YorkSpace has migrated to a new version of its software. Access our Help Resources to learn how to use the refreshed site. Contact diginit@yorku.ca if you have any questions about the migration.
 

Altered white matter connectivity associated with visual hallucinations following occipital stroke

Loading...
Thumbnail Image

Date

2018-05-21

Authors

Rafique, Sara
Richards, John R.
Steeves, Jennifer

Journal Title

Journal ISSN

Volume Title

Publisher

Wiley

Abstract

Introduction: Visual hallucinations that arise following vision loss stem from aberrant functional activity in visual cortices and an imbalance of activity across associated cortical and subcortical networks subsequent to visual pathway damage. We sought to determine if structural changes in white matter connectivity play a role in cases of chronic visual hallucinations associated with visual cortical damage.

Methods: We performed diffusion tensor imaging (DTI) and probabilistic fiber tractography to assess white matter connectivity in a patient suffering from continuous and disruptive phosphene (simple) visual hallucinations for more than 2 years following right occipital stroke. We compared these data to that of healthy age-matched controls.

Results: Probabilistic tractography to reconstruct white matter tracts suggests regeneration of terminal fibers of the ipsilesional optic radiations in the patient. However, arrangement of the converse reconstruction of these tracts, which were seeded from the ipsilesional visual cortex to the intrahemispheric lateral geniculate body, remained disrupted. We further observed compromised structural characteristics, and changes in diffusion (measured using diffusion tensor indices) of white matter tracts in the patient connecting the visual cortex with frontal and temporal regions, and also in interhemispheric connectivity between visual cortices.

Conclusions: Cortical remapping and the disruption of communication between visual cortices and remote regions are consistent with our previous functional magnetic resonance imaging (fMRI) data showing imbalanced functional activity of the same regions in this patient (Rafique et al, 2016, Neurology, 87, 1493–1500). Long-term adaptive and disruptive changes in white matter connectivity may account for the rare nature of cases presenting with chronic and continuous visual hallucinations.

Description

Keywords

diffusion tensor imaging, magnetic resonance imaging, stroke, vision loss, visual hallucinations, white matter

Citation

Brain and Behavior 8 (2018): e01010.