Measurements of C₂–C₇ hydrocarbons during the Polar Sunrise Experiment 1994:
Further evidence for halogen chemistry in the troposphere

P. A. Ariya,¹ B. T. Jobson,² R. Sander, H. Niki,³ and G. W. Harris
Centre for Atmospheric Chemistry and Department of Chemistry, York University, North York, Ontario, Canada

J. F. Hopper and K. G. Anlauf
Atmospheric Environment Service, Downsview, Ontario, Canada

Abstract. Air samples for nonmethane hydrocarbon (NMHC) analysis were collected at two ground-based sites: Alert, Northwest Territories (82.5°N, 62.3°W) and Narwhal ice camp, an ice floe 140 km northwest of Alert, from Julian days 90 to 117, 1994, and on a 2-day aerial survey conducted on Julian days 89 and 90, 1994 over the Arctic archipelago. Several ozone depletion events and concurrent decreases in hydrocarbon concentrations relative to their background levels were observed at Alert and Narwhal ice camp. At Narwhal, a long period (≥7 days) of ozone depletion was observed during which a clear decay of alkane concentration occurred. A kinetic analysis led to a calculated Cl atom concentration of 4.5 × 10⁸ cm⁻³ during this period. Several low-ozone periods concurrent with NMHC concentration decreases were observed over a widespread region of the Arctic region (82°–85°N, and 51°–65°W). Hydrocarbon measurements during the aerial survey indicated that the low concentrations of these species occurred only in the boundary layer. In all ozone depletion periods, concentration changes of alkanes and toluene were consistent with Cl atom reactions. The changes in ethyne concentration from its background level were in excess of those expected from Cl atom kinetics alone and are attributed to additional Br atom reactions. A box modeling exercise suggested that the Cl and particularly Br atom concentrations required to explain the hydrocarbon behavior are also sufficient to destroy ozone.

1. Introduction

The depletion of O₃ in the boundary layer at the onset of 24 hour daylight in the spring has been reported for several locations in the high Arctic such as Alert (82.5°N, Northwest Territories, Canada) [Barrie et al., 1988; Mickley et al., 1989; Bottema et al., 1990; Barrie et al., 1994; Jobson et al., 1994]; Point Barrow (71°N, Alaska, United States) [Oltmans et al., 1989] and Spitsbergen-Svalbard (74°–78°N, Norway) [Solberg et al., 1994]. Barrie et al. [1988] first reported an anticorrelation between filterable bromine and ozone and between bromofrom and ozone. This observation led them to suggest Br atom-initiated destruction of ozone. Clear decreases in the concentrations of C₄–C₄ alkanes were observed during the ozone depletion events which cannot be explained by Br chemistry [Bottema et al., 1990; Kieser et al., 1993] since Br reacts very slowly with most nonmethane hydrocarbons (NMHCs), especially alkanes [Russell et al., 1988a]. McConnell and Henderson [1993] suggested that Cl atoms, which react much faster toward hydrocarbons, may be involved in the destruction of these molecules. However, it was not until the Polar Sunrise Experiment (PSE) 1992, that the first substantial evidence for the importance of Cl reactions was provided by Jobson et al. [1994] by using measurements of C₂–C₅ alkanes and matching their behavior during the ozone depletion events to that which would arise through Cl atom reactions. In the same campaign, observations of alkyl nitrate concentration changes during ozone depletion were also consistent with Cl chemistry [Muthuramu et al., 1994].

Hydrocarbons such as nonmethane alkanes, toluene, ethene, ethyne, and benzene are primarily emitted into the atmosphere through industrial activities and fossil fuel production and combustion [Warneck, 1988]. These hydrocarbons are transported from the source regions to more remote areas such as the Arctic. During transport, photochemical processes mainly initiated by HO radicals are involved in removing these non-methane hydrocarbons at different rates. In addition to hydroxyl radicals, Cl atoms may play a significant role in the removal of some hydrocarbons in certain regions of the globe such as the marine boundary layer and the Arctic [Pszenny et al., 1993; Jobson et al., 1994]. Also, Br atoms may play an important role in the destruction of some unsaturated hydrocarbons in the troposphere [Jobson et al., 1994]. The relative reaction rates for HO radical-initiated reactions with hydrocarbons are different from those for Cl or Br atom reactions. Hence the relative rates of removal of hydrocarbons can be used as an indicator for the dominance of particular atmospheric photochemical reactions such as those initiated by HO radicals or those started by Cl or Br atoms.
Gas phase Cl atom and Br atom production and subsequent ozone destruction in various atmospheric processes have been considered [Schoeder and Urrone, 1974; Finlayson-Pitts, 1983; Barrie et al., 1988; Finlayson-Pitts et al., 1989; Keene et al., 1990; McConnell et al., 1992; Fan and Jacob, 1992; Pszenyi et al., 1993; Zetsch and Behnke, 1993; Mozurkewich, 1995]. The observation of BrO, the product of Br atom reaction with ozone during PSE 92, provided further evidence for the presence of reactive gas phase bromine [Hausmann and Platt, 1994]. The reactions of halides with O3 have also been suggested, where ozone destruction occurs heterogeneously [Hoigne et al., 1985; Staehlin and Hoigne, 1982]. Which of several possible mechanisms for the production of reactive halogen species is actually occurring in the Arctic is an open question which needs further research.

This paper reports measurements of C2-C7 hydrocarbons from two ground-based sites, Alert and Narwhal ice camp as well as from a 2-day aerial survey conducted on Julian days 89 and 90, 1994 (Julian day 1 = January 1) over the Arctic archipelago. This PSE was designed to further explore the phenomenon of ozone depletion and the observed coincident decrease in the concentration of alkanes. The samples were taken from Julian days 90 to 117, the period after the polar sunrise. By using a wide range of hydrocarbons as indicators of photochemical processes, and by sampling at several locations over the Arctic Ocean, this study has attempted to evaluate the extent of halogen chemistry in the Arctic troposphere.

2. Experiment

Grab sampling was conducted at the special studies laboratory at Alert from Julian days 90 to 117 for a total of 36 samples. Up to six samples were taken daily. Five of the samples were taken near buildings at Alert station. Grab sampling was conducted on Narwhal ice camp from Julian days 97 to 115 for a total of 97 samples. Thirteen samples were taken of interstitial air in the surface snowpack. The results of interstitial air samples are not presented here. Up to eight samples were taken daily at this location. Another 38 samples were taken on the Julian days 89 and 90 aerial survey, providing air samples from the surface layer and free troposphere covering a latitude range of approximately 82°–85°N, and 51°–65°W longitude.

The details of experimental procedures for hydrocarbon analysis are available elsewhere [Jobson, 1994]. Briefly, air samples were collected in 3.2 L SUMMA electropolished stainless steel canisters (Biospheres Research Corporation, Oregon) pressurized to 250 KPa by means of a Teflon diaphragm pump (KNF Neuberger, Incorporated). All connections, fittings, and sampling lines were stainless steel. The canisters were sent evacuated. At ground sites, canisters were filled and purged twice before taking samples. However, for aerial survey sampling, because of time limitation, samples were taken without prior flushing. Tests were carried out to investigate any potential difference between grab samples taken with and without prior flushing. No significant difference was observed. Replicate samples taken at Alert and Narwhal ice camp showed very good agreement (±5%).

Canisters were returned to York University in Toronto for analysis. C2-C6 hydrocarbons were measured using a gas chromatograph (GC) (Hewlett Packard 5890A) equipped with a flame ionization detector (FID) and a 50 m x 0.32 mm Al2O3/KCl PLOT column. About 1 L of the air sample was preconcentrated using a two-stage cryotrapping procedure. Air samples were passed through a 15 cm long Teflon tube cooled by dry ice to 223 K to remove moisture and a K2CO3 trap to remove CO2 from the air samples. Previous tests indicated that C2-C7 hydrocarbons were not lost in the moisture trap. For C8 hydrocarbons a loss of up to 10% was observed. In the first cryotrapping stage, hydrocarbons were condensed in a 0.3 cm diameter stainless steel loop packed with 60/80 mesh glass beads, and cooled with liquid argon. This loop was then heated, and the sample was flushed with helium to a second refocusing trap. This second trap, consisting of a 15 cm nickel capillary tube cooled with liquid nitrogen, was then flashed heated to inject samples onto the column. The column was temperature programmed from 313 to 343 K at 5 K min^-1, then ramped at 25 K min^-1 to 403 K, followed by 7 K min^-1 to 473 K, with isothermal operation at 473 K for 15 min. Helium was used as the carrier gas, operated at a head pressure of 250 kPa. Air samples were analyzed within a month and a half of collection.

Canisters were cleaned by evacuation to an ultimate pressure of 3 x 10^-4 Pa while heating at 358 K in an oven for at least 2.5 hours. To check for system contamination, blanks, consisting of a canister filled with ultrahigh purity helium, were run periodically. Blank samples were clean with respect to the lowest concentration of hydrocarbons of interest. Previous tests indicated that traveling blanks, consisting of cleaned, evacuated canisters sent to Alert and returned empty to York University, were clean except for the presence of up to 20 parts per trillion by volume (pptv) of several alkenes, including ethene and propene. The generation of alkenes in sample canisters has been observed by our group previously and appears to be related to canister sampling history, being more noticeable for canisters that have been used in urban air sampling.

Identification and quantification of NMHC species were made using reference gas mixtures blends (Conservation and Protection Service, Environment Canada). The standard mixtures, containing about 5 ppbv of C2-C8 alkanes, alkenes, and alkynes were loaded onto the GC system exactly the same way as the air samples. The quantitation limit based on FID response and baseline noise was approximately 5 pptv for the C5 hydrocarbons in a 1 L sample. Most species (C2-C7 alkanes) were at mixing ratios well above the quantitation limit for a major part of the sampling period and therefore the precision was of the order of 1%. Note that our laboratory participated in few rounds of International Hydrocarbon Intercomparison Experiments since November 1991. Results for most species were within about 10% of those of the National Institute for Standards and Technology (NIST) and the National Center for Atmospheric Research (NCAR).

Ozone was measured continuously at the Alert background chemistry laboratory using a Teco model 49 analyzer. The detection limit is estimated at 0.5 ppbv, and the accuracy of the hourly averages was within 2%.

3. General Characteristics of the Measurement Periods

3.1. Narwhal Ice Camp

A detailed description of the site, along with chemical and meteorological measurements made at Narwhal ice camp are given elsewhere [Hopper et al., 1998]. The maximum ozone
mixing ratio observed at the Narwhal ice camp was about 36 ppbv. A long period of ozone depletion (≥7 days) was observed at the beginning of the grab sampling period (section 5.1, Figures 2a and 2b). The 5-day back trajectories of air parcels reaching the Narwhal ice camp at the 1000 hPa level were calculated. The position of the air parcels 5 days earlier was used to assign a representative source region for the air. For the ozone-depleted period from Julian day 94 to 99, back trajectories indicated that the air had its origin over the Arctic Ocean. From Julian days 99 to 109 a very stagnant air parcel was present at Narwhal. The air had originated from some point on the Arctic Ocean in proximity to the Hazen Plateau and traveled only over the coastal area around the Hazen Plateau and the Baffin Bay. On Julian days 110 to 112, air reaching Narwhal had been transported long distances from the southeast and had traveled at least 3 days along the coastal regions of Greenland. On Julian days 113 to 116 the air parcels had originated from the Arctic Ocean and had spent the previous 5 days there. The surface air temperature was on average about 238 K from Julian days 94 to 108, and then increased to approximately 258 K around Julian day 111 and decreased to approximately 248 K for the rest of the sampling period.

3.2. Alert

The detailed meteorology at Alert during this campaign is given by Hopper et al. [1998]. During PSE 94, several minor ozone depletion events were observed in April. Five-day back trajectories for air parcels during the ozone depletions observed from Julian days 95 to 98 indicated that the air originated over the Arctic Ocean. The interpretation of trajectories for minor depletion events later in April is more complicated. As pointed out by Hopper et al. [1998], these events are more likely representative of a nonsteady state situation. In addition, on some occasions the complex topography of this region may contribute to errors in the calculation of trajectories. Hopper et al. [1994] and Worthy et al. [1994] discussed the interpretation of trajectories and concentrations at this site can be done most reliably when there is a strong and persistent synoptic flow such as that observed during Julian days 95 to 98. The air temperature was on average about 238 K from Julian days 94 to 108, and then increased to about 263 K around Julian day 111 and decreased to approximately 252 K for the rest of the sampling period.

4. Distribution of Hydrocarbon Species

The average concentrations and relative distribution of C$_2$–C$_7$ hydrocarbons are compared to those measured previously at high-latitude northern hemisphere sites in Figure 1. In Figure 1, average concentrations at Narwhal ice camp and Alert, during periods of “normal” ozone concentrations (O$_3$ mixing ratio ≥30 ppbv) during April 1994 are compared to measurements made at Alert during winter (January and February) and spring (April) [Johnson et al., 1994], as well as with those taken during the month of March in Spitsbergen [Hov et al., 1984] and Barrow [Doskey and Gaffney, 1992]. As seen in Figure 1, the average concentrations of alkanes (≥C$_5$) observed at Narwhal ice camp and Alert (1994) during the month of April (excluding ozone depletion episodes) are markedly lower than other measurements. An exception is benzene, which shows little variability (less than a factor of 2) among all sites. Note that after polar sunrise in April the alkanes displayed a systematic decrease in concentration, with the larger alkanes displaying the largest concentration change. This behavior was observed in PSE 1992 and 1994 and is attributed to the increase in photochemistry associated with sunrise. Thus
the average ethane concentration displays the smallest spatial variability (≤ factor of 1.3) for these springtime data sets, while average n-hexane concentrations displayed over a factor of 10 range. This indicates that measurements in which there were relatively lower concentrations of more reactive species correspond to more photochemically processed air mass. From the concentrations and distributions observed at these locations, we conclude that the Arctic air mass during winter and early spring is fairly homogeneous for NMHC species with long lifetimes such as C_2–C_7 alkanes, toluene, ethyne, and benzene. Sources of these hydrocarbons appear to be similar and suggest fossil fuel combustion and production.

5. Time Series Profiles

5.1. Narwhal Ice Camp

Time series for concentrations of the major C_2–C_7 NMHCs are shown in Figure 2. Alkanes, toluene, and ethyne correlate well with each other. The correlation coefficients (r²) among most NMHCs are greater than 0.8 with the exception of benzene, which displayed the smallest concentration variability and did not correlate well with other hydrocarbons. As depicted in Figures 2a and 2b, high concentrations of these species occurred when the ozone mixing ratios are high (≥30 ppbv). Low concentrations of these compounds were seen to occur when ozone concentration fell to zero or near-zero values. The benzene concentration did not change drastically during ozone depletion episodes; rather, it displayed a gradual decline from the beginning to the end of the sampling period. The concentration of higher alkanes (≥C_6) approaches the detection limit, especially during ozone depletion events. Ethyne concentrations showed very large variability and are not considered reliable, especially since the range of variability is comparable to the magnitude of the artifact observed in the traveling blank canisters.

5.2. Alert

There are more rapid fluctuations in the observed NMHCs at Alert than at Narwhal ice camp. Examples of time series for the concentrations of the major C_2–C_7 alkanes, toluene, ethyne, and benzene are shown in Figures 3a–3f. The correlation coefficients (r²) among most NMHCs were greater than 0.8; again the exception is benzene. Shown in Figures 3a and 3b are plots of time series of some selected hydrocarbons and ozone. All alkanes, toluene, and ethyne show a positive correlation with ozone. Benzene concentration did not show a marked decline or recovery during low- and high-ozone episodes. However, as at Narwhal, benzene concentrations showed a slow decline from the beginning to the end of the sampling period. Depicted in Figure 4a is the plot of methane.
and ethane concentration at Alert. Figure 4b shows the correlation between methane and ethane at the same location. In contrast to the dark period, where methane and ethane correlated very well [Jobson et al., 1994], in the light period, the subject of this study, this correlation is much poorer.

5.3. Airborne Measurements

Of a total of 38 samples, 24 were taken in the boundary layer at altitudes of 170–680 m and 14 in the free troposphere at altitudes between 860 and 1700 m. Shown in Figures 5a–5f are examples of plots of hydrocarbon concentrations versus the altitude for samples taken in the aerial survey. Most alkanes correlated well with one another as well as with toluene and ethylene. Of the alkanes, ethane showed the least correlation with the other NMHCs. Benzene concentrations between boundary layer samples and free tropospheric samples were indistinguishable within the measurement uncertainties. As shown in Figures 5a–5f, low ozone mixing ratios (≤10 ppbv) were observed at altitudes below 700 m. High hydrocarbon concentrations were observed when ozone mixing ratios were at normal levels (≥30 ppbv).

6. Hydrocarbon and Ozone Concentration Changes and Halogen Chemistry

6.1. Isomeric Ratios and Distinction Between HO and CI Chemistry

Shown in Table 1 are CI, HO, and Br rate constants at 243 K for ozone and a series of NMHCs measured during this study. Some general features of the hydrocarbon kinetics can be used to distinguish between CI atom and HO radical chemistry. For instance, the CI atom rate constant of an alkane is generally about 2 orders of magnitude faster than for HO radicals [Ariya Hooshiyar and Niki, 1995; Atkinson et al., 1992]. Also, HO radical rate constants for normal alkanes and isomeric alkanes are very similar; however, isomeric alkanes have significantly lower CI atom rate constants than the corresponding n-alkanes (e.g., the CI atom rate constant for 2-methyl propane is about 0.67 that of n-butane [Ariya Hooshiyar and Niki, 1995]).

In contrast to alkanes, benzene reacts more slowly with CI atoms than HO radicals [Ariya et al., 1998]. Thus if CI chemistry is dominant, the change in the concentration of benzene is negligible. Hence benzene can be used as a zero point for the CI atom kinetic analysis of NMHCs. The temperature depen-
tendency for the Cl plus alkane rate constants is small. For example, the Cl plus ethane rate constant at 243 K is only 15% lower than at 296 K [Atkinson et al., 1992]. For the CI atom rate constant of benzene and toluene, the preliminary low-temperature GC results of recent work by Aritya [1996] indicated that toluene does not have a significant temperature dependence, and the very conservative upper limit of CI atom reaction rate constant for benzene of 1×10^{-12} cm3 molecule$^{-1}$ s$^{-1}$ was obtained at 243 K.

6.2. CI Atom Signature in the Absence of Ozone

Depicted in Figure 2, alkane show a slight decrease in their concentration from Julian days 99 to 108 in Narwhal ice camp (PSE 94). During this period, no measurable ozone was observed. The detection limit for the ozone monitor was 0.5 ppbv. If CI atoms are indeed the only oxidants involved in the removal of alkane, then the following reactions will occur:

$$\text{Cl} + \text{RH}_i \rightarrow \text{R}_i + \text{HCl} \quad (1)$$

$$\text{Cl} + \text{RH}_j \rightarrow \text{R}_j + \text{HCl} \quad (2)$$

where RH$_i$ and RH$_j$ denote the i-th and j-th alkane. Thus the integrated rate equation can be written as

$$\ln \left[\frac{[\text{RH}_i]}{[\text{RH}_j]} \right] = \ln \left[\frac{[\text{RH}_i]}{[\text{RH}_j]} \right]_2 \left(-k_{CI}[\text{Cl}] \right) dt \quad (3)$$

According to (3), plots of ln $[\text{RH}_i]/[\text{RH}_j]$ versus ln $[\text{RH}_i]/[\text{RH}_j]_2$ should yield straight lines, with the slope equal to k_i/k_j and zero intercept. Since the Arctic air mass was very stagnant during this period, as indicated by 5-day back

trajektries, the Arctic boundary layer was treated as a “smog chamber” reactor. Shown in Figure 6 are plots of (3) with the subscript i referring to ethane, propane, or 2-methyl propane, and j referring to n-butane for this ozone-depleted period. Four data points were considered outliers and were not considered in the analysis. N-butane was used as the reference molecule as previously done in kinetic studies specifically aimed to study the Cl and Br atom reactions of hydrocarbons observed in the Arctic [Aritya, 1996]. The slopes ($k_{RH}/k_{n-butane}$) strongly suggest the occurrence of CI atom chemistry, with all values within 15% of experimental measured rate constants ratios given in Table 2. Considering first the uncertainty on rate constants and second that these are real field data with day-to-day variabilities, this agreement is quite remarkable. Note that 2-methyl propane has a significantly lower decay rate than n-butane, which provides evidence for CI atom reaction and is in contrast to expectations if HO chemistry were dominant.

It is to be noted that (3) is valid only when the reactants, in this case NMHCs, are removed solely by the reaction of CI atoms. The above exercise clearly supports the dominance of CI chemistry in the removal of these hydrocarbons; however, it does not exclude possibilities of other reactions, even HO radical chemistry (although one major channel of HO production initiated by ozone photolysis was not active in this ozone-depleted period, we would like to point out the slight possibility that the air mass was advected from illuminated latitudes). Since CI atom reaction rate constants of alkane are up to 100 times faster than HO, the HO radical concentration would have to be much higher than the CI atom concentration to dominate the alkane decays. It is to be noted that even if the Cl atom concentrations are a few orders of magnitude higher than CI atoms (see section 6.5), the Br atom reaction rate constants are still much too slow to account for the observed concentration changes of the alkane.

6.3. Calculation of [Cl]

During this period, from Julian days 99 to 108 at Narwhal, we make the assumption that the hydrocarbon trends are a result of oxidative removal by reaction with CI atoms and neglect for the moment changes in concentration that may occur as a result of mixing processes. Equation (4) was used to calculate the CI atom concentration from the hydrocarbon trends over reaction time t, using only those species which could be quantified reliably:

$$[\text{molecule}]_1 = [\text{molecule}]_2 \exp \left(-k_{CI}[\text{Cl}] \right) dt \quad (4)$$

where the product of k_{CI}, the CI atom rate constant, and [Cl], the CI atom concentration, is integrated over the reaction time t. The rate coefficients of the examined NMHCs with CI atoms are relatively temperature insensitive. Thus under a strictly chemical kinetic environment, for molecules such as hydrocarbons, a plot of ln $[\text{hydrocarbon}]_1/[\text{hydrocarbon}]_2$ versus k_{CI} should be linear with slope equal to the term $-f[\text{Cl}] dt$.

In Figure 7 the hydrocarbon concentration changes at Narwhal for period of Julian days 100–108 are plotted against CI atom rate coefficients at the average ambient temperature of 248 K. An average concentration from four samples at the beginning and end of the period was used to calculate $[\text{hydrocarbon}]_1$ and $[\text{hydrocarbon}]_2$, respectively. A linear regression through the C$_2$–C$_4$ alkane data yields a slope of -3.0.
The mixing ratios of higher alkanes were close to or within our detection limit during this period and therefore not included in the regression. Dividing the slope by the 7.79-day period (Julian days 107.62 – 99.83; Δt = 7.79 days) spanned by the data yields an average Cl atom concentration of 4.5 (±0.7) x 10^3 cm⁻³. Calculating Cl atom concentrations from different time intervals within the day 100–108 period yields a relatively small range of values. In the worse case a 40% deviation from the above value was obtained. The effect of mixing between ozone-depleted air and the free troposphere above will significantly increase the concentrations of most species with the exception of benzene, which reacts slowly with Cl and Br atoms and does not display a strong vertical gradient. Horizontal mixing must also be considered, but little is known about the horizontal extent of the phenomena. An observable effect of mixing on hydrocarbon trends can only manifest itself if significantly different mixing ratios of hydrocarbons have been blended together, that is, if the air masses being mixed have been chemically processed for different lengths of time. For instance, Solberg et al. [1996] have illustrated how mixing will influence hydrocarbon decay trends by assuming a single characteristic mixing time of 1 day for all hydrocarbons. Their study serves to show how air mass mixing will influence the short-lived species more than the long-lived species and thus lead to changes in the relative concentrations of the reactive alkanes. A strictly chemical model of the hydrocarbon trends will yield a lower limit on the actual radical concentrations. For the episode at Narwhal, conditions were very stagnant [Hopper et al., 1998], and it is reasonable to assume that mixing effects were minimized. However, the halogen atom concentrations determined from the linear fit to the observed trends must be considered a lower limit.

6.4. Modeling of Ozone-Depleted Period at Narwhal

In addition to the data evaluation explained above, we used a box model “Moccalce” (model of chemistry considering aerosols in cold environments) to investigate what levels of
Table 1. Rate Constants for the Reactions of Several Hydrocarbons With HO and Cl and Br Atoms at 243 K

<table>
<thead>
<tr>
<th>Molecule</th>
<th>HO</th>
<th>Cl</th>
<th>Br</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methane</td>
<td>2.07 × 10^{-15} a</td>
<td>3.71 × 10^{-14} b</td>
<td>6.52 × 10^{-26} c,d</td>
</tr>
<tr>
<td>Ethane</td>
<td>1.18 × 10^{-13} a</td>
<td>5.32 × 10^{-11} e</td>
<td>2.32 × 10^{-21} c,d</td>
</tr>
<tr>
<td>Ethyne</td>
<td>4.93 × 10^{-13} a</td>
<td>8.44 × 10^{-11} e</td>
<td>1.54 × 10^{-13} f</td>
</tr>
<tr>
<td>Propane</td>
<td>7.45 × 10^{-13} a</td>
<td>1.27 × 10^{-10} g.h</td>
<td>1.31 × 10^{-18} c,d</td>
</tr>
<tr>
<td>n-Butane</td>
<td>1.92 × 10^{-12} a</td>
<td>1.94 × 10^{-10} g.h</td>
<td>1.86 × 10^{-23} c.e.i</td>
</tr>
<tr>
<td>2-Methyl propane</td>
<td>1.88 × 10^{-12} a</td>
<td>1.30 × 10^{-10} g.h</td>
<td>1.24 × 10^{-16} j</td>
</tr>
<tr>
<td>n-Pentane</td>
<td>3.12 × 10^{-12} a</td>
<td>2.03 × 10^{-10} g.h</td>
<td>1.62 × 10^{-22} k</td>
</tr>
<tr>
<td>n-Hexane</td>
<td>3.90 × 10^{-12} b.h.k</td>
<td>3.05 × 10^{-10} g.h</td>
<td>1.62 × 10^{-22} k</td>
</tr>
<tr>
<td>2-Methyl pentane</td>
<td>2.58 × 10^{-10} g.h</td>
<td>5.6 × 10^{-11} e</td>
<td></td>
</tr>
<tr>
<td>3-Methyl pentane</td>
<td>2.58 × 10^{-10} g.h</td>
<td>5.6 × 10^{-11} e</td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td>8.6 × 10^{-13} b.h.k</td>
<td>1.0 × 10^{-12} l</td>
<td></td>
</tr>
<tr>
<td>Toluene</td>
<td>6.19 × 10^{-12} b.h.k</td>
<td>5.6 × 10^{-11} e</td>
<td></td>
</tr>
<tr>
<td>Ozone</td>
<td>3.10 × 10^{-14} k</td>
<td>9.55 × 10^{-12} m</td>
<td>6.72 × 10^{-13} h.m</td>
</tr>
</tbody>
</table>

Units are cm³ molecule⁻¹ s⁻¹.

a Atkinson et al. [1992].
b The 243 K value was obtained using room temperature data from Ariya Hooshiyar and Niki [1995] and suggestion of Atkinson et al. [1992].
c Estimated.
d Russell et al. [1988a].
e Ariya [1996].
f Barnes et al. [1993].
g Ariya Hooshiyar and Niki [1995].
h Room temperature.
i Galba et al. [1964].
jk Russell et al. [1988b].
k Atkinson [1986].
l Ariya et al. [1998a].
m Nicovich et al. [1990].

Photodioxides are consistent with the observed concentration changes of hydrocarbons. MoccIce has been developed to study the chemistry of the Arctic boundary layer. Based on the MOCCA model which was used to study marine air at mid-latitudes [Sander and Crutzen, 1996], the model has now been modified to describe the polar sunrise in the Arctic. A more detailed description of MoccIce has been given elsewhere [Sander et al., 1996], and here we only summarize the most important aspects, including the addition of moderately detailed hydrocarbon chemistry and the adaptation to Arctic conditions. MoccIce contains 120 reactions in the gas phase and 73 in sulphuric acid aerosol particles. There are 65 gas phase and 50 aqueous phase chemical species. A quasi-size-dependent approach is used to obtain mean values of those aerosol properties that depend on the droplet radii. The treatment of diffusion processes between the gas phase and the liquid phase takes into account the different solubilities and accommodation coefficients.

Apart from the well-known reactions the chemical mechanism includes a large set of reactions of halogen compounds that are of potential importance for the ozone budget. Photolysis rates vary according to the solar declination during the polar sunrise. The hydrocarbon chemistry includes C₃–C₅ alkanes, ethene, ethyne, benzene, as well as the halocarbons CH₃Br and CHBr₃. Their initial reactions with HO radicals and Cl and Br atoms are considered. Secondary reactions of the intermediates have been simplified in the model by com-

Figure 6. A plot of ln ([RH]₁/[RH]₂) versus ln ([n-butane]₁/[n-butane]₂) for the Julian days 99 to 108 period at Narwhal ice camp. The solid lines are least squares fits to the data, with corresponding slopes and correlation coefficients.
bining different alkyl groups into a generic R (e.g., RO, RO₂).
The initial mixing ratios of hydrocarbons were set to the
experimentally observed values at the beginning of the low-ozone
period at Julian day 99. By using a Cl₂ flux into the system to
maintain Cl atom concentrations of about 4 × 10^5 cm⁻³, the
observed hydrocarbon decay rate could be reproduced. In ad-
inction, a small bromine flux into the system was necessary to
keep the modeled mixing ratio of O₃ below 0.5 ppbv, since a
small amount of ozone was produced by NO₂ photolysis which
was initially present at 20 pptv.

The chlorine flux was adjusted to match the observed hy-
drocarbon decay; thus the model does not reveal any more
about the concentration of chlorine atoms than a simple ki-
netic expression, such as those used earlier. However, the
model can be used to analyze the complex interaction between
HO and Cl chemistry. The major HO production pathway
under normal conditions is photolysis of O₃ to O(1D) followed
by reaction with H₂O. In the ozone-depleted air mass, this
channel obviously stops. Several other reactions now gain rel-
atively important in HO production with photolysis of HNO₂
and HOBBr now contributing significantly to the production of
HO. Under the conditions of our model run, the reaction of
ROOH with Cl is not an important HO source even if a yield
of 100% for HO formation is assumed. HO₂ is quickly reduced
to HO by reaction with NO; thus reactions that produce HO₂
can also be considered an indirect source of HO. HO₂ is
produced in secondary steps of the oxidation of hydrocarbons:

\[RCH₂O + O₂ → RCHO + HO₂ \] \hspace{1cm} (5)

Hence the oxidation of hydrocarbons also contributes to HO
formation. In the model the reactions of alkyls with Cl and
aldehydes with Br produce significant amounts of HO. Adding
all HO formation pathways mentioned above, Moccalce cal-
culates nighttime HO concentrations of about 10⁷ cm⁻³ during
the low-ozone period. The impact of HO reactions with light
alkanes is found to be less important than corresponding Cl
atom reactions at conditions described above. Benzene con-
centrations may show a decrease due to HO removal at the
Narwhal ice camp, but this small change (of order of 3%
assuming 4 days reaction time and HO = 10⁶ cm⁻³) cannot be

Table 3. First-Order Regression Data From Plots of ln
([molecule]_{low}/[molecule]_{high}) Versus [Cl] for Ozone
Depletion Episodes at Narwhal Ice Camp, Alert, and
Airborne Measurements

<table>
<thead>
<tr>
<th>Episode</th>
<th>Slope: (-f) [Cl] (dt), atoms cm⁻³ s⁻¹</th>
<th>Correlation Coefficient ((r^2))</th>
<th>(y) Intercept</th>
</tr>
</thead>
<tbody>
<tr>
<td>Narwhal (Julian</td>
<td>(-8.1 \left(±0.4\right) \times 10^9)</td>
<td>0.97</td>
<td>(-0.16 \pm 0.12)</td>
</tr>
<tr>
<td>day 113)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alert (Julian</td>
<td>(-9.4 \left(±0.5\right) \times 10^9)</td>
<td>0.93</td>
<td>(-0.04 \pm 0.08)</td>
</tr>
<tr>
<td>day 114)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flight (pair 1)</td>
<td>(-3.1 \left(±0.7\right) \times 10^9)</td>
<td>0.91</td>
<td>(-0.02 \pm 0.02)</td>
</tr>
<tr>
<td>Flight (pair 2)</td>
<td>(-3.6 \left(±0.4\right) \times 10^9)</td>
<td>0.99</td>
<td>(-0.09 \pm 0.07)</td>
</tr>
<tr>
<td>Flight (pair 3)</td>
<td>(-3.8 \left(±0.7\right) \times 10^9)</td>
<td>0.96</td>
<td>(-0.01 \pm 0.12)</td>
</tr>
<tr>
<td>Flight (pair 4)</td>
<td>(-2.1 \left(±0.2\right) \times 10^9)</td>
<td>0.97</td>
<td>0.01 \pm 0.06</td>
</tr>
</tbody>
</table>

Stated uncertainties are 2 standard deviations.

6.5. Major Ozone Depletion Events

Various ozone depletion events were observed both at Alert
and Narwhal ice camp. Back trajectories of these events indicated
that the depleted air was transported from the Arctic Ocean
(or ice-covered areas in close proximity to the ocean).
We can assume "background" concentrations for NHHCs
when the ozone mixing ratio is at its normal levels (≥30 ppbv).
The change in concentration of a molecule from its "back-
ground" [molecule]_{high} level to the concentration observed
in ozone-depleted air, [molecule]_{low}, can be related to Cl atom
reaction kinetics by \((4)\). A plot of \(\ln\left([\text{molecule}]_{low}/[\text{molecule}]_{high}\right)\) versus \([Cl] \) should be
linear with slope equal to the term \(-f\) \([Cl] \ dt\). Table 3 shows the value of the Cl atom action
integral calculated from a series of ozone depletion events at
the ground sites and those encountered during the aerial sur-
vey.

Figures 8 and 9 are plots showing these major events at
Narwhal ice camp and Alert. Similarly, the flight data were
evaluated by using high-altitude measurements as "back-

![Figure 7. Correlation between logs of hydrocarbon concentration ratios in ozone-depleted air from normal ozone days against Cl atom rate constants for the Julian day 99–108 period at Narwhal ice camp. A least squares fit line has been drawn through the alkane and benzene data.](image)

![Figure 8. Correlation between logs of hydrocarbon concentration ratios in ozone-depleted air from normal ozone days against Cl atom rate constants for the Julian day 113 at Narwhal ice camp. A least squares fit line has been drawn through the alkane and benzene data. The deviations of ethyne and ozone from the expected Cl atom kinetics are represented by dashed lines.](image)
Figure 9. Correlation between logs of hydrocarbon concentration ratios in ozone-depleted air from normal ozone days against Cl atom rate constants for the Julian day 114, 1994 at Alert. A least squares fit line has been drawn through the alkane and benzene data. The deviations of ethyne and ozone from the expected Cl atom kinetics are represented by dashed lines.

Figure 11. Correlation between the logs of concentration ratios in ozone-depleted air from normal ozone days against HO rate constants for the Julian day 114, 1994, ozone depletion episode at Alert.

Figure 10. Correlation between logs of hydrocarbon concentration ratios in ozone-depleted air from normal ozone days against Cl atom rate constants for aerial survey on (a) Julian day 89 and (b) Julian day 90, 1994. Least squares fit lines have been drawn through the alkane and benzene data. The deviations of ethyne and ozone from the expected Cl atom kinetics are represented by dashed lines.

6.6. Ratio of Cl and Br Time Action Integrals

The deviation of ethyne from the least squares fit to the C₂–C₅ alkanes, toluene, and benzene may be a result of additional removal by Br atoms (see Figures 8–10). The occurrence of Br chemistry has previously been suggested to explain the observed decreases in ethyne and ethene observed at Alert [Bottenheim et al., 1990; McConnell et al., 1992; Jobson et al., 1994]. We applied (6) to the ethyne data to estimate the Br atom action integral \(\int k_{Br}[Br] \, dt \). The equation describes the observed decrease in ethyne concentration as a result of both Cl and Br atom reactions:

\[
\int -k_{Br}[Br] \, dt = \ln \left(\frac{[C_2H_2]_{low}}{[C_2H_2]_{bg}} \right) \text{observed} - \ln \left(\frac{[C_2H_2]_{low}}{[C_2H_2]_{bg}} \right) \text{Cl atom} \tag{6}
\]

Since the extent of Cl atom chemistry can be derived from the plots of alkanes, toluene, and benzene (e.g., Figures 8–10), equation (6) can be used to calculate \(\int [Br] \, dt \) and the ratios of \(\int [Br] \, dt / \int [Cl] \, dt \) given in Table 4.

It is to be noted that besides chlorine and bromine, iodine has also been suggested by many researchers to play a role in the troposphere and in the destruction of tropospheric ozone [Chameides and Davis, 1980; Jenkin, 1993; Solomon et al., 1994]. The reactivity of iodine toward alkanes is established to
be very low [e.g., Nangia and Benson, 1964]. Hence iodine cannot be responsible for the destruction of alkanes observed during the ozone depletion events in the Arctic. There is no kinetic information on iodine reactions with ethyne; however, recently Ariya et al. [1997] indicated that the additional decreases in the concentrations of ethyne, as well as in the concentrations of trichloroethene and tetrachloroethene, during PSE 92 followed Br chemistry.

6.7. Modeling of Ozone Depletion Events

The destruction of ozone by halogen radicals is more complex than that of hydrocarbons due to the existence of catalytic cycles. We used Moccalce to investigate the impact of halogens on ozone. It was assumed that Cl and Br atoms were present simultaneously. Average halogen concentrations were estimated by dividing the observed action integrals by a processing time which was varied in the model. For example, from the average of the action integrals observed at Narwhal and Alert, and assuming a processing time of 5 days, an average [Cl] of 2×10^{-4} cm$^{-3}$ and an average [Br] of 3×10^{-5} cm$^{-3}$ were obtained. These concentrations could be sustained in the model using a rate of 2×10^6 cm$^{-3}$ s$^{-1}$ for both Cl and Br. Using these values, the model was able to reproduce the observed hydrocarbon decreases and the complete ozone destruction within the given processing time.

We also performed sensitivity studies changing Δt to 10 and 15 days, respectively. Since the time action integrals of Cl and Br did not change, the overall hydrocarbon decay (i.e., [hydrocarbon]$_{org}$/[hydrocarbon]$_{bag}$) was not affected. It was also found that ozone was almost completely destroyed at the end of the processing time in all model runs. This means that ozone destruction also depends linearly on halogen atom concentration, and that different values of Δt are consistent with the observed hydrocarbon decays.

7. Summary

Daily samples were collected at Alert and Narwhal ice camp from Julian days 90 to 117, 1994, and a 2-day aerial survey over the Arctic region on Julian days 89 and 90, 1994. Several ozone depletion events concurrent with decreases in hydrocarbon concentration relative to their background levels were observed at Alert and Narwhal ice camp. Decreases in hydrocarbon concentrations during the ozone depletion events can be explained by Cl and Br chemistry. Evidence was obtained for Cl atom chemistry occurring in the absence of ozone, and a Cl atom concentration during the ozone depletion event at Narwhal ice camp was estimated. This indicates a Cl atom source that existed during that period and in the absence of ozone. The aerial survey suggests that this phenomenon of ozone depletion coinciding with hydrocarbon decreases covers wide areas of the Arctic region. In addition, the ozone depletions seem to occur only in the planetary boundary layer, and no evidence for free tropospheric ozone depletion was observed. The Br atom reactions seem to play a major role in the destruction of ozone; Cl atoms can play only a minor role. The integral concentrations of Cl and Br atoms evaluated from the kinetic analysis were sufficient to efficiently destroy ozone in the box model. A crop of papers have recently been published indicating small concentrations of CI atoms in other marine boundary layer environments [e.g., Singh et al., 1996a; Wagenhauser et al., 1996]. Recent modeling papers have indicated that the low Cl atom concentrations reported or implied do not have a significant overall impact on marine boundary layer chemistry [Singh et al., 1996b]. However, it is important to note that the results from the Arctic have shown that Br atoms could be even 3 orders of magnitude more abundant than Cl atoms. If Cl atom chemistry is indicative of the presence of Br atoms, then the real question for the marine boundary layer is what is the effect of Br on O$_3$, if it is indeed present in non-Arctic environments.

Table 4. Estimates of the Time-Integrated Br Atom Concentration

<table>
<thead>
<tr>
<th>Episode</th>
<th>$\frac{d[Br]}{dt}$, atoms cm$^{-3}$ s$^{-1}$</th>
<th>$\frac{d[Br]}{dt}$/[Cl] dt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Narwhal (Julian day 113)</td>
<td>7.5×10^{12}</td>
<td>922</td>
</tr>
<tr>
<td>Alert (Julian day 114)</td>
<td>1.6×10^{13}</td>
<td>1702</td>
</tr>
<tr>
<td>Flight (pair 1)</td>
<td>5.2×10^{12}</td>
<td>1676</td>
</tr>
<tr>
<td>Flight (pair 2)</td>
<td>1.0×10^{13}</td>
<td>2778</td>
</tr>
<tr>
<td>Flight (pair 3)</td>
<td>7.5×10^{12}</td>
<td>1974</td>
</tr>
<tr>
<td>Flight (pair 4)</td>
<td>1.7×10^{13}</td>
<td>8095</td>
</tr>
</tbody>
</table>

Data are calculated for 243 K.

Acknowledgments

We thank B. Fu and E. Sugarman for helping with sample analysis, V. Young for assisting with organizing the logistics, H. Dryhurst and S. Ogsten for helping in collecting samples, D. Worthy for providing us methane data, L. Barrie, P. Shepson, and J. McConnell for their helpful comments, C. Weldon for reading over the manuscript, and reviewers for their constructive comments. We acknowledge the Natural Science and Engineering Research Council of Canada (NSERC) and British Gas for financial support. Hiroshi Kawa was British Gas/Consumer Gas/NSERC/AES chair in atmospheric chemistry and Parisa Ariya is an NSERC graduate fellow.

References

