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Numerous authors suggest that the data gathered by investigators are not normal in
shape. Accordingly, methods for assessing pairwise multiple comparisons of means with
traditional statistics will frequently result in biased rates of Type I error and depressed
power to detect effects. One solution is to obtain a critical value to assess statistical sig-
nificance through bootstrap methods. The SAS system can be used to conduct step-down
bootstrapped tests. The authors investigated this approach when data were neither nor-
mal in form nor equal in variability in balanced and unbalanced designs. They found that
the step-down bootstrap method resulted in substantially inflated rates of error when
variances and group sizes were negatively paired. Based on their results, and those
reported elsewhere, the authors recommend that researchers should use trimmed means
and Winsorized variances with a heteroscedastic test statistic. When group sizes are
equal, the bootstrap procedure effectively controlled Type I error rates.

An underlying assumption of most pairwise multiple comparison proce-
dures (MCPs) (e.g., the methods due to Scheffé, 1959; Tukey, 1953; and other
procedures available through the major statistical packages) is that the popu-
lations from which the data are sampled are normal in form. Although it may
be convenient (both practically and statistically) for researchers to assume
that their samples are obtained from normally distributed populations, this
assumption may rarely be accurate (Micceri, 1989; Pearson, 1931; Wilcox,
1990). Tukey (1960) suggested that outliers should be a common occurrence
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in distributions, and others (e.g., Miller, 1988; Zumbo & Coulombe, 1997)
have indicated that skewed distributions frequently depict psychological (re-
action time) data. Researchers falsely assuming normally distributed data
risk obtaining unsatisfactory Type I and/or Type II error rates for many pat-
terns of nonnormality, especially when other assumptions are also not satis-
fied (e.g., variance homogeneity) (see Wilcox, 1997).

One potential solution to the problem of nonnormal data is to use boot-
strap sampling methods to obtain an empirically determined critical value to
assess statistical significance rather than using critical values that are based
on the presumption of normally distributed data (e.g., values from the central
t distribution). Diaconis and Efron (1983) provided an accessible introduc-
tion to bootstrap concepts. Lunneborg (2000) provided a more comprehen-
sive and technical treatment. Bootstrap sampling allows the data analyst to
obtain a critical value that is empirically determined to ascertain statistical
significance. For example, the SAS system allows users to obtain both simul-
taneous and stepwise pairwise MCPs that do not presume normally distrib-
uted data. In particular, users can use either bootstrap or permutation methods
to compute all possible pairwise comparisons.

If users consider adopting this approach to combat the effects of non-
normality, they must consider the cautionary note provided by Westfall,
Tobias, Rom, Wolfinger, and Hochberg (1999, p. 234), namely, the procedure
may not control the familywise error (FWE) rate when the data are heteroge-
neous, particularly when group sizes are unequal. Unfortunately, to date we
do not know what the magnitude of that effect might be, if indeed there is one.
Thus, researchers should also consider another approach, that is, pairwise
comparisons based on robust estimators and a heteroscedastic statistic, an
approach that has been demonstrated to generally control the FWE when data
are nonnormal and heterogeneous even when group sizes are unequal.

Specifically, a different type of testing procedure, based on trimmed
means, has been discussed by Yuen and Dixon (1973) and Wilcox (1995a,
1995b, 1997) and is robust to violations of normality. That is, it is well known
that the usual group means and variances, which are the basis for all of the
previously described procedures, are greatly influenced by the presence of
extreme observations in distributions. In particular, the standard error of the
usual mean can become seriously inflated when the underlying distribution
has heavy tails, and the population mean can lie in the tails of a skewed distri-
bution, which “can give a distorted view of how the typical individual in one
group compares to the typical individual in another, and about accurate prob-
ability coverage, controlling the probability of a Type I error, and achieving
relatively high power” (Wilcox, 1995a, p. 66). Theoretical results indicate
that substituting robust measures of location and scale for the usual mean and
variance, one obtains a test statistic that is relatively insensitive to the com-
bined effects of variance heterogeneity and nonnormality.
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Although a wide range of robust estimators have been proposed in the lit-
erature (see Gross, 1976), the trimmed mean and Winsorized variance are
intuitively appealing because of their computational simplicity and good the-
oretical properties (Wilcox, 1995a, 1995b). The standard error of the
trimmed mean is less affected by departures from normality than the usual
mean because extreme observations, that is, observations in the tails of a dis-
tribution, are removed. Furthermore, as Gross (1976) noted, “the Winsorized
variance is a consistent estimator of the variance of the corresponding
trimmed mean” (p. 410). In computing the Winsorized variance, the most
extreme observations are replaced with less extreme values in the distribution
of scores.

Based on the preceding, the purpose of our investigation was to examine
the FWE rate of the bootstrap method provided by SAS (1999) (see Westfall
et al., 1999, pp. 228-235) under conditions of nonnormality and variance het-
erogeneity in balanced and unbalanced designs. These findings were then
compared to the results reported by Keselman, Lix, and Kowalchuk (1998)
who examined MCPs based on robust estimators.

Design

A mathematical model that can be adopted when examining pairwise
mean differences in a one-way completely randomized design is

Yij = µj + ∈ij,

where Yij is the score of the ith participant (i = 1, . . . , n) in the jth group (Σj n =
N), µj is the jth group mean, and ∈ij is the random error for the ith participant
in the jth group. In the typical application of the model, it is assumed that the
∈ijs are normally and independently distributed and that the treatment group
variances (σ j

2 s) are equal. Relevant sample estimates include

�µ j = Yj =
i

n

ijY
=
∑

1

�n and �σ2 = MSE =
j
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∑

1 i

n

=
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(Yij –Yj)
2�J(n – 1).

A confidence interval for a pairwise difference µj – µj has the form

Yj –Y j ± cα �σ 2 n,

where cα is selected such that FWE = α. In the case of all possible pairwise

comparisons, one needs a cα for the set such that they simultaneously contain
the true differences with a specified level of significance. That is, for all j ≠ j′,
cα must satisfy
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P(Yj – Y j – cα �σ 2 n ≤ µj – µj ≤Yj –Y j + cα �σ 2 n) = 1 – α.

The interval is equivalent to
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where max stands for maximum. Evident from this last expression is that cα
is related to the studentized range distribution (see Scheffé, 1959, p. 28). Spe-
cifically, if Z1, Z2, . . . , Zn are standard normal independent random variates
and V is a random variable, independent of the Zs, and is chi-square distrib-
uted with df degrees of freedom, then

q
Z Z

V df
J df j j

j j
( , ) ,max=

−
′

′

has a Studentized range distribution with parameters J and df. Another rela-
tion that should be noted is that it can be shown that cα satisfies

P(qJ, J(n – 1))� 2 ≤ cα ) = 1 – α.

The hypothesis Hc: µj – µj = 0 can be tested with the statistic

tc = (Yj –Y j ) � (2 MSE�n)1/2.

The preceding can also be specified from a general linear model perspec-
tive (see Westfall et al., 1999, chap. 5). That is, the data can be conceived as
coming from the model

Y = X + �,

where Y is anN × 1 observational vector, X is theN × p design matrix,� is the
p × 1 vector of unknown parameters, and � is the N × 1 vector of random
errors.

The usual assumptions to the model relate to the characteristics of the ran-
dom errors. Specifically, it is assumed that the �1, �2, . . . , �N all (a) have a
mean of zero; (b) have common variance, σ2; (c) are independent random
variables; and (d) are normally distributed. Important estimates of the model
are obtained in the following manner:

�� = (X′X) – X′Y.
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�σ2 = (Y – X��)′(Y – X��)�df,

where (•)– denotes a generalized inverse, and df= (N – rank X) (see Westfall et
al., 1999, p. 87).

One can specify estimable (see Scheffé, 1959, p. 13) functions of the
parameters, c′�, where for this article, the functions would be the pairwise
comparisons, such as, say, c′� = µ1 – µ2, where c′ = (0 1 – 1 0 . . . 0), which
would be estimated by c′�.

To form simultaneous intervals or obtain simultaneous tests of the estima-
ble functions (pairwise comparisons), one needs to know the dependence
structures of the estimable functions. As Westfall et al. (1999) pointed out, si-
multaneous inferences rely on the joint distribution of the quantities

Ti
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i i
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σ

where �σ ′ ′ −c X X ci i( ) is the standard error (SE) of c′�. The joint distribution

of the Ti is a multivariate t distribution, with df = (N – rankX) and dispersion
matrix R = D–1 2C′(X′X) – CD–1 2, where C = (c1, . . . , ck), and D is a diagonal

matrix where the ith element equals ′ci (X′X) – ci.

Confidence intervals of the estimable functions have the form

′ci
�� ± cα SE ( ′ci

�β),

where cα is chosen such that the FWE = α. Bonferroni-type methods can be

used to set the simultaneous intervals such that the confidence coefficient
will not exceed 1 – α. However, because the Bonferroni procedure is overly
conservative, we know that these intervals will simultaneously contain the
true values more than 100(1 – α) percent of the time. This approach, however,
can be improved by taking the correlational structure among the estimable
functions into account, that is, by setting a simultaneous critical value via the
multivariate t distribution. That is,
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As Westfall et al. (1999) noted, “The value of cα is the 1 – α quantile of the

distribution of maxi |Ti|, where the vectorT′ = (T1, . . . , Tk) has the multivariate
t distribution” (p. 89).
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FWE control is currently favored by social science researchers. In its typi-
cal application, researchers compare a test statistic to a FWE critical value.
Another approach for assessing statistical significance is with adjusted p val-
ues, ~pc , c = 1, . . . , C (Westfall et al., 1999; Westfall & Wolfinger, 1997;
Westfall & Young, 1993). As Westfall and Young (1993) noted, “~pc is the
smallest significance level for which one still rejects a given hypothesis in a
family, given a particular (familywise) controlling procedure” (p. 11). Thus,
authors do not need to look up (or determine) FWE critical values, and more-
over consumers of these findings can apply their own assessment of statisti-
cal significance from the adjusted p value rather than from the standard (i.e.,
FWE) significance level of the experimenter. The latter point is consistent
with the current practice of reporting a p value for a single test statistic rather
than stating that the “result was significant” at the, say, .05 value; that is, cur-
rent practice allows the consumer to take a p value and apply his or her own
personal standard of significance in judging the importance of the finding.
For example, if ~pc = .09, the researcher/reader can conclude that the test is
statistically significant at the FWE = .10 level but not at the FWE = .05 level.

To illustrate the calculation of an adjusted p value, consider the usual
Bonferroni procedure. In its usual application, H0c is rejected if the p value is
less than or equal to α/C, whereC denotes the total number of statistical tests
(c = 1, . . . ,C). Note that this is equivalent to rejecting anyH0c for whichC · pc
is less than or equal to α. Therefore, Bonferroni adjusted p values are

~ .p
C p C p

C pc
c c

c
= ⋅ ⋅ ≤

⋅ >




if
if

1
1 1

Adjusted p values are provided by the SAS (1999) system for many popular
MCPs (see Westfall et al., 1999).

MCPs

Bootstrap and Permutation Tests

The SAS (1999) system allows users to obtain both simultaneous and
stepwise pairwise comparisons of means with methods that do not presume
normally distributed data. In particular, users can use either bootstrap or per-
mutation methods to compute all possible pairwise comparisons. The avail-
ability of the SAS programs (e.g., PROC MULTTEST; see Westfall et al.,
1999) is a particularly attractive inducement for researchers to employ boot-
strap sampling to overcome the deleterious effects of nonnormality because it
alleviates the need to write bootstrap programs.

Bootstrap sampling allows users to create their own empirical distribution
of the data, and hence adjusted p values are based on the empirically obtained
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distribution, not a theoretically presumed distribution. For example, the
empirical distribution, say �F, is obtained by sampling, with replacement, the
pooled sample residuals �∈ij = Yij – �µj = Yij – Yj . That is, rather than assume
that residuals are normally distributed, one uses empirically generated resid-
uals to estimate the true shape of the distribution. From the pooled sample
residuals, one generates bootstrap data.

Adjusted p values are calculated as ~pc = P(maxc |Tc| ≥ |tc|). That is, ad-
justed p values are based on the multivariate t distribution. As Westfall et al.
(1999, p. 229) noted, in many cases, this is equivalent to ~pc =P(minc Pc ≤ pc).
Their PROC MULTTEST computes adjusted p values in this fashion (i.e., ~pc

= P(minc Pc ≤ pc| �F). With this in mind, bootstrapping of adjusted p values
with their MULTTEST program is performed in the following manner:

• Bootstrap data, Yij
*, is generated by sampling with replacement from the

pooled sample of residuals.
• Based on the bootstrapped data, p1

*, p2
* , . . . , pC

* values are obtained from
the pairwise tests.

• The above process is repeated many times (PROC MULTTEST allows the
user to set the number of replications).

• For stepwise testing, PROC MULTTEST uses minima over appropriate re-
stricted subsets to obtain the adjusted p values (further details about step-
down bootstrap methodology can be found in Westfall & Young, 1993, pp.
62-68).

The adjusted p values are obtained through a shortcut closure-testing proce-
dure similar to Holm’s (1979) step-down Bonferroni procedure, except that
the method used by Westfall et al. (1999, pp. 149-151, 157-158, 229) takes
the correlational structure of the tests into account. An example program for
all possible pairwise comparisons is given by Westfall et al. (1999, p. 229).

As well, pairwise comparisons of means (or ranks) can be obtained
through permutation of the data with the program provided by Westfall et al.
(1999, pp. 233-234). Permutation tests also do not require that the data be
normally distributed. Instead of resampling with replacement from a pooled
sample of residuals, permutation tests take the observed data (Y11, . . . ,
Yn11 , . . . , Y1J, . . . , Yn JJ

) and randomly redistributes them to the treatment
groups, and summary statistics (i.e., means or ranks) are then computed on
the randomly redistributed data. The original outcomes (all possible pairwise
differences from the original sample means) are then compared to the ran-
domly generated values (e.g., all possible pairwise differences in the permu-
tation samples). That is, if Y1

* – Y2
* is the difference between the first two

treatment group means based on a permutation of the data, then a permu-
tational p value can be computed as p=P(Y1

* –Y2
* ≥Y1 –Y2 ). Accordingly, for

pairwise comparisons, the adjusted p values are calculated as ~pc =P(mincPc
*

≤ pc), where thePc
* are computed from the permutated data. As Westfall et al.
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(1999) noted, the major difference between these two approaches “concerns
inferential philosophy rather than actual results” (p. 234). Accordingly, in
our study, we just examined bootstrap resampling.

Trimmed Means MCP

Trimmed means are computed by removing a percentage of observations
from each of the tails of a distribution (set of observations). Let Y(1) ≤ Y(2)

≤ . . . ≤Y(n) represent the ordered observations associated with a group. Let g=
[γn], where γ represents the proportion of observations that are to be trimmed
in each tail of the distribution, and [x] is notation for the largest integer not ex-
ceeding x. Wilcox (1995a, 1995b) suggested that 20% trimming should be
used. The effective sample size becomes h = n – 2g. Then, the sample
trimmed mean is

Y
h

Yt i
i g

n g

=
= +

−

∑1

1
( ).

An estimate of the standard error of the trimmed mean is based on the
Winsorized mean and Winsorized sum of squares. The sample Winsorized
mean is

Yw = 1

n
[(g + 1)Y(g + 1) + Y(g + 2) + . . . + Y(n – g – 1) + (g + 1)Y(n – g)],

and the sample Winsorized sum of squared deviations is

SSDw = (g + 1)(Y(g + 1) –Yw)2 + (Y(g + 2) –Yw)2 + . . .
+ (Y(n – g – 1) –Yw)2 + (g + 1)( Y(n – g) –Yw)2.

Accordingly, the squared standard error of the mean is estimated as (see
Staudte & Sheather, 1990)

d
SSD

h h
W=

−( )
.

1

To test a pairwise comparison null hypothesis, computeYt and d for the jth
group, label the resultsYtj and dj. The robust pairwise test (see Keselman, Lix,
et al., 1998) becomes

t
Y Y

d d
W

tj tj
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=
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with estimated df
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When trimmed means are being compared, the null hypothesis relates to the
equality of population trimmed means instead of population means. There-
fore, instead of testingH0: µj = µj , a researcher would test the null hypothesis,
H0: µtj = µtj , where t represents the population trimmed mean. (Many
researchers subscribe to the position that inferences pertaining to robust
parameters are more valid than inferences pertaining to the usual least
squares parameters when they are dealing with populations that are non-
normal in form.)

Yuen and Dixon (1973) and Wilcox (1995a, 1995b) reported that for long-
tailed distributions, tests based on trimmed means and Winsorized variances
can be much more powerful than tests based on the usual mean and variance.
Accordingly, when researchers feel they are dealing with nonnormal data,
they can replace the usual least squares estimators of central tendency and
variability with robust estimators and apply these estimators in MCPs (see
Keselman, Lix, et al., 1998).

Method

In the simulation study, six variables were manipulated: (a) the total sam-
ple size, (b) the degree of sample size imbalance, (c) the magnitude of the
ratio between the largest and smallest variance, (d) the pairing of group sizes
and variances, (e) the configuration of population means, and (f) the form of
the generated data.

For J = 4 groups and equal sample sizes in each group, the total sample
size was N = 40, N = 60, or N = 100. According to a survey of the educational
and psychological literature, the median sample size in one-way completely
randomized designs is 64; however, in a third of the studies reviewed, sample
size ranged between 20 and 40 (see Lix, Cribbie, & Keselman, 1996). There-
fore, the N = 40 and N = 100 cases were intended to cover the range of values
identified by Lix et al. (1996). The N = 100 case, however, was intended to
assess whether the accuracy of the bootstrap methodology (i.e., estimating
the true distribution through resampling) improves with increases in sample
size as suggested by Westfall et al. (1999, p. 228).

We also varied sample size balance/imbalance. According to a recent sur-
vey of the educational and psychological literatures for papers published in
1995-1996, unbalanced designs are the norm, not the exception (Keselman,
Huberty, et al., 1998). Furthermore, because the effects of variance heteroge-
neity are exacerbated by sample size imbalance, we included three cases of
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balance/imbalance for each sample size investigated. In particular, sample
sizes were either equal, moderately unequal, or very unequal, where the
degree of balance/imbalance was quantified with a coefficient of sample size
variation (SCV); SCV is defined as (Σj(nj –n )2�J)1 2 /n , wheren is the average
group size. When sample sizes were equal, SCV = 0; the moderately unequal
cases had values of SCV � .10, whereas SCV � .40 for the largest case of
imbalance investigated. Keselman, Huberty, et al. (1998) reported that
SCV � .40 values or greater are common. Sample sizes are enumerated in
Table 1 for each case of N.

We also considered two cases of variance heterogeneity, in which in one
case the ratio of the largest to smallest variance was 4:1, whereas in the sec-
ond case the ratio was 8:1. Keselman, Huberty, et al. (1998) also reported that
an 8:1 ratio for unequal variances is not uncommon. Variances are enumer-
ated in Table 1.

When variances were unequal, they were both positively and negatively
paired with the group sizes. For positive (negative) pairings, the group having
the fewest (greatest) number of observations was associated with the popula-
tion having the smallest variance, whereas the group having the greatest
(fewest) number of observations was associated with the population having
the largest variance. These conditions were chosen because they typically
produce conservative and liberal results, respectively.

Both complete and partial null hypotheses were investigated. In particular,
we investigated the following numerical value mean configurations for the
four population means: (a) 0.0, 0.0, 0.0, 0.0; (b) 0.0, 0.0, 0.0, 0.917; (c) 0.0,
0.0, 0.477, 0.954; and (d) 0.0, 0.0, 0.791, 0.791. Case (a) is a complete null
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Table 1
Empirical Rates of Type I Error (chi-squared data; N = 40)

Sample Sizes Variances Complete Null Partial Null

10, 10, 10, 10 1, 1, 2, 4 .065 .015
10, 10, 10, 10 1, 3, 5, 8 .067 .024
9, 10, 10, 11 1, 1, 2, 4 .051 .017
9, 10, 10, 11 1, 3, 5, 8 .054 .020
9, 10, 10, 11 4, 2, 1, 1 .099 .054
9, 10, 10, 11 8, 5, 3, 1 .076 .048
5, 8, 12, 15 1, 1, 2, 4 .042 .008
5, 8, 12, 15 1, 3, 5, 8 .038 .009
5, 8, 12, 15 4, 2, 1, 1 .138 .097
5, 8, 12, 15 8, 5, 3, 1 .178 .104

Note. Sample sizes and variances are paired according to the order in which they are enumerated in the table.
The numerical values for the population means investigated were (a) 0.0, 0.0, 0.0, 0.0 (complete null); (b) 0.0,
0.0, 0.0, 0.917 (partial null); (c) 0.0. 0.0, 0.477, 0.954 (partial null); and (d) 0.0, 0.0, 0.791, 0.791 (partial null).
The empirical rates tabled under the partial null column are an average value over the three partial null cases.
Empirical values exceeding .075 are set in boldface type.



hypothesis configuration, whereas Cases (b) through (d) are partial null
hypothesis configurations.

With respect to the effects of distributional shape on Type I error, we chose
to investigate conditions in which the statistics were likely to be prone to an
excessive number of Type I errors as well as a normally distributed case.
Thus, we generated data from a skewed distribution. Specifically, we sam-
pled from a χ 3

2 distribution. This particular type of nonnormal distribution
was selected because data obtained in applied settings (e.g., behavioral sci-
ence data) typically have skewed distributions (Micceri, 1989; Wilcox,
1994a, 1994b, 1995a, 1995b). Furthermore, Sawilowsky and Blair (1992)
investigated the effects of eight nonnormal distributions identified by
Micceri (1989) on the robustness of Student’s t test and found that only distri-
butions with the most extreme degree of skewness that were investigated
(e.g., γ1 = 11.64) were found to affect the Type I error control of the independ-
ent sample t statistic. Thus, because the statistics we investigated have operat-
ing characteristics similar to those reported for the t statistic, we felt that our
approach to modeling skewed data would adequately reflect conditions in
which those statistics might not perform optimally. For the χ 3

2 distribution,
skewness and kurtosis values are γ1 = 11.63 and γ1 = 24.00, respectively.
Accordingly, our simulated χ 3

2 distribution mirrors data found in behavioral
science experiments with regard to skewness.

To generate pseudo-random normal variates, we used the SAS generator
RANNOR (SAS Institute, 1989). If Zij is a standard normal variate, then Yij =
µj + (σ j × Zij) is a normal variate with mean equal to µj and variance equal to
σ j

2 . To generate pseudo-random variates having a χ2 distribution with three
degrees of freedom, three standard normal variates were squared and
summed. The variates were standardized and then transformed to χ 3

2 variates
having mean µj and variance σ j

2 (see Hastings & Peacock, 1975, pp. 46-51,
for further details on the generation of data from this distribution).

Our simulation program was written in SAS/IML (SAS, 1989). One thou-
sand replications of each condition were performed using a .05 significance
level. The step-down bootstrap tests were obtained with the program PROC
MULTTEST, provided by Westfall et al. (1999, see pp. 228-231); the number
of bootstrap samples was set at 10,000.

Results

To evaluate the particular conditions under which a test was insensitive to
assumption violations, Bradley’s (1978) liberal criterion of robustness was
employed. According to this criterion, for a test to be considered robust, its
empirical rate of Type I error ( �α) must be contained in the interval 0.5α ≤ �α ≤
1.5α. Therefore, for the 5% level of statistical significance used in this study,
a test was considered robust in a particular condition if its empirical rate of
Type I error fell within the interval .025 ≤ �α ≤ .075. Correspondingly, a test
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was considered to be nonrobust if, for a particular condition, its Type I error
rate was not contained in this interval. In the tables, bolded entries are used to
denote liberal values, that is, values greater than .075. We chose this criterion
because we feel that it provides a reasonable standard by which to judge
robustness. That is, in our opinion, applied researchers should be comfort-
able working with a procedure that controls the rate of Type I error within
these bounds if the procedure limits the rate across a wide range of assump-
tion violation conditions.

Empirical FWE rates for N = 40, N = 60, and N = 100 are contained in
Tables 1 through 3, respectively (partial null hypothesis results were obtained
by averaging rates of error over the three partial null cases investigated).
Because the rates were similar for normal and nonnormal χ 3

2 data, we only
tabled the rates for the nonnormal case. Results were similar across the inves-
tigated sample sizes and indicate that the SAS (Westfall et al., 1999) step-
down bootstrap procedure for pairwise comparisons was (a) able to control
Type I errors when group sizes were equal and when group sizes and vari-
ances were positively paired; (b) not able to control the rate of Type I error
when group sizes and variances were negatively paired, with rates approach-
ing 20%; and (c) liberal for negative pairings of group sizes and variances
under the partial null cases, with rates exceeding 10%.

To further investigate the effect of sample size on Westfall et al.’s (1999)
conjecture that the stability of the bootstrap estimates should improve with
increases in sample size, we collected FWE rates for the complete null
hypothesis for four similar conditions that produced liberal rates in Tables 1
through 3 when there were 100 observations per group (N = 400). In particu-
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Table 2
Empirical Rates of Type I Error (chi-squared data; N = 60)

Sample Sizes Variances Complete Null Partial Null

15, 15, 15, 15 1, 1, 2, 4 .074 .015
15, 15, 15, 15 1, 3, 5, 8 .074 .018
13, 15, 15, 17 1, 1, 2, 4 .059 .016
13, 15, 15, 17 1, 3, 5, 8 .048 .014
13, 15, 15, 17 4, 2, 1, 1 .083 .065
13, 15, 15, 17 8, 5, 3, 1 .097 .056
7, 12, 18, 23 1, 1, 2, 4 .041 .009
7, 12, 18, 23 1, 3, 5, 8 .028 .007
7, 12, 18, 23 4, 2, 1, 1 .139 .111
7, 12, 18, 23 8, 5, 3, 1 .157 .118

Note. Sample sizes and variances are paired according to the order in which they are enumerated in the table.
The numerical values for the population means investigated were (a) 0.0, 0.0, 0.0, 0.0 (complete null); (b) 0.0,
0.0, 0.0, 0.917 (partial null); (c) 0.0. 0.0, 0.477, 0.954 (partial null); and (d) 0.0, 0.0, 0.791, 0.791 (partial null).
The empirical rates tabled under the partial null column are an average value over the three partial null cases.
Empirical values exceeding .075 are set in boldface type.



lar, we investigated the rates of error when (a) nj = 90, 100, 100, 110, andσ j
2 =

4, 2, 1, 1; (b) nj = 90, 100, 100, 110 andσ j
2 = 8, 5, 3, 1; (c) nj = 70, 90, 110, 130

andσ j
2 = 4, 2, 1, 1; and (d) nj = 70, 90, 110, 130 andσ j

2 = 8, 5, 3, 1. The empiri-
cal FWE values were .079, .071, .102, and .098, respectively. Thus, rates of
error marginally improve with increases in sample size.

Discussion

The rates we presented in Tables 1 through 3 indicate that the step-down
bootstrap MCP available through the SAS (1999) system of programs cannot
control the FWE rate when data are nonnormal and are as well heteroge-
neous, when the design is unbalanced, and variances and group sizes are neg-
atively paired. That is, as Westfall et al. (1999) suspected, this approach to
pairwise testing with nonnormal data does not work when variances are het-
erogeneous in unbalanced designs. However, when group sizes are equal, the
bootstrap procedure does provide acceptable Type I error control. Further-
more, our data suggest that some improvement in Type I error control can be
achieved with increases in sample size, although the required sample size
would be much larger than those typically found in educational and psycho-
logical research.

The results tabled by Keselman, Lix, et al. (1998) indicate that when
trimmed means and Winsorized variances are substituted into Welch’s
(1938) heteroscedastic statistic, rates of Type I error can indeed be controlled
under these same conditions with many stepwise MCPs (e.g., Shaffer’s,
1986, sequentially rejective Bonferroni procedure, Hayter’s, 1986, two-stage
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Table 3
Empirical Rates of Type I Error (chi-squared data; N = 100)

Sample Sizes Variances Complete Null Partial Null

25, 25, 25, 25 1, 1, 2, 4 .059 .019
25, 25, 25, 25 1, 3, 5, 8 .069 .021
20, 25, 25, 30 1, 1, 2, 4 .048 .012
20, 25, 25, 30 1, 3, 5, 8 .060 .013
20, 25, 25, 30 4, 2, 1, 1 .088 .066
20, 25, 25, 30 8, 5, 3, 1 .090 .071
10, 20, 30, 40 1, 1, 2, 4 .026 .007
10, 20, 30, 40 1, 3, 5, 8 .031 .007
10, 20, 30, 40 4, 2, 1, 1 .150 .107
10, 20, 30, 40 8, 5, 3, 1 .182 .130

Note. Sample sizes and variances are paired according to the order in which they are enumerated in the table.
The numerical values for the population means investigated were (a) 0.0, 0.0, 0.0, 0.0 (complete null); (b) 0.0,
0.0, 0.0, 0.917 (partial null); (c) 0.0. 0.0, 0.477, 0.954 (partial null); and (d) 0.0, 0.0, 0.791, 0.791 (partial null).
The empirical rates tabled under the partial null column are an average value over the three partial null cases.
Empirical values exceeding .075 are set in boldface type.



modified LSD procedure, range-type procedures, and Hochberg’s, 1988,
step-up sequentially acceptive Bonferroni procedure).

Accordingly, we recommend that for pairwise comparisons of treatment
group means, researchers adopt one of the MCPs enumerated by Keselman,
Huberty, et al. (1998) when data are nonnormal, variances are unequal, and
the design is unbalanced—conditions that, according to various authors,
characterize behavioral science investigations. The reader should note that
Wilcox and Keselman (2000) have enumerated a number of bootstrap MCPs
that use trimmed means and Winsorized variances. However, when group
sizes are equal, researchers can confidently rely on the bootstrap (permuta-
tion) procedure provided by Westfall et al. (1999) to examine pairwise mean
differences under conditions of nonormality and variance heterogeneity.
That is, bootstrapping provides effective Type I error control for comparisons
of means; however, the reader should take note that comparisons of means
with bootstrapping methods can still fall short with respect to power consid-
erations. Last, though likely least attractive, researchers can write their
own bootstrap sampling programs for examining pairwise comparisons
when data are nonnormal and heterogeneous (see Westfall & Young, 1993,
pp. 88-89).
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