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ABSTRACT 

Mitochondrial biogenesis involves nuclear- and mitochondrial-derived proteins to be integrated into 

functional organelles. Muscle development and chronic exercise are two physiological stimuli that trigger 

the production of mitochondrial components to produce more mitochondria. However, the synthesis of 

new proteins can induce cellular stress. Thus, the unfolded protein response (UPR), which takes place in 

the mitochondria or the endoplasmic reticulum, ensures correct protein handling. Whether the UPR must 

precede mitochondrial biogenesis is unknown. We used two models of mitochondrial biogenesis, skeletal 

muscle differentiation and chronic exercise of muscle cells in culture, and examined UPR activation. We 

partially inhibited one branch of the UPR involving the protein CHOP, with either a drug (TUDCA) or 

gene knockdown. Our results indicate that mitochondrial biogenesis occurs independently of stress-

induced CHOP, and reducing ER stress may further augment mitochondrial content.  
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CHAPTER 1: REVIEW OF LITERATURE 

1.0. Mitochondria 

 Early in eukaryotic evolution, mitochondria originally descended from an engulfed 

endosymbiotic bacterium similar to modern-day α-proteobacteria (5, 29). Mitochondria, 

commonly known as the “powerhouses of the cell,” provides energy in the form of adenosine 

triphosphate (ATP) and assist in the maintenance of metabolic homeostasis (216). In addition, 

alternative roles in regulatory cellular function include autophagy (organelle degradation) (66, 

106, 183), apoptosis (programmed cell-death) (111, 142, 213, 234), and calcium homeostasis 

(63, 76, 122). Being dynamic in nature, they can actively travel within the cell, divide, fuse, or 

form reticular structures (43). Mitochondria comprises of four compartments: 1) the outer 

mitochondrial membrane (OMM), 2) the inner mitochondrial membrane (IMM), 3) the 

intermembrane space (IMS) and 4) the matrix.  

 Mammalian mitochondria contain their own set of genomes which encodes a total of 13 

proteins that are core components of oxidative phosphorylation (OXPHOS) (156, 240). The 

remaining ~99%  of the 1158 proteins (29) are nuclear-encoded precursor proteins produced on 

cytosolic ribosomes which are then imported through the mitochondrial protein import 

machinery (44, 156, 177). The common entry gate of the nascent proteins is through the multi-

subunit complex, the translocase of the outer membrane (TOM complex) embedded within the 

OMM (13, 91, 115). The OMM is permeable to small metabolites and solutes, however upon cell 

death, the OMM permeability increases, allowing for the release of soluble proteins that are 

usually retained within the IMS (113, 215, 216). The IMM which functions as the energy-

transducing membrane of the mitochondria (130), consists of the electron transport chain (ETC) 

in which the transport of electrons along a series of complexes facilitate the production of water 
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and ATP (7, 130). Extended membrane invaginations, termed cristae, characterize the IMM (43, 

91). The space between the IMM and OMM, termed the IMS, allows for the 

compartmentalization of protons necessary for the formation of an electrochemical gradient 

required for ATP synthesis (130). Lastly, the matrix is a protein-rich core (130) where the citric 

acid cycle occurs, as well as the proteolytic processing of imported hydrophilic preproteins (91).  

1.1. Regulation of Mitochondrial Biogenesis in Skeletal Muscle  

 Basal levels of skeletal muscle have very low mitochondrial content. With a 

physiological stimulus, such as exercise, the plasticity of skeletal muscle allows for the 

expansion of the mitochondrial network (64, 84, 88). The dynamic processes involved in the 

growth of mitochondria in number and size via fusion, fission, and reticular formation, is termed 

mitochondrial biogenesis (85, 103).  The exercising skeletal muscle generates action potentials to 

trigger Ca
2+ 

release from the sarcoplasmic reticulum (SR), a specialized form of the endoplasmic 

reticulum (ER) found specifically in skeletal muscle. The released calcium facilitates actin and 

myosin cross-bridging to occur to allow muscular contraction (86).  

 There are four main signaling molecules triggered with continuous contractile activity: 1) 

intracellular calcium (Ca
2+

) accumulation sensed by calcium/calmodulin-dependent protein 

kinase (CaMK) (162, 246, 248); 2) phosphorylation of p38 mitogen-activated protein kinase 

(MAPK) (62, 126, 247); 3) phosphorylation of AMP-activated protein kinase (AMPK) in 

response to alterations in adenosine diphosphate (ADP) to ATP ratio (62, 161, 245, 266); and 4) 

production of  reactive   oxygen   species  (ROS) (95, 118). The signal transduction pathways 

activate the master regulator of mitochondrial biogenesis, transcription coactivator peroxisome 

proliferator-activated receptor gamma (PGC-1α), along with transcription factor nuclear 

respiratory factor-1 and -2 (NRF-1 and NRF-2) (51, 197, 233) to transcribe nuclear genes-
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encoding mitochondrial proteins (NUGEMPs) (162, 198). The mitochondrion itself has a circular 

mitochondrial DNA (mtDNA) transcribed by the nuclear-encoded mitochondrial transcription 

factor A (TFAM), and is imported via the protein import machinery of the organelle (36, 198). It 

is the timely and coordinated expression of nuclear and mitochondrial genomes that facilitates 

mitochondrial biogenesis (45, 244). 

1.2.  Exercise Training and Mitochondrial Biogenesis  

 Endurance training leads to a production of nuclear- and mitochondrial-encoded proteins 

that assemble into OXPHOS components of the ETC (243, 244).  Endurance training can range 

from several minutes to hours at various intensities, consisting of repetitive, low-resistance 

exercise, such as running (48). An exercise regimen employing the appropriate duration, 

frequency, and submaximal intensity can increase mitochondrial content, usually ranging from 

50 to 100% within ~6 week period, directly resulting in augmented endurance capacity (40, 56, 

85). Conversely, resistance training has no impact on total content, rather, it has been found to 

enhance the quality of mitochondrial function or respiration, as well as morphology (100, 133, 

140, 175, 212, 220, 265).  To date, the signals preceding exercise-induced mitochondrial 

adaptations have not yet been fully elucidated. Nevertheless, endurance exercise has been 

recommended as a means to enhance motor coordination and quality of life in skeletal muscle 

diseases such as such as Parkinson’s disease (37, 176, 208) and mitochondrial myopathy (101, 

217).  

1.3. Models of Mitochondrial Biogenesis 

 Mitochondrial biogenesis associated with endurance training can be stimulated using 

artificial modes of exercise such as electrically stimulating cells in culture or the motor nerve of 

an animal to induce CCA.  These models have the advantage of producing large changes in 
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mitochondrial content within a short period (84, 128, 219). An in vivo experimental design 

would involve exercising the rodent under study based on a specified protocol and extracting the 

muscle for subsequent analysis (96, 173, 219). An electrical stimulator can also be used to mimic 

muscular contractions in animals, first introduced by Williams and coworkers (242, 244). 

Another powerful means of inducing mitochondrial biogenesis can be via cell culture. 

Cultivating and harvesting skeletal muscle cells is an effective means of studying molecular 

mechanisms in an isolated environment without introducing the whole-body effect variable in the 

experiment. Knockout animals can cause pathological conditions and may not be viable past 

development, in which cell culture can eliminate the pathological aspect. The following sections 

will discuss the two models of mitochondrial biogenesis in vitro.  

1.3.1. Differentiation-induced Mitochondrial Biogenesis 

 Muscle development involves mitotically quiescent stem cells residing along the basal 

lamina of myofibers activated upon trauma to their surrounding environment. They begin to 

proliferate as myogenic progenitor cells denoted as myoblasts (201). Subsequently, myoblasts 

undergo myogenesis or differentiation, a process involving the fusion of progenitors into 

multinucleated myotubes that express contractile properties (194). Myogenesis requires an 

adequate energy source to meet the high demands of myogenic programming in which regulatory 

and biosynthetic pathways are activated. Differentiation of myoblasts to myotubes is a well-

established model for mitochondrial biogenesis,  as the process involves a rise in mitochondrial 

content (36). Interestingly, differentiation appears to depend on mitochondrial function (47). 

Respiration-deficient myoblasts lacking mtDNA, despite their ability to continue to proliferate, 

had impaired myotube formation (81). Similarly, blocking mitochondrial protein synthesis with 

the inhibitor chloramphenicol abrogated differentiation (68, 112). Taken together, these studies 

http://europepmc.org/abstract/med/8500631/?whatizit_url_Chemicals=http://www.ebi.ac.uk/chebi/searchId.do?chebiId=CHEBI%3A17698
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convey the importance of functional mitochondrial biosynthetic pathways in myogenic 

differentiation. 

 During the early days of myoblast fusion, mitochondrial contents decrease as they are 

being cleared, in order to re-establish new mitochondrial networks that are better primed for 

OXPHOS and are more tightly coupled (204).  Upon induction of differentiation, mitochondria 

undergo clearance via mitophagy, a process targeting mitochondria for degradation, prior to the 

formation of new mitochondria (204). Mitophagy must precede mitochondrial biogenesis in 

order for myogenic differentiation to occur (57, 204). Furthermore, the mitochondria found in 

myoblasts are metabolically different than those found in myotubes. Contrary to myoblasts, 

myotubes have a greater reliance on glucose oxidation than glycolysis (116, 132, 204).  Upon 

terminal differentiation, the ETC complex subunits are augmented, indicative of increased 

mitochondrial content (36, 57, 132, 149, 204). In conclusion, differentiation-induced 

mitochondrial biogenesis is a well-established model used in cell culture.  

1.3.2. CCA-induced Mitochondrial Biogenesis 

 An alternative model for mitochondrial biogenesis is electrically-induced chronic 

contractile activity (CCA) (38, 87, 244). Motor neuron activation during training can be 

mimicked both in vivo and in vitro via electrical stimulation. In vivo stimulation involves the 

implantation of two wire electrodes spanning the common peroneal nerve of the rodent under 

study to deliver electrical impulses at a fixed setting, thus, contracting the muscle of the 

innervated leg (46, 87, 128, 218, 219). In vitro stimulation of myotubes in culture incorporates a 

similar concept by inputting parallel platinum wires in cell plates attached to an external 

stimulator (28, 38). Mitochondrial adaptations in a cell culture model can be induced with 3 h 

stimulation per day for a total of 4 days (38, 226).  The cell culture model has the advantage of 
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working within an isolated system where variables are under greater control without the 

systematic bodily influence, hence being a powerful tool in mimicking the physiological stimuli 

of endurance exercise.  

 Both models stimulate action potentials to travel along the sarcolemma of the skeletal 

muscle to release Ca
2+

 from the sarcoplasmic reticulum (33, 120, 128, 174, 209). The 

accumulation of Ca
2+ 

activates Ca
2+-

sensitive signaling pathways, namely CaMK, and thus 

inducing mitochondrial biogenesis (162, 246, 248). Similar to traditional exercise, CCA 

augments PGC-1 levels, cytochorome c oxidase (COX) activity, as well as the import of 

NUGEMPs into the mitochondria such as Tfam, to facilitate mitochondrial biogenesis  (65, 96).  

2.0. The Mammalian Unfolded Protein Response 

 As aforementioned, mitochondrial biogenesis is an intricate process that involves the 

synthesis and import of several hundred nuclear encoded proteins to the mitochondria (29). Due 

to the high volume of protein synthesis and import concurrent with mitochondrial biogenesis, 

maintenance of protein homeostasis, or proteostasis (12), becomes of crucial importance as any 

malformed proteins can hinder or alter the biosynthetic processes involved (160). Mitochondria, 

as well as the endoplasmic reticulum (ER), play vital roles in protein translation, modification, 

and processing. Protein folding is the most error prone step in gene expression (195). As part of 

the protein quality control (PQC) system, the unfolded protein response (UPR) is activated under 

certain pathological or physiological conditions that can compromise protein folding efficiency 

(80). The UPR is a transcriptional induction program coupled with ER or mitochondrial 

retrograde (organelle to nucleus) signaling, in an attempt to restore proteostasis (158, 190) by 

reducing accumulation of unfolded proteins via: 1) decreasing global protein translation while 

selectively increasing translation of chaperones (which assist in protein folding) and proteases 
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(that degrade excess proteins) to augment folding capacity; 2) breakdown misfolded proteins; 3) 

or, if proteostasis still cannot be attained, induce apoptosis of the cell (199). 

 The prototype of the UPR was first discovered in the mid-1970s in mammalian cultured 

cells (144). It was not until 1989 that the UPR was reported to exist in yeast (158, 190). During 

the 1990s, the UPR was more extensively studied in lower order organisms, such as yeast and 

flies, due to its relative simplicity in contrast to mammals thus allowing for better comprehension 

of the molecular mechanisms involved (144).  

 The establishment of the yeast UPR in the mid-1990s shed light upon the mechanisms of 

mammalian UPR.  To date, numerous studies regarding the UPR in different tissues have been 

conducted. Skeletal muscle is of particular interest due to its specialized form of the ER, the SR. 

In both physical and functional terms, the mitochondria and the ER coexist as tightly connected 

organelles (232). Since mitochondria are critical to skeletal muscle integrity, how they co-

function with the ER is of interest. A separate UPR emanating from the mitochondria is also 

captivating, as mitochondria require precise stoichiometry in the synthesis of both nuclear and 

mitochondrial encoded proteins.  

2.1.  Unfolded Proteins 

 Proteins are the prime building blocks of cellular structure.  Its synthesis is one of the 

most important events for a cell as proteins not only form its structural components, but also 

constitutes enzymes involved in catalytic reactions necessary for life (78). According to 

Anfinsen’s dogma, a protein’s structure and folding pathways are primarily determined by its 

amino acid sequence (6, 145, 199). As configuration of a protein determines its function, correct 

protein folding becomes a vital step in protein synthesis. Maintenance of proteostasis  requires 

molecular chaperones and foldases, which assist in promoting a functional protein-folding 
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environment by preventing the aggregation of newly synthesized, imported or denatured proteins 

(27, 78, 261). Molecular chaperones facilitate efficient folding and complex assembly by 

transiently associating with nascent polypeptides and supressing interactions between the 

hydrophobic amino acids and helping them fold according to Anfinsen’s dogma, prior to 

dissociation from its now corrected native form (61, 145).  

 Protein folding involves hydrophobic collapse, in which several side chains attempt to 

shield each other from surrounding water, and thus form the core of the protein (199, 210). 

Burial of electrostatic interactions in the hydrophobic core, such as hydrogen or disulfide bonds, 

initiate folding as well and allow it to maintain the lowest possible energy state (160, 199, 210). 

The final configuration of the protein excludes any water from its core (199, 210). Therefore, 

misfolded or unfolded proteins are characterized by a protein’s exposure of its hydrophobic core 

to the exterior environment, which is not only proteotoxic, but also the inappropriate interactions 

between the “sticky” hydrophobic amino acids can cause aggregation (6, 145). The imbalance 

between the unfolded proteins and the folding capacity machinery created thus contributes to 

“stress” induction (189).   

 Compartmentalized eukaryotic cells have several independent pathways in place to 

ensure protein-folding integrity (262). All three compartments, the cytosol, ER, and the 

mitochondria, encounter nascent unfolded polypeptides, each having their own repertoire of 

specific chaperones to promote proteostasis (78, 199). Unfolded protein-induced stress can be 

sensed in a compartment-specific manner, thus propagating signaling to the nucleus for 

transcription of compartment-specific chaperone genes (199).  
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2.2.  ER Stress Response 

 In eukaryotic cells, the ER is second to the cytosol in being a major site for protein-

folding (200),  as it is responsible for orchestrating the synthesis and structural maturation of at 

least a third of all proteins within a cell  (82, 200). An accumulation of unfolded or misfolded 

proteins in the ER lumen can be induced by stressors such as heat (54, 263), exercise (139, 159, 

250), or viral infections  or “conformational diseases” that perturb proteome integrity by altering 

its tertiary structure (160) via calcium imbalance or high protein demands in instances such as 

Alzheimer’s, Parkinson’s, and Huntington’s diseases [as reviewed in (160, 172)].   

 The endoplasmic reticulum UPR (UPR
ER

) is regulated by three ER transmembrane 

proteins: activating transcription factor (ATF) 6, inositol requiring kinase 1 (IRE1), and protein 

kinase R (PKR)-like ER kinase (PERK) (Fig. 1A). In unstressed conditions, immunoglobin 

binding protein (BiP) is bound to the luminal domains of these master regulators, keeping them 

inactive (199).  BiP has a dual role in cells: 1) sensing unfolded proteins by binding to them; 2) 

activating the transmembrane proteins that trigger the UPR
ER

 (31). During ER stress, the 

accumulated unfolded or misfolded proteins bind to BiP, as it preferentially adheres to the 

exposed hydrophobic regions of the unfolded proteins (60, 236), thus releasing its allosteric 

inhibition upon the transmembrane proteins and triggering their signaling pathways (31). The 

binding of BiP to the unfolded protein does not fold the proteins, rather it maintains the protein 

in a state competent for subsequent folding pathways and oligomerization (60). Although 

additional mechanisms that initiate the activity of the UPR branches has been reported (59), the 

exact mechanisms as to how cells can detect the accumulation of misfolded proteins in the ER 

lumen remain enigmatic (31, 236).   

ATF6 is a type II transmembrane domain protein which consists of a basic leucine zipper  
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Figure 1. (A) In the endoplasmic reticulum (ER) under basal conditions, BiP, a binding protein, is 

bound to the three transmembrane proteins of the ER: ATF6, PERK, IRE1α, keeping them inactive. 

Upon ER stress, BiP has a higher affinity for the unfolded proteins and binds to them instead, 

releasing its allosteric inhibition on the UPRER sensors. The three transmembrane proteins are 

consequently activated, each initiating the UPRER. The ATF6 fragment (ATF6f) increases the 

transcription of ER chaperones. The PERK branch phosphorylates eIF2α which then attenuates global 

translation. Phosphorylated eIF2α can activate transcription factor ATF4 to increase CHOP, which can 

induce cell apoptosis. The IRE1α branch splices XBP1 (XBP1s) to increase the transcription of 

additional ER chaperones to assist in protein folding. (B) In the mitochondria (UPRMT), an 

accumulation of unfolded proteins in the mitochondrial matrix can induce reactive oxygen species 

(ROS) formation which triggers the activation of subsequent pathways. PKR decreases protein 

translation via the phosphorylation of eIF2α. The transcription factor, CHOP, is transcribed by C-Jun 

binding to the AP-1 promoter upon JNK2 activation. CHOP then forms a heterodimer with C/EBPβ to 

trigger UPRMT responsive genes which are translated to proteases and heat shock proteins used to 

attain proteostasis. Unfolded protein-induced ROS recruits Sirt3 to trigger the anti-oxidant response. 

In the intermembrane space, ROS can activate AKT signaling to the nucleus and transcribe for OMI 

protease via phosphorylation of ERα, in order to downgrade any misfolded proteins. (C) 

Tauroursodeoxycholic acid (TUDCA) acts a potent chaperone mimetic in the ER to assist in protein 

folding and hence attenuating the terminal UPRER response. 
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(bZIP) transcription factor within its cytosolic domain (257). Upon BiP release, ATF6, with the 

assistance of the PERK branch of the UPR
ER

 (223), is translocated to the Golgi apparatus where 

serine proteases, namely site-1 and -2 proteases (S1P and S2P), cleave ATF6 releasing its 

activated bZIP factor (80). It is then translocated into the nucleus as an active transcription 

factor, binding to the ATF/cAMP response element (CRE) and ER stress response elements I and 

II (ERSE-I and -II). Subsequently, UPR genes involved in protein folding, processing, and 

degradation (259), including ER chaperones, such as BiP, transcription factor X-box binding 

protein 1 (XBP1), and components of the ER-associated degradation (ERAD) pathway are all 

upregulated (1, 189, 251, 258).  

 The IRE1 pathway is the most evolutionary conserved branch of the UPR
ER

 and is 

expressed in all cell types, alluding to its significance to overall cell function (225). IRE1 is a 

type I ER transmembrane kinase protein with endoribonuclease (RNase) and serine/threonine 

kinase activities. There are two isoforms of IRE1, IRE1α and IRE1β (225). In response to 

luminal activation, IRE1α dimerizes and autophosphorylates, inducing a conformational change 

that triggers its RNase domain. Its RNase activity is involved in degradation of ER-targeted 

messenger RNAs (mRNA) and ribosomal RNAs to decrease protein load on the folding 

machinery, also known as regulated IRE1-dependent decay (RIDD) (35).  The RNase catalyzes 

the splicing of a 26-nucleotide intron within the XBP1 mRNA to a form a stable and highly 

active transcription factor, known as XBP1s (225). Once in the nucleus, XBP1s transcribes for 

genes involved in protein folding such as the foldase protein disulfide isomerase (PDI) (260), as 

well as components involved in ERAD (117). Under chronic stress, IRE1α can bind to TNF-

receptor-associated factor 2 (TRAF2) and activate apoptosis-signaling kinase 1 (ASK1). 

Subsequently, ASK1 activates c-Jun N-terminal protein kinase (JNK), which in turn triggers 
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apoptosis of the cell (157). Thus, IRE1 is involved not only in the amelioration of accumulated 

unfolded proteins in the ER, but also induces apoptosis in conditions where proteostasis cannot 

be restored (124, 236, 249).  

 Similar to structure and function of IRE1, PERK is also a type II transmembrane kinase 

protein that undergoes oligomerization and subsequent autophosphorylation. It then directly 

phosphorylates serine-51 on the α subunit of eukaryotic initiation factor 2 (eIF2α) (74). 

Phosphorylated eIF2α paradoxically becomes deactivated which prevents the formation of 

ribosomal initiation complexes, leading to attenuated global mRNA translation (73, 74). 

Inhibition of eIF2α allows for the selective expression of certain mRNAs, such as activating 

transcription factor 4 (ATF4). ATF4 is a transcription factor encoding for genes involved in 

protein folding, antioxidant machinery, autophagy, and apoptosis (75, 255). Additionally, ATF4 

upregulates the pro-apoptotic transcription factor, CCAAT-enhancer binding protein (C/EBP) 

homologous protein (CHOP), promoting cell death (72). Furthermore, PERK phosphorylates and 

activates transcription factor NF-E2 related factor 2 (Nrf2) responsible for upregulating the 

antioxidant machinery (39).  

 The three UPR
ER

 can be independently activated in a temporal manner (236, 260).  ATF6 

and IRE1 activation occurs immediately upon ER stress and over time is attenuated, whilst 

PERK activation follows that of ATF6 and IRE1 and persists during chronic ER stress (124, 193, 

260).  Yet, XBP1 of the IRE1 branch cannot be produced unless ATF6 is activated (260). In liver 

cells, PERK  was found to be required for ATF6 translocation to the Golgi for its subsequent 

proteolysis and activation (223). Together, these infer the interrelatedness of the UPR
ER

 

pathways.  
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 The UPR
ER

 branches can function as a binary switch between life and death of a cell 

(166). During chronically mild ER stress, all three UPR
ER

 sensors are activated. The adaptive 

response, or the pro-survival inducers of the UPR, are favoured due to the intrinsic instabilities 

of the mRNAs and proteins involved in apoptosis in comparison to those that facilitate protein 

folding and adaptation (193). As a result, apoptotic proteins are transiently induced during mild 

stress as cells adapt. Prolonged ER stress attenuates the ATF6 branch as well as the IRE1 

pathway whilst amplifying PERK signaling. Hence, severe or chronic stress-induced PERK 

activation and its downstream targets favours the maladaptive response of the UPR
ER

 where 

apoptosis, or cell death, is preferred over survival as the UPR fails to restore proteostasis (166, 

260). The mechanisms as to how the UPR act as a binary switch between an adaptive or 

apoptotic response remains enigmatic (166, 236).  

2.2.1. ATF6 branch of the UPR
ER

  

 There are two isoforms of ATF6: ATF6α and ATF6β, in which the former has been more 

extensively studied in relation to ER stress (80). Predominant UPR
ER

 genes are transcribed by 

ATF6α (ATF6) (1, 224), which will be the primary focus of this paper. The ATF6 branch not 

only regulates a subset of genes, but also augments the protective mechanisms induced by the 

PERK and IRE1 pathways in order to better withstand chronic stress and suppress apoptosis. 

Lack of ATF6 compromises cells ability to adapt or recover from ER stress in mouse embryonic 

fibroblasts (MEFs) and in the liver (251). Without activation of ATF6, XBP1 downstream of 

IRE1 cannot be induced (119).  Conversely, ATF6 was found to be dispensable for basal 

expression of ER protein chaperones as well as for mouse embryonic development (251). While 

there is considerable overlap in function between the UPR
ER

 branches, each limb induces at least 

some sort of unique response at times of stress  (32, 186). The UPR
ER

 sensors all contribute to 
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protein folding, maturation, and protein degradation during ER stress. Overlap between their 

functions ensures that cells have the most optimal ability to adapt to stress rather than capitulate 

to it (251). 

 In the context of skeletal muscle, ATF6 activation is of particular interest. The 

transcriptional coactivator PGC-1α, which regulates several exercise adaptations in skeletal 

muscle function, is found to mediate the UPR in myotubes and skeletal muscle via coactivation 

with cleaved ATF6. Wu and coworkers presented that ectopic induction of PGC-1α upregulated 

UPR
ER

 related genes and was completely abolished in the absence of ATF6 (250). This was not 

the case with IRE1 deletion, where UPR levels were similar to control. However, this response 

does have cell or tissue specificity as infecting MEFs or rat embryonic cardiomyocytes with an 

adenovirus expressing PGC-1α had no impact upon UPR
ER

 marker genes (250). Therefore, it is 

suggested that certain skeletal muscle-specific factors may be present in the functioning of the 

PGC-1α/ATF6α protein complex. It may be that the PGC-1α/ATF6α crosstalk in skeletal muscle 

is present as an additional regulator in skeletal muscle, due to immense stress fluctuations of 

greater magnitude and frequency in comparison to the cardiac muscle (250). Since PGC-1α is 

known as the master regulator of mitochondrial biogenesis (53, 126, 227, 252, 266), it would be 

of interest to investigate whether the regulation of mitochondrial synthesis is dependent upon its 

regulation of UPR expression.    

 In addition, ATF6 activity has been specifically implicated in apoptosis associated with 

muscle development  (as will be discussed in further detail in section 2.5) (147, 153). IRE1 and 

PERK were found to be absent both during differentiation and in dying muscle cells, whereas 

ATF6 was found to be active (147, 153). In muscle cells, ATF6 can act as a binary switch 

between self-defence to self-destruction during ER stress. Relatively low levels of ER stress 
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induces ATF6 to trigger the adaptive response of the UPR
ER

, whereas at higher levels, apoptosis 

or the terminal UPR
ER

 is induced (147). During differentiation, ATF6 mediates apoptosis via 

downregulation of anti-apoptotic protein myeloid cell leukemia sequence 1 (Mcl-1) and 

augmentation of pro-apoptotic WW binding protein 1 (WBP1) (192). Altogether, these suggest a 

prominent role for ATF6 in ER stress induced apoptosis during muscle cell differentiation. As 

was elaborated upon earlier, differentiation is accompanied by an increase in mitochondrial 

content (36, 57, 132, 149, 204). It would be noteworthy to explore the necessity of the UPR, or 

more specifically, the activation of ATF6 in regards to differentiation-induced mitochondrial 

adaptations.  

2.2.2. UPR
ER

 and the role of CHOP  

 CHOP, also known as growth arrest and DNA damage-inducible gene 153 (GADD153), 

is a highly stress inducible gene (163, 188, 264). Under basal conditions, CHOP is found at low 

levels, however it is markedly increased in response to ER stress, amino acid starvation, or 

hypoxia (9, 15, 97). In prolonged or severe ER stress, the maladaptive phase of the UPR
ER

 is 

triggered when ER stress cannot be resolved. Consequently, CHOP is upregulated via the 

PERK/eIF2α/ATF4 pathway to induce apoptosis or cell death (52, 72). CHOP is a ubiquitous 

nuclear protein that heterodimerizes with C/EBP family members to form a highly active 

transcription factor (264). In promoting cell death, CHOP 1) suppresses anti-apoptotic genes, 

such as B cell lymphoma 2 (Bcl-2); 2) enhances pro-apoptotic proteins such as Bcl-2 like protein 

11 (Bim), p53 upregulate modulator of apoptosis (Puma), and Bcl-2 associated X protein (Bax) 

to induce mitochondrial permeability transition pore (MPTP) opening; 3) increases protein 

synthesis and creates an oxidative environment within the ER (136, 138, 179, 188). Downstream 

of CHOP, growth arrest and DNA damage-inducible protein 34 (GADD34) reverses the 
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phosphorylation of eIF2α deactivating the translation repression induced by PERK, thus 

allowing for accumulation of the toxic unfolded proteins in the ER (21, 26, 136). ER oxidase 1 

(ERO1) is another downstream target of CHOP which triggers the ER calcium release channel 

inositol triphosphate receptor-1 (IP3R1) which increases cytosolic Ca
2+

 and activates CAMKII, 

leading to eventual apoptosis (121, 165).  

 CHOP can be induced by the other UPR
ER

 branches (113, 196), namely ATF6 (259) and 

IRE1/TRAF2/JNK (238) pathways. Despite these other regulators of CHOP, inhibiting PERK 

activation in murine cells completely ablated or delayed CHOP induction, depicting that CHOP 

regulation is mainly PERK-dependent (72, 254). CHOP knockouts protect cells from ER stress 

related death and toxic ROS formation (136, 264). Moreover, in CHOP-deficient MEF cells, 

there was less overall UPR
ER

 signaling, as upstream regulators such as IRE1 activity and its 

spliced target XBP1s levels were found to be lower, due to less protein synthesis (136). In 

addition, CHOP-independent mechanisms that can also induce apoptosis upon ER stress exist, 

reflecting the multiplicity of pathways in regulating programmed cell death (83, 143).  

 Interestingly, CHOP can function as a rheostat between pro-survival and cell death due to 

its antagonized functions. CHOP is not only implicated in cell death programs, but has been 

found to regulate pro-survival autophagy processes (9, 10, 191). Autophagy enables the 

recycling of amino acids and nutrients to maintain protein synthesis and ATP generation 

necessary for cell survival. Autophagy usually precedes apoptosis during many cellular stresses 

[as reviewed in (135)]. Depending upon the duration and intensity of the stress, CHOP’s role in 

cell fate differs. At the early onset of stress-induced amino acid starvation, CHOP primarily 

contributes to the later steps of autophagy (9, 10). Both ATF4 and CHOP are required for 

transcribing a series of autophagy gene transcription factors involved in the formation and 
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function of the autophagosome necessary for degradation of the targeted dysfunctional organelle 

(10). Under conditions of chronic stress where the adaptive response is not sufficient enough for 

survival, CHOP transcribes apoptotic genes while limiting transcription of autophagy-related 

proteins to induce cell death (9). However, depending on the cell line studied and the type of 

stress inducer used, varying results can be found (98).  

 CHOP-induced apoptosis involves both intrinsic and extrinsic pathways. The extrinsic 

pathway is regulated by death receptors of the TNF family, playing a critical role in death signal 

transmission from the cell surface to the intracellular signaling pathways (50, 129). Intrinsic 

pathways are mediated by the mitochondria producing intracellular signals that act directly on 

targets within the cell. As a result, OMM permeablization can occur, releasing pro-apoptotic 

factors such as cytochrome c from the IMS (50, 111, 196, 214). Altogether, this reflects the 

integration of the two organelles, the ER and mitochondria, in regulating the terminal branch of 

the UPR
ER

. 

2.3.  The UPR
MT

 

 Although first described in mammals (137, 262), the mitochondrial UPR (UPR
MT

) has 

been mainly characterized in Caenorhabditis elegans (C. elegans). Even less conclusive research 

has been done in the context of skeletal muscle. Due to the precise mitochondrial and nuclear 

stoichiometry required for ETC complex assembly, any perturbations in protein import 

efficiency into the mitochondria can place the organelle under stress and potentially render it as 

dysfunctional [as reviewed in (92, 134)]. The accumulation of unfolded proteins in mitochondria 

can trigger second messengers to activate signal transduction pathways involved in transcribing 

and translating assistive chaperones and proteases to alleviate compartmental stress (8, 105). 

Stressors that perturb the mito-nuclear encoded protein stoichiometry via import inefficiency and 
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activate the UPR
MT 

include: mtDNA depletion (137, 256), accumulation of misfolded proteins in 

the mitochondria (102, 168, 169, 262), mitochondrial chaperone and protease inhibition (42, 102, 

256), excess ROS (169, 256), OXPHOS inefficiency (127, 178), as well as high glucose 

consumption (125, 221). Conversely, stimulation of mitochondrial biogenesis with oxidized 

nicotinamide adenine dinucleotide (NAD+) supplementation or mammalian/mechanistic target of 

rapamycin (mTOR) inhibition by rapamycin have also been found to activate the UPR
MT

 in C. 

elegans (148).
 
Mitochondrial dysfunction can induce three main signaling molecules involved in 

triggering UPR
MT

-related retrograde signaling: 1) increase in cytosolic Ca
2+

 due to mitochondrial 

membrane depolarization (16, 17); 2) excess ROS as a by-product of the ETC (42, 211); 3) AMP 

to ATP ratio associated with energy deprivation (8, 24, 108). 

2.4.  The UPR
MT 

in C. elegans. 

 In C. elegans, accumulated unfolded proteins within the mitochondria are degraded by 

ATP-dependent Clp protease proteolytic subunit (ClpP) into small peptides which are then 

actively transported across the IMM by matrix peptide exporter, HAF-1 (77, 79). The peptides 

then passively diffuse through the OMM into the cytosol, triggering the nuclear translocation of 

activating transcription factor associated with stress-1 (ATFS-1) (155). ATFS-1 orchestrates the 

expression of genes encoding mitochondrial chaperones, proteases, mitochondrial protein import, 

ROS detoxification, and glycolysis (155). ATFS-1 has been recently shown to limit the 

accumulation of OXPHOS proteins, via coordinating the number of OXPHOS transcripts with 

the mitochondrial protein-folding capacity (154). Silencing experiments of ClpP and HAF-1 

revealed the essentialness of the proteins in ATFS-1 nuclear translocation necessary for UPR
MT 

induction (77, 79). Basally, ATFS-1 is imported into the mitochondria to be degraded by the Lon 

protease. However, upon mitochondrial proteotoxic stress, mitochondrial protein import 
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efficiency is decreased, inducing ATFS-1 accumulation in the cytosol and subsequent 

translocation to the nucleus for transcription of UPR
MT 

components (71, 155). Thus, ATFS-1 

promotes OXPHOS recovery by matching mitochondrial biogenesis to its proteostasis capacity 

(154). 

2.5.  The Mammalian UPR
MT

  

 Similar to C. elegans, the mammalian UPR
MT

  is a two-step process involving first the 

expression of transcription factors, and secondly, the activation of gene expression encoding for 

mitochondrial chaperonins and proteases (8). In mammals, two independent UPR
MT 

pathways 

have been described in both the matrix and the mitochondrial IMS (168, 262). Unfolded protein 

aggregates in the matrix are cleaved by ClpP proteases in which they exit the mitochondria 

through unknown mechanisms triggering subsequent signaling pathways leading to the activation 

of JNK and PKR (8, 90, 184). Akin to the UPR
ER

, global protein translation is inhibited upon 

phosphorylation of eIF2α by PKR activation (184). Consequently, mitochondrial inner 

membrane translocase subunit TIM17A levels are decreased, attenuating the import of new 

proteins into the mitochondria thus easing the protein load on the folding machinery (181).  JNK 

and PKR can both phosphorylate c-Jun which then binds to the activator protein 1 (AP-1) 

elements in the nucleus (184, 239). C-Jun activation transcribes CHOP and C/EBPβ proteins 

which then form a heterodimer  together (90) (Fig. 1B). The dimers bind to the CHOP elements 

in the promoter of the UPR
MT

 genes that encode for mitochondrial quality control proteins, such 

as mitochondrial co-chaperonins heat shock proteins 60 (mtHSP60) and 10 (CPN10) that fold the 

imported protein into its native form, as well as protease ClpP which is involved in misfolded 

protein degradation (2, 3, 262).  
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The genes transcribed by CHOP do not contain ERSE in its promoter which would 

encode for the classical UPR
ER

 proteins. This alludes to the existence of additional factors that 

may be required for the specificity of UPR
MT

 gene expression (90). Flanked by either side of the 

CHOP promoter are two other conserved elements in the UPR
MT

 response genes, mitochondrial 

unfolded protein response elements 1 and 2 (MURE1 and MURE2) (2). The transcription factors 

for these elements have not been identified yet but have been shown to be necessary for the 

induction of UPR
MT

 responsive genes. Recently, ATF5 has been found to mediate the UPR
MT

 

similar to its worm homologue, ATFS-1 (55). During mitochondrial stress, ATF5 regulates 

mitochondrial chaperone and protease transcription, such as Lon protease and mitochondrial heat 

shock protein 70 (mtHSP70) (55).  

 In addition to the CHOP regulation of the UPR
MT

, sirtuin-3 (Sirt3) is found to induce 

antioxidant and mitophagy pathways in response to mitochondrial ROS and unfolded protein 

accumulation (169). Conversely, CHOP is not essential for autophagic degradation of 

dysfunctional mitochondria, namely mitophagy, or for the induction of anti-oxidant machinery 

(169). Inhibition of Sirt3 during proteotoxic stress impairs mitochondrial networks and cell 

viability, as it serves to limit aggregation in the mitochondria (146, 169).  It assists in the sorting 

of sub-lethal stressed organelles from irreversibly damaged ones via association with forkhead 

box O3 (FOXO3). However, the mechanisms as to how this is coordinated is unknown (169).   

 Unfolded protein aggregation in the IMS activates a secondary CHOP-independent 

UPR
MT

 pathway (168, 169). ROS, produced as by-products of the accumulated proteins, mediate 

phosphorylation of serine/threonine protein kinase Akt, thus triggering transcription factor 

estrogen receptor α (ERα) (168). In an attempt to enhance the protein handling machinery of the 

mitochondria, ERα upregulates the expression of NRF1 transcription to transcribe NUGEMPs 
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involved in mitochondrial biogenesis, as well as the IMS protease HTRA2/OMI to promote 

degradation of misfolded proteins in the IMS (168, 180). 

 Interestingly, although reduced COX activity, a measure of mitochondrial function, has 

been recently been found to induce mitochondrial biogenesis in both the heart and skeletal 

muscle of mice, UPR
MT

  upregulation was only present in skeletal muscle tissue and not in the 

heart (178). This alludes to the induction of compensatory mechanisms in a tissue-specific 

manner in response to mitochondrial ETC inefficiency. However, whether the activation of the 

UPR
MT

 in response to COX deficiency is beneficial to skeletal muscle function is unclear (178). 

The tissue specificity of the UPR
MT

 and its response to various stressors merit further 

investigation in order to establish its role in cellular stress resistance. Furthermore, albeit several 

components of the UPR
MT

 pathways in C. elegans has been conserved in higher order organisms, 

no clear mammalian orthologue of the UPR
MT

 mitochondrial peptide exporter, HAF-1 has been 

identified (8, 105). Additionally, downstream signaling and transcriptional regulation of the 

mammalian UPR
MT

 has yet to be elucidated.  

2.5.1. The role of CHOP in the Mammalian UPR
MT 

 

 As stated above, CHOP coordinates the transcriptional gene expression of mitochondrial 

chaperones and proteases (262). Genes encoding cytosolic proteins with CHOP elements in their 

promoters were not induced upon unfolded protein aggregation in the mitochondria (2). 

Furthermore, mutating the two regulatory MURE sites located on either side of CHOP decreased 

UPR
MT

 responsive genes (2). Altogether, this suggests that specific induction of UPR
MT 

responsive genes share a requirement for a CHOP element in their promoters, however, it is not 

sufficient for the regulation of the UPR
MT

. It infers the transcriptional regulation by additional 

unidentified factors.  



 

22 
 

 CHOP is induced by multiple forms of cellular stress, yet, it is unclear as to how CHOP 

activities integrate to regulate a mitochondrial specific response (8, 170). For instance, the role of 

CHOP in the UPR
MT

 is in contrast to its mainly autophagic and apoptotic roles in the UPR
ER

 (9, 

138). The molecular mechanisms cells use to sense the unfolded proteins within the 

mitochondrial matrix and transmit its signals across its membranes has yet to be characterized. 

Upon proteasome inhibition, CHOP has been found to regulate the expression of UPR
MT

 

transcription regulator ATF5 (222), however further research is required to better define the 

mechanisms involved in the UPR
MT

.
 
 

2.6.   Mitochondrial—ER Crosstalk 

 Both mitochondrial and endoplasmic reticula are intimately related in both physical and 

molecular terms. ER and mitochondrial coupling regulates metabolism, calcium signaling, and 

apoptosis (30). Precedent findings have established a link between the two in forming inter-

connected networks [reviewed in (229)]. The physical contact sites, known as mitochondria-

associated endoplasmic reticulum membranes (MAMs) facilitate the transfer of metabolites, such 

as lipids and calcium, between the ER and the mitochondria, serving as a platform for inter-

organelle communication (182). As a result of this intricate relationship, mitochondrial function 

is sensitive to ER stress inducers. ER stress can alter the transfer of metabolites to mitochondria 

as well as trigger the UPR, both of which impact mitochondrial functioning.  Depending on the 

intensity and length of the stress, signaling from the ER can induce pro-apoptotic or pro-survival 

pathways of the mitochondria (182). 

 The mitochondrial and ER juxtaposition depends structurally upon the ER 

transmembrane protein PERK. ER-mitochondrial coupling relies on the PERK cytosolic domain, 

independent of its kinase canonical activity (232). Cells in which the ablation of PERK signaling 
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occurs show defects in the regulation of ETC activity reflected in the increase in basal and 

maximal mitochondrial respiration, increased mitochondrial fragmentation, defected 

morphology, and hypersensitivity to ER stress (93, 150). PERK is enriched in MAMs (232) and 

is found to be physically associated with the mitochondrial tethering protein, Mitofusin 2 (Mfn2) 

(182). Unconventional to its role as a mitochondrial fusion protein, Mfn2 is also found to 

modulate the UPR
ER

 as it senses ER stress and thus, coordinates the ER stress response. As a 

basal repressor of PERK, Mfn2-deficient cells showed exaggerated activation of UPR pathways  

(150, 151). Altogether, Mfn2 is suggested to be an upstream negative regulator of PERK 

pointing to a physical interaction between the two in serving a major role in mitochondrial-ER  

coupling (150, 151).  

 Additionally, PERK activation upon ER stress induces downstream expression of 

mitochondrial PQC factors. It influences mitochondrial proteostasis through translational 

attenuation via downregulation of TIM17A (181). Furthermore, there is a PERK-dependent 

increase in mitochondrial proteins Lon, mtHSP70, VDAC, and IP3R Ca
2+

 release channel (74, 

89, 229). As a result, Lon protease which is a critical regulator of mitochondrial proteostasis 

(231), functions to downregulate oxidatively damaged mitochondria, assemble COX-IV of the 

ETC, and regulate mtDNA replication (89, 231). Taken together, PERK signaling and structure 

serve as conduits between the ER and mitochondrial crosstalk during ER stress.   

 Constitutive ER localized IP3R Ca
2+

 release from the ER to the mitochondria is essential 

for mitochondrial bioenergetics and respiration as its transfer is fundamentally required for 

mitochondrial reduced nicotinamide adenine dinucleotide (NADH) production in B lymphocytes. 

This response is necessary for oxidative phosphorylation (30).  During the early adaptive phase 

of ER stress, mitochondrial and ER networks are more physically associated than at basal levels, 
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allowing the Ca
2+ 

leakage associated with ER stress to be uptaken by the mitochondria and 

enhance metabolism.
 
The increase in localized Ca

2+ 
uptake by the mitochondria provides the 

required energy substrates, thus augmenting ATP production, oxygen consumption, and overall 

bioenergetics adaptation (23). Later phases of ER stress facilitate further tightening of the ER–

mitochondria interface along with increased mitochondrial Ca
2+

 influx and consequent apoptosis 

(23, 30).  

 In all, it has been well illustrated that the ER and mitochondria engage in intricate 

crosstalk. Therefore, dysfunction in one organelle can have implications for the other. 

Elucidating how ER stress impacts the function and biogenesis of the mitochondria is of 

importance as it paves a way for better understanding of chronic disorders (229, 236).    

2.7.  The UPR and Differentiation 

 Differentiation entails an increase in protein synthesis which the protein folding 

machinery of the cell must handle (68, 112). As part of the PQC system, UPR induction is 

necessary for optimal differentiation (153, 207, 241). The role of the UPR in cell differentiation 

was first demonstrated in plasma cells’ dependency on the IRE1/XBP1 pathway (186). Knocking 

down other UPR
ER

 sensors, namely PERK, eIF2α-P (phosphorylated eIF2α) or ATF6, had no 

impact upon B cell lymphocyte to plasma cell differentiation (186). Conversely, PERK’s 

intrinsic lipid kinase activity promotes adipocyte differentiation via induction of lipogenic 

pathways (18). This further depicts the different functions that UPR pathways can have in 

various cell types.  

 During myogenic differentiation, myoblast fusion is associated with a portion of the cell 

population undergoing apoptosis (41, 153, 207). During myogenesis, most cells likely experience 

stress in which the vulnerable ones undergo elimination via apoptosis, allowing for the optimal 
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fusion of myoblasts. In murine skeletal muscle cells, the ATF6 branch of the UPR
ER

 and ER 

stress specific caspase-12 has been found to mediate the naturally occurring apoptosis during 

myogenesis (147, 153). Although differentiation induces the UPR
ER

 evident by the induction of 

BiP chaperones, active ATF6 plays the decisive role in the induction of apoptosis in murine 

skeletal muscle cells, whereas activation of IRE1 and PERK pathway were absent in 

differentiating cells and thus, not required (153). It may be that the ER stress induced during 

myoblast differentiation is not intense enough to activate the other UPR
ER

 sensors IRE1 and 

PERK.   

 Regardless, a certain amount of stress is necessary for optimal differentiation (153, 237). 

In studies which abrogated ER stress, a defect in myoblast fusion was observed (207, 241). 

However, this was reversed with the induction of stress via a chemical inducer, thapsigargin 

(241). Moreover, ER stress was also found to enhance myofiber formation due to triggered 

apoptosis, thereby eliminating vulnerable cells (152). Hence, the UPR can be selectively 

activated to control cell growth and proper tissue differentiation, which can have implications for 

muscle atrophy and myogenesis (22, 153, 237).  

 As discussed earlier, myogenesis is accompanied by mitochondrial biogenesis which is 

essential for muscle development (36, 57, 132, 149, 204). However, this can place cells under 

proteotoxic stress and may require PQC pathways, namely the UPR
MT

, which
 

has been 

postulated to be an intrinsic part of myogenesis in synchronizing genomes (3). During 

differentiation, ClpX, the ATP-dependent chaperone which forms complexes with ClpP subunit 

to form the major mitochondrial matrix ClpXP protease, is upregulated playing an 

uncharacterized, yet important role in the mitochondria during myogenesis (3). Although ClpP 

levels remained unchanged during skeletal muscle development (3), the reduction of ClpP is 
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found to alter mitochondrial morphology (not biogenesis), increase ROS, and decrease 

membrane potential, leading to impaired myoblast fusion, translation inhibition, and cellular 

proliferation, thus implicating a regulatory role in the mammalian UPR
MT

 (42). In contrast,  loss 

of ClpP in mice cardiac muscle was dispensable in UPR
MT 

induction, pointing to tissue-specific 

responses (202). In line with this, ClpP is expressed at higher levels in skeletal muscle than in 

other tissues (25). En masse, further research is required to shed light upon the modulation of the 

UPR, in particular mitochondrial UPR, during differentiation-induced mitochondrial adaptations.  

2.8.  The UPR, Skeletal Muscle, and Exercise  

 Basally, skeletal muscle has low levels of UPR activation (99). Whilst ER stress can 

become pathological under chronic or apoptotic UPR signaling, a certain level of ER stress is 

necessary for the integrity of skeletal muscle. Bohnert and coworkers’ study (19) recently 

revealed that diminished ER stress and UPR signaling with chemical chaperone 4-phenylbutrate 

(PBA) reduced skeletal muscle strength and was further aggravated in cancer cachexia mice 

models, which are characterized by progressive weight loss due to skeletal muscle wasting. The 

study provided initial evidence of ER stress and UPR pathways being integral to the maintenance 

of skeletal muscle mass, fiber type composition, and strength (19).  

 Conversely, high levels of stress in which the UPR
MT/ER  

protein handling is compromised 

and homeostasis is perturbed, pathological conditions can develop which is extensively reviewed 

elsewhere (104, 105, 172, 183). ER stress is implicated in myopathies such as myotonic 

dystrophy type 1 (94), sporadic inclusion body myositis (230), and limb girdle muscular 

dystrophy 1c (114). The amelioration of ER stress via chemical chaperone mimetics has been 

found to have beneficial effects in certain conditions (49, 141, 228).   
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 Similarly, exercise can also exert ER-stress reducing benefits which have been associated 

with ameliorating the debilitating conditions of obstructive sleep apnea (20), insulin resistance 

(131), and muscle apoptosis (109). An acute bout of aerobic or resistance exercise activates the 

UPR, and the response is amplified in naïve subjects versus trained individuals (107, 109, 159, 

250). Furthermore, chronic contractile activity (CCA) of the muscle elicits an attenuated 

response of the UPR
ER

, although the UPR
MT

 remains elevated throughout (139, 164).  

 In addition to duration, exercise intensity is implicated in the magnitude of UPR 

activation (109). Rats trained at high exercise intensity for 5 weeks had more attenuated ER 

stress response and apoptotic signaling responses in skeletal muscle than those trained at a lower 

intensity (109).  According to Rayavarapu et al., exercise-induced skeletal muscle ER stress is 

considered adaptive, yet it becomes pathological when uncontrolled stress leads to crosstalk with 

inflammatory pathways (185). In a mice study incorporating an overtraining protocol, high levels 

of skeletal muscle ER stress were induced which remained elevated and failed to recover even 

after their 2-week recovery period, suggesting a pathological development in the muscles 

exercised (171). Thus, moderate intensity exercise training adapts the UPR and can be used to 

prevent several inflammatory processes in which the ER stress induced with this type of exercise 

acts as a protective mechanism against current and future exercise stresses (107, 139, 250).   

 The molecular mechanisms of UPR-mediated exercise adaptations is currently poorly 

understood. PGC-1α is highly versatile in function as it is involved in several exercise-induced 

adaptations (110, 205, 226, 250). In a study involving exercising rats, an acute bout of exercise 

induced an elevation in PGC-1α mRNA (11), yet no increase in mitochondrial content or 

function was measurable until approximately 72 h later (110). The signals preceding 

mitochondrial biogenesis during this 3-day window is of particular interest. During this time 
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frame, protein folding being the fifth most regulated pathway by PGC-1α, as aforementioned, 

functions to mediate the UPR via co-activation of UPR sensor, ATF6α (250). ATF6α knockout 

mice displayed compromised recovery from acute exercise and significant intolerance to 

repeated exercise bouts. Additionally, PGC-1α deficient mice have previously been shown to be 

exercise intolerant (69, 70, 123, 227). This can be attributed to PGC-1α regulation of 

mitochondrial biogenesis and gene expression of neuromuscular junctions, as both are involved 

in endurance capacity. However, Wu and coworkers’ study (250) implicated that the exercise 

intolerance observed may be in part due to PGC-1α control of physiological ER stress. The 

blockage of detrimental ER stress, via deletion of CHOP expression in the PGC-1α knockout 

animals partially rescued exercise intolerance and improved total running distance by 50% (250).  

It is noteworthy that in this study, the adaptation of ER stress by regulating genes involved in 

protein processing occurred prior to the training-induced increase in mitochondrial cytochrome c, 

a surrogate marker of mitochondrial content. This suggests that initial improvements to ER 

proteostasis may be necessary to precede mitochondrial protein synthesis (206). Interestingly, a 

recent study which used a chemical chaperone mimetic to attenuate CHOP expression found no 

impact on exercise-induced mitochondrial adaptations (139). With regards to the UPR
MT

, a link 

has been made to mitochondrial biogenesis (34, 148), however its relation to exercise-induced 

adaptations merits further work as few studies hve been done. As the UPR branches are involved 

in crosstalk with many other regulatory pathways, teasing out what functions each branch serves 

carries exciting therapeutic potential.  

2.9.   Tauroursodeoxycholic Acid (TUDCA) 

 As ER stress, aberrant UPR activation, and protein misfolding underlie many diseases 

and health conditions discussed earlier, drug administration of tauroursodeoxycholic acid 
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(TUDCA) is an active field of study (196, 228). TUDCA is a natural occurring bile acid 

produced in trace amounts by the liver (228). It is the taurine conjugate of ursodeoxycholic acid, 

the most hydrophilic compound of its kind (14). It has currently been approved by the FDA for 

treatment of cirrhosis of the liver (203) and suggested for therapeutic use in Duchenne muscular 

dystrophy (143). A review of the literature reveals the pleiotropic effects of TUDCA in a variety 

of cell lines in interfering with the mitochondrial-mediated cell death, ROS production, ER stress 

reduction, and caspase activation (67, 167, 187, 253). Similar to BiP, TUDCA is found to be 

calcium-sensitive as well, altering intracellular Ca
2+

 levels via modulation of ER ATPases (58, 

235) and inhibiting caspase-12 activation associated with apoptotic ER stress (210, 228, 253). 

TUDCA prohibits mitochondrial-mediated cell death by inhibiting BAX translocation to the 

mitochondrial membrane (187). Additionally, it binds to the hydrophobic regions of unfolded 

proteins preventing aggregation and thus allowing for enhanced degradation (4, 58, 167) (Fig. 

1C). As a result, TUDCA functions as a potent general ER stress inhibitor,  resulting in the 

reduction of CHOP levels and consequent cell death (167). It should be noted that the type of cell 

line observed and the stress induced can result in varying mediatory effects of TUDCA. In 

skeletal muscle of rats, TUDCA was found to have no impact on UPR
ER

 markers except for 

exercise-induced CHOP (139). However, TUDCA inhibited PERK phosphorylation and ATF4 

induction upon palmitate-induced stress in skeletal muscle in vitro (67) as well as in liver and 

adipose tissue of mice models of Type 2 diabetes (167). Altogether, although the mechanisms of 

TUDCA in repressing ER stress remains to be further elucidated, TUDCA is considered a potent 

agent in the general amelioration of ER stress.  
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3.0. Research Objectives 

Thus, based on the review of literature, the main objectives of my thesis, using C2C12 murine 

skeletal muscle cells, were to: 

 

1) Characterize UPR
MT

 and UPR
ER

 modulation during differentiation-induced 

mitochondrial biogenesis, and its relation to mitochondrial biogenesis markers; 

2) Investigate the role of ER stress in differentiation- and CCA-induced mitochondrial 

biogenesis using a chemical chaperone mimetic drug, TUDCA, by measuring 

surrogate markers of mitochondrial biogenesis, UPR
MT

 and UPR
ER

;
 
 

3) Identify the necessity of certain UPR
MT

 and UPR
ER

 components, specifically CHOP 

induction, in CCA-induced mitochondrial adaptations via silencing RNA (siRNA). 

 

Hypotheses 

1) We hypothesize that UPR signaling prior to differentiation may serve as a precursor 

to mitochondrial adaptations and thus, its inhibition will hinder differentiation-

induced mitochondrial biogenesis; 

2) We hypothesize that attenuation of the UPR with TUDCA will impact mitochondrial 

adaptations during CCA;  

3) We hypothesize that inhibition of CHOP expression will alter CCA-induced 

mitochondrial biogenesis. 
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 Summary 

Mitochondria are comprised of both nuclear- and mitochondrial-encoded proteins 

requiring precise stoichiometry for their integration into functional complexes. The augmented 

protein synthesis associated with mitochondrial biogenesis results in the accumulation of 

unfolded proteins, thus triggering cellular stress. As such, the unfolded protein responses 

emanating from the endoplasmic reticulum (UPR
ER

) or the mitochondrion (UPR
MT

) are triggered 

to ensure correct protein handling. Whether this response is necessary to facilitate mitochondrial 

adaptations is unknown. Two models of mitochondrial biogenesis were used: skeletal muscle 

differentiation and chronic contractile activity (CCA) in C2C12 muscle cells. After 4 days of 

differentiation, our findings depict selective activation of the UPR
MT

 in which UPR
MT

 

chaperones decreased, however Sirt3 was elevated along with UPR
ER

 markers. To delineate the 

role of ER stress in mitochondrial adaptations, the ER stress inhibitor TUDCA was administered 

prior to differentiation. Surprisingly, mitochondrial markers COX-I, COX-IV, and PGC-1α 

protein levels were augmented (by 1.3-1.5-fold) above that of vehicle-treated cells. Similar 

results were obtained in myotubes undergoing CCA in which mitochondrial biogenesis was 

enhanced by ~2-3-fold, along with elevated UPR
MT

 markers Sirt3 and CPN10. To verify whether 
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the findings were attributable to the terminal UPR
ER

 branch directed by the transcription factor 

CHOP, cells were transfected with CHOP siRNA. Basally, COX-I levels increased (~20%) and 

COX-IV decreased (~30%), suggesting that CHOP influences mitochondrial composition. This 

effect was fully restored by CCA. Therefore, our results suggest that mitochondrial biogenesis is 

independent of the terminal UPR
ER

. Under basal conditions CHOP is required for the 

maintenance of mitochondrial composition, but not for differentiation- or CCA-induced 

mitochondrial biogenesis.      
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Introduction 

Muscle differentiation from the myoblast to the myotube stage requires a large increase 

in the synthesis of new proteins. This increase in protein synthesis can perturb the proteostasis of 

a cell via an accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER), 

or in the mitochondrial matrix (27, 43). Unfolded proteins trigger the activation of a quality 

control system termed the unfolded protein response (UPR). The UPR involves a transcriptional 

program that feeds back to decrease global protein translation, while increasing the synthesis of 

selected chaperones and proteases involved in protein folding in order to restore homeostasis 

(33). In the ER lumen, the UPR (UPR
ER

) is triggered by aggregated unfolded proteins binding to 

the BiP chaperone. This results in the release of BiP’s inhibition upon UPR transmembrane 

sensors, and the activation of ATF6α, IRE1α, and PERK. Subsequently, a series of transcription 

factors are upregulated to attenuate the originating ER stress (31). A similar, yet independent 

mechanism lies within the mitochondrial matrix and intermembrane space (29). This 

mitochondrial UPR (UPR
MT

) also induces organelle-specific chaperones and proteases to restore 

inter-organelle homeostasis (3). If the unfolded proteins exceed the capacity of the folding 

machinery and proteostasis cannot be attained, autophagy, or ultimately, apoptosis are triggered 

(29, 37).  

Although the UPR functions to attenuate cellular stress, it appears that a certain amount is 

required for optimal muscle differentiation (27, 42). Myotube fusion has been shown to be 

defective when ER stress is inhibited, and reversed with the induction of stress via a chemical 

inducer, thapsigargin (42). ER stress was also found to enhance myofiber formation due to 

triggered apoptosis, eliminating vulnerable cells (26). Hence, the UPR can be selectively 
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activated to control cell growth and proper tissue differentiation, which may have implications 

for myogenesis and muscle fiber size (6, 27, 42).  

The UPR is also activated with exercise-induced mitochondrial biogenesis (19, 23, 44). 

Skeletal muscle has a relatively low mitochondrial content under basal conditions, but muscle 

mitochondria are highly adaptive during physiological processes such as myogenesis or exercise, 

in which the cellular energy demands are increased (8, 11, 14, 15). Both of these conditions 

trigger signal transduction pathways that activate the master transcriptional regulator PGC-1α, 

leading to an increased expression of nuclear and mitochondrial genes (32). This mitochondrial 

biogenesis requires signaling to transcription and translation for the production of additional 

proteins for import into the organelle. However, the signals preceding mitochondrial biogenesis 

remain enigmatic. Is the UPR required for adequate mitochondrial biogenesis, as it is for muscle 

differentiation? It is known that an increase in ER stress and UPR activation is associated with 

exercise, particularly in untrained subjects during acute contractile activity (19, 23, 44). This 

may serve as a precursor signaling system for exercise-induced mitochondrial biogenesis. 

Despite this, CHOP deletion, a stress induced transcription factor involved in both the UPR
ER

 

and the UPR
MT

, has been found to ameliorate phenotypic exercise intolerance (44), inferring a 

potential role of UPR components in mitochondrial adaptations. Therefore, it is of interest to us 

to investigate whether mitochondrial biogenesis relies upon intracellular communication with the 

UPR. 

In order to investigate this, recent work has employed the chemical chaperone mimetic 

drug, Tauroursodeoxycholic acid (TUDCA) to attenuate stress-induced CHOP (23). TUDCA 

functions to diminish the terminal UPR
ER

 via assisting in protein folding in the ER lumen, and 

thus reducing overall stress induction and UPR activation  (9, 23, 40). Recently, it was observed 
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that the mitochondrial biogenesis induced in TUDCA-injected rats undergoing chronic 

contractile activity (CCA) did not significantly differ from those injected with vehicle control 

(23). Therefore, this would suggest that the exercise-induced mitochondrial adaptations occurred 

independently of ER stress induced CHOP expression. Thus, the purposes of the present study 

were to investigate the necessity of the UPR during mitochondrial biogenesis induced during 

muscle cell differentiation, as well as subsequent chronic contractile activity, with a specific 

focus on the role of CHOP protein.  
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Methods 

Cell culture.  C2C12 murine skeletal muscle cells were proliferated on 6-well cell culture plates in 

Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% fetal bovine serum and 

1% penicillin-streptomycin (P/S) [growth medium (GM)]. The cells were incubated at 37˚C in 

5% CO2. Upon reaching 95-100% confluency, the medium was switched to DMEM 

supplemented with 5% heat-inactivated horse serum and 1% P/S in order to induce 

differentiation of the myoblasts into myotubes. Cells were harvested either immediately prior to 

the GM being switched to differentiation medium (DM; day 0), or 4 days after differentiation in 

DM. The DM was changed daily. To investigate the role of the UPR in myoblast differentiation, 

we aimed to attenuate UPR activation prior to cells exiting the cell cycle. Thus, 

tauroursodeoxycholic acid (TUDCA; Millipore) was used for the partial inhibition of the UPR
ER

  

(23). Cells were grown to subconfluence and then pretreated with 500 µg/ml of either water or 

TUDCA in GM for 24 h. Thereafter, cells were switched to DM in the absence of TUDCA to 

differentiate for 4 days prior to subsequent collection.  

Fusion Index. For quantification of myoblast fusion, cells were washed twice with ice-cold 

phosphate-buffered saline (PBS, Sigma-Aldrich) and fixed in 100% methanol at -20˚C for 5 

minutes before being left to air dry for 10 minutes. Wells were then incubated in 1 mL of Giemsa 

stain (Electron Microscopy Sciences, Hatfield, PA) diluted 1:20 in 1 mM sodium phosphate 

buffer (pH 5.6) for 10 minutes at room temperature. Thereafter, the solution was aspirated and 

rinsed with distilled water. Phase-contrast images were captured using a Canon Powershot G5 

camera adapted to a light microscope at a 10× magnification. Nuclei were also manually counted 

from three randomly chosen regions per experimental group. The fusion index was calculated by 

determining the fraction of total nuclei found in myotubes. Myotubes were defined as cells with 

two or more nuclei (43). All treatments were performed in triplicate.   



 

56 
 

Fluorescence microscopy. C2C12 muscle cells were grown and differentiated on custom made 

glass bottom 6-well dishes that were pre-coated with gelatin. On day 4 of differentiation, 

myotubes were treated with 100 nM of MitoTracker Green FM (Life Technologies) and 

incubated at 37°C for 45 minutes. Following incubation, the media was aspirated and the cells 

were washed with PBS and re-incubated in fresh DM. Fluorescence was visualized using the 

Nikon Eclipse TE2000-U microscope. All images were captured at the same exposure.  

Electrical Stimulation. Myotubes were stimulated on the fifth day of differentiation, as done 

previously (7, 39).  In brief, customized six-well plate lids outfitted with two platinum wires per 

well were submerged into the media of plates. The DM was changed 1 h before stimulation and 

immediately after. For TUDCA experiments, fully differentiated myotubes were treated with 500 

µg/ml of either TUDCA or sterile water in DM on day 5, 1 h prior to chronic contractile activity 

(CCA), and was replenished following stimulation. Electrically-induced CCA was conducted for 

3 h per day (9V, 5Hz) with 21 h recovery periods for a total of 4 days. Cells were harvested on 

the fifth day, 21 hours after the last stimulation.  

Transfection. On day 3 of myotube differentiation, cells were incubated in pre-transfection 

media (5% HS in DMEM). The following day, myotubes were transfected for 6 h with 30 nM of 

scrambled (Silencer select negative control; Life technologies; 4390846;) or CHOP siRNA (Life 

Technologies; s201245 and s64888) using 10 µl of Lipofectamine 2000 in 2 ml of DMEM. The 

media was then changed back to DMEM supplemented with 5% HS and 1% P/S. On day 5, cells 

were kept under control conditions or were subjected to CCA, as described previously (7, 39). 

On day 6, cells were incubated in pre-transfection media for another siRNA treatment of 6h 

transfection at day 7 prior to subsequent stimulation. Cells were collected 21 h after the fourth 

day of CCA.  



 

57 
 

Protein Extraction. Cells were rinsed twice with ice-cold PBS and then trypsinized at 37 ˚C for 

collection on days 0 and 4 of differentiation. Protein extracts were prepared by suspending the 

collected cells in lysis buffer supplemented with protease and phosphatase inhibitors. Thereafter, 

the cells were frozen in liquid N2 and subsequently thawed in a 37˚C water bath for 5 freeze-

thaw cycles. Following centrifugation at 16,000 g at 4˚C for 10 minutes, the pellets were 

discarded and the supernatant fractions were collected and stored at -80 ˚C for subsequent 

immunoblotting analysis. 

Immunoblotting.  The protein content of samples were measured using the Bradford method. 

Equal amounts of protein (25-50 µg) were separated by electrophoresis on 8-15% SDS-

polyacrylamide gels. The proteins were then wet transferred (Mini Trans-Blot electrophoretic 

transfer cell, Bio-Rad, Mississauga, Canada) onto nitrocellulose membranes. After blocking the 

membranes for 1 h in 5% skim milk, they were then probed overnight at 4˚C with primary 

antibodies. For full list of proteins probed and antibodies, see Table 1. Blots were washed (3 × 5 

min) in 1 × TBST [Tris-buffered saline-Tween-20, 25 mM Tris·HCl (pH 7.5), 1 mM NaCl, and 

0.1% Tween-20] solution and incubated for 1 h at room temperature with the appropriate anti-

mouse or anti-rabbit secondary antibody, followed by 1 × TBST wash (3 × 5 min). Membranes 

were visualized with enhanced chemiluminescence using Clarity Western ECL Substrate (Bio-

Rad) and exposed to film. Signals were quantified with Image J Software (NIH, Bethesda, MD, 

USA). Values were normalized to the appropriate loading controls: α-Tubulin, β-Actin, or 

GAPDH. 

Statistical analysis.   All data are represented as means ± SEM. Comparisons between days 0 and 

4 were made with Student’s paired t-tests. Similar statistics were performed for the differentiated 

TUDCA-treated versus vehicle cells, as well as for control versus CCA myotubes. For 
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experiments involving CCA in combination with TUDCA-treatment or CHOP siRNA, two-way 

ANOVA were performed followed by Bonferroni’s Post Hoc tests when appropriate. Analyses 

were made with GraphPad Prism 7.0. Differences were considered significant if p < 0.05.  
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Table 1.  List of primary antibodies used for immunoblotting.  

Antibody Manufacturer Product No. 

α-Tubulin Millipore CPO6 

ATF4 Santa Cruz Biotechnology SC-200 

ATF6 Santa Cruz Biotechnology SC-22799 

β-Actin Santa Cruz Biotechnology SC-47778 

BiP Cell Signaling 3183S 

CHOP 
Cell Signaling 

Santa Cruz Biotechnology 

2895 

SC-7351 

COX I Abcam Ab14705 

COX IV Abcam Ab14744 

CPN10 Enzo Life Sciences ADI-SPA-110 

GAPDH Abcam Ab8245 

MHC-II (MY-32) Abcam Ab51263 

mtHSP60 Enzo Life Sciences ADI-SPA-806 

mtHSP70 Enzo Life Sciences ADI-SPA-825 

PGC-1α Millipore AB3242 

Tfam In house n/a 

Sirt3 Cell Signaling 5490S 
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Results 

 

Differentiation model of C2C12 induces mitochondrial biogenesis. C2C12 cells were stained with 

MitoTracker Green (Life Technologies) on day 0 and 4 of differentiation to identify the 

mitochondrial network. As depicted in Fig. 1A, myotubes had greater green fluorescence 

representing a higher mitochondrial content than myoblasts. To confirm this qualitative analysis, 

C2C12 whole-cell lysates were collected at days 0 and 4 of differentiation and mitochondrial 

markers were probed as measure of mitochondrial content.  COX-I, a mitochondrially-encoded 

subunit of Complex IV, increased by 5-fold from day 0 to 4 (P < 0.05; Fig. 1C). Similarly COX-

IV, a nuclear-encoded subunit of Complex IV increased 3-fold by day 4 of differentiation (P < 

0.05; Fig. 1D). During the same timeframe, a 2-fold increase in mitochondrial transcription 

factor, Tfam (P < 0.05; Fig. 1E) was also observed. These data strongly confirm the increase in 

mitochondrial biogenesis during myocyte differentiation, similar to previous studies (8, 21). 

The UPR is selectively activated during differentiation. UPR protein markers of both the ER and 

mitochondria were analyzed in whole cell lysates at days 0 and 4 of differentiation by 

immunoblotting. The intra-mitochondrial chaperones, mtHSP70, mtHSP60, and CPN10 were all 

decreased significantly by day 4 (P < 0.05; Figs. 2B-D). In contrast, the antioxidant protein Sirt3 

increased by 3-fold during differentiation (Fig. 2E). In relation to the UPR
ER

 markers, there was 

no change in CHOP protein between days 0 to 4 of differentiation (Figs. 2F) however, 

transcription factor ATF4 increased by 3.4–fold at day 4 (P < 0.05; Fig. 2G). BiP chaperone was 

at undetectable immunoblotting levels at day 0 but increased significantly by day 4 indicative of 

increased ER stress (P < 0.05; Fig. 2H).  Taken together, the UPR
ER

 is activated while there is a 

decrease in UPR
MT 

activity, with a very selective UPR
MT

 protein induction in response to 

differentiation in muscle cells. 
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Figure 1. C2C12 differentiation induces mitochondrial biogenesis. (A) MitoTracker green 

fluorescent images captured at 20× magnification of C2C12 myoblasts versus myotubes on day 

(D) 4 of differentiation.  (B)Representative western blots and graphical quantifications of: (C) 

COX-I, (D) COX-IV, (E) and Tfam at days (D) 0 and day 4 of differentiation. Data are 

represented as mean ± SEM and are measured in arbitrary units (a.u.). (*, P < 0.05 vs. day 0; 

n=3 experiments). 
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Figure 2. Skeletal muscle differentiation induces ER stress while the UPRMT is largely 

inactivated. (A) Representative western blots of UPRMT 
markers. Graphical quantifications of 

muscle cells during differentiation on days (D) 0 and 4: (B) mtHSP70, (C) mtHSP70, (D) 

CPN10, and (E) Sirt3. (F) Representative blots of UPRER
 markers. (G) Graphical 

quantification of (G) ATF4 and (H) BiP.  Data are represented as mean ± SEM and are 

measured in arbitrary units (a.u.). (*, P < 0.05 vs. day 0; n.d., not detectable; n=3 

experiments). 
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UPRER inhibition with TUDCA augments mitochondrial content, despite reduced differentiation. 

Cultured murine myoblasts were pretreated with one dose of TUDCA for 24 h prior to 

subsequent differentiation for 4 days. Phase-contrast images of stained cells were captured at day 

4 of differentiation (Fig. 3A) to assess the fusion index (FI) as a measure of myotube formation. 

In vehicle-treated cells, differentiation was accompanied by enhanced myotube formation and 

fusion, as expected. In comparison to vehicle, cells treated with TUDCA had a greater number of 

nuclei dispersed outside of the myotubes remaining as unfused myoblasts (Fig. 3A). The percent 

of nuclei in myotubes (fusion index, (FI)) on day 4 of differentiation in TUDCA-treated cells 

(73%) was less than the vehicle (89%; P < 0.05, Fig. 3B). In addition, significantly less MHC-II 

was present in TUDCA-treated cells than in the vehicle-treated cells, due to fewer myotube 

formations by day 4 (P < 0.05; Fig. 3C). Thus, partial inhibition of the UPR with TUDCA 

compromises myoblast fusion and the differentiation of muscle cells into myotubes.   

To gain a better insight into the significance of the UPR in differentiation-induced 

mitochondrial biogenesis, mitochondrial biogenesis markers were measured on day 4 of 

differentiation in vehicle- and TUDCA-treated cells. While Tfam was unaffected by TUDCA 

treatment, PGC-1α, COX-I, and COX-IV were all ~1.3 to 1.5-times higher than control (P < 

0.05; Figs. 3D-G). Our results suggest that inhibition of the UPR
ER

 during myogenesis augments 

mitochondrial content, despite reduced differentiation.  

TUDCA pretreatment in myoblasts decreased BiP induction but had no impact upon the UPRMT 

after 4 days of skeletal muscle differentiation. UPR protein markers were assessed at day 4 of 

differentiation after 24 h of TUDCA or vehicle treatment in myoblasts. UPR
MT

 markers 

mtHSP70, mtHSP60, and its co-chaperone CPN10, and Sirt3 were not affected by TUDCA, as 

protein levels remained elevated at day 4 of differentiation, 4 days after the treatment (Figs. 4A).  
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Figure 3. TUDCA treatment increases mitochondrial biogenesis markers despite inhibiting 

differentiation.   C2C12 cells were pretreated once for 24 h  at subconfluence with TUDCA (T) 

or water [vehicle (V)] prior to either immediate collection (day 0) or differentiation (for 2 or 4 

days). (A) Phase-contrast imaging was captured on day (D) 4 of differentiation. Lightly-

stained dots represent nuclei. (B) Fusion index (FI) was calculated as % of nuclei within 

myotubes. (C) Representative blot and quantification of MHC-II during differentiation D0, 

D2, and D4 of pretreated cells. Representative western blots and their graphical summaries in 

TUDCA-treated cells mitochondrial markers: (D) COX-I, (E) COX-IV, (F) Tfam, and (G) 

PGC-1α level measured in arbitrary units (a.u.). Data are represented as mean ± SEM. (*, P < 

0.05 vs. vehicle (V); n.d., not detectable; n=3 to 10 experiments). 
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Figure  4. TUDCA treatment decreased BiP protein but had no impact upon the UPR
MT 

after 

4 days of skeletal muscle differentiation. Cells were pretreated for 24 h in 500 µg/ml of 

TUDCA (T) or water [vehicle (V)] prior to differentiation for four days. Representative 

western blots of UPR
MT

 proteins (A) mtHSP70, mtHSP60, CPN10, and Sirt3 were all similar 

in protein expression between vehicle- or TUDCA-treated cells. No effect of TUDCA was 

observed for UPR
ER

 markers (B) CHOP and ATF4. (C) Representative blot and graphical 

quantification of BiP protein.  α-Tubulin serves as the loading control. Data are represented as 

mean ± SEM and are measured in arbitrary units (a.u.). (*, P < 0.05 vs. vehicle; n=3 or 4 

experiments). 
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Additionally, there was no difference in UPR
ER 

markers CHOP and ATF4 protein content 

between treated and vehicle cells on day 4 of differentiation (Figs. 4B). However, levels of the 

ER chaperone BiP were attenuated by 45% in TUDCA-treated cells (P < 0.05; Fig. 4C). 

TUDCA treatment attenuates the increase in CHOP, while augmenting CCA-induced 

mitochondrial biogenesis. To confirm whether our CCA-model induces mitochondrial 

biogenesis, murine skeletal muscle cells were electrically stimulated on day 5 of differentiation 

for 4 consecutive days. As expected, CCA augmented COX-I and COX-IV by approximately 

2.7-fold, and PGC-1α levels by 1.9-fold (P < 0.05; Figs. 5A-C). Incubating cells with TUDCA 

from day 5 of differentiation increased mitochondrial markers in both resting (control) and CCA 

conditions, with a larger effect of TUDCA on  COX-I and PGC-1α levels under CCA stimulated 

conditions relative to the vehicle-treated myotubes (P < 0.05; Figs. 5D and 5F). Interestingly, the 

nuclear-encoded subunit COX-IV was increased by 2.6-fold with CCA as expected, but this 

increase was dependent upon the presence or absence of TUDCA (P < 0.05; Fig. 5E).  These 

findings suggest that CCA-induced mitochondrial biogenesis can be augmented under conditions 

of potent TUDCA treatment in skeletal muscle cells.    

With respect to UPR markers, TUDCA inhibited CCA-induced CHOP on both day 2 and 

4 of stimulation by 64% and 30% respectively relative to control, thus attenuating this branch of 

the UPR
ER

 during CCA (P < 0.05; Fig. 6A). Of note, CHOP levels were unaltered by TUDCA 

under control conditions. In accordance with previously conducted studies, TUDCA inhibition of 

CHOP was not significant at basal levels unless an additional stressor was included (23). 

Furthermore, TUDCA had no impact on upstream general UPR
ER

 signaling evident by 

unchanged ATF4 and BiP content (Figs. 6C and 6D).  
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Figure 5. Chronic contractile activity induces mitochondrial biogenesis and is further 

augmented with TUDCA treatment. C2C12 cells were differentiated for 5 days prior to chronic 

contractile activity (CCA) for 4 successive days. Representative blots and graphical 

representations of mitochondrial markers (A) COX-I, (B) COX-IV, and (C) PGC-1α. 

Representative blots and graphical representations of cells treated with either TUDCA (T) or 

water (vehicle [V]) before and after CCA: (D) COX-1, (E) COX-IV, and (F) PGC-1α. Data 

are represented as mean ± SEM and are measured in arbitrary units (a.u.). (π, P < 0.05 vs. 

control (CON); *, P < 0.05 main effect of CCA; φ, P < 0.05 main effect of TUDCA 

treatment; #, P < 0.05 interaction effect of CCA and TUDCA treatment; n=5 to 7 

experiments). 
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Figure 6. TUDCA attenuates ER stress-induced CHOP associated with CCA and increases 

UPRMT antioxidant marker Sirt3 and CPN10 chaperone. C2C12 cells were differentiated for 5 

days one hour before chronic contractile activity (CCA), cells were treated with either 

TUDCA (T) or water (vehicle [V]) for 4 consecutive days prior to collection. (A) UPR
ER

 

marker CHOP representative blot and graphical representation. (B) Representative blots of 

other UPR markers and their graphical representations: (C) ATF4, (D) BIP, (E) mtHSP70, (F) 

mtHSP60, (G) CPN10, and (H) Sirt3. Data are expressed as mean ± SEM and are measured in 

arbitrary units (a.u.). (π, P < 0.05 vs. control; *, P < 0.05 main effect of CCA; φ, P < 0.05 

main effect of TUDCA treatment; #, P < 0.05 interaction effect of CCA and TUDCA 

treatment; n=4 to 6 experiments). 
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TUDCA enhances the UPRMT antioxidant response and CPN10 induction with CCA. As 

discussed above, UPR
ER

 markers CHOP, ATF4, and BiP remained unaffected with TUDCA 

treatment under basal conditions (Fig. 6A, 6C and 6D). Similar results were obtained basally 

with UPR
MT

 chaperones mtHSP70, mtHSP60, and CPN10 (Fig. 6E-6G). However, the 

mitochondrial antioxidant marker of the UPR, Sirt3, increased by 30% (P < 0.05; Fig. 6G) with 

TUDCA treatment in comparison to vehicle control. 

  UPR
ER

 transcription factor ATF4 was elevated by an average of ~48% with CCA-

induced stress, regardless of treatment (P < 0.05; Fig. 6C). BiP levels were augmented with CCA 

as well, particularly in vehicle-treated cells (66% vs. 8%; P <0.05; Fig. 6D). Likewise, UPR
MT

 

markers increased with CCA, as displayed by the elevated levels of mtHSP70, mtHSP60, and 

Sirt3 (P < 0.05; Figs. 6E, 6F, and 6H). Moreover, similar to basal levels, Sirt3, was 44% greater 

with in TUDCA-treated cells (P < 0.05; Fig. 6H), putatively as an antioxidant response 

accompanying the augmented mitochondrial content. Interestingly, CPN10 was augmented by 

1.7-fold with CCA only upon TUDCA treatment (P < 0.05; Fig. 6G).  

CHOP is required basally for correct stoichiometry of electron transport chain subunits, and is 

compensated with CCA. Since TUDCA attenuated CCA-induced CHOP expression, but led to an 

increase in mitochondrial markers during differentiation and as a result of CCA, it was of interest 

to investigate whether knocking down CHOP via siRNA would reproduce similar results of 

augmenting mitochondrial biogenesis. One day prior to CCA on day 4 of differentiation, C2C12 

cells were transfected with CHOP or scrambled siRNA. To prolong the knockdown during the 

subsequent 4-day CCA treatment, cells were transfected a second time on day 7. CHOP 

knockdown was confirmed at the protein level. Basally, CHOP levels in knockdown cells were 

reduced by 42% relative to control. Under CCA conditions, CHOP protein was induced by 3-fold  
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Figure 7. CHOP influences mitochondrial content basally and is not required for CCA-

induced mitochondrial biogenesis. Cells were transfected with either 30 nM of scrambled 

(Scr) or CHOP siRNA (si-CHOP) on days 4 and 7 of differentiation. Myotubes underwent 4 

days of successive chronic contractile activity (CCA) starting on day 5. (A) CHOP 

representative blot and graphical representation. (B) Representative blots and graphical 

representations of mitochondrial markers (C) COX-I, (D) COX-IV, and (E) Tfam. Data are 

expressed as mean ± SEM and are measured in arbitrary units (a.u.). (*, P < 0.05 main effect 

of CCA; φ, P < 0.05 main effect of CHOP siRNA; n=7 to 11 experiments). 

 

C O N  C C A  

0 . 0 0

0 . 0 5

0 . 1 0

0 . 1 5

0 . 2 0

0 . 2 5

C
H

O
P

 
p

r
o

t
e

i
n

 
(

a
.

u
.
)





*



A 

B 

C D E 

C O N  C C A  

0 . 0

0 . 5

1 . 0

1 . 5

2 . 0

C
O

X
-

I
 
p

r
o

t
e

i
n

 
(

a
.
u

.
)





*

C O N  C C A  

0 . 0

0 . 5

1 . 0

1 . 5

C
O

X
-

I
V

 
p

r
o

t
e

i
n

 
(

a
.
u

.
)

#

*

C O N  C C A  

0 . 0

0 . 5

1 . 0

1 . 5

T
f

a
m

 
p

r
o

t
e

i
n

 
(

a
.
u

.
)

*



 

71 
 

in scrambled-treated cells, but there was no significant effect of CCA in knockdown cells (P < 

0.05; Fig.7A).  

In the presence of CHOP knockdown under basal conditions, mitochondrially-encoded 

COX-I increased by 1.2-fold, while nuclear-encoded proteins, COX-IV, decreased by 1.4-fold,  

and Tfam remained unaffected (P < 0.05; Fig. 7B-7E).  In response to CCA, the increase in 

COX-I was further augmented by ~1.5-fold as expected, whereas remarkably, the COX-IV 

decrease observed basally in knockdown cells was compensated by 2.5-fold to levels comparable 

with scrambled-treated cells (Fig. 7C and 7D). Additionally, Tfam was elevated by 1.3-fold with 

CCA (P < 0.05; Fig. 7E). Altogether, the findings suggest that CHOP influences mitochondrial 

composition under basal conditions where mitochondrial biogenesis may be potentially impaired 

by orphaned electron transport chain (ETC) subunits, but this can be rescued with CCA.  

Moreover, the exercise-induced mitochondrial biogenesis does not rely on CHOP induction of 

either the ER or mitochondrial UPR.  

Of note, general UPR signaling of both the mitochondria and ER remained unaffected by 

CHOP silencing, as represented by insignificant differences at basal levels (Fig. 8A-8F). UPR
ER

 

proteins BiP and ATF4 (P < 0.05; Fig.8B and 8C), as well as UPR
MT

 markers mtHSP70, 

mtHSP60, and Sirt3, were all elevated with CCA indicative of persistent stress induction and 

UPR activation associated with muscle contractile activity (P < 0.05; Fig. 8D-8F). Contrary to 

TUDCA-treated cells undergoing CCA, CPN10 levels did not increase, but remained unaltered 

(Fig. 8A).  
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Figure 8. CHOP knockdown in skeletal muscle cells had no impact on general UPR signaling. 

C2C12 cells were transfected with either 30 nM of scrambled (Scr) or CHOP siRNA (si-

CHOP) on days 4 and 7 of differentiation. Chronic contractile activity (CCA) began on day 5. 

(A) Representative blots of UPR
MT/ER

 markers. Graphical representations of UPR
ER

 markers 

(B) ATF4, (C) BiP, and UPR
MT

 markers (D) mtHSP70, (E) mtHSP60, and (F) Sirt3. Data are 

expressed as mean ± SEM and are measured in arbitrary units (a.u.). (*, P < 0.05 main effect 

of CCA; φ, P < 0.05 main effect of CHOP siRNA; n=4 to 7 experiments). 
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Discussion 

Mitochondria provide energy in the form of ATP to maintain cellular metabolic 

homeostasis (38). However, mitochondria also have alternative roles in regulating other 

pathways such as autophagy (12, 18, 30), apoptosis (20, 25, 36, 41), and calcium homeostasis 

(10, 13, 22), all of which are vital to skeletal muscle health. During both muscle development 

and exercise, PGC-1α, the master regulator of mitochondrial biogenesis, is activated resulting in 

an increase in mitochondrial content (2, 8, 21, 23, 39). Mitochondrial biogenesis involves the 

synthesis of many nuclear- and mitochondrially-encoded proteins, and the increase in protein 

synthesis which occurs can potentially perturb cellular homeostasis by exceeding the protein 

folding capacity of the cell. Thus, to prevent this accumulation of unfolded proteins, the unfolded 

protein response (UPR) occurs in both the endoplasmic reticulum (UPR
ER

) and the 

mitochondrion (UPR
MT

). This involves the activation of a series of transcription factors to 

promote the transcription of genes encoding chaperones designed to assist in protein folding. 

Additionally, in an attempt to regain proteostasis, global protein translation is reduced. In this 

study, we hypothesized that this breadth of UPR signaling activation will impact mitochondrial 

adaptations induced either during skeletal muscle differentiation, or as a result of chronic 

contractile activity (CCA). 

Similar to earlier work from our laboratory, C2C12 muscle cell differentiation led to the 

upregulation of mitochondrial markers as a result of the induced biogenesis (8). Along with this 

mitochondrial biogenesis triggered during muscle development, our data depict the selective 

activation of UPR components, which corroborates previous findings (26, 27). In order to 

investigate the role of ER stress in particular, the terminal UPR
ER

 branch was partially inhibited 

using TUDCA. TUDCA functions as a chaperone mimetic to ameliorate ER stress by assisting in 
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protein folding (9, 40). As a result, pro-apoptotic factors CHOP and caspase-12 induction are 

reduced with TUDCA treatment in response to cellular stress (23, 40, 45). The partial inhibition 

of UPR
ER

 signaling prior to the onset of differentiation was verified in our model by the decrease 

in myotube differentiation. Reduced differentiation is characteristic of ER stress attenuation, due 

to less myoblast fusion and diminished stress-induced myoblast apoptosis (26, 27, 43). 

Additionally, the ER stress marker BiP protein was decreased at day 4 of differentiation. This is 

consistent with another study in which the attenuated protein expression of BiP in human liver 

cells was observed in response to UPR inhibition (45).  

Surprisingly, despite the reduced myotube differentiation, augmented mitochondrial 

biogenesis was observed, indicated by increased mitochondrial markers in the presence of 

TUDCA. These changes in specific mitochondrial markers occurred with the accompaniment of 

large increases in ATF4, no changes in CHOP and a decrease in BiP protein level. This suggests 

that the attenuation of ER stress with TUDCA facilitated the synthesis of mitochondria, and that 

ATF4 may be important in directing this process. This occurred in the absence of increases in 

UPR
MT

 proteins mtHSP70, mtHSP60 and CPN10, suggesting that this induction is not central for 

differentiation-induced mitochondrial biogenesis.  

We have previously shown that our cell culture model of CCA results in marked 

increases in mitochondrial biogenesis, as indicated by changes in MitoTracker green staining, 

increases in cellular respiration, as well as large changes in mitochondrial markers (24, 39). The 

current study confirmed these data, and further suggests that the increases in mitochondrial 

content are accompanied by only modest changes in UPR
MT

 markers, but large increases in BiP, 

as well as transcription factors ATF4 and CHOP. The inhibition of ER stress with TUDCA led to 

a further increase in the expression of mitochondrial markers, including PGC-1α, which was 
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additive with the CCA effect. This occurred despite the fact that the levels of an important 

transcription factor of the UPR, CHOP, were reduced or unchanged in the presence of TUDCA, 

while the increases in ATF4 and BiP were unaffected. This suggests that increases in 

mitochondrial content produced by CCA occur independently of CHOP, but that ATF4 and BiP 

may be important for the adaptation observed. Importantly also, components of the UPR
MT

 

(mtHSP70, mtHsp60 and CPN10) tended to be further elevated during CCA in the presence of 

TUDCA, suggesting an improvement in intra-organelle protein trafficking and folding capacity 

as a result of combined treatment of contractile activity and ER stress attenuation.   

Our results indicate that the dampening of ER stress with TUDCA improves both 

differentiation- and CCA-induced mitochondrial biogenesis, while selectively enhancing the 

UPR
MT

 response during CCA. We were surprised by this result because our previous in vivo 

findings indicated that mitochondrial adaptations during CCA were largely independent of the 

presence of TUDCA and partial UPR
ER

 inhibition (23). Indeed, the UPR
ER

 inhibition with 

TUDCA in vivo did not amplify CCA-induced mitochondrial markers, such as PGC-1α protein 

and COX-IV (23) as we found in the current study. This may be the result of a differential 

magnitude of the TUDCA effect in vitro versus in vivo, and this requires further investigation.  

Wu et al. (44) have previously shown that the absence of CHOP had the potential to lead 

to an improvement in exercise tolerance. Since favourable changes in endurance are most often 

attributed to alterations in mitochondrial content, we wanted to verify whether the specific 

knockdown of CHOP would enhance mitochondrial content in the presence of CCA. Thus, we 

employed siRNA techniques, as we have done previously (17, 39), to partially reduce CHOP 

levels. siRNA treatment of myotubes effectively decreased CHOP levels by 43% under basal 

conditions, and prevented the typical large increase in CHOP which is normally induced by 
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CCA. Importantly, the increases in other important components of the UPR
ER

 pathway, including 

BiP and ATF4, were unaffected by CHOP knockdown, and were increased by CCA as expected. 

The reduction of CHOP under basal conditions led to parallel decreases in nuclear-encoded 

COX-IV levels, no change in Tfam protein, and reciprocal levels of COX-I subunits, suggesting 

that CHOP would normally impact the transcription of COX-IV and mtDNA in an opposite 

fashion. The effect of CCA served to rescue the decline in COX-IV brought about by the absence 

of CHOP, and had an additive effect on the level of the mtDNA-encoded subunit, COX-I. The 

expression of the UPR
MT

 components mtHSP70, mtHSP60 and CPN10 was unaffected by CHOP 

knockdown under basal conditions, or as a result of CCA, as a normal increase was observed. 

This occurred despite the fact the UPR
MT

 genes are activated through a CHOP-dependent 

pathway (1, 46). In the nucleus, CHOP forms a heterodimer with C/EBPβ (CCAAT enhancer-

binding protein) creating an active transcription factor to upregulate mitochondrial quality 

control genes (1, 16, 46). However, an overexpression study of CHOP in monkey kidney cells 

revealed that this protein is not sufficient for the induction of the UPR
MT

 proteins in the presence 

of stress, and thus, other transcription factors are likely involved (1), certainly in muscle. 

Alternatively, it may be that the degree of CHOP knockdown was insufficient to exert its effects 

upon its UPR
MT

 downstream targets. What is evident from our study is that any mitochondrial 

protein expression imbalance created by the absence of CHOP can be fully rescued by CCA, 

indicating that CCA triggers alternative signaling pathways to maintain mitochondrial content 

and composition.  

In both TUDCA-treated cells as well as in the presence of CHOP siRNA, CHOP-

induction was reduced under cellular stress. However, in contrast to the results obtained in 

TUDCA-treated cells, siRNA-induced CHOP knockdown did not further augment mitochondrial 
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biogenesis, under either basal or CCA conditions. As CHOP knockdown did not reproduce 

similar results to TUDCA-treated cells in enhancing mitochondrial content, the observed 

increase in mitochondrial content with the drug treatment could be attributed to its pleiotropic 

effects in activating other mitochondrial biogenesis pathways. An alternative explanation may be 

that TUDCA has an overall attenuating effect upon cellular stress via facilitation of protein 

folding in the ER lumen (4, 9, 28, 40). Wilson et al.  have suggested that this may result in a 

reduced ATP consumption by the UPR
ER

 pathway, potentially increasing the energy availability 

for mitochondrial biogenesis (34). Consequently, a potential increase in protein import into the 

mitochondria may further activate the UPR
MT

 to ameliorate the mitochondrial stress associated 

with increased biosynthesis, as observed with our results.  

Altogether, it is clear that the UPR is involved to some extent, in exercise-induced 

remodelling. In Wu’s et al.’s (44) study, the adaptation of ER stress markers to repeated bouts of 

treadmill running occurred prior to increases in mitochondrial cytochrome c, a surrogate marker 

of mitochondrial content, suggesting that initial improvements to ER proteostasis precede that of 

the synthesis of mitochondrial proteins (35). Additionally, ATF6 has been implicated during the 

recovery phase following exercise through a physical interaction with PGC-1α to trigger UPR 

signaling (44). Thus, a PGC-1α-mediated response suggests that the triggered UPR may be 

interlinked with other training adaptive responses that are similarly regulated by PGC-1α (35). 

Moreover, it is likely that different components of the UPR engage in crosstalk with other 

signaling pathways that are integral to skeletal muscle health (5). Thus, to better delineate what 

function the UPR serves in mitochondrial adaptations, UPR components other than CHOP, such 

as ATF6 or ATF5, should be eliminated to tease out whether distinct mechanisms are utilized by 
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different arms of the UPR, as they may differentially be engaged in crosstalk with other 

pathways.   

In summary, our findings suggest that mitochondrial biogenesis activated during muscle 

development from the myoblast to the myotube stage is CHOP-independent, and may rely upon 

other components of the UPR
ER

 to facilitate mitochondrial synthesis. Under basal, steady state 

conditions, CHOP can influence mitochondrial composition by altering the correct stoichiometry 

of nuclear- and mitochondrially-encoded proteins of the electron transport chain. This can be 

salvaged by contractile activity in which other compensatory and redundant pathways of 

mitochondrial biogenesis may be triggered. Indeed, CCA-induced mitochondrial adaptations 

occur irrespective of CHOP-induction, and may be augmented via amelioration of ER stress to 

increase mitochondrial content further. Our study sheds light upon the necessity of UPR 

signaling for mitochondrial biogenesis during muscle phenotypic adaptations.   
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Future Work 

1) The drug (TUDCA) utilized in this study was a partial inhibitor of the UPR
ER

, mainly 

prohibiting CHOP induction. Our data indicate that the mitochondrial biogenesis induced 

during myogenesis and CCA is independent of ER stress-induced CHOP signaling. However, 

under basal conditions, CHOP is required for mitochondrial biogenesis. Moreover, 

attenuating ER stress may further augment mitochondrial content. For a more complete 

inhibition of the UPR
ER

, an alternative chemical chaperone mimetic 4-phenylbutyrate (PBA) 

(4), could be used instead to inhibit all 3 UPR
ER

 branches and thereby investigate the impact 

of global ER stress and UPR reduction during mitochondrial adaptations.  

2) Branches of the UPR may differentially engage in crosstalk with other intracellular pathways 

in order to regulate various processes. Thus, knocking down other UPR components to better 

delineate what functions they specifically serve carries therapeutic potential in modulating 

the UPR in disease states (5).  

3) ATF6 has been implicated in mitochondrial adaptations as it physically interacts with PGC-

1α to regulate UPR activation triggered during exercise (6) and is active during myogenesis 

(2, 3). This suggests that the augmented mitochondrial biogenesis observed in our study may 

be attributable to ATF6 activation. However, we were unable to detect any difference in 

ATF6 protein levels in TUDCA-treated or untreated cells. This may be due to ATF6 being 

transiently activated. We attempted to knock down ATF6 via siRNA but were unsuccessful 

in eliminating the presence of its multiple spliced variants. Future work can aim to knock 

down ATF6 using multiple siRNAs to target its multiple forms in order to delineate what 

functional role it may potentially serve during mitochondrial biogenesis.   
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4) In order to further complement our study, assessing respiration as a measure of mitochondrial 

function would shed light upon the therapeutic potential of TUDCA for skeletal muscle 

health. Thus, it is of interest to measure the functionality of the mitochondria induced with 

TUDCA administration. Moreover, since CHOP knockdown cells had decreased COX-IV 

protein basally but was rescued with CCA, assessing mitochondrial function via respiration 

would enhance our data in determining the necessity of CHOP in CCA-induced 

mitochondrial adaptations.  

5) The strength of our study lies in specifically knocking down CHOP to eliminate the 

pleiotropic effects of TUDCA. Future work can utilize a short-hairpin siRNA to prolong and 

increase the CHOP knockdown to investigate the potential impact it may have upon the 

recently discovered UPR
MT

 mammalian homologue ATF5 and its downstream UPR
MT

 

components (1). As a result, the necessity of the UPR
MT

 to precede mitochondrial adaptations 

during CCA can be investigated as well.  This is a novel field of research that merits further 

work.   

6) Lastly, it would be prudent to explore our results in a mammalian in vivo model. Our results 

have suggested CHOP to be dispensable during CCA-induced adaptations. However, CHOP 

deletion has been found to ameliorate exercise intolerance characteristic of PGC-1α knockout 

animals (6). Therefore, assessing mitochondrial adaptations in a CHOP knockout animal 

model is of interest.   



 

85 
 

References 

1.  Fiorese CJ, Schulz AM, Lin Y-F, Rosin N, Pellegrino MW, Haynes CM. The 

Transcription Factor ATF5 Mediates a Mammalian Mitochondrial UPR. Curr Biol 

26:2037-43, 2016. 

2.  Morishima N, Nakanishi K, Nakano A. Activating transcription factor-6 (ATF6) 

mediates apoptosis with reduction of myeloid cell leukemia sequence 1 (Mcl-1) protein 

via induction of WW domain binding protein 1. J Biol Chem 286: 35227–35, 2011. 

3.  Nakanishi K, Sudo T, Morishima N. Endoplasmic reticulum stress signaling transmitted 

by ATF6 mediates apoptosis during muscle development. J Cell Biol 169: 555–60, 2005. 

4.  Ozcan U, Yilmaz E, Ozcan L, Furuhashi M, Vaillancourt E, Smith RO, Görgün CZ, 

Hotamisligil GS. Chemical chaperones reduce ER stress and restore glucose homeostasis 

in a mouse model of type 2 diabetes. Science 313: 1137–40, 2006. 

5.  Wang M, Kaufman RJ. Protein misfolding in the endoplasmic reticulum as a conduit to 

human disease. Nature 529: 326–335, 2016. 

6.  Wu J, Ruas JL, Estall JL, Rasbach KA, Choi JH, Ye L, Boström P, Tyra HM, 

Crawford RW, Campbell KP, Rutkowski DT, Kaufman RJ, Spiegelman BM. The 

unfolded protein response mediates adaptation to exercise in skeletal muscle through a 

PGC-1α/ATF6α complex. Cell Metab 13: 160–9, 2011. 

 

 

 

 

 

 

 

 

 

 



 

86 
 

APPENDIX A - DATA AND STATISTICAL ANALYSES 

Table 1. Mitochondrial biogenesis markers after 4 days of muscle differentiation. 

 

COX-I COX-IV Tfam 

N Day 0 Day 4 Day 0 Day 4 Day 0 Day 4 

1 0.252 0.813 0.352 1.015 0.614 1.869 

2 0.158 0.784 0.239 0.522 0.762 1.557 

3 0.157 0.966 0.325 0.982 0.826 1.379 

X 0.189 0.854 0.305 0.840 0.734 1.602 

SEM 0.031 0.057 0.034 0.159 0.063 0.143 

 

Paired t-tests 

 COX-I COX-IV Tfam 

P value 0.0061 0.0013 0.0260 

P value summary ** ** * 

Significantly different? (P<0.05) Yes Yes Yes 
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Table 2. UPR
MT/ER 

markers after 4 days of muscle differentiation.  

 

mtHSP70 mtHSP60 CPN10 Sirt3 

N Day 0 Day 4 Day 0 Day 4 Day 0 Day 4 Day 0 Day 4 

1 1.109 0.750 0.830 0.630 1.463 0.916 0.140 0.479 

2 1.237 0.658 1.113 0.524 1.077 0.772 0.110 0.317 

3 1.041 0.800 0.887 0.602 2.250 1.462 0.097 0.327 

X 1.129 0.736 0.943 0.608 1.597 1.050 0.116 0.374 

SEM 0.057 0.042 0.086 0.051 0.345 0.210 0.013 0.052 

 

Paired t-tests 

 mtHSP70 mtHSP60 CPN10 Sirt3 

P value 0.0290 0.0469 0.0137 0.0120 

P value summary * * * * 

Significantly different? (P<0.05) Yes Yes Yes Yes 

 

 
ATF4 Bip 

N Day 0 Day 4 Day 0 Day 4 

1 7.1E-06 0.357 n.d. 1.668 

2 8.4E-06 0.198 n.d. 1.936 

3 1.2E-05 0.160 n.d. 2.376 

X 9.1E-06 0.238 n/a 1.993 

SEM 0.000 0.060 n/a 0.206 

 

Paired t-tests 

 ATF4 

P value 0.0096 

P value summary ** 

Significantly different? (P<0.05) Yes 
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Table 3A. Fusion Index after 4 days of differentiation since TUDCA pre-treatment.  

 
Fusion Index 

N Vehicle TUDCA 

1 84.55 66.91 

2 88.85 75.51 

3 93.30 75.87 

X 88.90 72.76 

SEM 2.52 2.93 

 

Paired t-tests (two-tailed) 

 Fusion Index 

P value 0.0074 

P value summary ** 

Significantly different? (P<0.05) Yes 

 

 

Table 3B. MHC-II protein after 4 days of differentiation since TUDCA pre-treatment. 

 
MHC-II Protein 

 

Vehicle TUDCA 

N Day 0 Day 2 Day 4 Day 0 Day 2 Day 4 

1 n.d. n.d. 1.39 n.d. n.d. 0.85 

2 n.d. n.d. 1.30 n.d. n.d. 0.56 

3 n.d. n.d. 1.06 n.d. n.d. 0.36 

X n.d. n.d. 1.25 n.d. n.d. 0.59 

SEM n.d. n.d. 0.10 n.d. n.d. 0.14 

 

Paired t-tests (two-tailed)  

 MHC-II (Day 4) 

P value 0.0082 

P value summary ** 

Significantly different? (P<0.05) Yes 
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Table 3C. UPR
ER

 marker, BiP protein level on day 4 of differentiation since TUDCA pre-

treatment. 

 
BiP 

N Vehicle TUDCA 

1 2.869 1.436 

2 3.951 2.283 

3 2.640 1.684 

4 1.889 0.827 

X 2.837 1.558 

SEM 0.426 0.301 

 

 

Table 3D. Mitochondrial biogenesis markers on day 4 of differentiation since TUDCA pre-

treatment. 

 

COX-I COX-IV Tfam PGC-1α 

N Vehicle TUDCA Vehicle TUDCA Vehicle TUDCA Vehicle TUDCA 

1 0.769 1.084 0.406 0.778 1.066 1.184 0.239 0.354 

2 0.488 1.257 0.426 0.700 0.798 1.088 0.204 0.313 

3 0.857 1.433 0.466 0.986 0.742 1.108 0.268 0.405 

4 0.781 1.133 0.580 0.713 0.657 1.005 0.419 0.500 

5 0.573 0.860 0.453 0.959 1.000 1.272 0.358 0.503 

6 0.428 0.999 0.646 0.767 1.278 1.204 0.343 0.366 

7 0.573 0.719 0.597 0.701 1.059 1.177 0.377 0.415 

8 0.525 0.654 0.626 0.788 1.263 0.959 0.381 0.375 

9 0.630 0.660 

  

0.915 0.636 0.281 0.432 

10 0.740 0.653 

      X 0.637 0.945 0.525 0.799 0.975 1.070 0.319 0.407 

SEM 0.045 0.088 0.034 0.040 0.073 0.063 0.024 0.021 

 

Paired t-tests (two-tailed) 

 COX-I COX-IV Tfam PGC-1α 

P value 0.0054 0.0029 0.3022 0.0018 

P value summary ** ** ns ** 

Significantly different? (P<0.05) Yes Yes No Yes 

  

Paired t-tests (two-tailed) 

 BiP 

P value 0.0044 

P value summary ** 

Significantly different? (P<0.05) Yes 
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Table 4. Mitochondrial biogenesis markers after 4 days of CCA.  

 

 

COX-I COX-IV PGC-1α 

N CON CCA CON CCA CON CCA 

1 0.175 0.362 0.192 0.825 0.306 0.445 

2 0.323 0.735 0.312 0.968 0.324 0.634 

3 0.223 0.545 0.223 0.625 0.207 0.560 

4 0.136 0.429 0.383 0.844 0.476 0.738 

5 0.266 0.574 0.396 0.747 0.349 0.743 

X 0.225 0.529 0.301 0.802 0.332 0.624 

SEM 0.027 0.052 0.034 0.046 0.035 0.046 

 

Paired t-tests 

 COX-I COX-IV PGC-1α 

P value 0.0005 0.0006 0.0013 

P value summary *** *** ** 

Significantly different? (P<0.05) Yes Yes Yes 
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Table 5A. COX-I protein expression after 4 days of CCA with TUDCA or vehicle treatment.  

 
COX-I 

 

Vehicle TUDCA 

N CON CCA CON CCA 

1 0.175 0.362 0.378 0.715 

2 0.323 0.735 0.596 0.674 

3 0.223 0.545 0.499 0.619 

4 0.136 0.429 0.410 0.700 

5 0.266 0.574 0.509 0.893 

6 0.333 0.313 0.673 0.623 

7 0.349 0.548 0.497 0.746 

X 0.258 0.501 0.509 0.710 

SEM 0.031 0.054 0.038 0.035 

 

2-Way ANOVA 

Source of Variation P value P value summary Significant? 

Interaction 0.6122 ns No 

Row Factor <0.0001 **** Yes 

Column Factor <0.0001 **** Yes 

 

Bonferroni Post Hoc Test – MULTIPLE COMPARISONS 

Comparison Difference t P value Summary 

CON:Vehicle vs. CON:TUDCA -0.2511 4.358 P < 0.05 ** 

CON:Vehicle vs. CCA:Vehicle -0.2429 4.215 P < 0.05 ** 

CON:Vehicle vs. CCA:TUDCA -0.4521 7.846 P < 0.05 **** 

CON:TUDCA vs. CCA:Vehicle 0.008223 0.1427 P > 0.05 ns 

CON:TUDCA vs. CCA:TUDCA -0.201 3.489 P < 0.05 * 

CCA:Vehicle vs. CCA:TUDCA -0.2092 3.631 P < 0.05 ** 
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Table 5B. COX-IV protein expression after 4 days of CCA with TUDCA or vehicle treatment.  

 

 COX-IV 

 Vehicle TUDCA 

N CON CCA CON CCA 

1 0.192 0.397 0.825 1.136 

2 0.312 0.525 0.968 1.100 

3 0.223 0.397 0.625 1.154 

4 0.383 0.489 0.844 1.232 

5 0.396 0.452 0.747 1.182 

X 0.301 0.452 0.802 1.161 

SEM 0.041 0.025 0.057 0.022 

 

2-Way ANOVA 

Source of Variation P value P value summary Significant? 

Interaction 0.0165 * Yes 

CCA <0.0001 **** Yes 

TUDCA <0.0001 **** Yes 

 

Bonferroni Post Hoc Test – MULTIPLE COMPARISONS 

Comparison Difference t P value Summary 

CON:Vehicle vs. CON:TUDCA -0.5007 9.103 P < 0.05 **** 

CON:Vehicle vs. CCA:Vehicle -0.1508 2.741 P > 0.05 ns 

CON:Vehicle vs. CCA:TUDCA -0.8597 15.63 P < 0.05 **** 

CON:TUDCA vs. CCA:Vehicle 0.35 6.362 P < 0.05 **** 

CON:TUDCA vs. CCA:TUDCA -0.359 6.527 P < 0.05 **** 

CCA:Vehicle vs. CCA:TUDCA -0.709 12.89 P < 0.05 **** 
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Table 5C. PGC-1α protein expression after 4 days of CCA with TUDCA or vehicle treatment.  

 

 PGC-1α 

Vehicle TUDCA 

N CON CCA CON CCA 

1 0.306 0.445 0.167 0.915 

2 0.324 0.634 0.403 0.637 

3 0.207 0.550 0.606 0.787 

4 0.476 0.738 0.478 0.599 

5 0.349 0.743 0.565 0.989 

6 0.405 0.464 0.433 0.693 

7 0.206 0.615 0.442 0.886 

X 0.325 0.598 0.442 0.787 

SEM 0.037 0.045 0.054 0.056 

 

 

2-Way ANOVA 

Source of Variation P value P value summary Significant? 

Interaction 0.4744 ns No 

CCA <0.0001 **** Yes 

TUDCA 0.0045 ** Yes 

 

Bonferroni Post Hoc Test – MULTIPLE COMPARISONS 

Comparison Difference t P value Summary 

CON:Vehicle vs. CON:TUDCA -0.1174 1.704 P > 0.05 ns 

CON:Vehicle vs. CCA:Vehicle -0.2739 3.975 P < 0.05 ** 

CON:Vehicle vs. CCA:TUDCA -0.4621 6.707 P < 0.05 **** 

CON:TUDCA vs. CCA:Vehicle -0.1564 2.271 P > 0.05 ns 

CON:TUDCA vs. CCA:TUDCA -0.3447 5.003 P < 0.05 *** 

CCA:Vehicle vs. CCA:TUDCA -0.1882 2.732 P > 0.05 ns 
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Table 6A. UPR
MT

 marker mtHSP70 protein after 4 days of CCA with TUDCA or vehicle 

treatment. 

 
mtHSP70 

 

Vehicle TUDCA 

N CON CCA CON CCA 

1 1.399 1.405 1.455 2.088 

2 0.965 1.418 0.865 1.191 

3 1.026 1.603 1.225 1.547 

4 1.036 1.247 1.274 1.712 

X 1.106 1.418 1.205 1.634 

SEM 0.099 0.073 0.123 0.186 

 

2-Way ANOVA 

Source of Variation P value P value summary Significant? 

Interaction 0.6524 ns No 

CCA 0.0131 * Yes 

TUDCA 0.2411 ns No 

 

Bonferroni Post Hoc Test – MULTIPLE COMPARISONS 

Comparison Difference t P value Summary 

CON:Vehicle vs. CON:TUDCA -0.09829 0.5454 P > 0.05 ns 

CON:Vehicle vs. CCA:Vehicle -0.312 1.731 P > 0.05 ns 

CON:Vehicle vs. CCA:TUDCA -0.528 2.93 P > 0.05 ns 

CON:TUDCA vs. CCA:Vehicle -0.2137 1.186 P > 0.05 ns 

CON:TUDCA vs. CCA:TUDCA -0.4297 2.385 P > 0.05 ns 

CCA:Vehicle vs. CCA:TUDCA -0.216 1.199 P > 0.05 ns 
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Table 6B. UPR
MT

 marker mtHSP60 protein after 4 days of CCA with TUDCA or vehicle 

treatment. 

 mtHSP60 

 Vehicle TUDCA 

N CON CCA CON CCA 

1 1.148 1.192 1.093 1.711 

2 0.840 0.897 0.781 0.932 

3 0.985 1.381 0.998 1.344 

4 0.966 1.157 1.044 1.474 

X 0.985 1.157 0.979 1.365 

SEM 0.063 0.100 0.069 0.163 

 

2-Way ANOVA 

Source of Variation P value P value summary Significant? 

Interaction 0.3346 ns No 

CCA 0.0221 * Yes 

TUDCA 0.3591 ns No 

 

Bonferroni Post Hoc Test – MULTIPLE COMPARISONS 

Comparison Difference t P value Summary 

CON:Vehicle vs. CON:TUDCA 0.005502 0.03658 P > 0.05 ns 

CON:Vehicle vs. CCA:Vehicle -0.1724 1.146 P > 0.05 ns 

CON:Vehicle vs. CCA:TUDCA -0.3807 2.531 P > 0.05 ns 

CON:TUDCA vs. CCA:Vehicle -0.1779 1.183 P > 0.05 ns 

CON:TUDCA vs. CCA:TUDCA -0.3862 2.568 P > 0.05 ns 

CCA:Vehicle vs. CCA:TUDCA -0.2083 1.385 P > 0.05 ns 
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Table 6C. UPR
MT

 marker CPN10 protein after 4 days of CCA with TUDCA or vehicle 

treatment. 

 CPN10 

 Vehicle TUDCA 

N CON CCA CON CCA 

1 0.819 0.616 0.670 1.069 

2 0.677 0.510 0.683 0.988 

3 0.671 0.803 0.855 1.670 

4 0.780 1.026 0.877 1.338 

X 0.737 0.739 0.771 1.266 

SEM 0.037 0.113 0.055 0.154 

 

2-Way ANOVA 

Source of Variation P value P value summary Significant? 

Interaction 0.0314 * Yes 

CCA 0.0302 * Yes 

TUDCA 0.0167 * Yes 

 

Bonferroni Post Hoc Test – MULTIPLE COMPARISONS 

Comparison Difference t P value Summary 

CON:Vehicle vs. CON:TUDCA -0.03457 0.2417 P > 0.05 ns 

CON:Vehicle vs. CCA:Vehicle -0.002185 0.01528 P > 0.05 ns 

CON:Vehicle vs. CCA:TUDCA -0.5296 3.702 P < 0.05 * 

CON:TUDCA vs. CCA:Vehicle 0.03239 0.2264 P > 0.05 ns 

CON:TUDCA vs. CCA:TUDCA -0.4951 3.46 P < 0.05 * 

CCA:Vehicle vs. CCA:TUDCA -0.5275 3.687 P < 0.05 * 
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Table 6D. UPR
MT

 marker Sirt3 protein after 4 days of CCA with TUDCA or vehicle treatment. 

 

 

 

 

 

 

 

 

2-Way ANOVA 

Source of Variation P value P value summary Significant? 

Interaction 0.2197 ns No 

CCA 0.0007 *** Yes 

TUDCA 0.0013 ** Yes 

 

Bonferroni Post Hoc Test – MULTIPLE COMPARISONS 

Comparison Difference t P value Summary 

CON:Vehicle vs. CON:TUDCA -0.3035 1.842 P > 0.05 ns 

CON:Vehicle vs. CCA:Vehicle -0.3369 2.045 P > 0.05 ns 

CON:Vehicle vs. CCA:TUDCA -0.9381 5.693 P < 0.05 *** 

CON:TUDCA vs. CCA:Vehicle -0.03343 0.2029 P > 0.05 ns 

CON:TUDCA vs. CCA:TUDCA -0.6346 3.851 P < 0.05 ** 

CCA:Vehicle vs. CCA:TUDCA -0.6012 3.648 P < 0.05 * 

  

 Sirt3 

Vehicle TUDCA 

N CON CCA CON CCA 

1 0.941 1.451 1.526 2.139 

2 1.236 1.835 1.582 1.880 

3 0.926 1.015 1.063 2.262 

4 0.855 1.034 1.178 1.575 

5 1.213 1.520 1.338 2.005 

X 1.034 1.371 1.338 1.972 

SEM 0.079 0.156 0.099 0.118 
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Table 7A. UPR
ER

 marker CHOP protein after 4 days of CCA with TUDCA or vehicle treatment. 

 

CHOP 

 
Day 2 Day 4 

 
Vehicle TUDCA Vehicle TUDCA 

N CON CCA CON CCA CON CCA CON CCA 

1 0.231 0.709 0.741 0.244 0.583 0.699 0.699 0.444 

2 0.443 0.521 0.398 0.208 0.383 0.751 0.432 0.426 

3 0.619 0.484 0.542 0.179 0.560 0.792 0.644 0.132 

4 0.464 0.329 0.329 0.085 0.349 0.763 0.531 0.586 

X 0.337 0.615 0.569 0.226 0.483 0.725 0.565 0.435 

SEM 0.106 0.094 0.172 0.018 0.100 0.026 0.134 0.009 

 

2-Way ANOVA 

Source of Variation P value P value summary Significant? 

Interaction 0.0024 ** Yes 

CCA 0.0189 * Yes 

TUDCA 0.0148 * Yes 

 

Bonferroni Post Hoc Test – MULTIPLE COMPARISONS Vehicle-TUDCA 

Comparison Difference t P value Summary 

Day 2: CON -0.06312 0.6297 P > 0.05 ns 

Day 2: CCA 0.3319 3.311 P < 0.05 * 

Day 4: CON -0.1079 1.076 P > 0.05 ns 

Day 4: CCA 0.3545 3.274 P < 0.05 * 
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Table 7B. UPR
ER

 marker ATF4 protein after 4 days of CCA with TUDCA or vehicle treatment. 

 
ATF4 

 

Vehicle TUDCA 

N CON CCA CON CCA 

1 0.819 0.616 0.670 1.069 

2 0.677 0.510 0.683 0.988 

3 0.671 0.803 0.855 1.670 

4 0.780 1.026 0.877 1.338 

X 0.748 0.563 0.677 1.029 

SEM 0.071 0.053 0.007 0.040 

 

2-Way ANOVA 

Source of Variation P value P value summary Significant? 

Interaction 0.9993 ns No 

CCA 0.0003 *** Yes 

TUDCA 0.4513 ns No 

 

Bonferroni Post Hoc Test – MULTIPLE COMPARISONS 

Comparison Difference t P value Summary 

CON:Vehicle vs. CON:TUDCA -0.04759 0.5454 P > 0.05 ns 

CON:Vehicle vs. CCA:Vehicle -0.2791 3.199 P < 0.05 * 

CON:Vehicle vs. CCA:TUDCA -0.3268 3.745 P < 0.05 * 

CON:TUDCA vs. CCA:Vehicle -0.2315 2.653 P > 0.05 ns 

CON:TUDCA vs. CCA:TUDCA -0.2792 3.2 P < 0.05 * 

CCA:Vehicle vs. CCA:TUDCA -0.0477 0.5466 P > 0.05 ns 
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Table 7C. UPR
ER

 marker BiP protein after 4 days of CCA with TUDCA or vehicle treatment. 

 
BiP 

 

Vehicle TUDCA 

N CON CCA CON CCA 

1 0.792 0.925 1.048 0.946 

2 0.941 2.077 1.234 0.802 

3 0.997 1.459 0.984 1.900 

4 0.737   0.830 0.853 

5 0.872 1.426 0.979 1.064 

6 0.912 1.408 1.237 1.240 

X 0.875 1.459 1.052 1.134 

SEM 0.039 0.183 0.065 0.166 

 

2-Way ANOVA 

Source of Variation P value P value summary Significant? 

Interaction 0.0576 ns No 

CCA 0.0147 * Yes 

TUDCA 0.5581 ns No 

 

Bonferroni Post Hoc Test – MULTIPLE COMPARISONS 

Comparison Difference t P value Summary 

CON:Vehicle vs. CON:TUDCA -0.1767 1.032 P > 0.05 ns 

CON:Vehicle vs. CCA:Vehicle -0.5836 3.25 P < 0.05 * 

CON:Vehicle vs. CCA:TUDCA -0.259 1.513 P > 0.05 ns 

CON:TUDCA vs. CCA:Vehicle -0.4069 2.266 P > 0.05 ns 

CON:TUDCA vs. CCA:TUDCA -0.08222 0.4802 P > 0.05 ns 

CCA:Vehicle vs. CCA:TUDCA 0.3247 1.808 P > 0.05 ns 
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Table 8A. COX-I protein levels after 4 days of CCA with CHOP siRNA transfection. 

 

COX-I Protein 

 
Scrambled si-CHOP 

N CON CCA CON CCA 

1 0.949 1.026 0.481 0.950 

2 1.186 1.723 1.332 2.551 

3 0.812 1.257 0.835 1.185 

4 0.993 1.221 1.076 1.238 

5 0.611 1.157 1.102 1.297 

6 0.594 1.525 0.974 1.563 

7 0.934 1.370 0.832 1.635 

8 0.619 0.652 1.041 1.832 

9 1.191 0.694 1.865 1.636 

X 0.876 1.180 1.060 1.543 

SEM 0.078 0.118 0.127 0.156 

 

 

 

 

 

 

 

  

2-Way ANOVA 

Source of Variation P value P value summary Significant? 

Interaction 0.4721 ns No 

CCA 0.0031 ** Yes 

siRNA 0.0337 * Yes 

Bonferroni Post Hoc Test – MULTIPLE COMPARISONS 

Comparison Difference t P value Summary 

CON: Scrambled vs. CON: si-CHOP -0.1834 1.055 P > 0.05 ns 

CON: Scrambled vs. CCA: Scrambled -0.304 1.748 P > 0.05 ns 

CON: Scrambled vs. CCA: si-CHOP -0.6664 3.832 P < 0.05 ** 

CON: si-CHOP vs. CCA: Scrambled -0.1206 0.6933 P > 0.05 ns 

CON: si-CHOP vs. CCA: si-CHOP -0.483 2.777 P > 0.05 ns 

CCA :Scrambled vs. CCA: si-CHOP -0.3624 2.084 P > 0.05 ns 
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Table 8B. COX-IV protein levels after 4 days of CCA with CHOP siRNA transfection. 

 

COX-IV Protein 

 
Scrambled si-CHOP 

N CON CCA CON CCA 

1 0.533 1.313 0.536 1.442 

2 0.804 1.162 0.476 1.255 

3 0.732 1.555 0.496 1.265 

4 0.779 1.470 0.448 1.576 

5 1.010 0.827 0.569 1.293 

6 0.727 1.079 0.295 1.226 

7 0.691 1.160 0.719 0.883 

8 0.642 1.059 0.661 1.657 

9 0.319 1.238 0.291 1.343 

10 0.639 0.983 0.574 1.003 

11 0.729 1.478 0.589 1.282 

X 0.691 1.211 0.514 1.293 

SEM 0.052 0.068 0.040 0.067 

 

2-Way ANOVA 

Source of Variation P value P value summary Significant? 

Interaction 0.0314 * Yes 

CCA <0.0001 **** Yes 

siRNA 0.4155 ns No 

 

Bonferroni Post Hoc Test – MULTIPLE COMPARISONS 

Comparison Difference t P value Summary 

CON: Scrambled vs. CON: si-CHOP 0.1774 2.159 P > 0.05 ns 

CON: Scrambled vs. CCA: Scrambled -0.5201 6.331 P < 0.05 **** 

CON: Scrambled vs. CCA: si-CHOP -0.6019 7.327 P < 0.05 **** 

CON: si-CHOP vs. CCA: Scrambled -0.6975 8.491 P < 0.05 **** 

CON: si-CHOP vs. CCA: si-CHOP -0.7793 9.487 P < 0.05 **** 

CCA :Scrambled vs. CCA: si-CHOP -0.0818 0.9958 P > 0.05 ns 
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Table 8C. Tfam protein levels after 4 days of CCA with CHOP siRNA transfection. 

 
Tfam Protein 

 

Scrambled si-CHOP 

N CON CCA CON CCA 

1 0.590 0.569 0.518 0.560 

2 0.548 0.755 0.551 0.847 

3 0.581 0.984 0.998 0.925 

4 0.442 0.886 0.523 0.919 

5 0.647 0.966 0.600 0.715 

6 0.712 0.537 0.671 0.883 

7 0.843 1.235 0.747 1.389 

X 0.623 0.848 0.658 0.891 

SEM 0.048 0.093 0.065 0.097 

 

2-Way ANOVA 

Source of Variation P value P value summary Significant? 

Interaction 0.9580 ns No 

CCA 0.0076 ** Yes 

siRNA 0.6200 ns No 

 

Bonferroni Post Hoc Test – MULTIPLE COMPARISONS 

Comparison Difference t P value Summary 

CON: Scrambled vs. CON: si-CHOP -0.03523 0.3176 P > 0.05 ns 

CON: Scrambled vs. CCA: Scrambled -0.2244 2.022 P > 0.05 ns 

CON: Scrambled vs. CCA: si-CHOP -0.2679 2.415 P > 0.05 ns 

CON: si-CHOP vs. CCA: Scrambled -0.1891 1.705 P > 0.05 ns 

CON: si-CHOP vs. CCA: si-CHOP -0.2327 2.098 P > 0.05 ns 

CCA :Scrambled vs. CCA: si-CHOP -0.04358 0.3928 P > 0.05 ns 
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Table 9A. CHOP protein levels after 4 days of CCA with CHOP siRNA transfection.  

 
CHOP Protein 

 

Scrambled si-CHOP 

N CON CCA CON CCA 

1 0.025 0.282 0.063 0.043 

2 0.023 0.177 0.022 0.074 

3 0.019 0.095 0.001 0.078 

4 0.250 0.350 0.093 0.113 

5 0.018 0.068 0.016 0.060 

6 0.040 0.088 0.025 0.080 

7 0.027 0.283 0.010 0.064 

X 0.057 0.192 0.033 0.073 

SEM 0.032 0.043 0.012 0.008 

 

2-Way ANOVA 

Source of Variation P value P value summary Significant? 

Interaction 0.1040 ns No 

CCA 0.0044 ** Yes 

siRNA 0.0166 * Yes 

 

Bonferroni Post Hoc Test – MULTIPLE COMPARISONS 

Comparison Difference t P value Summary 

CON: Scrambled vs. CON: si-CHOP 0.02462 0.6259 P > 0.05 ns 

CON: Scrambled vs. CCA: Scrambled -0.1345 3.419 P < 0.05 * 

CON: Scrambled vs. CCA: si-CHOP -0.01589 0.4038 P > 0.05 ns 

CON: si-CHOP vs. CCA: Scrambled -0.1592 4.045 P < 0.05 ** 

CON: si-CHOP vs. CCA: si-CHOP -0.04051 1.03 P > 0.05 ns 

CCA :Scrambled vs. CCA: si-CHOP 0.1186 3.016 P < 0.05 * 
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Table 9B. ATF4 protein levels after 4 days of CCA with CHOP siRNA transfection. 

 
ATF4 Protein 

 

Scrambled si-CHOP 

N CON CCA CON CCA 

1 1.276 2.178 2.408 2.305 

2 1.846 2.837 1.848 1.702 

3 1.881 1.465 1.526 3.934 

4 1.495 1.631 1.590 2.129 

5 1.197 1.533 1.153 1.597 

6 1.619 2.187 1.495 2.013 

7 1.277 1.475 1.111 2.452 

X 1.513 1.901 1.590 2.305 

SEM 0.106 0.196 0.167 0.295 

 

2-Way ANOVA 

Source of Variation P value P value summary Significant? 

Interaction 0.4289 ns No 

CCA 0.0120 * Yes 

siRNA 0.2475 ns No 

 

Bonferroni Post Hoc Test – MULTIPLE COMPARISONS 

Comparison Difference t P value Summary 

CON: Scrambled vs. CON: si-CHOP -0.07718 0.2692 P > 0.05 ns 

CON: Scrambled vs. CCA: Scrambled -0.3879 1.353 P > 0.05 ns 

CON: Scrambled vs. CCA: si-CHOP -0.7914 2.76 P > 0.05 ns 

CON: si-CHOP vs. CCA: Scrambled -0.3107 1.084 P > 0.05 ns 

CON: si-CHOP vs. CCA: si-CHOP -0.7142 2.491 P > 0.05 ns 

CCA :Scrambled vs. CCA: si-CHOP -0.4035 1.407 P > 0.05 ns 
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Table 9C. BiP protein levels after 4 days of CCA with CHOP siRNA transfection. 

 
BiP Protein 

 

Scrambled si-CHOP 

N CON CCA CON CCA 

1 0.729 1.463 1.203 0.678 

2 1.632 2.877 1.136 1.737 

3 1.107 1.544 0.861 3.057 

4 1.662 2.634 1.356 1.885 

5 0.902 1.442 0.736 1.617 

6 1.126 1.706 1.214 2.482 

7 1.482 2.520 1.177 1.739 

X 1.235 2.027 1.098 1.885 

SEM 0.138 0.236 0.083 0.280 

 

2-Way ANOVA 

Source of Variation P value P value summary Significant? 

Interaction 0.9909 ns No 

CCA 0.0006 *** Yes 

siRNA 0.4926 ns No 

 

Bonferroni Post Hoc Test – MULTIPLE COMPARISONS 

Comparison Difference t P value Summary 

CON: Scrambled vs. CON: si-CHOP 0.137 0.4846 P > 0.05 ns 

CON: Scrambled vs. CCA: Scrambled -0.7921 2.802 P > 0.05 ns 

CON: Scrambled vs. CCA: si-CHOP -0.6505 2.301 P > 0.05 ns 

CON: si-CHOP vs. CCA: Scrambled -0.929 3.286 P < 0.05 * 

CON: si-CHOP vs. CCA: si-CHOP -0.7874 2.785 P > 0.05 ns 

CCA :Scrambled vs. CCA: si-CHOP 0.1416 0.5009 P > 0.05 ns 
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Table 10A. UPR
MT

 marker mtHSP70 protein levels after 4 days of CCA with CHOP siRNA 

transfection. 

 
mtHSP70 Protein 

 

Scrambled si-CHOP 

N CON CCA CON CCA 

1 0.290 0.754 0.474 0.505 

2 0.260 0.409 0.206 0.619 

3 0.422 0.619 0.437 0.454 

4 0.414 0.695 0.542 0.607 

X 0.347 0.619 0.415 0.546 

SEM 0.042 0.075 0.073 0.040 

 

2-Way ANOVA 

Source of Variation P value P value summary Significant? 

Interaction 0.2589 ns No 

CCA 0.0056 ** Yes 

siRNA 0.9694 ns No 

 

Bonferroni Post Hoc Test – MULTIPLE COMPARISONS 

Comparison Difference t P value Summary 

CON: Scrambled vs. CON: si-CHOP -0.06856 0.8103 P > 0.05 ns 

CON: Scrambled vs. CCA: Scrambled -0.2726 3.222 P < 0.05 * 

CON: Scrambled vs. CCA: si-CHOP -0.1994 2.356 P > 0.05 ns 

CON: si-CHOP vs. CCA: Scrambled -0.2041 2.412 P > 0.05 ns 

CON: si-CHOP vs. CCA: si-CHOP -0.1308 1.546 P > 0.05 ns 

CCA :Scrambled vs. CCA: si-CHOP 0.07324 0.8657 P > 0.05 ns 
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Table 10B. UPR
MT

 marker mtHSP60 protein levels after 4 days of CCA with CHOP siRNA 

transfection. 

 
mtHSP60 Protein 

 

Scrambled si-CHOP 

N CON CCA CON CCA 

1 0.683 0.867 0.630 0.644 

2 0.505 0.841 0.541 0.786 

3 0.608 0.777 0.682 0.744 

4 0.742 0.601 0.655 0.605 

5 0.650 0.722 0.541 0.911 

6 0.763 0.937 0.531 0.841 

7 0.829 0.631 0.830 0.832 

X 0.683 0.768 0.630 0.766 

SEM 0.041 0.047 0.041 0.042 

 

2-Way ANOVA 

Source of Variation P value P value summary Significant? 

Interaction 0.5533 ns No 

CCA 0.0156 * Yes 

siRNA 0.5251 ns No 

 

Bonferroni Post Hoc Test – MULTIPLE COMPARISONS 

Comparison Difference t P value Summary 

CON: Scrambled vs. CON: si-CHOP 0.05301 0.8812 P > 0.05 ns 

CON: Scrambled vs. CCA: Scrambled -0.0851 1.415 P > 0.05 ns 

CON: Scrambled vs. CCA: si-CHOP -0.08325 1.384 P > 0.05 ns 

CON: si-CHOP vs. CCA: Scrambled -0.1381 2.296 P > 0.05 ns 

CON: si-CHOP vs. CCA: si-CHOP -0.1363 2.265 P > 0.05 ns 

CCA :Scrambled vs. CCA: si-CHOP 0.001856 0.03086 P > 0.05 ns 
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Table 10C. UPR
MT

 marker Sirt3 protein levels after 4 days of CCA with CHOP siRNA 

transfection. 

 
Sirt3 Protein 

 

Scrambled si-CHOP 

N CON CCA CON CCA 

1 0.665 0.889 0.503 0.679 

2 0.439 0.984 0.494 0.688 

3 0.657 0.782 0.741 0.969 

4 0.874 1.127 1.143 0.821 

5 1.129 1.015 0.720 0.831 

6 0.453 0.850 0.499 0.926 

7 0.452 0.578 0.382 0.836 

X 0.667 0.889 0.640 0.821 

SEM 0.098 0.068 0.097 0.041 

 

2-Way ANOVA 

Source of Variation P value P value summary Significant? 

Interaction 0.7978 ns No 

CCA 0.0180 * Yes 

siRNA 0.5579 ns No 

 

Bonferroni Post Hoc Test – MULTIPLE COMPARISONS 

Comparison Difference t P value Summary 

CON: Scrambled vs. CON: si-CHOP 0.02661 0.237 P > 0.05 ns 

CON: Scrambled vs. CCA: Scrambled -0.2222 1.979 P > 0.05 ns 

CON: Scrambled vs. CCA: si-CHOP -0.1544 1.375 P > 0.05 ns 

CON: si-CHOP vs. CCA: Scrambled -0.2488 2.216 P > 0.05 ns 

CON: si-CHOP vs. CCA: si-CHOP -0.181 1.612 P > 0.05 ns 

CCA :Scrambled vs. CCA: si-CHOP 0.06775 0.6034 P > 0.05 ns 
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APPENDIX B - ADDITIONAL DATA  
(STATISTICAL TABLES NOT SHOWN) 

 

 

Figure S1. Representative western blots of UPR markers BiP and Sirt3, as well as 

mitochondrial marker COX- IV during C2C12 skeletal muscle differentiation measured at days 

(D) 0, 2 and, 4 after 24 h vehicle (V) or TUDCA (T) treatment (500 µg/ml) prior to the onset 

of differentiation. BiP levels were undetectable at day 0 of differentiation but gradually 

increased by day 4, however less so with TUDCA-treated cells. Sirt3 levels increased during 

differentiation regardless of treatment. COX-IV depicted similar patterns however was 

consistently augmented with TUDCA. α-Tubulin serves as the loading control.  

Fig. S1 
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Figure S2. C2C12 cells were given a one-time treatment of vehicle (V) or TUDCA (T) (500 

µg/ml) prior to differentiation and (A) stained for mitochondria with MitoTracker green on 

day 4 of differentiation. Consistent with increased mitochondrial biogenesis in TUDCA-

treated cells, more green fluorescence is evident in the right panel. (B) Representative blot 

and graphical representation of apoptotic marker pro-caspase-3 after 4 days of differentiation 

since treatment. No difference was observed between treatments. 
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Figure S3. Murine muscle cells were subjected to 2 or 4 consecutive days of chronic 

contractile activity (CCA) with either vehicle (V) or TUDCA (T) treatment, commencing on 

day 5 of differentiation. (A) Representative blot and graphical quantification of mitochondrial 

marker TFAM after 4 days of CCA. (B) Protein expression of CPN10 and graphical 

representation after 2 days of CCA. No significant difference was observed between 

treatments.  
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Figure S4. C2C12 muscle cells were subjected to 2 or 4 consecutive days of chronic 

contractile activity (CCA) with either vehicle (V) or TUDCA (T) treatment, commencing on 

day 5 of differentiation. Representative blot and graphical quantification of (A) UPR
ER

 marker 

ATF6 (full length)  at ~90 kDa after 4 days of CCA and (B) cleaved caspase-3 at ~17 kDa 

after 2 or 4 days of CCA. Both proteins showed no significant difference between treatments.  
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APPENDIX C – LABORATORY METHODS AND PROTOCOLS 

CELL CULTURE 

 

Cells 

1. C2C12 murine skeletal muscle cells (ATCC, CRL-1772) 

 

Materials 

 

1. Dulbecco's Modified Eagle's Medium (DMEM; Wisent 319-015/500 ml) 

2. Fetal Bovine Serum (FBS; Fisher Scientific SH30396.03/500 ml) 

a. Aliquoted into 50ml sterile conical tubes and stored at -20°C 

3. Penicillin/Streptomycin (P/S; Wisent 450-201-EL/100 ml) 

a. Sterile aliquots of 5.5 mls and stored at -20°C) 

4. Horse Serum (HS; Invitrogen 16050-114/1000 ml) 

a. Aliquoted into 50 ml sterile conical tubes and stored at -20°C 

b. Heat-inactivated for 30 minutes at 56.0°C 

5. 0.25% Trypsin-EDTA (l×), phenol red (Invitrogen 25200-072/500 ml) 

a. Sterile aliquots of 40 mls stored at -20°C 

6. Dulbecco's Phosphate Buffered Saline (PBS; Wisent 311-425-CL/500 ml) 

7. 15ml conical tubes, sterile (BD Falcon 352097) 

8. 50ml conical tubes, sterile (BD Falcon 352098) 

9. 175cm
2
 canted/vented tissue cultured flasks (BD Falcon 353112) 

10. 6-well sterile tissue culture dish (BioBasic SP41117) 

11. Gelatin (Sigma G1890)  

a. 0.1% solution autoclaved for sterilization 

Procedure 

 

1. Allow myoblasts to proliferate in 175cm
2
 flask with growth medium (GM; DMEM 

supplemented with 10% FBS and 1% P/S) until ~70% confluent. 

2. Pre-heat GM, trypsin and PBS in 37°C water bath for 30 minutes prior to use. 

3. Discard old GM from tissue culture flask and wash with 5 mls of PBS (×2) to rinse off 

remaining GM. (Trypsin works best if GM has been thoroughly washed off). 

4. Apply 5 mls of trypsin to the flask and place in the incubator at 37°C for 3-5 minutes. 

5. Remove flask from incubator and gently knock sides of the flask to ensure cells are lifted 

from flask bottom. Remove trypsin with the cells and place into a sterile 15 ml conical 

tube. 

6. Rinse flask with 5mls GM and add to sterile 15 ml conical tube containing the cells. 

7. Spin tube for 3 minutes at 1400 rpm at room temperature. 

8. Discard the supernatant and add 1ml of GM for resuspension with 1ml pipette. 

9. Add 3mls of GM to resuspended cell mixture for a total volume of 4 mls, depending on 

pellet size and desired concentration. 

10. Fill each well of tissue culture dishes with 2 mls of GM and add 100 µl of cell mixture to 

each well of the 6-well plate. 
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11. Rotate plate slowly in an 8-motion for 30 secs and subsequently place into 37°C 

incubator overnight. 

12. The following day remove GM from cells and replace with differentiation medium (DM; 

DMEM supplemented with 5% heat-inactivated HS and 1% P/S) once myoblasts are 

~100% confluent. 

13. Refresh DM every day after day 1 of differentiation. Mature myotubes will form after 

five days and be ready for contractile activity.  
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ELECTRICAL STIMULATION OF MYOTUBES IN CULTURE 

 

Cells 

 

1. C2C12 murine myocytes (ATCC) 

 

Materials 

 

1. Electrical Stimulator  

 Gange bipolar output (+ /- amplitude adjustable using one knob) 

 Output voltage range = 0 to +/- 30V 

 Maximum Output current = 1A 

 Adjustable output pulse duration from 0.001 to 0.1 seconds (10-1 kHz) 

 Adjustable output pulse repetition from 0.0005 to 0.01 seconds (100-2 kHz) 

 Adjustable polarity duration range from 1 to 100 seconds (0.01 to 1 Hz) 

Polarity duration range = time duration for the output “pulse burst” to be positive before 

switching to a similar negative (amplitude) pulse burst.  Positive and negative duration 

are of equal value except for the amplitude. 

 

2. 6-well sterile plastic culture dishes with modified covers for electrical stimulation (see 

below).  Coat 6-well plates with 0.1% gelatin and leave to dry in the hood. 

 

Procedures 

 

1. Before each stimulation protocol, electrodes are wiped with 70% ethanol and left in the 

flow hood with UV light on for 1 hour for sterilization purposes. 

2. Myotubes (on day 5 of differentiation) are stimulated in a parallel circuit (up to 

4 6-well dishes at a time/ protocol) at 5 Hz, 9V for 3 hours in 4 ml of DM. 

3. The following day (after 21 hours), differentiation medium is replenished 1 hour prior to 

the next stimulation. The total stimulation protocol lasts for 4 days and 21 hours after the 

4th stimulation day cell are harvested. 

 

 

 

 

 

 

 

 

 

Electrical Stimulation of myocytes in culture.  

(Left: picture of electrical stimulator; Right: Modified cover of a 6-well dish for 

stimulation) 
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MITOTRACKER GREEN FM STAINING 

 

Reagents 

 

1. Pre-warmed PBS 

2. MitoTracker Green FM (Molecular Probes, M-7514) 

3. DMSO (Dimethyl sulfoxide, D8418-100ML) 

 

Procedure 

 

1. Grow cells on custom-made glass bottom 6-well dishes. 

2. Once experimental protocol is complete, wash cells 3X 2 ml using pre-warmed PBS. 

3. Dilute MitoTracker Green FM in 74.5 ul of DMSO and add to differentiation medium to 

make a working concentration of 100 nM (total volume 27 ml). Add 2 ml of this 100 nM 

stock to each well. 

4. Incubate the cells at 37°C and 5% C02 for 45 minutes. 

5. Following incubation, briefly wash cells with PBS once again to remove any residual 

MitoTracker Green FM and add differentiation medium. 

6. Examine mitochondrial content using the Nikon Eclipse TE2000-U microscope and take 

all images using the same exposure to allow for adequate comparison between 

conditions. 

 

  



 

118 
 

FUSION INDEX  

Materials and reagents: 

1. Sodium Phosphate Na2HPO4 

2. Phosphoric acid NaH2PO4 

3. dH20 

4. Phosphate Buffered Saline (PBS) 

5. 100 % methanol 

6. Giemsa stain (EMS, 15940/100mL) 

7. Inverted light microscope 

8. Canon G5 PowerShot digital camera with microscope attachments 

9. Computer with ImageJ software 

 

Procedure 

1. Make 1 mM of sodium phosphate buffer (pH 5.6): 

a. Make 1 mM solution of Na2HPO4 by mixing 14.2 mg of Na2HPO4 in 100 ml 

of dH20 and have it stir in a beaker. 

b. In another beaker, weight out 13.8 mg of NaH2PO4 and add  ~80 mL of dH20 

and have it stir. 

c. pH the  NaH2PO4 solution with Na2HPO4 to get a final pH of 5.6. 

d. Once final pH is reached, volume up to 100 mL of dH20. Do not go over 100 

mL. 

e. Place in a bottle and store at room temperature.  

 

2. Stain C2C12 myotubes: 

a. Place pre-aliquoted 100% methanol in -20 ͦ C freezer to cool for 10 minutes. 

b. Wash cells with cold-PBS twice. 

c. Fix cells with cold methanol for 5 min by adding 1 mL/well.  

d. Meanwhile, dilute  1part Giemsa stain stock to 20 parts of 1 mM sodium 

phosphate buffer made in step 1 (1:20 ratio) to make a working solution. 

e. Aspirate the methanol and let plates air dry for 10 min under laminar hood. 

Leave lids to the cells plates off.  

f. Add 1 ml of Geimsa stain solution to each well, gently shake plates to ensure 

even distribution. Incubate for 10 min.  

g. Aspirate the solution and wash twice with dH20. 

h. Proceed to capturing phase-contrast images (slide filter of microscope) using a 

Canon Powershot G5 camera adapted to a light microscope at a 10× 

magnification. 

i. Take at least 10 pictures per condition.  

j. Have the pictures labeled in an investigator-blind manner by a second 

unbiased individual. 

 

3. Calculate Fusion Index: 

a. Choose three randomly selected photos per experimental group and open the 

images with ImageJ software. 
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b. Click on Plugins/Analyze/Cell counter to assist in manually counting the % 

nuclei within myotubes as indication of Fusion Index.  

c. Choose a specified coloured pointer and mark all the nuclei found within the 

myotubes. Myotubes are defined as cells with two or more nuclei  

d. As you click on the nuclei, a coloured dot appears over it and a tallied count is 

kept by the software.  

e. Choose another coloured pointer and click on all the nuclei lying outside of 

the myotubes.  

f. Fusion index is calculated by determining the fraction of total nuclei 

(calculated by adding the total marked/coloured nuclei together) found in 

myotubes.  

𝐹𝑢𝑠𝑖𝑜𝑛 𝑖𝑛𝑑𝑒𝑥 =
𝑛𝑢𝑐𝑙𝑒𝑖 𝑤𝑖𝑡ℎ𝑖𝑛 𝑚𝑦𝑜𝑡𝑢𝑏𝑒𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑢𝑐𝑙𝑒𝑖
 

g. Determine the experimental conditions of each photo after all images are 

quantified from the unbiased individual who labeled the photos.  

h. Average the fusion index of the images per condition. 
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TUDCA TREATMENT IN C2C12 CELLS 

Reagents 

1. Differentiation media (DMEM supplemented with 5% HS and 1% P/S) 

2. Growth media (DMEM supplemented with 10% FBS and 1% P/S) 

3. Dulbecco's Phosphate Buffered Saline (PBS; Wisent 311-425-CL/500 ml) 

4. Growth medium (GM; DMEM supplemented with 10% FBS and 1% P/S)  

5. Tauroursodeoxycholic acid sodium salt (TUDCA; Millipore 580549-5GM) 

6. Sterile water (Wisent 809-115-CL/500 ml) 

7. Sterile 10 ml syringe and 0.2 µM filter  

Procedure 

To make 100× TUDCA stock solution (50 mg/ml): 

1. For a 10 ml stock, weight out 500 mg of TUDCA and dilute in 10 ml of sterile water  

under a sterile hood.  

2. Vortex until fully diluted. 

3. Filter stock solution under a sterile hood for purity using 10 ml syringe and 0.2 µM filter. 

4. Store at 4°C for up to 2 months.   

To treat myoblasts prior to differentiation: 

1. Plate C2C12 cells in 6-well dishes to be ready at ~50-60 % confluency for the next day.  

2. Make a working concentration of 500 µg/ml of TUDCA for 2 ml of GM per well.  

3. Leave cells to be treated with TUDCA or water (vehicle) for 24 h. 

4. Rinse cells with PBS and switch media to DM (cells should be at 100% confluency to be 

ready for subsequent differentiation). 

5. Replenish media with DM daily after day 1 of differentiation.   

To treat myotubes for chronic contractile activity (CCA): 

1. Differentiate C2C12 cells for up to 5 days as described previously.  

2. Make a working concentration of 500 µg/ml of TUDCA for 4 ml of DM per well.  Do the 

same for water-treated cells.   

3. On day 5 of differentiation, 1 h prior to stimulation, change the media to DM 

supplemented with either TUDCA or water and stimulate cells in the same media.  

4.  After 3 h of stimulation, replenish cells again with DM supplemented with either TUDCA 

or water. 

5. For the entire CCA protocol which commences on day 5 of differentiation, myotubes will 

be treated with TUDCA or vehicle as described above in steps 3 and 4.   
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siRNA TRANSFECTION OF C2C12 MYOTUBES 

 

Materials 

 

1. Lipofectamine 2000 (Invitrogen, 11668-019) 

2. Dulbecco's Modified Eagle's Medium (DMEM) 

3. Pre-transfection medium (PTM; DMEM supplemented with 5% HS) 

4. Differentiation medium (DMEM supplemented with 5% HS and 1% P/S) 

5. CHOP siRNA oligonucleotide (Life Technologies) 

a. CHOP siRNA IDs: s201245 and s64888 

6. Scrambled siRNA oligonucleotide (Life Technologies) 

a. Silencer Select Negative control #2 ID: 4390846  

7. RNase free sterile water  

 

Procedure 

 

To make 20 µM siRNA stock solution: 

 

1. Spin down dried oligonucleotide pellet in an ultracentrifuge.  

2. For a 5 nmole siRNA, dilute 250 µl of RNase free water with pellet and gently resuspend 

to make a 20 µM stock. For a 20 nmole siRNA, dilute in 1000 µl of RNase free water. 

3. Aliquot and store in -20°C. 

 

Transfecting cells: 

 

1. Switch medium from DM to pre-transfection medium on the evening of the 3
rd

 day of 

differentiation. 

2. The following morning dilute desired amount of siRNA (30 nM) into DMEM and mix 

(tube 1). 

3. Aliquot Lipofectamine (10 µl) into DMEM and mix gently (tube 1A). 

4. Incubate at room temperature for 5 minutes. 

5. Combine contents of tube 1 and 1A and mix by tapping gently. 

6. Incubate at room temperature for 20 minutes. 

7. During the 20 minute incubation period, remove medium from wells and replace with 1.5 

ml of serum-free DMEM. 

8. Following the incubation, add 500 µl of siRNA/Lipofectamine complexes to each well 

and swirl gently. 

9. Incubate at 37°C at 5% CO2 for 6 hours. 

10. Briefly wash cells with pre-warmed PBS and add 2 ml of DM to each well. 

a. If cells are to be subjected to contractile activity, incubate at 37°C at 5% CO2 for 

1hour. Sterilize electrodes during this time. Following incubation, attach dishes to 

electrical stimulator and stimulate for 3 hours (5 Hz, 9V), as previously described. 

11. To prolong knockdown, transfect cells on day 7of stimulation by changing media to pre-

transfection media on day 6 after the 2
nd

 round of stimulation.  

12. Seven h prior to stimulation on day 7 (3
rd

 day of stimulation), transfect cells with the 

siRNA as described in steps 2 through 10. 
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PROTEIN COLLECTION AND EXTRACTION FROM CELL CULTURE 

 

Reagents 

 

1. 5× Passive Lysis Buffer, dilute to 1× using ddH20 (Promega, E194A) 

2. Dulbecco's Phosphate Buffered Saline (PBS; Wisent 311-425-CL/500 ml) 

3. Growth medium (GM; DMEM supplemented with 10% FBS and 1% P/S)  

4. 0.25% Trypsin-EDTA (lx), phenol red (Invitrogen 25200-072/500ml) 

5. 100× Phosphatase Inhibitor Cocktails 2 and 3 dilute to 1× (Sigma-Aldridch, P0044-

5ML; P5726-5ML)  

6. 100× Protease Inhibitor Cocktail tablets dilute to 1× (Complete, 11697 498 001) 

 

Procedure 

 

Cell harvesting: 

  

1. Remove media and wash cells 3× using 2 ml of cold-PBS. Aspirate last wash. 

2. Add 500 µl of trypsin to each well and place in incubator for 3-5 minutes at 37°C. 

3. Add equal amount of GM, 500 µl to each well to inactivate trypsin. Collect with 1000 µl 

and transfer to 15 ml sterile conical tubes. 

4. Centrifuge for 3 min at 1400 rpm and proceed to aspirate the GM.  

5. Add 1 ml of PBS and transfer to labeled 1.5 ml Eppendorf tube. Place in ultra-centrifuge 

for 3 min at 3000 rpm. 

6. Aspirate the PBS and flash freeze pellet in liquid nitrogen and store at -80°C for later 

analysis or refer to the following steps for protein extraction.  

 

Protein extraction: 

 

1. Prepare fresh lysis buffer by mixing passive lysis buffer, phosphatase inhibitor cocktails 

2 and 3, and protease inhibitor cocktail tablet together after diluting reagents to 1× 

concentrations. 

2. Add equal to twice the pellet size of extraction buffer to pellet. Vigorously vortex each 

sample for 5 seconds and freeze-thaw cells for 3 cycles in liquid nitrogen. 

3. Spin samples for 10 minutes at maximum speed, 16.1 rcf at 4°C. 

4. Collect supernatant and add into newly labeled Eppendorf tube. 

5. Measure total protein concentrations using Bradford assay. 

6. Store at -80°C. 
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SDS POLYACRYLAMIDE GEL ELECTROPHORESIS (SDS-PAGE)  

PROTEAN BIO-RAD SYSTEM 

 

Reagents 

 

1. Acrylamide/Bis-Acrylamide, 30% Solution 37.5:1 (BioShop 10.502) 

a. Store at 4°C 

2. Under Tris Buffer 

a. 1M Tris-HCl, pH 8.8 (60.5g/500ml) 

b. Store at 4°C 

3. Over Tris Buffer 

a. 1M Tris-HCl, pH 6.8 (12.1g/100ml) 

b. Bromophenol Blue (for colour) 

c. Store at 4°C 

4. Ammonium Persulfate (APS) 

a. 10% (w/v) APS in ddH20 (1g/10ml) 

b. Stored at 4°C 

5. Sodium Dodecyl Sulfate (SDS) 

a. 10% (w/v) in ddH20 (1g/10ml) 

b. Store at room temperature 

6. TEMED (Sigma T-9281) 

7. Electrophoresis Buffer, pH 8.3 (10L) 

a. 25mM Tris 30.34g, 192mM Glycine 144g, 0.1% SDS 10g 

b. Volume to 10L with ddH20 

c. Store at room temperature 

8. 6X SDS 

a. Warm 100% glycerol in water bath at 65°C for 30 minutes 

b. Combine 1.2g SDS, 0.06g Bromophenol Blue, 3mls of 1M Tris, pH 6.8 and 1ml 

of ddH20 and stir at 4°C for 5 minutes 

c. Add 3mls of 100% glycerol, stir and aliquot mixture. 

d. Store at -20°C 

e. Add 5% (v/v) ß-mercaptoethanol (Sigma M6250) to 6X SDS just prior to use 

9. tert-Amyl alcohol ReagentPLus, 99% (Sigma 152463) 

 

Procedure 

 

1. Prepare electrophoresis rack: 

a. Clean glass plates thoroughly with soap followed by 95% ethanol then ddH20.  

b. Dry carefully with a kimwipe.  

c. Assemble glass plates as shown below: 
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d. Check the seal by adding a small volume of ddH20 then pour off and let dry.  

 

2. Prepare separating gels: 

a. Mini Protean 3 Bio-Rad System volumes: 

 

 8% 10% 12% 15% 18% 

Acrylamide 2.7 ml 3.3 ml 4.0 ml 5.0 ml 6.0 ml 

ddH20 4.1 ml 3.5 ml 2.8 ml 1.8 ml 0.8 ml 

Under Tris 3.0 ml 3.0 ml 3.0 ml 3.0 ml 3.0 ml 

SDS 100µl 100µl 100µl 100µl 100µl 

APS 100µl 100µl 100µl 100µl 100µl 

TEMED 10µl 10µl 10µl 10µl 10µl 

 

b. Mix the contents of the separating gel without adding APS or TEMED. Stir.  

c. Add APS and TEMED. Stir.  

d. Slowly pour the entire volume of the solution into the space between the two 

plates while keeping plates tilted to prevent bubble formation. 

e.  Add tert-Amyl alcohol to coat top surface of gel solution. 

f. Allow 30 minutes for gel polymerization.  

g. Remove tert-Amyl alcohol by pouring it off and remove any remainder with a 

kimwipe. Rinse with ddH20. 

 

3. Prepare stacking gel: 

a. For a single mini gel use the following volumes: 

 

Acrylamide 500 µl 

Over Tris 625 µl 

ddH20 3.75 ml 

SDS 50 µl 

APS 50 µl 

TEMED 20 µl 
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b. Mix the contents of the stacking gel without adding APS or TEMED. Stir.  

c. Add APS and TEMED. Stir.  

d. Using a Pasteur pipette slowly add the entire volume from the beaker in between 

the plates.  

e. Add comb for desired number of wells. 

f. Allow 30 minutes for gel polymerization. 

 

4. Prepare samples: 

a. Turn on the block heater to 95ºC.  

b. Pipette required volume of sample into new eppendorf with 2X SDS (or passive 

lysis buffer; 1 volume of sample to 1 volume of 2X SDS). Keep samples on ice 

until all samples are prepared. 

c. Briefly spin each sample to bring volume to the bottom of the eppendorf. 

d. Incubate each sample at 95 ºC for 5 minutes in the heating block to denature the 

proteins.  

e. Briefly spin again to return volume to the bottom of the eppendorf. 

 

5. Assemble Mini-PROTEAN gel caster system: 

a. See images below: 

 
 

b. If you are only running one gel a plastic rectangular pseudo plate must be 

clamped on the other side of the caster.  

c. Fill with electrophoresis buffer between the plates and outside of the plates in the 

chamber.  

d. Slowly remove the comb using both hands (one on each side) by pulling the comb 

straight upwards.  

e. Fix any wells that are deformed using a small spatula.  

f. Clean out the wells using a syringe filled with electrophoresis buffer.  

g. Withdraw the entire volume of the sample using a Hamilton syringe. Inject 

volume slowly into the bottom of the well.  
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6. Gel electrophoresis  

a. Immediately after all samples are loaded place the lid on the gel chamber. 

b. Place positive and negative plugs into the power supply and turn on power supply.  

c. Set power supply to 120V. Gel will run for ~2 hours depending on percent gel 

made. 

d. When the bromophenol blue has run off the bottom of the gel turn off the power 

supply. Remove plugs from power supply and remove lid. 

e. Prepare for electrotransfer of proteins from the gel to nitrocellulose membrane.  

 

 

 

 

  



 

127 
 

WESTERN BLOTTING AND IMMUNODETECTION 

 

Reagents 

 

1. Transfer Buffer 

a. 0.025M Tris-HCl pH 8.3  12.14g 

b. 0.15M Glycine   45.05g 

c. 20% Methanol   800ml 

d. make up to 4L with ddH20 

e. store at 4°C 

2. Ponceau S stain 

a. 0.1% (w/v) Ponceau S  

b. 0.5% (v/v) Acetic Acid 

c. Store at room temperature 

3. Wash Buffer 

a. Tris-HCl pH 7.5  12g 

b. NaCl   58.5g 

c. 0.1% Tween  10ml 

d. Store at room temperature 

4. Blocking Solution 

a. 5% (w/v) skim milk power in wash buffer OR 

b. 5% (w/v) BSA in wash buffer 

5. Enhanced Chemiluminescence Fluid (ECL; Santa Cruz sc-2048) 

6. Film/Developer/Fixer 

 

Procedure 

 

1. Transfer Procedure 

a. Remove electrophoresis plates from chamber and separate the plates. 

b. Cut away unnecessary parts of the gel using a spatula and measure remaining gel 

size. 

c. Using a paper cutter cut 6 pieces of Whatman paper per gel to the same size as the 

gel. Wearing gloves cut nitrocellulose membrane (GE Healthcare RPN303D) to 

the dimensions of the gel.  

d. Assemble Whatman paper, nitrocellulose memebrane and gel as shown below: 

 
e. Close the cassette and place in the transfer chamber with the black side of the 

cassette facing the back side of the chamber.  

f. Place ice pack in the chamber. 

g. Place lid on the chamber and connect the leads to the power supply.  
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h. Turn on the power supply and run at 120V for 2 hours. This can vary depending 

on the size of the protein of interest. 

2. Removal of transfer membrane: 
a. Turn off the power supply and disconnect leads from the power supply then 

remove the lid from the chamber. 

b. Remove the cassette from the chamber.  

c. With gloves on, remove the Whatman paper and gel and place the nitrocellulose 

membrane in a plastic dish.  

d. Add Ponceau S stain on the membrane and gently swirl.  

e. Drain off the remaining Ponceau S and save for reuse. 

f. Rinse the membrane with ddH20 to reduce the red background. Wrap membrane 

in saran wrap and scan image. 

g. Cut the membrane while protein bands are still visible at the desired molecular 

weight. 

h. Rotate membrane at room temperature in wash buffer until remaining Ponceau S 

has been removed. 

i. Incubate membrane for 1 hour with rotation in blocking solution.  

j. Incubate membrane with desired antibody diluted in blocking solution overnight 

at 4ºC. Membrane is placed face down into the solution on a glass plate covered 

in parafilm. To maintain a moist environment overnight, wet a small kimwipe and 

form it into a ball and place in each corner of the dish. Cover the dish with saran 

wrap. 

3. Immunodetection 

a. Wash the blots in wash buffer with gentle rotation for 5 minutes 3X. 

b. Incubate the blots for 1-2 hours with the appropriate secondary antibody diluted in 

blocking solution. 

c. Membrane is placed face down in solution on a glass plate covered with parafilm. 

Place moist kimwipes in each corner of the dish and cover the dish with saran 

wrap. 

d. Following the incubation, wash the membrane 3X for 5 minutes with wash buffer. 

4. Enhanced Chemiluminescence Detection 
a. Mix ECl fluids “A” and “B” in a 1:1 ratio in a disposable Rohr tube. 

b. Place blots on saran wrap face up and apply ECL solution for 2 minutes.  

c. Dab off excess ECL on a kimwipe and place blots face down on a fresh piece of 

saran wrap and wrap tightly. 

d. Expose blot to film (time will vary depending on protein and antibody).  

e. Place film into developer (time will vary). 

f. Once image appears place film into fixer for 2 minutes. Wash with fresh water 

when complete. 
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