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Abstract

This thesis introduces a new positional momentum management strategy based

on the expected future ranks of asset returns and trade volume changes predicted by

a bivariate Vector Autoregressive (VAR) model. Chapter one provides some facts

about the relationship between return and trade volume changes and the way they

have been computed in general. It begins by investigating the simple VAR model

to see if we can use the past values of return and trade volume changes to predict

their current values. Then recent developments in portfolio management research

on momentum portfolios are discussed.

Chapter two introduces a new method to build a positional momentum and liq-

uidity portfolios based on the expected future ranks of asset returns and their trade

volume changes. This method is applied to a data set of 1330 stocks traded on

the NASDAQ between 2008 and 2016. It is shown that return ranks are correlated

with their own past values, and the current and past ranks of trade volume changes.

This result leads to a new expected positional momentum strategy providing portfo-

lios of predicted winners, conditional on past ranks of returns and volume changes.

This approach further extends to a new expected positional liquid strategy provid-
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ing portfolios of predicted liquid stocks. The expected liquid positional strategy

selects portfolios of stocks with the strongest realized or predicted increase in trad-

ing volume. These new positional management strategies outperform the standard

momentum strategies and the equally weighted portfolio in terms of average returns

and Sharpe ratio.

Chapter three introduces new positional investment strategies that maximize

investors’ positional utility from holding assets with high expected future return and

liquidity ranks. The optimal allocation vectors provide new investment strategies,

such as the optimal positional momentum portfolio, the optimal liquid portfolio and

the optimal mixed portfolio that combines high return and liquidity ranks. The

future ranks are predicted from a bivariate panel VAR model with time varying

autoregressive parameters. We show that there exists a simple linear relationship

between the time varying autoregressive parameters of the VAR model and the auto-

and cross-correlations at lag one of the return and volume change series of the SPDR.

Therefore the autoregressive VAR parameters can be easily updated at each time,

which simplifies the implementation of the proposed strategies. The new optimal

allocation portfolios are shown to perform well in practice, both in terms of returns

and liquidity.
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Introduction

Predicting the returns on individual securities is the primary objective of research on

the predictability of financial markets. What an investor really needs is not a large

number of predictions of individual returns, but rather, a ranking of the securities

with respect to their returns. The ranking of the individual predicted returns does

not guarantee however an optimal decision based on available data.

This thesis intends to improve a momentum strategy by taking into account the

auto- and cross-correlations of ranks of returns and trade volume changes instead of

just past raw returns and provides the optimal positional portfolio by maximizing

the investor’s utility function based on the future ranks of return and trade volume

changes. The standard positional momentum strategy ranks the asset returns at

time t and builds an equally weighted portfolio from the top alpha-percentile of all

assets. The value of alpha is fixed at a target top percentile, such as the fifth top

percentile, for example. The contrarian positional momentum strategy builds an

equally weighted portfolio from the lower alpha percentile.

In finance, the positional theory has many applications, including the job search

problems concerning the CEOs, fund managers, or traders in the finance sector
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[see e.g. Gabaix and Landier (2008), Thanassoulis (2012)]. In terms of positional

application, this thesis is focused on the positional portfolio management which

maximizes the utility of the expected future position of the portfolio’s value. This

technique is different than the traditional portfolio momentum management which

is based on past portfolio returns and their past ranks. The positional portfolio

management proposed in this thesis provides new types of allocations strategies.

By comparing the returns on the optimal positional portfolio with the traditional

momentum, contrarian (or reversal) strategies and naive equally weighted portfolio,

we can measure the gain from implementing the positional portfolio management

strategies. In the positional portfolio management all stock returns are ranked cross-

sectionally, so that the notion of cross-sectional rank (position) is at the core of the

distinction of this management from the standard portfolio management.

Referring to an old Wall Street quote that " It takes volume to make price move",

the relationship between assets’ returns and their trade volumes has been examined

in the literature. Many empirical studies showed that in a dynamic context, infor-

mation about trading volume improves the forecasts for price changes and return

volatility. In Chapter one, the relationship between return and trade volume changes

is studied. The motivation for considering both returns and trade volume stems from

the empirical evidence documented in financial literature, which suggests that the

trade volumes provide additional information and help predict future returns.

In Chapter two the positional momentum strategy is extended in three respects.

First, the ranks of asset returns and the ranks of trade volume changes are considered

jointly and modelled as a bivariate series. I show that the series of ranks of returns

2



and volume changes are serially correlated and cross-correlated with one another.

Second, the positional momentum portfolio based on the observed ranks is replaced

by the positional momentum portfolio based on the expected future ranks. The

future ranks of return and volume changes are predicted from the past ranks of

returns and volume changes. This extends the work by Gagliardini. et al. (2019)

who introduced the expected positional momentum strategy involving the predicted

future return rank. An investor owning a portfolio of returns with high future

ranks (or high Sharpe performance) is not protected from future high liquidity risk.

Indeed, a future return winning portfolio may turn out to be an illiquid portfolio.

The third contribution in Chapter two is a new expected positional liquid portfolio

that contains assets with highest (resp. lowest) future expected changes in trade

volumes.

In portfolio management, the feedback and inter-dependence between stocks are

of particular interest. Empirical literature [see Demiguel, Nogales and Uppal (2014)]

has evidenced that the VAR model can capture serial dependence in stock returns,

which is statistically significant. Since the serial dependence and inter-dependence

between stocks are of particular interest in portfolio management, multivariate dy-

namic panel data models provide a useful modeling strategy. The panel VAR model

seems to be a powerful tool of analysis. The main advantages of panel VAR mod-

els can be summarized as follow: (i) they capture both static and dynamic inter-

dependencies, (ii) they can estimate the co-movements between several variables,

(iii) easily incorporate time variations in the coefficients and in the variance of the

shocks when estimated by rolling. Panel VARs resemble standard VARs but, be-
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cause of an additional cross-sectional dimension, they are a much more powerful

tool.

In Chapter two a panel VAR model is used to represent the dynamics of ranks of

return and volume changes, upon their transformation to bivariate Gaussian ranks.

The panel VAR model is considered as a restricted VAR model and estimated by

Maximum Likelihood Estimation from monthly returns and trade volumes ranks of

1330 stocks traded on NASDAQ between 2008 and 2016.

Using the utility function as an agent objective function is the foundation of the

portfolio selection problem under uncertainty. According to the literature, the utility

function measures the investor’s relative preference for different levels of wealth. One

of the advantages of the utility-based strategy is that it eliminates the arbitrary

cut-off point of top 5%, or top 10% of assets to be included in a portfolio. In the

portfolio management literature, the investor maximizes his/her expected utility

function based on wealth or portfolio return [see Brennan and Torous (1999), Das

and Uppal (2004) and Gourieroux and Monfort (2005)]1. In Chapter three, the

investor is assumed to maximize a CARA (Constant Absolute Risk Aversion) utility

function of a future position of the assets (ranks of assets).

Chapter three introduces new positional investment strategies that maximize in-

vestors’ utility from holding assets with high expected future ranks in return and

liquidity. This approach allows us to determine the optimal allocations that select

assets with respect to their expected future returns and liquidity ranks, where the

latter ones are measured by changes in traded volumes. An optimal allocation vec-
1Von Neumann and Morgenstern (1994) show that, a rational investor selects the optimal

feasible investment by maximising the expected utility of wealth.
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tor is also derived for a mixed portfolio of assets with the highest combined ranks of

returns and liquidity. The new allocation strategies are called the optimal positional

momentum portfolio, the optimal positional liquid portfolio and the optimal posi-

tional mixed portfolio, respectively. The new optimal allocations that maximize the

positional utility function arise as extensions of a naive equally weighted portfolio

that account for serial dependence in the returns and volume change ranks as well

as for their co-movements.

Since the parameters of VAR model are shown to be time varying [see Figures

2.7 and 2.8], I propose two methods that allow an investor to update the VAR pa-

rameters at each investment time. The first method consists in re-estimating the

model at each time by rolling over a fixed window of observations. The second

method exploits the relationship between the autoregressive coefficients of the VAR

model and the series of auto-and cross-correlations at lag 1 of returns and volume

changes of the SPDR (Standard & Poor’s Depository Receipts). The SPDR is an

Exchange Traded Fund (ETF), i.e. a regularly updated portfolio mimicking the evo-

lution of the S&P 500 returns. More specifically, we show that the future values of

autoregressive VAR coefficients can be predicted from simple linear functions of the

current auto- and cross-correlations at lag 1 of SPDR’s return and volume changes.

These linear functions are easy to compute and simplify the investment procedure

as they eliminate the need for re-estimating the panel VAR model by rolling. In

the proposed approach, the time varying parameters are considered predetermined.

We show heuristically that the approach can be extended to a random coefficient

framework, where the autoregressive VAR coefficients are considered as fixed func-
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tions of random factors, which are the auto and cross-correlation estimators with

their known asymptotic distributions.

In the financial literature the return-to-risk trade-off i.e. the reward-to-risk ratio

shows the amount of return gained on an investment correspond to the amount

of undertaken risk. The Modern Portfolio Theory (MPT) assumes that investors

are risk averse and the literature shows that to get more return we have to take

more risk [see Breen, Glosten, and Jagannathan (1989), Nelson (1991), Glosten,

Jakannatha and Runkle (1993), Brandt and Kang (2004), etc.]. It means that, given

two portfolios with the same expected return, investors will prefer the less risky one.

An investor will take more risk only for higher expected returns. On the other

hand, this trade-off can vary across investors, as different investors will evaluate

the trade-off based on their individual risk aversion characteristics. Computing the

level of an individual’s risk aversion is the most difficult question since the answer

is subjective.2 In the literature, the risk aversion is considered constant in order to

obtain relatively simple formulas for relationships between variables in a model. In

Chapter three, I consider the CARA utility function with a constant risk aversion

while the investor can adjust the portfolio to the current market conditions by

changing the risk aversion coefficient to invest more or less aggressively.

The empirical results in Chapter two show that the expected positional mo-

mentum portfolios of winners with high ranked returns predicted from past ranks

of returns and trade volume changes (VAR-EPMS), outperform the expected posi-
2There exist tests that help determine what is the most appropriate risk for investors. The PASS

test by W.G. Droms (1988), the Baillard, Biehl & Kaiser (1986) test, classifies investors in order
from "confident" to "anxious" and "careful" to "impetuous", while Barnewal (1987) considered
just two types of investors passive and active investors.
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tional momentum portfolios of Gagliardini, et al. (2019), the standard momentum

strategies [see. e.g. Jegadeesh and Titman (1993, 2001), Hellstrom (2000), Arena.

et al., (2008))] and the equally weighted portfolio in terms of average monthly re-

turns and the Sharpe ratio in the long run, and in terms of the cumulative returns

over holding periods of 4 and 8 year. Moreover this strategy produces higher average

return over 3 and 12 months holding times, as compared to the standard momentum

strategies with varying look back periods. This finding is in line with Jagadeesh and

Titman (1993) who show that portfolios based on the past 3- to 12-month returns

of winners, on average, outperform past losers.

The positional liquid portfolios of stocks introduced in Chapter two provide even

better outcomes in terms of the average and cumulative returns than the positional

momentum portfolios. The positional portfolios of liquid stocks (LPMS) with re-

cently increased past volumes, outperform the other portfolios in terms of monthly

average returns and Sharpe ratio in the long run and in terms of cumulative returns

over the horizon of 8 years. It also provides the best investment portfolio over short

holding times of 3, 6 and 12 months. The positional portfolio of stocks with an

expected liquidity (LEPMS) generates the best cumulative returns over horizons of

2 to 3 years.

The empirical results from Chapter three show that returns on the new opti-

mal positional portfolios are comparable both theoretically and empirically with the

naive equally weighted portfolio as well as with the traditional momentum strate-

gies with look-back and holding periods of various length. All positional portfolios

provide positive average and cumulative returns. The positional liquid portfolios
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outperform the positional mixed and momentum portfolios. Also, we observe that

for higher risk aversion values, the average and cumulative returns on the positional

portfolios decrease. In terms of average returns, the positional portfolios obtained

by predicting the future ranks from the VAR(1) model outperform the other port-

folios. In terms of cumulative returns, the positional portfolios obtained from fitted

values of coefficients based on auto- and cross- correlation of SPDR provide higher

returns.

The outline of the First Chapter is as follows: In section 1.2 the literature review

is provided. In section 1.3 the relation between returns and trade volume changes is

investigated. Section 2.2 introduces the cross-sectional ranks of securities according

to their relative returns and trade volume changes in each month. Their transfor-

mation to Gaussian ranks is also explained. The panel VAR model of bivariate

Gaussian ranks and its estimation are discussed in Section 2.3. Section 2.4 explains

how a given portfolio can be positioned among other stocks with respect to either

return or changes in trade volume. In Section 2.5, I define the new expected posi-

tional momentum and liquidity strategies based on the predicted ranks of returns

and volume changes. These strategies are compared among themselves and with

the equally weighted portfolio and the standard positional momentum. Section 2.6

concludes the paper. Additional results and proofs are provided in Appendices A,

B, C, D, E and F.
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Chapter One
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Chapter 1

Return and Trade Volume

1.1 Literature Review

Thomas Hellstrom (2000), introduced a rank measure to the financial literature by

ranking a large number of securities according to their relative returns. He predicted

the ranks with a linear model and used those ranks in a portfolio selection algorithm.

He found that, the optimal portfolio based on those ranks significantly outperforms

the benchmark when tested on the Swedish stock market over the period 1993-1997.

In the momentum portfolio literature, Gagliardini. et al., (2019) used a different

strategy to rank the assets’ returns as Gaussian ranks. They studied the positional

portfolio management strategies in which the manager maximizes an expected utility

function of the cross-sectional rank (position) of the portfolio return. The objective

function reflects the manager’s goal to be well-ranked among competitors. To imple-

ment positional allocation strategies, Gagliardini. et al., (2019) specify a non-linear

unobservable factor model for the asset returns which reveals the dynamics of the
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cross-sectional distribution and the dynamics of the ranks of the individual assets.

By using a large data set of stocks returns, they found that the positional strategies

outperform the standard momentum and reversal strategies, as well as the equally

weighted portfolio. In this study, the future ranks of return and volume changes are

predicted from the past ranks of return and volume changes. This extends the work

by Gagliardini. et al., (2019). It is also in line withDaniel and Moskowitz (2016)

who show that a dynamic momentum strategy based on the forecast of momentum’s

mean and variance provides higher Sharpe ratio than the static momentum strategy.

The relationship between trade volume and stock returns has been examined in

the literature. Several authors studied the contemporaneous relationship between

these two variables. Karpoff (1987) uses a bivariate regression and the VAR and

VEC models, and examines the IRF and Johansen’s Co- integration test to show a

bi-directional causality between trading volume and stock return volatility. Gallant,

Rossi and Tauchen (1992) study the semi-nonparametric estimation of the joint

density of current price change and volume conditional on past price changes and

volume. Chordia and Swaminathan (2000) find that, the trade volume is a significant

determinant of the lead-lag patterns observed in stock returns. Arena, Haggard and

Yan (2008) show the existence of a positive time-series relation between momentum

returns and aggregate idiosyncratic volatility.

Bong-Soo Lee and Oliver M.Rui (2000), studied the dynamic relationship be-

tween the trade volume and stock return. They examined the causality between

these two variables in both domestic and cross-country markets. They found a pos-

itive relationship between these two variables and evidenced that this relationship

11



exists even across countries’ markets as well. Chandrapala Pathirawasam (2011),

examined the relationship between trading volumes and stock returns for 266 stocks

traded at the Colombo Stock Exchange (CSE) from 2000-2008. They applied the

conventional methodology used by Jagadeesh and Titman (1993), and found that

stock returns are positively related to the contemporary change in trading volume,

while trading volume change is negatively related to stock returns. They also doc-

umented that the investor missperception of future earnings or illiquidity of low

volume stocks can be the reason for the negative relationship between trading vol-

ume and stock returns. Lee and Swaminathan (2000) show that trading volume

helps predict cross-sectional returns for various price momentum portfolios. By in-

troducing the ranks of trade volume changes, I hope to get a more accurate dynamic

model to find the optimal momentum positional portfolio.

In Chapter two, the vector autoregressive (VAR) model is used to study the

dynamic relationship between the returns’ and trade volume changes’ ranks. Since

both ranks series are normally cross sectionslly distributed, the Maximum Likeli-

hood method is used to estimate a restricted VAR(1) model of both ranks that

accommodates the marginal standard Normal density of these variables. Demiguel,

Nogales and Uppal (2014) use the vector autoregressive (VAR) model to capture se-

rial dependence in stock returns. In the financial literature, VAR models have been

used for strategic asset allocation. For instance, Campbell and Viceira (1999) and

(2002), Campbell, Chan, and Viceira (2003), Balduzzi and Lynch (1999), Barberis

(2000).

A positive association between trading activity and volume is documented in
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Demsetz (1968). Chordia, Roll and Subrahmanyam (2000) used volume as one of

the known individual liquidity determinants to uncover suggestive evidence that

inventory risks and asymmetric information both affect inter temporal changes in

liquidity. Barclay and Hendershott (2004) also used trade activity to determine the

liquidity of the stocks during the trading day. Johnson (2008) shows that volume is

positively related to the variance of liquidity or liquidity risk. In this thesis I build

the liquid positional portfolios from stocks with high ranked trade volume changes.

In Chapter three the time series of auto- and cross-correlations of SPDR are used

as common macro factors to predict the parameters of the VAR model. Since SPDR

is an Exchange Traded Fund (ETF), i.e. a regularly updated portfolio mimicking

the evolution of the S&P 500 returns, it can be considered as a proxy of the mar-

ket. Also the relationship between the SPDR and S&P 500 has been documented

in the literature as well. Beaulieu and Morgan (2000) studied the high-frequency

relationships between the S&P 500 Index and the SPDR by using minute-by-minute

data for November 1997 through February 1998. They showed that the SPDR did

not track the index perfectly. Peng Xu (2014) checked the mimicking performance

of the SPDR in two ways: first she examined the relation between relative price

change of the SPDR and the relative change of the index and second studied the

relation between holding period return of the SPDR and the return on the index.

She showed that in a linear static analysis, the SPDR mimics the index pretty well,

since the historical correlation coefficient between the two return series is 0.98. She

also showed that both series will have similar dynamic features, as long as linear

dynamics are considered.
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In the CARA utility function used in Chapter three, the constant risk aversions

are considered. In the literature, constant risk aversion parameters are used to

determine the return-to-risk trade-off. Chou (1988) showed that the risk attitude

parameter stay stable for correlative periods of time, Safra and Segal (1998) defined

the invariant preference relation between outcomes of two distributions as the con-

stant risk aversion and Quiggin and Chambers (2004) show the constancy of the risk

aversion since the investor attitude is strongly linked with the family of generalized

expected utility preferences.

1.2 Relation Between Return and Trade Volume

Many articles have examined the relationship between stock return and trade volume

among different markets. Karpoff (1987) stated four reasons why the relationship

between stock price and volume is important to study: (i) it provides a insight into

the financial market structure, (ii) this relationship is important in studies which

are using the combined data of price and trade volume to draw the conclusion, (iii)

it is critical for the debates over the empirical distribution of speculative prices,

and finally (iv) the price-trade relations have significant implication for research

into future market. Among the articles concerning the relation between price and

volume, a few only examined the dynamic relation between trading volume and

prices. In a dynamic context, an important point about this relation is that whether

information about trad volume improves the forecast of returns. In this section I

examine empirically the dynamic relation between the changes in trade volume and
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stock return.

1.2.1 Data Description

The panel data contains monthly returns and trade volumes changes of 1330 stocks

traded on the NASDAQ from October 1999 to October 2016. These stocks have been

chosen with respect to the daily average of Turnover/Traded Value of all NASDAQ

stocks in 2015. The Turnover/Traded Value is defined as the total amount traded

in the security’s currency, which is calculated as the sum of numbers of shares times

their corresponding prices. Stocks from the highest and the lowest 25th percentiles

of Turnover/Traded Value have been selected of Traded Value in October 2016 have

been selected 3. Among those stocks, we selected those observed over the entire

sampling period. . After deleting stocks with missing values between October 1999

and October 2016, we end up with 1330 stocks.

The trade volume of a security is defined as the total quantity of shares traded

per month. To get the return and the changes in trade volume, the log return and

the log volume changes are calculated as follows:

rit = ln(
Pit
Pit−1

) t = 1, · · ·, T ; i = 1, · · ·, n,

tvit = ln(
TVit
TVit−1

) t = 1, · · ·, T ; i = 1, · · ·, n,
(1.2.1)

where Pit, Pit−1 are the prices at time t and t− 1, TVit, TVit−1 are the trade volume
3The Turnover/Traded Value of those stocks was not necessarily in the highest (resp. lowest)

25th percentiles at other times, as it has been changing over the sampling period.
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at time t and t − 1 and rit, tvit are the log return and log changes in trade volume

of stock i at time t respectively4. The panel contains n = 1330 stocks observed over

T = 214 periods of time (months)5.

Figures 1.1 and 1.2 present the cross-sectional mean (Figure 1.1) and variance

(Figure 1.2) of the returns (rt) and trade volume changes (tvt) over time.

In Figure 1.1 we see that the mean returns and mean volume changes do not show

any seasonality or trend over time. According to these figures, the mean and variance

of trade volume changes are more volatile than those of returns. From October 2000

to October 2004, the mean return varies a lot, and it takes a sharp downturn in July

2001 and May 2002. According to a report by the Cleveland Federal Reserve, this

downturn can be viewed as part of a larger bear market or correction that began

in 2000. The majority of specialists believe that this downturn could be a reversion

to average stock market performance in a longer term context. Indeed from 1998

to 2000, the NASDAQ rose almost 85%, while before that time it had the annual

growth of 10% to 15%.

After year 2000, the index dropped to the same level it would have achieved if

the annual growth rate followed during 1987-1995 had continued up to 2002. On

September 16, 2008, the mean of returns reached its lowest value.

4The log changes in trade volume are also referred to as V-ROC (Volume Rate-Of-Change).
See Investopedia at https://www.investopedia.com/articles/technical/02/091002.asp for definition
and Podobink et.al (2009) for empirical study.

5At each date t, the information available is It : {rit, tvit, i = 1, · · · , n} ≈ {Pit, TVit, i =
1, · · · , n}.
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Figure 1.1: Times Series of The Cross-Sectional Mean of Return and Trade Volume
Figure 1.1 displays the cross-sectional mean of return (rt) and trade volume changes (tvt)
from February 1999 to October 2016. The cross-sectional mean is computed monthly as
the average of 1330 stocks’ returns and trade volume changes traded on NASDAQ.

The reason was the massive failures of financial institutions in the United States,

due primarily to exposure to packaged sub-prime loans and credit default swaps

issued to insure these loans and their issuers, which rapidly devolved into a global

crisis.

These financial failures resulted in a number of bank failures in Europe and sharp

reductions in the value of stocks and commodities worldwide.

Another major fall in stock market was the Black Monday of 2011, which refers

to August 8, 2011, when the US and global stock markets crashed following the

Friday night credit rating downgrade, by Standard and Poor’s of the United States

sovereign debt from AAA, or "risk free", to AA. After that in 2014 and 2016, the
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stock market had experienced the Bull Market. Retail investors, started to put

money back in the market in 2013, allowing them to benefit from 2014 in advance.

Figure 1.2: Time Series of The Cross-Sectional Variance of Return and Trade Volume
Figure 1.2. displays the cross-sectional variance of return (rt) and trade volume changes
(tvt) from February 1999 to October 2016. The cross-sectional variance is computed
monthly from 1330 stocks’ returns and trade volume changes traded on NASDAQ.

In Figure 1.2 we observe that the variances of returns and of volume changes

are above 0.01 over the period 1999-2016. After year 2012 both variance series take

values between 0.01 and 0.02. There have been periods when the return variance

was unusually high or low. From the beginning of 2000 the return volatility was

decreasing gradually until 2004, when it reached a more steady pattern (2004-2006).

At the end of 2008, the volatility of returns surged to more than 0.07, which is fairly

high by historical standards, yet not without precedent. It remained high during

the crisis of 2008-2010 but starts to fall from 2009. From 2010 until 2016, it remains
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in a steady level of lower than 0.01.

The cross-sectional variance of trade volume changes dropped from the average

of 0.4 in 1999 to less than 0.2 in 2004 and fluctuated between 0.1 and 0.2 until 2016.

In the years 2008, 2009 and 2010 (the crisis), it increased considerably in parallel to

the variance of returns. After 2014, both series of cross-sectional variances are less

erratic and more smooth.

1.3 Data Stationarity

To check the stationarity of returns and trade volume changes series, the unit root

test is applied separately to each panel 6. In the panel unit root test literature,

the null hypothesis is formally stated as H0: "all of the series have one unit root".

While the null hypothesis is common to all the panel unit root tests, the literature

considers two different alternative hypotheses, Ha
1 : "all of the series do not have

unit root" and Hb
1 : "at least one of the series has unit root". The alternative

Hb
1 has been criticized by some authors indicating that if H0 is rejected we do not

know which series have a unit root (Taylor and Sarno 1998). On the other hand,

alternative Ha
1 implicitly imposes a strong dynamic homogeneity restriction across

the panel units (Levin et al. (2002), Im, Pesaran and Shin (2003)) while it may also

has power in mixed situations where not all the series are stationary. In practice,
6 The assumption of cross-sectional independence is common in the literature. It allows for ana-

lytically derivation of the asymptotic distributions of the test statistics. In application to financial
data, one may argue that some common systematic factors exist. In such a case, the asymptotic
distributions change, but the test procedures remain consistent. The statistical adjustment of the
tests for common factors is out of the scope of this paper.
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those tests that consider the alternative Ha
1 are less flexible and may be subject to

the same criticism as those considering the alternative Hb
1.

Given these two alternative hypotheses the panel unit root tests, can be obtained

in two ways: Approach 1 is based on the t-ratio and approach 2 is based on the

p-value. In the first case the alternative hypothesis is Ha
1 and in the second one it is

Hb
1 (Maddala and Wu (1999) and Choi (2001)). The tests based on the t-ratios are

panel extensions of the standard Augmented Dickey-Fuller test (ADF) (Said and

Dickey (1984)). There are two ways of applying these tests to panel data, either

by pooling the units before computing a pooled test statistic (Levin et al.(2002)),

or averaging the individual test statistics in order to obtain a group-mean test (Im

et al.(2003)). On the other hand, the p-value combination tests are based on the

idea that the p-values from N independent ADF tests can easily be combined to

obtain a test of the joint hypothesis concerning all the N units. The advantages of

the p-value combination approach are its simplicity and flexibility in specifying a

different model for each panel unit and the ease in allowing the use of unbalanced

panels. Table 1.1 provides the results of the stationarity tests for returns and trade

volume changes.

In Table 1.1, Columns 1 and 2 show the outcomes of tests based on the t-ratio

which were introduced by Levin, Lin and Chu (Levin et.al (2002)) and Im et.al

(2003). Columns 3 to 6 present the outcomes of tests based on the p-value by

Maddala and Wu (1999), the modified p-test proposed by Choi (2001), the inverse

normal test by Choi (2001) and the logit test by Choi (2001), respectively. All of

these tests indicate that the data of monthly returns and trade volume changes are
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stationary.

Table 1.1: Stationarity Test for Return and Trade Volume Changes

Variables Levinlin Ips Madwu Pm Invnormal Logit

Returns -565*** -539*** 153322*** 2065*** -377*** -1159***
Trade Volume Changes -473*** -561*** 154848*** 2086*** -380*** -1170***
***p < 0.01, **p < 0.05, *p < 0.1

Note: The Table provides the results of six stationarity tests for returns and trade volume
changes. Columns 1 and 2 show the results of t-ratio-based stationarity tests of Levin, Lin
and Chu (Levin et.al (2002)) and Im et.al (2003), respectively. Columns 3 to 6 present
the outcomes of p-value-based stationarity tests of Maddala and Wu (1999), the modified
p-test of Choi (2001), the inverse normal test of Choi (2001) and the logit test of Choi
(2001), respectively.

1.4 Relation Between Return and Trade Volume

Changes

Technical analysts strongly believe that "It takes volume to make price move" (Kar-

poff, 1987). In fact, they believe that the past security information is not fully incor-

porated in current security information, and hence, by observing the past security

information, the future information can be obtained. The early studies on volume-

return relation examined contemporaneous relationships between trading volume

and absolute price changes. Hence, they have little relevance on the predictability

of future stock price or volume of its trade.

In this section, I examine the volume-return relationships based on monthly data
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for 1330 stocks which were traded on NASDAQ during the period 1999 to 2016.

First, I compute the series of cross-sectional contemporaneous correlation between

returns and trade volume changes for every month.

Figure 1.3: Time Series of Cross-Sectional Correlation between Return and Trade
Volume
Figure 1.3 shows the montgly time series of the corss-sectional correlation between return
and trade volume of 1330 stocks between 1999 and 2016.

Figure 1.3 shows that the relationship between returns and trade volume changes

is volatile. Until 2004, the correlation was fluctuating while remaining positive. The

equity investors turned more risk-averse in the second and third quarters of 2004 on

concerns about the real strength of the global economic recovery. So the investors

were very sensitive to the changes in stock return. At the end of the year 2006,

the correlation was strongly positive and reached its highest value. On the other

hand the correlation turned negative in May 2010. In fact, it seems that investors

were not willing to trade when the returns were high, but they where very active

when the returns decreased. Over the remaining part of the sampling period, the
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correlation between stock return and trade volume changes was fluctuating between

-0.25 and 0.45. This shows that the return and trade volume changes have been

correlated during the period examined, although the sign of correlation was varying.

The magnitude of the correlation was higher when significant events occurred in the

market.

It is interesting to examine the volatility of this correlation over the time and

to determine what factors are affecting it. However, this is out of the scope of this

analysis, which is focused on the joint predictability of return and trade volume

changes.

The volume-return relationship has two components, which are the contemporary

relation between changes in volume and returns and the relationship between the

past and current trading volume changes and stock returns. To verify that past

information can be used to predict future values of these variables, I estimate a

simple Pooled regression and a Fixed Effect (including both time and individual

fixed effect) model of current values of these two variables on their past values.

First I need to decide how many lags to include in these regressions. To determine

the number of lags, I compute the cross-correlation function between the returns and

trade volume changes of S&P500, which is a proxy of the market and can provide

a rough idea of correlation between these variables in other stocks. Figure 1.4,

shows the CCF (Cross-Correlation Function) between the returns and trade volume

changes of S&P 500 as a proxy of the market. The CCF shows that the returns and

trade volume changes have a negative contemporaneous correlation, while the cross-

correlations are only significant at lags 0 and 1.
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Another common approach for model order selection in VAR models involves

selecting a model order that minimizes one or more information criteria evaluated

over a range of model orders. Some of commonly used information criteria are

AIC (Akaike information criterion), HQ (Hannan-Quinn criterion), SC (Schwartz

information criterion) and FPE (Akaike Final Prediction Error). These criteria

evaluate the goodness of fit of the model and indicate the optimal number of lags

that ensures a parsimonious fit. A different optimal number of lags was obtained

from each criterion, as AIC gave 4, HQ showed 2, SC found 1 and finally FPE

presented 4 lags.

Figure 1.4: Cross-Correlation Function for Return and Trade Volume Changes of
S&P500
Figure 1.4 shows the cross-correlation function of return and trade volume changes for
S&P500 as a proxy of the market.

Given these different outcomes, the indication of the most stringent SC criterion

will be retained. I choose one lag for the dynamic model which was suggested by SC
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criterion and it also was clear in CCF graph. The dynamic linear models of returns

and volume changes are given in equations (1.2-1.3) below.

Ri,t = β10 + β11Ri,t−1 + β12TVi,t−1 + ε1,it (1.4.1)

TVi,t = β20 + β21Ri,t−1 + β22TVi,t−1 + ε2,it (1.4.2)

where Ri,t, Ri,t−1 and TVi,t ,TVi,t−1 are presenting the current and lagged returns and

trade volume changes for stock i respectively. ε1,it,ε,it both denote the error term,

which are assumed individually identical normally distributed (iid) and mutually

independent. These regressions estimated separately by the Least Squares as a

Pooled Regression and a Fixed effect model. The results from estimating these

simple panel regressions is presented in Table 1.2.

Table 1.2: Return and Trade Volume

Return on Trade Volume Intercept LR LTV

PooledOLS 0.0054*** -0.0132*** 0.0074***
FixedEffect -0.0155*** 0.0074***

Trade Volume on Return

PooledOLS 0.0093*** -0.0443*** -0.3662***
FixedEffect -0.0441*** -0.3665***

***p < 0.01, **p < 0.05, *p < 0.1
Note: The Table provides the results of Pooled OLS and Fixed Effect estimations of
Equations (1.2) and (1.3) respectively. The estimated parameters are as follow intercept,
coefficient on the first lag of return (LR) and the coefficient on first lag of trade volume
(LTV).
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Table 1.2 shows that in both OLS and Fixed-Effect regressions returns returns

show a negative dependence on their own past values and a positive dependence on

the past values of trade volume changes and trade volume changes show a negative

dependence on past values of return and trade volume changes.

These two simple estimations indicate that the past information on returns and

trade volume changes can be used to predict the future return and trade volume

changes.

This simple exercise, justifies my approach to the modelling of returns and trade

volume changes jointly. I also showed that the past information can be used to pre-

dict their future values. Since, in a positional allocation strategy, the goal of man-

agers is to maximize the expected utility function from the cross-sectional ranks

or positions, the positional momentum and liquid portfolio based on returns and

trade volume changes will be introduced in Chapter two. In Chapter two, the Gaus-

sian ranks are obtained by transforming the empirical cross-sectional distribution

functions of returns and trade volume changes. These Gaussian ranks are cross-

sectionally Normally distributed and can be modelled by a panel VAR model.
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Chapter 2

Positional Momentum and Liquidity

Management; A Bivariate Rank

Approach

2.1 Introduction

This chapter introduces a new positional momentum management strategy based

on the expected future ranks of asset returns and trade volume changes predicted

by a bivariate Vector Autoregressive (VAR) model.

The aim of this chapter is to extend the positional momentum strategy in three

respects. First, the ranks of asset returns and the ranks of trade volume changes are

considered jointly and modelled as a bivariate series. The motivation for this ap-

proach stems from the empirical evidence documented in financial literature, which
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suggests that the trade volumes provide additional information and help predict

future returns.

Second, the positional momentum portfolio based on the observed ranks is re-

placed by the positional momentum portfolio based on the expected future ranks. In

this chapter, the future ranks of return and volume changes are predicted from the

past ranks of returns and volume changes. This extends the work by Gagliardini.

et al., (2019) who introduced the expected positional momentum strategy involving

the predicted future return rank. It is also in line with Danial and Moskowitz (2016)

who show that a dynamic momentum strategy based on the forecast of momentum’s

mean and variance provides higher Sharpe ratio than the static momentum strategy.

The search for returns with high future ranks (or high Sharpe performance) does

not protect the investor from future high liquidity risk. Indeed, a future return

winner portfolio may end up being an illiquid portfolio. The third contribution

is a new expected positional liquid portfolio that contains assets that display the

highest (resp. lowest) future expected changes in trade volumes. The ranks of return

and volume changes are predicted from a bivariate panel Vector Autoregressive

model of order one (VAR(1)). In this chapter, a VAR model is used to represent

the dynamics of ranks of return and volume changes, upon their transformation to

bivariate Gaussian ranks. The main advantage of the panel VAR model is that

it has an ability to capture both the autocorrelations of each rank series and the

cross-correlations between them. The panel VAR model is estimated from monthly

returns and trade volumes ranks of 1330 stocks traded on NASDAQ between 2008

and 2016.
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It is shown that return ranks are correlated with their own past values and

the current and past ranks of trade volume changes. This result leads to a new

expected positional momentum strategy providing portfolios of predicted winners,

conditional on past ranks of returns and volume changes. This approach further ex-

tends to positional liquidity management. The expected liquid positional strategy

selects portfolios of stocks with the strongest realized or predicted increase in trad-

ing volume. These new positional management strategies outperform the standard

momentum strategies and the equally weighted portfolio in terms of average returns

and Sharpe ratio.

This Chapter is organized as follows: Section 2.2 introduces the cross-sectional

ranks of securities according to their relative returns and trade volume changes in

each month. Their transformation to Gaussian ranks is also explained. The panel

VAR model of bivariate Gaussian ranks and its estimation are discussed in Sec-

tion 2.3. Section 2.4 explains how a given portfolio can be positioned among other

stocks with respect to either return or changes in trade volume. In Section 2.5,

I define the new expected positional momentum and liquidity strategies based on

the predicted ranks of returns and volume changes. These strategies are compared

among themselves and with the equally weighted portfolio and the standard posi-

tional momentum. Section 2.6 concludes the paper. Additional results and proofs

are provided in Appendices A and B.
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2.2 Ranks of Returns and Trade Volumes Changes

2.2.1 Ranks

The literature shows that a momentum strategy based on return ranks can outper-

form the mean-variance strategy based on returns [see Jegadeesh and Titman (1993),

Moskowitz, Ooi and Pedersen (2012), Barroso and Santa-Clara (2015)]. This is usu-

ally explained by the fact that returns are more volatile than their ranks and the

momentum strategy is less sensitive to extreme volatility and more robust. Several

empirical studies point out that the rank of stock returns is more predictable than

the individual returns. For example, Hellstrom (2000) finds that the ranks can be

predicted with a complex linear model, such as a neural network, and his model

results show 63% hit rate for the sign of daily threshold-selected 1-day predictions.

We show that even more accurate rank predictions can be obtained from dynamic

time series model, such as the (Vector) Autoregressive model, applied to rank series

transformed into normally distributed variables.

In the literature, the ex-post and ex-ante ranks are distinguished. The ex-post

ranks are obtained by ranking all asset returns at time t from the smallest one

to the largest one, and next, by dividing their position by the total number of

observations. Equivalently the ex-post return rank of asset i can be derived by

inverting the empirical cross-sectional (CS) cumulative distribution function (c.d.f)

of the returns at date t. In this case the observed ex-post ranks have the discrete

empirical uniform distribution on (1/n, 2/n, ... , 1). In the definition of an ex-ante
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rank, the empirical cross-sectional c.d.f. is replaced by its theoretical distribution

function. Hence, the ex-ante ranks have a cross-sectional uniform distribution on

the interval [0, 1]. The ex-ante ranks can be interpreted as predicted ranks.

Since the ranks are defined up to an increasing transformation, they can be

easily transformed into Gaussian ranks as follows [see Gagliardini et al.(2019)]. The

Gaussian ranks are obtained from the corresponding uniform ranks by applying the

quantile function of the standard Normal distribution. Next, by standardizing the

ranks, one ensures the cross-sectional Normal distribution of the rank variables. Let

us consider two ex-post Gaussian ranks, one of stock returns and the second of trade

volume changes for stock i at time (month) t. These ranks are related to the returns

and trade volume changes by the following equations:

ui,t = Φ−1(F̂ r
t (rit)) t = 1, · · ·, T ; i = 1, · · ·, n, (2.2.1)

vi,t = Φ−1(F̂ tv
t (tvit)) t = 1, · · ·, T ; i = 1, · · ·, n, (2.2.2)

where ui,t is the Gaussian rank of return, vi,t is the Gaussian rank of trade volume

changes, Φ is the cumulative distribution function (c.d.f.) of the standard Normal,

Φ−1 is its inverse which is the quantile function of the standard Normal and F̂ r
t , F̂

tv
t

are the cross-sectional empirical cumulative distribution functions of return and

trade volume changes at date t, respectively.

To compute the Gaussian ranks, I order all returns and trade volume changes

from the highest to the lowest in each month, and assign them absolute ranks from 1

to 1330 (since my sample includes 1330 stocks). Next, I divide these ranks by the to-
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tal number of stocks which gives me the position of each stock in comparison to other

stocks in each month. This procedure provides the empirical cross-sectional cumula-

tive distribution functions F̂ r
t , F̂

tv
t . Next, to transform these ranks into the Gaussian

ranks, I find the equivalent quantile of the standard Normal distribution function for

each position [See Appendix A.1 for Normal distribution of cross-sectional Gaussian

ranks]7.

According to the above transformation, if asset i has return probability equal to

F̂ r
t = 0.90, then there are 90% of assets in the sample, which have smaller or equal

returns at time t while the remaining 10% of assets have larger returns. Equivalently,

if asset i has rank 0.90, there is a probability equal to 90% that the return at time

t of any other asset is smaller or equal to the return of asset i. For this particular

stock, the corresponding Gaussian rank is uit = 1.28 which is the 90% quantile of

the standard Normal distribution function.

2.2.2 Relation Between Ranks of Returns and Volume Changes

2.2.2.1 Cross-Sectional Correlation of Ranks

The ranks of returns and volume changes are cross-sectionally correlated and their

cross-sectional correlation changes over time. Figure 2.1 displays the cross-sectional

correlations between the two ranks 8, which are computed for each month from the
7Information available at each time t is Jt : {uit, vit, i = 1, · · · , n} and Jt ⊂ It.
8 The sample cross-sectional correlation is 1

n

∑
i(uit − ūt)(vit −

v̄t)/
√

1
n

∑
i(uit − ūt)2

1
n

∑
i(vit − v̄t)2, where n = 1330, ūt = 1

n

∑
i uit, t = 1, · · · , T and v̄t

is defined accordingly and t = 1, .., 214 denotes the month.
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sample of 1330 stocks. The cross-sectional correlation fluctuates over time between

−0.2 and 0.2. It reaches its highest value in 2001 (0.31). It turns and stays negative

for one year between 2008 and 2009 (the crisis), until it falls to its lowest value

in 2014 (−0.19). On average, the cross-sectional correlation is 0.02 over the entire

sampling period. As a positive value of cross-correlation indicates that the ranks of

returns and trade volume changes increase (decrease) simultaneously, we conclude

that the winner stocks tend to be more liquid, on average over the period 2000-2016.

Figure 2.1: Cross-sectional correlation of return and volume change ranks.
Figure 2.1 shows the variation in cross-sectional correlations between the return and trade
volume change ranks over time. The cross-sectional correlations are computed from the
sample of 1330 stocks in each month.

2.2.2.2 Serial Correlation and Cross-Correlation of Ranks

To illustrate the serial correlation and cross-correlation of the two rank series, we

consider the example of S&P500. The auto-correlation function (ACF) of each

of the rank series uSPt , vSPt t = 1, .., 214 and the cross-correlation function (CCF)
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representing the lagged effects of one rank series on another are shown in Figures

2.2, 2.3 and 2.4 respectively.

Figure 2.2 reveals a significant auto-correlation at the first lag in the return rank

uSPt . This finding is consistent with the negative sign of return correlation reported

in Jagadeesh (1990). It indicates that the last month’s return rank can predict the

current rank of return. We also observe the same negative auto-correlation at the

first lag in the ranks of trade volume changes (vSPt ) in Figure 2.3.

Figure 2.2: Auto-Correlation Function of uSPt of S&P500
Figure 2.2 shows the auto-correlation function (ACF) of uSPt return ranks for the S&P500.
We observe a significant auto-correlation at the first lag in uSPt .

Hence, the last month’s rank of trade volume changes can also predict the cur-

rent one. Figure 2.4 shows the cross-correlation function (CCF ) of the ranks of

returns and trade volume changes of S&P500. We observe a significant negative

contemporaneous correlation between the two series of ranks of returns and trade

volume changes for S&P500. Hence, a high rank of return on S&P500 tend to occur

simultaneously with a low rank of volume change.
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Figure 2.3: Auto-Correlation of vSPt of S&P500
Figure 2.3 shows the auto-correlation function (ACF) of vSPt series for the S&P500. We
observe a significant auto-correlation at the first lag in vSPt .

Figure 2.4: Cross-Correlation function (CCF) of uSPt , vSPt for S&P500.
Figure 2.4 displays the cross-correlation function (CCF) of the ranks series uSPt , vSPt for the
S&P500 . The CCF shows a significant negative contemporaneous correlation between the
two series of ranks of return and trade volume for S&P500. In addition, it shows significant
cross-correlations at the first and fourth lags.
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In addition, the CCF reveals significant cross-correlations at the first and fourth

lags, which suggests that past information on ranks of trade volume changes of

S&P500 can help predict the future ranks of returns and vice versa.

So far we have discussed the example of ranks for S&P500. Figures 2.5 and 2.6

illustrate the cross-correlations at lag one in all stocks, by providing the histograms

of cross-correlations at lag 1 between ut, vt−1 and vt, ut−1 computed from all stocks

in the sample (1330 stocks).

In Figure 2.5, the cross-correlation at lag 1 coefficients take values between −0.13

to 0.18 and the mode of the sample distribution is about 0.04. Hence, on average

rank ut is positively correlated with vt−1. The mode of the distribution in Figure 2.6

is −0.15 which suggests that vt and ut−1 are negatively correlated, on average. The

cross-correlation at lag 1 coefficients in Figure 2.6 range between −0.29 and 0.16.
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Figure 2.5: Cross-Correlation Between ut and vt−1

Figure 2.5 display the histograms of cross-correlations between ut, vt−1. These cross-
correlations are computed from 1330 series of ranks for each stock in the sample.

Figure 2.6: Cross-Correlation Between vt and ut−1

Figure 2.6 display the histograms of cross-correlations between vt, ut−1. These cross-
correlations are computed from 1330 series of ranks for each stock in the sample.
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2.3 The Cross-Sectional Gaussian Ranks Model

2.3.1 The Model

Our positional portfolio strategy is about finding the optimal allocation based on

the future position of all equities in the portfolio. To predict the future positions, we

need to define a joint dynamic model of ranks of return and trade volume changes.

According to the results presented in the previous section, the joint dynamics of the

two rank series can be represented by a Vector Autoregressive model of order one

(VAR(1)).

uit
vit

 =

ρ11 ρ12

ρ21 ρ22


ui,t−1

vi,t−1

+ Σ1/2

e1,it

e2,it

 , t = 2, · · ·, T ; i = 1, · · ·, n,

(2.3.1)

where R =

ρ11 ρ12

ρ21 ρ22

 is the matrix of autoregressive coefficients, Σ represents the

variance matrix of the error terms, and the idiosyncratic disturbance terms e1,it and

e2,it are serially independent and identically (i.i.d) standard Normally distributed.

The autoregressive coefficients matrix R is assumed to have eigenvalues with mod-

ulus less than one to ensure the stationarity of the process. Since the ranks are

marginally standard Normally distributed, the marginal variance of the ranks is
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1 η

η 1

. The diagonal terms are the variances of uit and vit (which are equal to

one, since both ranks are cross-sectionally Normally distributed) and η represents

the contemporaneous correlation between uit and vit. Thus, we need to impose a

constraint on the error variance matrix Σ that follows from the equality below:

1 η

η 1

 = R

1 η

η 1

R′ + Σ where |η| < 1 (2.3.2)

Hence:

Σ =

1 η

η 1

−R
1 η

η 1

R′ (2.3.3)

To estimate the VAR(1) model, let us rewrite equation (4.4) as follows:

uit
vit

 = R

ui,t−1

vi,t−1

+ Σ1/2

e1,it

e2,it

 , t = 2, · · ·, T ; i = 1, · · ·, n. (2.3.4)

where Σ =

1− A η − C

η − C 1−B

, with A = ρ2
11 +ρ2

12 +2ηρ11ρ12, B = ρ2
21 +ρ2

22 +2ηρ22ρ21

and C = ρ11ρ21 + ρ12ρ22 + ηρ12ρ21 + ηρ11ρ22.

The parameters of model (2.7) are estimated by the maximum log likelihood with
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the following objective function9 that is maximized with respect to the autoregressive

parameters and η as follows:

logL(R, η) =
N∑
i=1

T∑
t=2

{
− log(2π)− 1

2
log(|Σ|)− 1

2

(e1,it

e2,it


′

Σ−1

e1,it

e2,it

)} (2.3.5)

The VAR(1) parameters are estimated from the entire sample of 1330 stocks over

the period of 1999 to 2016. Table 2 shows the results of the maximum likelihood

estimation. According to the empirical results, all coefficients of the model are

strongly significant.

Table 2.1: Estimated VAR(1) Model

Coefficients V alues

ρ̂11 -0.024***
ρ̂12 0.010***
ρ̂21 -0.024***
ρ̂22 -0.354***
η̂ 0.0390***

***p < 0.01, **p < 0.05, *p < 0.1
Note: The table provides the parameters of the VAR(1) model, estimated from the entire
sample of 1330 stocks over the period 1999 to 2016, by the maximum likelihood (equation
4.8). All coefficients of the model are strongly significant. The estimates of autoregressive
coefficients imply that returns’ ranks are related negatively with their own past value, while
they are related positively with the past value of trade volumes ranks. The ranks of trade
volume changes are related negatively with both past ranks of trade volume changes and
returns.

9After replacing Σ by its expression Σ =

(
1−A η − C
η − C 1−B

)
in the objective function.
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The signs of the estimated autoregressive coefficients suggest that:

1) The liquid past losers tend to experience an increase of their current ranks of

returns,

2) The non-liquid past losers tend to experience an increase of their current ranks

of volume changes.

The contemporaneous correlation η̂ between the error terms is positive. Hence,

a high rank of trade volume change is associated with a high rank of return at the

same time t 10. In other words, the winner stocks are the most liquid ones as well.

An important characteristic of a VAR process is its stationarity. The stationary

VAR model contains time series components with time-invariant means, variances,

and covariance structure. In practice, the stationarity of an empirical VAR process

can be analyzed by considering the companion form and calculating the eigenvalues

of the coefficient matrix. The obtained eigenvalues for the VAR(1) model in equation

(4.4) are −0.348 and −0.025. Since both eigenvalues are of modulus less than one,

we can conclude that the system is stationary.

After estimating the VAR(1) model, we test whether the residuals obey the

model’s assumption. First, we check for the absence of serial correlation and next,

we verify if the error process is normally distributed. The Durbin-Watson (DW)

statistic is used to detect the presence of autocorrelation at lag 1 in the residuals

(prediction errors) from a regression analysis. The null hypothesis H0 in the DW

test is that the errors are serially uncorrelated and the alternative hypothesis H1 is
10This finding acknowledges the fact that we observed in Section 3.2.1 since the average cross-

correlation between ranks of return and trade volume was 0.02.

42



the existence of a first order autoregressive process in error terms. The DW test

applied to the cross-sectional vectors of residuals of model (2.6) indicates that there

is no autocorrelation [see Appendix A.2]. The cross-sectional Normal distribution of

the residuals and their Normal distribution over time are illustrated in Appendices

A.3 and A.4.

Given that the sampling period is long, one can be concerned about the stability

of the estimated parameters. To examine the fit of the model over the long sampling

period I compute the time series of autoregressive coefficients ρ̂ij, i, j = 1, 2 which

are obtained by re-estimating the model (equation (2.7)) by rolling, with the window

of 109 months (' 9 years).

Figure 2.7: Time Series of ρ̂11, ρ̂12

Figure 2.7 shows the time series of coefficients ρ̂11, ρ̂12, which are obtained by re-estimating
the model (equation (2.7)) by rolling with the window of 109 months (' 9 years). Over
time, there is little variation and the parameters seem rather stable.
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Figure 2.8: Time Series of ρ̂21, ρ̂22

Figure 2.8 shows the time series of coefficients ρ̂21, ρ̂22, which are obtained by re-estimating
the model (equation (2.7)) by rolling with the window of 109 months (' 9 years). Over
time, there is little variation and the parameters seem rather stable.

Figures 2.7 and 2.8 show the time series of autoregressive coefficients estimated

by rolling over the period: March 2008 - March 2016. We observe slight variation

in ρ̂11, which is more pronounced than that in ρ̂12. Coefficient ρ̂11 varies between

−0.015 and −0.005, ρ̂12 varies between 0 and 0.01, ρ̂21 fluctuates between −0.015

and −0.010 and ρ̂22 varies around −0.18.

Figure 2.9 shows the time series of η̂ (contemporaneous correlation between uit

and vit) from the rolling estimation over 109 months. We observe that η̂ displays

a downward trend. Over the period 2008 to 2009, it decreases from above 0.2 to

slightly less than 0.2 and it continues to decrease at the end of year 2010. Later on,

η̂ remains almost constant until the beginning of 2012. After year 2012, it decreases

gradually to zero. Given the slight variation of the parameters and to accommo-
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Figure 2.9: Time Series of η̂
Figure 2.9 shows the time series of η̂ (contemporaneous correlation between uit and vit)
obtained from the rolling estimation with a window of 109 months. The figure shows a
downward trend in η̂.

date the period of crisis 2008 - 2010, I use henceforth the rolling estimation of the

VAR(1) model with a window of 109 months. This procedure allows me to update

the parameters each month. It produces monthly estimates of model parameters

between October 2008 and October 2016, which becomes the new sampling period.

2.4 Positional Portfolio

This Section explains how a given portfolio can be positioned among other stocks

on the market with respect to either returns or trade volume changes. It is assumed

that there is no short sell, i.e. the numbers of shares of stocks included in the

portfolio are non-negative.
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2.4.1 Portfolio Return and Portfolio Activity

Let us first consider a portfolio of n stocks. The numbers of shares of these stocks are

αi, i = 1, · · · , n. These quantities are non-negative by the no short sell condition.

At time t the prices are Pi,t, i = 1, · · · , n and the dollar values of trade quantities

are TVi,t, i = 1, · · · , n. Then, the total value and total trade value for this portfolio

are:

P̄t(α) =
n∑
i=1

αiPi,t, ¯TV t(α) =
n∑
i=1

αiTVi,t, (2.4.1)

respectively. Thus, the changes between t and t+ 1 are:

P̄t+1(α)

P̄t(α)
=

∑n
i=1 αiPi,t+1∑n
i=1 αiPi,t

(2.4.2)

¯TV t+1(α)
¯TV t(α)

=

∑n
i=1 αiTVi,t+1∑n
i=1 αiTVi,t,

, (2.4.3)

These changes can be rewritten as:

P̄t+1(α)

P̄t(α)
=

n∑
i=1

(
αiPi,t∑n
i=1 αiPi,t

Pi,t+1

Pi,t

)
≡

n∑
i=1

βri,t
Pi,t+1

Pi,t
(2.4.4)
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¯TV t+1(α)
¯TV t(α)

=
n∑
i=1

(
αiTVi,t∑n
i=1 αiTVi,t

TVi,t+1

TVi,t

)
≡

n∑
i=1

βtvi,t
TVi,t+1

TVi,t
(2.4.5)

Equations (2.11) and (2.12) provide the aggregate formulas of changes in prices and

trade volumes, respectively. These allocations are:

a) the allocation in number of shares: αi, i = 1, · · · , n, or

b) the allocation in capitalization: βri,t, i = 1, · · · , n, or

c) the allocation in dollar weighted activity: βtvi,t, i = 1, · · · , n.

All the above allocations are non-negative, by the no short sell assumption.

2.4.2 How to Position a Portfolio

In order to position a portfolio with no short sell, we use the aggregation formulas of

Section 2.4.1. To make the link with the definitions of returns and changes in trade

volume defined in the previous section, we also apply the aggregation formulas by

substituting the geometric return (change) by their arithmetic counterpart.

This approximation is valid at the first order, as long as the changes are not too

large. Thus, we can position a given portfolio among other assets by first defining
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the return (resp. activity) of that portfolio as:

rt(β
r
t ) = βrt rt =

n∑
i=1

βri,tri,t (2.4.6)

tvt(β
tv
t ) = βtvt tvt =

n∑
i=1

βtvi,ttvi,t (2.4.7)

Next, we deduce its position with respect to returns and changes in trade volumes:

ut(β
r
t ) = Φ−1F r

t

[ n∑
i=1

βri,t(F
r
t )−1Φ(ui,t)

]
, (2.4.8)

vt(β
tv
t ) = Φ−1F tv

t

[ n∑
i=1

βtvi,t(F
tv
t )−1Φ(vi,t)

]
, (2.4.9)

where the c.d.f. F r
t and F tv

t are derived with respect to the universe of the n stocks

considered.

2.5 Expected Positional Momentum Strategies

This section introduces the positional momentum portfolio strategy based on either

the expected ranks of return or expected ranks of volume changes conditional on their

past, and examines the comparative performance of the proposed portfolios. The

standard positional momentum strategy consists of adjusting the portfolio by buying

stocks or other securities with high observed past returns and selling stocks with

poor observed past returns. The expected positional momentum strategy introduced

by Gagliardini et. al. (2019) extends the momentum portfolio methodology by
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providing at time t portfolios of stocks with high expected return ranks at each time

t+1. The future ranks are forecasted out-of-sample from a univariate autoregressive

AR(1) model of return ranks [Appendix B].

The proposed approach in this section, the momentum positional portfolio is

based on the expected return ranks and is adjusted at each time t, conditional on

the past return and volume change ranks. In our study, the expected ranks at t+ 1

are forecast out-of-sample from the bivariate VAR(1) model (equation 2.7) of return

and volume change ranks at each time t. In Section 2.5.1, the momentum portfolios

based on the expected return ranks are presented. The liquid portfolios based on

the expected trade volume change ranks are presented in Section 2.5.2.

The literature has documented that stocks reverse in returns at short monthly

horizons (see e.g. Jegadesh (1990), Avramov et.al. (2006)) and long horizon (Hong

and Stein (1999)) likely due to overreaction of some investors to news (De Bondt

and Thaler (1985), Hong and Stein (1999)). Therefore, we also consider the posi-

tional reverse momentum portfolios and positional reverse liquid portfolios which

contain stocks with low expected return ranks and low expected volume change

ranks, respectively.

For the positional strategy, it is important to define the investment universe

which can be different than the positional universe. The investment universe is a set

of assets potentially introduced in the portfolio, while the positional universe is a set

of assets that has been used to define the ranks. For instance, for a fund manager,

the investment universe may be a fraction of the stocks, whereas the positioning

universe can be the set of all stocks which are trading in the stock market.
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This section, considers the investment universe equivalent to the positional uni-

verse (as in Section 5), which contains 1330 stocks returns and trade volumes in the

balanced panel from NASDAQ market from October 2008 to October 2016.

2.5.1 Positional Momentum Strategies

This section examines the performance of the momentum strategy based on the

expected return ranks. It also compares the proposed methodology based on the

VAR(1) model in equation (2.7) with the positional momentum strategy introduced

by Gagliardini et. al. (2019) which is based on predicted return ranks from the

AR(1) model [see Appendix B]. All coefficients in both the VAR(1) and AR(1)

models are estimated and updated monthly by using a rolling window of 109 months

that allows us to accommodate the crisis period.

2.5.1.1 Definition of The Strategies

The following strategies are considered to compute portfolios with monthly adjust-

ments of asset allocations and equal look-back periods of one month over the period

2008 to 2016:

1) The Expected Positional Momentum Strategy (EPMS)

This strategy selects at time t an equally weighted portfolio of stocks with the 5%

highest expected return ranks11. The expected ranks at time t are forecast one-step
11The timing of the forecast is moved to t instead to t+1 in order to compare the prediction-based

strategies with the standard momentum.
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ahead at time t− 1 from,

a) the bivariate VAR(1) model (equation (2.7)),

b) the univariate AR(1) model (Appendix B).

2) The Expected Positional Reverse Strategy (EPRS)

This strategy is similar to the EPMS except for including in the portfolio stocks

with the 5% lowest expected return ranks at time t, which are forecast one-step

ahead at time t− 1 from

a) the bivariate VAR(1) model (equation (2.7)),

b) the univariate AR(1) model (in Appendix B).

3) Equally Weighted Portfolio (EW)

This portfolio is an Equally Weighted (EW) portfolio of all 1330 stocks. It is

used in the performance study as the benchmark and a market portfolio proxy.

4) The Positional Momentum Strategy (PMS)

This is the standard strategy that selects at time t an equally weighted portfolio

including all stocks whose observed returns at time t−1 are in the upper 5% quantile

of the CS (cross-sectional) distribution respectively. The Gaussian ranks of return

of these stocks are such that ui,t−1 ≥ 1.64.

5) The Positional Reversal Strategies (PRS)

This standard strategy selects at time t an equally weighted portfolio including

all stocks with the observed return ranks at time t− 1 in the lowest 5% quantile of

the CS distribution.
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2.5.1.2 Return Performance of the Strategies

The time series of monthly portfolio returns generated by the above five strategies

are illustrated in Figure 2.10. We observe a period of high volatility at the beginning

of the sample due to the crisis. During that period, the EPMS provided positive

returns while avoiding strong negative returns displayed by the PRS over the entire

sampling period.

During the crisis, the VAR-EPMS shows surprisingly high returns in 2009. After

2008, the volatility decreases and the monthly returns on the EPMS and the PRS

portfolios continue to dominate the other strategies, except for March 2016 when

the EPRS strategy is more efficient. As shown in Table 2.2, the VAR-based EPMS

strategy outperforms all other strategies in terms of average monthly returns.

Table 2.2 presents the statistics summarizing the monthly returns on the five po-

sitional portfolios over the sampling period 2008-2016, including both the expected

positional strategies based on VAR(1) and AR(1) models. On average, the VAR-

based EPMS strategy provides the highest monthly return and outperforms all other

strategies.

Moreover, the average monthly return on the equally weighted portfolio (EW) is

slightly lower than on the PRS portfolio while the PRS has a higher average monthly

return then the PMS portfolio. This implies that the reversal portfolios based on

the lowest 5% past ranks of returns (PRS) provide higher average returns than the

PMS which is based on the highest 5% past ranks of returns. Hence, the portfolio of

past losers (stocks with low return ranks), provides a higher average monthly return
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than the portfolio of past winners (stocks with high past return ranks).

Figure 2.10: Monthly Portfolio Returns on Momentum Portfolios.
Figure 2.10 shows the time series of monthly portfolio returns generated by the five strate-
gies, from September 2008 to October 2016. The returns on portfolios are color-coded as
follows: EW-red, PRS-olive, PMS-green, EPRS-blue, EPMS-purple.

The EPRS portfolios based on forecasts from either the AR and VAR models

have lower average returns than the EW portfolio, which are positive. Moreover,

the reversal portfolio based on the expected ranks of returns EPRS obtained from

the bivariate VAR model provides a higher average return than the EPRS based on

the univariate AR model.

The last row of Table 2.2 provides the positional Sharpe ratio on the momentum

portfolios. The Sharpe ratio is obtained from the following formula:

SR =
r̄p − rf
σp

(2.5.1)
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Table 2.2: Monthly Returns on Positional Momentum Portfolios

EW PMS PRS EPMS EPRS

V AR AR V AR AR

Mean 0.0042 0.0020 0.0043 0.0064 0.0037 0.0034 0.0022
Standard Deviation 0.0676 0.0798 0.1202 0.1054 0.1090 0.0770 0.0743

Skew -2.1586 -1.0888 -1.654 -1.3467 -1.5703 -1.6173 -1.1998
Kurt 12.168 9.222 9.6130 8.444 9.6056 12.485 9.7066

Sharpe Ratio 0.0416 0.0067 0.0240 0.0471 0.0206 0.0258 0.0103

Note: Table 2.2 presents the summary statistics of monthly returns on the positional
portfolios over the sampling period September 2008 to October 2016. On average, the
VAR-EPMS strategy outperforms all other strategies and has the highest Sharpe ratio.
The average return of the VAR- EPRS is higher than the AR- EPRS but lower than the
EW.

where r̄p is the mean of the portfolio return, rf is the risk free returns on the last

date of portfolio holding (October 2016) and σp is the standard deviation of portfolio

returns. In this paper, the time series of 10-year US Generic Government Treasury

Bond is considered as a risk-free return. Table 2.2 shows that the highest average

return and Sharpe ratio are on the EPMS obtained from the bivariate VAR model.

Both the bivariate VAR-EPMS and VAR-EPRS portfolios have higher Sharpe ratios

than the AR-EPMS and AR-EPRS.

Figures 2.11 and 2.12 show the cumulative portfolio returns over time on the

PMS, PRS and EW portfolios with the inception date of January 2008, compared

with the the VAR-EPMS and VAR-EPRS in Figure 2.11 and the AR-EPMS and

AR-EPRS portfolios in Figure 2.12.
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Figure 2.11: Cumulative Returns on Positional Portfolios for VAR(1) Model

Figure 2.12: Cumulative Returns on Positional Portfolios for AR(1) Model
Figures 2.11 and 2.12 compare the time series of cumulative portfolio returns on the posi-
tional momentum portfolios PMS, PRS and EW with the VAR-EPMS, VAR-EPRS (Figure
2.11) and AR-EPMS, AR-EPRS (Figure 2.12) with the inception date of January 2008. The
returns on portfolios are color-coded as follows: EW-red, PRS-olive, PMS-green, EPRS-
blue, EPMS-purple.
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In Figure 2.11, we observe that in early 2008, the cumulative returns on the PMS

and VAR-EPRS are close and higher than on the other portfolios whose cumulative

returns are more volatile. The PRS and the VAR-EPMS portfolios provide close

cumulative returns, although during the crisis period the EW outperforms both

VAR-EPMS and VAR-EPRS portfolios. Over the period 2009 - 2010, the PMS

portfolio provides the highest cumulative return. From 2010 to 2011, the cumula-

tive returns on the EPMS, EPRS and PMS are very close. After year 2011, the

VAR-EPMS portfolio outperforms all other portfolios. Figure 2.12 shows a similar

pattern to that observed in Figure 2.11 during the crisis period 2008 to 2009. Over

the period 2009 to 2011, the AR-EPRS and PMS portfolios provide the highest cu-

mulative returns, while the AR-based EPMS and PRS portfolios provide the lowest

cumulative returns.

From 2011 to 2012, the AR-EPRS has the highest cumulative return and the

AR-EPMS has the lowest cumulative return.

From the beginning of year 2012 until the end of 2013, the cumulative returns on

all portfolios are close, although for most of that time, the AR-EPRS outperforms

the other portfolios. After September 2013 until September 2015, the AR-EPRS is

the leading portfolio. Between September 2015 until mid 2016, the EW portfolio

has the highest cumulative return and the PMS portfolio has the lowest cumulative

return. Between mid 2016 until September 2016, the AR-EPRS provides the highest

cumulative return. By comparing Figures 2.11 and 2.12, we find that after year 2011,

the VAR-EPMS, i.e. the positional momentum portfolio which is based on the VAR

model predictions, outperforms other positional momentum portfolios in terms of
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the cumulative return.

Table 2.3 shows the cumulative return on October 2016 on the positional mo-

mentum portfolios with different inception dates. If an investor holds the positional

momentum portfolios since January 1st, 2008 (for 8 years, i.e. the longest hold-

ing period), then the best investment is the VAR-EPMS that provides the highest

cumulative return, six times higher than the cumulative return on the EW with

inception date of 2014 (which is the highest cumulative return over the shortest

holding period).

Among the portfolios with inception date of January 1st, 2010, the highest return

is on the PRS which slightly exceeds the return on the VAR- EPMS. Over the 4-year

holding period, the PRS and the VAR-EPMS have the highest cumulative return.

Over the shortest holding period of 2 years, the EW provides the highest cumulative

return.

We also observe that when the holding period decreases from 8 to 6 years, the cu-

mulative returns on the VAR-EPMS and AR-EPM increase, although they decrease

when the holding period is reduced from 6 to 4-years. The cumulative returns on

the VAR-EPMS and AR-EPMS portfolios decrease further over the shortest 2-year

holding period. On the contrary, the cumulative returns on the VAR-EPRS and

AR-EPRS grow when the holding period is extended from 8 to 4 years, but also

decrease significantly over the shortest 2-year holding period.

The results in Table 2.3 also show that the positional portfolios with expected

ranks obtained from the bivariate VARmodel provide significantly higher cumulative

returns than those obtained from the univariate AR model.
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Table 2.3: Cumulative Returns on Positional Momentum Portfolios

EW PMS PRS EPMS EPRS

V AR AR V AR AR

From 2008 0.444 0.206 0.451 0.667 0.384 0.358 0.230
From 2010 0.646 0.136 0.750 0.729 0.716 0.412 0.151
From 2012 0.528 0.280 0.630 0.630 0.613 0.419 0.249
From 2014 0.102 -0.015 0.034 0.047 0.019 0.003 -0.073

Note: Table 2.3 shows the cumulative returns on October 19th 2016 on holding the po-
sitional momentum portfolios from different inception dates. If one holds the positional
momentum portfolios from January 1st, 2008, the best investment is the VAR-EPMS,
which provides the highest cumulative return, six times higher than the cumulative return
on the EW with inception date of 2014 (which is the highest cumulative return in the
shortest holding period). Among the portfolios with inception date of January 1st, 2010
the highest cumulative return is on the PRS, followed by the VAR-EPMS. Over the 4-year
holding period, the PRS and VAR-EPMS provide the highest cumulative return. Over the
shortest 2-year holding period the EW provides the highest cumulative return.

Table 2.4 illustrates the returns over short holding periods. Four holding periods

of 3,6,9 and 12 months are considered . The first seven columns of Table 2.4 show

the cumulative returns on all five positional portfolios obtained by re-investing every

month 12, with one month look-back period, over the entire sampling period. The

last two columns report the results with 3, 6, 9 and 12 month look-back periods.

When the rolling investment with 3-month holding period is considered, the VAR-

EPMS outperforms all other portfolios in terms of the Sharpe ratio and the average

cumulative return. Over the 6 and 9-month holding periods, the PRS based on

6 and 9 months look-back periods have the highest returns. Over the 12-month

holding period, the VAR-EPMS outperforms the other portfolios again in terms of

the average cumulative return.
12We refer to this strategy as a rolling investment.
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We also report that the PRS outperforms the PMS at holding periods of 3, 6 and 9

months. This is consistent with the finding of Lehmann (1990) and Jegadeesh (1990)

who find that stock returns exhibit strong reversals for short look-back periods (one

to six months) [see also, Moskowitz, Ooi and Pedersen (2012)].
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Table 2.4: Rolling Cumulative Returns on Positional Momentum Portfolios

Holding Period Look-Back=1 Month Look-Back=Holding

EW PMS PRS EPMS EPRS PMS PRS

3 Months V AR AR V AR AR

Mean 0.013 0.006 0.014 0.021 0.012 0.011 0.007 0.003 0.020
Standard Deviation 0.118 0.148 0.200 0.178 0.178 0.151 0.151 0.135 0.182

Sharpe Ratio 0.101 0.033 0.067 0.112 0.061 0.062 0.039 0.009 0.092

6 Months V AR AR V AR AR

Mean 0.026 0.010 0.029 0.042 0.024 0.020 0.012 0.044 0.056
Standard Deviation 0.184 0.229 0.307 0.271 0.271 0.236 0.236 0.164 0.223

Sharpe Ratio 0.136 0.038 0.089 0.149 0.084 0.078 0.047 0.216 0.214

9 Months V AR AR V AR AR

Mean 0.043 0.015 0.050 0.068 0.043 0.031 0.020 0.077 0.125
Standard Deviation 0.213 0.264 0.352 0.311 0.311 0.272 0.272 0.148 0.453

Sharpe Ratio 0.197 0.052 0.138 0.213 0.133 0.109 0.069 0.431 0.248

12 Months V AR AR V AR AR

Mean 0.073 0.029 0.090 0.110 0.079 0.054 0.037 0.086 0.055
Standard Deviation 0.206 0.260 0.336 0.302 0.302 0.267 0.267 0.100 0.188

Sharpe Ratio 0.347 0.106 0.264 0.361 0.257 0.197 0.134 0.690 0.120

Note: The first seven columns of Table 2.4 display the average cumulative returns on
all five positional momentum portfolios obtained by re-investing every month, with a one
month look-back period. The last two columns show the cumulative returns on positional
momentum portfolios based on the top and bottom 5% stocks, with 3,6,9 and 12 months
look-back periods and holding periods of 3,6,9 and 12 months respectively. The VAR-
EPMS outperforms the other portfolios in terms of the Sharpe ratio and average cumulative
return over the 3 month. In the 6 and 9 month holding periods, the PRS based on 6 and
9 months look-back periods have the highest return. In the 12 month holding period, the
VAR-based EPMS beats the other portfolios.
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2.5.2 Expected Liquidity Positional Momentum Strategy

2.5.2.1 Definition of the Strategies

This section introduces the positional liquid portfolio management strategies that

are defined below and named according to the terminology introduced in the previous

section, with the letter "L" for liquidity added to the acronyms 13:

1) The Liquid Expected Positional Momentum Strategy (LEPMS)

This strategy selects at time t an equally weighted portfolio of stocks with the

5% highest expected ranks of trade volume changes at each month. The expected

ranks at time t are forecast one-step ahead at time t−1 from a) the bivariate VAR(1)

model (equation. (2.7)), b) the univariate AR(1) model for liquidity, as estimated

by the ranks of volume changes.

2) The Liquid Expected Positional Reverse Strategy (LEPRS)

It selects at time t the 5% lowest expected ranks of trade volume changes of

time t, which are forecast one-step ahead at time t−1 from a) the bivariate VAR(1)

model (equation (2.7), b) the univariate AR(1) model for liquidity.

The LPMS and LPRS are the momentum portfolios directly defined from the

past ranks of trade volume changes at time t − 1. The EW portfolio remains an

equally weighted portfolio of all stocks, as in the previous Section.

13Many micro-structure models suggest, it is easier to trade when the market is active, therefore
linking the trade volume and liquidity.
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2.5.2.2 Return Performance

Let us now compare the performance of the liquid expected positional portfolios

in terms of returns. Figure 2.13 shows the time series of monthly returns on the

liquid positional portfolios LPMS, LPRS, VAR-LEPMS, VAR-LEPRS and EW. We

observe a period of high volatility at the beginning of the sample due to the crisis.

Figure 2.13: Monthly Returns on Liquid Positional Portfolios.
Figure 2.13 shows the time series of monthly returns on liquid positional momentum port-
folios generated by the five strategies from September 2008 to October 2016. The returns
on portfolios are color-coded as follows: EW-red, LPRS-olive, LPMS-green, VAR-LEPRS-
blue, VAR-LEPMS-purple.

During that period, the VAR-LEPRS provides the highest returns for most of

the time (this is in line with Daniel and Moskowitz (2016)) while at the end of 2008

all liquid portfolios report negative returns. Moreover, the volatility of the liquid

positional portfolios is lower than the volatility of momentum positional portfolios
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in the previous Section (see Figure 2.10). After 2008, the volatility decreases and

the monthly returns on the VAR-LEPRS portfolio along with the LPMS continue to

dominate the other strategies, until March 2010. Between March 2010 and March

2012 the VAR-LEPMS has the highest monthly return. Next, until September 2013

the VAR-LEPRS and LPMS are the leading portfolios again. From September 2013

until the end of the sampling period, the returns on all portfolios are close and vary

between −0.1 and 0.1.

Table 2.5, shows the summary statistics on the returns on liquid (expected)

positional portfolios over the entire sampling period. According to these results, all

liquid expected positional portfolio strategies produce higher average return than

the equally weighed portfolio (EW). The LPMS portfolio which is based on the

highest volume change ranks at time (t− 1) has the highest average return.

Table 2.5: Returns on Positional Liquid Portfolios

EW LPMS LPRS LEPMS LEPRS

V AR AR V AR AR

Mean 0.0042 0.0101 0.0048 0.0045 0.0042 0.0085 0.0077
Standard Deviation 0.0676 0.0723 0.06862 0.0692 0.0698 0.0710 0.0717

Skew -2.1586 -1.0298 -2.1103 -2.1448 -2.2811 -1.0657 -1.4560
Kurt 12.168 6.1592 12.742 12.940 13.539 6.2801 8.2578

Sharpe Ratio 0.0416 0.1198 0.0491 0.0442 0.0401 0.1004 0.0879

Note: Table 2.5 shows the summary statistics for returns on the liquid positional portfolios
over the entire sampling period. All liquid expected positional portfolio strategies produce
higher average returns than the equally weighed portfolio (EW). The LPMS portfolio which
is based on the highest trade volume ranks at time (t− 1) has the highest average return.
The average return on the VAR- LEPRS, which is based on the expected lowest volume
changes ranks is very close to the average LPMS return.
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The VAR-LEPRS, which is based on the expected lowest volume ranks produces

an average return slightly lower than the average LPMS return. By comparing the

results in Table 2.5 to those in Table 2.2, we find that the highest average returns

are obtained from the positional liquid LPMS, and the VAR- LEPRS, followed by

the VAR-EPMS strategy. Therefore, the LPMS along with these two VAR-based

portfolios outperform the other positional portfolios in terms of average monthly

returns and the Sharpe ratio. On average the positional portfolios based on very

liquid assets with either past strong increase in trading activity or a predicted strong

decline in trading volume provide higher average returns than portfolios of stocks

with the highest return ranks.

As in the previous section, we can compare the positional liquid portfolios in

terms of their cumulative returns. Figures 2.14 and 2.15 show the time series of

cumulative returns on the positional liquid portfolios LPMS, LPRS and EW held

since 2008 compared to VAR-LEPMS and VAR-LEPRS and AR-LEPMS and AR-

LEPRS respectively.

Both Figures reveal parallel patterns of cumulative returns on all liquid posi-

tional portfolios. In 2008, all portfolios provide close cumulative returns, and these

cumulative returns decline rapidly at the end of the year. From 2009 until the end

of the sampling period, the LPMS has the highest cumulative returns, followed by

the LEPRS. From 2009 until the beginning of 2014, the equally weighted portfolio

has higher cumulative returns than the LPRS and the LEPMS.
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Figure 2.14: Cumulative Returns on Positional Liquid Portfolios for VAR(1) Model

Figure 2.15: Cumulative Returns on Positional Liquid Portfolios for AR(1) Model
Figures 2.14 and 2.15 show the time series of cumulative returns on positional liquid port-
folios held since 2008. The returns on portfolios are color-coded as follow: EW-red, LPRS-
olive, LPMS-green, LEPRS-blue, LEPMS-purple. In both Figures the LPMS outperforms
other strategies and is followed by the LEPRS.
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Table 2.6 shows the cumulative returns on the positional liquid portfolios with

different inception dates. These results show that all positional liquid portfolios

provide positive cumulative returns. Over the holding period 2008-2016, the highest

cumulative return is provided by the portfolio with a past strong increase in trade

volume (LPMS) followed by the portfolio with a predicted strong decline in trade

volume ,VAR-LEPRS. Among the portfolios held from January 2010, the highest

cumulative return is obtained from the portfolio with a past strong decline in trade

volume (LPRS) which slightly exceeds the return on the VAR-LEPMS. Over shorter

holding periods (from 2012 to 2016 and from 2014 to 2016), the VAR-LEPMS which

is based on the highest expected trade volume increases, outperforms other portfolios

in terms of the cumulative return.

Table 2.6 also reveals that in the long-run (8-year holding period), the LPMS

provides the highest cumulative return while in short-run (2-year holding period)

the VAR-LEPMS provides the highest cumulative return. Hence, in the long-run,

an investment in a portfolio of stocks with the past highest increases in trade volume

provides the highest cumulative return. In the short-run, an investment in a portfolio

of stocks with the highest VAR-predicted increase in trade volume provides the

highest cumulative return.

By comparing the results from Table 2.6 with Table 2.3, we find that the po-

sitional liquid portfolios LPMS of stocks with the past highest increases in trade

volume, outperforms the other positional momentum portfolios in the long run (8

years holding period). Therefore, if an investor is planning to invest in long run, the
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LPMS is the best choice for that investment.

Table 2.6: Cumulative Returns on Positional Liquid Portfolios

EW LPMS LPRS LEPMS LEPRS

V AR AR V AR AR

From 2008 0.444 1.051 0.501 0.469 0.442 0.893 0.807
From 2010 0.646 0.724 0.819 0.809 0.800 0.605 0.611
From 2012 0.528 0.617 0.707 0.709 0.658 0.553 0.545
From 2014 0.102 0.079 0.195 0.204 0.166 0.051 0.079

Note: Table 2.6 shows the cumulative returns on October 19th 2016 on positional liquid
portfolios from different inception dates. If one holds the positional liquid portfolio from
January 1st, 2008, the highest cumulative return would be provided from the LPMS,
followed by the VAR-LEPRS. For a 6-year holding period, the highest cumulative return is
on the LPRS, which slightly exceeds the return on the VAR-LEPMS. Over shorter holding
periods of 4 and 2 years, the VAR-LEPMS outperforms the other portfolios.

Over the 6-year holding period (2010-2016) the LPRS followed by the VAR-

LEPMS outperform the PRS and the VAR-EPMS, respectively. Over the shorter

period of investment of 4 and 2 years, the VAR-LEPMS which is the portfolio of

liquid stocks predicted from the VAR model outperforms all positional momentum

portfolios in Table 2.6. These results show that if one intends to invest over shorter

horizons, that investor will benefit the most by holding the VAR-LEPMS. Also by

comparing these two tables we find that, in the post-crisis period, the VAR-LEPMS

provides the higher cumulative return than the VAR-EPMS.

Let us now discuss the results on rolling investment with four holding periods

of 3,6,9 and 12 months respectively. In Table 2.7 the first seven columns display

the average cumulative returns on all five positional liquid portfolios obtained by
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investing every month with one month look-back period. The last two columns show

the cumulative returns on positional liquid portfolios based on the observed past

top and bottom 5% stocks, with 3,6,9 and 12 months look-back periods. Among

the portfolios with 1-month look-back period, the LPMS outperforms the other

strategies, while the second best portfolio is the VAR-LEPRS. Among the portfolios

with equal look-back holding period the LPMS provides the highest return too.

By comparing Table 2.7 with Table2.7, we find that the LPMS provides higher

cumulative return over all holding periods and for all look-back periods considered.

Therefore an investor who invests in a portfolio of liquid assets obtains the highest

cumulative returns. These two tables show that, in general, the positional liquid

portfolios which are based on liquidity, provide higher cumulative returns than the

positional momentum portfolios which are based on winner stocks.
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Table 2.7: Rolling Cumulative Returns on Positional Liquid Portfolios

Holding Period Look-Back=1 Month Look-Back=Holding

EW LPMS LPRS LEPMS LEPRS LPMS LPRS

3 Months V AR AR V AR AR

Mean 0.013 0.032 0.016 0.015 0.014 0.027 0.024 0.019 0.017
Standard Deviation 0.118 0.131 0.127 0.128 0.129 0.129 0.127 0.117 0.125

Sharpe Ratio 0.101 0.235 0.114 0.106 0.098 0.202 0.183 0.129 0.107

6 Months V AR AR V AR AR

Mean 0.026 0.065 0.032 0.030 0.028 0.056 0.049 0.056 0.053
Standard Deviation 0.184 0.209 0.199 0.199 0.201 0.205 0.199 0.169 0.133

Sharpe Ratio 0.136 0.304 0.155 0.143 0.133 0.266 0.241 0.283 0.335

9 Months V AR AR V AR AR

Mean 0.043 0.099 0.052 0.049 0.047 0.086 0.076 0.130 0.101
Standard Deviation 0.213 0.246 0.231 0.231 0.235 0.241 0.231 0.276 0.157

Sharpe Ratio 0.197 0.399 0.222 0.207 0.193 0.350 0.325 0.423 0.563

12 Months V AR AR V AR AR

Mean 0.0731 0.146 0.087 0.081 0.080 0.126 0.115 0.115 0.108
Standard Deviation 0.206 0.253 0.222 0.224 0.229 0.247 0.229 0.115 0.130

Sharpe Ratio 0.347 0.571 0.385 0.359 0.344 0.507 0.496 0.845 0.698

Note: The first seven columns of Table 8 display the average cumulative returns on all
five positional liquid portfolios obtained by re-investing every month with holding periods
of 3,6,9 and 12 months and one month look-back period. The last two columns show
the cumulative returns for positional liquid portfolios based on the top and bottom 5%
stocks, for 3,6,9 and 12 months look-back periods. Over the 3- and 6-month holding
periods, the LPMS outperforms all other portfolios in terms of the Sharpe ratio and the
average cumulative return. Over the 9-month holding period the LPMS with the same
holding period is the best portfolio. Over the 12-month holding period, the LPMS and
VAR-LEPRS provide the highest returns, respectively.
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2.6 Conclusion

This paper introduced positional momentum and liquid portfolio management strate-

gies which are based on the expected bivariate ranks of returns and trade volume

changes. The ranks of returns and of trade volume changes are transformed to

Gaussian ranks by the quantile function, i.e. the inverse of the cumulative Nor-

mal distribution function. The expected ranks are predicted from a conditionally

Gaussian vector autoregressive model of order one VAR(1), which represents their

joint dynamics. The predicted ranks are used to build the Expected Positional

Momentum/Reversal portfolios (EPMS and EPRS) of stocks with high/low ranked

expected returns. For portfolio liquidity management, I introduce the Liquid (Ex-

pected) Positional Momentum and Reversal portfolios (LPMS, LEPMS, LPRS and

LEPRS) of stocks with high and low ranked (Expected) trade volume changes.

These allocation strategies were applied to an investment universe consisting of

1330 stocks which are traded on the NASDAQ market between 2008-2016. The

empirical results show that the VAR-based positional momentum EPMS portfolios

outperform the equally weighted portfolio, the traditional momentum portfolios and

the EPMS portfolios with return ranks predicted from a univariate AR model. This

finding suggests that the trade volume ranks help predict the return ranks and

improve the positional portfolio performance. Also, a dynamic momentum strategy

based on predictions provides higher portfolio returns than the traditional static

strategies, such as the EW, PMS and PRS. Moreover, the predictions enhanced by

past volume ranks improve that performance even more, which is consistent with Lee
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and Swaminathan (2000) who demonstrate that past volume changes help predict

the momentum magnitude.

The analysis of the positional liquid portfolios shows that the static LPMS

strategy produces higher cumulative returns than the VAR or AR prediction-based

LEPMS at short horizons of 3,6,9, and 12 months or long horizon of 8 years. This

shows that volume rank predictions are not optimal in this context and the static

LPMS strategies based on past observed volume ranks can be used instead. It

seems that portfolios based on previously liquid stocks, generate higher current re-

turns than portfolios of stocks with predicted liquid stocks. This can be explained

by a delayed effect of price (return) response to a past volume increase. Given

the limited short-term supply, prices increase due to the liquidity constraint in the

past term, generate high returns in the current term. Accordingly, the stocks with

high predicted current volume increases will generate high returns over the next

period rather than instantaneously. Therefore, the LPMS strategies based on past

observed high volume changes tend to outperform the LEPMS strategies based on

the predicted current high volume changes.

Regarding the monthly returns, the positional portfolios based on very liquid

assets with either past strong increase in trading activity (LPMS) or a predicted

strong decline in trading volume (VAR-LEPRS) outperforms the EPMS which con-

tains stocks with the highest expected returns and the equally weighted portfolio.

This interesting result shows that a positional portfolio of liquid stocks outperforms

a portfolio of expected winners stocks. In the long term, the cumulative return over

the period 2008-2016 including the crisis indicate that the positional liquid portfo-
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lio with past strong increase in trading volume (LPMS) outperforms all positional

momentum portfolios. Over the 4 and 2 years holding periods, the positional liquid

portfolio with the highest predicted trade volume based on the VAR model (VAR-

LEPMS) provides the highest cumulative return. In terms of cumulative returns

over shorter holding periods of 3,6,9 and 12 months, the positional liquid portfolio

based on past strong increase in trading volume (LPMS) outperforms all positional

momentum portfolios.

It seems that stocks which were liquid in the past generate higher returns than

the portfolios of past winner stocks. As pointed out in Section 3.2.2 , Figure 2.4, past

volume ranks are positively correlated with the current return ranks. High ranked

returns tend to follow past high volume increases and enhance the performance of

the LPMS and LEPMS portfolios.

I also find that over the period 2008 − 2010 (the crisis) the LPMS portfolio

provides higher average cumulative returns than the equally weighted and the EPMS

portfolios. After the crisis, the LPRS followed by the VAR-LEPMS portfolio provide

higher cumulative returns than the other positional momentum portfolios.
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Chapter Three

Optimal Positional Momentum and

Liquidity Management
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Chapter 3

Optimal Positional Momentum and

Liquidity Management

3.1 Introduction

This chapter introduces new positional investment strategies that maximize in-

vestors’ positional utility from holding assets with high expected future return and

liquidity ranks. In this chapter the investor is assumed to maximize a CARA (Con-

stant Absolute Risk Aversion) utility function of future position of the assets (ranks

of assets). In this respect, I follow the approach of Gagliardini, Gourieroux, Rubin

(2019) who introduce a positional utility, which is an increasing function of future

asset return positions rather than of future portfolio returns. The optimal allocation

vectors provide new investment strategies, such as the optimal positional momen-

tum portfolio, the optimal liquid portfolio and the optimal mixed portfolio that
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combines high return and liquidity ranks. The future ranks are predicted from a

bivariate panel VAR model with time varying autoregressive parameters.

It has been shown that returns on the new optimal portfolios are comparable

both theoretically and empirically with the naive equally weighted portfolio as well

as with the traditional momentum strategies with look-back and holding periods of

various length. The autoregressive parameters of the VAR model displayed variation

over time. To accommodate that variation, a time varying parameter VAR model is

considered and two methods that allow an investor to update the VAR parameters

at each investment time are proposed. The first method consists in re-estimating

the model at each time by rolling over a fixed window of observations. The second

method exploits the relationship between the autoregressive coefficients of the VAR

model and the series of auto-and cross-correlations at lag 1 of returns and volume

changes of the SPDR (Standard Poor’s Depositary Receipts). The SPDR is an

Exchange Traded Fund (ETF), i.e. a regularly updated portfolio mimicking the

evolution of the S&P 500 returns.

More specifically, I show that the future values of autoregressive VAR coeffi-

cients can be predicted from simple linear functions of the current auto- and cross-

correlations at lag 1 of SPDR return and volume changes. These linear functions are

easy to compute and simplify the investment procedure as they eliminate the need

for re-estimating the panel VAR model by rolling. In the proposed approach, the

time varying parameters are considered predetermined. I show heuristically that the

approach can be extended to a random coefficient framework, where the autoregres-

sive VAR coefficients are considered as fixed functions of random factors, which are
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the auto and cross-correlation estimators with their known asymptotic distributions.

This chapter is organized as follows. Section 3.2 introduces the panel VAR model

and its parameter estimates based on the entire sample. It also provides the evidence

of time variation of the autoregressive coefficients and extends the model to a time

varying parameter VAR model. Section 3.3 documents empirically and establishes

the linear relationship between the auto- and cross-correlations of the return and vol-

ume change series of SPDR and the series of autoregressive coefficients of the VAR

model. Section 3.4 derives the optimal allocation vectors from maximizing the posi-

tional CARA utility functions of expected ranks of return and volume changes that

lead to the optimal momentum, liquid and mixed portfolios. Section 3.5 presents the

empirical results. Section 3.6 concludes the paper. Additional results are gathered

in Appendices C, D, E and F.

3.1.1 The Ranks

This chapter examines the dynamics of Gaussian ranks of return and trade volume

changes computed from 1330 stocks observed monthly over the period of April 1999

to October 2016. The ranks are defined in Chapter two, Section 2 as follows:

ui,t = Φ−1(F̂ r
t (rit)) t = 1, · · ·, T ; i = 1, · · ·, n, (3.1.1)

vi,t = Φ−1(F̂ tv
t (tvit)) t = 1, · · ·, T ; i = 1, · · ·, n, (3.1.2)
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where ui,t is the Gaussian rank of return (ri,t), vi,t is the Gaussian rank of trade vol-

ume change (tvi,t), Φ is the cumulative distribution function (c.d.f) of the standard

Normal, Φ−1 is its inverse, i.e. the quantile function of the standard Normal and

F̂ r
t , F̂

tv
t are the cross-sectional empirical cumulative distribution functions of return

and trade volume changes at date t, respectively.

3.1.2 The Model

The positional portfolio strategy is about finding the optimal allocation based on

the future position of all equities in the portfolio. To predict the future positions, we

define a joint dynamic model of ranks of return and trade volume changes (uit, vit :

i = 1, · · ·, n, t = 1, · · ·, T ). The joint dynamics of the two rank series can be

represented by a Vector Autoregressive model of order one (VAR(1)) as follow:

uit
vit

 =

ρ11 ρ12

ρ21 ρ22


ui,t−1

vi,t−1

+ Σ1/2

e1,it

e2,it

 t = 2, · · ·, T ; i = 1, · · ·, n,

(3.1.3)

where R =

ρ11 ρ12

ρ21 ρ22

 is the matrix of autoregressive coefficients , Σ represents

the conditional variance matrix and the idiosyncratic disturbance terms (e1it, e2,it)
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are serially independent and identically (i.i.d.) standard Normal distributed. The

autoregressive matrixR is assumed to have eigenvalues with modulus less than one to

ensure the stationarity of the process. The ranks are marginally standard Normally

distributed with the marginal variance of the ranks

1 η

η 1

. Let us introduce an

additional assumption as follow:

Assumption 1, The marginal variance of ranks is an identity matrix.

The above assumption implies that η = 0 14. Moreover, it constraints the error

variance matrix Σ as follows:

1 0

0 1

 = R

1 0

0 1

R′ + Σ. (3.1.4)

From equation (3.4) we can compute the matrix Σ as follows:

Σ =

1 0

0 1

−R
1 0

0 1

R′ = Id−RR′, (3.1.5)

where Id is a 2× 2 identity matrix. Matrix Σ depends on the autoregressive coeffi-

cients of the VAR(1) model:
14This assumption is not very stringent. In Chapter 2, we have empirically documented that η̂

is small and tends to 0 at the end of the sampling period.
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Σ =

 1− ρ2
11 − ρ2

12 −ρ11ρ21 − ρ12ρ22

−ρ11ρ21 − ρ12ρ22 1− ρ2
21 − ρ2

22

 =

σ2
1 σ12

σ12 σ2
2.

 (3.1.6)

The VAR(1) model (3.3) can be rewritten as follows:

uit
vit

 =

ρ11 ρ12

ρ21 ρ22


ui,t−1

vi,t−1

+

ε1,it
ε2,it

 , t = 2, · · ·, T ; i = 1, · · ·, n, (3.1.7)

where error vectors (ε1,it, ε2,it) are jointly normally distributed with mean 0 and

variance Σ. The marginal densities of the error terms are:

ε1,it ∼ N(0, σ2
1),

ε2,it ∼ N(0, σ2
2),

(3.1.8)

where σ2
1 = 1 − ρ2

11 − ρ2
12, σ2

2 = 1 − ρ2
21 − ρ2

22 and cov(ε1,it, ε2,it) = σ12 = −ρ11ρ21 −

ρ12ρ22. The parameters of model (3.7) are estimated by the maximum likelihood

method with the following objective function that is maximized with respect to the

autoregressive parameters (ρ11, ρ12, ρ21 and ρ22,):
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logL =
N∑
i=1

T∑
t=2

{
− log(2π)− 1

2
log(|Id−RR′|)− 1

2

[uit
vit

−R
uit−1

vit−1

]′

· (Id−RR′)−1
[uit

vit

−R
uit−1

vit−1

]}
(3.1.9)

Table 3.1 shows the results of the maximum likelihood estimation from ranks of all

1330 stocks over the entire sampling period 1999-2016.

Table 3.1: Estimated VAR(1) Model for 1330 Stocks

Coefficients Values S-D Confidence Interval

ρ11 -0.024*** 0.002 (-0.029 , -0.020)
ρ12 0.012*** 0.002 (0.008 , 0.016)
ρ21 -0.010*** 0.002 (-0.014 , -0.004)
ρ22 -0.354*** 0.001 (-0.357 , -0.351)

***p < 0.01, **p < 0.05, *p < 0.1

Note: The table provides the parameters of the VAR(1) model, estimated from the entire
sample of 1330 stocks over the period 1999 to 2016, by the maximum likelihood (equation
3.9). All coefficients of the model are strongly significant.

The empirical results show that all coefficients of the model are statistically signifi-

cant. The estimated signs of the autoregressive coefficients suggest that:

1) low ranks of past returns and high ranks of past volume changes tend to

increase the current ranks of returns,

2) low ranks of past returns and low ranks of past volume changes tend to increase
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the current ranks of volume changes.

An important characteristic of a VAR process is its stationarity. A stationary

VARmodel has time-invariant mean, variance, and covariance structure. In practice,

the stationarity of an empirical VAR process can be analyzed by calculating the

eigenvalues of the autoregressive coefficient matrix (R̂). The computed eigenvalues

of (R̂) are −0.358 and −0.025. Since both eigenvalues are of modulus less than one,

we can conclude that the VAR(1) model is stationary.

Given that the sampling period is long, one can be concerned about the stability

of the estimated parameters. Therefore, we re-estimate the equation (3.7) by rolling

with the window of 108 months (' 9 years). The rolling estimation yields the

estimates of the following VAR(1) with time varying coefficients:

uit
vit

 =

ρ11,t ρ12,t

ρ21,t ρ22,t


ui,t−1

vi,t−1

+

ε1,it
ε2,it

 , t = 2, · · ·, T ; i = 1, · · ·, n,

(3.1.10)

where the error variances are time varying as well: σ2
1t = 1 − ρ2

11,t − ρ2
12,t, σ2

2t =

1− ρ2
21,t − ρ2

22t and cov(ε1,it, ε2,it) = σ12t = −ρ11,tρ21,t − ρ12,tρ22,t.

Figures 3.1 and 3.2 show the time series of autoregressive coefficients of model

(3.10) estimated by rolling over the period: March 2008 - September 2016. We

observe that there is some variation in ρ̂11,t, which is more pronounced than in ρ̂12,t.

Coefficient ρ̂11,t varies between−0.015 and−0.005 and coefficient ρ̂12,t varies between

0 and 0.01. Coefficient ρ̂21,t takes lower values and fluctuates between −0.015 and
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−0.025. Coefficient ρ̂22,t varies around −0.18.

Let R̂t, t = 1, ..., T denote the time series of matrices of time varying autore-

gressive coefficients from model (3.10). The eigenvalues of matrices R̂t, t = 1, ..., T

computed over t = 1, ..., T are of modulus less than one, indicating that the time

varying coefficient VAR(1) model is stationary. We also compute the eigenvalues of

the constrained matrices Σ̂t = Id− RtR
′
t, t = 1, ..., T that are positive at all times

t = 1, ..., T .

In practice, the rolling estimation of a panel VAR(1) model can be difficult.

Therefore, in next Section we explore an alternative approach, where the autoregres-

sive coefficients can be modelled as simple linear functions of time varying factors

that are easy to compute.

Figure 3.1: Time Series of ρ̂11,t, ρ̂12,t

Figure 3.1 shows the time series of coefficients ρ̂11,t, ρ̂12,t, which are obtained by re-
estimating model (3.10) by rolling with the window of 108 months (' 9 years).
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Figure 3.2: Time Series of ρ̂21,t, ρ̂22,t

Figure 3.2 shows the time series of coefficients ρ̂21,t, ρ̂22,t, which are obtained by re-
estimating the model (equation (3.10)) by rolling with the window of 108 months (' 9
years).

3.2 Dynamic Autoregressive Coefficient Model

The stock prices behavior is reflected by the dynamics of stock market indexes such

as the S&P500 and by the prices of its mimicking portfolio, called the SPDR

(Standard & Poor’s Depository Receipts) quoted on NYSE with ticker SPY.
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3.2.1 Standard & Poor’s Depository Receipts (SPDR) as Mar-

ket Factor

The Standard and Poor’s Depository Receipt (SPDR),15 is an exchange traded fund

which holds all of the S&P 500 Index stocks and is designed to reflect the price

and yield performance of the S&P 500 Index. The SPDR, first issued by the State

Street Global Advisors’ investment management group (SSGA) and is traded on the

American Stock Exchange (AMEX) since 1993. The SPDR index fund is designed

to track the S&P 500 stock market index.

The aim behind this ETF is to provide an investment vehicle that at least roughly

produces returns in line with the S&P 500 Index. Unlike mutual funds, the SPDR’s

trust shares are not created for investors at the time of their investment. In fact, they

have a fixed number of shares that are bought and sold on the open market to align

their holdings with the S&P 500 index. The S&P 500 index itself is composed of

U.S. big companies across all Global Industry Classification Standard (GICS) sectors

with a market capitalization of $5 billion or greater. Some literature showed that

the SPDR is not mimicking S&P 500 perfectly [see Beaulieu and Morgan (2000)].

while some studies show that the SPDR is mimicking S&P 500 in a linear analysis.

For instance, Peng Xu (2014) showed that in a linear dynamics analysis the SPDR

and S&P 500 has similar dynamic features while. Since the SPDR is designed to

reflect the price and yield performance of the SP 500 Index, it can be considered as

the pulse of the U.S. equity market or a common factor that encompasses the effects
15Often referred to as the âĂĲspiderâĂİ, and its symbol in the market is SPY
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of all news and events on the stock market.

The SPDR is consistently one of the high volume trading vehicles in the U.S.

exchanges16. Many investors and hedge funds use this fund because it represents the

S&P 500 index and by a single purchase, they will have exposure to a wide range of

large U.S. companies. Not only the volume but also its good price movement make

the SPDR attractive to traders.

Figure 3.3 shows the relationship between the monthly returns on SPDR and

S&P500 recorded over the period April 1999 to October 201617.

Figure 3.3: SPDR and S&P500 Returns
Figure 3.3 shows the time series of S&P 500 and SPDR’s returns from April 1999 to October
2016.

16Peng Xu (2014) showed that, the average daily trading volume from Jan, 2001 to Dec, 2005 is
over 38 million shares and the average trading value per day is over 4 billion

17The returns of SPDR and S&P 500 are computed as log return and the dividends haven’t been
considered in the return.
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We observe that these returns are moving in parallel and are both fluctuating

roughly between −0.1 to 0.1. There are periods when the volatility of SPDR’s

returns is higher than the volatility of the return on S&P 500. For instance, on

February, 2000, September, 2001, August, 2002, October, 2008 or September 2011

the returns of SPDR declined more than the returns on S&P 500. Also at the

beginning of years 2009 and 2012, July 2013 and at the end of 2014 the returns of

SPDR increased more than the returns on S&P 500.

The historical correlation between the returns on SPDR and on S&P500 is 0.66

and the regression coefficient between the squared returns of SPY and S&P 500 is

1.34.18, suggesting that the SPDR mimics the index rather well as far as a linear

static analysis is concerned. Applying a simple linear regression19, also showed that,

these two historical correlations are both statistically significant. From what We

observe in Figure 3.3 and also from the linear regressions’ results, we can conclude

that the returns on SPDR approximate the S&P 500 returns very closely. Therefore,

the returns on the SPDR can be considered as a proxy for the market portfolio

return.

18It corresponds to Peng Xu (2014) who showed the positive historical correlation coefficient
between the two return series.

19A simple linear regression model between SPDR and S&P 500 returns has been estimated as
rSPDR = a0 + a1rS&P500 + e, and between the squared returns as r2SPDR = a0 + a1r

2
S&P500 + e.

where rSPDR, rSP are the return of SPDR and S&P500 respectively, r2SPDR, r
2
SP are the squared

return of SPDR and S&P 500, a0, a1 are the constant and the coefficient respectively and e is the
error term.
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3.2.2 Relation Between The Returns and Trade Volume Changes

of SPDR

Let us now consider the series of SPDR returns and trade volume changes recorded

monthly between April 1999 and October 2016. The trade volume is defined as

the total quantity of shares traded per month. The log return and the log volume

changes are calculated as follows:

rSt = ln(
P S
t

P S
t−1

), t = 1, · · ·, T

tvSt = ln(
TV S

t

TV S
t−1

), t = 1, · · ·, T,
(3.2.1)

where P S
t , P

S
t−1 are the prices of SPDR at times t and t − 1, TV S

t , TV
S
t−1 are the

trade volume changes of SPDR at times t and t− 1.

A simple way to determine whether there exists a relationship between the series

of SPDR returns and trade volume changes, is to examine the cross-correlation

function. Figure 3.4 shows the cross-correlation function of returns and trade volume

changes of SPDR. We observe that the cross-correlation at lag one is significant.

Hence, past trade volume changes can help predict the current returns. We also

detect a significant negative contemporaneous correlation between the returns and

trade volume changes of SPDR.

Figure 3.5 illustrates the contemporaneous correlation in a regression of SPDR

trade volume changes on the returns i.e. rSt on tvSt . The regression line has a negative
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Figure 3.4: SPDR: Cross-Correlation Function of rSt and tvSt
Figure 3.4 shows the cross-correlation function of returns and trade volume changes of
SPDR. There is significant correlation at lags 0 and one.

slope which is consistent with the negative contemporaneous correlation in Figure

3.4. Hence, a high positive return on SPDR is associated with a high negative trade

volume change at time t.

Figure 3.5: SPDR: Regression line of rSt on tvSt
Figure 3.5 shows the regression line of returns as a linear function of trade volume trade
volume changes of SPDR at time t. The regression line has a negative slope, which shows a
negative contemporaneous correlation between return and trade volume changes of SPDR.
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Table 3.2: Linear Regression of SPDR’s Trade Volume Changes on Returns

Coefficients Values S-D Confidence Interval

Intercept 0.023 0.030 (-0.037 , 0.083)
Correlation -4.335*** 0.613 (-5.562 ,-3.108)

***p < 0.01, **p < 0.05, *p < 0.1

Note: The Table shows the coefficients of a linear regression of trade volume changes on
the returns of SPDR. The regression coefficient is negative and significant.

By applying a simple linear regression, one can also evidence a significant neg-

ative relation between trade volume and return. Table 3.2, shows the result of the

linear regression of SPDR’s trade volume over its return. The regression coefficient

is Statistically significant and negative. It means that if the return increase the

contemporaneous trade volume would decrease.

3.2.3 Comparing Return and Liquidity Persistence: SPDR

and Stock Ranks

We have shown that the dynamics of returns on SPDR mimic the dynamics of

market returns and the SPDR returns are correlated with the SPDR’s trade volume

changes. Moreover, the liquidity of SPDR is the liquidity of an asset with a return

equal to the market return.

Let us now explore whether the persistence and cross-correlation of returns and

trade volume changes of SPDR is similar to rank persistence in all stocks in our

sample. That persistence on average over the entire sampling period is approx-

imated by the estimated autoregressive coefficients of stock return and liquidity
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ranks ρ̂ij, i, j = 1, 2 of model (3.10) reported in Table 3.1. The time varying stock

persistence at each time t is approximated by the series of time-varying autoregres-

sive coefficients ρ̂11,t, ρ̂12,t, ρ̂21,t, ρ̂22,t estimated by rolling and displayed in Figures 3.1

and 3.2. We proceed with a dynamic analysis and compare these four series with

the series of sample auto- and cross-correlations at lag one of rSt and tvSt (return and

trade volume of SPDR), both estimated by rolling with a window of 108 months (∼

9 years).

Let the dynamic sample autocorrelations at lag 1 be denoted by AC(rS)t and

AC(tvS)t for returns and trade volume changes, respectively. The dynamic sample

cross-correlations at lag 1 between rSt and tvSt−1 are denoted by CC(rS, tvS)t. The

sample cross-correlations between tvSt and rSt−1 are denoted by CC(tvS, rS)t. The dis-

tributional properties of these time series are examined and compared in Appendix

C, which displays their histograms and non-parametric normal density estimates.

Table 3.3 below shows the means, modes and standard deviations (S.D.) of the

time series of AC(rS)t, AC(tvS)t, CC(rS, tvS)t and CC(tvS, rS)t in comparison with

the autoregressive coefficient series (ρ̂jk,t, i, j = 1, 2, t = 1, ..., T ).

The mean of the sample auto-correlations of SPDR returns and the mean and

mode of ρ̂11t are negative. The mean and mode of cross-correlations of rSt , tvSt−1

and ρ̂12t have the same sign and are positive while they are bigger for the cross-

correlations of rSt , tvSt−1. The mean and mode of cross-correlations of tvSt , rt−1S are

positive while the are negative for ρ̂21t. Both sample auto-correlation at lag one of

SPDR’s trade volume changes and ρ̂22t have negative mean and mode.

90



Table 3.3: Summary Statistics for Cross- and Auto- Correlation of SPDR and Au-
toregressive Coefficients ρ̂jk,t

Coefficients Mean Mode S.D.

AC(rS)t -0.0001 0.0501 0.0846
ρ̂11,t -0.0090 -0.0084 0.0000

CC(rS, tvS)t 0.0647 0.0037 0.1020
ρ̂12,t 0.0026 0.0013 0.0016

CC(tvS, rS)t 0.2494 0.2991 0.0691
ρ̂21,t -0.0179 -0.0138 0.005

AC(tvS)t -0.5089 -0.5176 0.0182
ρ̂22,t -0.1758 -0.1748 0.0016

Note: Table 3.3, shows Summary Statistics for Cross-Correlation and Auto-Correlation of
return and trade volume changes of SPDR and the Autoregressive Coefficients ρ̂jk,t

Table 3.4 shows the results of the t-test of equality of means of these time series20.

The t-test of the equality of means of sample auto- and cross-correlation of SPDR

and the autoregressive coefficients of the VAR(1) model reject the null hypothesis

except for the auto-correlation at lag one of rSt and ρ̂11t.

Table 3.4: T-Test of Equality of the Means

Null Hypothesis P-Value

Mean(AC(rS)t)=Mean(ρ̂11t) 0.155
Mean(CC(rS, tvS)t)=Mean(ρ̂12t) 0.000
Mean(CC(tvS, rS)t)=Mean(ρ̂21t) 0.000
Mean(AC(tvS)t)=Mean(ρ̂22t) 0.000

Note: Table 3.4, shows the t-test results of equality of the mean of Auto- and Cross-
Correlation of SPDR and the Autoregressive Coefficients ρ̂jk,t

Figures 3.6-3.9 below illustrate and compare the dynamics of the series of sam-

ple auto-and cross-correlations of SPDR with the autoregressive coefficient dynam-
20The test is asymptotically valid, due to the non-normality of the computed coefficient series
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ics. The right panels show the estimated time varying autoregressive coefficients

ρ̂jk,t, ( j, k = 1, 2, t = 1, ..., T ) plotted with the red line. The left panels show the

sample auto- or cross-correlations of rSt and tvSt at lag one. In all panels, the green

and blue lines are indicating the upper and the lower bounds of confidence intervals,

respectively.

Figure 3.6 compares the dynamics of AC(rS)t and the time series ρ̂11,t. We

observe that the auto-correlations of SPDR returns increase over time and have

two major troughs in October 2008 and October 2011. After year 2012, the auto-

correlations remain steady and positive. We observe similar dynamics, although at

a different level in ρ̂11,t in the right hand side of Figure 3.6.

Figure 3.6: Time Series of SPDR Autocorrelations AC(rS)t and Coefficients ρ̂11t

Figure 3.6 compares the sample auto-correlations at lag one of SPDR’s returns with the time series of
autoregressive coefficients ρ̂11t from model (3.10). The red line in the left plot shows the sample auto-
correlations of (rSt , rSt−1) and the coefficients ρ̂11t in the right plot. In both plots the green and blue lines
show the upper and lower bounds of confidence intervals.
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The series ρ̂11,t is always negative, and it is growing from December 2008 until

August 2012. After August 2012, it starts to decrease. Before August 2012, it has

two major peaks on January 2009 and August 2012 and two major drops on March

2010 and October 2011. After August 2012 the series ρ̂11,t reaches its lowest value

on July 2015.

Figure 3.7 shows the dynamics of CC(rS, tvS)t compared to the time series ρ̂12t

in the right plot. Both the cross-correlations and ρ̂12t are decreasing over time. In

the left plot, the cross-correlations between rt and tvt−1 have two peaks on October

2011 and 2015. In the right plot, we observe that the series ρ̂12t has three major

peaks on February 2010, June 2012 and July 2016.

Figure 3.7: Time Series of SPDR Cross-correlations CC(rS, tvS)t and Coefficients ρ̂12t

Figure 3.7 compares the sample cross-correlations of (rSt , tvSt−1) of SPDR and the time series of coefficients
ρ̂12t from model (3.10). The red line in the left plot shows the sample cross-correlations of (rSt , tvSt−1) and the
coefficients ρ̂12t in the right plot. In both plots the green and blue lines show the upper and lower bounds of
confidence intervals.
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Figure 3.8 compares the dynamics of sample cross-correlations CC(tvS, rS)t of

SPRD with the time series of coefficients ρ̂21t. The cross-correlations decrease until

February 2010 and increase afterwards. They reach the minimum value on December

2008 while always remaining positive. The series of coefficients, ρ̂21t always takes

negative values. Coefficients ρ̂21t stay at a constant level until December 2011, and

decrease afterwards.

Figure 3.8: Time Series of SPDR Cross-correlations CC(tvS, rS)t and Coefficients ρ̂21t

Figure 3.8 compares the sample cross-correlations of (tvSt , rSt−1) of SPDR with coefficients ρ̂21t from model
(3.10). The red line in the left plot shows the sample cross-correlations of (tvSt , rSt−1) and the coefficients ρ̂21t

in the right plot. In both plots the green and the blue lines show the upper and lower bounds of confidence
intervals.

Figure 3.9, shows the sample auto-correlations AC(tvS)t and the time series of

coefficients ρ̂22t. The dynamics of these two series are different, but they both always

take negative values. The auto-correlations at lag one of trade volume changes of

SPDR reach their first peak on January 2009 and drop to their minimum value on

September 2011. Next, that series grows until November 2014 and then drops to its
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second minimum value on October 2015. In the right plot, we observe that series

ρ̂22t increases until April 2012, and decreases afterwards.

Figure 3.9: Time Series of Auto-correlations AC(tvS)t and Coefficients ρ̂22t

Figure 3.9 compares the sample auto-correlations at lag one of SPDR’s trade volume changes with the time
series of coefficients ρ̂22t from model (3.10). The red line in the left plot shows the sample auto-correlations
of (tvSt , tvSt−1) and the coefficients ρ̂22t in the right plot. In both plots the green and the blue lines show the
upper and lower bounds of confidence intervals.

The empirical analysis of the dynamics and distributional properties of autore-

gressive coefficients ρ̂jk,t and sample auto- and cross-correlations of SPDR returns

and trade volume changes leads to the modelling of autoregressive coefficients as

functions of the sample correlation functions of SPDR.

3.2.4 Dynamic Factor Models of ρjk,t

The following regressions reveal the existence of statistically significant linear rela-

tionship between the series of autoregressive coefficients ρjkt, (jk = 1, 2, t = 1, ..., T )

and the auto- and cross-correlations of SPDR’s return and trade volume changes.
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ρ̂11,t = a110 + a11AC(rS)t−1 + d1,t, (3.2.2)

ρ̂12,t = a120 + a12CC(rS, tvS)t−1 + d2,t, (3.2.3)

ρ̂21,t = a210 + a21CC(tvSrS)t−1 + d3,t, (3.2.4)

ρ̂22,t = a220 + a22AC(tvS)t−1 + d4,t, (3.2.5)

where ρ̂11,t, ρ̂12,t, ρ̂21,t and ρ̂22,t are the series of autoregressive coefficients of VAR(1)

model (3.10) displayed in Figures 3.1 and 3.2, and AC(rS)t−1 and AC(tvS)t−1 are

the lagged values of auto-correlations of SPDR return and trade volume changes,

CC(rStvS)t−1 is the lagged value of the cross-correlation between rSt and tvSt−1,

CC(tvSrS)t−1 is the lagged value of the cross-correlation between tvSt and rSt−1.

Parameters a110, a120, a210 and a220 are the intercepts, a11, a12, a21 and a22 are the

regression coefficients and d1,t, d2,t, d3,t and d4,t are the disturbance terms which are

assumed to have mean zero, fixed variances and are orthogonal to the regresses.

Table 3.5 shows the results of estimating the above linear regressions. All regres-

sion coefficients are statistically significant 21.

21The regression lines are provided in Appendix B.
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Table 3.5: Linear Regression Coefficients

Dependent Variable ajk0 ajk R2 RSE

ρ11 -0.009*** 0.012*** 0.35 0.001
ρ12 0.001*** 0.014*** 0.68 0.001
ρ21 -0.003* -0.058*** 0.58 0.003
ρ22 -0.192*** -0.031*** 0.12 0.002

***p < 0.01, **p < 0.05, *p < 0.1
Note: Table 3.5 shows the results of estimating linear equations (3.12)-(3.15). ajk0 are the
intercepts, ajk are the regression coefficients, R2 shows the multiple R-squared and RSE
shows the residual standard error.

This result implies that by using the lagged values of auto- and cross-correlations

of SPDR’s return and trade volume changes, we can predict the parameters of the

VAR(1) model as follows:

ˆ̂ρ11,t = â110 + â11AC(rS)t−1, (3.2.6)

ˆ̂ρ12,t = â120 + â12CC(rS, tvS)t−1, (3.2.7)

ˆ̂ρ21,t = â210 + â21CC(tvSrS)t−1, (3.2.8)

ˆ̂ρ22,t = â220 + â22AC(tvS)t−1. (3.2.9)

Next, the fitted values of ρ̂11, ρ̂12, ρ̂21 and ρ̂22 are computed from equations (3.16)

to (3-19). The following figures show the fitted series ˆ̂ρ11t, ˆ̂ρ12t, ˆ̂ρ21t and ˆ̂ρ22t and

compare them to the dependent variables ρ̂11t, ρ̂12t, ρ̂21t and ρ̂22t.

In all four plots, the fitted values of autoregressive coefficients show less fluc-

tuation then the estimates. However, their patterns are close to those of the the
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estimated autoregressive parameters and they remain inside the confidence intervals

of the estimated autoregressive parameters. As we can see in all these Figures, at

the end of the sample period there is a gap between the fitted value and the time

series of the coefficients.

To reduce the gap between the estimated (ρ̂jk) and fitted coefficients ( ˆ̂ρjk) at

the end of the sampling period, for out-of-sample forecasts, the fit can be adjusted

locally, by calibrating the regression coefficients.

Figure 3.10: Time Series of ρ̂11t and Fitted Values ˆ̂ρ11t

Figure 3.10 compares the time series of estimated ρ̂11t and the fitted values of ˆ̂ρ11t. The
red line shows the estimated ρ̂11t from VAR(1) model (2.10), green and blue lines show it’s
upper and lower confidence intervals. The purple line shows the fitted values of ˆ̂ρ11t.
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Figure 3.11: Time Series of ρ̂12t and Fitted Values ˆ̂ρ12t

Figure 3.11 compares the time series of estimated ρ̂12t and the fitted values ˆ̂ρ12t. The red
line shows the estimated ρ̂12t from VAR(1) model (3.10), green and blue lines show it’s
upper and lower confidence intervals. The purple line shows the fitted values of ˆ̂ρ12t.

Figure 3.12: Time Series of ρ̂21t and Fitted Values ˆ̂ρ21t

Figure 3.12 compares the time series of estimated ρ̂21t and the fitted values ˆ̂ρ21t. The red
line shows the estimated ρ̂21t from VAR(1) model (3.10), green and blue lines show it’s
upper and lower confidence intervals. The purple line shows the fitted values of ˆ̂ρ21t.
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Figure 3.13: Time Series of ρ̂22t and Fitted Values ˆ̂ρ22t

Figure 3.13 compares the time series of estimated ρ̂22t and the fitted values ˆ̂ρ22t. The red
line shows the estimated ρ̂22t from VAR(1) model (3.10), green and blue lines show it’s
upper and lower confidence intervals. The purple line shows the fitted values of ˆ̂ρ22t.

3.2.5 Rank Forecasts

The previous Section showed that the SPDR approximates the behavior of the

market portfolio as it returns are close to those of S&P500. Therefore, it can be

considered as an observable factor. It follows that the four explanatory variables

in equations (3.16) to (3.19) can be considered as fixed functions of factor returns

and trade volume changes, determining the autoregressive coefficients of the VAR(1)

model and the persistence of stock return and liquidity ranks.

This result provides an alternative approach to forecasting out of sample the

future ranks of stock returns and volume changes from the VAR(1) model (3-10).

At time T + 1, the future true rank is:
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uiT+1

viT+1

 =

ρ11,T+1 ρ12,T+1

ρ21,T+1 ρ22,T+1


ui,T
vi,T

+

ε1,iT+1

ε2,iT+1

 , i = 1, ···, n. (3.2.10)

It can be forecast using the last values of coefficients ρjkT , j, k = 1, 2 estimated

by rolling and displayed in Figures 3.1 and 3.2. This approach assumes implicitly

that the autoregressive coefficients remain constant between times T and T + 1.

Then the estimated ranks are as follows:

ûiT+1

v̂iT+1

 =

ρ̂11,T ρ̂12,T

ρ̂21,T ρ̂22,T


ui,T
vi,T

 , i = 1, · · ·, n, (3.2.11)

Instead of re-estimating the VAR(1) by rolling equation (3.1), one can predict

the autoregressive coefficients ˆ̂ρjk,T+1 from equations (3.16) to (3.19) for fixed values

of linear regression coefficients given in Table 3.5. Next, the bivariate ranks can be

predicted as follows:

ûiT+1

v̂iT+1

 =

 ˆ̂ρ11,T+1
ˆ̂ρ12,T+1

ˆ̂ρ21,T+1
ˆ̂ρ22,T+1


ui,T
vi,T

 , i = 1, · · ·, n, (3.2.12)

The relative performance of the two forecast methods is assessed empirically in
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Section 3.5. In the next Section, the predicted ranks of returns and trade volumes are

used as the approximations of the expected future ranks to build optimal portfolio

allocations.

3.3 Optimal Positional Management

In this Section we determine the optimal portfolio allocations for an investor with

a CARA utility function.

3.3.1 Optimal Positional Allocations

The empirical analysis presented in the previous Section concerned the empirical

ranks of returns and trade volume changes transformed to Gaussian variables. The

portfolio management, however is based on their theoretical counterparts. Therefore,

we distinguish and define the theoretical ex-ante ranks from the assumed theoretical

c.d.f of each of these two series, denoted by F r
t and F tv

t . Then, the ex-ante ranks

are defined as follows:

u∗it = F r
t (rit), (3.3.1)

v∗it = F tv
t (tvit), (3.3.2)

The theoretical Gaussian ranks are given by uit = Φ−1(u∗it) = Qr
t (rit) and vit =

Φ−1(v∗it) = Qtv
t (tvit), where Qr

t = Φ−1 ◦ F r
t and Qtv

t = Φ−1 ◦ F tv
t . As the Gaussian

ranks of returns and volume changes are Normally cross-sectionally distributed, at

102



each time t the relationship between asset i returns and trade volume changes and

their respective ranks can be defined by the following stochastic transformations:

ri,t = σr,tuit + µr,t t = 1, · · ·, T , i = 1, · · ·, n, (3.3.3)

tvi,t = σtv,tvit + µtv,t t = 1, · · ·, T , i = 1, · · ·, n, (3.3.4)

where µr,t, µtv,t are the cross-sectional means of returns and trade volume changes

and σr,t, σtv,t, represent the cross-sectional standard deviations of the marginal Nor-

mal distributions of return and trade volume changes at time t. This transformation,

implies that the cross-sectional marginal distributions of assets’ returns and trade

volume changes at date t are Gaussian as well (N(µr,t, σr,t) and N(µtv,t, σtv,t) respec-

tively).

Let us consider two types of investors; investor 1 is looking for a portfolio that

provides the highest possible future return rank and investor 2 is looking for a

portfolio with the highest possible future liquidity rank.

The quantile functions are time varying and are given below for the return and

trade volume changes, respectively:

Qr
t (rit) =

rit − µr,t
σr,t

(3.3.5)

Qtv
t (tvit) =

tvit − µtv,t
σtv,t

(3.3.6)

The investor maximizes a CARA utility function in either return or trade volume

changes subject to a constraint β′h = 1, where h is a unit vector of length n. This
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implies that the sum of all portfolio allocations is equal to one, and the optimal

portfolio contains risky assets only. For investors 1 and 2, the future ranks of port-

folio returns and traded volumes are Qr
t+1(β′rrt+1) and Qtv

t+1(β′tvtvt+1), respectively.

These investors maximize the conditional expected utilities EtU [Qr
t+1(β′rrt+1)] and

EtU [Qtv
t+1(β′tvtvt+1)], where U(u) = −exp(−Aru) or U(v) = −exp(−Atvv) and Et

denotes the expectation conditional on the current and past returns, volumes and

the predetermined current values of the autoregressive coefficients. Therefore, the

optimal positional momentum strategy consists in selecting assets with the optimal

relative allocation vector β̂r,t, where:

β∗r,t = Aβr:β′
rh=1 Et

[
U(Qr

t+1(β′rrt+1

]
= Aβr:β′

rh=1 Et
[
U
(
Qr
t+1

( n∑
i=1

βr,iQ
r
t+1
−1(uit+1)

))]
,

(3.3.7)

The optimal positional allocation vector based on the liquidity ranks is:

β∗tv,t = Aβtv :β′
tvh=1 Et

[
U(Qtv

t+1(β′tvtvt+1

]
= Aβtv :β′

tvh=1 Et
[
U
(
Qtv
t+1

( n∑
i=1

βtv,iQ
tv
t+1
−1(vit+1)

))] (3.3.8)

Let us consider the positional momentum and liquid portfolios which each contains

relative risky allocation vectors β′r and β′tv, respectively. The future return and trade

volume change of these portfolios are given by:

β′rrt+1 = σr,t+1β
′
rut+1 + µr,t+1β

′
rh (3.3.9)

β′tvtvt+1 = σtv,t+1β
′
tvvt+1 + µtv,t+1β

′
tvh (3.3.10)
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since β′rh = β′tvh = 1. By substituting the future positions of return and volume

change ranks into (3.27) and (3.28) respectively, the future positions of the portfolios

become:

Qr
t+1(β′rrt+1) =

σr,t+1β
′
rut+1 + µr,t+1β

′
rh− µr,t+1

σr,t+1

= β′rut+1, ∀ βr, (3.3.11)

Qtv
t+1(β′tvtvt+1) =

σtv,t+1β
′
tvvt+1 + µtv,t+1β

′
tvh− µtv,t+1

σtv,t+1

= β′tvvt+1, ∀ βtv,

(3.3.12)

Equations (3.33) and (3.34) show that, the position of the future return and trade

volume change of the momentum and liquid positional portfolios is a linear com-

bination of the future Gaussian ranks of return and trade volume changes of the

individual risky asset (ui,t+1, vi,t+1), with weights equal to the elements of the rela-

tive risky allocations βr and βtv. The future positions of the return and trade volume

of the portfolios are equal to the shares of each asset in the portfolio multiplied by

its future rank. Therefore, in order to predict the future positions of returns and

trade volumes of the portfolio, we can use their future Gaussian ranks weighted by

their respective shares in each portfolio. This result is a consequence of the lin-

earity of the transformed quantile function (Qt+1) under the Normality assumption

on the cross-sectional distributions [see equations (3.27)-(3.28)], and holds for any

dynamics of the ranks.

More specifically, by considering the dynamics of ranks introduced in the panel

VAR model (equation 3.10), the future positions of returns and trade volume changes
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can be written as functions of their current ranks as follows:

Qr
t+1(β′rrt+1) = β′rut+1

=
n∑
i=1

βr,iρ11,t+1ui,t +
n∑
i=1

βr,iρ12,t+1vi,t +
n∑
i=1

βr,iε1,it+1

(3.3.13)

Qtv
t+1(β′tvtvt+1) = β′tvvt+1

=
n∑
i=1

βtv,iρ21,t+1ui,t +
n∑
i=1

βtv,iρ22,t+1vi,t +
n∑
i=1

βtv,iε2,it+1,
(3.3.14)

where coefficients ρ11,t+1, ρ12,t+1, ρ21,t+1 and ρ22,t+1, in the autoregressive matrix Rt

and the conditional variance matrix Σt are assumed to be predetermined and are

known to the investor at time t 22. These equations show that the future positions

of returns and trade volume changes can be easily computed from the current ranks

of returns and trade volume changes.

In the optimizations (3.29) and (3.30), the risk aversion coefficients A depends

on the investor. We assume that the risk aversion of Investor 1 is Ar and that of

investor 2 is Atv. After substituting the quantile functions in the utility function

and given that errors ε1,it, ε2,it in equation (3.10), are independent Gaussian white

noise processes, the expected positional utilities to be maximized are as follows:

− E[exp(−ArQr
t+1(β′rrt+1)) | rt, tvt, Rt+1] =

−
[
exp
(
− Ar

n∑
i=1

βr,iρ11,t+1ui,t − Ar
n∑
i=1

βr,iρ12,t+1vi,t +
1

2
A2
r

n∑
i=1

β2
r,iσ

2
1,t+1

)]
(3.3.15)

22See Appendix C for a heuristic demonstration of case of stochastic autoregressive coefficients.

106



where σ2
1t+1 = 1− ρ2

11,t+1 − ρ2
12,t+1, subject to β′rh = 1 and,

− E[exp(−AtvQtv
t+1(β′tvtvt+1)) | rt, tvt, Rt+1] =

−
[
exp
(
− Atv

n∑
i=1

βtv,iρ21,t+1ui,t − Atv
n∑
i=1

βtv,iρ22,t+1vi,t +
1

2
A2
tv

n∑
i=1

β2
tv,iσ

2
2,t+1

)]
(3.3.16)

where σ2
2t+1 = 1− ρ2

21,t+1− ρ2
22,t+1, subject to β′tvh = 1, for investor 2. In each of the

above equations ((3.37) and (3.38)), the expected positional utility is independent

of the cross-sectional mean and standard deviation of returns and trade volumes

(µr,t, µtv,t and σr,t, σtv,t) at time t and depends on the current position of asset i

return and trade volume change (uit and vit).

The Lagrangian functions for the maximization of the expected positional utility

with respect to the portfolio allocation vectors β′r and β′tv, subject to the constraints

β′rh = 1 and β′tvh = 1 are:

Lr = −
[
exp
(
− Ar

n∑
i=1

βr,iρ11,t+1ui,t − Ar
n∑
i=1

βr,iρ12,t+1vi,t+

1

2
A2
r

n∑
i=1

β2
r,iσ

2
1,t+1

)]
+ λr(1− β′rh)

(3.3.17)

Ltv = −
[
exp
(
− Atv

n∑
i=1

βtv,iρ21,t+1ui,t − Atv
n∑
i=1

βtv,iρ22,t+1vi,t+

1

2
A2
tv

n∑
i=1

β2
tv,iσ

2
2,t+1

)]
+ λtv(1− β′tvh)

(3.3.18)

where λr and λtv are the Lagrange multipliers. The first-order condition for βr,t, βtv,t
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are:

− Ar
[
(ρ11,t+1ut + ρ12,t+1vt − Arσ2

1,t+1βr,t)

exp
[
− Ar(ρ11,t+1β

′
r,tut − ρ12,t+1βr,tvt) +

1

2
A2
rβ
′
r,tβr,tσ

2
1,t+1

)]
− λr,th = 0 (3.3.19)

− Atv
[
(ρ21,t+1ut + ρ22,t+1vt − Atvσ2

2,t+1βtv)

exp
[
− Atv(ρ21,t+1β

′
tv,tut − ρ22,t+1βtv,tvt) +

1

2
A2
tvβ
′
tv,tβtv,tσ

2
2,t+1

)]
− λtv,th = 0

(3.3.20)

By solving the above equations with respect to βr,t, λr,t and βtv,t, λtv,t the optimal

portfolio shares at time t are as follows:

β∗r,t =
1

Ar

ρ11,t+1ut + ρ12,t+1vt
σ2

1,t+1

− 1

A2
r

λr,th

σ2
1,t+1

(3.3.21)

β∗tv,t =
1

Atv

ρ21,t+1ut + ρ22,t+1vt
σ2

2,t+1

− 1

A2
tv

λtv,th

σ2
2,t+1

(3.3.22)

In terms of vector we get:

β∗r,t
′h =

(ρ11t+1u.t + ρ12t+1v.t)

Arσ2
1,t+1

− n λr,t
A2
rσ

2
1,t+1

= 1, (3.3.23)

β∗tv,t
′h =

(ρ21t+1u.t + ρ22t+1v.t)

Atvσ2
2,t+1

− n λtv,t
A2
tvσ

2
2,t+1

= 1, (3.3.24)

where u.t and v.t are the vectors of ranks of asset i = 1, . . . , n at time t. Then we

have:
λr,t

A2
rσ

2
1,t+1

=
ρ11t+1ut + ρ12t+1vt

Arσ2
1,t+1

− 1

n
, (3.3.25)
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λtv,t
A2
tvσ

2
2,t+1

=
ρ21t+1ut + ρ22t+1vt

Atvσ2
2,t+1

− 1

n
, (3.3.26)

where ut = 1
n

n∑
i=1

uit and vt = 1
n

n∑
i=1

vit. By substituting the above expressions into

(3.45) and (3.46) we get the vectors of optimal allocations as follow:

β∗r,t =
1

n
h+

ρ11t+1(ut − uth) + ρ12t+1(vt − vth)

Arσ2
1,t+1

(3.3.27)

β∗tv,t =
1

n
h+

ρ21t+1(ut − uth) + ρ22t+1(vt − vth)

Atvσ2
2,t+1

(3.3.28)

The optimal relative positional allocations β′∗r,t, β′∗tv,t (equations (3.49) and (3.50))

are linear combinations of two well-known portfolios. The first one is the equally

weighted portfolio with weight 1/n for each asset and the second portfolio is an

arbitrage portfolio (i.e. zero-cost portfolio) with dynamic allocations proportional

to the deviations of the current ranks from their cross-sectional averages. Since these

arbitrage portfolios contain the vector of expected future ranks in deviation from

their cross-sectional averages
(

(ρ11,t+1(uit − ut) + ρ12,t+1(vit − vt) in equation (3.49)

and (ρ21,t+1(uit−ut)+ρ22,t+1(vit−vt)) in equation (3.50)
)
, it can be interpreted as a

momentum portfolio in equation (3.49) and liquid portfolio in equation (3.50). When

the sign of the sum of persistence coefficients ρjk,t + ρjj,t (where j,k=1,2) is positive,

the arbitrage portfolio will be long in assets with large expected deviation of their

future ranks from their cross-sectional average, and when the sum of persistence

coefficients is negative then, it will be short in assets with small expected deviation

of their future ranks from their cross-sectional average.

This interpretation of the arbitrage part of the positional portfolio implies that
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the optimal positional allocation deviates from the equally weighted portfolio by

over-weighting the assets with larger current ranks, when the sum of persistence coef-

ficients is positive and deviates from the equally weighted portfolio by over-weighting

the assets with small current ranks, when the sum of persistence coefficients is neg-

ative. The weight of the arbitrage portfolio in the optimal risky allocations β∗r,it and

β∗tv,it are positively correlated with the persistence of ranks coefficients (ρ11,t+1, ρ12,t+1

in equation (3.49) and ρ21,t+1, ρ22,t+1 in equation (3.50)) and negatively correlated

with the risk aversion coefficients (Ar in equation (3.49) and Atv in equation (4.50))

of the investors.

The optimal allocation vectors β∗r,t, β∗tv,t that determine the positional portfolio

strategies depend on the choice of the positional utility function and on the positional

universe of stocks which is used to compute the ranks. Moreover, these optimal

allocations of the positional investor are defined by considering functions Qt+1 as

the exogenous functions, which in this paper, are the quantile functions.

3.3.2 Optimal Mixed Positional Allocations

Let us consider investment strategy that select assets with the highest return and

liquidity ranks. The optimal allocation vector β∗ is obtained by maximizing the

positional CARA utility function as follows:

− E[exp(−(ArQ
r
t+1(β′rrt+1) + AtvQ

tv
t+1(β′tvtvt+1))) | rt, tvt, Rt+1]

= −E
[
exp
(
− (Arβ

′ut+1 + Atvβ
′vt+1) | rt, tvt, Rt+1

)]
(3.3.29)
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subject to β′h = 1. By analogy to the previous section, we predict the future ranks

ut+1 and vt+1 from the bivariate VAR(1) model (equation 3.10) with time varying

coefficients, which are considered predetermined at time t. Next we maximize:

−
[
exp
(
− Ar

n∑
i=1

βi(ρ11,t+1uit + ρ12,t+1vit)− Atv
n∑
i=1

βi(ρ21,t+1uit + ρ22,t+1vit)+

1

2

n∑
i=1

β2
i (A

2
rσ

2
1,t+1 + A2

tvσ
2
2,t+1 + 2ArAtvσ

2
12,t+1)

)]
(3.3.30)

where σ12,t+1 = −ρ11,t+1ρ21,t+1− ρ12,t+1ρ22,t+1. To simplify the exposition, let us use

the vector notation:

−
[
exp
(
− Ar(ρ11,t+1β

′ut + ρ12,t+1β
′vt)− Atv(ρ21,t+1β

′ut + ρ22,t+1β
′vt)+

1

2
β′β(A2

rσ
2
1,t+1 + A2

tvσ
2
2,t+1 + 2ArAtvσ12,t+1)

)] (3.3.31)

subject to β′h = 1. The Lagrangian of the constrained maximization is:

LM = −
[
exp
(
− Ar(ρ11,t+1β

′ut + ρ12,t+1β
′vt)− Atvβ′(ρ21,t+1ut + ρ22,t+1vt)

+
1

2
ββ′(A2

rσ
2
1,t+1 + A2

tvσ
2
2,t+1 + 2ArAtvσ

2
12,t+1)

)]
+ λ(1− β′h) (3.3.32)

where λ is the Lagrange multiplier. The first-order condition for βt, λt is:

[Ar(ρ11,t+1ut + ρ12,t+1vt) + Atv(ρ21,t+1ut + ρ22,t+1vt)− (A2
rσ

2
1,t+1 + A2

tvσ
2
2,t+1+

2ArAtvσ12,t+1)βt]exp
(
− Ar(ρ11,t+1β

′ut + ρ12,t+1β
′vt)− Atv(ρ21,t+1β

′ut+

ρ22,t+1β
′vt) +

1

2
β′tβt(A

2
rσ

2
1,t+1 + A2

tvσ
2
2,t+1 + 2ArAtvσ

2
12,t+1)

)
− λth = 0 (3.3.33)
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which yields:

β∗t =
Ar(ρ11,t+1ut + ρ12,t+1vt) + Atv(ρ21,t+1ut + ρ22,t+1vt)

A2
rσ

2
1,t+1 + A2

tvσ
2
2,t+1 + 2ArAtvσ12,t+1

−

λth

A2
rσ

2
1,t+1 + A2

tvσ
2
2,t+1 + 2ArAtvσ12,t+1

(3.3.34)

Let mt denotes the nominator of the first term: mt = Ar(ρ11,t+1ut + ρ12,t+1vt) +

Atv(ρ21,t+1ut+ρ22,t+1vt), and ∆t denotes the common denominator: ∆t = A2
rσ

2
1,t+1 +

A2
tvσ

2
2,t+1 + 2ArAtvσ12,t+1. We can rewrite equation (4.55) as follows:

β∗t =
mt

∆t

− λth

∆t

. (3.3.35)

By taking into account the constraint β∗t ′h = 1, we get equation (4.57) in terms of

vector as below:

β∗t
′h =

m.t

∆t

− λth
′h

∆t

= 1

=
m.t

∆t

− λn

∆t

= 1,

(3.3.36)

By solving for λt
∆t

we get:
λ

∆t

=
1

n

m.t

∆t

− 1

n
(3.3.37)

By substituting equation (4.59) into the expression of β∗ (equation (4.57)), we get
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the optimal allocation vector as follows:

β∗ =
mt

∆t

−
1
n
mt

∆t

+
1

n

β∗ =
1

n
h+

1

∆t

(mt −mth)

(3.3.38)

which is the optimal allocation vector:

β∗t =
1

n
h+

Ar
(
ρ11,t+1(ut − ut) + ρ12,t+1(vt − vt)

)
A2
rσ

2
1,t+1 + A2

tvσ
2
2,t+1 + 2ArAtvσ12,t+1

+
Atv
(
ρ21,t+1(ut − ut) + ρ22,t+1(vt − vt)

)
A2
rσ

2
1,t+1 + A2

tvσ
2
2,t+1 + 2ArAtvσ12,t+1

(3.3.39)

It is easy to see that the above formula simplifies when σ12,t = 0:

β∗t =
1

n
+
Ar(mr,t −mr,th) + Atv(mtv,t −mtv,th)

A2
rσ

2
1,t+1 + A2

tvσ
2
2,t+1

, (3.3.40)

where (mr,t − mr,th) = ρ11,t+1(ut − uth) + ρ12,t+1(vt − vth) and (mtv,t − mtv,th) =

ρ21,t+1(ut − uth) + ρ22,t+1(vt − vth). We see that:

β∗t =
1

n
h+

A2
rσ

2
1t+1

(mr,t−mr,th)

Arσ2
1t+1

+ A2
tvσ

2
2t+1

(mtv,t−mtv,th)

Atvσ2
2t+1

A2
rσ

2
1,t+1 + A2

tvσ
2
2,t+1

=
1

n
h+ πr,t

[(mr,t −mr,th)

Arσ2
1t+1

]
+ πtv,t

[(mtv,t −mtv,th)

Atvσ2
2t+1

]
,

(3.3.41)
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where πr,t =
A2

rσ
2
1t+1

A2
rσ

2
1,t+1+A2

tvσ
2
2,t+1

and πtv,t =
A2

tvσ
2
2t+1

A2
rσ

2
1,t+1+A2

tvσ
2
2,t+1

. It follows from equation

(3.62), that when σ12,t+1 = 0, the optimal mixed positional allocation contains two

portfolios. The first one is the equally weighted portfolio with weights 1/n and

the second one is a weighted average of the positional momentum and positional

liquidity allocations.

3.3.3 Optimal Positional Portfolios

From the optimal positional allocation vectors we define the following three types

of optimal positional portfolios:

Definition 1: The efficient positional momentum portfolio is based on the opti-

mal positional allocation β∗r,t which maximizes the CARA positional utility function

under condition β′rh = 1 for positional risk aversion parameters Ar and a bivariate

VAR model component of returns ranks dynamics.

As the liquidity ensures uninterrupted availability of funds, we extend this approach

further and introduce a new positional liquid portfolio which is efficient in terms of

liquidity as follows;

Definition 2: The efficient positional liquid portfolio is based on the optimal

positional allocations β∗tv,t which maximizes the CARA positional utility function

under constraint β′tvh = 1 for positional risk aversion parameters Atv and a bivariate

VAR model component of trade volumes’ ranks dynamics.

Some investors are interested in maximizing the returns while also looking for quick

access to funds as well. The third approach introduced as a new mixed positional
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portfolio, which is efficient in terms of both return and liquidity.

Definition 3: The efficient positional mixed portfolio is based on the optimal

positional allocations β∗t which maximizes the CARA positional utility function

under constraint β′h = 1 for risk aversion parameters Ar, Atv and a bivariate VAR

model of return and trade volumes’ ranks dynamics.

3.4 Optimal Positional Strategies

In this Section, we implement the optimal positional strategies defined in Section

3.3. The positional strategies are applied to an investment universe corresponding to

the n = 1330 stocks traded in NASDAQ market from 1999 to 2016. The positional

risk aversion parameters are considered constant and take values 0.5, 1, 3, 5. The

expected ranks of returns are predicted from the bivariate VAR(1) model (equation

3.7) of ranks of returns and trade volume changes using either the autoregressive

parameters ρ̂jk,t , jk = 1, 2 estimated by rolling (equation), or ˆ̂ρjk,t+1 , jk =

1, 2 predicted from the factor model (equations 3.16-3.19). This strategy compute

optimal portfolios with monthly adjustments of asset allocations and equal look-back

periods of one month over the period 2008 to 2016. The returns of the positional

portfolios are compared with the returns on the equal weighted portfolio (EW), that

are obtained from rolling with a window of 108 months.
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3.4.1 Optimal Positional Momentum Portfolios

The optimal positional momentum portfolios contain stocks with allocations βrt ,

defined as follows:

β∗r,t =
1

n
h+

ρ11,t+1(ut − ut) + ρ12,t+1(vt − vt)
Arσ2

1,t+1

(3.4.1)

Table 3.6, shows the average of the time series of the optimal positional port-

folios’ returns, their standard deviations and Sharpe ratios and compares those re-

turns with the equally weighted portfolio’s return. Two types of positional momen-

tum portfolios are considered: one with the future ranks predicted with estimated

ρ̂11,t, ρ̂12,t from VAR(1) model (equation 3.7), and the other one with fitted value

of estimated coefficients from equations (3.16) and (3.17) ˆ̂ρ11,t+1, ˆ̂ρ12,t+1. The posi-

tional momentum portfolios are computed for four different values of risk aversions

(Ar = 0.5, 1, 3, 5). We observe that all portfolios are providing positive returns and

higher than equally weighed portfolio’s return. By increasing the risk aversion value,

the return of the optimal positional momentum portfolios decreased which is con-

sistent with the risk-return trade-off in financial literature 23. In other word, lower

risk aversion tends to higher returns due to higher undertaken risk. However the

Sharpe ratio for the risk aversion equal to 3 is higher than other values.

In all values of risk aversions, the positional momentum portfolios based on

estimated ρ̂11,t, ρ̂12,t are providing higher return than those based on fitted values
23Many literature show that the more return sought, the more risk that must be undertaken

(Breen, Glosten,and Jagannathan (1989), Nelson (1991), Glosten, Jakannatha and Runkle (1993),
Brandtand Kang (2004), etc).
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of ˆ̂ρ11,t+1, ˆ̂ρ12,t+1. But the portfolios based on the fitted ρ’s are providing higher

Sharpe ratios than those based on estimated ρ’s.

Table 3.6: Summary of Positional Momentum Portfolios’ Returns

Estimated ρ’s Fitted ρ’s

Risk Aversion Mean S-D Sh-R Mean S-D Sh-R

Ar = 0.5 2.198 1.176 1.867 2.192 1.089 2.011
Ar = 1 1.101 0.581 1.890 1.098 0.534 2.052
Ar = 3 0.370 0.191 1.922 0.369 0.171 2.144
Ar = 5 0.223 0.120 1.851 0.223 0.105 2.093

Mean S-D Sh-R

EW 0.004 0.067 0.042

Note: Table 3.6 shows the average of the time series return of the optimal positional mo-
mentum portfolios with the future ranks predicted with estimated ρ̂11,t, ρ̂12,t from VAR(1)
model (equation 3.7) (Estimated ρ’s) and the with fitted value of estimated coefficients
from equations (3.16) and (3.17) ˆ̂ρ11,t+1, ˆ̂ρ12,t+1 (Fitted ρ’s).

Figure 3.14 shows the time series of returns on the positional momentum portfo-

lios for different values of risk aversion. Both positional momentum portfolios (based

on Estimated ρ’s and the Fitted ρ′s) with risk aversion equal to 0.5 are outperform-

ing all other portfolios. With 0.5 risk aversion, the positional momentum portfolio

based on Fitted ρ’s outperform the other one until January 2009. After that the

positional momentum portfolio based on Estimated ρ’s provides the highest return

until June 2010. From July 2010 to March 2014, the portfolio based on Fitted ρ’s

has the highest return. While from July 2014 and so on, the portfolio based on

Estimated ρ’s gives us the highest return.

As we can see, by increasing the risk aversion value, the return on the positional

momentum portfolios decrease. The higher the risk aversion value, the lower the
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return. The equally weighted portfolio has the lowest return, as compared to the

other portfolios.

Figure 3.14: Time Series of Positional Momentum Strategies’ Returns
Figure 3.14 compares the time series of returns of positional momentum portfolios. The red,
orange, olive and green line show the returns of optimal positional momentum portfolios
computed from estimated parameters of VAR model for different Ar. The light green, light
blue, blue and purple line show the returns of optimal positional momentum portfolios
computed from fitted values of parameters from equations (3.16) and (3.17) for different
Ar. The pink line shows the mean of the equally weighted portfolio.

Table 3.7 shows the cumulative return of these optimal positional momentum

portfolios with the inception date of April 2008 until October 2016. As we can see

by increasing the risk aversion the cumulative returns on positional momentum port-

folios increase. In all values of risk aversions, the positional momentum portfolios

based on estimated ρ’s provide higher cumulative return than the portfolios based

on fitted ρ’s, however these cumulative returns are very close.
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Table 3.7: Cumulative Return of Positional Momentum Portfolios Until October
2016

Risk Aversion Estimated ρ’s Fitted ρ’s

Ar = 0.5 134.18 133.92
Ar = 1 67.137 67.004
Ar = 3 22.437 22.392
Ar = 5 13.497 13.470

EW 0.087

Note: Table 3.7 shows the cumulative return of optimal positional momentum portfolios
with the inception date of April 2008 based on future ranks predicted with estimated
ρ̂11,t, ρ̂12,t from VAR(1) model (equation 3.7) (Estimated ρ’s) and the fitted value of
estimated coefficients from equations (3.16) and (3.17) ˆ̂ρ11,t+1, ˆ̂ρ12,t+1 (Fitted ρ’s).

Figure 3.15 shows the time series of cumulative returns on all these positional

momentum portfolios. Both positional momentum portfolios (based on Estimated

ρ’s and the Fitted ρ′s) with risk aversion equal to 0.5 are outperforming all other

portfolios. With 0.5 risk aversion, the positional momentum portfolio biased on

Fitted ρ’s outperform the other one until MAY 2009. After that the positional

momentum portfolio based on Estimated ρ’s provides the highest return until June

2012. From January 2013 to February 2016, the portfolio based on Fitted ρ’s has the

highest return. As we can see, by increasing the risk aversion value, the return on

the positional momentum portfolios decrease. The higher the risk aversion value, the

lower the return. The equally weighted portfolio has the lowest return, as compared

to the other portfolios.
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Figure 3.15: Time Series of Cumulative Returns of Positional Momentum Strategies
Figure 3.15 compares the time series of cumulative returns of positional momentum port-
folios if one hold the portfolio until October 2016. The red, orange, olive and green line
show the cumulative returns of optimal positional momentum portfolios computed from
estimated parameters of VAR model for different Ar. The light green, light blue, blue
and purple line show the cumulative returns of optimal positional momentum portfolios
computed from fitted values of parameters from equations (3.16) and (3.17) for different
Ar. The pink line shows the mean of the equally weighted portfolio.

3.4.2 Optimal Positional Liquid Portfolios

The optimal positional liquid portfolios contain stocks with allocations β∗tv,t, defined

as follows:

β∗tv,t =
1

n
h+

ρ21,t+1(ut − ut) + ρ22,t+1(vt − vt)
Atvσ2

2,t+1

(3.4.2)

Table 3.8 shows the average of the time series of the optimal positional liquid

portfolios returns, their standard deviations and Sharpe ratios and compares those

returns with the equally weighted portfolio’s return.
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Table 3.8: Summary of Positional Liquid Portfolios’ Returns

Estimated ρ’s Fitted ρ’s

Risk Aversion Mean S-D Sh-R Mean S-D Sh-R

Atv = 0.5 3.795 2.198 0.778 3.742 2.211 0.753
Atv = 1 1.899 1.100 0.773 1.873 1.106 0.748
Atv = 3 0.636 0.367 0.753 0.627 0.369 0.729
Atv = 5 0.383 0.221 0.733 0.378 0.222 0.710

Mean S-D Sh-R

EW 0.004 0.067 0.042

Note: Table 3.8 shows the average of the time series return of the optimal positional liquid
portfolios with the future ranks predicted with estimated ρ̂21,t, ρ̂22,t from VAR(1) model
(equation 3.7) (Estimated ρ’s) and the with fitted value of estimated coefficients from
equations (3.18) and (3.19) ˆ̂ρ21,t+1, ˆ̂ρ22,t+1 (Fitted ρ’s).

Two types of positional liquid portfolios are considered, one with the future ranks

predicted with the estimated ρ̂21,t, ρ̂22,t from VAR(1) model (equation 3.7) and an-

other one with the fitted values ˆ̂ρ21,t+1, ˆ̂ρ22,t+1 obtained from factor model (equations

(3.18) and (3.19)). The positional liquid portfolios are computed for four different

values of risk aversion (Atv = 0.5, 1, 3, 5). The returns on both types of positional

liquid portfolios with the estimated and fitted autoregressive coefficients are positive

and higher than equally weighted portfolio. Also we see that, the higher the risk

aversion value, the lower the average return and Sharpe ratio on the positional liquid

portfolio, which is again in consistent with the risk-return trade-off. In both types

of positional liquid portfolios, the portfolios based on estimated ρ’s from VAR(1)

model provide higher average return than the one based on fitted ρ’s from equation

(3.18) and (3.19), however their values are very close. By comparing Tables 3.8 with

3.6, we find that the positional liquid portfolios are providing higher average return
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than the positional momentum portfolios. But the positional momentum portfolios

are providing higher Sharpe ratios than the positional liquid portfolios. Hence, the

positional portfolios of liquid assets give higher average returns and lower Sharpe

ratios than the positional portfolios of winners.

Figure 3.16 shows the time series of returns on the positional liquid portfolios for

different values of risk aversions. The positional liquid portfolios with risk aversion

equal to 0.5 are outperforming all other portfolios. The higher the risk aversion, the

lower the return on the positional liquid portfolio. The equally weighted portfolio

has the lowest return compare to other considered portfolios. But in some periods

of time the equally weighted portfolio provides higher return than the others. For

instance, from November 2008 to February 2009, when all positional liquid portfolios

reached to their lowest value, the equally weighted portfolio outperforms them.

Table 3.9: Cumulative Return of Positional Liquid Portfolios Until October 2016

Risk Aversion Estimated ρ’s Fitted ρ’s

Atv = 0.5 185.00 187.07
Atv = 1 92.544 93.581
Atv = 3 30.906 31.251
Atv = 5 18.578 18.786

EW 0.087

Note: Table 3.9 shows the cumulative return of optimal positional liquid portfolios with the
inception date of April 2008 based on future ranks predicted with estimated ρ̂21,t, ρ̂22,t from
VAR(1) model (equation 3.7) (Estimated ρ’s) and the fitted value of estimated coefficients
from equations (3.18) and (3.19) ˆ̂ρ21,t+1, ˆ̂ρ22,t+1 (Fitted ρ’s).
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Figure 3.16: Time Series of Positional Liquid Strategies’ Returns
Figure 3.16 compares the time series of positional liquid portfolios’ returns. The red, or-
ange, olive and green line show the returns of optimal positional liquid portfolios computed
from estimated parameters of VAR model for different Atv. The light green, light blue,
blue and purple line show the returns of optimal positional liquid portfolios computed from
fitted values of parameters from equations (3.18) and (3.19) for different Atv. The pink
line shows the mean of the equally weighted portfolio.

Table 3.9 shows the cumulative returns on positional liquid portfolios with the

inception date of April 2008. We observe that, the positional liquid portfolios based

on fitted ρ’s outperforms all other portfolios for all values of risk aversions. Also by

increasing the risk aversions’ values, the cumulative returns decrease. By comparing

Table 3.9 with Table 3.7, we see that a positional portfolio which is based on liquid

assets provided higher cumulative return than the positional portfolios based on

winners.
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Figure 3.17: Time Series of Cumulative Returns of Positional Liquid Strategies
Figure 3.17 compares the time series of cumulative returns of positional liquid portfolios
if one hold the portfolio until October 2016. The red, orange, olive and green line show
the cumulative returns of optimal positional liquid portfolios computed from estimated
parameters of VAR model for different Atv. The light green, light blue, blue and purple
line show the cumulative returns of optimal positional liquid portfolios computed from
fitted values of parameters from equations (3.18) and (3.19) for different Atv. The pink
line shows the mean of the equally weighted portfolio.

Figure 3.17 shows the time series of cumulative return of positional liquid port-

folios from April 2008 to October 2016. Again by increasing the risk aversions’

values the cumulative returns decreased. Both positional liquid portfolios (based on

estimated ρ’s and fitted ρ’s) with risk aversion 0.5 outperform all other portfolios.

While the equally weighted portfolio provides the lowest cumulative returns compare

to other portfolios. At the beginning of the sample period (April 2008 to July 2009),

the crisis period, all portfolios’ cumulative returns are below equally weighted. After

that the cumulative returns on the positional liquid portfolios increase.
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3.4.3 Optimal Mixed Positional Portfolios

The optimal mixed positional portfolios contain assets with allocations β∗t defined

as follows:

β∗t =
1

n
h+

Ar(ρ11,t+1(ut − ut) + ρ12,t+1(vt − vt))
∆t

+
Atv(ρ21,t+1(ut − ut) + ρ22,t+1(vt − vt))

∆t

(3.4.3)

where ∆t = A2
rσ

2
1,t+1+A2

tvσ
2
2,t+1+2ArAtvσ12,t+1. Table 3.10 shows the average return,

the standard deviations and the Sharpe ratios of positional mixed portfolios and of

the equally weighted portfolio. Again, two types of positional mixed portfolios are

considered, one with future ranks predicted with ρ̂jk,t, j, k = 1, 2 estimated by rolling

(equation ) and another one with ˆ̂ρjk,t+1, j, k = 1, 2 predicted from the factor model

(equation).

Table 3.10, shows the positional mixed portfolios computed for different values

of risk aversions Ar = Atv = 0.5, 1, 3, 5. Both types of positional mixed portfolios

are providing positive return and higher than equally weighted portfolio. Same as

positional momentum portfolios, the positional mixed portfolios which is based on

estimated ρ’s have higher return than the ones based on fitted ρ’s. But the Sharp

ratios of the Fitted ρ’s are higher than the estimated ρ’s.

Also we observe that the higher the risk aversion value, the higher the average

return and the Sharpe ratio on the positional mixed portfolios.

By comparing Tables 3.10,3.8 and 3.6, we find that the positional liquid port-

folios are providing an average return higher than the positional mixed portfolios.

However, the average returns on the positional mixed portfolios are higher than the
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positional momentum portfolios. Hence, the positional portfolio which is based on

liquid winners provides higher average return than the positional portfolio based on

just winners. In fact, by considering the liquidity along with the winners, we can

improve the return of the positional portfolios. Also the positional portfolios based

on just liquid assets would provide even higher average return than the positional

portfolio based on liquid winners.

Table 3.10: Summary of Positional Mixed Portfolios’ returns

Estimated ρ’s Fitted ρ’s

Risk Aversion Mean S-D Sh-R Mean S-D Sh-R

Ar = Atv = 0.5 2.983 2.323 1.283 2.954 2.295 1.286
Ar = Atv = 1 1.493 1.177 1.267 1.479 1.164 1.269
Ar = Atv = 3 0.500 0.416 1.199 0.496 0.412 1.200
Ar = Atv = 5 0.302 0.266 1.129 0.299 0.263 1.129

Mean S-D Sh-R

EW 0.004 0.067 0.042

Note: Table 3.10 shows the average of the time series return of the optimal positional
mixed portfolios with the future ranks predicted with estimated ρ̂11,t, ρ̂21,t, ρ̂21,t and ρ̂22,t

from VAR(1) model (equation 2.7) (Estimated ρ’s) and the with fitted value of estimated
coefficients from equations (3.16) to (3.19) ˆ̂ρ11,t+1, ˆ̂ρ12,t+1, ˆ̂ρ21,t+1 and ˆ̂ρ22,t+1 (Fitted ρ’s).

In terms of Sharpe ratios, the positional momentum portfolios based on fitted

ρ’s are providing higher values than the positional liquid and mixed portfolios.

Figure 3.18 shows the time series of the returns of the positional mixed portfolios.

We observe very similar patterns as Figure 3.16. By increasing the risk aversions’

values, the return on the positional mixed portfolios decrease. When the risk aver-

sion is 0.5, both portfolios based on estimated ρ’s and fitted ρ’s are providing the

highest return, while the equally weighted provides the lowest return.
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Figure 3.18: Time Series of Mixed Positional Strategies’ Returns
Figure 3.18 compares the time series of the positional mixed portfolios’ returns. The red,
orange, olive and green line show the returns of optimal positional mixed portfolios com-
puted from estimated parameters of VAR model for different Ar and Atv. The light green,
light blue, blue and purple line show the returns of optimal positional mixed portfolios
computed from fitted values of parameters from equations (3.16) to (3.19) for different Ar
and Atv. The pink line shows the mean of the equally weighted portfolio.

Table 3.11: Cumulative Return of Positional Mixed Portfolios Until October 2016

Risk Aversion Estimated ρ’s Fitted ρ’s

Ar = Atv = 0.5 159.13 160.02
Ar = Atv = 1 79.610 80.05
Ar = Atv = 3 26.595 26.743
Ar = Atv = 5 15.991 16.081

EW 0.087

Note: Table 3.11 shows the cumulative return of optimal positional mixed portfolios
with the inception date of April 2008 based on future ranks predicted with estimated
ρ̂11,t, ρ̂12,t, ρ̂21,t and ρ̂22,t from VAR(1) model (equation 3.7) (Estimated ρ’s) and the fit-
ted value of estimated coefficients from equations (3.16) to (3.19) ˆ̂ρ11,t+1, ˆ̂ρ12,t+1, ˆ̂ρ21,t+1

and ˆ̂ρ22,t+1 (Fitted ρ’s).
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Table 3.11 shows the cumulative returns on positional mixed portfolios with in-

ception date of April 2008 until October 2016. We observe that cumulative return

on positional mixed portfolios based on fitted ρ’s are higher than those based on

estimated ρ’s. Again, higher risk aversion value provides lower cumulative return.

In both Table 3.11 and 3.9 the positional portfolios based on fitted ρ’s provide higher

return than those based on estimated ρ’s. While in Table 3.7, the positional portfo-

lios based on estimated ρ’s yield in higher returns. By comparing Table 3.11,3.9 and

3.7, we observe that a positional portfolio based on liquid assets outperforms other

positional portfolios. However, a positional portfolios based on liquid winners has

higher cumulative return than the positional portfolio based on just winner stocks.

Figure 3.19 shows the cumulative returns on the positional mixed portfolios from

April 2008 until October 2016. When risk aversion is 0.5, the positional portfolio

based on liquid winners obtained from fitted ρ’s provides the highest return until

January 2009. From January 2009 to March 2012 the positional mixed portfolio

based on estimated ρ’s has the higher return. After that until April 2016 the po-

sitional portfolio based on fitted ρ’s outperforms other portfolios, while from May

2016, the positional portfolio based on estimated ρ’ outperforms the others.

Let us now assume that Ar 6= Atv. Below, we examine the positional mixed

portfolios with different values of risk aversion. First, we consider Ar fixed and

compute the positional mixed portfolios for different values of Atv. Next, we consider

Atv fixed and compute the positional mixed portfolios for different values of Ar.
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Figure 3.19: Time Series of Cumulative Returns of Positional Mixed Strategies
Figure 3.19 compares the time series of cumulative returns of positional mixed portfolios
if one hold the portfolio until October 2016. The red, orange, olive and green line show
the cumulative returns of optimal positional mixed portfolios computed from estimated
parameters of VAR model for different Ar and Atv. The light green, light blue, blue and
purple line show the cumulative returns of optimal positional mixed portfolios computed
from fitted values of parameters from equations (3.16) to (3.19) when for different Ar and
Atv. The pink line shows the mean of the equally weighted portfolio.

Table 3.12, shows the average returns, their Sharp ratios and the cumulative

returns of the positional mixed portfolios when Ar = 0.5. Again, we build two

different type of portfolios, one based on estimated parameters (Estimated ρ’s) and

the other from the fitted values (Fitted ρ’s). Same as before by increasing the value

of risk aversion, the average and cumulative returns decreased.

In terms of average return the mixed portfolios based on Estimated ρ’s are pro-

viding higher return, while in terms of cumulative returns the positional mixed

portfolios based on fitted ρ’s are providing higher returns. But in general the cu-

mulative returns of these two strategies are very close. When the risk aversion is

0.5 the Fitted ρ’s has higher Sharpe ratio but for other values of risk aversions the

estimated ρ’s are providing higher Sharpe ratios, which are decreasing by increasing
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the value of risk aversion.

Table 3.12: Summary of Mixed Positional Portfolios’ Returns, Ar = 0.5

Average Return Cumulative Return

Risk Aversion Eρ’s Eρ-SR Fρ’s Fρ-SR Estimated ρ’s Fitted ρ’s

Atv = 0.5 2.983 1.283 2.954 1.286 159.13 160.02
Atv = 1 1.960 1.028 1.938 1.011 101.05 101.82
Atv = 3 0.679 0.836 0.671 0.813 33.780 34.109
Atv = 5 0.401 0.781 0.396 0.758 19.758 19.960

Mean S-D Sh-R

EW 0.004 0.067 0.042

Note: Table 3.12 shows the average and cumulative return of optimal positional mixed port-
folios with the inception date of April 2008 based on future ranks predicted with estimated
ρ̂11,t, ρ̂12,t, ρ̂21,t and ρ̂22,t from VAR(1) model (equation 2.7) (Estimated ρ’s) and the fitted
value of estimated coefficients from equations (3.16) to (3.19) ˆ̂ρ11,t+1, ˆ̂ρ12,t+1, ˆ̂ρ21,t+1 and
ˆ̂ρ22,t+1 (Fitted ρ’s), considering Ar constant and equal to 0.5.

Figure 3.20 shows the time series of returns on the positional mixed portfolios

when Ar = 0.5. The positional mixed portfolios with risk aversion equal to 0.5 are

outperforming all other portfolios. The higher the risk aversion value, the lower the

return of the positional liquid portfolios. The equally weighted portfolio has the

lowest return.

Table 3.13 shows the average return, their Sharpe rations and cumulative returns

of positional mixed portfolios when Ar = 1. We observe that in terms of average

returns the positional mixed portfolios which is based on estimated ρ’s outperforms

the other, while in terms of cumulative returns the positional mixed portfolios based

on fitted ρ’s provide higher returns. Again we see the risk-return trade-off, higher

risk aversion with lower returns.
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Figure 3.20: Time Series of Mixed Positional Strategies’ Returns With Ar = 0.5
Figure 3.20 compares the time series of positional mixed portfolios’ returns for Ar = 0.5.
The red, orange, olive and green line show the returns of optimal positional mixed portfolios
computed from estimated parameters of VAR model for different Atv. The light green, light
blue, blue and purple line show the returns of optimal positional mixed portfolios computed
from fitted values of parameters from equations (3.16) to (3.19) for different Atv. The pink
line shows the mean of the equally weighted portfolio.

Table 3.13: Summary of Mixed Positional Portfolios’ Returns, Ar = 1

Average Return Cumulative Return

Risk Aversion Eρ’s Eρ-SR Fρ’s Fρ-SR Estimated ρ’s Fitted ρ’s

Atv = 0.5 1.626 1.687 2.954 1.764 90.094 90.395
Atv = 1 1.960 1.267 1.479 1.269 79.610 80.057
Atv = 3 0.683 0.916 0.675 0.896 34.625 34.922
Atv = 5 0.411 0.828 0.406 0.806 20.500 20.694

Mean S-D Sh-R

EW 0.004 0.067 0.042

Note: Table 3.13 shows the average and cumulative return of optimal positional mixed port-
folios with the inception date of April 2008 based on future ranks predicted with estimated
ρ̂11,t, ρ̂12,t, ρ̂21,t and ρ̂22,t from VAR(1) model (equation 3.7) (Estimated ρ’s) and the fitted
value of estimated coefficients from equations (3.16) to (3.19) ˆ̂ρ11,t+1, ˆ̂ρ12,t+1, ˆ̂ρ21,t+1 and
ˆ̂ρ22,t+1 (Fitted ρ’s), considering Ar constant and equal to 1.
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For the risk aversions equal to 0.5 and 1 the fitted ρ’s are providing higher Sharpe

ratios, while for the risk aversions equal to 3 and 5 the estimated ρ’s are providing

higher Sharpe ratios.

Figure 3.21 shows the time series of returns on the positional mixed portfolios

for Ar = 1. From April 2008 to January 2010 the positional mixed portfolios in

both ways by Atv = 0.5 outperforms others. Between February 2010 to June 2014

the positional mixed portfolios based on fitted ρ’s with Atv = 0.5, 1 are providing

the highest returns. After that the positional mixed portfolios based on Estimated

ρ’s with Atv = 0.5, 1 have the highest returns.

Table 3.14, shows the average returns, their Sharpe ratios and the cumulative

returns of positional mixed portfolios with Ar = 3. Same as Table 3.13, in terms of

average returns, the positional mixed portfolios based on estimated ρ’s are provid-

ing higher returns. In terms of cumulative returns the positional mixed portfolios

obtained from fitted ρ’s have higher returns than the other portfolios.

Unlike before, when Atv is equal to 1 and 3, the positional mixed portfolios

obtained from both ways (estimated and fitted ρ’s) are providing higher average

and cumulative return than when Atv = 0.5. The fitted ρ’s are providing higher

Sharpe ratios and decreasing for higher values of risk aversion except when the risk

aversion is equal to 5. For the risk aversion= 5 the estimated ρ’s is providing higher

Sharpe ratio.
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Figure 3.21: Time Series of Mixed Positional Strategies’ Returns With Ar = 1
Figure 3.21 compares the time series of positional mixed portfolios’ returns for Ar = 1. The
red, orange, olive and green line show the returns of optimal positional mixed portfolios
computed from estimated parameters of VAR model for different Atv. The light green,
light blue, blue and purple line show the returns of optimal positional mixed portfolios
computed from fitted values of parameters from equations (3.16) to (3.19) for different
Atv. The pink line shows the mean of the equally weighted portfolio.

Table 3.14: Summary of Mixed Positional Portfolios’ Returns, Ar = 3

Average Return Cumulative Return

Risk Aversion Eρ’s Eρ-SR Fρ’s Fρ-SR Estimated ρ’s Fitted ρ’s

Atv = 0.5 0.459 2.130 0.457 2.430 26.694 26.706
Atv = 1 0.518 1.845 0.515 1.993 29.245 29.306
Atv = 3 0.500 1.199 0.496 1.200 26.595 26.743
Atv = 5 0.379 0.999 0.375 0.985 19.617 19.757

Mean S-D Sh-R

EW 0.004 0.067 0.042

Note: Table 3.14 shows the average and cumulative return of optimal positional mixed port-
folios with the inception date of April 2008 based on future ranks predicted with estimated
ρ̂11,t, ρ̂12,t, ρ̂21,t and ρ̂22,t from VAR(1) model (equation 3.7) (Estimated ρ’s) and the fitted
value of estimated coefficients from equations (3.16) to (3.19) ˆ̂ρ11,t+1, ˆ̂ρ12,t+1, ˆ̂ρ21,t+1 and
ˆ̂ρ22,t+1 (Fitted ρ’s), considering Ar constant and equal to 3.
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Figure 3.22 shows the time series of the returns on the positional mixed portfolios

when Ar = 3. The returns on these portfolios are very close, while the equally

weighted portfolio provides the lowest return. In most of the time the positional

mixed portfolios obtained from fitted ρ’s are providing higher return specially with

Atv = 1, 3.

Table 3.15, shows the average returns, their Sharpe ratios and the cumulative

returns on positional mixed portfolios when Ar = 5. In terms of average return the

positional mixed portfolios obtained from estimated ρ’ outperform other portfolios.

The risk-return trade-off is reveres in these portfolios, since the one obtained for

Ar = 0.5 has the lowest average return than the others.

The positional mixed portfolios obtained from fitted ρ’s have higher cumulative

returns than the other ones except for Atv = 0.5, where the portfolio obtained from

estimated ρ’s provides the higher return.

The fitted ρ’s are providing higher Sharpe ratios and they are increasing by higher

values of risk aversions. By comparing Tables 3.15, 3.14, 3.13 and 3.12, we observe

that by increasing the value of Ar the average and cumulative returns decreased.

Also the optimal mixed positional portfolios based on fitted ρ’s are providing higher

Sharpe ratios when we fixed Ar = 5. In terms of average returns the positional

mixed portfolios obtained from estimate ρ’s outperforms those obtained from fitted

ρ’s. However, the positional mixed portfolios obtained from fitted ρ’s provide higher

cumulative returns for all values of Ar. The only exception is when Ar = 5 and

Atv = 0.5 where the portfolio obtained from estimated ρ’s provides higher cumulative

return than the one obtained from fitted ρ’s.
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Figure 3.22: Time Series of Mixed Positional Strategies’ Returns With Ar = 3
Figure 3.22 compares the time series of positional mixed portfolios’ returns for Ar = 3. The
red, orange, olive and green lines show the returns of optimal positional mixed portfolios
computed from estimated parameters of VAR for different Atv. The light green, light blue,
blue and purple lines show the returns of optimal positional mixed portfolios computed
from fitted values of parameters from equations (3.16) to (3.19) when for different Atv
respectively. The pink line shows the mean of the equally weighted portfolio.

Table 3.15: Summary of Mixed Positional Portfolios’ Returns, Ar = 5

Average Return Cumulative Return

Risk Aversion Eρ’s Eρ-SR Fρ’s Fρ-SR Estimated ρ’s Fitted ρ’s

Atv = 0.5 0.257 1.997 0.256 2.290 15.142 15.135
Atv = 1 0.286 1.913 0.284 2.135 16.444 16.457
Atv = 3 0.330 1.381 0.327 1.415 17.993 18.064
Atv = 5 0.302 1.129 0.299 1.129 15.991 16.081

Mean S-D Sh-R

EW 0.004 0.067 0.042

Note: Table 3.15 shows the average and cumulative return of optimal positional mixed port-
folios with the inception date of April 2008 based on future ranks predicted with estimated
ρ̂11,t, ρ̂12,t, ρ̂21,t and ρ̂22,t from VAR(1) model (equation 3.7) (Estimated ρ’s) and the fitted
value of estimated coefficients from equations (3.16) to (3.19) ˆ̂ρ11,t+1, ˆ̂ρ12,t+1, ˆ̂ρ21,t+1 and
ˆ̂ρ22,t+1 (Fitted ρ’s), considering Ar constant and equal to 5.
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Figure 3.23 shows the time series of the positional mixed portfolios’ return when

Ar = 5. Unlike the previous Figures, the positional mixed portfolios obtained from

Now let us consider Atv constant and build the positional mixed portfolios with

different values of Ar.

Figure 3.23: Time Series of Mixed Positional Strategies’ Returns, Ar = 5
Figure 3.23 compares the time series of positional mixed portfolios’ returns for Ar = 5. The
red, orange, olive and green lines show the returns of optimal positional mixed portfolios
computed from estimated parameters of VAR model for different Atv. The light green,
light blue, blue and purple lines show the returns of optimal positional mixed portfolios
computed from fitted values of parameters from equations (3.16) to (3.19) for different Atv.
The pink line shows the mean of the equally weighted portfolio.

Table 3.16, shows the average returns, their Sharpe ratios and the cumulative returns

on positional mixed portfolios when Atv = 0.5. Same as before, the positional

mixed portfolios obtained from estimate ρ’s are providing the higher average returns.

While in terms of cumulative returns the portfolios obtained from fitted ρ’s are

outperforming the others except for Ar = 5.
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For risk aversion equal to 1 the portfolio based on estimated ρ’s is providing

higher Sharpe ratio, while for other values of risk aversions, the fitted ρ’s are provid-

ing higher Sharpe ratios. Both estimated and fitted ρ’s when Atv = 5 are providing

the higher returns than the others.

Table 3.16: Summary of Mixed Positional Portfolios’ Returns, Atv = 0.5

Average Return Cumulative Return

Risk Aversion Eρ’s Eρ-SR Fρ’s Fρ-SR Estimated ρ’s Fitted ρ’s

Ar = 0.5 2.983 1.283 2.954 1.286 159.134 160.027
Ar = 1 1.626 1.687 1.764 1.613 90.094 90.395
Ar = 3 0.459 2.130 0.457 2.430 26.694 26.706
Ar = 5 0.257 1.997 0.256 2.290 15.142 15.135

Mean S-D Sh-R

EW 0.004 0.067 0.042

Note: Table 3.16 shows the average and cumulative return of optimal positional mixed port-
folios with the inception date of April 2008 based on future ranks predicted with estimated
ρ̂11,t, ρ̂12,t, ρ̂21,t and ρ̂22,t from VAR(1) model (equation 3.7) (Estimated ρ’s) and the fitted
value of estimated coefficients from equations (3.16) to (3.19) ˆ̂ρ11,t+1, ˆ̂ρ12,t+1, ˆ̂ρ21,t+1 and
ˆ̂ρ22,t+1 (Fitted ρ’s), considering Atv constant and equal to 0.5.

Figure 3.24 shows the time series of the positional mixed portfolios when Atv =

0.5. In most of the time positional mixed portfolios obtained from both ways by

Ar = 0.5 have higher returns than the others. we can see the risk-return trade-off

relations in this Figure. In other word by increasing the value of risk aversion (Ar)

the return on the portfolios fall.

Table 3.17 shows the average returns, their Sharpe ratios and the cumulative

returns of positional mixed portfolios when Atv = 1.
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Figure 3.24: Time Series of Mixed Positional Strategies’ Returns, Atv = 0.5
Figure 3.24 compares the time series of positional mixed portfolios’ returns for Atv = 0.5.
The red, orange, olive and green lines show the returns of optimal positional mixed portfo-
lios computed from estimated parameters of VAR model for different Ar. The light green,
light blue, blue and purple lines show the returns of optimal positional mixed portfolios
computed from fitted values of parameters from equations (3.16) to (3.19) for different Ar.
The pink line shows the mean of the equally weighted portfolio.

Table 3.17: Summary of Mixed Positional Portfolios’ Returns, Atv = 1

Average Return Cumulative Return

Risk Aversion Eρ’s Eρ-SR Fρ’s Fρ-SR Estimated ρ’s Fitted ρ’s

Ar = 0.5 1.960 1.028 1.938 1.011 101.054 101.827
Ar = 1 1.493 1.267 1.479 1.269 79.610 80.057
Ar = 3 0.518 1.845 0.515 1.993 29.245 29.306
Ar = 5 0.286 1.913 0.284 2.135 16.444 16.457

Mean S-D Sh-R

EW 0.004 0.067 0.042

Note: Table 3.17 shows the average and cumulative return of optimal positional mixed port-
folios with the inception date of April 2008 based on future ranks predicted with estimated
ρ̂11,t, ρ̂12,t, ρ̂21,t and ρ̂22,t from VAR(1) model (equation 2.7) (Estimated ρ’s) and the fitted
value of estimated coefficients from equations (3.16) to (3.19) ˆ̂ρ11,t+1, ˆ̂ρ12,t+1, ˆ̂ρ21,t+1 and
ˆ̂ρ22,t+1 (Fitted ρ’s), considering Atv constant and equal to 1.

138



We observe that by increasing the value of risk aversion (Atv) the average and

the cumulative returns of positional mixed portfolios are decreasing. In terms of

average return, the positional portfolios obtained from estimated ρ’s are providing

higher returns. But in terms of cumulative returns the positional mixed portfolios

based on fitted ρ’s are outperforming the others. For risk aversion equal to 0.5, the

estimated ρ’s has higher Sharpe ratio, while for other values for risk aversion, the

fitted ρ’s have higher Sharpe ratios.

Figure 3.25 shows the time series of the positional mixed portfolios when Atv = 1.

Same as Figure 3.24, the portfolios with the lowest risk aversion provide the highest

returns and the equally weighted portfolio provides the lowest return. By increasing

the risk aversion value, the return of the positional mixed portfolios increase.

Table 3.18 shows the returns and Sharpe ratios on the positional mixed port-

folios for Atv = 3. In Table 3.18 we see that by decreasing the risk aversion the

average and cumulative returns increased. The positional mixed portfolios obtained

from estimated ρ’s outperform other portfolios. In terms of cumulative returns the

positional mixed portfolios obtained from fitted ρ’s are providing higher returns.
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Figure 3.25: Time Series of Mixed Positional Strategies’ Returns, Atv = 1
Figure 3.25 compares the time series of positional mixed portfolios’ returns forAtv = 1. The
red, orange, olive and green lines show the returns of optimal positional mixed portfolios
computed from estimated parameters of VAR model for different Ar. The light green,
light blue, blue and purple lines show the returns of optimal positional mixed portfolios
computed from fitted values of parameters from equations (3.16) to (3.19) for different Ar.
The pink line shows the mean of the equally weighted portfolio.

Table 3.18: Summary of Mixed Positional Portfolios’ Returns, Atv = 3

Average Return Cumulative Return

Risk Aversion Eρ’s Eρ-SR Fρ’s Fρ-SR Estimated ρ’s Fitted ρ’s

Ar = 0.5 0.679 0.836 0.671 0.813 33.780 34.109
Ar = 1 0.683 0.916 0.675 0.896 34.625 34.922
Ar = 3 0.500 1.199 0.496 1.200 26.595 26.743
Ar = 5 0.330 1.381 0.327 1.415 17.993 18.0641

Mean S-D Sh-R

EW 0.004 0.067 0.042

Note: Table 3.18 shows the average and cumulative return of optimal positional mixed port-
folios with the inception date of April 2008 based on future ranks predicted with estimated
ρ̂11,t, ρ̂12,t, ρ̂21,t and ρ̂22,t from VAR(1) model (equation 3.7) (Estimated ρ’s) and the fitted
value of estimated coefficients from equations (3.16) to (3.19) ˆ̂ρ11,t+1, ˆ̂ρ12,t+1, ˆ̂ρ21,t+1 and
ˆ̂ρ22,t+1 (Fitted ρ’s), considering Atv constant and equal to 3.
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When risk aversion is equal to 0.5 and 1, the estimated ρ’s are providing higher

Sharpe ratios, but for the values of risk aversions equal to 3 and 5 the fitted ρ’s are

providing higher Sharpe ratios.

Figure 3.26 shows the time series f positions mixed portfolios when Atv = 3.

These time series returns are showing same patterns as Figure 3.25. We also see the

risk-return trade-off as well, higher risk yield in higher returns.

Figure 3.26: Time Series of Mixed Positional Strategies’ Returns, Atv = 3
Figure 3.26 compares the time series of positional mixed portfolios’ returns forAtv = 3. The
red, orange, olive and green lines show the returns of optimal positional mixed portfolios
computed from estimated parameters of VAR model for different Ar. The light green,
light blue, blue and purple lines show the returns of optimal positional mixed portfolios
computed from fitted values of parameters from equations (3.16) to (3.19) for different Ar.
The pink line shows the mean of the equally weighted portfolio.

Table 3.19 provides the average return, their Sharpe ratios and the cumulative

returns on positional mixed portfolios when Atv = 5. The positional mixed portfolios

obtained from estimated ρ’s provide higher average returns. In terms of cumulative

returns positional portfolios based on fitted ρ’s are providing higher returns. Higher
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Table 3.19: Summary of Mixed Positional Portfolios’ Returns, Atv = 5

Average Return Cumulative Return

Risk Aversion Eρ’s Eρ-SR Fρ’s Fρ-SR Estimated ρ’s Fitted ρ’s

Ar = 0.5 0.401 0.781 0.396 0.758 19.758 19.960
Ar = 1 0.411 0.828 0.406 0.806 20.500 20.694
Ar = 3 0.379 0.999 0.375 0.985 19.617 19.757
Ar = 5 0.302 1.129 0.299 1.129 15.991 16.081

Mean S-D Sh-R

EW 0.004 0.067 0.042

Note: Table 3.19 shows the average and cumulative return of optimal positional mixed port-
folios with the inception date of April 2008 based on future ranks predicted with estimated
ρ̂11,t, ρ̂12,t, ρ̂21,t and ρ̂22,t from VAR(1) model (equation 3.7) (Estimated ρ’s) and the fitted
value of estimated coefficients from equations (3.16) to (3.19) ˆ̂ρ11,t+1, ˆ̂ρ12,t+1, ˆ̂ρ21,t+1 and
ˆ̂ρ22,t+1 (Fitted ρ’s), considering Atv constant and equal to 5.

risk yield in higher average and cumulative returns. The estimated ρ’s are providing

higher Sharpe ratios than the fitted ones and by increasing the value of risk aversions

they increase as well.

Figure 3.27 provided the time series of the positional mixed portfolios when

Atv = 5. Similar to the previous Figures, we can observe the risk-return trade-off.

Higher risk aversion, lower returns. The returns of all these portfolios are very close

while the equally weighted still provides the lowest return.

Comparing Table 3.19, 3.18, 3.17 and 3.16 shows that, by increasing the value

of Atv the average and cumulative returns decreased. In terms of average return the

positional mixed portfolios obtained from estimated ρ’s are providing higher returns,

while in terms of cumulative returns the positional mixed portfolios obtained from

fitted ρ’s. By comparing the results in all Tables provided in Section 5, we see that

the positional liquid portfolios provides the highest average and cumulative returns
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compare to other strategies.

It means that a positional portfolio based on liquid assets provides higher return

than the positional portfolio based on winners. Also we found that the positional

mixed portfolios provide higher average and cumulative returns than positional mo-

mentum portfolios. In other words a positional portfolio based on liquid winners

provides higher average and cumulative returns than a positional portfolio based on

just winner stocks.

Figure 3.27: Time Series of Mixed Positional Strategies’ Returns, Atv = 5
Figure 3.27 compares the time series of positional mixed portfolios’ returns forAtv = 5. The
red, orange, olive and green lines show the returns of optimal positional mixed portfolios
computed from estimated parameters of VAR model for different Ar. The light green,
light blue, blue and purple lines show the returns of optimal positional mixed portfolios
computed from fitted values of parameters from equations (3.16) to (3.19) for different Ar.
The pink line shows the mean of the equally weighted portfolio.
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3.5 Conclusion

This paper introduced new positional investment strategies that maximize investors

positional utility from portfolios of assets with expected high return ranks, high

liquidity ranks and high combined return-liquidity ranks. The optimal allocation

vectors are computed from return and volume change ranks modelled as a panel VAR

with time varying coefficients. We show that the autoregressive VAR parameters

can be well approximated by linear functions of auto- and cross- correlations of the

returns and volume change series of the SPDR tracking portfolio.

The empirical results indicate that all positional portfolios provide positive aver-

age and cumulative return. The positional liquid portfolios outperform the positional

mixed and momentum portfolios respectively. Also, we observe that for higher risk

aversion values, the average and cumulative returns on the positional portfolios de-

crease. In terms of average returns the positional portfolios obtained from estimated

coefficients ρ̂11,t, ρ̂12,t, ρ̂21,t and ρ̂22,t from VAR(1) model (equation 3.7) outperforms

the other portfolios. While in terms of cumulative returns the positional portfolios

obtained from fitted values of coefficients based on auto- and cross- correlation of

SPDR ( ˆ̂ρ11,t+1, ˆ̂ρ12,t+1, ˆ̂ρ21,t+1 and ˆ̂ρ22,t+1) provide higher returns.
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Conclusion

This thesis intends to improve a momentum strategy by taking into account the

auto- and cross-correlations of ranks of returns and trade volume changes instead of

just past raw returns and provides the optimal positional portfolio by maximizing

the investor’s utility function based on the future ranks of return and trade volume

changes. The positional portfolio management proposed in this thesis provides new

types of allocations strategies. By comparing the returns on the optimal positional

portfolio with the traditional momentum, contrarian (or reversal) strategies and

naive equally weighted portfolio, we can measure the gain from implementing the

positional portfolio management strategies. In the positional portfolio management

all stock returns are ranked cross-sectionally, so that the notion of cross-sectional

rank (position) is at the core of the distinction of this management from the standard

portfolio management.

Many empirical studies showed that in a dynamic context, information about

trading volume improves the forecasts for price changes and return volatility. In

Chapter one, the relationship between return and trade volume changes is studied.

The motivation for considering both returns and trade volume stems from the em-
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pirical evidence documented in financial literature, which suggests that the trade

volumes provide additional information and help predict future returns.

Chapter Two extends the positional momentum strategy in three respects. First,

the ranks of asset returns and the ranks of trade volume changes are considered

jointly and modelled as a bivariate series. Second, the positional momentum port-

folio based on the observed ranks is replaced by the positional momentum portfolio

based on the expected future ranks. In this chapter, the future ranks of return and

volume changes are predicted from the past ranks of returns and volume changes.

The third contribution is a new expected positional liquid portfolio that contains

assets that display the highest (resp. lowest) future expected changes in trade vol-

umes. The ranks of return and volume changes are predicted from a bivariate panel

Vector Autoregressive model of order one (VAR(1)). It is shown that return ranks

are correlated with their own past values and the current and past ranks of trade

volume changes. This results leads to a new expected positional momentum strategy

providing portfolios of predicted winners, conditional on past ranks of returns and

volume changes. This approach further extends to positional liquidity management.

The expected liquid positional strategy selects portfolios of stocks with the strongest

realized or predicted increase in trading volume. These new positional management

strategies outperform the standard momentum strategies and the equally weighted

portfolio in terms of average returns and Sharpe ratio.

Chapter Three introduces new optimal positional investment strategies that max-

imize investors’ positional utility from holding assets with high expected future re-

turn and liquidity ranks. The investor is assumed to maximize a CARA (Constant
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Absolute Risk Aversion) utility function of future position of the assets (ranks of as-

sets). The optimal allocation vectors provide new investment strategies, such as the

optimal positional momentum portfolio, the optimal liquid portfolio and the opti-

mal mixed portfolio that combines high return and liquidity ranks. The future ranks

are predicted from a bivariate panel VAR model with time varying autoregressive

parameters.

It has been shown that returns on the new optimal portfolios are comparable

both theoretically and empirically with the naive equally weighted portfolio as well

as with the traditional momentum strategies with look-back and holding periods

of various length. To accommodate that variation, a time varying parameter VAR

model is considered and two methods that allow an investor to update the VAR

parameters at each investment time are proposed. The first method consists in re-

estimating the model at each time by rolling over a fixed window of observations.

The second method exploits the relationship between the autoregressive coefficients

of the VAR model and the series of auto-and cross-correlations at lag 1 of returns

and volume changes of the SPDR (Standard Poor’s Depositary Receipts). These

linear functions are easy to compute and simplify the investment procedure as they

eliminate the need for re-estimating the panel VAR model by rolling. In the pro-

posed approach, the time varying parameters are considered predetermined. I show

that the approach can be extended to a random coefficient framework, where the

autoregressive VAR coefficients are considered as fixed functions of random factors,

which are the auto and cross-correlation estimators with their known asymptotic

distributions. The empirical results indicate that all positional portfolios provide
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positive average and cumulative return. The positional liquid portfolios outperform

the positional mixed and momentum portfolios respectively. Also, we observe that

for higher risk aversion values, the average and cumulative returns on the positional

portfolios decrease. In terms of average returns the positional portfolios obtained

from estimated coefficients ρ̂11,t, ρ̂12,t, ρ̂21,t and ρ̂22,t from VAR(1) model (equation

3.7) outperforms the other portfolios. While in terms of cumulative returns the posi-

tional portfolios obtained from fitted values of coefficients based on auto- and cross-

correlation of SPDR ( ˆ̂ρ11,t+1, ˆ̂ρ12,t+1, ˆ̂ρ21,t+1 and ˆ̂ρ22,t+1) provide higher returns.
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Appendices

A Diagnostic Tests For Error Terms

A.1 Normality of Cross-Sectional Gaussian Ranks

Figures A.1 and A.2 display the Q-Q plots for the two transformed observed ranks

vectors u and v in October 2016.

Figure A.1: Q-Q Plot of Transformed Return Ranks ui
Figure A.1 displays the Q-Q plot of the transformed return ranks ui in October 2016. The
figures confirm the cross-sectional Gaussian distribution of transformed return ranks.
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The figures confirm the cross-sectional Gaussian distribution of return ranks and

trade volume change ranks. As expected, both ranks are cross-sectionally Normally

distributed. In addition, the Shapiro normality tests applied to ranks u and v in

each month, indicate that both ranks are Normally distributed cross-sectionally at

each period of time.

Figure A.2: Q-Q Plot of Transformed Volume Change Ranks vi
Figure A.2 Displays the Q-Q plot of the transformed trade volume changes ranks vi in
October 2016. The figures confirm the cross-sectional Gaussian distribution of transformed
trade volume changes ranks.

A.2 Autocorrelation Test

The Durbin-Watson (DW) statistic is used to test for the presence of autocorrelation

at lag 1 in regression residuals when the classical assumptions are satisfied). The

null hypothesis is that the errors are serially uncorrelated and the alternative is that

they follow a first order autoregressive process. If êt is the residual associated with

158



the observation at time t, then the test statistic is:

d =

∑T
i=2(êt − êt−1)2∑T

i=1 ê
2
t

(A.2.1)

where T is the number of observations. Since d is approximately equal to 2(1− r),

where r is the sample autocorrelation of the residuals, d = 2 indicates no autocor-

relation.

Frommodel (2.6) it follows that bivariate residual is êt =

ê1t

ê2t

 = Σ̂−
1
2

[uit
vit

−
R̂

ui,t−1

vi,t−1

], where Σ̂ and R̂ are the estimation of Σ and R. Then the DW statistics

can be computed separately from ê1t and ê2t. The values of d for the VAR(1) model

(equation(2.7)) are as follows:

d̂e1 = 1.99

d̂e2 = 2.15

(A.2.2)

Since the obtained d′s are very close to 2, we conclude that there is no autocorrelation

in error terms.

A.3 Cross-Sectional Normality of Residuals

Figures A.3 and A.4 show the Q-Q plot and the cross-sectional histogram of residuals

in equation (2.7).

As we can see both residual terms are cross-secionally normally distributed. We also

159



Figure A.3: Q-Q plot and Cross-Sectional Histogram of ê1

Figure A.3 displays the Q-Q plot and cross-sectional histogram of ê1 estimated from equa-
tion (2.7) on October, 2016.

Figure A.4: Q-Q Plot and Cross-Sectional Histogram of ê2

Figure A.4 displays the Q-Q plot and cross-sectional histogram of ê2 estimated from equa-
tion (2.7) on October, 2016.
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perform the Shapiro Normality test for the cross-sectional residuals obtained from

VAR(1) model in equation (2.7). The Shapiro test never rejects normality cross-

sectionally for ê1,it and 42% of times Shapiro test rejects normality cross-sectionally

for ê2,it. The following Figures show the Q-Q plot and the distribution function of

the cross-sectional residuals in October, 2016.

B Normality of Serial Residuals for S&P500

The Shapiro test of Normality is applied to time series of residuals obtained from

the VAR(1) model estimated for S&P500. The test did not rejects the normality

for ê1 (p−value = 0.42), but it rejected the normality of ê2 since the p-value is 0.02.

Therefore, for S&P500 the distribution of residuals from the return rank equation

of the VAR(1) model is normal while it is not normal for the residuals from the

volume ranks equation of the VAR(1) model.

Figures B.1 and B.2 display the Q-Q plots and the historical distribution function

of the series of residuals from VAR(1) model for S&P500. Figure B.1 shows that for

S&P500, the historical error term ê1 estimated from the VAR(1) model is Normally

distributed while Figure B.2 shows that the historical error term ê2 estimated from

the VAR(1) model is not Normally distributed.
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Figure B.1: Q-Q Plot and Histogram of Residual ê1 for S&P.500.
Figure B.1 displays the Q-Q plot and histogram of residual ê1 for S&P.500. The histogram
and the Q-Q plot both show that ê1 is Normally distributed.

Figure B.2: Q-Q plot and Histogram of ê2 for S&P500.
Figure B.2 displays the Q-Q plot and histogram of ê2 for S&P500. The histogram and the
Q-Q plot both show that ê2 is slightly different than Normal distribution.
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C Histograms of Auto and Cross-Correlations of SPDR Re-

turn and Trade volume Changes and of the Series of Esti-

mated Autoregressive Coefficients

The following figures show the histograms of the time series of sample auto- cross-

correlations of SPDR return and trade volume changes and of the time series of

autoregressive coefficients ρ̂jk,t, j = 1, 2, k = 1, 2, t = 1, ..., T of the VAR(1) model

(equation 3.10). All series are estimated by rolling with a window of 9 years over

the sampling period.

Figure C.1, shows that sample auto-correlations of rSt take values mostly between

-0.1 and 0.05 and their density is asymmetric with a long left tail. The series ρ̂11t

takes smaller values between -0.01 and 0.006, and has a symmetric density. Figure

C.2 shows that the cross-correlations of rSt ,tvSt−1 take values mostly between -0.1

and 0.2 and their density displays asymmetry in the right tail. The series ρ̂21t

takes only positive values, with the most frequently observed values in the interval

(0.001,0.002). The density of cross-correlations of tvSt ,rSt−1 given in Figure C.3 is

almost bimodal. These cross-correlations take positive values only. The density of

ρ̂21t is similar in shape but its support includes small positive and negative values.

Figure C.4 shows the density of sample auto-correlations of tvSt , which take negative

values. Their density is symmetric and bell-shaped. The density of ˆrho22t, which

also take negative values only, is asymmetric with a long left tail.
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Figure C.1: Histograms of autocorrelations at lag one of rSt and of ρ̂11t

Figure C.1 compares the histograms of autocorrelations at lag one of SPDR’s returns and the estimated ρ̂11t

from equation (3.10). In both plots the red line shows the kernel density estimates.

Figure C.2: Histograms of cross-correlation of rSt , tvSt−1 and of ρ̂12t

Figure C.2 compares the histograms of cross-correlations of SPDR’s rSt , tvSt−1 and the estimated ρ̂12t from
equation (3.10). In both plots the red line shows the kernel density estimates.
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Figure C.3: Histograms of cross-correlations of tvSt , rSt−1 and of ρ̂21t

Figure C.3 compares the histograms of cross-correlations of tvSt , rSt−1 and the estimated ρ̂21t from equation
(3.10). In both plots the red line shows the kernel density estimates.

Figure C.4: Histograms of autocorrelations at lag one of tvSt and of ρ̂22t

Figure C.4 compares the histograms of autocorrelation at lag one of SPDR’s trade volume changes and the
estimated ρ̂22t from equation (3.10). In both plots the red line shows the kernel density estimates.

165



D Factor Models-Scatters and Regression Lines

The following Figures illustrate the regressions of ρ̂jk,t on auto- and cross-correlations

of SPDR returns and volume changes (equations 3.16 to 3.19). We observe that the

scatters are irregular and the linear models provide fairly good approximations.

Figure D.1: Regression of ρ̂11t on AC(rS)t−1

Figure D.1 shows the simple linear regression of ρ̂11t on AC(rS)t−1. This linear regression
shows a positive relation between ρ̂11t on AC(rS)t−1.
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Figure D.2: Regression of ρ̂12t on CC(rstvS)t−1

Figure D.2 shows the simple linear regression of ρ̂12t on CC(rstvS)t−1. This linear regres-
sion shows a positive relation between ρ̂12t on CC(rstvS)t−1.

Figure D.3: Regression of ρ̂21t on CC(tvSrs)t−1

Figure D.3 shows the linear regression of ρ̂21t on CC(tvSrs)t−1. This regression line shows
a negative relation between ρ̂21t on CC(tvSrs)t−1
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Figure D.4: Regression of ρ̂22t on AC(tvS)t−1

Figure D.4 shows linear regression of ρ̂22t on AC(tvS)t−1. This linear regression shows the
negative relation between ρ̂22t on AC(tvS)t−1.

E Stochastic Autoregressive Coefficients

This section illustrates the changes to the optimal allocation vectors when the au-

toregressive coefficients ρij,t+1 are considered as random functions of factor Ft. The

factor Ft represents jointly the returns rSt and trade volume changes tvSt of SPDR

at time t that determine the autoregressive coefficients ρij,t+1.

The expected positional utilities to be maximized are as follows:

− E[exp(−ArQr
t+1(β′rrt+1)) | rt, tvt, Ft]

= −E{E[exp(−ArQr
t+1(β′rrt+1)) | rt, tvt, Ft+1]|rt, tvt, Ft}

= −E
[
exp
(
−Arρ11,t+1

n∑
i=1

βr,iui,t−Arρ12,t+1

n∑
i=1

βr,ivi,t+
1

2
A2
r

n∑
i=1

β2
r,iσ

2
1,t+1

)
|rt, tvt, Ft

]
= −Et(exp[−Arρ11,t+1β

′
rut − Arρ12,t+1β

′
rvt] +

1

2
A2
rβ
′
rβrσ

2
1,t+1) (3.3)
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subject to β′rh = 1 and,

− E[exp(−AtvQtv
t+1(β′tvtvt+1)) | rt, tvt, Ft]

= −E{E[exp(−AtvQtv
t+1(β′tvtvt+1)) | rt, tvt, Ft]|rt, tvt, Ft}

= −E
[
exp
(
−Atvρ21,t+1

n∑
i=1

βtv,iui,t−Atvρ22,t+1

n∑
i=1

βtv,ivi,t+
1

2
A2
tv

n∑
i=1

β2
tv,iσ

2
2,t+1

)
|rt, tvt, Ft

]
= −Et(exp[−Atvρ21,t+1β

′
tvut − Atvρ22,t+1β

′
tvvt] +

1

2
A2
rβ
′
tvβtvσ

2
2,t+1) (3.4)

subject to β′tvh = 1. The above optimization problems are difficult to solve. In

order to simplify the optimal allocation vectors, we can consider their first-order

expansion with respect to ρjk,t+1 (where j, k = 1, 2) for small ρjk,t+1. At first-order

approximation with respect to the persistence parameters, we have Et(σ2
1,t+1) =

Et(σ
2
2,t+1) ' 1 24.

− Et[(1− Arρ11,t+1β
′
rut − Arρ12,t+1β

′
rvt) exp

1

2
A2
rβ
′
rβr]

' −(1− ArEtρ11,t+1β
′
rut − ArEtρ12,t+1β

′
rvt) exp

1

2
A2
rβ
′
rβr

' − exp[−ArEtρ11,t+1β
′
rut − ArEtρ12,t+1β

′
rvt −

1

2
A2
rβ
′
rβr (3.5)

24 In Section 2 we showed that in practice, the positional persistence values at different dates
can be rather small (see Figures 2.7,2.8). Therefore the assumption that Etσ

2
1,t+1 = Etσ

2
2,t+1 ' 1

is plausible
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− Et[(1− Atvρ21,t+1β
′
tvut − Atvρ22,t+1β

′
tvvt) exp

1

2
A2
tvβ
′
tvβtv]

' −(1− AtvEtρ21,t+1β
′
tvut − AtvEtρ22,t+1β

′
tvvt) exp

1

2
A2
tvβ
′
tvβtv

' − exp[−AtvEtρ21,t+1β
′
tvut − AtvEtρ22,t+1β

′
tvvt −

1

2
A2
tvβ
′
tvβtv (3.6)

which are objective functions similar to those in Section (3.3) with the autoregressive

coefficients ρjk,t+1, j, k = 1, 2 replaced by their expectations Etρjk,t+1, j, k = 1, 2.

Hence, the approximate optimal positional allocations are as follows:

β∗r,it =
1

n
+

1

Ar

[
Etρ11,t+1uit+Etρ12,t+1vit−

1

n

n∑
i=1

(Etρ11,t+1uit+Etρ12,t+1vit)
]

(3.7)

β∗tv,it =
1

n
+

1

Atv

[
Etρ21,t+1uit + Etρ22,t+1vit −

1

n

n∑
i=1

(Etρ21,t+1uit + Etρ22,t+1vit)
]

(3.8)

By simplifying the above expressions we get:

β∗r,it =
1

n
+

1

Ar

(
Etρ11,t+1(uit − ut) + Etρ12,t+1(vit − vt)

)
(3.9)

β∗tv,it =
1

n
+

1

Atv

(
Etρ21,t+1(uit − ut) + Etρ22,t+1(vit − vt)

)
(3.10)

where ut = 1/n
∑n

i=1 uit and vt = 1/n
∑n

i=1 vit are the cross-sectional averages of
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the Gaussian ranks at time t. When the number of assets (n) tends to infinity, these

cross-sectional averages tend to zero, which is the mean of the standard Normal

distribution.

The above optimal allocations are linear combination of two portfolios. The first

one has positive weights 1
n
. The second portfolio on the right hand side of each

solution is an arbitrage portfolio (zero-cost portfolio), with weights involving the

ranks (Etρ11,tuit + Etρ12,tvit and Etρ21,tuit + Etρ22,tvit, respectively.

F Square Root of Matrix Σ

To find the Σ1/2 let us consider:

Σ =

 1− ρ2
11 − ρ2

12 1− ρ11ρ21 − ρ12ρ22

1− ρ21ρ11 − ρ22ρ12 1− ρ2
21 − ρ2

22

 =

A B

C D

 (3.11)

Since Σ1/2 is symmetric I can consider B=C. The square root of variance matrix is:

Σ1/2 = ±
( 1

R

)A+ T B

B D + T

 (3.12)

where T = |Det|1/2 and R2 = A+D + 2T . We get:

T =
√
AD −B2

R =

√
A+D + 2

√
AD −B2

(3.13)
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By substituting F.3 into F.2 we get:

Σ1/2 = ±

(
1√

A+D + 2
√
AD −B2

)A+
√
AD −B2 B

B D +
√
AD −B2


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B√
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D+
√
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
(3.14)

By substituting A,B andD from equation F.1 into equation F.4 we get the following:

T =
√
ρ2

21(−1 + ρ2
12) + ρ2

22(−1 + ρ2
11)− ρ2

11 − ρ2
12 + 2ρ11ρ21(1− ρ22ρ12) + 2ρ22ρ12

R =

√
2− (ρ2

11 + ρ2
12 + ρ2

21 + ρ2
22) + 2

√
T

(3.15)

Σ1/2 = ±


1−ρ211−ρ212+

√
T√

2−(ρ211+ρ212+ρ221+ρ222)+2
√
T

1−ρ11ρ21−ρ12ρ22√
2−(ρ211+ρ212+ρ221+ρ222)+2

√
T

1−ρ21ρ11−ρ22ρ12√
2−(ρ211+ρ212+ρ221+ρ222)+2

√
T

1−ρ221−ρ222+
√
T√

2−(ρ211+ρ212+ρ221+ρ222)+2
√
T

 (3.16)
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