YorkSpace has migrated to a new version of its software. Access our Help Resources to learn how to use the refreshed site. Contact diginit@yorku.ca if you have any questions about the migration.
 

Modelling a Fractionated System of Deductive Reasoning over Categorical Syllogisms

Loading...
Thumbnail Image

Date

2018-03-01

Authors

Giovannini, Gregory

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

The study of deductive reasoning has been a major research paradigm in psychology for decades. Recent additions to this literature have focused heavily on neuropsychological evidence. Such a practice is useful for identifying regions associated with particular functions, but fails to clearly define the specific interactions and timescale of these functions. Computational modelling provides a method for creating different cognitive architectures for simulating deductive processes, and ultimately determining which architectures are capable of modelling human reasoning. This thesis details a computational model for solving categorical syllogisms utilizing a fractionated system of brain regions. Lesions are applied to formal and heuristic systems to simulate accuracy and reaction time data for bi-lateral parietal and frontotemporal patients. The model successfully combines belief-bias and other known cognitive biases with a mental models formal approach to recreate the congruency by group effect present in the human data. Implications are drawn to major theories of reasoning.

Description

Keywords

Computer science

Citation