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ABSTRACT
Over the past quarter-century, web archive collection has emerged
as a user-friendly process thanks to cloud-hosted solutions such
as the Internet Archive’s Archive-It subscription service. Despite
advancements in collecting web archive content, no equivalent has
been found by way of a user-friendly cloud-hosted analysis system.
Web archive processing and research require significant hardware
resources and cumbersome tools that interdisciplinary researchers
find difficult to work with. In this paper, we identify six principles -
the ABCDEFs (Archive, Big data, Concurrent, Distributed, Efficient,
and Flexible) - used to guide the development and design of a sys-
tem. These make the transformation of, and working with, web
archive data as enjoyable as the collection process. We make these
objectives – largely common sense – explicit and transparent in
this paper. They can be employed by every computing platform in
the area of digital libraries and archives and adapted by teams seek-
ing to implement similar infrastructures. Furthermore, we present
ARCH (Archives Research Compute Hub)1, the first cloud-based
system designed from scratch to meet all of these six key principles.
ARCH is an interactive interface, closely connected with Archive-It,
engineered to provide analytical actions, specifically generating
datasets and in-browser visualizations. It efficiently streamlines
research workflows while eliminating the burden of computing
requirements. Building off past work by both the Internet Archive
(Archive-It Research Services) and the Archives Unleashed Project
(the Archives Unleashed Cloud), this merged platform achieves a
scalable processing pipeline for web archive research. It is open-
source and can be considered a reference implementation of the
ABCDEF, which we have evaluated and discussed in terms of feasi-
bility and compliance as a benchmark for similar platforms.
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1 INTRODUCTION
Web archiving is an important component of modern digital li-
braries. It is essential for enabling future research into contem-
porary history and ensuring the long-term preservation of our
documentary heritage [11] [3]. Yet while collecting web archive
content has matured into a user-friendly process, thanks in no
small part to cloud-hosted solutions such as the Internet Archive’s
Archive-It service, this ease-of-use has not been matched on the
analysis side. We accordingly need a user-friendly system that can
enable the creation of research datasets from web archives so that
researchers can work with material at scale.

In this paper, we present the Archives Research Compute Hub
(ARCH), a production system tightly integrated with the Internet
Archive infrastructure and services. ARCH grew out of the Archives
Unleashed Cloud: a proof-of-concept platform that demonstrated
the ability of a web browser-based system to power backend Apache
Spark-driven jobs on web archival datasets [12]. Powered by the
Archives Unleashed Toolkit and the Internet Archive’s Sparkling
data processing library, the ARCH platform will become a comple-
mentary component of the Internet Archive’s Archive-It system.
ARCH is built around six key principles: archive, big data, concur-
rent, distributed, efficient, and flexible. We present these principles
as considerations for projects and teams developing similar systems.

2 RELATEDWORK AND PROJECT CONTEXT
Established in 2017, the Archives Unleashed project recognizes the
collective need among researchers, librarians and archivists for ana-
lytical tools, community infrastructure, and accessible web archival
interfaces. To this end, the project aspires to make petabytes of his-
torical internet content accessible to scholars and others interested
in researching the recent past. Between 2017 and 2020, the project
focused on developing the “Archives Unleashed Cloud,” a web-based
interface for working with web archives at scale using the Archives
Unleashed Toolkit and Apache Spark [12]. This work built on the
project’s long-standing interests in building exploratory search in-
terfaces for web archive collections [8]. Similar noteworthy work
includes the SolrWayback project from The Royal Danish Library.
Combining Apache Solr with OpenWayback or pywb, SolrWayback
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provides search and discovery of web archive collections, as well
as replay, and a number of analysis and visualization features [10].

In 2020, the project’s first phase was completed. The next phase
involved exploring integration and collaboration with the Internet
Archive [13]. We were influenced by the global adoption of the
Internet Archive’s Archive-It subscription service and the stability
of the Apache Spark platform [6].

Since the launch of the Internet Archive’s subscription service
in 2006, over 700 institutions from 23 countries have used Archive-
It to preserve over two petabytes of data consisting of over 40
billion born-digital, web-published records in over 12,000 public
collections. It is a successful service. A survey by the National
Digital Stewardship Alliance reported that by 2017, 94% of surveyed
institutions were using Archive-It to preserve web material – and
an additional 4% were using other services provided by the Internet
Archive [9]. Archive-It is thus effectively the de-facto platform for
web archiving, used by nearly all Association of Research Library
members, hundreds of other higher education, memory institutions,
public libraries, governments, and non-profit organizations.

Despite this widely-accepted solution for the capture of web
material, the problem of analysis remains. By this, we refer to at-
scale explorations of data that requiremore than the replay interface
of the Wayback Machine. While web archive data is captured and
preserved in the ISO-standard WARC file format, the formation of
a scholarly ecosystem around web archive analysis has been slow.2

TheArchives Unleashed project aims to address this problem [13]
by being for web archive analysis as Archive-It is for web archive
capture: powerful, scalable, and above all, accessible and intuitive
for users. The Archives Unleashed Cloud (2017-2020) provided
user access to the features of the Archives Unleashed Toolkit in a
cloud-hosted environment [12]. The Cloud worked with Archive-It
collections, using APIs to transfer data from the Internet Archive
to Compute Canada cloud-hosted infrastructure. Yet the initial
approach of having a separate analysis service presented short-
comings. When a user wished to carry out analysis, data had to
be transferred. More importantly, connections between Archive-It
and the Cloud required a complicated interplay of APIs, bulk data
transfers, and other workflows, leaving a separate analysis service
vulnerable to network disruptions or changing standards. These
factors combined to make it an interesting proof-of-concept but
one that presented considerable sustainability challenges.

Our goal, then, was to integrate Archives Unleashed tools with
the Internet Archive’s Archive-It service. As a novel collaboration,
this would require new approaches to building at-scale infrastruc-
ture.

3 THE “ABCDEFS” OF DIGITAL LIBRARIES AT
SCALE

When starting a new project, a learner needs to understand their
“ABCs.” As we began to develop the at-scale implementation, we
realized that a basic understanding of web archiving and data pro-
cessing on their own was insufficient. Therefore, we present our

2The best place to learn about available tools is the “Web Archiving Awesome List”
maintained by the International Internet Preservation Consortium and researchers
across the field. See https://github.com/iipc/awesome-web-archiving.

Figure 1: Archive-powered computing.

next steps – the “ABCDEF”s – which are based on intense require-
ment engineering upfront and informed by user experience surveys
and extensive prototyping. While “ABCDEF” is primarily designed
as a helpful mnemonic, the lessons learned here will be broadly
applicable to other at-scale processing pipelines throughout the
digital libraries field.

3.1 Archive
The main data source in large-scale computing infrastructures of
libraries and archives is the digital data repository of those institu-
tions. In the case of born-digital organizations, such as the Internet
Archive, it is the digital library or digital archive itself. Hence,
these data lakes should be considered the backend that power such
infrastructure in the first place. However, since access to those long-
term preservation systems is commonly slow, additional access and
caching layers are required to achieve efficiency.

At the same time, big data computing applications operating
on this data should not need to deal with these additional layers.
Rather, they should work with the archival data as their primary
data source. It should be the job of the computing platform to
abstract away the intermediate layers and allow for seamless data
access to archival, long-term preserved data.

Data locality is another aspect to consider in large-scale comput-
ing systems, which usually run on distributed clusters consisting of
multiple machines to enable parallel computing. That is the mech-
anism to move the code, which is smaller than data, to the data,
which in turn can stay and does not need to be moved. While this
is a common paradigm [5] and easily applicable in clusters that
are used for both storage and computation, this is not the case
in library and archive environments. There, digital preservation
systems constitute the primary data source, independently of the
computing infrastructure. Even though those preservation systems
may be distributed across multiple machines, they’re widely not
designed and/or well-suited to run computations.

Thus, the archival processing system should bring the code and
computation as close to the data as possible. In the architecture, as
described above and depicted in Figure 1, that is the hidden layer
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that serves as the primary data source for external collections and
a hot cache for otherwise cold long-term preservation storage.

3.2 Big Data
Big Data is widely characterized by some number of Vs. Consider
three of them: Volume, Variety, Velocity, which all naturally inter-
sect in digital libraries and archives, and in particular, web archives.
Web data grows as fast as the web does, and the web is constantly
evolving. The vast amount of URLs on the web - along with their
dynamic and temporal aspect in web archives - lead to enormous
volumes and a variety of data types inherent to the web, including
text, images, videos, code, styles, and the like.

Nevertheless, web data and web archive data are unique in many
ways. Compared to more traditional Big Data, this is mainly due to
its heterogeneity and lack of a natural order. In the world of web
archives, every archival record looks the same because the WARC
records [4] present a standard structure: headers and properties,
along with easily parsable metadata. What’s in a WARC record
is never the same, though, making the data very heterogeneous.
Compounding this, although their URLs give a logical structure,
websites can have very different graph structures, some are formed
as a tree, while others exhibit a mesh, and the order across sites
is widely illogical. Eventually, crawlers preserve the web as they
hit the pages, controlled by their own prioritization and scoping
strategies [2] [1].

All of this requires advanced selection, filtering and sampling
mechanisms, performed by pre-processing steps prior to the actual
work. Given the sheer amount of data in such web archives, even
by building sub-collections, filtering temporarily through metadata
facets, and sampling down based on certain conditions, the result
is often too big to work with locally.

The solution to this is derivation. While the above tasks, which
can be considered horizontal operations, reduce the number of input

Figure 2: Big Data derivation.

Figure 3: Concurrent job architecture.

records, as shown in Figure 2, by performing derivation — a vertical
operation — only a task-specific essence of the records is extracted,
kept, or even generated. Common examples are named entities
mentioned in a corpus (i.e., persons, locations, organizations) or
hyperlinks extracted from web pages. The combinations of the
above filtering steps and the final derivation, result in more compact
datasets that users can more comfortably deal with. Big Data is
thus made more manageable.

3.3 Concurrent
A platform hosted on central servers and not running as an indi-
vidual local instance can be used by multiple users concurrently.
That means multiple users run the same tools, use the same hard-
ware, and potentially operate on the same data simultaneously. This
requires both capable hardware and coordination. For instance, a
number of users launching a derivation job at the same time should
not overload resources or memory. Scheduling systems, similar to
those found in every computer’s operating system, are required to
control when a job can run or should be queued for later execution
if there’s no free capacity.

At the same time, concurrent systems should not be blocking.
A data processing job that uses only resources on the distributed
cluster nodes must not block post-processing jobs that could run on
local server resources in parallel. Such behavior requires explicitly-
defined job types, which let the system know what kind of job it
will run or queue up. Multiple, disjunct queues per type allow a
job of a type that’s ready to run to bypass others that are queued
on busier queues. Furthermore, complex jobs consisting of consec-
utive phases, such as (pre-)processing and post-processing, may
be designed as multiple chained jobs to use such an architecture
efficiently. Similarly, certain jobs, such as examples running on
smaller sample inputs, could be prioritized using dedicated queues
as they can finish quicker with little impact on the runtime of other,
bigger jobs waiting for free resources.

As shown in Figure 3, this relatively complex task of coordi-
nating and monitoring is the job of a central job manager. This
can be considered the core component of every multi-tenant data



processing system. While processing resources may be fully em-
ployed by running derivation jobs, it is essential to ensure the job
manager remains responsive. Job managers also supply interfaces -
computer-readable APIs and (graphical) user interfaces - with re-
ports that identify the system’s current state and currently running
and launched derivation jobs. These ultimately convey the expected
start and run time of a user’s derivative.

3.4 Distributed
In summarizing the previous sections (Archive,Big Data,Concurrent),
we see that these concepts are based on the idea of a distributed
architecture, whether for storage, scheduling or processing. Hence,
distributed design is a fundamental principle of every library or
archival processing infrastructure and should be an objective in all
aspects of our work. Distributed data storage and inherent parallel,
distributed processing is driven by the question of how to split up
and distribute data, processes, and tasks.

Today’s de-facto standard to work with computer clusters are
the various Apache projects around Hadoop, such as YARN, MapRe-
duce, Spark, and related tools. Storage is commonly powered by
Hadoop’s Distributed Filesystem (HDFS). HDFS organizes the way
it stores files across multiple machines largely by itself, with files
split into blocks, which are stored replicated on different machines
and racks. This way, data locality can be exploited by running the
code to process a file on the storage node that stores large portions
of that file. In a library and archive setting, the same approach
works well for all collections stored outside the digital library or
archive, such as custom collections loaded into the platform, as well
as cached collections copied from the long-preservation archival
backend system onto the cluster to be processed.

Additionally, derivative datasets extracted or generated from
the raw input data in a derivation job are immediately written to
the distributed filesystem and automatically split into blocks as
described above. To access such output files for in-browser preview
and visualization or to be downloaded by users, they have to be
streamed from distributed storage, with all blocks of that file being
concatenated on-the-fly through a central endpoint.

For sub-collections or filtered sub-sets, an efficient approach to
distributing and processing web archive data and other archival
datasets have been shown by ArchiveSpark [6] [7]. Instead of par-
allelizing datasets in a distributed setting through files or blocks,
metadata records can be used, which, in the case of web archives, are
the crawl index records (CDX). This, as well as the above described
data flows, is illustrated in Figure 4.

3.5 Efficient
Efficiency is paramount when it comes to data processing. High
memory consumption occupies resources, reduces parallelism and
leads to failures if limits are reached. Therefore, it is essential to
keep memory consumption as low as possible to provide a reliable
and robust process. Records can vary considerably in size in a
library or archive environment, given their heterogeneous character
(as elaborated in Big Data). At the same time, they can be very
large: input is not usually structured data but rather raw digital
objects, such as books, images, or in the case of web archives, web
resources (which can be pages, images, videos, and others). Loading

Figure 4: Distributed data workflows.

and processing these fully in memory easily results in memory
overruns. These must be avoided. As it is often not evident before
the data is read how much remains, there are a few strategies that
can be adopted to prevent memory issues and ensure an efficient
and stable system:

• Use available headers and/ormetadata records (see theArchiveS-
park approach above, underDistributed) to pre-validate data
prior to access. For example, one can check content length
against type. Raw webpages without embeds usually have
sizes measured in kilobytes. If they are over a given thresh-
old, such as one megabyte, the system can consider them
invalid and discard.

• Skip over invalid and irrelevant/filtered records, rather than
reading them with no operation. This prevents avoidable
reads and filling up memory buffers.

• Stream input data and processes on the fly, while keeping
only what is absolutely necessary in memory.

• Fork streams to process them in parallel with multiple deriva-
tion tools in one run, as depicted in Figure 5.

• If necessary, retain derivatives as the relevant essence of
records. These are only a fraction of the size of full records,
as suggested above under Big Data.

• As a last resort, streams should be bounded when reading
single primitive values, such as strings, to not have them
overflow memory, e.g., because of malformed records.

Figure 5: Efficient, parallel stream processing.



Figure 6: Flexible abstraction layers.

• Write derived results to disks as early as possible and release
them from memory if no longer needed.

3.6 Flexible
Future-proof systems should be modular and flexible to allow for
switching outdated tools, to plug in novel technology, and to adapt
new data and derivation types. They should be easily extensible
without restricting themselves too much. This can be achieved
through decoupled abstraction layers with clear responsibilities
and well-defined interfaces. At the same time, it is important for
module and layer interfaces to be lean, reduced to a minimum, and
as generic as possible. Crucially, it is unknown what the future will
bring, though it should fit into the same system’s specifications.

To re-use code and modules or create more specific interfaces
for tools that share functionality, it helps to introduce additional,
higher-level layers and develop tools against these, while other,
more distinct tools can be developed against less-specific, lower-
level layers. An example of this is found in the different job types
(see Concurrent) as well as de-facto standard technology for work-
ing with computer clusters as listed above (see Distributed). All
supported job types should the same at their core to be manageable
by the central job manager and support basic operations, such as
queueing, running, and retrieving results. However, all jobs that
use the same technology (e.g., Apache Spark) may support more
specific operations such as launching a new “Spark Context,” which
is Spark’s runtime environment. Hence, shared Spark-specific code
can live in a high-level abstraction layer on top of the generic job
interface without limiting the system’s functionality by making it
tailored to Spark jobs only.

Furthermore, as described underConcurrent, chained jobs should
be jobs in and of themselves. Hence, they should implement the
same interface and provide another abstraction layer with the same
interface to plug-in downstream jobs as children. Figure 6 depicts
a reference design for such an architecture. However, this basic
structure is subject to change, evolving with future developments
in an agile process.

4 IMPLEMENTING ABCDEF WITH ARCH
ARCH represents our attempt to incorporate the ABCDEF princi-
ples. Inspired conceptually by the earlier Archives Unleashed Cloud,
ARCH has been redesigned from scratch to meet the ABCDEFs.

In this section, we present our interface and its broader context
within Archive-It. ARCH allows users to take their Archive-It col-
lections - or other collections they have been granted access to -
and create their own derivative datasets. They do so by selecting
their collection, navigating a list of available derivatives datasets to
generate (seen in Figure 7), and then generating those derivatives
datasets for either in-browser limited exploration or downloading
them for work on local infrastructure.

4.1 Archive-It Research Services
ARCH integrates with the Internet Archive’s existing research ser-
vices. In 2015, Archive-It launched Archive-It Research Services
(ARS), a service to provide Archive-It institutions with the ability
to generate several derivative datasets from their web archive col-
lections in Archive-It. ARS helped establish the groundwork for
providing data-driven access services.

ARS featured three datasets available to users: WAT, WANE, and
LGA datasets. WATs are effectively WARC files with the “payload”
(i.e. the content) stripped out but metadata intact. WANE files are
named entities (people, places, and organizations). LGA files are
link graph files that provide information on which records link
to other records within a collection. Users can click a button in
the Archive-It interface to generate these datasets, which would
prompt an Archive-It web archivist to process the request. This is
a labour-intensive approach. While a good first step, a more robust,
self-service and at-scale opportunity that translated files into more
standardized derivative datasets was necessary.

4.2 Current Integration
As of December 2021, ARCH has both feature parity with the earlier
Archives Unleashed Cloud, and also additional functionality to gen-
erate several additional datasets. As functionality from the earlier
Cloud was ported, all features were redesigned and reimplemented



Figure 7: The “generate datasets” page in the ARCH interface.

with the ABCDEFs in mind. By reimplementing features with this
architecture, we addressed known issues, fixed existing bugs, and
more importantly, implemented an approach that scales to meet
our needs.

ARCHnow runs on an infrastructure that is physically connected
to Archive-It servers and computing infrastructure, mitigating the
need to copy data before processing. As not all Archive-It data
is kept in its dedicated computing cluster, ARCH is connected to
the Internet Archive’s long-term storage system (the “Petabox”) to
fetch missing data. In addition, we implemented a smart caching
mechanism to avoid re-fetches for consecutive access to the same
data. Cognizant of researcher needs beyond Archive-It collections,
we also support custom collections which can be located on ARCH’s
own cluster.

Given the sensitive nature of web archival collections, we have
implemented a user and permissions system. There are two authen-
tication providers: Archive-It user accounts and dedicated ARCH
users. For Archive-It users, we rely on Archive-It’s internal per-
missions process. We have also implemented a permission control
access that allows ARCH and Archive-It users to cross-access ad-
ditional Archive-It collections (pending permission from the data
collector) and ARCH custom collections.

The core of ARCH is its job processing module. This supports
different dataset generation jobs based on a generic interface to
start jobs, monitor their status, and explore the ensuing output
(seen in Figure 7). We currently provide implementations for Spark

jobs and general-purpose command-line instructions, which can
be chained for pre- and post-processing pipelines.

Finally, ARCH offers type-specific visualizations for its sixteen
job types in four different categories along with output-specific pre-
views in the browser. An example of this for the domain frequency
dataset can be seen in Figure 8.

To control jobs and enable the downloading of files via different
tools (browser-based downloads for smaller files, command line for
larger ones), we provide multiple APIs and authentication methods.
While the actual implementation details are beyond the scope of
this paper, ARCH is a native Scala application built using Scala-
tra3. The underlying toolkit is based on the Archives Unleashed
Toolkit (previously known as Warcbase) as well as the Internet
Archive’s Sparkling library4. Jobs and queues are controlled via
APIs, enabling Spark jobs to be chained with post-processing jobs,
as well as separate queues for example/full jobs, Spark operations,
and post-processing.

4.3 User Interface
ARCH’s interface consists of four levels. These guide users to inter-
act with their collections by generating datasets for analysis and
engaging with in-browser features. The goal of ARCH is to provide

3https://scalatra.org/
4https://github.com/internetarchive/Sparkling
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https://github.com/internetarchive/Sparkling


Figure 8: One of ARCH’s Dataset Results Pages.

an efficient, streamlined workflow without burdening users with
computing requirements or actions.

The first level is the main collections page. All of a user’s
Archive-It collections are presented in a table (Figure 9), accompa-
nied by information about the most recent analysis conducted and
other collection-based metadata. Each collection title provides an
access point for conducting analysis. The second is a job summary
page, where users can generate, download, and monitor derivative
datasets. An overview of the collection identifies basic metadata
about the collection, including collection size and whether it is a
public or private collection. The second main feature of this space
provides tables that summarize “Jobs in Process” - the stage and
queue of any current jobs being run - and a “Completed Jobs” table
identifying all datasets previously generated, noting an accompa-
nying date/time stamp (Figure 10).

The third level is the generation of datasets (Figure 7). As a
core feature of ARCH, users can generate sixteen different datasets
for scholarly exploration. These datasets are categorized into four
main themes of analysis (Table 1).

Finally, the last level are the derivative dataset pages them-
selves. For each dataset generated, users can access an overview
page of the dataset, which provides metadata (file name, file size,

results count, and date completed), download options, a preview of
up to 100 lines, and the option to re-run any job. An example of this
can be seen in Figure 8. Where possible, in-browser visualization
and charts present a summary of the data. For instance, the extract
web graph dataset page offers an interactive network graph that
users can explore using simple functionalities like zooming in and

Dataset Category Description

Collection Offers an overview of a collection by
looking at simple statistical counts.

Network
Produces files that provide network graphs
for analysis and offer an opportunity to
explore the way websites link to each other.

Text
Allows the user to explore text components
of a web archive, including extracted
“plain text” HTML, CSS, and other web elements.

File formats
Provides files that contain information on
certain types of binary files found within
a web archive.

Table 1: ARCH Datasets



out on modes and clusters and exporting a high-resolution image.
These datasets are intended be downloaded and further explored
with other analytical tools and methods.

4.4 User Evaluation
The design process for ARCH involved a variety of interconnected
stages, from designing wireframes to building infrastructure to
connecting backend processes to the user interface. User experience
(UX) evaluations were essential for measuring and understanding
the needs of researchers. As such, the team conducted iterative and
multi-staged user testing and surveying to assess user needs and
experience. By engaging with Archive-It power users and Archives
Unleashed Cloud alumni in five closed user testing rounds, our team
gathered feedback and initial impressions of ARCH. Testing was
primarily conducted through surveys, which collected qualitative
and quantitative data to determine user satisfaction and experience.

Findings from the survey were translated into actionable tickets
to provide action-based tasks for development cycles. We were
able to implement the majority of action items, with some needing
further planning and only a few that fell outside of our scope of
work.

As a multi-stage UX testing process, each subsequent round of
testing served as another opportunity to review and refine impres-
sions of prior development and enhancements — improving our
accuracy and capacity to match user needs at each stage. Our final
rounds of testing concluded in early 2022. This final process served
two purposes. First, we expanded testing to include a larger group
(approximately 100 participants) to serve as a stress test. As this
was our largest testing group to date, this offered an opportunity
to verify ARCH’s robustness, capacity, and efficiency while noting
any bottlenecks or areas for improvement. Second, we conducted
focused interviews with a small group of researchers who have
extensively used ARCH since August 2021. These researchers were
ideal for understanding the real-life application and use cases of
the web archives research journey.

5 REFLECTIONS
In implementing ARCH, we focused on six key principles - dis-
cussed extensively above - that have driven design choices and
been verified through user studies. As a quantitative evaluation is
difficult for such objectives, we assess ARCH’s level of compliance
to these in the following qualitative evaluation.

5.1 Current State
ARCH has been designed as an integrated component of Archive-
It. Although it has been implemented as a separate, independent
app, it follows Archive-It’s design guidelines and workflows, and
natively supports Archive-It’s user accounts and collections by
deeply integrating its APIs. Data access from ARCH to these files
makes use of this replication. Its computing cluster runs within
the Internet Archive’s local network and is physically connected
to both PetaBox and Archive-It’s cluster nodes. ARCH’s access
strategy tries to first access files through the foreign cluster’s HDFS
(Hadoop Distributed File System) over the network. If a file is not
present, it exploits the direct access to HDFS and re-fetches a file
to its own HDFS, where it is cached medium term, to be available

for consecutive processing jobs using the same data. This close
integration of ARCH with the Internet Archive and Archive-It
fulfills the first and most basic principle of the ABCDEFs: it’s backed
by a digital Archive.

Looking at our Big Data definition, a crucial principle is the
derivation of data from difficult-to-handle big collections. This is
the main purpose of ARCH, as described under Current State and
guided by its user interface (see User Interface). Users start with one
of their full collections, a sub-collection of the Internet Archive’s
full web archive, also known as Wayback Machine, and select a
dataset, before ARCH derives the desired information from the raw
archival records to a smaller, derived, well-structured dataset. In
addition, ARCH runs derivation jobs on a smaller sample of a given
collection. For this process, a conditional algorithm was developed
to efficiently identify a sample, in which each specified condition
has to be met at least once.

A typical example of such conditions is data types. For derivation
jobs that aim to extract multiple data types of records, each of these
types should be included in the sample at least once in order to
have at least one example for every type in the preview. ARCH
reads a limited, pre-defined number of records from a dynamic set
of partitions of the distributed input dataset, in parallel, checking
every read record against the conditions and logging fulfilled ones.
If not all of them have been met, the set of partitions to be included
grows by fixed factor and another round of parallel probing starts.
Finally, from all checked partitions, the minimum set to fulfill all or
most conditions gets picked, and the candidate records from these
are selected as a sample in a highly efficient process.

In combinationwith job architecture, the central jobmanager has
been implemented according to the design presented through the
Concurrent principle. ARCH has been planned and developed as a
multi-tenant system with concurrency in mind from the beginning.
It currently features four job queues in total, two for the currently
supported job types, Spark and generic jobs, and two of each of
those for example and full runs. All of the currently integrated
jobs are based on Spark, which is used for the main derivation
tasks on our cluster in a distributed, parallel setting. Generic jobs
are simpler and can run any code or command-line instruction.
They are commonly used for post-processing the resulting dataset,
packaging them andmaking them ready for download by users. The
two job types are combined in chained jobs, which are registered
in the central job manager and presented as one job to the user, but
get queued and executed consecutively.

As mentioned, we make heavy use of Spark as our main driver,
running on a Hadoop cluster, to handle the typically large web
archive collections we have to deal with. Distributed design is key
in our caching and short-term storage infrastructure as well as
ARCH’s parallel jobs to gain the efficiency our users expect. The
previously described sampling algorithm has been specifically de-
signed for such distributed datasets. Without these ingredients,
we would not be able to process data at the scale we currently do.
At the same time, they complicate the development and require
thorough planning, as debugging such a system, running on mul-
tiple machines, can quickly become very complex. This has been
an area of engineering and implementation focus. Aware of the
extensive memory consumption of the underlying code base and
related issues, which caused numerous failed jobs in the previous
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Cloud platform - issues that remained unresolved as we started the
work on ARCH.

Efficiency is difficult to measure given the very different precon-
ditions and hardware setup of the earlier Cloud and the current
ARCH. However, we reduced the legacy issues around high mem-
ory consumption of the Cloud during our redesign. Finally, we’ve
reduced the memory consumption of ARCH to a fraction, roughly
by a factor of 10, while keeping a high level of efficiency and sta-
bility. As demonstrated through extensive testing and large user
studies, our jobs are robust. Furthermore, new efficiency of memory-
related issues were relatively straightforward to fix by applying the
strategies identified above under the Efficiency principle.

Finally, flexible design is a high priority in all of our architec-
ture. We have employed an agile development process in which we
regularly reviewed code, permanently refactored existing code to
combine duplicate codes into additional abstraction layers, intro-
duced shared modules, and streamlined unnecessary complexity.
Particularly for derivation jobs and corresponding data inputs, we
provide lean interfaces to plug in new types directly compatible
with ARCH’s job management system, including queuing, visu-
alization and user access. As an example, all jobs based on the
old Archives Unleashed Cloud and Toolkit, which are very similar,
derive from the same superclass with a specialized interface and
shared code specifically for these jobs. However, this layer sits on
top of the Spark job layer, which implements the generic job inter-
face. So, new jobs can plug-in either depending on their underlying
technology or even introduce a new type, which, by implement-
ing a very lean interface, will be manageable by the ARCH’s job
management system.

5.2 Outlook and Next Steps
In this outlook, we reflect on those features and improvements
that directly address the six key aspects this paper presents. While
the customization and configuration of ARCH have not yet been a
focus, it will become a priority in the next phase of this project as
it touches on all six ABCDEF principles. The most awaited features
under this theme are the customization of collections by specifying
filters to derive sub-collections and the customization and config-
uration of derivation jobs through parameterization, for instance,
the definition of tags for HTML extraction.

As we enter the final stage of user testing, we will launch ARCH
as a public Minimum Viable Product (MVP) to Archive-It sub-
scribers. Final development activities will prioritize user-defined
queries, which will ultimately allow users to generate smaller and
more manageable subsets within a collection. Many Archive-It
collections are large: for instance, some of the earlier referenced re-
searchers are using the International Internet Preservation Consor-
tium’s global Coronavirus web archive.While an exciting collection,
at 5 TB it is on the upper side of a collection and means generated
derivatives, such as the full-text, can still be in the hundreds of
gigabytes.

Accordingly, we are developing a system that will enable users to
filter these large collections into usable subsets. For example, users
might want to filter collections on facets including date, keyword,
or domain. The large collection might then be broken down into
a “collection of all webpages containing the word ‘Canada’,” “a
collection of webpages from March 2020,” or “all of the webpages
from https://www.who.int.”
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These features are under development and will be released in
the near future. They will help to tailor the archival datasets to
the user’s needs (Archive) and make datasets more specific, less
arbitrary, with more relevant data for downstream application and
hence, facilitate manageability of the dataset (Big Data). While
existing jobs have been implemented alongside ARCH job manager,
which ensures fair, concurrent processing, introducing customized
jobs and tailored datasets to this interface will be one of the biggest
challenges (Concurrent and Flexbile). In terms of data distribution
for custom sub-collections, it is crucial that candidate records are
efficiently selected and filtered from their source datasets. As sub-
collections may be very small compared to the original collection,
we want to avoid full scans of those by skipping irrelevant records.
This is where metadata records and random-access will come into
play to achieve efficiency in working with archival subsets, as
sketched above (Distributed and Efficient).

6 CONCLUSION
We have presented ARCH, the Archives Research Compute Hub,
along with six key principles (ABCDEF) for library or archive-
powered computing infrastructures that have fundamentally driven
our development and design. The evaluation has shown to what
extent the system follows the guidelines we have formulated as part

of these six objectives. Finally, it has been shown that ARCH suc-
cessfully reaches those self-set requirements, making it a reference
implementation for such a platform in the area of web archiving.

This will help us further meet the principles we’ve established as
the ABCDEF of Digital Libraries at Scale. In particular, we continue
our “Big Data” approach by making derivatives even more usable
and tailored to our users. Similarly, we increase the “efficiency” by
allowing people to work with more efficient and bounded datasets.
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