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Abstract

The stability and bifurcations of a homoclinic loop for planar vector fields
are closely related to the limit cycles. For a homoclinic loop of a given pla-
nar vector field, a sequence of quantities, the homoclinic loop quantities were
defined to study the stability and bifurcations of the loop. Among the se-
quence of the loop quantities, the first nonzero one determines the stability
of the homoclinic loop. There are formulas for the first three and the fifth
loop quantities. In this paper we will establish the formula for the fourth loop
quantity for both the single and double homoclinic loops. As applications,
we present examples of planar polynomial vector fields which can have five
or twelve limit cycles respectively in the case of a single or double homoclinic
loop by using the method of stability-switching.
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1 Introduction

Consider a planar vector field

ẋ = f(x) , x ∈ R
2 (1.1)
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where f : R
2 → R

2 is a C∞ function. Suppose that the vector field (1.1) has a
homoclinic loop consisting of a homoclinic orbit L and a hyperbolic saddle point S.
For simplicity, L is also called a saddle loop or homoclinic loop. Since the saddle S is
hyperbolic, we can define a Poincaré map on one and only one side of a given loop L.
More precisely, if we suppose that L is oriented clockwise as shown in Fig. 1, there
are two possible cases: convex (Fig. 1(a)) and concave (Fig. 1(b)). The Poincaré
map is well defined near L in the interior of L, Int.(L) for the convex loop (Fig. 1(a)),
and in the exterior of L, Ext.(L) for the concave loop (Fig. 1(b)). If there exists
a neighborhood U of L such that for any point A ∈ U ∩ Int .L or U ∩ Ext .L, the
positive orbit γ+(A) of (1.1) starting at A approaches L, then L is said to be stable.
If the negative orbit γ−(A) approaches L, then L is said to be unstable.

.. S

(a) Convex case

.S

.

(b) Concave case

Figure 1: Two cases of homoclinic loops L

The study of the stability and bifurcations of homoclinic loops can be traced
back to Dulac [5], and since then great progress have been made and there have
been a large amount of work published in the field. We remark that the work
of Leontovich(1946), Andronove et al [2], Melnikov [18], Chow and Hale [3] and
Roussarie [19], Joyal [14], Joyal and Rousseau [17], Dumortier and Li [6] are among
the important references.

A homoclinic loop is called isolated if there is no other loop in its neighborhood.
Clearly, a homoclinic loop can be either stable or unstable. A non-isolated homo-
clinic loop may appear as the boundary curve of period annuli [4, 6, 23]. In many
cases a non-isolated homoclinic loop can generate an isolated loop under pertur-
bations on a codimension one surfaces in the parameter space. A homoclinic loop
naturally has a saddle point. The saddle point is called weak or neutral if the hyper-
bolicity ratio r = −λ2

λ1

= 1, here λ2 < 0 < λ1 are the two eigenvalues of the saddle
point. It was Roussarie [19, 20] who initiated a systematic study of the homoclinic
loops. We point out that the studies later led to a program aiming at proving the
finiteness part of Hilbert’s problem for quadratic vector fields [8]. Joyal [14, 15, 16]
then conducted further studies of the homoclinic loops with a weak saddle.

Joyal in [14], by using the Poincaré normal forms at the saddle point, defined a
set of quantities c1, c2, c3 · · · (a∗

i in the original paper [14]) to study the stability
and bifurcations of homoclinic loops. It follows from [14] that a homoclinic loop L
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is said to be of order k if c1 = · · · = ck−1 = 0 and ck 6= 0. And L can generate at
most k limit cycles under any C∞ perturbations. Moreover, the k limit cycles can
be obtained in a neighborhood of L by suitable perturbations. The sign of the first
nonzero saddle quantities ck also determines the stability of L. For a homoclinic
loop of order k, it is stable (resp. unstable) if ck < 0 (resp., ck > 0).

For a given homoclinic loop of a planar vector field, the first nonzero quantity ck

is not only decided by the saddle point, but also decided by the loop of the vector
field, hence we would rather call the sequence c1, c2, · · · , ck the homoclinic loop
quantities. We will call the first nonzero loop quantity the homoclinic constant or
homoclinic value, and accordingly, the homoclinic loop is called of order k provided
ck 6= 0 and ci = 0, i = 1, 2, · · · , k − 1.

It is well known that for the center of a planar vector field, there are Lyapunov
center quantities (coefficients) [2] which determine the number of limit cycles bifur-
cating from the center in a generalized Hopf bifurcation. Naturally, the homoclinic
loop quantities play an important role in these studies for the theory of bifurcations
of dynamical systems, but it is also closely related to Hilbert’s sixteenth problem. As
pointed out in [14] that the homoclinic loop quantities can be used to determine the
number of limit cycles which can be bifurcated from a homoclinic loop. Andronov
and C. E. Chaiken mentioned this analogy in [1], Joyal [14] made a theoretical study
into the duality between the generalized Hopf bifurcation and generalized homoclinic
bifurcations.

For a given homoclinic loop of a planar vector field, the first saddle quantity is
the divergence of the vector field at the saddle point [2], the second loop quantity
c2 (assuming the first one is zero) is the integral of the divergence around the loop
[2, 9]. If the first two loop quantities vanish, the third quantity was computed in [13].
The fifth loop quantity c5 was obtained in [19] when the first four loop quantities
all vanish. In this paper we fill the gap and establish the formula for the fourth
loop quantity c4. It is a more complicated integral around the homoclinic loop. All
these computations are not trivial, and it seems that there is no general form for the
loop quantities. In principle, these formulaes are integrals along the homoclinic loop
which is similar to the Melnikov integral, but they are more difficult to compute in
practice.

One other motivation to compute the fourth loop quantity is the needs to study
the cyclicity of a degenerate graphic of HH type [22] which is related to Hilbert’s
sixteenth problem for quadratic vector field. Dumortier, Roussarie and Rousseau
[8] lunched a project aiming at proving the finiteness part of the Hilbert’s sixteenth
problem for quadratic vector fields. The project breaks down the proof into proving
all the graphics (limit periodic sets) have finite cyclicity inside quadratic families.
A graphic of planar vector field can be elementary or non-elementary in the sense
that its singular points are elementary (hyperbolic or semihyperbolic, i.e. at least
one nonzero eigenvalue) or non-elementary. The none-elementary graphics in the
quadratic vector fields include graphic through a nilpotent saddle or graphic through
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a nilpotent elliptic point. The finite cyclicity of the nilpotent graphics of quadratic
vector fields can be proved if one can prove that all the limit periodic sets of the
blown-up families have finite cyclicity [24]. The limit periodic sets for the nilpotent
graphics of elliptic type fall into three categories: PP, HP and HH. Zhu and Rousseau
[21] have proved that all the PP-graphics with a nilpotent elliptic singularity have
finite cyclicity. It turns out that in order to study the cyclicity of a HH-graphics,
one need to compute the fourth loop quantity.

This paper is organized as the follows. We first give some preliminaries and
summarize the formulas for the first three and the fifth order of homoclinic numbers.
The main results, the formulas for the fourth order homoclinic loop number for both
single and double homoclinic loops will be presented in this second section. We prove
the main results in section 3. As applications of the main results, in section 4 we
study the the limit cycles which can be born from the bifurcations of homoclinic
loops in two special systems. To find the limit cycles near a homoclinic loop which
can be bifurcated from the perturbations, the stability-switching technique [11, 13]
was employed.

2 Preliminaries and Main Results

Dulac [5] was the first to give the homoclinic constant for the homoclinic loop of
order one (see also [2, 3, 18]):

c1 = trfx(S) = (
∂f1

∂x1
+

∂f2

∂x2
)(S) = divf(S). (2.1)

When c1 = 0, the saddle point S becomes a weak saddle. It follows from [2, 9]
that we have

c2 =

∮

L

divfdt =

∫ ∞

−∞

(
∂f1

∂x1

+
∂f2

∂x2

)(u(t))dt if c1 = 0 (2.2)

where u(t), −∞ < t < ∞ is a time parametrization of the homoclinic loop L.

To discuss the case when c1 = c2 = 0 and also for the purpose of presenting
our main results, let us give the normal forms for the weak saddle and recall some
known results on the saddle quantities [17].

Assume that (1.1) has a homoclinic loop with c1 = 0, i.e., the saddle is weak. If
we locate saddle point S at the origin and modulo a linear transformation, f(x) can
then be written as

f(x) =







λ[ x1 +
∑

i+j≥2

aijx
i
1x

j
2 ]

λ[ −x2 +
∑

i+j≥2

bijx
i
1x

j
2 ]






, λ > 0, (2.3)

4



or

f(x) =







λ[ x2 +
∑

i+j≥2

aijx
i
1x

j
2 ]

λ[ x1 +
∑

i+j≥2

bijx
i
1x

j
2 ]






, λ > 0. (2.4)

In [14], vector field (1.1) was transformed into the normal form














ẋ1 = λx1[ 1 +
n
∑

i=1

ai(x1x2)
i + (x1x2)

n+1V1(x1, x2) ] = f1(x1, x2),

ẋ2 = λx2[ −1 +
n
∑

i=1

bi(x1x2)
i + (x1x2)

n+1V2(x1, x2) ] = f2(x1, x2),
(2.5)

where n ≥ 2. Let
Ri = ai + bi = Ri(S), i ≥ 1.

Then Ri is called the ith saddle quantity of (1.1) at S (see [14, 17]). Formulas for
saddle quantities were also given in [17]. For example, for the first saddle quantity
of the vector field (1.1) with f(x) given in (2.3), we have

R1 = a21 + b12 − a20a11 + b02b11, (2.6)

while the first saddle quantity of the vector field (1.1) with f(x) given in (2.4) reads

R1 = 3(a30 − b03) + b21 − a12 + 2(a02b02 − a20b20)
+a11(a02 − a20) + b11(b02 − b20).

(2.7)

Consider (1.1) with f(x) in the form of (2.4). One can assume that λ = 1. Then
(1.1) can be rewritten as

{

ẋ1 = x2 + P (x1, x2),
ẋ2 = x1 + Q(x1, x2),

(2.8)

where
P (x1, x2) =

∑

k+l≥2

akl xk
1 xl

2, Q(x1, x2) =
∑

k+l≥2

bkl xk
1 xl

2.

As in [17], letting
ω = x1 + j x2, ω̄ = x1 − j x2

with j2 = −1. In terms of ω and ω̄, (2.8) becomes

{

ω̇ = jω + F (ω, ω̄),

˙̄ω = −jω̄ + F̄ (ω, ω̄),
(2.9)

where

F (ω, ω̄) = P (
ω + ω̄

2
,
ω − ω̄

2j
) + j Q(

ω + ω̄

2
,
ω − ω̄

2j
),

F̄ (ω, ω̄) = P (
ω + ω̄

2
,
ω − ω̄

2j
) − j Q(

ω + ω̄

2
,
ω − ω̄

2j
).

(2.10)
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We can write
F (ω, ω̄) =

∑

k+l≥2

(Akl + jBkl) ωk ω̄l,

where Akl and Bkl are polynomials of amn and bmn with 2 ≤ m + n ≤ k + l whose
coefficients are independent of j. Using (2.10) and j2 = −1, we have

F̄ (ω, ω̄) =
∑

k+l≥2

(Akl − jBkl) ω̄k ωl.

Hence, if we define

Re(Akl + jBkl) = Akl, Im(Akl + jBkl) = Bkl,

we can apply the formulas for the second and third Lyapunov constants V5 and V7

to the first equation of system (2.9) to obtain the second and third saddle quantities
R2 and R3 respectively.

Using normal form theory and the Poincaré map near L, it was proved in [13]
that if c1 = c2 = 0, for the third homoclinic loop quantity c3 we have

c3 =

{

−R1, convex case, Fig. 1(a),

R1, concave case, Fig. 1(b).
(2.11)

For the higher order homoclinic loop quantities ck with k ≥ 4, the only known
result was due to Roussarie [19]:

c5 = ±R2, if c1 = c2 = c3 = c4 = 0. (2.12)

However, up to now, one does not know the formula of c4. In this paper we are
going to develop the formula for c4 and fill the gap.

To state our results, we introduce the following notations. Consider a homoclinic
loop of a planar system (1.1) with a weak saddle (c1 = 0). Let

K(L) =

∫ ∞

−∞

W (u(t))

|f(u(t))|
exp

∫ t

−∞

trfx(u(s))dsdt, (2.13)

where u(t), −∞ < t < ∞ denotes a time-parametrization of the homoclinic loop L
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and

W (x) = C(x) − A(x)B(x),

A(x) = ZT (x)fx(x)Z(x),

B(x) =
1

|f(x)|2
fT (x)

[

fx(x)Z(x) − Zx(x)f(x)
]

,

C(x) =
1

2
ZT (x)D(x)Z(x),

Z(x) =
1

|f(x)|

(

−f2(x)
f1(x)

)

,

D(x) =

(

d11(x) d12(x)
d21(x) d22(x)

)

, dij(x) =
(

grad
∂fi

∂xj

)

· Z , i, j = 1, 2,

Zx(x) =
1

|f(x)|2

[(

−grad f2

grad f1

)

| f | −

(

−f2

f1

)

grad|f(x)|

]

=
1

|f(x)|3

(

f1f2 gradf1 − f 2
1 gradf2

f 2
2 gradf1 − f1f2 gradf2

)

.

(2.14)
Recall that the integral K(L) is said to be convergent if the following limit exists
and finite:

lim
T1→∞

T2→−∞

∫ T1

T2

W (u(t))

|f(u(t))|
exp

∫ t

T2

tr fx(u(s))dsdt = K(L).

Our main results are the following.

Theorem 2.1. Let c1 = 0. Then the integral K(L) given by (2.13) is convergent if
and only if the first saddle quantity R1 = 0.

Theorem 2.2. Let c1 = c2 = c3 = 0. Then

c4 =

{

−K(L), convex case in Fig. 1(a),

K(L), concave case in Fig. 1(b),

c5 = R2.

(2.15)

Remark 2.3. The formula for the fifth loop quantity c5 was obtained in [19]. Here
it can be obtained as a byproduct of the proof of the theorem.

The case for the double homoclinic loop is similar to the case of a single loop
since the two parts of the loop share the same saddle point. Assume that the vector
field (1.1) has a double homoclinic loop L = L1

⋃

L2 with a hyperbolic saddle point
S. If we also assume the loop is oriented clockwise, in the sense of convexity similar
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. . 1
SL L.2

(a) Convex double loops

.
1

. S

.

L2
L

(b) Concave double loops

Figure 2: Two cases of the double homoclinic loops L = L1 ∪ L2

to the single loop, we also have two possible cases of double homoclinic loops as
shown in Fig. 2.

Similar to the single homoclinic loop, following the work of Joyal [14] we can de-
fine the stability of double homoclinic loops L by introducing the double homoclinic
loop quantities. Let c∗1, c∗2, c∗3· · · be such constants that L is stable (resp,. unstable)
if

c∗1 = c∗2 = · · · = c∗k−1 = 0, c∗k < 0 (resp., c∗k > 0 ).

As in the case for the single loop, we call c∗1, c∗2, c∗3· · · double homoclinic loop
quantities of L, and say L to be of order k if c∗1 = c∗2 = · · · = c∗k−1 = 0 and c∗k 6= 0.
It follows from [12, 13] that

c∗1 = divf(0),

c∗2 =

∮

L

divfdt =
2
∑

i=1

∮

Li

divfdt (if c∗1 = 0 ),

and L can generate at most one (resp., two) large limit cycle under C∞ perturbations
if c∗1 6= 0 (resp., c∗1 = 0 and c∗2 6= 0), where “large limit cycle” means a cycle
surrounding the unique saddle point near S of the perturbed system.

It was conjectured in [12] that L can generate at most three large limit cycles
under C∞ perturbations if c∗1 = c∗2 = 0 and the first saddle quantity R1 6= 0. This
conjecture still remains open. For the double homoclinic loop, it was proved in [12]
that if c∗1 = c∗2 = 0 then

c∗3 =

{

−R1, case in Fig. 2(a)
R1, case in Fig. 2(b)

. (2.16)

In this paper we will establish formulas for the fourth order homoclinic loop
quantity c∗4 for the double loops too.
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Theorem 2.4. Consider the double homoclinic loop L as shown in Fig. 2. Let
c∗1 = c∗2 = c∗3 = 0, then

c∗4 =

{

K(L1) + K(L2)e
c21 , convex case in Fig. 2(a),

−[K(L1) + K(L2)e
c21 ], concave case in Fig. 2(b),

c∗5 = R2,

(2.17)

where

c21 =

∮

L1

divfdt.

We remark that if (1.1) is centrally symmetric, then c∗1 = c∗2 = c∗3 = 0 imply
c21 = 0 and K(L1) = K(L2).

The paper is organized as follows. In Section 2 we present proof of our main
results. In Section 3 we will give applications of Theorems 1.2 and 1.3 respectively.
For the homoclinic case, we give an example of homoclinic loop of order five and
prove the existence of five limit cycles near the loop in the perturbed vector field. For
the double homoclinic case, we give an example of double homoclinic loop of order
five but find twelve limit cycles in a neighborhood of the loop in a perturbed vector
field. To find the limit cycles near L which can be born from the perturbations, we
use the so-called stability-changing method [11, 13].

3 Proof of the Main Theorems

Let L be a homoclinic loop as shown in Fig. 1.1. We use a Poincaré map to study
the stability of L. For the purpose, the normal form equation (2.5) plays a key role.
Without loss of generality, we assume that (2.5) is a valid normal form defined in

the square Q =
{

x
∣

∣

∣
|x1| ≤ 1, |x2| ≤ 1

}

and that the homoclinic loop L is located

mainly in the fourth quadrant. Define cross sections Σ1 and Σ2 as follows

Σ1 : x2 = −1, 0 < x1 < 1 ; Σ2 : x1 = 1,−1 < x2 < 0

Then by using the positive orbits of (2.5), we can define a Dulac map D : Σ1 → Σ2

and a regular map R : Σ2 → Σ1, see Fig. 3.

Introducing points A1(0,−1) and A2(1, 0) and unit vectors n1 = (−1, 0)T and
n2 = (0, 1)T on Σ1 and Σ2 respectively. Note that ni is a directional vector of the
cross sections Σi, i = 1, 2. Then any point on Σi can be represented as Ai +nir with
−1 < r < 0, and as function of r, the maps D and R satisfying

A2 + n2D(r) ∈ Σ2, A1 + n1R(r) ∈ Σ1.

In next two lemmas, we develop the expressions for the Dulac map D and the
regular map G respectively.
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D
A
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1

G

Σ
Σ

2

1

Figure 3: Dulac and regular maps near the homoclinic loop L

Lemma 3.1. Let c1 = 0. Then for r ∈ (−1, 0) and |r| small we have

D(r) = r − R1r
2 ln |r|

[

1 + O(r ln |r|)
]

− (R2r
3 ln |r| + O(r4 ln |r|)). (3.1)

Proof. Noting that if c1 = 0, we have by (2.5) that

dx2

dx1
=

x2

x1

[

− 1 + R1x1x2 + R∗
2(x1x2)

2 + O(|x1x2|
3)
]

,

where R∗
2 = R2−a1R1. Then the expression (3.1) for the Dulac map can be obtained

following the development in [19].

Lemma 3.2. Let u(t) be a time-parametrization of the homoclinic loop L. Let

h1(θ) =
f(u(t2))

|f(u(θ))|
exp

∫ θ

t2

tr fx(u(t))dt,

h2(t1) = h1(t1)|f(u(t2))|

∫ t1

t2

W ∗(θ)

|f(u(θ))|
exp

∫ θ

t2

tr fx(u(t))dtdθ,

(3.2)

where W ∗ is defined similarly as W in (2.14). Then for the regular map G we have

G(r) = h(t1, r) = h1(t1)r + h2(t1)r
2 + O(r3). (3.3)

Proof. Let

z(t) = Z(u(t)) =
1

|f(u(t))|

(

−f2(u(t))
f1(u(t))

)

.

Then there exist unique t1 and t2 (t2 < t1) such that

u(ti) = Ai , z(ti) = ni , i = 1, 2. (3.4)
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It follows from [13] that a change of variables of the form

x = u(θ) + z(θ)h , t2 ≤ θ ≤ t1 (3.5)

can carry (1.1) into the form

{

θ̇ = 1 + B∗(θ)h + O(h2),

ḣ = A∗(θ)h + C∗(θ)h2 + O(h3),
(3.6)

where

A∗(θ) = zT (θ)fx(u(θ))z(θ) = trfx(u(θ)) −
d

dθ
ln |f(u(θ))|,

B∗(θ) =
1

|f(u(θ))|2
fT (u(θ))

[

fx(u(θ))z(θ) −
d

dθ
z(θ)

]

,

C∗(θ) =
1

2
zT (θ)

[

∂2

∂2h
f
(

u(θ) + z(θ)h
)

]

h=0

.

(3.7)

Straightforward calculations can lead to

A∗(θ) = A(u(θ)) , B∗(θ) = B(u(θ)) , C∗(θ) = C(u(θ)), (3.8)

where A, B and C are defined in (2.14). Rewriting (3.6) as

dh

dθ
= A∗(θ)h +

[

C∗(θ) − A∗(θ)B∗(θ)
]

h2 + O(h3). (3.9)

Let
h(θ, r) = h1(θ)r + h2(θ)r

2 + O(r3) (3.10)

be a solution of (3.9) satisfying h(t2) = r. Substituting h(θ, r) into (3.9) one can
find that h1 and h2 satisfy











dh1

dθ
= A∗(θ)h1, h1(t2) = r,

dh2

dθ
= A∗(θ)h2 + W ∗(θ)h2

1, h2(t2) = 0,

where by (3.8) we have W ∗(θ) = C∗(θ)−A∗(θ)B∗(θ) = W (u(θ)). Solving the above
linear equations we obtain

h1(θ) = exp
∫ θ

t2
A∗(s)ds,

h2(θ) = h1(θ)
∫ θ

t2
W ∗(s)h1(s)ds.

(3.11)

It follows from (3.8), (3.10) and (3.11) that we have the expression for the regular
map G in (3.3).
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Proof of Theorem 1.1: We now prove Theorem 1.1 by using the normal form
(2.5).

Let u(t) = (u1(t), u2(t))
T . Then by (2.5) we have that

u1(t) = 0 for t ≥ t1 and u2(t) = 0 for t ≤ t2 (3.12)

Hence, again from (2.5) we have

trfx(u(t)) = 0 for t ≤ t2 or t ≥ t1.

Let T2 < t2 , T1 > t1. Then we have

∫ t

T2

trfx(u(s))ds =































0, if T2 ≤ t ≤ t2,

∫ t

t2

trfx(u(s))ds, if t2 ≤ t ≤ t1,

∫ t1

t2

trfx(u(s))ds, if t1 ≤ t ≤ T1.

Note that
∫ t1

t2

trfx(u(s))ds =

∫ ∞

−∞

trfx(u(t))dt = c2.

By (2.13) and W ∗(θ) = W (u(θ)) we have therefore

K∗(T1, T2) =

∫ T1

T2

W ∗(t)

|f(u(t))|
exp

∫ t

T2

trfx(u(s))dsdt

=

∫ t2

T2

W ∗(t)

|f(u(t))|
dt +

∫ T1

t1

W ∗(t)

|f(u(t))|
ec2dt

+

∫ t1

t2

W ∗(t)

|f(u(t))|
exp

∫ t

t2

trfx(u(s))dsdt.

(3.13)

Using (3.12) we have

z(t) =

(

0
1

)

, u(t) + z(t)h =

(

u1(t)
h

)

for t ≤ t2. Hence, by (3.7) we have

A∗(t) = −λ, B∗(t) = a1u1(t), C∗(t) = λb1u1(t),

and
W ∗(t)

|f(u(t))|
=

C∗(t) − A∗(t)B∗(t)

|f(u(t))|
=

λu1(t)(a1 + b1)

λu1(t)
= a1 + b1

for t ≤ t2. Similarly for t ≥ t1, we have

W ∗(t)

|f(u(t))|
=

−λu2(t)(a1 + b1)

−λu2(t)
= a1 + b1.

12



Therefore it follows from (3.13) that

K∗(T1, T2) = (a1 + b1)[t2 − T2 + ec2(T1 − t1)] + K∗(t1, t2).

Hence K(L) = lim
T1→∞

T2→−∞

K∗(T1, T2) is convergent if and only if R1 ≡ a1 + b1 = 0. This

completes the proof of Theorem 1.1.

From the above discussion, we have

|f(u(t1))| = |f(u(t2))| = λ

and
W ∗(t) = λR1 for t ≤ t2 or t ≥ t1.

Thus, it follows from (3.2) and (3.13) that if R1 = 0 we have

h1(t1) = ec2 , h2(t1) = ec2λK(L).

Hence, by (3.3) we obtain

Corollary 3.3. Let c1 = 0. Then the regular map G : Σ2 −→ Σ1 can be written as

G(r) = ec2r +
1

2
G

′′

(0)r2 + O(r3), 0 < −r � 1, (3.14)

where
1

2
G

′′

(0) = λec2K(L) when the first saddle quantity R1 = 0.

Proof of Theorem 1.2: Consider the first case of homoclinic loop in the Fig. 1(a).

The Poincaré map P : Σ1 −→ Σ1 near L can be decomposed as

P (r) = (G ◦ D)(r).

If c1 = 0, it follows from Lemma 2.1 and Corollary 2.1 that we have

P (r) = ec2D(r) +
1

2
G

′′

(0)D2(r) + O(r3)

= ec2r + λec2Kr2 − ec2R2r
3 ln |r| + O(r3).

Thus, if c1 = c2 = R1 = 0 there holds

P (r) − r = λKr2 − R2r
3 ln |r| + O(r3), for 0 < −r � 1. (3.15)

Note that the loop L is stable (unstable) if

P (r) − r > 0 ( < 0 ) for 0 < −r � 1,

13



1

D

G
Σ2

Σ

Figure 4: The Poincaré map for second case of the loop L

since l1 has the same direction as n1. The conclusion follows directly from (3.15).

For the second case of the loop in Fig. 1(b), we can define the transversal cross
sections as

Σ1 : x2 = 1, 0 < x1 < 1 and Σ2 : x1 = 1, 0 < x2 < 1

with end points A1(0, 1) and A2(1, 0), and directional vectors n1 = (1, 0)T and
n2 = (0, 1)T . We will consider the Dulac map D : Σ1 −→ Σ2 and the regular map
G : Σ2 −→ Σ1, Fig. 4.

In this case, if c1 = 0 we have

D(r) = r − R1 r2 ln r[1 + O(r ln r)] − R2 r3 ln r + O(r4 ln r) (3.16)

for 0 < r � 1. Note that Corollary 2.1 remains true. The expansion (3.15) remains
valid for 0 < r � 1 if c1 = c2 = R1 = 0.

Note that for the second case L is stable (unstable) if for 0 < r � 1, there holds

P (r) − r > 0 ( < 0 ).

The conclusion then follows from (3.15). This ends the proof of Theorem 1.2.

Proof of Theorem 1.3 Now suppose (1.1) has a double homoclinic loop L =
L1 ∪ L2 homoclinic to a hyperbolic saddle point S. To prove Theorem 1.3 we only
consider the first case of Fig. 2(a). The proof for the second case in Fig. 2(b) is
similar. As before, we work on the normal form (2.5).

Similar to the homoclinic case, we can define Dulace maps D1 and D2 and regular
maps G1 and G2 in the neighborhood of the saddle point, see Fig. 5.

14
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Figure 5: The Dulac maps and regular maps for the double homoclinic loop L

Let c∗1 = R1 = 0. Then by Corollary 2.1 and (3.16) we have

Gi(r) = ec2i r + λ ec2iK(Li)r
2 + O(r3), 0 < r � 1 ,

Di(r) = r − R2 r3 ln r + O(r4 ln r), 0 < r � 1,

where

c2i =

∮

Li

divfdt, i = 1, 2.

Thus,
Pi(r) ≡ (Gi ◦ Di)(r)

= ec2i r + λ ec2iK(Li)r
2 − R2e

c2ir3 ln r + O(r3).

Consider the Poincaré map P = P2 ◦ P1. A straightforward calculation gives

P (r) = ec21+c22 r + λ ec21+c22

[

K(L1) + K(L2)e
c21

]

r2

−R2e
c21+c22(1 + e2c21)r3 ln r

(

1 + O(
1

ln r
)
)

+ O(r3).

Therefore, if further c∗2 = c21 + c22 = 0, it follows that

P (r) − r =

{

λc∗4r
2 + O(r3 ln r) , if c∗4 6= 0,

−R2(1 + e2c21)r3 ln r + O(r3) , if c∗4 = 0,

where c∗4 = K(L1) + K(L2)e
c21 . Then Theorem 1.3 follows.
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4 Applications

As some applications of the main theorems, here we present examples of planar
polynomial vector field which have five or twelve limit cycles in the case of a single
or double homoclinic loop respectively. One other application of the formula for c4

will appear in [22].

Consider a polynomial vector field of the form
{

ẋ = Hy + Hx[a0 + a1H + a2H
2],

ẏ = −Hx + Hy[b0 + b1H + b2H
2],

(4.1)

where ai and bi (i = 0, 1, 2) are all parameters, and H is a polynomial in (x, y).

First, we take

H =
1

2
y2 −

1

2
x2 +

1

3
x3. (4.2)

Then if a0 = b0 = 0, (4.1) has a homoclinic loop given by L : H(x, y) = 0 . The

loop intersects the positive x-axis at the point A(
3

2
, 0) .

O

ε

Au

u

ε

Aε
s

l

l ε
s

ε

Figure 6: Breaking of the loop and the displacement

As shown in Fig. 6, let ls and lu denote the stable and unstable separatrices of
(4.1) near L respectively. They have intersection on the positive x-axis at the points
As

ε(x
s, 0) and Au

ε (x
u, 0). Note that the divergence of (4.1) reads

div(4.1) = a0Hxx + b0Hyy + a1H
2
x + b1H

2
y

+(a1Hxx + b1Hyy + 2a2H
2
x + 2b2H

2
y )H + (a2Hxx + b2Hyy)H

2.

(4.3)
Let d(a0, a1, a2, b0, b1, b2) be the distance from Au

ε (x
u, 0) to As

ε(x
s, 0). Then

d(a0, a1, a2, b0, b1, b2) = xu − xs =
M(a0, b0)

|Hx(A)|
+ O(|a0, b0|

2), (4.4)

where

M(a0, b0) =

∮

L

Hy(b0 + b1H + b2H
2)dx − Hx(a0 + a1H + a2H

2)dy

= a0N1(a1, b1) + b0N2(a1, b1),
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where

N1 =

∮

L

H2
x exp

(

−

∫ t

0

(a1H
2
x + b1H

2
y )ds

)

dt,

N2 =

∮

L

H2
y exp

(

−

∫ t

0

(a1H
2
x + b1H

2
y )ds

)

dt.

(4.5)

Applying the implicit function theorem to (3.4), there exists a unique function

ϕ1(a0, a1, a2, b1, b2) = −
N1

N2

a0 + O(a2
0)

such that for (a0, b0) near (0, 0),

d(a0, a1, a2, b0, b1, b2) ≥ 0 if and only if b0 ≥ ϕ1. (4.6)

This is also explained in Fig. 7.

(a) b0 < φ1 (b) b0 = φ1 (c) b0 > φ1

Figure 7: Phase portraits of (4.1) near L

Thus, for |a0| + |b0| small (3.1) has a homoclinic loop L∗ near L if and only if
b0 = ϕ1.

Proposition 4.1. Consider planar vector fields (4.1) with H(x, y) given in (4.2).
It has a homoclinic loop L defined by H(x, y) = 0. Then for |a0|+ |b0| small, system
(4.1) has a homoclinic loop L∗ near L of order k if and only if the following kth
condition is satisfied (k = 1, 2, 3, 4, 5):

(1) b0 = ϕ1, a0 6= 0,

(2) b0 = a0 = 0, b1 +
5

7
a1 6= 0,

(3) b0 = a0 = 0, b1 = −
5

7
a1 6= 0,

(4) b0 = a0 = b1 = a1 = 0, b2 +
5

7
a2 6= 0,

(5) b0 = a0 = b1 = a1 = 0, b2 = −
5

7
a2 6= 0.

Proof. Let b0 = ϕ1. Then by (3.3) we have

c1 = div(4.1)
∣

∣

∣

(0,0)
= −a0(1 +

N1

N2

) + O(a2
0).

17



Hence, L∗ has order 1 if and only if b0 = ϕ1, a0 6= 0.

Let a0 = 0, b0 = ϕ1 = 0. Then L∗ = L, and by (4.3) we have

c2 =

∮

L∗

div(4.1)dt =

∮

L

(a1H
2
x + b1H

2
y )dt.

Straightforward calculations lead to the following:
∮

L

H2
ydt =

∮

L

ydx =
6

5
,

∮

L

H2
xdt =

∮

L

(x − x2)dy =

∮

L

(2x − 1)ydx =
6

7
.

(4.7)

Hence c2 =
6

5
(b1 +

5

7
a1). It follows that L∗ has order 2 if and only if b0 = a0 =

0, b1 +
5

7
a1 6= 0.

Let b0 = a0 = 0, b1 = −
5

7
a1. We can rewrite (4.1) as







ẋ = y +
a1

2
(x3 − xy2) + O(|(x, y)T |4),

ẏ = x − x2 +
5

14
a1(x

2y − y3) + O(|(x, y)T |4).

Then by (2.7) we have

c3 = −R1 = −
24

7
a1

which implies that L∗ is of order 3 if and only if b0 = a0 = 0, b1 = −
5

7
a1 6= 0.

Further, let b0 = a0 = b1 = a1 = 0. In this case, system (4.1) becomes
{

ẋ = Hy + a2HxH
2 ≡ f1(x, y)

ẏ = −Hx + b2HyH
2 ≡ f2(x, y).

(4.8)

It is straightforward that

∂f1

∂x
= a2(HxxH

2 + 2H2
xH) ,

∂f1

∂y
= 2a2HxHyH + Hyy ,

∂f2

∂x
= −Hxx + 2b2HxHyH ,

∂f2

∂y
= b2(HyyH

2 + 2HH2
y ) ,

and

(grad
∂f1

∂x
)
∣

∣

∣

L
= (2a2H

3
x , 2a2H

2
xHy) ,

(grad
∂f1

∂y
)
∣

∣

∣

L
= (2a2H

2
xHy , 2a2HxH

2
y ) ,

(grad
∂f2

∂x
)
∣

∣

∣

L
= (−Hxxx + 2b2H

2
xHy , 2b2εHxH

2
y ) ,

(grad
∂f2

∂y
)
∣

∣

∣

L
= (2b2HxH

2
y , 2b2H

3
y ) .
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Then according to notations and formulas in (2.9) we have

∂Z

∂(x, y)

∣

∣

∣

∣

L

=
1

|gradH|2

(

H2
yHxx − HyHxHyy

−HxHyHxx H2
xHyy

)

,

D(x, y)

∣

∣

∣

∣

L

=
H2

x + H2
y

|gradH|





2a2H
2
x 2a2HxHy

−
HxHxxx

H2
x + H2

y

+ 2b2HxHy 2b2H
2
y



 ,

A(x, y)

∣

∣

∣

∣

L

=
1

|gradH|2
HxHy(Hyy − Hxx) ,

B(x, y)

∣

∣

∣

∣

L

=
1

|gradH|5
(Hxx − Hyy)(H

4
x − H4

y ) ,

C(x, y)

∣

∣

∣

∣

L

=
1

2|gradH|3

[

2(H2
x + H2

y )2(a2H
2
x + b2H

2
y ) − H2

xHyHxxx

]

.

Therefore,

W (x, y)

|gradH|

∣

∣

∣

∣

∣

L

= (a2H
2
x + b2H

2
y ) + W0(x, y), (4.9)

where

W0(x, y) =
HxHy

(H2
x + H2

y )3

[

(Hyy − Hxx)
2(H2

x − H2
y ) −

1

2
HxHxxx(H

2
x + H2

y )
]

. (4.10)

It follows from (4.2) we have that along L, y2 = x2 −
2

3
x3, hence we can write

W0(x, y) = yg(x), x > 0,

for some C∞ function g(x) on x > 0. Thus, with div(f1, f2)
∣

∣

∣

L
= 0, we have by (4.7)

that

K(L) =

∮

L

(a2H
2
x + b2H

2
y )dt +

∮

L

g(x)ydt

=
6

5
(b2 +

5

7
a2) +

∮

L

g(x)dx .

Let δ ∈ (0, 1) and η = η(δ) > 0 satisfying H(δ,±η) = 0 . Then

∮

L

g(x)dx = lim
δ→0

∫ (δ ,−η)

(δ , η)

g(x)dx = lim
δ→0

0 = 0.

Therefore, we have

c4 = −K(L) = −
6

5
(b2 +

5

7
a2)

and hence L∗ has order 4 if and only if b0 = a0 = b1 = a1 = 0, b2 +
5

7
a2 6= 0.
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Finally, let b0 = a0 = b1 = a1 = 0, b2 = −
5

7
a2. Then (4.8) can be written as











ẋ = y −
a2

4
x(x2 − y2)2 + O(|(x, y)T |6),

ẏ = x − x2 −
5

28
a2y(x2 − y2)2 + O(|(x, y)T |6).

Let ω = x + jy, ω̄ = x − jy. We obtain

ω̇ = jω + F (ω, ω̄),

where

F (ω, ω̄) =
−a2

28
(6ω + ω̄)(ωω̄)2 −

1

4
(ω + ω̄)2

= −
1

4
(ω2 + 2ωω̄ + ω̄2) −

a2

28
(6ω3ω̄2 + ω2ω̄3).

Using the formula for V5 given in [10] we have up to a positive constant that

c5 = R2 = 6(−
a2

28
× 6) = −

9

7
a2.

Note that by (4.5) and (4.7) we have

ϕ1(a0, a1, a2, b1, b2) = a0

(

−
5

7
+ O(|a0, a1, b1|)

)

.

We obtain the following by changing the stability of L∗ in turn and breaking it
finally.

Proposition 4.2. Consider planar vector fields (4.1) with H(x, y) given in (4.2).

Then exists a function ϕ1 = a0(−
5

7
+ O(|a0, a1, b1|)) such that for given a2 > 0,

system (4.1) has five limit cycles near L if

0 < ϕ1 − b0 � a0 � b1 +
5

7
a1 � a1 � −(b2 +

5

7
a2) � 1.

Now consider (4.1) again but with

H(x, y) =
1

2
(y2 − x2) +

1

4
x4. (4.11)

Then for a0 = b0 = 0, system (4.1) has a double homoclinic loop L = L1 ∪L2 where

Li = {H = 0
∣

∣

∣
(−1)ix > 0}, i = 1, 2. Similar to (4.5) and (4.7), we have

∮

L2

H2
ydt =

4

3
,

∮

L2

H2
xdt =

28

35

N1(L2) =
28

35
+ O(|a1, b1|) , N2(L2) =

4

3
+ O(|a1, b1|).
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And, there is a function ϕ1 = −
N1

N2
a0 + O(a2

0) such that for |a0| + |b0| small (4.1)

has a double homoclinic loop L∗ = L∗
1 ∪L∗

2 if and only if b0 = ϕ1. When b0 = ϕ1 we
have from (4.3) that

c∗1 = div(3.1)
∣

∣

∣

(0,0)
= −(1 +

N1

N2
)a0 + O(a2

0).

Hence, as the previous case, by using (4.3), (4.8)-(4.10) we can obtain

c∗2 =
4

3
(b1 +

7

5
a1), as a0 = b0 = 0;

c∗3 = R1 =
24

5
a1, as a0 = b0 = b1 +

7

5
a1 = 0;

c∗4 = K(L2) =
4

3
(b2 +

7

5
a2), as a0 = b0 = a1 = b1 = 0.

c∗5 = R2 = −
9

5
a2 as a0 = b0 = a1 = b1 = b2 +

7

5
a2 = 0.

Then similar to Proposition 3.2 we have

Proposition 4.3. Consider the planar system (4.1) with H(x, y) given in (4.11). It
has a double homoclinic loop L defined by H(x, y) = 0. Then there exists a function

ϕ1 = a0(−
7

5
+O(|a0, a1, b1|)) such that for given a2 > 0 system (4.2) has twelve limit

cycles with two large cycles surrounding ten small cycles near L if

0 < ϕ1 − b0 � a0 � b1 +
7

5
a1 � a1 � −(b2 +

7

5
a2) � 1 .
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