YorkSpace has migrated to a new version of its software. Access our Help Resources to learn how to use the refreshed site. Contact diginit@yorku.ca if you have any questions about the migration.
 

Assessment of Aliphatic Based Soot Inception in Laminar Diffusion Flames

Loading...
Thumbnail Image

Date

May-18

Authors

Ceranic, Nemanja
Dworkin, Seth B.

Journal Title

Journal ISSN

Volume Title

Publisher

CSME-SCGM

Abstract

Soot models are key components of computation fluid dynamic combustion codes that attempt to prescribe how soot is formed. However, due to the complex nature of soot formation, not all pathways may have been fully characterized. This work investigates numerically the influence that an aliphatic-collision (open-chain hydrocarbon) based soot inception model has on soot formation for coflow ethylene/air and methane/air laminar diffusion flames. In the literature, prediction of the soot volume fraction along the centerline of coflow ethylene flames is lacking in accuracy. Similarly for methane flames, soot formation on the wings are under predicted by many models. A new collision based inception model has been developed for specific aliphatics, and applied using an existing framework for molecular collision, in conjunction with pyrene based inception. The purpose of this model is not to be completely fundamental in nature, but more so a proof of concept in that by using physically realistic values for surface reactivity and collision efficiency, this collision mechanism can account for soot formation deficiencies that exist with just polycyclic aromatic hydrocarbon (PAH) based inception. Using this new model, the peak soot volume fraction along the centerline of an ethylene flame can be increased while the peak soot volume fraction along the wings remains unchanged, showing potential to significantly improve the model’s predicative capability. Applying this model to a methane flame has resulted in an increase in the soot volume fraction in both the centerline and the wings, again improving predictive capability.

Description

Paper presented at 2018 Canadian Society of Mechanical Engineers International Congress, 27-30 May 2018.

Keywords

Advanced Energy Systems, Computational Mechanics, Fluid Mechanics, Heat Transfer

Citation