 3017–3031.

[28] HECHENBICHLER, K., AND SCHLIEP, K. Weighted K-nearest-neighbor Tech-

niques and Ordinal Classification.

[29] HOCHREITER, S., AND SCHMIDHUBER, J. Long Short-term Memory. Neural

Computation 9, 8 (1997), 1735–1780.

[30] HOWARD, J., AND RUDER, S. Universal Language Model Fine-tuning for Text

Classification. arXiv preprint arXiv:1801.06146 (2018).

[31] HU, H., ZHU, R., WANG, Y., FENG, W., TAN, X., AND HUANG, J. X. A Best

Match KNN-based Approach for Large-scale Product Categorization.

[32] HUANG, P.-S., HE, X., GAO, J., DENG, L., ACERO, A., AND HECK, L.

Learning Deep Structured Semantic Models for Web Search Using Clickthrough

91

Data. In Proceedings of the 22nd ACM international conference on Information

& Knowledge Management (2013), ACM, pp. 2333–2338.

[33] HUANG, X., AND HU, Q. A Bayesian Learning Approach to Promoting Diversity

in Ranking for Biomedical Information Retrieval. In Proceedings of the 32nd In-

ternational ACM SIGIR Conference on Research and Development in Information

Retrieval (2009), ACM, pp. 307–314.

[34] HUANG, X., HUANG, Y. R., WEN, M., AN, A., LIU, Y., AND POON, J. Apply-

ing Data Mining to Pseudo-Relevance Feedback for High Performance Text Re-

trieval. In Proceedings of the 6th IEEE International Conference on Data Mining

(ICDM 2006), 18-22 December 2006, Hong Kong, China (2006), pp. 295–306.

[35] HUANG, X., PENG, F., SCHUURMANS, D., CERCONE, N., AND ROBERTSON,

S. E. Applying Machine Learning to Text Segmentation for Information Retrieval.

Information Retrieval 6, 3-4 (2003), 333–362.

[36] HUANG, X., ZHONG, M., AND SI, L. York University at TREC 2005: Genomics

Track. In Proceedings of the Fourteenth Text REtrieval Conference, TREC 2005,

Gaithersburg, Maryland, USA, November 15-18, 2005 (2005).

[37] JIA, Y., WANG, X., CAO, H., RU, B., AND YANG, T. An Empirical Study of

Using An Ensemble Model in E-commerce Taxonomy Classification Challenge.

In The 2018 SIGIR Workshop On eCommerce (Accepted), Ann Arbor, MI (2018).

[38] JOACHIMS, T. Text Categorization with Support Vector Machines: Learning with

Many Relevant Features. In European Conference on Machine Learning (1998),

Springer, pp. 137–142.

92

[39] JOHNSON, R., AND ZHANG, T. Supervised and Semi-supervised Text Catego-

rization Using LSTM for Region Embeddings. arXiv preprint arXiv:1602.02373

(2016).

[40] JORDAN, M. Attractor Dynamics and Parallelism in a Connectionist Sequential

Machine. In Proc. of the Eighth Annual Conference of the Cognitive Science

Society (Erlbaum, Hillsdale, NJ), 1986 (1986).

[41] JOULIN, A., GRAVE, E., BOJANOWSKI, P., AND MIKOLOV, T. Bag of Tricks

for Efficient Text Classification. arXiv preprint arXiv:1607.01759 (2016).

[42] KIM, Y. Convolutional Neural Networks for Sentence Classification. arXiv

preprint arXiv:1408.5882 (2014).

[43] KINGMA, D. P., AND BA, J. Adam: A Method for Stochastic Optimization.

arXiv preprint arXiv:1412.6980 (2014).

[44] KOZAREVA, Z. Everyone Likes Shopping! Multi-class Product Categorization

for E-commerce. In Proceedings of the 2015 Conference of the North Ameri-

can Chapter of the Association for Computational Linguistics: Human Language

Technologies (2015), pp. 1329–1333.

[45] LARKEY, L. S., AND CROFT, W. B. Combining Classifiers in Text Categoriza-

tion. In SIGIR (1996), vol. 96, Citeseer, pp. 289–297.

[46] LE, Q., AND MIKOLOV, T. Distributed Representations of Sentences and Docu-

ments. In International Conference on Machine Learning (2014), pp. 1188–1196.

[47] LECUN, Y., BOTTOU, L., BENGIO, Y., HAFFNER, P., ET AL. Gradient-based

Learning Applied to Document Recognition. Proceedings of the IEEE 86, 11

(1998), 2278–2324.

93

[48] LI, M. Y., TAN, L., KOK, S., AND SZYMANSKA, E. Unconstrained Product

Categorization with Sequence-to-Sequence Models.

[49] LIANG, Z., ZHANG, G., HUANG, J. X., AND HU, Q. V. Deep Learning for

Healthcare Decision Making with EMRs. In 2014 IEEE International Conference

on Bioinformatics and Biomedicine (BIBM) (2014), IEEE, pp. 556–559.

[50] LIN, Y.-C., DAS, P., AND DATTA, A. Overview of the SIGIR 2018 eCom

Rakuten Data Challenge.

[51] LIU, X., REN, F., AND YUAN, C. Use Relative Weight to Improve the KNN

for Unbalanced Text Category. In International Conference on Natural Language

Processing & Knowledge Engineering (2010).

[52] LIU, Y., AN, A., AND HUANG, X. Boosting Prediction Accuracy on Imbal-

anced Datasets with SVM Ensembles. In Pacific-Asia Conference on Knowledge

Discovery and Data Mining (2006), Springer, pp. 107–118.

[53] LIU, Y., HUANG, X., AN, A., AND YU, X. ARSA: A Sentiment-aware Model

for Predicting Sales Performance Using Blogs. In Proceedings of the 30th Annual

International ACM SIGIR Conference on Research and Development in Informa-

tion Retrieval (2007), ACM, pp. 607–614.

[54] LIU, Y., HUANG, X., AN, A., AND YU, X. Modeling and Predicting the Help-

fulness of Online Reviews. In 2008 Eighth IEEE International Conference on

Data Mining (2008), IEEE, pp. 443–452.

[55] LIU, Y., OTT, M., GOYAL, N., DU, J., JOSHI, M., CHEN, D., LEVY, O.,

LEWIS, M., ZETTLEMOYER, L., AND STOYANOV, V. RoBERTa: A Robustly

Optimized BERT Pretraining Approach. arXiv preprint arXiv:1907.11692 (2019).

94

[56] LIU, Y., YU, X., HUANG, J. X., AND AN, A. Combining Integrated Sampling

with SVM Ensembles for Learning from Imbalanced Datasets. Inf. Process. Man-

age. 47, 4 (2011), 617–631.

[57] LOSHCHILOV, I., AND HUTTER, F. SGDR: Stochastic Gradient Descent with

Warm Restarts. arXiv preprint arXiv:1608.03983 (2016).

[58] MARON, M. E. Automatic Indexing: an Experimental Inquiry. Journal of the

ACM (JACM) 8, 3 (1961), 404–417.

[59] MASAND, B., LINOFF, G., AND WALTZ, D. Classifying News Stories Using

Memory Based Reasoning. In Proceedings of the 15th Annual International ACM

SIGIR Conference on Research and Development in Information Retrieval (1992),

ACM, pp. 59–65.

[60] MASTERS, D., AND LUSCHI, C. Revisiting Small Batch Training for Deep Neu-

ral Networks. arXiv preprint arXiv:1804.07612 (2018).

[61] MCCANN, B., BRADBURY, J., XIONG, C., AND SOCHER, R. Learned in Trans-

lation: Contextualized Word Vectors. In Advances in Neural Information Process-

ing Systems (2017), pp. 6294–6305.

[62] MERITY, S., KESKAR, N. S., AND SOCHER, R. Regularizing and Optimizing

LSTM Language Models. arXiv preprint arXiv:1708.02182 (2017).

[63] MERITY, S., XIONG, C., BRADBURY, J., AND SOCHER, R. Pointer Sentinel

Mixture Models. arXiv preprint arXiv:1609.07843 (2016).

[64] MIAO, J., HUANG, J. X., AND YE, Z. Proximity-based Rocchio’s Model for

Pseudo Relevance Feedback. In Proceedings of the 35th International ACM SIGIR

95

Conference on Research and Development in Information Retrieval (2012), ACM,

pp. 535–544.

[65] MIKOLOV, T., SUTSKEVER, I., CHEN, K., CORRADO, G. S., AND DEAN, J.

Distributed Representations of Words and Phrases and Their Compositionality. In

Advances in Neural Information Processing Systems (2013), pp. 3111–3119.

[66] MITRA, B., DIAZ, F., AND CRASWELL, N. Learning to Match Using Local and

Distributed Representations of Text for Web Search. In Proceedings of the 26th

International Conference on World Wide Web (2017), International World Wide

Web Conferences Steering Committee, pp. 1291–1299.

[67] MORIN, F., AND BENGIO, Y. Hierarchical Probabilistic Neural Network Lan-

guage Model. In Aistats (2005), vol. 5, Citeseer, pp. 246–252.

[68] PAGE, L., BRIN, S., MOTWANI, R., AND WINOGRAD, T. The PageRank Cita-

tion Ranking: Bringing Order to the Web. Tech. rep., Stanford InfoLab, 1999.

[69] PASZKE, A., GROSS, S., CHINTALA, S., CHANAN, G., YANG, E., DEVITO,

Z., LIN, Z., DESMAISON, A., ANTIGA, L., AND LERER, A. Automatic Differ-

entiation in Pytorch.

[70] PENNINGTON, J., SOCHER, R., AND MANNING, C. Glove: Global Vectors

for Word Representation. In Proceedings of the 2014 Conference on Empirical

Methods in Natural Language Processing (EMNLP) (2014), pp. 1532–1543.

[71] PETERS, M. E., NEUMANN, M., IYYER, M., GARDNER, M., CLARK, C., LEE,

K., AND ZETTLEMOYER, L. Deep Contextualized Word Representations. arXiv

preprint arXiv:1802.05365 (2018).

96

[72] PONTE, J. M., AND CROFT, W. B. A Language Modeling Approach to Infor-

mation Retrieval. In Proceedings of the 21st Annual International ACM SIGIR

Conference on Research and Development in Information Retrieval (1998), ACM,

pp. 275–281.

[73] RADFORD, A., NARASIMHAN, K., SALIMANS, T., AND SUTSKEVER,

I. Improving Language Understanding by Generative Pre-training.

URL https://s3-us-west-2. amazonaws. com/openai-assets/research-

covers/languageunsupervised/language understanding paper. pdf (2018).

[74] RADFORD, A., WU, J., CHILD, R., LUAN, D., AMODEI, D., AND SUTSKEVER,

I. Language Models are Unsupervised Multitask Learners. Tech. rep., Technical

Report, OpenAi, 2018.

[75] ŘEHŮŘEK, R., AND SOJKA, P. Software Framework for Topic Modelling with

Large Corpora. In Proceedings of the LREC 2010 Workshop on New Challenges

for NLP Frameworks (Valletta, Malta, May 2010), ELRA, pp. 45–50. http:

//is.muni.cz/publication/884893/en.

[76] ROBERTSON, S. E., AND JONES, K. S. Relevance Weighting of Search Terms.

Journal of the American Society for Information Science 27, 3 (1976), 129–146.

[77] ROBERTSON, S. E., WALKER, S., BEAULIEU, M., GATFORD, M., AND PAYNE,

A. Okapi at TREC-4. In Proceedings of the Fourth Text Retrieval Conference

(1996), vol. 500, NIST Special Publication Gaithersburg, MD, pp. 73–97.

[78] ROBERTSON, S. E., WALKER, S., JONES, S., HANCOCK-BEAULIEU, M. M.,

GATFORD, M., ET AL. Okapi at TREC-3. NIST Special Publication Sp 109

(1995), 109.

97

http://is.muni.cz/publication/884893/en
http://is.muni.cz/publication/884893/en

[79] SALTON, G., WONG, A., AND YANG, C.-S. A Vector Space Model for Auto-

matic Indexing. Communications of the ACM 18, 11 (1975), 613–620.

[80] SCHÜTZE, H., MANNING, C. D., AND RAGHAVAN, P. Introduction to Informa-

tion Retrieval, vol. 39. Cambridge University Press, 2008.

[81] SEVERYN, A., AND MOSCHITTI, A. Learning to Rank Short Text Pairs with

Convolutional Deep Neural Networks. In Proceedings of the 38th International

ACM SIGIR Conference on Research and Development in Information Retrieval

(2015), ACM, pp. 373–382.

[82] SHEN, D., RUVINI, J.-D., AND SARWAR, B. Large-scale Item Categorization

for E-Commerce. In Proceedings of the 21st ACM International Conference on

Information and Knowledge Management (New York, NY, USA, 2012), CIKM

’12, ACM, pp. 595–604.

[83] SHEN, Y., HE, X., GAO, J., DENG, L., AND MESNIL, G. A Latent Semantic

Model with Convolutional-pooling Structure for Information Retrieval. In Pro-

ceedings of the 23rd ACM International Conference on Conference on Informa-

tion and Knowledge Management (2014), ACM, pp. 101–110.

[84] SKINNER, M. Product Categorization with LSTMs and Balanced Pooling Views.

In SIGIR 2018 Workshop on eCommerce (ECOM 18) (2018).

[85] SMITH, L. N., AND TOPIN, N. Super-convergence: Very Fast Training of Neural

Networks Using Large Learning Rates. arXiv preprint arXiv:1708.07120 (2017).

[86] STEVENS, K., EDEN, M., POLLACK, I., FICKS, L., ET AL. Nearest Neighbor

Pattern Classification.

98

[87] SUN, A. Short Text Classification Using Very Few Words. In Proceedings of

the 35th International ACM SIGIR Conference on Research and Development in

Information Retrieval (2012), ACM, pp. 1145–1146.

[88] SUTSKEVER, I., MARTENS, J., DAHL, G. E., AND HINTON, G. E. On the

Importance of Initialization and Momentum in Deep Learning. ICML (3) 28,

1139-1147 (2013), 5.

[89] SUZUKI, S. D., ISEKI, Y., SHIINO, H., ZHANG, H., IWAMOTO, A., AND TAKA-

HASHI, F. Convolutional Neural Network and Bidirectional LSTM Based Taxon-

omy Classification Using External Dataset at SIGIR eCom Data Challenge.

[90] TAN, S. Neighbor-weighted K-nearest Neighbor for Unbalanced Text Corpus.

Expert Systems with Applications 28, 4 (2005), 667–671.

[91] VASWANI, A., SHAZEER, N., PARMAR, N., USZKOREIT, J., JONES, L.,

GOMEZ, A. N., KAISER, Ł., AND POLOSUKHIN, I. Attention is All You Need.

In Advances in Neural Information Processing Systems (2017), pp. 5998–6008.

[92] WERMTER, S., AREVIAN, G., AND PANCHEV, C. Recurrent Neural Network

Learning for Text Routing.

[93] WU, Y., SCHUSTER, M., CHEN, Z., LE, Q. V., NOROUZI, M., MACHEREY,

W., KRIKUN, M., CAO, Y., GAO, Q., MACHEREY, K., ET AL. Google’s Neural

Machine Translation System: Bridging the Gap Between Human and Machine

Translation. arXiv preprint arXiv:1609.08144 (2016).

[94] XIA, R., ZONG, C., AND LI, S. Ensemble of Feature Sets and Classification Al-

gorithms for Sentiment Classification. Information Sciences 181, 6 (2011), 1138–

1152.

99

[95] XIONG, C., DAI, Z., CALLAN, J., LIU, Z., AND POWER, R. End-to-end Neural

Ad-hoc Ranking with Kernel Pooling. In Proceedings of the 40th International

ACM SIGIR Conference on Research and Development in Information Retrieval

(2017), ACM, pp. 55–64.

[96] YANG, Y. Expert Network: Effective and Efficient Learning from Human De-

cisions in Text Categorization and Retrieval. In Proceedings of the 17th Annual

International ACM SIGIR Conference on Research and Development in Informa-

tion Retrieval (1994), Springer-Verlag New York, Inc., pp. 13–22.

[97] YANG, Y., AND CHUTE, C. G. An Example-Based Mapping Method for Text

Categorization and Retrieval. ACM Transactions on Information Systems 12, 3

(1994), 252–277.

[98] YANG, Y., AND LIU, X. A Re-examination of Text Categorization Methods. In

International ACM SIGIR Conference on Research and Development in Informa-

tion Retrieval (1999).

[99] YANG, Z., DAI, Z., YANG, Y., CARBONELL, J., SALAKHUTDINOV, R., AND

LE, Q. V. XLNet: Generalized Autoregressive Pretraining for Language Under-

standing. arXiv preprint arXiv:1906.08237 (2019).

[100] YIN, X., HUANG, J. X., LI, Z., AND ZHOU, X. A Survival Modeling Approach

to Biomedical Search Result Diversification Using Wikipedia. IEEE Transactions

on Knowledge and Data Engineering 25, 6 (2012), 1201–1212.

[101] YOGATAMA, D., D’AUTUME, C. D. M., CONNOR, J., KOCISKY, T.,

CHRZANOWSKI, M., KONG, L., LAZARIDOU, A., LING, W., YU, L., DYER,

C., ET AL. Learning and Evaluating General Linguistic Intelligence. arXiv

preprint arXiv:1901.11373 (2019).

100

[102] YU, W., SUN, Z., LIU, H., LI, Z., AND ZHENG, Z. Multi-level Deep Learning

based E-commerce Product Categorization.

[103] YU, X., LIU, Y., HUANG, X., AND AN, A. Mining Online Reviews for Predict-

ing Sales Performance: A Case Study in the Movie Domain. IEEE Transactions

on Knowledge and Data Engineering 24, 4 (2010), 720–734.

[104] ZHAI, C., AND LAFFERTY, J. A Study of Smoothing Methods for Language

Models Applied to Ad Hoc Information Retrieval. In Proceedings of the 24th

Annual International ACM SIGIR Conference on Research and Development in

Information Retrieval (2001), ACM, pp. 334–342.

[105] ZHAO, J., AND HUANG, J. X. An Enhanced Context-sensitive Proximity Model

for Probabilistic Information Retrieval. In Proceedings of the 37th International

ACM SIGIR Conference on Research & Development in Information Retrieval

(2014), ACM, pp. 1131–1134.

[106] ZHAO, J., HUANG, J. X., AND HE, B. CRTER: Using Cross Terms to Enhance

Probabilistic Information Retrieval. In Proceeding of the 34th International ACM

SIGIR Conference on Research and Development in Information Retrieval, SIGIR

2011, Beijing, China, July 25-29, 2011 (2011), pp. 155–164.

[107] ZHAO, J., HUANG, J. X., AND ZHENG, Y. Modeling Term Associations for

Probabilistic Information Retrieval. ACM Transactions on Information Systems

32, 2 (2014), 1–47.

[108] ZHU, J., HUANG, X., SONG, D., AND RÜGER, S. Integrating Multiple Docu-

ment Features in Language Models for Expert Finding. Knowledge and Informa-

tion Systems 23, 1 (2010), 29–54.

101

Appendix A

A Part of the Training Dataset

Replacement Viewsonic VG710 LCD Monitor 48Watt AC Adapter

12V 4A 3292>114>1231

HP COMPAQ Pavilion DV6-1410EZ 4400mAh 48Wh 6 Cell Li-ion

10.8V Black Compatible Battery 3292>1370>4767>3975>1420

Bonjour 2296>3597>2989

Two Pack 6V 12Ah Eaton POWERRITE PRO II 2400 6V 12Ah UPS

Replacement Battery - SPS BRAND 3292>114>1231

Generations Small Side Table White

4015>3636>1319>1409>3606

Mont Blanc Mb Starwalker Men Eau De Toilette Edt 2.5Oz /

70Ml 3625>4399>1598>3903

4-Pack Replacement Engine Air Filter for 2009 Sterling

Truck Bullet 55 L6 6.7 Car/Automotive 4015>2337>1458>40

GREEN TRI-SHIELD SOFT SKIN HARD CASE COVER KICKSTAND FOR

SAMSUNG GALAXY NOTE 5 3292>3581>3145>2201

50 Pcs White Universal Car Door Plastic Push in Fastener

Rivets 8.5mm Hole Dia 2199>915>4085>3205

Luscious Pink Perfume 3.4 oz Eau De Parfum Spray For Women

By MARIAH CAREY 3625>3005

21 Kenmore 11625614501 Vacuum Bags & 4 HEPA Filter - 5055

102

Bags & 86889, EF-1 Filter 4015>2337>2943>4735>3582>1998

SURFACE SHIELDS DA106150 Door Protection, 6 In. x 150 Ft.,

Clear 4238>1625>3571>1318

"1’10"" x 2’10"" Cork Wool Rug - Athena Hand Tufted Rug

with Black Border" 4015>3636>526>3639

Bedroom Polyester Knitted Handmade Decoration Braid

Handicraft Chinese Knot 4015>2824>2205>3477

Sunnydaze Rocking Wave Lounger w/ Pillow, Green

4015>3636>1319>2055

90210 Men’s West Beverly Hills High T-shirt Large Pink

1608>4269>1667>4910

Circuit Breaker Standard BR-330 2199>4592>12

6-Pack 10 MFD 370 Volt Oval Run Capacitor Replacement for

Carrier 579EEW060100B 4015>2337>1458>40

Hot Wheels Masters Of The Universe 1:64 Scale Diecast Car:

’57 Buick 1395>2736>1061>3871

Ka-Bar Desert MULE Serrated Folding Knife

4238>321>753>3121

Gucci Womens Eyeglasses 3517 WW2/14 Plastic Rectangle

Black Crystal Frames 1608>2227>574>2226

5.11 TACTICAL 74280 Taclite TDU Pants, R/M, Dark Navy

4015>3285>1443>20

Westin 72-41111 Wade; Truck Bed Side Rail Protector

2199>4592>12

"Gelco Multi-Flue 3/4"" Mesh Cap with 4"" Overhang - 16""

x 37"" x 8""" 4015>3636>502>191

103

M4x8mm 304 Stainless Steel Button Head Hex Socket Tamper

Proof Screws 30pcs 4015>3754>3580>4753>4146

Bilstein 24-181488 Shock Absorber 46mm Monotube Shock

Absorber; 4600 Series; 2199>4592>12

Margaritaville Salt Rimmer and Lime Set

4015>3271>2768>4244

"South Seas 1.5"" Cabinet Knob - Finish: Vibra Pewter"

4015>3754>3663>512>3161

Discount Starter and Alternator 6651N Jaguar S-Type

Replacement Starter 2199>661>333>3609

3M 16016 PPS Adapter 9 2199>4592>12

4-Pack 45/5 MFD 370 Volt Dual Round Run Capacitor

Replacement for Carrier 583BNW036090AB

4015>2337>1458>40

BODY GLOVE Tweedle Series Red Nylon Vest L/XL 16289-RED-LX

2199>4592>12

Lauren Keiser Music Publishing 3 Tangos for Flute, Harp

and Strings LKM Music Series Composed by Lalo Schifrin

4015>2824>2964>1002>200

CHAT 60 U 3292>3581>1878>4304

SimStars Reflections Snake Bead 4015>2824>2205>1315

Lionel Richie - Renaissance 2296>3597>689

2Gb (1X2Gb) Memory Ram Compatible With Dell Vostro 320 (

All-In-One) By CMS (A91) 3292>1370>3233>332

DecalGirl LS-BLDRNG DecalGirl Laptop Skin - Blood Ring 92

0.8mmx8mmx60mm 304 Stainless Steel Tension Springs Silver

104

Tone 5pcs 2199>661>646>311

DecalGirl LGSN-BASEBALL LG Shine Skin - Baseball 92

Woodstock Mayonaise 32 Oz -Pack of 12 1208>546>4262>2775

Sedona - Gray 2’x8’ 4015>3636>526>3639

IT’S NOT THE EAT IT’S THE HUMIDITY [Vinyl Record]

2296>3597>208

Full Body Harness, Miller By Honeywell, AC-TB2/3XLBL

4015>3285>4803

Autograph Warehouse 97078 Ron Bass Football Card South

Carolina 1991 Collegiate Collection No. 117

4015>2824>3210>4573

Shabby Chic by Patty Tuggle Canvas Wall Art 14 x 19

4015>3636>526>2454>589

Epson EB-C2040XN Projector Lamp (Original Philips/Osram

Bulb Inside) with Housing 3292>290>497

Women’s Black Cat Mini Dress Costume S 1608>1150>1244>615

Smiling Einstein Icon Kids’ Premium T-Shirt by Spreadshirt

TM 1608>4269>4411>4306

New Laptop Battery Acer Aspire one 532H-2727 532H-2730 532

H-2742 532H-2789 532H-2806 2600mah 3 Cell

3292>1370>4767>3975>1420

Penthouse Women’s Audrey Peep Toe Pump,Leopard,7 M US

2199>4592>12

Kaboom! Family Day: The Berenstain Be 2296>3706>3834

5x Replacement Critikon 7300 Battery - 12V, 7Ah, Sealed

Lead Acid, SLA 3292>114>2641>3360

105

Youth Screw Lab Safety I Want Superpowers Nerdy Science T

shirt for Kids 1608>4269>4411>4306

Invasion Of The Boobie Sn 2296>3706>3231

East West Furniture MLT-MAH-T Milan Rectangular Dining

Table 4015>3636>1319>1409>3606

Unique Bargains Unique Bargains Golden Tone Metal

Soldering Iron Holder w Black Rectangle Base

4015>3754>3663>512>4921

Mightyskins Protective Vinyl Skin Decal Cover for Nintendo

2DS wrap sticker skins Spaced Out 3292>3581>3145>2201

YG-1 TOOL COMPANY 93103 Solid Carb End Mill, Sq, 1/8inDiax

2-1/4Lin 4015>3754>3663>512>319

"Krator 5"" Chrome LED Headlight w/ Light Mounting Bracket

for Harley Davidson Softail Cross Bones Deuce Rocker

..." 2199>4592>12

Jaw Puller, Locking, Westward, 23MD27

4015>3754>3663>1500>1717

"Reaudio Re Audio 10"" Rex Series Woofer 200W Rms Svc 4

Ohm 12.000000In. X 7.000000In. X 12.000000In."

3625>4399>1598>3903

Heavy Duty 3 Layers Silver Tarp 10ft x 16ft

4015>3754>3663>512>4157>2157

Standard DS838 Door Jamb Switch Standard Motor Products

Door Jamb Switch [Misc.] 2199>4592>12

Savage Seamless Background Paper 107 x 12 yd Gulf Blue

3292>1041>3198>1109

106

Appendix B

The Instructions of the KNN Classification System Based

on Lucene

To run experiments with our KNN system based on Lucene, you could do the following

steps:

Step 1: download the zip file of the whole repository of the project “LuceneTaxono-

myClassification” from this link9. Unzip the zip file.

Step 2: install JAVA 8 (if not installed) and an Integrated Development Environment

(IDE) that can work with Maven, such as NetBeans IDE 8.2 (if not installed).

Step 3: open IDE and open the project.

Step 4: change the parameters of the source file “./src/main/java/com/mycompany/

lucenedocumentvectorconverting/luceneindexing.java”. Detailed instructions of param-

eter setting (e.g. number of threads) has been included in the source file.

Step 5: run the project. After running the program, concatenate the prediction files

in the specified folder into a single tsv file for evaluation (you can use bash commands

(e.g. “cat”) to do this).

Step 6: move the tsv file into the folder “./dataChallengeEvaluationScript” for eval-

uation. The evaluation script is “./dataChallengeEvaluationScript/eval.py” (borrowed

from this repository10) and its instructions are also included in the repository.

9https://drive.google.com/drive/folders/1cxJHT1k2NPKWizHgCWEP2tmbEx
oRjwc1?usp=sharing

10https://github.com/sigir-ecom/dataChallenge

107

https://drive.google.com/drive/folders/1cxJHT1k2NPKWizHgCWEP2tmbExoRjwc1?usp=sharing
https://drive.google.com/drive/folders/1cxJHT1k2NPKWizHgCWEP2tmbExoRjwc1?usp=sharing
https://github.com/sigir-ecom/dataChallenge

Appendix C

The Instructions of the KNN Classification System Based

on Gensim Doc2vec API

To run experiments with our KNN system based on Gensim Doc2vec, you could do the

following steps:

Step 1: download the zip file of the whole repository of the project (“

Doc2vec product classification”) from this link11. Unzip the zip file.

Step 2: install Python 3 (if not installed) and Gensim (if not installed).

Step 3: change the parameters of the source file “./rdc taxonomy classification

remote Doc2vec combined multithread python3-morepreprocessing min 1.py”. The

instructions of parameter setting (e.g. number of threads) has been included in the source

file.

For reference, hyperparameters for training document embedding with Gensim’s [75]

Doc2vec API are listed as follows:

1. dm: when set to 1: use PV-DM to train the Doc2vec model; when set to 0: use

PV-DBOW to train the Doc2vec model;

2. vector size: dimension of document embedding trained: Dj ∈ Rvector size;

3. dbow words: when set to 1:train word embeddings with Skipgram simultaneously

with PV-DBOW training; when set to 0: only train PV-DBOW;

11https://drive.google.com/drive/folders/18RzqPwd6PS0tad6UI4EI-60zsR
SrkhT?usp=sharing

108

https://drive.google.com/drive/folders/18RzqPwd6PS0tad6UI4EI-60zsR_SrkhT?usp=sharing
https://drive.google.com/drive/folders/18RzqPwd6PS0tad6UI4EI-60zsR_SrkhT?usp=sharing

4. dm concat: when set to 1: use concatenation of context vectors instead of sum or

average; when set to 0: use sum/average of context vectors;

5. dm tag count: number of document tags per document in dm concat mode;

6. window: the size of context window, i.e. c;

7. min count: a word wi whose total term frequency TTF (wi, C) =∑N
k=1 TF (wi, Dk) < min count is removed from the corpus;

8. epochs: the number of iterations over the whole corpus C;

9. hs: when set to 1: use hierarchical softmax to train the Doc2vec model; when set

to 0: use negative sampling to train the Doc2vec model;

Step 4: open a bash shell and run the project by typing “python3 ./rdc taxonomy

classification remote Doc2vec combined multithread python3-morepreprocessing

min 1.py”. After running the program, concatenate the prediction files in the specified

folder into a single tsv file for evaluation (you can use bash commands (e.g. “cat”) to do

this).

Step 5: use the same evaluation script as in Appendix B for evaluation.

109

Appendix D

The Instructions of the Hybrid System Based on

LSTM-BPVs and Weighted KNN

To run experiments with the ensembles of our KNN system and LSTM-BPV(s), you

could do the following steps:

Step 1: download the whole repository of the project (“ecom-rakuten”) from this

Github repository12. Unzip the zip file. Also, download “kerosene” repository from this

link13, and move subfolder “./kerosene” into “ecom-rakuten” folder.

Step 2: install Python 3 (if not installed). After that, change directory into “ecom-

rakuten” folder and install the dependencies listed in “./requirements.txt” via commands

like “pip install -r ./requirements.txt” (if not installed).

Step 3: open a bash shell and use bash commands to run the program. The instruc-

tions has been included in the Github repository. Also, when you want to evaluate the

trained models on validation/test sets , λ can be set using a flag, e.g. “–i=0.6”.

As for evaluation, the evaluation script has already been included in the program so

that the performance can be seen after program execution.

12https://github.com/haohao-hu/ecom-rakuten

13https://github.com/mcskinner/kerosene/tree/66bc8b12178c7826cc5f5a0
9a3e7886df0b2d8a2

110

https://github.com/haohao-hu/ecom-rakuten
https://github.com/mcskinner/kerosene/tree/66bc8b12178c7826cc5f5a09a3e7886df0b2d8a2
https://github.com/mcskinner/kerosene/tree/66bc8b12178c7826cc5f5a09a3e7886df0b2d8a2

Appendix E

The Instructions of the Classification System Based on

BERT Model

To run experiments with the BERT classifier, you could do the following steps:

Step 1: download the whole repository of the project (“bert”) from this Github repos-

itory14. Unzip the zip file. You can follow the instructions shown in “README.md” in

the folder to download the BERT-large-uncased model. Change directory into “bert”

folder.

Step 2: install Python 2 (if not installed) and TensorFlow 1.12 [1] (if not installed).

Step 3: if you have not downloaded SIGIR eCom Data Challenge Dataset yet, you

can download them via this link15. Then, put “rdc-catalog-gold.tsv” in the folder “./rdc

dataset”.

Step 4: set the training parameters in “./run rdc clf.sh”. The instructions has been

included in “README.md” in the Github repository. The instructions for setting hyper-

parameters of “run classifier.py” are in the file itself.

Step 5: open a bash shell and use bash commands “bash ./run rdc clf.sh” to run the

program.

As for evaluation, the evaluation script has already been included in the program so

that the performance can be seen after program execution.

14https://github.com/haohao-hu/bert/tree/master

15https://docs.google.com/forms/d/e/1FAIpQLSfwcBlO Z aEXSbohScyj1YRRds
PULagEn28YYtca2ZkY5Ocw/viewform

111

https://github.com/haohao-hu/bert/tree/master
https://docs.google.com/forms/d/e/1FAIpQLSfwcBlO_Z_aEXSbohScyj1YRRdsPULagEn28YYtca2ZkY5Ocw/viewform
https://docs.google.com/forms/d/e/1FAIpQLSfwcBlO_Z_aEXSbohScyj1YRRdsPULagEn28YYtca2ZkY5Ocw/viewform

Appendix F

Proof regarding the hybrid approach

We would like to find a solution for this inequality:

Pensemble(t ∈ dcm) > max
i∈{1,...,3008}

PLSTM -BPV s(t ∈ dci)

m

(1− λ)PLSTM -BPV s(t ∈ dcm) + λ(max
i∈{1,...,3008}

PLSTM -BPV s(t ∈ dci) + 0.1) >

max
i∈{1,...,3008}

PLSTM -BPV s(t ∈ dci)

m

0.1
λ

1− λ
> max

i∈{1,...,3008}
PLSTM -BPV s(t ∈ dci)− PLSTM -BPV s(t ∈ dcm)

, (F.1)

Since probability is always within the range [0, 1]:

max
i∈{1,...,3008}

PLSTM -BPV s(t ∈ dci)− PLSTM -BPV s(t ∈ dcm) ≤ 1, (F.2)

Here, since t is a variable, to make it guaranteed that the inequality holds, we try

solving this instead:

0.1
λ

1− λ
> 1

m

λ >
10

11
≈ 0.9091

, (F.3)

112

	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Abbreviations
	Introduction
	Background
	Motivation and Research Problems
	Main Contributions
	Outline

	Preliminaries
	Text Classification
	Neural Network Approaches for Text Classification
	Document Representation
	Traditional Bag-of-words Representation
	Sparse One-hot Character/Word Vectors
	Dense/Distributed Character/Word/Paragraph/Document Vector
	Contextualized Embeddings

	Large-scale E-commerce Product Taxonomy Categorization
	KNN Classification
	IR
	Hand-crafted IR Model
	Traditional Learning-to-rank (L2R) IR Model
	Neural IR Model

	IR Models Used in This Study
	BM25
	LM
	VSM with TF-IDF Weight
	IB Model
	Cosine Similarity of Doc2vec Embeddings

	KNN Text Classification Using IR Model
	Neural IR Models for Modelling E-commerce Product Similarity
	Fine-tuning Pre-trained Model for Text Classification
	Fine-tuning Pre-trained BERT Model for Large-scale Product Taxonomy Classification
	Overview of 2018 SIGIR eCom Data Challenge
	Winner's Solution
	Other Top Participants' Solutions
	Conclusion from Top Participants' Solutions

	Methodology
	A Weighted KNN Classifier for Product Categorization
	The Classifier in Action
	Advantages of IR Model Based Weighted KNN for Large-scale E-commerce Product Classification
	A Hybrid Approach Based on Weighted KNN and LSTM-BPV to Product Classification
	Advantages of the Hybrid System for Product Classification

	Experiments
	Dataset
	Experimental Set-ups
	Evaluation Metrics
	Baselines
	Tuning k in KNN
	Tuning BM25 Model
	Using Different IR Models as Similarity Function in Weighted-KNN

	Analyses and Discussions
	Comparing KNN with Different IR Models
	Impact of Removing Stopwords
	Impact of Replacing Digits with ``0"
	Impact of Removing Infrequent Words
	Impact of Using Standard Filter for Normalization
	Comparing KNN with Different Weighting Schemes
	Combining Prediction Results of KNN with LSTM-BPV Networks
	Fine-tuning Trained LSTM-BPV Network on WINNER-VAL
	Fine-tuning Pre-trained BERT Model
	Fine-tuning BERT with Larger Batch Size
	Comparing the Performance of Pre-trained BERT and OpenAI GPT

	Conclusions and Future Work
	Conclusions
	Impact of My Thesis Work
	Future Work

	Bibliography
	Appendix A: A Part of the Training Dataset
	Appendix B: The Instructions of the KNN Classification System Based on Lucene
	Appendix C: The Instructions of the KNN Classification System Based on Gensim Doc2vec API
	Appendix D: The Instructions of the Hybrid System Based on LSTM-BPVs and Weighted KNN
	Appendix E: The Instructions of the Classification System Based on BERT Model
	Appendix F: Proof regarding the hybrid approach

