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Abstract 

H2A.Z is a highly conserved histone variant that replaces canonical histone H2A at 

specific loci to regulate diverse nuclear processes. Amongst these, the role of H2A.Z in 

transcriptional regulation is of particular interest due to its enrichment at promoters of 

most genes in yeast and higher eukaryotes. However, its precise role in regulation is 

complex, as it has been linked to both repression and activation. One possibility is that 

H2A.Z activity is regulated by post-translational modifications since H2A.Z can be 

acetylated or monoubiquitylated in mammals. For example, H2A.Z can be multiply 

acetylated at several lysine residues at its N-terminus, and such modified form is 

associated with active promoters. In contrast, our lab has previously shown that a 

fraction of H2A.Z is monoubiquitylated at its C-terminus, and this form is associated with 

silent chromatin. One aim of this thesis is to characterize monoubiquitylated H2A.Z-

nucleosomes in the context of transcriptional regulation. To this end, we devised a 

biotinylation-based method to enrich for H2A.ZUb1-mononucleosomes, and further 

characterized their composition and genomic distribution. In the second chapter, I 

demonstrate that H2A.ZUb1-enriched mononucleosomes are enriched with the histone 

post-translational modification H3K27me3, but depleted of H3K4 methylation and other 

modifications associated with transcriptional activity. H2A.ZUb1-eniched 

mononucleosomes also preferentially co-purify with proteins typically involved in 

repression, and with CTCF and cohesin. Consistent with these, ChIP-Seq analysis of 

H2A.ZUb1-nucleosomes identifies non-expressed genes as sites of H2A.ZUb1 

enrichment. In addition to post-translational modification, vertebrate H2A.Z is 

differentiated into non-allelic isoforms H2A.Z-1 and H2A.Z-2. Previously, we used mass-
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spectrometry to identify proteins that preferentially associate with H2A.Z-

mononucleosomes over H2A-mononucleosomes. In the third chapter, I show that one of 

these proteins, USP39, is enriched on mononucleosomes containing H2A.Z-1 over 

those containing H2A.Z-2, and that this selectivity can be mapped to an isoform-specific 

residue in its C-terminal tail. USP39 is a component of the U4/U6.U5 tri-snRNP, and 

consistent with a functional link between H2A.Z-1 and USP39, we identify a subset of 

shared alternative splicing events. Altogether, these data support functional 

diversification of H2A.Z through monoubiquitylation and isoform-specific amino acid 

substitution, and collectively, contribute to our understanding of biological pathways 

converging on H2A.Z.  
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1  General Introduction 

1.1  Chromatin structure and function 

The human haploid genome comprises roughly 3.0 x 109 base pairs (bp) of DNA and 

encodes around 20,000 – 25,000 protein-coding genes (Venter et al., 2001). In a diploid 

cell, this naked 6 x 109 bp of genetic material would be ~2 meters long if drawn-out end-

to-end, but instead, it is intricately packaged within a nucleus only 10 µm in diameter. To 

accomplish this organizational feat, eukaryotic DNA is bound with histone proteins, in 

regular and repeating arrays known as nucleosomes, which are the first-order of DNA 

packaging within the nucleus. The nucleosome is an octomeric particle consisting of two 

copies each of histones H2A, H2B, H3, and H4, about which 147 bp of DNA is wrapped 

in 1.67 left-handed superhelical turns. Core particles are connected by stretches of 

“linker DNA”, which can be up to 80 bp long. Linker histones, such as histone H1, bind 

to the core particle where DNA enters and exits the nucleosome, and to the inter-

nucleosomal DNA (Kornberg, 1974, 1977; Olins and Olins, 2003; Oudet et al., 1975) 

(Fig. 1-1). 

In 1884, A. Kossel first purified and coined the term histones for the highly 

abundant, acid-soluble component of nuclei, which through early studies, were shown to 

inhibit transcription by virtue of their association with DNA (Kossel, 1883; Olins and 

Olins, 2003). In 1964, Vincent Allfrey demonstrated by that histones were amenable to 

post-translational methylation and acetylation, and he proposed that the latter 

modification served to reduce their inhibitory effect on transcription (Allfrey et al., 1964).  
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A major breakthrough in the chromatin field came in the mid-1970s, when the 

basis for the repeating nature of chromatin as a 200 bp nuclease-resistant fragment was 

ascribed to an approximately spherical complex of histones, later structurally defined as 

the “histone octamer”, comprising a central (H3-H4)2 tetramer flanked by two H2A-H2B 

dimers (Kornberg, 1974; Olins and Olins, 2003). The discovery of the nucleosome 

revolutionized the perception of chromatin as a passive packaging medium to a 

dynamic and organized scaffold, and the nucleosome as the fundamental unit upon 

which all DNA-templated processes converge (Olins and Olins, 2003).  

The high degree of genome compaction achieved by chromatin organization 

must contend with its accessibility to other factors in order to meet activity demands of 

the cell. Additionally, while only ~1.5% of the genome is protein-coding, the rest 

includes non-coding elements such as telomeres, satellite DNA, specialized RNAs, 

repetitive elements such as LINES and SINES, as well as regulatory sequences such 

as promoters, enhancers and insulators (de Laat and Duboule, 2013; Lindblad-Toh et 

al., 2011; Plank and Dean, 2014; Venter et al., 2001). Enhancers are often distal to their 

cognate promoters and have been shown to function through long-range interactions 

that loop-out large intervening regions of chromatin (Dekker et al., 2002; Gibcus and 

Dekker, 2013; de Laat and Duboule, 2013). To satisfy these regulatory constraints, 

chromatin is non-randomly packaged at multiple layers into spatially segregated 

regions. Chromatin structure has been shown to be an important regulator of DNA-

templated processes at all scales, and hence characterizing the principles that underlie 

its conformations is essential to understanding the regulation of these activities. Recent 

advancements in next-generation sequencing technologies have greatly facilitated our 
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present global view of chromatin topology. These techniques provided mounting 

evidence that support the widespread existence of folded structures beyond 

nucleosomes, including loops, topological associating domains (TADs), chromatin 

domains, and chromosome territories (Gibcus and Dekker, 2013).  

1.1.1 Higher-order chromatin structures 

During interphase, each chromosome occupies a roughly spherical, spatially distinct 

“territory”, that intermingles with immediately adjacent chromosomes at its peripheries, 

creating a contiguous body of chromatin. Chromosome territories (CTs) are radially 

positioned such that gene-rich domains occupy the nuclear interior while gene-poor 

domains within chromosomes tend to localize at the nuclear periphery and associate 

with the nuclear lamina (lamina-associated domains; LADs)(Croft et al., 1999; Fritz et 

al., 2016; Lieberman-Aiden et al., 2009; Tanabe et al., 2002; Zhang et al., 2012). 

Fluorescence in situ hybridization (FISH) has also demonstrated that gene-rich regions 

tend to localize to the periphery of their CT, which facilitates the intermingling of these 

loci across different chromosomes (Branco and Pombo, 2006) (Fig. 1-2).  

Two general structural states within CTs (termed domains) were initially identified 

cytologically by how well they stained: Heterochromatin, which assumes highly 

condensed structures characterized by many inter-nucleosomal contacts, stains 

intensely, whereas euchromatin, a state in which chromatin is relatively uncondensed, 

stains poorly (Bickmore and Sumner, 1989; Craig and Bickmore, 1993; Holmquist, 

1992; Holmquist et al., 1982; Passarge, 1979). Many bodies of evidence have since 

established that the degree of chromatin compaction is inversely correlated with  
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transcriptional activity and gene density (Ciabrelli and Cavalli, 2015; Gilbert et al., 2004; 

Sabo et al., 2004; Weil et al., 2004). Heterochromatin can be further distinguished as 

facultative or constitutive. Facultative heterochromatin can interconvert between 

euchromatic and heterochromatic states depending on needs of the cell, and were first 

identified as regions that stained differently between cell-types. Such domains often 

comprise genes that are expressed during differentiation and development, and are 

subsequently silenced in a cell-type specific manner, and encompass genes that 

maintain transcriptional tractability (Trojer and Reinberg, 2007). Constitutive 

heterochromatin, in contrast, maintains an transcriptionally refractive conformation, 

organizing permanently silenced genes, centromeres, telomeres, and other repetitive 

DNA elements (Allshire and Madhani, 2018). Structurally alike domains associate 

through long-range interactions, with heterochromatin domains primarily interacting with 

other heterochromatin regions on the same chromosome arm, and euchromatin 

domains interacting with other euchromatin domains within the same chromosome arm, 

a different chromosome arm, or on other chromosomes (Branco and Pombo, 2006; 

Simonis et al., 2006; Würtele and Chartrand, 2006; Zhao et al., 2006). This 

intermingling of domains gives rise to “superdomains” composed of multiple, structurally 

similar chromosome regions. In some cases, intermingling amongst chromatin domains 

of similar function gives rise to membrane-less compartments known as “nuclear 

bodies”. Nuclear bodies are discrete, liquid-like droplets, whose phase-separation is 

self-driven by specific multivalent protein interactions amongst intrinsically disordered 

protein regions (IDRs) (Erdel and Rippe, 2018). Nuclear bodies are functionally 

coordinated macromolecular assemblies involved in specific and diverse cellular 
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processes. They include, for example: nucleoli, which are involved in ribosome 

biogenesis; nuclear speckles, which process RNA; transcription factories, which 

comprise high concentrations of active RNAPII, and conversely, Polycomb bodies, 

which are depleted of active RNAPII (Cavalli and Misteli, 2013; Erdel and Rippe, 2018; 

Lamond and Spector, 2003; Misteli, 2005).  

Recent technological development of genome-wide chromatin conformation 

capture techniques (e.g. 4C, HiC, and derivatives) has enabled construction of high-

resolution contact frequency maps, revealing chromatin folding within domains. These 

studies have established the conserved existence of preferentially interacting 

subdomain “globules”, on scales of tens of kilobases to several megabases (Dekker et 

al., 2002; Gibcus and Dekker, 2013). These so-called topological associated domains or 

“TADs” are regions of high local contact frequency containing tens of genes and 

hundreds of enhancers, and are insulated from other TADs by constrained boundaries 

across which little contact occurs. TAD boundaries are generally maintained between 

cell-types; however, their spatial positioning within CTs, as well as the long-range 

interactions that occur within them are lineage-specific (Dixon et al., 2012; Filippova et 

al., 2014; Nora et al., 2012). Consistent with these, variability in TAD boundaries and 

intra-TAD looping events have been shown to regulate specific genetic programs 

involved in establishing and maintaining cell identity; for example, super-enhancers, 

which are clusters of active enhancers densely populated by the five master 

transcription factors (i.e. Oct4, Sox2, Nanog, Klf4, and Esrrb) and which control the 

expression of lineage-specific genes, are often encompassed within TAD 

neighbourhoods (Dowen et al., 2014; Huang et al., 2018; Peng and Zhang, 2018).  
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Boundary regions that insulate chromatin domains, TADs, and intra-TAD looping 

events are enriched for CCCTC-binding factor (CTCF), an 11-zinc-finger, sequence-

specific DNA-binding architectural protein (Dixon et al., 2012; Merkenschlager and 

Odom, 2013). At the anchored bases of TADs and intra-TAD loops, CTCF co-localizes 

with the ring-like multiprotein complex, cohesin, which is best known for providing 

cohesion between sister chromatids during mitosis. Given that CTCF and cohesin are 

implicated in multiple levels of chromatin folding that can lead to distinct regulatory 

outcomes – for example, the insulation of regulatory elements through their segregation 

into adjacent TADs, or the bridging of promoter-enhancer interactions within TADs (Ali 

et al., 2016; Ong and Corces, 2014) – factors that differentiate these sites are of key 

interest. At the same time, while the correlation between chromatin folding state and 

transcriptional activity have been widely documented, the causal effects of these 

processes, or how they intersect at multiple scales, are poorly understood.  

Importantly, research in the past nearly two decades has established that 

chromatin domains and TADs can be characterized by their epigenetic landscapes 

(Cain et al., 2011; Gonzalez-Sandoval and Gasser, 2016; Imakaev et al., 2012). These 

comprise changes in gene expression through mechanisms operating at the 

nucleosome-level, and include DNA methylation, non-coding RNA, as well as histone 

variant exchange and histone post-translational modification (PTM) (Gonzalez-Sandoval 

and Gasser, 2016). The strong correlation between histone modification patterns and 

specific DNA activities has also been widely observed (Rothbart and Strahl, 2014) and; 

therefore, understanding how PTMs operate at the nucleosome-level provides a link to 
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understanding the functional interplay between genomic activity and chromatin 

structure.  

1.1.2 Histone modifications  

Nucleosomes are the first order of genome compaction and are dynamically regulated 

at specific loci by the exchange of canonical histones for variants and by post-

translational modification (Jenuwein and Allis, 2001). According to the prevailing model, 

strings of nucleosomes exist as 10 nm chromatin fibers, which constitute the template 

for higher-order folding of euchromatin regions (Wolffe, 1998). Heterochromatic 

nucleosomes, on the other hand, adopt a 30 nm, regular helical structure having a 

packing density of about 6 to 7 nucleosomes per 11 nm (Song et al., 2014). Histone 

modifications, such as variant histone incorporation and histone PTM, have been shown 

to elicit their effects on intra- and inter-nucleosome compaction and by extension, local 

genome accessibility, through two interrelated mechanisms: intrinsically, by directly 

altering charge-dependent contacts non-specifically, or extrinsically, by serving as 

binding platforms for specific chromatin “readers”. Readers of a given histone 

modification can include architectural proteins, (co-)transcription factors, or DNA 

(de)methylases. Significantly, readers can also be other histone-exchanging proteins 

(i.e. histone chaperones and remodelers) or histones modifying enzymes, and these 

interactions give rise to interconnected feedback loops that reinforce or inhibit the 

effects and propagation of specific histone modifications (Lee et al., 2010; Torres and 

Fujimori, 2015; Venne et al., 2014; Zhang et al., 2015). 
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Achievement of the nucleosome crystal structure significantly advanced our 

understanding of the interactions stabilizing the nucleosome particle and how these 

interactions influence the formation of higher order chromatin structures (Luger et al., 

1997). Each core histone contains a three-helix core domain known as a “histone fold” 

motif that directs heterodimerization of H2A with H2B, and H3 with H4, through an 

extensive protein-protein interface referred to as a “handshake” arrangement. Dimers of 

H2A/H2B form a region on the nucleosome surface known as the “acidic patch”, 

comprised of five amino acids from the docking domain of H2A (Glu 56, Glu 61, Glu 64, 

Asp 90, Glu 91 and Glu 92) and one residue from H2B (Glu 110). In vitro, the acidic 

patch is integral for the compaction of nucleosome arrays through contacts with the 

basic patch on the H4 tails of neighbouring nucleosomes, and it also mediates 

interactions with chromatin binding proteins in vivo (Fan et al., 2004; Kalashnikova 

Anna A. et al., 2013; Luger and Richmond, 1998). The H2A-H2B and H3-H4 dimers 

further associate with each other largely through 4-helical bundles such that an H3-H4 

tetramer is formed through an H3:H3 interface and is flanked by H2A-H2B dimers that 

associate through weaker binding of H2B with H4 (Alberts et al., 2002) (Fig. 1-3). As a 

result of this structural organization, the H3-H4 tetramer forms a stable core, whereas 

the two flanking H2A-H2B dimers are more readily displaced (Kulaeva et al., 2010). 

Histones are highly basic proteins and the histone octamer forms 6 distinct primary 

contacts with DNA, driven by electrostatic and hydrophobic interactions between the 

DNA phosphate backbone and the central H3-H4 tetramer (Luger et al., 1997). In 

addition to these structured regions, 25-30% of the mass of core histones is contained 

within their unstructured, intrinsically disordered “tail” domains, found at the N-terminal  
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regions of all four core histones, as well as at the C-terminus of H2A. Histone tails 

contribute very little to thermostability of the nucleosome core particle, and their primary 

role instead appears to be in mediating inter-nucleosome interactions. Indeed, 

experiments in vitro have demonstrated that tail domains are essential for compaction of 

nucleosome arrays into 30 nm fibers (Luger and Richmond, 1998). Histone tails interact 

with DNA weakly, and also with other intra- and inter-nucleosomal histones, and this 

binding can be finetuned through their substitution by histone variants or by the 

enzymatic modification of histones by PTM (Zhou et al., 2019). Binding of reader 

proteins to histone modifications also influences the chemical composition of 

nucleosomes, which also contributes to the stability nucleosome stability. 

Upwards of 20 types of modifications occur at more than 200 sites of PTM within 

the tails and lateral surface of canonical and linker histones and their 30 histone 

variants (Huang et al., 2015; Zhao and Garcia, 2015). Altogether, the expansive 

combinatorial arrangements of PTMs on different histones impart unique “nucleosome 

signatures” of distinct chemical compositions that help establish functional regions of 

the genome through nucleosome specialization.  

 

1.1.2.1 Histone post-translational modification 

Histones are post-translationally modified by the covalent, reversible addition of 

chemical groups to specific residues. These modifications include acetylation, 

phosphorylation, methylation, ubiquitylation, sumoylation, ADP-ribosylation, and 

deamination, as well as lesser-abundant, more recently discovered PTMs such as  
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butyrylation, propionylation, crotonylation, and serotonylation (Farrelly et al., 2019; Zhao 

and Garcia, 2015). Histone PTMs are mainly found within the intrinsically disordered N- 

and C-terminal tails that protrude from the core particle, and to a lesser extent, on the 

structured (globular) surface of the core particle itself (Tollervey and Lunyak, 2012; 

Zhao and Garcia, 2015) (Fig. 1-4). 

In general, active chromatin domains are characterized by distinct compositions 

of histone PTMs. For example, acetylation of histone H3 at lysine 27 (H3K27ac) and 

monomethylation of histone H3 at lysine 4 (H3K4me1) are associated with active 

enhancers, and H3K4me3 as well as H3 and H4 acetylation levels at promoters strongly 

correlate with their transcriptional activity. Ubiquitylation of histone H2B at lysine 120 

(H2BK120ub1), H3K79me3, and H3K36me3 are also linked to active transcription. In 

contrast, H3K27me3 and H2AK119ub1, as well as H3K9me3 are associated with 

transcriptional repression (Zhang et al., 2015). Although combinations of histone 

modifications associate with distinct chromatin states, the interplay between PTMs and 

PTM readers poses a challenge to assigning strict causality. The functional and 

biological significance of histone PTMs, especially in the context of epigenetic 

regulation, have been a matter of debate in the past decade. If causally linked, histone 

modifications may be deposited first to regulate transcription or alternatively, they can 

be deposited as a consequence of transcriptional activity. It is also possible that both de 

novo histone modifications and gene activity are the consequence of sequence-specific 

transcription factors, and that once established, the primary function of histone 

modifications is to act as a form of cellular memory within larger regulatory systems 

(Henikoff and Greally, 2016).  
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1.1.2.1.1.1 Intrinsic and extrinsic dynamics  

Histone PTMs can have direct or intrinsic effects on nucleosome dynamics. This 

typically occurs when they are deposited at key residues residing at the interface of 

histone-histone intra- or inter-nucleosome contacts, or histone-DNA contacts. At the 

same time, histone PTMs (including those having an intrinsic effect) can act as signals 

for the recruitment of chromatin binding proteins which in turn mediate or elicit 

chromatin function.  

When first discovered, the mechanism by which histone PTMs influence 

chromatin dynamics was thought to occur through their disruption of charge-dependent 

contacts between histones and DNA (Allfrey et al., 1964). Incidentally, a large 

proportion of PTMs occurring on the globular domains of the core particle, including on 

the lateral surface of octamer (which is in direct contact with DNA) are lysine 

acetylation, and serine or threonine phosphorylation events - PTMs that alter 

electrostatic potential of the nucleosome surface by neutralizing a charge or adding a 

negative charge, respectively. Examples of PTMs occurring on the globular domains are 

limited however, and most documented histone PTMs are observed on the flexible N- 

and C-terminal tail domains (Lawrence et al., 2016; Zhao and Garcia, 2015). Post-

translational modification within tail domains can also have direct effects on chromatin 

structure, and are important determinants of inter-nucleosome interactions. For 

example, histone hyperacetylation, which is associated with open, active euchromatin 

regions, only modestly affects the stability of individual nucleosomes, while a single 

acetylation event at lysine 16 within the tail of H4 (H4K16ac) dramatically reduces the 
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propensity of oligonucleosome arrays to self-associate in vitro (Shogren-Knaak et al., 

2006). This effect of H4K16ac has been attributed to its disruption of a key interaction 

between H4K16 on the tail of one nucleosome, with the acidic patch on an adjacent 

nucleosome. Notably, such interaction provides an example whereby intrinsic properties 

of the nucleosome interface with its extrinsic capacities, as PTM status of the H4 tail is 

in a position to competitively regulate accessibility to the acidic patch by reader binding 

domains, and vice-versa.  

Another type of dynamic interplay between histone modifications is “crosstalk”, 

which is the bridging of modifications by reader complexes that possess multiple 

activities and can promote or antagonize a given functional state (Lee et al., 2010; 

Torres and Fujimori, 2015; Venne et al., 2014; Zhang et al., 2015). For example, one of 

the first described instances of crosstalk accounts for the duality of effects H3 serine 10 

phosphorylation (H3S10p) imparts on chromatin structure - its decompaction during 

transcriptional activation of immediate early (IE) genes during mitogen stimulation, as 

well as its condensation during mitosis. During the former event, H3S10p has been 

shown to promote acetylation of the adjacent K14 and K9 residues on the same histone 

molecule to activate transcription of IE genes such as c-fos and c-jun (Cheung et al., 

2000; Clayton et al., 2000). At another target gene, FOSL1, H3S10p results in the 

recruitment of the MOF acetyltransferase, which then acetylates H4K16. Within this 

context, H4K16ac has been shown to recruit Brd4 through its acetyl-binding 

bromodomain, which then recruits the positive elongation factor b (p-TEFb) to 

phosphorylate serine 2 of paused RNA polymerase II (Zippo et al., 2009). In the mitosis 

context, H3S10p occurs concomitantly with trimethylation of K9 on H3 (H3K9me3) 
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during M-phase, where it has been shown to repel the binding of HP1 (heterochromatin 

binding protein 1) to H3K9me3 (presumably facilitating access to chromatin by factors 

involved in condensation) (Fischle et al., 2005). Histone PTM crosstalk is also proposed 

to act during de novo deposition and maintenance of H3K4me3, a PTM predominately 

associated with genes and strongly correlated with their active transcription (Santos-

Rosa et al., 2002; Strahl et al., 1999). H3K4me3 levels peak around the TSS of genes 

and this striking feature, conserved from yeast to humans, correlates with both 

antisense and sense transcription (Bornelöv et al., 2015). In mammals, H3K4me3 can 

be targeted to nonmethylated CpG islands by a zinc-finger-CXXC domain in the H3K4-

methylases MLL1 or MLL2. MLL complexes also contain PHD finger domains, which 

may enable it to bind its own H3K4me3 mark and positively reinforce it by directing 

H3K4-methylase activity towards adjacent nucleosomes (Shi et al., 2007; Wang et al., 

2010). H3K4me3 can also be maintained at promoters by monoubiquitylation of 

H2BK120 (H2BK120Ub1), through an activity-dependent crosstalk pathway purportedly 

conserved from yeast to humans. This pathway was first discovered in S. cerevisiae, 

where loss of H2Bub1 (either through deletion of Rad6 ubiquitin-conjugating enzyme, or 

mutation of the H2B ubiquitylation site, K123) resulted in genome-wide loss of H3K4-

methylation (Sun and Allis, 2002). In mammalian cells, H2BUb1 is catalyzed by the 

RNF20 and RNF40 ubiquitin ligases which associate with elongating RNAPII and are 

further activated by additional co-transcription factors (Osley, 2006). Significantly, 

H2BUb1 has been shown to allosterically stimulate activity of the MLL complexes by 

binding to its core subunit, ASH2L (Wu et al., 2013; Zhang et al., 2015). 
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The importance of histone PTM activity as a function of its overall chromatin 

environment – both within its cognate nucleosome and adjacent nucleosomes – is 

further demonstrated by evidence suggesting that epitope recognition by a single reader 

can occur across multiple histones and engage or sense multiple surfaces of the 

nucleosome (Ng and Cheung, 2015; Su and Denu, 2016). Examples of individual PTM-

binding domains include PHD fingers that bind methylated lysines, bromodomains that 

bind acetylated lysines, PWWP repeats, HEAT, WD40, MBT, ankyrin, and 

chromodomains that bind methylated lysines/arginines, and 14-3-3, BIR, and BRCT 

domains that bind phosphorylated serine/threonines (Yun et al., 2011). One of the first 

examples of such multivalent engagement at the nucleosome level is the binding of 

BPTF, a subunit of the Nucleosome Remodeling Factor (NURF), to active chromatin 

through adjacent PHD finger and bromodomain modules. The PHD finger of BPTF was 

first identified as a motif that specifically engages H3K4me3 (Wysocka et al., 2006). It 

was noted that a bromodomain is located adjacent to this PHD finger, and this tandem 

arrangement, termed the PHD-Bromo cassette, was predicted to bind combinatorial 

methyl/acetyl marks on histones. Subsequent characterization of the BPTF 

bromodomain by in vitro peptide binding found that it prefers to bind H4K12ac, 

H4K16ac, and H4K20ac modified peptides with comparable affinities (Ruthenburg et al., 

2011). Strikingly, when Ruthenburg et al. tested the combinatorial PTM binding 

preference of the BFTF PHD-Bromo cassette with semisynthetic nucleosomes bearing 

H3K4me3, and H4 acetylated at K12, K16, or K20, they found enhanced binding only 

with nucleosomes containing the H3K4me3-H4K16ac combination, but not when 

H3K4me3 is paired with other acetylation sites (Ruthenburg et al., 2011). These findings 
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highlight the importance of context (e.g. nucleosome versus peptide) that determine 

binding of PTM-binding domains to their cognate epitopes. Another example of 

multivalent binding at the nucleosome level is seen in the catalytic subunit of the NuRD 

complex, CHD4, which comprises tandem PHD fingers connected by a short linker 

(Musselman et al., 2012). These PHD fingers have been shown to mediate concomitant 

engagement of two H3 tails within a single reconstituted tetrasome (H3/H4 tetramer 

wrapped by 80 bp of DNA), which was used as a nucleosome substitute. Binding of 

these tandem PHD fingers was further shown to be enhanced by H3K9ac or H3K9me3, 

and weakened by H3K4me, as determined by NMR and pull-down approaches, 

suggesting that Lys9 hydrophobicity is a determinant of CHD4 PHD module association 

whereas successive methylation of Lys4 has an abrogative effect (Musselman et al., 

2012). A similar mode of multivalent recognition was also demonstrated for the tandem 

PHD finger protein CHD5, which has been shown to simultaneously engage two 

unmodified N-terminal H3 tails, and several PTMs within this region have been found to 

disrupt this high–affinity binding (Oliver et al., 2012). Finally, the PHD-bromodomain 

protein p300 has been identified as a multivalent reader in vitro. Using a DNA-barcode 

nucleosome library and a streamlined method for producing semisynthetic modified 

nucleosomes, the Muir lab found that concomitant hyperacetylation of nucleosomal H3 

and H4 resulted in a dramatically increased binding affinity of p300, albeit through 

hitherto undefined contacts (Nguyen et al., 2014). 

1.1.2.1.2 Polycomb silenced chromatin  
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Polycomb silencing has long been considered a paradigmatic model for the epigenetic 

maintenance of gene transcription programs (Aranda et al., 2015). Links between 

epigenetic-mediated repression and chromatin structure began 70 years ago with 

identification of Polycomb (Pc) in Drosophila melanogaster. The eponymous Polycomb 

gene was named after its striking dominant phenotype – the presence of multiple sex 

combs on all three pairs of legs in Pc mutant flies, while normally appearing exclusively 

on the most posterior pair. It was later surmised that transformation of embryonic body 

segments to resemble more posterior ones in response to Pc mutation was caused by 

the ectopic expression of homeotic (Hox) genes, which are master regulators of biaxial 

body pattern (Jürgens, 1985; Lewis, 2004). Genetic screens subsequently identified 

additional proteins whose loss-of-function mutations resulted in a similar phenotype, 

and are collectively referred to as Polycomb group (PcG) proteins (Ringrose and Paro, 

2004). Shortly after identifying PcG proteins, the first of several so-called Trithorax 

Group (TrxG) genes was discovered and found to antagonize activity of PcG, causing 

posterior body segments to display anterior traits upon mutation (e.g. loss of sex 

combs) (Klymenko and Müller, 2004; Poux et al., 2002). The additional early 

observation that PcG and TrxG proteins maintain Hox gene expression patterns after 

germline transcription factors that established their expression have long been diluted 

from the embryo led to hypothesize that antagonistic PcG and TrxG activities act as 

long-term cellular memory systems (Ringrose and Paro, 2004). Indeed, research has 

since extended these discoveries in mammals and established PcG and TrxG proteins 

as key regulators of developmental processes, including X chromosome inactivation, 
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genomic imprinting, cell-cycle control, stem cell plasticity, and dynamic response to 

developmental and environmental cues (Aranda et al., 2015; Bajusz et al., 2018).  

Traditionally, PcG proteins are primarily divided amongst two large complexes: 

PRC1 and PRC2 (Fig. 1-5). PRC2 consists of three components: EZH1/2, SUZ12, and 

EED. It catalyzes trimethylation of H3K27 (H3K27me3) through its SET domain-

containing methyltransferase EZH1/2, and this complex can also subsequently bind 

H3K27me3 through a WD40-repeat domain contained within its EED subunit. Binding of 

PRC2 to methylated H3 allosterically enhances activity of the SET domain of EZH1/2 

and results in the spreading of H3K27me3 (Aranda et al., 2015). Research in the past 

decade has recognised that PRC1 is further divided into canonical (cPRC1) and non-

canonical/variant (ncPRC1) complexes, and the latter is thought to have appeared 

earlier in evolution (Bajusz et al., 2018; Gao et al., 2012; Tavares et al., 2012). Both 

mammalian PRC1 complexes share a core comprising RING1 proteins (RING1A or 

RING1B), which possess ubiquitin ligase activities that catalyze monoubiquitylation of 

H2A at lysine K119 (H2AUb1), as well as one of six Polycomb group ring-finger 

domains (PCGF1-6). Canonical PRC1 complexes are only assembled around PCGF2 

or PCGF4 and in contrast to ncPRC1, contain a chromobox protein (CBX2, CBX4 or 

CBX6/8) that binds to H3K27me3. Canonical PRC1 complexes are further typified by 

the presence of a Polyhomeotic homologous protein domain (PHC1 through 3) 

comprising a sterile alpha (SAM) motif. Non-canonical PRC1, in contrast, can assemble 

with PCGF1 through PCGF6 to form the core of six discrete complexes respectively 

named ncPRC1.1 – ncPCR1.6, and these are further characterized by their complement 

of co-purifying ancillary factors (Bajusz et al., 2018; Di Croce and Helin, 2013; Junco et 
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al., 2013). Non-canonical PRC1 complexes lack a chromodomain and instead contain 

an RYBP (zinc-finger domain and YY1 binding protein) domain or its paralog YAF2, 

which are enhancers RING1 ubiquitin ligase activity of both in vitro and in vivo (Rose et 

al., 2016).  

Many studies have demonstrated that in differentiated cells, absence of PRC1 

and PRC2 interplay can result in the erosion of repressive Polycomb domains rendering 

target genes susceptible to inappropriate expression signals (Mills, 2010; Sashida and 

Iwama, 2017). Silencing by PcG must therefore be dynamically responsive yet robust. 

The relationships between cPRC1, ncPRC1 and PRC2 are intricate, and 

mechanistically, how these complexes are targeted to chromatin and how they 

orchestrate gene repression programs, is incompletely understood.  

One source of elusiveness comes from the fact that much of what we know about 

Polycomb silencing derives from studies of PRC2 and cPRC1, the functional homologue 

of Drosophila, and this has led to a simplistic hierarchal recruitment model in which 

PRC2-mediated H3K27me3 recruits PRC1 through its chromodomain, and PRC1-

catalyzed monoubiquitylation of H2A ultimately inhibits FACT (Facilitates Chromatin 

Transcription) through an unknown mechanism (Aranda et al., 2015). This model, 

however, does not explain how PRC2 itself is targeted to chromatin, nor does it account 

for sites of PRC1-binding that lack H3K27me3. Unidirectional recruitment of PcG 

complexes is also inconsistent with observations that H2AUb1 can also localize PRC2 

activity to a subset of genes. Studies in Drosophila have established that Hox gene 

silencing is accomplished through long-range looping events that link cis Polycomb 

response elements (PREs), and have demonstrated that exclusion of Hox genes from 
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these topological assemblies leads ectopic transcription and acquisition of H3K4me3 

(Montavon et al., 2011; Noordermeer et al., 2011). Although mammals appear to lack 

consensus PREs, PRC2, and to a lesser extent PRC1, has been shown to localize to 

unmethylated CpG islands, and cPRC1 can form topological structures through auto- 
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polymerization of its SAM domains in a RING1B-independent manner (Isono et al., 

2013). At the same time, ncPRC1 complexes have been shown to possess greater 

H2A-monoubiquitylation activity than cPRC1, but do not contain SAM domains, and 

hence how they mediate Polycomb silencing, in addition to recruiting or retaining of 

H3K27me3, remains obscure. Nevertheless, enzymatic activity of PRC1 is clearly a key 

component of PcG silencing at a subset of genes; PAX3, for example, is almost 

completely derepressed in RING1B mutants (Blackledge et al., 2019; Endoh et al., 

2012; Stoop et al., 2008). Although the discovery of ncPRC1 in addition to cPRC1 may 

hint at possible divergent functions and non-redundant targets amongst PRC1 

complexes, the activities of both PRC1 complexes could also converge within a more 

complex system of mutual reinforcement in which the interplay of cPRC1 and ncPRC1 

is required for silencing fidelity of the same transcriptional programs.  

 
 

1.1.2.2 Histone variants 

Histone variants further contribute to and expand the intrinsic and extrinsic properties of 

the nucleosome. These are non-allelic isoforms that differ from canonical histones by 

one to a few dozen amino acids. Unlike canonical histones, whose expression are 

restricted to S-phase to package newly synthesized DNA, histone variants are 

expressed throughout the cell-cycle and are substituted into specific sites of the 

genome through the activity of histone variant-specific chaperones and shared ATP-

driven nucleosome remodeling enzymes (Hamiche and Shuaib, 2012). Functional 

divergency of histone variants from canonical histones is first apparent by the 
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organization of their respective genes, as core histones are encoded by multiple, 

clustered copies of genes, and their mRNAs lack introns and poly-(A) tails. In contrast, 

variant histones are typically present as single-copy genes, and their mRNAs contain 

introns that may be alternatively spliced and are modified by poly-(A) tails (Osley, 2006). 

Although representing a only small proportion of the total cellular histone pool, histone 

variants are uniquely linked to key cellular and developmental processes. Evolutionarily, 

H4 and H2B are more constrained, while greater diversity is displayed amongst H3 and 

H2A (Henikoff 2013). For example, H2A has eight variants - H2A.X, H2A.Z-1, H2A.Z-2, 

H2A.Z-2.2 (an alternatively spliced form of H2A.Z-2 causing severe nucleosome 

destabilization and found most abundantly in brain (Bönisch et al., 2012)), H2A Barr 

body deficient (H2A.Bbd; also known as H2A.B), macroH2A1.1, macroH2A1.2 (which 

are splice variants), and macroH2A2 – while H3 has six variants – H3.3, histone H3-like 

centromeric protein A (CENP-A), H3.1T, H3.5, H3.X (also known as H3.Y.2), and H3.Y 

(also known as H3.Y.1) (Buschbeck and Hake, 2017). Additionally, two testis-specific 

variants of H2B (H2BFWT or H2B.W, and TSHH2B or H2B type A), and one variant of 

H4 (H4G) have been identified (Buschbeck and Hake, 2017; Long et al.).  

Some histone variants have well-defined effects on chromatin structure. H2A.B 

for example, has a C-terminus that is 19-amino acids shorter than canonical H2A and 

this has several effects on nucleosome structure. The portion of the H2A.B C-terminal 

tail that is absent encompasses the histone “docking domain” present on H2A and other 

family members that interfaces and interacts with the H3-H4 tetramer, resulting in 

nucleosome instability and a core particle that protects ~30 bp less DNA from 

micrococcal nuclease digestion. H2A.B also lacks a surface acidic patch and consistent 
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with this, arrays of H2A.B-containing nucleosomes cannot form compact chromatin 

fibers in vitro (Bao et al., 2004; Doyen et al., 2006; Zhou et al., 2007). Another H2A 

variant imparting distinct structural variation is mH2A (formerly macroH2A). mH2A 

possesses a large, non-histone, ‘macro’ domain of ~30 kDa at its C-terminal end, 

connected to its histone fold by an unstructured linker, resulting in a histone 

approximately three times the size of its canonical counterpart (Karras et al., 2005; 

Kustatscher et al., 2005). Structurally, incorporation of mH2A stabilizes the mH2A-H2B 

dimer with the H3-H4 tetramer (Chakravarthy et al., 2005) and consistent with this, 

mH2A is primarily associated with heterochromatin (Costanzi and Pehrson, 1998; 

Grigoryev et al., 2004; Zhang et al., 2005). The macro domain of mH2A is related to a 

family of proteins that includes a class of ADP-ribose processing enzymes and NAD+ 

metabolite-binding proteins, while the linker region of mH2A has been shown to bind 

and stabilize the DNA entry/exit site of the nucleosome in a manner reminiscent of 

histone H1, enhancing compaction of nucleosome arrays and fiber-fiber interactions in 

vitro (Kozlowski et al., 2018). Histone variant H3.3 incorporation also influences 

chromatin stability, and it differs from canonical H3 by only four amino acids. Three of 

these amino acids reside within the core particle interior (residues 87-90) and one is 

solvent-exposed (Ser31). Interestingly, all four residues promote chromatin array de-

compaction but have no effect on the stability of mononucleosomes, in vitro (Chen et 

al., 2013). Histone H3.3 has numerous and context-specific functions, and in vivo, its 

observed effects on chromatin compaction are likely linked to its turnover rate through 

the activity of H3.3-specific histone chaperones, HIRA and ATRX/DAXX. HIRA is linked 

to deposition of H3.3-H4 tetramers at the promoter and within the body of actively 
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transcribing genes, which exhibit high nucleosome-turnover, whereas ATRX/DAXX 

regulates incorporation of H3.3 at telomeres and pericentric regions, where nucleosome 

turnover is low (Kraushaar et al., 2013; Ricketts and Marmorstein, 2017; Szenker et al., 

2011). The differential recognition of histone variants by chaperones and its 

consequences for the nucleosome assembly pathway is one way in which histone 

variants can regulate chromatin. Additionally, nucleosome readers may be sensitive to 

histone variant status. For example lysine 36 methylation in the context of H3.3 

(H3.3K36me3) is specifically recognized by the putative tumour suppressor 

BS69/ZYMND11 through its Bromo-Zinc-PWWP cassette, and this interaction is 

antagonized by the phosphorylation of H3.3-specific residue Ser31 (Guo et al., 2014; 

Wen et al., 2014b). Another histone that undergoes variant-specific PTM is H2A.X, 

which is phosphorylated at Ser139 (known as g-H2A.X) in response to DNA damage, 

and this PTM is engaged by MDC1 (mediator of DNA damage checkpoint protein 1) 

through its BRCT (breast cancer associated carboxy-terminal) domain (Sawicka and 

Seiser, 2014).  

 

1.1.2.2.1 Histone variant H2A.Z 

The histone variant H2A.Z accounts for ~15% of total H2A in mammals. H2A.Z appears 

to have arisen once in early eukaryotic evolution and shares ~60% sequence identity 

with canonical H2A (Weber and Henikoff, 2014) (Fig. 1-6). The importance of H2A.Z is 

demonstrated by its requisite for viability of Tetrahymena thermophila, D. melanogaster, 

Xenopus leavis, and mice (van Daal and Elgin, 1992; Faast et al., 2001; Iouzalen et al., 

1996; Liu et al., 1996). H2A.Z is highly conserved and ~90% sequence identity is 
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shared amongst the protozoan parasite Plasmodium falciparia, Saccharomyces 

cerevisiae, mice, and humans, and is postulated to likewise be an essential factor in 

human development (Zlatanova and Thakar, 2008). Consistent with this, H2A.Z has 

been implicated in diverse biological processes including transcription activation and 

repression, chromosome segregation, heterochromatin silencing and boundary 

formation, cell cycle progression, and more recently, splicing regulation (Keogh et al., 

2006; Krogan et al., 2004; Meneghini et al., 2003; Mizuguchi et al., 2004; Neves et al., 

2017; Nissen et al., 2017; Zofall et al., 2009). H2A.Z is non-randomly distributed 

throughout the genome in both euchromatic and heterochromatic domains; however, 

the mechanisms by which it is localized by H2A.Z chaperones (which so far include 

ANP32E in metazoans) and remodeling complexes (SRCAP and p400/Tip60) are poorly 

understood (Cai et al., 2005; Choi et al., 2009; Ikura et al., 2000; Obri et al., 2014; Ruhl 

et al., 2006). While the mechanisms underlying the multiplicity of its functions are also 

incompletely delineated, modifications of H2A.Z and their modularity have been shown 

to contribute to the diversity of H2A.Z-containing nucleosomes. H2A.Z can be post-

translationally modified at specific lysine residues by acetylation, ubiquitylation, 

sumoylation, and methylation, and in vertebrates, is present as non-allelic paralogs, 

H2A.Z-1 and H2A.Z-2 (Eirín-López et al., 2009; Sevilla and Binda, 2014). Nucleosomes 

can also contain one copy of H2A.Z (heterotypic nucleosomes) or two copies 

(homotypic), and this distinction may also have functional consequences for chromatin. 

Homotypic and heterotypic H2A.Z-nucleosomes have been crystallized and while 

their overall structures are very similar to those containing H2A, several differences can 

be captured (Horikoshi et al., 2016; Suto et al., 2000). Firstly, substitution of Gln104 in  
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H2A by Gly106 in H2A.Z results in the loss of 3 hydrogen bonds between H2A.Z and 

the H3-H4 tetramer and is predicted to result in slight destabilization of the H2A.Z-

nucleosome; an expectation that appears to hold in vivo for acetylated H2A.Z-

nucleosomes or those also paired with H3.3 (Jin and Felsenfeld, 2007; Thambirajah et 

al., 2006). Secondly, dimers of H2A.Z-H2B display an extended acidic patch by 

replacement of Asn94 in H2A with an aspartate (H2A.Z Asp97), and H2A Lys95 with a 

serine (H2A.Z Ser98). The increased negative charge of this functional domain is 

predicted to provide a unique epitope for a distinct set of chromatin readers and 

enhance the propensity of H2A.Z-nucleosomes to form compact fibers through its 

increased affinity with neighboring H4 tails. Interestingly, with respect to the latter 

observation, arrays of H2A.Z-oligonucleosomes have been found to favor intra-fiber 

(local) interactions with the H4 tail, over inter-fiber (global) contact in vitro, resulting in 

unique chromatin domains refractory to highly condensed structures, and hence poised 

for de-compaction (Fan et al., 2002). At the same time, in specific contexts, highly 

dense intra-molecular folding of H2A.Z-arrays can stimulate binding by HP1a 

(heterochromatin protein 1a), which further promotes local chromatin compaction and a 

transcriptionally-refractive state. Indeed, this interaction is thought to contribute to 

compacted folding of pericentromeric and telomeric regions where H2A.Z and HP1a 

have been found to co-localize (Fan et al., 2004; Rangasamy et al., 2003). Finally, 

crystal structures predict increased thermostability of heterotypic versus homotypic 

H2A.Z-nucleosomes, as the L1 loop of H2A.Z is displaced in homotypic nucleosomes in 

comparison to those containing only H2A (Horikoshi et al., 2016). 
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In both yeast and vertebrates, H2A.Z is enriched within gene promoters as well 

at enhancers and insulators (Barski et al., 2007; Jin et al., 2009; Obri et al., 2014; 

Raisner et al., 2005; Weber and Henikoff, 2014). These regulatory regions are 

characterized by an accessible, nucleosome depleted region (NDR) flanked by strongly-

positioned nucleosomes (Hughes and Rando, 2014; Lee et al., 2004; Thurman et al., 

2012). Across Eukarya, H2A.Z is specifically localized at the promoter within the +1 

nucleosome located immediately downstream of the TSS (which is preceded a NDR), 

and a few positioned nucleosomes further downstream, but is relatively depleted over 

gene bodies (Barski et al., 2007; Lantermann et al., 2010; Mavrich et al., 2008; 

Zilberman et al., 2008). The +1 nucleosome plays an important role in impeding 

RNAPII progression and its barrier can be lowered through incorporation of H2A.Z, 

and is marked by H3K4me3 during transcription (Bönisch and Hake, 2012; Jin et al., 

2009; Weber et al., 2014a). In S. cerevisiae and mammals, H2A.Z is also enriched at 

the -1 nucleosome upstream of the TSS NDR, though this enrichment is not seen 

in Drosophila, Arabidopsis thaliana or Schizosaccharomyces pombe (Bagchi and Iyer, 

2016). H2A.Z is purportedly localized within the well-positioned -1 nucleosome in 

silenced genes, but is specifically depleted from this nucleosome in an RNAPII-

dependent manner upon activation (Schones et al., 2008). The -1 nucleosome is also 

an important regulator of antisense transcription from bidirectional promoters (Bagchi 

and Iyer, 2016). It is interesting to note that S.pombe cells lacking H2A.Z display 

increased antisense transcription (Zofall et al., 2009), while alternatively, in 

S.cerevisiae, incorporation of H2A.Z at the 3’ end of genes bodies has been found to 

promote overlapping antisense transcription (Bagchi and Iyer, 2016). Together, these 
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suggest that altering H2A.Z incorporation at the +1 and −1 nucleosomes may modulate 

the permissibility of nucleosomes bordering the NDR to RNAPII, and that H2A.Z may be 

able to inhibit transcription in both directions from the TSS through yet undefined 

mechanisms, which might include species-specific functions or differential PTM (Bagchi 

and Iyer, 2016).  

H2A.Z can be acetylated at specific lysines in its N-terminus and this form of 

the variant is involved in transcription activation. In vertebrates, H2A.Z is mainly 

acetylated at K4, K7, and K11, though it can also be acetylated at K13 and K15. In 

yeast, acetylated H2A.Z (acH2A.Z) is correlated with transcription activity, where it is 

found at the promoters of actively transcribing genes, and is required for galactose-

dependent gene induction (Halley et al., 2010; Millar et al., 2006). Alternatively, non-

acetylated H2A.Z is associated with inducible but silenced genes (Millar et al., 2006), 

and ectopically expressed unacetylatable H2A.Z is found at heterochromatin 

boundaries in yeast (Babiarz et al., 2006). However, in the latter juxtaposition, mutant 

H2A.Z, in contrast to its wild-type counterpart, is unable to prevent the spread of 

silent heterochromatin marks from telomeres into adjacent euchromatin regions 

(Babiarz et al., 2006; Meneghini et al., 2003). In chicken erythroblast cells, acH2A.Z 

is similarly enriched at the 5’ end of transcriptionally active genes, but is depleted in 

inactive genes (Bruce et al., 2005). More recently, acH2A.Z has also been implicated 

in myogenesis, as ectopic expression of unacetylatable H2A.Z mutants has been 

shown to reduce chromatin accessibility at the MyoD promoter, inhibiting MyoD 

expression and resulting in inhibition of the myogenic differentiation process (Law and 

Cheung, 2015). Studies in prostate cancer cells have also demonstrated the 
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presence of acH2A.Z at the promoter of active genes regulated by the androgen 

receptor and at the prostate specific antigen (PSA) enhancer, prior to rapid cycles of 

transcription in response to androgen induction (Dryhurst et al., 2012; Valdes-Mora et 

al., 2012), and is anti-correlated with promoter DNA methylation and H3K27me3 

(Valdes-Mora et al., 2012). It is yet unknown how acH2A.Z is mechanistically linked to 

transcriptional activation; however, studies of Drosophila H2A.Z (H2AvD) localization 

during DNA repair have suggested that this PTM can be coupled with its exchange 

for the unmodified form of H2A.Z (Kusch et al., 2004). Acetylation of H2A.Z has been 

proposed to de-stabilize the nucleosome as determined by in vitro salt-dependent 

dissociation assays (Thambirajah et al., 2006), and it is possible that acetylation of 

H2A.Z is coupled to its removal during active transcription. In an non-mutually 

exclusive manner, the acetylated tail of H2A.Z may act to bind or repel chromatin 

reader proteins which then regulate transcription. For example, our lab has shown 

that the bromodomain containing transcriptional activator Brd2 preferentially 

associates with H2A.Z-nucleosomes and is required for androgen receptor-mediated 

gene activation (Draker et al., 2012). Bromodomain-containing proteins recognize 

acetylated lysine residues and acH2A.Z is present at androgen-dependent promoters 

(Valdes-Mora et al., 2012). It is thus tempting to speculate that Brd2 is 

mechanistically linked to functional outcomes through acH2A.Z as well.  

Our lab has found that in addition to acetylation, H2A.Z can also be 

monoubiquitylated at either K120, K121, or K125, and that this PTM is catalyzed by 

the PRC1 E3 ligase Ring1b (Sarcinella et al., 2007). Work in our lab has previously 

demonstrated that monoubiquitylated H2A.Z (H2A.ZUb1) associates with the 



   36 
 

transcriptionally inactive X-chromosome, and that H2A.Z de-ubiquitylation precedes 

activation of androgen receptor-mediated genes (Draker et al., 2011). 

Monoubiquitylated H2A.Z reportedly co-localizes with acH2A.Z at bivalent promoters 

in mouse embryonic stem cells (mESCs), which are characterized by nucleosomes 

modified with both ‘repressive’ H3K27me3 and ‘active’ H3K4me3 PTMs (Ku et al., 

2012). Genes marked by bivalent promoters encode the majority of developmental 

regulators in mESCs and are transcriptionally silent, but poised for rapid activation in 

response to developmental cues (Ku et al., 2012). Recently, H2A.ZUb1 has been 

implicated as an important repressor of bivalent genes, akin to previous reports of 

H2AK119Ub1 in mESCs (Endoh et al., 2012; Surface et al., 2016). In this context, 

H2A.ZUb1 has been shown to antagonize the binding of Brd2, and absence of 

H2A.ZUb1 leads to faulty lineage commitment (Surface et al., 2016).  

Finally, vertebrates possess two non-allelic isoforms of H2A.Z, H2A.Z-1 

(H2AFZ) and H2A.Z-2 (H2AFV), which differ by three amino acids: residues 14 (Thr in 

H2A.Z-1 and Ala in H2A.Z-2), 38 (Ser in H2A.Z-1 and Thr in H2A.Z-2), and 127 (Val 

in H2A.Z-1 and Ala in H2A.Z-2) (Eirín-López et al., 2009). Residues 14 and 127 are 

located within the unstructured N- and C-terminal tails, respectively, while residue 38 

is located within the histone-fold domain. Most previous studies involving H2A.Z have 

not distinguished between these isoforms; however, several studies have suggested 

that they could possess distinct functions in transcriptional regulation and modulate 

non-overlapping sets of genes (Dunn et al., 2017; Faast et al., 2001; Matsuda et al., 

2010; Vardabasso et al., 2015). In vitro, salt-dissociation assays reveal that 

nucleosomes containing H2A.Z-1 or H2A.Z-2 do not differ in their stability or overall 
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nucleosome structure, while FRAP studies indicate that H2A.Z-1 is exchanged more 

rapidly than H2A.Z-2 (Horikoshi et al., 2016).  

 

1.2 Alternative splicing  

Introns are removed from mRNA precursors (pre-mRNA) and exons are ligated to form 

mature RNA through a process called splicing. Most Pre-mRNA splicing takes place 

within the major spliceosome, a large complex comprising five ribonucleoproteins 

(RNPs) containing the small nuclear RNAs (snRNAs) U1, U2, U4, U5, and U6, and as 

many as 150 other proteins. The spliceosome is assembled de novo for each splicing 

event, and recognizes exons and introns through multiple cis-acting signals, which 

promote networks of interactions that result in exon definition and intron definition, 

respectively. Four core splice signals demarcate exon-intron boundaries: the 5’ and 3’ 

splice sites (5’SS and 3’SS), which are upstream and downstream exon-intron 

junctions, respectively, the branchpoint site, and the polypyrimidine tract located 

upstream of the 3’SS (Fig. 1-6A). Human genes contain an average of 10 introns and 

nearly all transcripts are subject to alternative splicing (AS) in one or more cell types, 

providing a major source of transcriptomic and proteomic diversity (Pan et al., 2008; 

Wang et al., 2008). AS is the process whereby one gene produces a variety of isoforms 

through differential selection of splice sites (Fig. 1-7). Cassette exon skipping occurs 

when an intervening exon between two exons can be either included or skipped 

depending on context (e.g. spatiotemporally). Alternatively, exons that are always 

included are termed constitutive exons (Cui et al., 2017). In order to achieve AS, the 

splicing machinery must  
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discriminate between splice- sites in a context-dependent manner by integrating 

multiple cis and trans signals in addition to those of the basal core. The main types of 

AS events include exon skipping (cassette exons), where an exon is spliced in or out of 

the transcript; alternative 5’SS and 3’SS usage, which involves the recognition of one or 

more adjacent splice-sites in introns or exons; and intron retention, where an intron may 

be retained in otherwise mature mRNA (Iñiguez and Hernández, 2017). In vertebrates 

and invertebrates, exon skipping is the most prevalent form of AS, accounting for ~30-

40% of all events. Recent work has shown that intron retention is also more widespread 

than previously thought, affecting transcripts from approximately two-thirds of human 

genes (Braunschweig et al., 2014).  

One way AS is accomplished is through the action of cis regulatory sequences 

within the exons and introns of pre-mRNA referred to as enhancers and silencers. 

These recruit positive- or negative-acting splicing factors which then facilitate or inhibit 

assembly of the spliceosome at proximal splice-sites. These factors include the SR 

family of proteins, which contain one or two RNA recognition motifs (RRMs) and a C-

terminal RS-domain that is rich in alternating Arg and Ser residues. SR proteins typically 

promote recruitment of multiple factors throughout the spliceosome assembly pathway 

by recognizing exonic splicing enhancers (ESEs) and are required for formation of the 

catalytically competent core of the spliceosome. Members of the heterogenous nuclear 

ribonucleoprotein (hnRNP) family, in contrast, are structurally diverse and often 

antagonize SR protein activity, and include factors that bind exonic splicing silencers 

(ESSs), such as hnRNPA1, and PTBP1 or hnRNP I, which often binds to splicing 

silencers within introns (ISSs).  
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Splicing and transcription are intimately coupled both spatially and temporally, 

with introns often being removed as soon as they emerge from RNAPII. RNAPII can 

regulate splicing through two mechanisms. First, the C-terminal domain (CTD) of 

RNAPII, which consists of 52 YSPTSPS heptad repeats, can be phosphorylated at two 

sites (Ser2 and Ser5) in coordination with the transcription cycle and can act as a 

“landing pad” for recruitment of splicing factors, in differentially phosphorylated states. 

Secondly, RNAPII elongation rate influences the proportion of transcript available for 

spliceosome recognition, such that in general, faster elongation rates expose longer 

stretches of nascent mRNA and can favour the use of stronger, more distal splice-sites. 

Accordingly, slower elongation limits the RNA sequence presented and can favour 

usage of weaker, proximal splice-sites, resulting in the splicing of exons with suboptimal 

splice sites. Elongation rate can also affect the way pre-mRNA folds, and these 

structures are additional important determinants of spliceosome activity.  

 

1.2.1 Connections between chromatin and alternative splicing 

Chromatin can regulate splicing decisions by modulating both the rate of RNAPII 

and the recruitment of splicing factors. For example, nucleosomes are enriched on GC-

rich exons in comparison to introns, and can reduce RNAPII progression. While in vitro, 

the rate of RNAPII elongation is unaffected by the presence of nucleosomes, in vivo, 

RNAPII has been shown to pause preferentially at the DNA entry point and 45 bases 

into the nucleosome, where DNA contacts the H3/H4 tetramer. Although the signals that 

elicit RNAPII pausing have not been definitely established, its widespread occurrence is 

supported by ChIP-Seq and NET-Seq (native elongating transcript sequencing) data 
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demonstrating that RNAPII occupancy is greater and elongation rate is slower over 

exons than in introns (Mylonas and Tessarz, 2019; Saldi et al., 2016). Histone 

chaperones and remodelers that co-transcriptionally target H2A/H2B dimers influence 

the progression of RNAPII by promoting the assembly or disassembly of nucleosomes, 

and may indirectly modulate pre-mRNA processing through the deposition of histone 

variants which can further influence splicing outcomes in complex ways (Venkatesh and 

Workman, 2015). In yeast, for example, H2A.Z has recently been shown to both 

stimulate elongation rate and favour the usage of weak splice-sites that result in intron 

retention (Neves et al., 2017; Nissen et al., 2017).  

In addition to their potential effects on RNAPII kinetics, histone PTMs have been 

shown to regulate AS by recruiting splicing factors through chromatin binding 

intermediary or ‘adaptor’ proteins. Exons and introns differ in their profiles of histone 

PTMs, though in most cases, their effects on splicing have not yet been characterized. 

In general, H3K27me1/2/3, H3K36me3, H3K79me1, H4K20me1, and H2BK5me1 are 

enriched on exons, while H3K79me1/2, H2BK5me1, H3K4me1/2, H3K9me1, H3K23ac, 

and H2BUb1 are relatively enriched within introns (Kolasinska-Zwierz et al., 2009; Saldi 

et al., 2016; Spies et al., 2009). Of exonic PTMs, H3K36me3 is the most enriched and is 

present in actively transcribed gene bodies and over exons compared to flanking 

intronic sequence (Spies et al., 2009). H3K36me2/3 has been shown to recruit MRG15, 

a multifunctional chromodomain-containing protein that is a component of several 

histone-modifying complexes (Luco et al., 2010). In turn, MRG15 is thought to recruit 

the negative splicing factor PTBP1 to ISS elements to suppress exon inclusion, 

particularly when the ISS elements are suboptimal for PTBP1 binding (Luco et al., 
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2010). This interaction has been demonstrated at the FGFR2 gene, which is 

alternatively spliced into two mutually-exclusive and tissue-specific isoforms containing 

either exon IIIb or exon IIIc. In human mesenchymal stem cells, exon IIIb is enriched 

with H3K36me2/3 and its inclusion is suppressed in favour of exon IIIc. Alternatively, 

exon IIIb is included in epithelial PNT2 cells where FGFR2 contains lower levels of 

H3K36me2/3 (Luco et al., 2010). Another liaison between H3K36me3 and AS involves 

Psip1, which, through its PWWP domain, recruits SRSF1 to modulate exon inclusion or 

inclusion (Pradeepa et al., 2012). Trimethylation of K36 has also been linked to intron 

retention events within the context of H3.3, where it interacts with BS69/ZMYND11. 

BS69 binds directly to the U5 snRNP component EFTUD2 and thus possibly promotes 

IR by inhibiting formation of the active spliceosome (Guo et al., 2014). Another PTM 

involved in splicing regulation is H3K4me3, which can recruit the U2 snRNP 

subcomplex Sf3a through its interaction with CHD1 (Sims et al., 2007). Additionally, 

unmodified H3, H3K9ac, H3K9me, and H3K14ac have been shown to be important for 

tethering the SR proteins SRSF3 and ASF2/SF2 to interphase chromatin, and they are 

released from chromatin in response to H3S10 hyperphosphorylation during mitosis 

(Loomis et al., 2009). Finally, the histone variant H2A.B has recently been implicated in 

AS, and can bind both splicing factors and RNA (Soboleva et al., 2017). It has been 

proposed that H2A.B is able to sequester splicing factors that are competitively released 

in favour of nascent pre-mRNA which it then anchors, promoting spliceosome 

interaction and activity resulting in exon inclusion (Soboleva et al., 2017).  
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1.3 Overview of thesis goals  
 
A comprehensive description of H2A.Z requires an understanding of the activities 

different forms of H2A.Z carry-out within the nucleosome context. To this end, one 

objective of this thesis is to provide insight into the nucleosomal context and genome-

wide localization of H2A.Z-mononucleosomes post-translationally modified with 

monoubiquitin (described in detail in Chapter 3 of this thesis). Previously, we used a 

proteomics approach to identify proteins that selectively engage H2A.Z-nucleosomes 

and have identified splicing factors amongst the most abundant H2A.Z-enriched 

proteins. Therefore, a second aim of this thesis is to interrogate a potentially isoform-

specific role for H2A.Z in alternative splicing. In particular, we test a possible the link 

between H2A.Z-1 and the U4/U6.U5 tri-snRNP component USP39 (described in 

Chapter 4 of this thesis). Completion of these objectives not only involved development 

of new experimental approaches and methods, but also led to new and unexpected 

discoveries that raise further questions and ideas for future studies. 
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2 Characterization of mononucleosomes enriched for 
monoubiquitylated H2A.Z 
 
2.1 Introduction 

 Histone H2A.Z is a highly conserved histone variant that replaces canonical 

histone H2A at specific parts of the genome to regulate diverse nuclear processes. 

Many functional roles have been ascribed to H2A.Z, including transcriptional regulation , 

heterochromatin boundary formation (Meneghini et al., 2003), DNA repair (Kalocsay et 

al., 2009), maintenance of chromosome stability and segregation (Ahmed et al., 2007; 

Hou et al., 2010; Rangasamy et al., 2004), and more recently, the efficient splicing of 

pre-mRNA (Neves et al., 2017; Nissen et al., 2017). As suggested by the enrichment of 

H2A.Z at the promoters of most genes in yeast and higher eukaryotes, transcriptional 

regulation may be a key activity of this variant (Barski et al., 2007; Raisner et al., 2005). 

However, the precise function of H2A.Z in this process is still controversial, as 

nucleosomes containing H2A.Z are reported to have roles in both gene activation and 

repression (Guillemette and Gaudreau, 2006). Moreover, incorporation of this histone 

variant into chromatin also appears to have disparate structural effects, and studies 

have reported either a stabilizing or de-stabilizing effect on nucleosomes (Abbott et al., 

2001; Suto et al., 2000; Thambirajah et al., 2006). These discrepancies may be in part 

explained by differential histone post-translational modifications, since H2A.Z is 

amenable to both acetylation and monoubiquitylation in mammalian cells. For example, 

H2A.Z can be multiply acetylated at lysine residues proximal to its N-terminus (K4, K7, 

K11) (Beck et al., 2006; Bonenfant et al., 2007), and such modified forms of the variant 

is associated with the promoters of actively transcribing genes (Bruce et al., 2005; Millar 



   46 
 

et al., 2006). In contrast, we and others have found that a fraction of H2A.Z is 

monoubiquitylated at its C-terminus, which predominantly occurs on K120, but is 

occasionally found on K121 or K125 in low frequencies (Ku et al., 2012; Sarcinella et 

al., 2007). This form of H2A.Z associates with transcriptionally silent facultative 

heterochromatin, and with the repressed state of the prostate-specific antigen (PSA) 

gene prior to androgen receptor-mediated transcriptional activation (Draker et al., 2011; 

Sarcinella et al., 2007). More recently, it has been demonstrated using indirect methods 

that monoubiquitylated H2A.Z functionally antagonizes binding of the BET 

bromodomain family member Brd2 at the promoters of bivalent, developmentally-

poised, pluripotency genes in mouse embryonic stem cells (mESC) (Surface et al., 

2016). Altogether, these have suggested that monoubiquitylated H2A.Z is linked to 

transcriptional silencing, although the mechanisms by which it elicits this function is 

unknown.  

One well-established mechanism by which histone PTMs mediate their 

regulatory function within the nucleosome is by recruiting or retaining specific effector 

proteins. Combinations of histone PTMs can serve as multivalent docking sites which 

stabilize contacts between chromatin and the recruited protein or complex (Flanagan et 

al., 2005; Kikuchi et al., 2009; Wysocka et al., 2006). Another critically revealing facet of 

histone PTM signaling is that many chromatin binding proteins exist within large, multi-

subunit complexes (Ikura et al., 2000; Zippo et al., 2009). Importantly, the machineries 

that catalyze the deposition of PTMs often contain domains that bind the same, or 

different PTM, resulting in PTM crosstalk, which is the reinforcement of modifications 

through a positive feedback loop or inhibition of their activity by the deposition of 
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antagonizing marks on the same or different histone tail (eg. Hunter, 2007). Elucidating 

the combinatorial patterns of histone PTMs and how they cross-regulate one another is 

hence essential to understanding how they establish and maintain functional chromatin 

states.  

 A major obstacle to fully characterizing H2A.Z ubiquitylation is the lack of an 

antibody that specifically recognizes the monoubiquitylated form of this variant. 

Accordingly, in order to directly study monoubiquitylated H2A.Z (H2A.ZUb1) within the 

chromatin environment, we have developed an affinity purification system to isolate 

H2A.ZUb1-containing nucleosomes and bypass the previous reagent limitations. This 

method takes advantage of the specific biotinylation of proximal AviTag sequences (a 

unique 15 amino acid sequence) by the Escherichia coli BirA biotin ligase. When 

expressed as a fusion protein with BirA, H2A.Z-nucleosomes that are modified with 

ubiquitin containing an AviTag sequence will automatically be biotinylated by the BirA 

fusion, and thus can be specifically captured by streptavidin-conjugated beads (Fig. 2-

1). Using this strategy, we investigated the PTM status and genome-wide occupancy of 

H2A.ZUb1-enriched nucleosomes. Importantly, we observe that H2A.ZUb1-

nucleosomes are hypomethylated at H3K4, hypoacetylated at H2A.Z, H3K27 and H4, 

and hypermethylated at H3K27me3. In addition, by examining a subset of interacting 

partners that co-purify with H2A.ZUb1, we provide insight into the possible mechanisms 

by which it could function in chromatin repression. Consistent with these findings, ChIP-

Seq experiments reveal that H2A.ZUb1 is significantly enriched at the promoters of 

repressed genes, depleted at active enhancers, and is enriched at developmentally-

regulated genes. Collectively, these findings provide the first evidence for a genome-
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wide function of monoubiquitylation of H2A.Z in transcriptional repression, and further 

suggest previously unknown links between H2A.ZUb1 and other key chromatin 

processes.  

 

2.2 Methods 

2.2.1 Cell culture, transfection, plasmids and antibodies  

HEK293T cells were grown in Dulbecco’s modified Eagle’s medium supplemented with 

10% fetal bovine serum (DMEM; Wisent). All transfections were carried out using 

polyethylenimine (PEI; Polysciences). All expression constructs used were based on the 

pcDNA 3.1 (+) (Invitrogen) backbone with the Flag-BirA cloned in-frame to the C-

terminus of H2A.Z-1(hereafter termed H2A.Z-FB) or H2A.Z-K3R3 where all known sites 

of ubiquitylation on H2A.Z is mutated to arginines. In addition, the AviTag was cloned in-

frame to the N-terminus of ubiquitin. To generate H2A.Z-FB-K3R3, K120/121/125 were 

mutated to R120/121/125. To generate a non-biotinylatable AviTag, K10 of the AviTag 

sequence (GLNDIFEAQKIEWHE) was converted to R10. In co-transfection 

experiments, the ratio of H2A.Z-Flag-BirA to AviTag-Ub plasmids was 3:1. The 

commercial antibodies used were: H3 (Abcam ab1791), Flag (Sigma F7425), Anti-

Avidin (Genscript A00674), Avi-HRP (Sigma A3151), H3K4me1 (Diagenode 

C15410194), H3K4me2 (Upstate 07-030), H3K4me3 (Active Motif AM39159), 

H3K27me3 (Millipore 07-449), H3K27Ac (Abcam ab4729), H3K9me2 (Upstate 07-444), 

H3K9me3 (Millipore UBI 07-442), H2A.ZK4/7/11Ac (Abcam ab18262), H2A.ZK7 

(Diagenode C15210012), H4K5/8/12/16Ac (Millipore 06-946), Brd2 (Abcam ab3718), 
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LSD1 (Abcam 17721), DNMT3L (Abcam ab3493), SMC1 (Bethyl A300-055A), Rad21 

(Abcam ab154769), CTCF (Millipore 07-729).  

2.2.2 Mononucleosome affinity purification  

Generation of mononucleosomes was performed as described previously (Draker et al., 

2012). In brief, HEK293T cells were grown in 15 cm-diameter plates and were 

transfected with various constructs according to the experiments. Cells were 

trypsinized, counted, and washed in 1X PBS, 48 hrs following transfection. Cellular 

pellets were resuspended in buffer A (20mM HEPES, pH 7.5, 10mM KCl, 1.5mM MgCl2, 

0.34M sucrose, 10% glycerol, 1mM dithiothreitol, 5mM sodium butyrate, 10mM NEM, 

and protease inhibitors), pelleted and then resuspended in buffer A containing 0.2% 

Triton X-100 and incubated on ice for 5 min. The nuclear suspension was centrifuged at 

600 x g; nuclei were then washed once in buffer A, then resuspended in cutting buffer 

(15 mM NaCl, 60 mM KCl, 10 mM Tris pH 7.5, 5mM sodium butyrate, 10mM NEM, and 

protease inhibitors) plus 2mM CaCl2. Microccocal nuclease (MNase; Worthington) was 

added at a concentration of 10 units/1.0 x 107 cells then incubated at 37°C for 30 min. 

The reaction was stopped by the addition of 20mM EGTA (one twenty-fifth of the 

reaction volume) and immediate gentle mixing by inversion. The MNase-digested nuclei 

were centrifuged at 1300 x g. The resulting supernatant (S1) was saved and kept on 

ice. The digested nuclear pellet was subjected to hypotonic lysis by resuspension in TE 

buffer (10mM Tris-HCL, pH 8.0, 1mM EDTA). Samples were incubated on ice for 1 hr, 

with occasional mixing by pipette. The suspension was then centrifuged at 16 000 x g 

and the supernatant (S2) was transferred to a new tube. Salt was adjusted in S1 to 

150mM NaCl by adding 2X buffer D (30 mM Tris pH 7.5, 225 mM NaCl, 3 mM MgCl2, 
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20% glycerol, 0.4% Triton-X 100, 5mM sodium butyrate, 10mM NEM, and protease 

inhibitors) drop-wise, with constant mixing on a vortex set to low speed. S2 was also 

titrated to 150mM NaCl by the drop-wise addition of 3X buffer E (60 mM HEPES pH 7.5, 

450 mM NaCl, 4.5 mM MgCl2, 0.6 mM EGTA, 0.6 % Triton-X 100, 30% glycerol, 5mM 

sodium butyrate, 10mM NEM, and protease inhibitors). Insoluble material was pelleted 

via centrifugation. The clarified supernatants were combined and then used for affinity 

purification. Streptavidin-agarose (Sigma) or Flag M2-agarose beads (Sigma) were 

added and incubated overnight at 4°C on an end- over-end rotator. Beads were washed 

4 times in 1X Buffer D, followed by 3 washes in 1X Buffer D containing 0.5% Triton X-

100. Proteins were eluted from the beads by resuspension in 2X SDS sample buffer 

and boiled for 10min. For Western blot analysis, samples were run on SDS-

polyacrylamide electrophoresis gels according to standard practices.  

2.2.3 ChIP-Seq (analysis performed by Ulrich Braunschweig through collaboration with 

Dr. Benjamin Blencowe at U of Toronto) 

Mononucleosome affinity purification was performed in duplicate as described above 

using streptavidin-agarose, Flag M2-agarose, or H3 antibody (pulled-down using protein 

G-coupled Dynabeads; Invitrogen) and eluted in buffer D containing 1% SDS by end-

over-end rotation at room temperature for 2 X 10 min. DNA was treated with RNase A 

and proteinase K, purified by phenol-chloroform extraction, and then re-precipitated with 

ethanol and resuspended in water. DNA was converted to libraries by the Donnelly 

Sequencing Centre using Illumina TruSeq ChIP-Seq and sequenced on an Illumina 

NextSeq500 in single end mode. Reads were converted to FASTQ format and mapped 

to the human hg19 genome using Bowtie. Duplicate reads were removed. Peaks were 
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called using MACS2 using H3 as a control. Normalized peaks from duplicate 

experiments were then averaged and matched H3 samples were subtracted to yield 

fragments per million reads (FPM). The IDR procedure (Li et al., 2011) employed by 

ENCODE was then used to generate a merged peak set for both streptavidin and Flag 

with all raw peaks as input. At FDR < 0.05, 143k peaks (from 453k and 552k in 

streptavidin or Flag samples, respectively) were recovered in both. Enhancers were 

identified as co-localization of H3K4me1, H3K27ac, and DNaseI hypersensitivity sites 

(HSS) in either HeLa or several other cells and tissues.  

 

2.2.4 ChIP-qPCR  

Affinity-purified mononucleosomes were eluted in buffer D containing 1% SDS as 

described above. DNA was treated with RNase A and proteinase K, phenol-chloroform 

extracted from mononucleosomes, re-precipitated with ethanol, and then resuspended 

in water. Quantitative polymerase chain reactions (qPCR) were assembled in triplicate 

using PerfeCta SYBR Green SuperMix (Quanta Biosciences) and gene-specific 

primers. Reactions were run on an Optocon 2 thermocyler (Biorad). Primers used are 

listed in table S1 of Appendix.  

2.3 Results  

2.3.1 Isolation of H2A.ZUb1 

In order to isolate H2A.ZUb1-containing nucleosomes, we developed an affinity 

purification technique that harnesses the specificity of E.coli BirA for the AviTag 

(acceptor peptide) sequence (Fig. 2-1). BirA is a biotin ligase that catalyzes the 
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proximity-dependent and site-specific biotinylation of the AviTag. Importantly, the 

bacterial BirA enzyme does not biotinylate any endogenous mammalian proteins, and 

similarly, mammalian biotin-ligases do not recognize the AviTag (Barker and Campbell, 

1981; Beckett et al., 1999; Cull and Schatz, 2000; Schatz, 1993). We generated an 

H2A.Z-Flag-BirA fusion protein (H2A.Z-FB) and an AviTag-ubiquitin (AviTag-Ub) 

construct. 
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 We predicted that co-expression of these constructs in mammalian cells would result in 

preferential biotinylation of AviTag-ubiquitin incorporated on H2A.Z-FB, and in this 

manner, H2A.Z-FB-AviTag-Ub1-nucleosomes could be affinity-purified using 

streptavidin-conjugated beads.  

We first assessed the ability of H2A.Z-FB to specifically biotinylate itself in the 

presence of AviTag-Ub (Fig. 2-2).  
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For comparison, we included a construct in which Flag-BirA alone is fused to a 

nuclear localization signal (NLS), as well as an H2A.Z-FB construct in which the three 

sites of H2A.Z monoubiquitylation are converted to arginine and hence rendered non-

ubiquitylatable (H2A.Z-K3R3-FB). As predicted, when co-expressed with AviTag-

ubiquitin, the predominant band detected by Western blot when nuclear lysates were 

probed with avidin-conjugated horseradish peroxidase (Avi-HRP) is approximately 63 

kDa, which roughly corresponds to the molecular weight of H2A.Z-FB modified with 

biotinylated AviTag-Ub (Fig. 2-2, lane 5). The presence of this band is dependent on the 

co-transfection of AviTag-ubiquitin and also on the capacity of H2A.Z-FB to be 

monoubiquitylated (compare lane 5 to lanes 3 and 7 in Fig. 2-2). Additionally, a second, 

weaker signal is detected by Avi-HRP that is roughly 25 kDa. This minor band is 

similarly dependent on co-expression of AviTag-ubiquitin; however, it is also present 

when AviTag-ubiquitin is co-expressed with FB-NLS, albeit in lesser-abundance than 

when co-expressed with H2A.Z-FB or H2A.Z-K3R3-FB. The estimated molecular weight 

of this minor band approximates those of endogenous ubiquitylated H2A.Z, or H2A and 

we surmise it is likely due to H2A.Z-FB reaching and biotinylating Avi-ubiquitylated 

endogenous H2A.Z or H2A that co-exists with H2A.Z-FB within the nucleosome context. 

Nevertheless, as our H2A.ZUb1 construct is the most readily detectable biotinylated 

band, and presence of the minor band is more dependent on the fusion of Flag-BirA and 
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H2A.Z, we concluded that intramolecular biotinylation of monoubiquitinated H2A.Z-FB is 

a sufficiently selective reaction.  

We next used mononucleosomes prepared from nuclear lysates as input for 

affinity purification of H2A.ZUb1 using streptavidin- or Flag-conjugated beads. Here we 

included the co-transfection of H2A.Z-FB with a non-biotinylatable AviTag-ubiquitin 

construct (AviTag-K10R-Ub) in order to assess specificity of the streptavidin beads in 

our pull-down assays. Coomassie staining and visualization of affinity-purified samples 

confirmed assembly of H2A.Z-FB into nucleosomes based on the stoichiometric co-
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precipitation of additional core histones, and also confirmed the enrichment of 

H2A.ZUb1 using streptavidin beads (Fig. 2-3). 

 Using greater resolution gel electrophoresis and Western blot, we were able to 

separate monoubiquitylated H2A.Z-FB into two bands in pre-purified (input) lysates,  

corresponding to forms of H2A.Z-FB modified by either endogenous ubiquitin or a 

smaller fraction of AviTag-ubiquitin (see cartoon depiction on Fig. 2-4). Two bands of 

monoubiquitylation were also discernable in the input lysates of cells co-transfected with 

AviTag-K10R-Ub (Fig. 2-4). Importantly, streptavidin pull-downs from lysates co-

expressing H2A.Z-FB and AviTag-Ub specifically enrich for mononucleosomes 

containing H2A.Z-FB modified by biotinylated AviTag-Ub (i.e. H2A.ZUb1). In contrast, 

pull-downs from the same lysates using Flag antibody-coupled beads yields a mixture of 

mainly non-ubiquitylated H2A.Z (unmodified) and a smaller fraction of 

monoubiquitylated H2A.Z, and is considered a pool of bulk or “total” H2A.Z in our 

system. The distinct forms of H2A.Z pulled-down by the respective beads (i.e. 

streptavidin versus Flag) was most evident when equal amounts of affinity-purified 

nucleosomes were loaded on the same gel (normalized for H3 content) for comparison. 

As shown in Figure 2-4, we find that nucleosomes pulled-down with streptavidin 

exclusively contain the monoubiquitylated form of H2A.Z-FB (as detected by the Flag 

antibody) whereas in the Flag pull-down, the main form of H2A.Z-FB purified was non-

ubiquitylated (marked by the triple asterisk in the figure) and only a very small amount of 

ubiquitylated H2A.Z-FB (shifted band with double-asterisk) was co-purified. These 

results confirm the selective biotinylation of the Avi-ubiquitylated H2A.Z-FB and high 
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degree of purification achieved by streptavidin beads. Therefore, along with affinity-

purified mononucleosomes enriched with non-ubiquitylatable H2A.Z-K3R3-FB, we next  
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Figure 2-4. H2A.ZUb1 can be differentially enriched using  streptavidin-
and Flag-coupled beads. Mononucleosomes were prepared from HEK293Ts 
co-expressing H2A.Z-Flag-BirA (H2A.Z-FB) wildtype (WT) or non-ubiquitylatable 
mutant H2A.Z (K3R3) fused to Flag-BirA with either biotinylatable AviTag-
ubiquitin (WT) or non-biotinylatable AviTag-ubiquitin (K10R), as indicated, and 
used as input for affinity purification (AP) using streptavidin beads (SA) or Flag 
beads (Flag). Samples are normalized for nucleosome content probed with 
antibodies as indicated. 
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used these samples to assess the effect of H2A.ZUb1 on nucleosome composition, 

binding partners, and genome-wide localization.  

 

2.3.2 H2A.ZUb1 nucleosomes possess a distinct composition of histone post-
translational modifications 

 
Using the affinity purification scheme described, we first compared the 

associations of the differentially ubiquitylated populations of H2A.Z in HEK293T cells 

with a subset of well-characterized histone PTMs in order to garner insight into potential 

histone crosstalk involving H2A.ZUb1-nucleosomes (Fig. 2-5). We observe that 

H2A.ZUb1-enriched mononucleosomes are enriched for H3K27me3, consistent with our 

earlier finding that H2A.Z can be monoubiquitylated by the Polycomb repressive 

complex 1 (PRC1), and the well-established interplay between PRC1 and the H3K27-

methyltransferase complex, PRC2 (Blackledge et al., 2014; Cooper et al., 2014; Fischle 

et al., 2003; Holoch and Margueron, 2017; Min et al., 2003). In contrast, we did not 

observe any obvious differences amongst differentially enriched samples for  

H3K9me2/me3, histone modifications linked to constitutive repression (Bannister et al., 

2001; Lachner et al., 2001; Nakayama et al., 2001; Rea et al., 2000). We also observe 

that H2A.ZUb1-enriched mononucleosomes are depleted of H3K4-methylation marks 

(H3K4me1/2/3). Previously, we reported an enrichment of the promoter activity-linked 

modification H3K4me3 on total H2A.Z-nucleosomes in comparison to those containing 

H2A (Sarcinella et al., 2007). However, the preferential co-occurrence of these marks 

appears to be biased towards unmodified H2A.Z-mononucleosomes. In addition to  
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demarcating nucleosome depleted regions (NDR) around the transcriptional start site 

(TSS) of promoters, H2A.Z in combination with H3.3 also occupies active enhancer 

regions (Brunelle et al., 2015; Gévry et al., 2009; Jin et al., 2009). Enhancers can exist 

in 4 states: decommissioned (no histone PTM), poised (H3K4me1 and H3K27me3), 

primed (H3K4me1), or active (H3K4me1 and H3K27ac) (Creyghton et al., 2010; Rada-

Iglesias et al., 2011; Zentner et al., 2011). We find that H2A.ZUb1-mononucleosomes 

are depleted of both H3K4me1 and H3K27ac, suggesting that H2A.ZUb1-containing 

nucleosomes, in contrast to earlier reports studying total H2A.Z, are relatively depleted 

at active enhancers.  

In addition to the depletion of H3K27ac, we observe that H2A.ZUb1-

mononucleosomes are hypo-acetylated at other sites as well. Specifically, we observe a 

dramatic depletion of acetylation of H2A.Z at lysine 7 (H2A.ZK7ac) on H2A.ZUb1-

enriched mononucleosomes. The contrasting presence of H2A.ZK7ac in Flag-

immunoprecipitates indicates, however, that our H2A.ZUb1-constructs can also be 

acetylated at K7. This could suggest differences in the composition of affinity-purified 

H2A.ZUb1 between differentially enriched samples. For example, if our H2A.ZUb1-

enriched population also enriched for homotypic H2A.ZUb1-mononucleosomes (where 

two copies of H2A.Z are monoubiquitylated) then it could be this state that precludes the 

concomitant acetylation of H2A.ZK7. Alternatively, we find that H2A.Z acetylation 

detected using an antibody that recognizes acetylation at K4, K7, and K11 does not 

discernably vary, raising the possibility that acetylation/ deacetylation of H2A.ZUb1 at 

K7 is a selective reaction.  
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We have also previously found that bulk H2A.Z-containing nucleosomes are 

hyperacetylated at H4 in comparison to nucleosomes containing H2A (Draker et al., 

2012; Sarcinella et al., 2007). However, in the case of H2A.ZUb1, by probing the pulled-

down nucleosomes with an antibody recognizing H4 acetylation at K5/8/12, or K16, we 

observe that monoubiquitylation is associated with H4 acetylation depletion. 

Interestingly, we also find that levels of H4K16ac do not vary with H2A.Z 

monoubiquitylation status, indicating that H4 acetylation dynamics are affected by 

H2A.ZUb1 in a site-specific manner.  

In summary, we have found H2A.ZUb1-enriched nucleosomes to be depleted of 

modifications associated with active promoter and enhancer function, and instead to be 

enriched for the repressive mark H3K27me3.  

 
2.3.3 Chromatin binding proteins differentially associate with H2A.ZUb1 
nucleosomes 
 
We and others previously identified Brd2 as a chromatin binding protein with preferential 

enrichment on H2A.Z-nucleosomes, hinting at a mechanism for H2A.Z-mediated 

transcriptional regulation (Draker et al., 2012; Kim et al., 2013; Vardabasso et al., 2015). 

More recently, indirect approaches have suggested that monoubiquitylation of H2A.Z 

antagonizes the binding of Brd2 at bivalent promoters (i.e. those marked by 

nucleosomes bearing both H3K4me3 and H3K27me3) in mESCs (Surface et al., 2016). 

Given these findings, we first assessed the binding of Brd2 to H2A.ZUb1-

mononucleosomes and find that they are dramatically depleted of this interaction. This 

is consistent with the observation of antagonism in mESCs, and indicates that 
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antagonism between Brd2 and H2A.ZUb1 is a general phenomenon that occurs in 

differentiated cells as well as ESCs (Fig. 6).  

We next screened H2A.ZUb1-mononucleosomes for interactions with several 

possible effector proteins that are functionally linked to histone PTMs for which we 

observe differential enrichment on H2A.ZUb1 (Fig. 2-6). Consistent with the depletion of 

H3K4 methylation on H2A.ZUb1, H2A.ZUb1-mononucleosomes are enriched for 

KDM1A/ LSD1 (lysine-specific demethylase-1). LSD1 possesses H3 lysine 4 

demethylase activity as part of the NuRD (nucleosome remodeling and histone 

deacetylase) repressor complex, which couples histone demethylation to histone 

deacetylation (Wang et al., 2009). In contrast we find that menin, a co-factor of the 

MLL1/2 (mixed-lineage leukemia 1/2) H3K4 methyltransferases, does not differentially 

associate with H2A.ZUb1, and is co-purified with H2A.ZUb1- and H2A.Z-K3R3-

nucleosomes at similar levels. Though seemingly inconsistent given the observed 

hypomethylation of H3K4 in H2A.ZUb1-nucleosomes, it has previously been reported 

that H2A119KUb1 and MLL can regulate - and are regulated - allosterically, respectively 

(Wu et al., 2013; Yuan et al., 2013), and hence it might be the activity, and not the 

targeting, of MLL that is affected by presence of H2A.ZUb1.  

We also observe a clear, preferential enrichment of DNMT3L [DNA (cytosine-5)-

Methyltransferase 3-Like] on H2A.ZUb1-mononucleosomes (Fig. 2-6). DNMT3L is an 

enzyme that binds to, and stimulates the activity of, the de novo DNA 

methyltransferases, DNMT3A and DNMT3B (Chédin et al., 2002; Jia et al., 2007; 

Suetake et al., 2004). Like DNMT3A and DNMT3B, DNMT3L is able to sense the 

methylation status of H3K4, and preferentially interacts with unmethylated H3K4  
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(H3K4me0) (Argentaro et al., 2007; Ooi et al., 2007; Otani et al., 2009). The 

maintenance DNA methyltransferase DNMT1 was also recovered in an interaction 

screen as one the proteins most strongly enriched on H2AK119Ub1-nucleosomes in 

comparison to non-ubiquitylated H2A (Kalb et al., 2014), which suggests a similar 

possible connection between a preference of DNA methyltransferases with ubiquitylated 

H2A-family members.  

Finally, given the reported link between H2A.Z and enhancers, and its wider 

association with differentially packaged chromatin, we surveyed the ability of its 

modified forms to interact with SMC1 and Rad21, members of the cohesin complex, as 

well as the chromatin topology and transcription factor CTCF, which are thought to 

facilitate DNA looping between distal loci (Merkenschlager and Nora, 2016; Ong and 

Corces, 2014). To our surprise, we observe that both cohesin and CTCF show a 

marked preference for H2A.ZUb1 (Fig. 2-6). In order to exclude the possibility that this 

enrichment is due to binding of these proteins to the endogenous, monoubiquitylated 

lower band, we specifically purified the lower band from cells expressing the non-

ubiquitylatable H2A.Z-BirA fusion protein (H2A.Z-K3R3-FB) using streptavidin-coupled 

beads and compared this to H2A.ZUb1 (Fig. 2-6B). As shown in Figure 2-6B, both 

CTCF and cohesin preferentially purify with H2A.ZUb1 in comparison to endogenous 

monoubiquitylated nucleosomes, which may comprise a pool of H2A.ZUb1, H2AUb, and 

H2BUb1. This result further suggests that the preferential association of cohesin and 

CTCF with H2A.Z is dependent on the levels of H2A.ZUb1. Altogether, our affinity 
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purification results suggest that H2A.ZUb1-nucleosomes are enriched for, and thus 

functionally linked to, effector proteins that are known to function in transcriptional 

repression.  

 

2.3.4 Genome-wide mapping of H2A.ZUb1 occupancy 
 
The results thus far provide evidence that H2A.ZUb1 is preferentially associated with 

histone PTMs and interacting factors linked to the control of repressive chromatin 

states. Next, to determine whether H2A.ZUb1 is more generally associated with 

repressed genes, we used our purification strategy in combination with high throughput 

sequencing (which is equivalent to ChIP-Sequencing) to investigate the occupancy of 

H2A.ZUb1-mononucleosomes on a genome-wide scale. Specifically, we performed 

ChIP-Seq on H2A.ZUb1- mononucleosomes isolated from HEK293T cells using our 

streptavidin purification scheme or by Flag-affinity purification (total H2A.Z). The latter 

was used as a control for the distribution of steady-state-modified ectopic H2A.Z on 

chromatin.  

Overall, the mapping rates for streptavidin-purified H2A.ZUb1 or total H2A.Z 

were > 97% and >70% unique reads, with 60% of streptavidin-purified H2A.ZUb1 peaks 

overlapping with Flag-peaks. Most overlap between H2A.ZUb1-mononucleosomes and 

total H2A.Z was found to occur near genes. The average profile for both streptavidin- 

and Flag-peaks across > 40,000 annotated genes comprised canonical, well-phased, 

H2A.Z-containing bimodal nucleosomes flanking promoter NDRs, with signals 

decreasing towards the gene body (Supplementary Fig. 1). By correlating peaks with 
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gene expression measurements from RNA-seq data obtained from HEK293Ts, we 

observe that total levels of H2A.Z (Flag ChIP) in the promoter region correlate positively  
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with gene expression, both low and high. In contrast, we observe that levels of 

H2A.ZUb1-mononucleosomes (streptavidin ChIP) around the TSS do not vary with 

expression state, and are present at low levels in both expressed and non-expressed 

genes (Fig. 2-7A).  

By merging all peaks detected in either total (Flag)- or streptavidin-purified 

H2A.ZUb1-mononucleosomes and then comparing the read density of H2A.ZUb1 with 

total H2A.Z for each peak, we detected two sets of peaks with robust differences in 

relative signal. A significant enrichment is referred to as an “H2A.ZUb1-enriched” peak, 

and as an “H2A.ZUb1-depleted” peak if the peak were depleted. If there were no 

significant difference in read densities, peaks were designated as “no enrichment”. 

While most peaks have both total H2A.Z- and H2A.ZUb1-nucleosomes at average 

levels, a noteworthy exception is the presence of high levels of both H2A.ZUb1 and total 

H2A.Z within the gene bodies of non-expressed genes (Fig. 2-7A; top left and right 

respectively). Importantly, by comparing the peaks of H2A.ZUb1 with total H2A.Z, we 

observe that even though non-expressed genes have lower levels of H2A.Z around the 

TSS, a much higher fraction, of it, is monoubiquitylated and H2A.ZUb1-enriched (Fig. 2-

7A; bottom). In contrast, a significantly greater proportion (p < 0.05, Fisher’s exact) of 

H2A.ZUb1-depleted promoters compared to total H2A.ZUb1-bound promoters 

correspond to highly expressed genes (Fig. 2-7A; bottom) 

We next asked whether H2A.Z or H2A.ZUb1 preferentially occupy cell type-

dependent or cell type-independent genes. For this, we defined groups of genes based 
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on their expression in HEK293T versus ESCs. In order to exclude the possibility that 

differences in occupancy were due to expression differences in our samples, subsets of  
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the compared groups of genes were matched for expression levels (Fig. 2-8). As shown 

in Figure 2-7, both total H2A.Z and H2A.ZUb1 occupancy are significantly higher over 

cell-type dependent genes (p <0.05, Fisher’s exact); including genes that are relatively 

highly expressed in HEK293T versus ESC, as well as those that are comparatively 

lowly-expressed. We also looked at the “evenness” of expression of H2A.ZUb1-

enriched and H2A.ZUb1-depleted genes across a panel of 55 tissues and cell lines in 

existing RNA-seq data sets (Fig. 2-8). We find that genes that are H2A.ZUb1-enriched 

are highly expressed in a smaller number of cell types than genes with H2A.ZUb1-

depleted peaks, or no peaks at the promoter. These results support the notion that 

genes with a restricted expression patterns are preferentially regulated by 

monoubiquitylation of H2A.Z. 

  

 

2.3.5 Validation and characterization of H2A.ZUb1-enriched and H2A.ZUb1-

depleted promoters by gene-specific ChIP.  

 

 Finally, we selected subsets of H2A.ZUb1-enriched or H2A.ZUb1-depleted 

promoters identified by ChIP-Seq to validate by gene-specific ChIP (12 promoters 

each). Specifically, we performed ChIPs using streptavidin- or Flag-coupled beads, and 

used qPCRs with primers corresponding to regions flanking the TSSs of the 24 tested 

genes for quantitative analyses (see Table S1 for primer sequences). We normalized 

the streptavidin signals over the Flag signals and plotted the individual gene data as  
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shown in Figure 2-9A, and then combined the ChIP data of the two groups of genes for 

Box plot presentation and statistical analyses (Fig. 2-9B). In addition, we also examined 

the H3K4me3, H3K27me3, total H3 and total H2A.Z levels at the same promoters by 

ChIP analyses as well (Fig. 2-9). Although the ChIP data when viewed as individual 

genes are somewhat variable, once data from all H2A.ZUb1-enriched and H2A.ZUb1-

depleted promoters are grouped together, we were able to see clear and statistically 

relevant trends. First, as expected, the streptavidin-signal (streptavidin affinity-

purification normalized to Flag-purification signal) is significantly higher for the 

H2A.ZUb1-enriched group compared to the H2A.ZUb1-depleted group, indicating an 

enrichment of H2A.ZUb1 at those promoters (Fig. 2-9B). In contrast, the H2A.Z ChIP 

(using an antibody that recognizes both non-ubiquitylated and ubiquitylated H2A.Z) 

showed that there are statistically similar amounts of total H2A.Z at the promoters of 

both groups of genes, indicating that the differential streptavidin-signal seen between 

the two groups is not simply due to different amounts of H2A.Z at those promoters. 

Also, consistent with the histone PTM trends observed by our mononucleosome-AP-

Western blots, the H2A.ZUb1-enriched promoters are hyper-methylated for H3K27 but 

hypo-methylated for H3K4, and the reverse trend is seen at the H2A.ZUb1-depleted 

promoters. From these data, the most striking feature of the H2A.ZUb1-enriched 

promoters is the consistent hypo-methylation of H3K4, which suggests a possible 

incompatibility or antagonism between H2A.Z ubiquitylation and H3K4 methylation.  

 

2.4 Discussion 

2.4.1 Biochemical purification of H2A.ZUb1-mononucleosomes 
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Our development of this purification system allowed us to circumvent reliance on a 

conventional antibody system for detection and enrichment of H2A.ZUb1 for which there 

is no existing antibody. Moreover, while antibodies work well for many histone 

modifications (e.g. acetylation, methylation), monoubiquitin is a more challenging 

epitope for antibody development. This is because the C-terminus of ubiquitin must be 

recognized in addition to the isopeptide bond that links it to the histone, as well as an 

epitope on the histone surface. Antibodies do exist which specifically detect H2AUb and 

H2BUb; however, their generation necessitates intensive effort and screening many 

mono-clonal hybridomas. Our use of the BirA-biotinylation method in contrast allowed 

us to purify monoubiquitylated H2A.Z with much greater expediency. Additionally, our 

system is advantageous in that the non-covalent bond between biotin and the AviTag 

provides the high affinity interaction required to purify sufficient mononucleosomes for 

biochemical analyses. Our selective enrichment of nucleosome-incorporated 

monoubiquitylated H2A.Z-Flag-BirA is confirmed by the pull-down of mononucleosomes 

containing stoichiometric amounts of core histones, which almost exclusively contain 

Avi-ubiquitylated H2A.Z-FB (Fig. 2-4). In contrast, Flag pull-downs recover mostly non-

ubiquitylated H2A.Z-FB. At the same time, a potential disadvantage of our system is 

that it relies on an intramolecular reaction that is not exclusive to H2A.Z and hence 

could be susceptible to background biotinylation of Avi-tagged ubiquitin. For example, 

we found that H2A.Z-FB could potentially reach over and biotinylate Avi-ubiquitylated 

endogenous histones albeit at much lower efficiency (e.g. the abundance of the top 

band in comparison to the lower band detected by Avi-conjugates in Fig. 2-2). As a 

result, minor amounts of endogenous ubiquitylated histones are co-purified with 
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H2A.ZUb1. Nevertheless, as demonstrated by comparing streptavidin pull-downs of 

wildtype H2A.Z-FB and mutant H2A.Z-K3R3-FB, we observe increased binding of 

CTCF and SMC1 in proportion to the level of Avi-ubiquitylated H2A.Z-FB, suggesting 

that the binding proteins analyzed are selectively co-purified with H2A.ZUb1. Together, 

these support the efficacy of our system in selectively isolating mononucleosomes 

containing monoubiquitylated H2A.Z. 

 

2.4.2 Characterization of H2A.Z (Ub versus non-Ub)-mononucleosomes 

Using our system to compare H2A.ZUb1-mononucleosomes with equivalent amounts of 

Flag-IP’d H2A.Z (mostly non-ubiquitylated with minor amounts of ubiquitylated H2A.Z), 

we find that H2A.ZUb1 is preferentially linked to histone PTM hallmarks for 

transcriptional silencing whereas non-ubiquitylated H2A.Z is enriched with hallmarks of 

active transcription (i.e. H3K4 methylation, H3K27Ac, H4 acetylation, Fig. 2-5). The 

observed co-enrichment of H3K27me3 with H2A.ZUb1 is consistent with the link 

between H2A.Z ubiquitylation by the PRC1 complex RING1b E3 ligase previously 

reported by our lab (Sarcinella et al., 2007). Together, these results are in agreement 

with previous studies linking H2A.ZUb1 to transcriptional silencing (Draker et al., 2011; 

Sarcinella et al., 2007; Surface et al., 2016) and importantly, they validate that distinct 

combinations of histone PTMs co-exist with H2A.ZUb1 in the nucleosome context, 

suggesting the possibility of combinatorial effects and PTM crosstalk. This is further 

supported by the patterns visualized by Western blot analysis of a subset of co-purified 

binding proteins with previous links to H2A.Z (Fig. 2-6). For example, we find that 

transcriptional activators show either no enrichment (i.e. MLL) or are depleted on 
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H2A.ZUb1-mononucleosomes (i.e. Brd2). Alternatively, factors associated with silencing 

such as LSD1 and DNMT3L are enriched on H2A.ZUb1-nucleosomes. Interestingly, we 

observe the co-enrichment of H2A.ZUb1 with CTCF and cohesin components, which 

play an important role in establishing and maintaining the 3D architecture of the genome 

(reviewed in Ghirlando and Felsenfeld, 2016). The possible functional connections 

between the observed histone PTMs and the pattern of these binding factors are 

discussed in greater detail at the end of this section and in Figure 2-10. 

 

2.4.3 Genome-wide analysis of H2A.ZUb1 

To further interrogate the role of H2A.ZUb1, we compared the genome-wide 

distributions of H2A.Ub1 and total H2A.Z by performing ChIP-Seq using HEK293T cells 

(Fig. 2-7 and 2-8). For both streptavidin- and Flag-ChIP samples, H2A.Z-nucleosomes 

appear to flank the TSS, as demonstrated by the characteristic ‘double’ peak. This 

result also confirms that the BirA fusion to H2A.Z does not interfere with its targeting to 

the known genome-wide localization of H2A.Z. Additionally, we observe more total 

H2A.Z at the promoters of active genes, which fits with previous literature linking bulk 

H2A.Z with transcriptional competency and activity (Giaimo et al., 2019). Unexpectedly, 

we find roughly equal amounts of streptavidin-ChIP peaks at the promoters of both 

expressed and silent genes, suggesting that H2A.ZUb1 is not exclusively localized 

around inactive TSS, but is present around active promoters as well. However, since 

there are significantly higher levels of total H2A.Z at inactive promoters, this could 

indicate that it is the ratio of non-ubiquitylated H2A.Z to ubiquitylated H2A.Z at the TSS 

that regulates transcriptional activity. This possibility is supported by our comparison of 
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streptavidin-ChIP to Flag-ChIP at each peak and use of statistical analyses to 

categorize peaks as being H2A.ZUb1-enriched or H2A.ZUb1-depleted. By comparing 

these two groups, we are able to establish robust differences in their occurrence at the 

TSS, whereby H2A.ZUb1 is enriched at the promoter region of silent genes and is 

depleted at active promoters (and to a lesser-extent, is slightly enriched within inactive 

gene bodies). Notably, by using ChIP-qPCR to compare a subset of H2A.ZUb1-

enriched or H2A.ZUb1-depleted promoter regions identified by our ChIP-Seq analysis, 

we were able to confirm the respective enrichment of H3K27me3 or H3K4me3 at the 

promoters of these two groups of genes (Fig. 2-8). Moreover, this pattern exactly 

mirrors our biochemical analyses examining the PTM patterns seen on the bulk mono-

nucleosomes purified from SA- vs. Flag-IPs (Fig. 2-5). Cumulatively, these data 

consistently support the association of H2A.ZUb1 with the inactive state and non-

ubiquitylated H2A.Z with gene expression, and moreover, further suggest that it is the 

balance of ubiquitylated and non-ubiquitylated H2A.Z that links this histone variant to 

different transcriptional states.  

 

2.4.4 Possible links between H2A.ZUb1 and bivalency 

 In ES cells, H2A.Z occupies bivalent promoters, which are those characterized 

by TSS flanking-nucleosomes modified by both H3K27me3 and H3K4me3 (Bernstein et 

al., 2006; Creyghton et al., 2008). Bivalent promoters are highly enriched in pluripotent 

cells relative to differentiated cells and maintain developmentally important genes in a 

transcriptionally silent but poised state. H2A.Z has been shown to play an active role in 

the establishment of bivalent domains through its mutual interdependent recruitment of 
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PRC1 and PRC2 (Creyghton et al., 2008; Wang et al., 2018). Both H2AK119Ub1 and 

H2A.ZUb1 have also been localized to bivalent promoters (Endoh et al., 2012; de 

Napoles et al., 2004; Surface et al., 2016). H2AK119Ub1 contributes to the 

maintenance of PRC2 at bivalent domains and prevents the elongation of paused RNA 

polymerase, creating a transcriptional state primed for rapid activation (Blackledge et 

al., 2014; Stock et al., 2007; Zhou et al., 2008). More recently, H2A.ZUb1 has also been 

proposed to function by supporting PRC2 activity, and also found to antagonize the 

binding of transcriptional co-activator Brd2 at these sites (Surface et al., 2016).  

 How bivalent domains are resolved into states of transcriptional activity or stable 

repression marked by the removal of H3K27me3 or H3K4me3, respectively, remains 

poorly understood (Gao et al., 2018). The majority of bivalent genes are progressively 

and stably silenced during differentiation by PcG proteins. Interestingly, we have found 

that in differentiated cells, H2A.ZUb1-nucleosomes are depleted of H3K4 methylation 

marks and preferentially interact with LSD1, an H3K4-demethylase that functions within 

the larger NuRD chromatin remodeling and histone deacetylase complex (Whyte et al., 

2012). The LSD1-NuRD complex has been implicated in the control of early 

embryogenesis by maintaining bivalent promoters through control of H3K4me1/2 levels 

(which can influence the equilibrium of H3K4me3), as well as directly decommissioning 

of active enhancers (Adamo et al., 2011; Whyte et al., 2012). The NuRD complex also 

possesses histone deacetylase function from its HDAC1 and HDAC2 (histone 

deacetylase 1 and histone deacetylase 2) subunits, and has been shown to functionally 

overlap with Polycomb proteins. Specifically, the HDAC activity of NuRD is required at 

bivalent genes for the deacetylation of H3K27 and the stable association of PRC2 and 
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subsequent deposition of H3K27me3 in ES cells (Hu and Wade, 2012; Reynolds et al., 

2012). Given that we find H2A.ZUb1-nucleosomes to be hypoacetylated, depleted of 

H3K4 methylation and enriched for H3K27me3, it is plausible that the interaction we 

observe between H2A.ZUb1-enriched nucleosomes and LSD1 reflects a functional 

relationship that not only results in the de-methylation of H3K4, but also in the de-

acetylation of H3K27 through the NuRD complex. This interaction could subsequently 

support H3K27 trimethylation at nucleosomes enriched with H2A.ZUb1. In this manner, 

H2A.ZUb1 could play an active role in establishing repressive chromatin domains not 

only by antagonizing the binding of Brd2, but also by promoting the association of LSD1 

and possibly other co-repressors.  

 

2.4.5 Possible links between H2A.ZUb1 and DNA methylation 

 We find further links between H2A.ZUb1 and transcriptional repression through 

the preferential binding of DNMT3L to H2A.ZUb1-nucleosomes in comparison to those 

containing non-ubiquitylatable H2A.Z. DNMT3L itself does not possess DNA 

methyltransferase activity but regulates de novo DNA methylation by stimulating the 

enzymatic activities of DNMT3A and DNMT3B (Chédin et al., 2002; Suetake et al., 

2004), and has been shown to target chromatin through its H3K4me0 (i.e. unmethylated 

H3K4)-binding ADD domain (Argentaro et al., 2007; Ooi et al., 2007; Otani et al., 2009). 

Cytosine methylation and Polycomb complexes represent two major repressive 

pathways that primarily act on non-overlapping sets of genes with some notable 

exceptions such as their colocalization at the inactive X chromosome (Pinheiro and 

Heard, 2017; Viré et al., 2006). Our finding that H2A.ZUb1 localizes to the inactive X 
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chromosome (Sarcinella et al., 2007) and promotes the chromatin-association of 

DNMT3L (current study) could suggest that H2A.ZUb1 is able to regulate de novo 

methylation in certain contexts. Although presence of H2A.Z and DNA methylation is 

generally found to anticorrelate around TSSs and gene bodies (Conerly et al., 2010), 

H2A.ZUb1 could be linked to de novo DNA methylation through the Polycomb pathway 

at discrete sites in the genome. PRC2 has also been shown to direct cytosine 

methylation at a subset of genes by directly binding DNMT3A, DNMT3B, as well as the 

maintenance methyltransferase DNMT1, which restores nascent strand DNA 

methylation at hemimethylated CpGs following DNA replication (Viré et al., 2006). More 

recently, DNMT1 was recovered as one of the most enriched proteins pulled-down with 

H2AK119Ub1 (Kalb et al., 2014). At the same time, FBXL10 (also known as KDM2B), a 

subunit of the non-canonical PRC1.1 complex, has been shown to directly antagonize 

de novo methylation by binding unmethylated CpGs at loci bound by both PRC1 and 

PRC2 (Boulard et al., 2015). Moreover, recruitment of FBXL10 to bivalent promoters 

has been shown to be impaired in ES cells expressing non-ubiquitylatable H2A.Z 

(Surface et al., 2016). It is therefore possible that Polycomb-directed DNA methylation 

could outcompete FBXL10 when DNA methyltransferases are stabilized through 

multiple contacts that include H2A.ZUb1-nucleosomes. One hypothesis is that 

involvement of H2A.ZUb1 in DNA methylation could function to reinforce the stable 

repression of PcG domains, whereas de-ubiquitylation of H2A.Z could alternatively 

contribute to loss of DNA methylation. Interestingly, DNMT1 activity has been shown to 

be dependent on UHRF1-mediated ubiquitylation of histone H3. Specifically, the direct 

binding of DNMT1 to monoubiquitylated H3 is essential for the faithful transmission of 
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cytosine methylation following DNA replication (Nishiyama et al., 2013; Qin et al., 2015). 

It is tempting to speculate that recognition of monoubiquitylated H2A.Z by DNA 

methyltransferases could likewise occur to ensure the fidelity of DNA methylation 

outside of replication.  

In differentiated cells, DNA methylation has been shown to antagonize the 

spread of Polycomb domains and ectopic recruitment of PcG proteins (Lynch et al., 

2012; Reddington et al., 2014). Therefore, de novo DNA methylation within the 

Polycomb pathway could also serve a negative-feedback function to restrain the spread 

of PcG domains. To this end, another possibility is that de novo DNA methylation could 

be promoted through H2A.ZUb1 as part of a pathway to generate cytosine methylation 

intermediates. For example, the TET family of dioxygenases which catalyze the 

conversion of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) are recruited 

to bivalent genes through PRC2 and overlap with Polycomb-repressed domains (Putiri 

et al., 2014; Williams et al., 2011). 5hmC has been suggested to protect against 

aberrant DNA hypermethylation while contributing to the repressive state through its 

interactions with co-repressors such as NuRD and Sin3A (Chandru et al., 2018; 

Williams et al., 2011; Yildirim et al., 2011). At the same time, 5hmC has also been 

proposed to promote DNA methylation, presumably through in/direct influences on local 

chromatin structure (Putiri et al., 2014). It will therefore be of great interest to determine 

if H2A.ZUb1 is functionally linked to catalysis of 5mC and if so, whether it plays a role in 

the turnover of methylated cytosines.  

 

2.4.6 Possible links between H2A.ZUb1 and architectural proteins 
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Polycomb-target genes are also regulated at the level of higher-order chromatin 

structure. For example, Polycomb genes exist within topologically associating domains 

(TADs) and these can further interact to form larger domains visualized microscopically 

as Polycomb bodies or foci (Entrevan et al., 2016; Pirrotta and Li, 2012; Wani et al., 

2016). TADs are sub-megabased sized, self-interacting chromatin folds which, in 

general, confine active versus inactive domains to create insulated neighbourhoods of 

similar transcriptional activity (Dixon et al., 2012; Nora et al., 2012). Two architectural 

proteins, CTCF and cohesin, primarily form and maintain the boundaries of TADs, as 

well as the looping events that occur between promoters and enhancers, and other 

long-range chromatin interactions. CTCF is an 11-zinc-finger, sequence-specific DNA-

binding protein, and cohesin is a ring-shaped complex comprising the core subunits 

SMC1, SMC3, SCC1 (Rad21), and SA1/SA2 (Parelho et al., 2008; Rao et al., 2014; 

Rubio et al., 2008; Stedman et al., 2008; Vietri Rudan et al., 2015; Wang et al., 2012). 

CTCF binding motifs are non-palindromic DNA sequences and CTCF homodimerizes 

when two specific DNA binding sites are convergently oriented. The bases of these 

loops are joined and further stabilized by a pair of cohesin molecules (Ghirlando and 

Felsenfeld, 2016).  

Interestingly, we have found that CTCF and cohesin selectively engage 

H2A.ZUb1-nucleosomes. It has previously been shown that H2A.Z-nucleosomes flank 

CTCF binding motifs and is likely important for maintaining a nucleosome-free region 

permissive to CTCF engagement (Barski et al., 2007; Henikoff, 2009; Jin and 

Felsenfeld, 2007). At the same time, PRC1 is able to self-polymerize through the sterile 

alpha motif (SAM) within its Polyhomeotic (Ph) domain (Blackledge et al., 2015; Isono et 
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al., 2013). It is possible that by associating with CTCF/cohesin as well as PRC1, 

H2A.ZUb1-nucleosomes are uniquely positioned to regulate long-range chromatin 

interactions on multiple scales. Certain long-range contacts such as those with barrier 

function could be strengthened by H2A.ZUb1-nucleosome interactions with 

CTCF/cohesin with the corollary effect of weakening those mediated through 

oligomerization of PRC1 or vice versa. If true, H2A.ZUb1-nucleosomes could contribute 

to plasticity of silent chromatin by ensuring that physical domains do not become fixed.  

At the same time, subsets of CTCF binding sites display sensitivity to 5-

methylcytosine or 5-hydroxymethylcytosine (Maurano et al., 2015; Wang et al., 2012; 

Yu et al., 2012). Our finding that H2A.ZUb1-nucleosomes also selectively engage 

DNMT3L may therefore suggest H2A.ZUb1 could also regulate CTCF binding through 

methylation turnover in certain contexts and potentially disrupt the CTCF binding by 

directing de novo DNA methylation. At the same time, H2A.Z has been suggested to 

bookmark CTCF-bound sites during cell division (Oomen et al., 2018) and given that 

Polycomb patterns could persist through mitosis through self-propagation (Reinberg and 

Vales, 2018), it is possible that monoubiquitylation of H2A.ZUb1 could also ensure the 

robust inheritance of organized domains. 

In an alternative scenario, monoubiquitylation of H2A.Z could be linked to CTCF 

and cohesin at promoters that display unidirectional transcription. For example, CTCF 

and cohesin are found to occupy the upstream TSS nucleosome in unidirectional genes 

but not in bidirectional ones, and their occupancy has been suggested to function in 

blocking initiation of antisense transcription (Bagchi and Iyer, 2016; Bornelöv et al., 

2015). H2A.Z is present within nucleosomes immediately upstream (the -1 nucleosome) 
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and downstream (the +1 nucleosome) of the TSS of most promoters where it is 

presumed to contribute to nucleosome-depletion and hence permissiveness to RNAPII 

loading (Jin et al., 2009; Weber et al., 2014b). At the +1 nucleosome, H2A.Z-

nucleosomes also tend to contain histone variant H3.3 and such dual-histone variant 

nucleosomes serve to enhance RNAPII processivity through multiple mechanisms 

including their increased rate of turnover (Weber et al., 2014b). It is therefore tempting 

hypothesize that monoubiquitylation of H2A.Z at promoters could preferentially occur at 

the nucleosome immediately upstream of the TSS where it could direct CTCF/cohesin-

complexes to supress divergent transcription. Additionally, H2A.ZUb1 at the -1 

nucleosome could also serve to increase the activation energy barrier presented to 

RNAPII through its antagonism of Brd2 and association with other co-repressors (Fig. 2-

9). This could also coincide with our observation that low levels of H2A.ZUb1 tend to 

overlap with H2A.Z-enriched sites globally regardless of transcription-level. 

 

2.4.7 Concluding comments 

 Together, our finding that both H2A.ZUb1-nuclesomes as well as total-H2A.Z-

containing nucleosomes are present at high levels within the promoter region and body 

of genes that are downregulated or upregulated in HEK293T in comparison to ES cells 

could suggest that at the latter loci, H2A.ZUb1-nucleosomes could serve to keep 

transcription levels restrained through its antagonism of BRD2 as well as its association 

with LSD1. In support of this hypothesis, we find that H2A.Z-nucleosomes that are 

enriched for monoubiquitylation are associated with genes which show a more 

constrained pattern of expression across multiple cell types, while in contrast, H2A.Z-
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nucleosomes that are depleted of monoubiquitylation are associated with genes that 

display a broader range of expression levels. Our finding that H2A.ZUb1-

mononucleosomes are enriched for histone modifying proteins linked to inactive or 

repressive histone PTMs suggests that H2A.ZUb1 is a dynamically engaged PTM and 

future studies to resolve the causal nature of its co-existing modifications await more-

targeted interrogation of potential crosstalk.  
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2.6 Appendix  

Table S1. Primer pairs used for gene-specific ChIP-qPCR  

Promoter Forward Reverse 

DGKI GCTGCATTTAGGGGAGGGG CGCCGACGAATTCACTCCAA 

TBPL2 GGTAAGAGGGTAAGCGCGG CCATCGCCCAACGCTTCTC 

PHOX2B GGCTTCCTATATACGGGCGG GTACGCCGCAGGTAAGGAC 

MYF5 CTCTCAGCAGGATGGACGTG TATGCAGGAGCCGTCGTAGA 

CDH8 GGGCCTCTTGCGTACAGAAT GCGACACACAGCCTCTACAT 

LY75 CCTGGTGGGTGGGTTCTATC GGCTGGAATGGAGAAGTCGT 

NHLRC1 GGCTGTCCGGGCATAAAACA GTGTGTTCGTGTTTTCCGGT 

CALB1 TTTGGAAGTGTGAGGACGCA GGGCCTAGAAAGGCGAACTT 

PAX6 AACTAGTCTTGCCGAGTGCG GAGGAGGGGACAGGGTGATT 

MX1 CCTTGAGGACCAAAAGCGAC CCTCAGGTGATCCCTTGGC 

TAF1 AGTGATCGTTCTGGGGGAGA CTCAGTAGGCGAAACCAGCA 

YBX3 TGTCGGTCCTTCCCCTACAT TGGAAAATGCCTGCGTTTGG 

AK2 CTAACTCAGACTGCCCCGAC GCCGGAGATCTAGAAGCCCT 

RPN1 GTCGCCCACACTCACCTG CGTCCCGAGCTACCTCTTTC 

HMG2B TTGCCCTGCAAAACCGATTG AGGTTCCCTGCCTTGACTTC 

XRCC6 GTAAGCGGGCCGTTATCCAT CTCCTCGGATTCGCACACTT 

ASNS GGACAGAAAGGTCCTTCCGC GTGGAGGATGCGGTCTTCAG 

TMEM150B GAGCCTCCATACCCAACTCG AGGTCACATAAGCACCGTGG 

ZMYM6NB AGTACACGCAGCACCGAA  GGTAGCTCAGGCGAGAGTCTT 
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TRIM21 AAACTCAGTAGCCCGTGGTC AGCGTCTAGGTGTGGAGTGA 

GAPDH CCAACTTTCCCGCCTCTCAG GGACCCTTACACGCTTGGAT 

ATF4 GATTTGTGGCCTGCGGAAAC GCTATGAATGGGGCCTCTGG 

RPL27A CGTGGCCGATACCTCGC AGGGAGTGGATGACTAGGGG 
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3 A role for histone variant H2A.Z-1 in alternative splicing regulation 
 

3.1 Introduction 

Transcripts from at least 95% of mammalian multiexon genes are differentially spliced in 

one or more cell-types. This alternative splicing (AS) and the resulting isoform diversity 

generates proteins possessing distinct functions (Pan et al., 2008). Intron removal from 

pre-mRNA and the joining of exons is catalyzed by the spliceosome, a large complex 

comprising five small nuclear (sn)RNAs assembled into sub-complexes, known as small 

nuclear ribonucleoprotein particles (snRNPs; U1, U2, and the U4/U6.U5 tri-snRNP), and 

over 100 auxiliary proteins. Pre-mRNA splicing largely occurs co-transcriptionally, 

placing spliceosome machinery in spatiotemporal proximity to chromatin and chromatin 

binding proteins. Growing evidence suggests that splicing and chromatin regulation are 

intrinsically coupled (Alexander and Beggs, 2010; Goldstrohm et al., 2001; Luco et al., 

2011). For example, at a global level, nucleosomes are non-randomly distributed across 

transcribed genes, displaying preferential positioning at exon-intron and intron-exon 

boundaries, and are enriched over (GC-rich) exons, which on average, coincide with the 

length of a single nucleosome (50 – 250 bp) (Schwartz et al., 2009; Spies et al., 2009; 

Tilgner et al., 2009). Chromatin can modulate splice-site selection through two non-

mutually exclusive mechanisms – indirectly, by influencing the pausing and elongation 

rate of RNA polymerase II, or more directly, by binding (or repelling) ancillary factors 

which in turn recruit or stabilize assembly of the spliceosome on nascent transcripts 

(Herzel et al., 2017). Exonic nucleosomes present a barrier to RNAPII progression, 

creating an opportunity for the splicing reaction to occur. According to the kinetic model, 

transcription elongation rate can regulate splicing by modulating accessibility of cis-
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acting sequences. For example, slow elongation by RNAPII can result in increased 

exon inclusion by allowing more time for the splicing machinery to recognize weak 

splice-sites demarcating an exon, whereas faster elongation by RNAPII can lead to 

skipping of the same exon by favoring usage of stronger, more distal splice-sites 

(Dujardin et al., 2013; Maslon et al., 2019; de la Mata et al., 2003).  

At the same time, histone modifications, including post-translational modification 

(PTM) and variant histone substitution, occur non-randomly across genes and can 

further influence the rate of RNAPII progression by impacting chromatin structure (e.g. 

Weber et al., 2010). Histone modifications have also more recently been implicated in 

recruiting the spliceosome through adaptor proteins (Luco et al., 2011; Schwartz and 

Ast, 2010), and in some cases, have been suggested to modulate availability of splicing 

factors and bind directly to RNA (Soboleva et al., 2017).  

 Recently, it has been demonstrated that histone variant H2A.Z is required for 

efficient splicing of weak introns with non-consensus splice-sites in yeast (Neves et al., 

2017; Nissen et al., 2017). H2A.Z shares ~ 60% amino acid identity with canonical 

histone H2A, and is ~ 90% conserved amongst eukaryotes (Thatcher and Gorovsky, 

1994). The enrichment of H2A.Z at the promoters of most genes in yeast and higher 

eukaryotes suggests transcriptional regulation is a key activity of this variant 

(Subramanian et al., 2015). Vertebrates possess two non-allelic paralogs of H2A.Z, 

H2A.Z-1 and H2A.Z-2, which differ by three conserved amino acids (Eirín-López et al., 

2009). Despite this limited sequence variation, mice that lack H2AFZ (H2A.Z-1) but 

maintain H2AFV (H2A.Z-2) fail to develop in utero, indicating that these isoforms 

possess non-redundant activities (Faast et al., 2001). Consistent with divergent 
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functions, knockdown of H2A.Z-1 or H2A.Z-2 have been shown to affect the basal 

expression of mostly non-overlapping sets of genes in neurons and in melanoma cells 

(Dunn et al., 2017; Vardabasso et al., 2015). Whether H2A.Z isoforms are differentially 

linked to splicing, however, remains unexplored.   

 Previously, using an immunoprecipitation-mass spectrometry (IP-MS) approach, 

we identified chromatin binding proteins that preferentially associate with nucleosomes 

containing histone H2A.Z-1 over those containing H2A (Draker et al., 2012). Consistent 

with the transcription regulatory role of H2A.Z, gene ontology (GO) analysis revealed 

that many of these proteins possess putative transcription-associated functions, 

including Brd2, which is known to function in transcriptional activation. In addition to 

Brd2, our H2A.Z-nucleosome IP-MS screen also identified the Ser/Arg (SR) repeat-

related protein USP39 (ubiquitin-specific peptidase 39; also known as human Sad1) as 

another factor that selectively binds H2A.Z-1 over H2A-containing nucleosomes. 

Proteins with SR repeats have diverse roles in the regulation and assembly of splicing 

complexes. USP39 is a component of the human U4/U6.U5 tri-snRNP complex, and 

has been shown to play an important role in the association of this snRNP particle with 

pre-spliceosomal complexes (Huang et al., 2014; Makarova et al., 2001). In this 

capacity, USP39 is one several proteins (others include the splicing factor SPF30, other 

SR proteins, the SR protein kinase SRPK2, and SART1) identified in higher eukaryotes 

which mediate stable integration of the U4/U6.U5 tri-snRNP into the nascent 

spliceosome (Makarova et al., 2001), a stage of spliceosome assembly still not well-

understood.  
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 Here, we show that USP39 selectively interacts with H2A.Z-1- over H2A.Z-2-

mononucleosomes. In support of a direct coupling mechanism between H2A.Z-1 and 

pre-mRNA splicing, we map the capacity of H2A.Z-1 to interact with USP39 to its C-

terminal isoform-specific residue. We further find that H2A.Z-1 and USP39 co-regulate 

an overlapping subset of alternative splicing events in HEK293T cells. Together, these 

data demonstrate an H2A.Z-1-specific role in alternative splicing through its interaction 

with the spliceosomal factor USP39.  

 

3.2 Materials and methods 

3.2.1 Cell culture, transfection, plasmids and antibodies  

HEK293T cells were grown in Dulbecco’s modified Eagle’s medium supplemented with 

10% fetal bovine serum (DMEM; Wisent). Expression of H2A.Z-Flag constructs was 

carried out using polyethylenimine (PEI; Polysciences). Expression constructs were 

based on the pcDNA 3.1 (+) (Invitrogen) backbone with the Flag-tag cloned in-frame to 

the C-terminus of H2A.Z. To generate H2A.Z-1 mutants, amino acids T14, S38, or V127 

were mutated to A14, T38, or A127, to introduce one H2A.Z-2-specific residue per 

construct. Conversely, H2A.Z-2 mutants were generated by mutating A14, T38, or A127 

to T14, S38, or V127. The following antibodies were used for Western blot analysis: 

polyclonal Flag (Sigma; F7425), USP39 (Abcam; ab131332), SF3B1 (Abgent; 

AP13754A), PRP8 (Abcam; ab79237), H2A.Z (Active Motif; AM39113), PHF6 (Bethyl; 

A301-450A), H3 (Abcam; ab1791).  

 

3.2.2 Mononucleosome co-immunoprecipitation 
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Mononucleosomes were generated as described previously (Draker et al., 2012). In 

brief, HEK293T cells were grown in 15 cm-diameter plates and transfected with 

constructs expressing Flag-tagged wild-type or mutant H2A.Z-1 or H2A.Z-2. Cells were 

trypsinized, counted, and washed in 1X PBS, 48 hrs following transfection. Cellular 

pellets were resuspended in buffer A (20mM HEPES, pH 7.5, 10mM KCl, 1.5mM MgCl2, 

0.34M sucrose, 10% glycerol, 1mM dithiothreitol, 5mM sodium butyrate, 10mM NEM, 

and protease inhibitors), pelleted and then resuspended in buffer A containing 0.2% 

Triton X-100 and incubated on ice for 5 min. The nuclear suspension was centrifuged at 

600 x g; nuclei were then washed once in buffer A, then resuspended in cutting buffer 

(15 mM NaCl, 60 mM KCl, 10 mM Tris pH 7.5, 5mM sodium butyrate, 10mM NEM, and 

protease inhibitors) plus 2mM CaCl2. Microccocal nuclease (MNase; Worthington) was 

added at a concentration of 10 units/1.0 x 107 cells then incubated at 37°C for 30 min. 

The reaction was stopped by the addition of 20mM EGTA. The MNase-digested nuclei 

were centrifuged at 1300 x g. The resulting supernatant (S1) was saved and kept on 

ice. The digested nuclear pellet was subjected to hypotonic lysis by resuspension in TE 

buffer (10mM Tris-HCL, pH 8.0, 1mM EDTA). Samples were incubated on ice for 1 hr, 

with occasional mixing by pipette. The suspension was then centrifuged at 16 000 x g 

and the supernatant (S2) was transferred to a new tube. Salt was adjusted in S1 to 

150mM NaCl by adding 2X buffer D (30 mM Tris pH 7.5, 225 mM NaCl, 3 mM MgCl2, 

20% glycerol, 0.4% Triton-X 100, 5mM sodium butyrate, 10mM NEM, and protease 

inhibitors) drop-wise, with constant mixing on a vortex set to low speed. S2 was also 

titrated to 150mM NaCl by the drop-wise addition of buffer E (60 mM HEPES pH 7.5, 

450 mM NaCl, 4.5 mM MgCl2, 0.6 mM EGTA, 0.6 % Triton-X 100, 30% glycerol, 5mM 
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sodium butyrate, 10mM NEM, and protease inhibitors). Insoluble material was pelleted 

via centrifugation. The clarified supernatants were combined and then used for affinity 

purification. Flag M2-agarose beads (Sigma) were added and incubated overnight at 

4°C on an end- over-end rotator. Beads were washed 4 times in 1X buffer D, followed 

by 3 washes in 1X buffer D containing 0.5% Triton X-100. Proteins were eluted from the 

beads by resuspension in 2X SDS sample buffer and boiled for 10min. For Western blot 

analysis, samples were run on SDS-polyacrylamide electrophoresis gels according to 

standard practices. 

3.2.3 siRNA knockdown and RNA analysis 

HEK29T cells were transfected with 10nM of ON-TARGETplus siRNA SMART-pools 

(Dharmacon) targeting either H2AFZ or Usp39 using Lipofectamine RNAiMAX 

(Invitrogen) and collected 72hr post-transfection. RNA was DNase-treated and isolated 

using an RNeasy kit (Qiagen). Semi-quantitative RT-PCR assays were performed using 

a OneStep RT-PCR kit (Qiagen) as per the manufacturer’s recommendations, with 

exception of using 40ng of total RNA as input in 20uL reactions. The number of 

amplification cycles was 22 for Gapdh and 32 for all other transcripts analyzed. 

Cassette exon events were analyzed using sense and antisense primers designed to 

hybridize constitutive exons flanking the alternative exon. Reaction products were 

resolved in 3% agarose gels and relative isoform abundance was quantified by 

densitometry using Image Studio Lite.  

3.2.4 RNA-Seq analysis (performed by Ulrich Braunschweig through collaboration with 
Dr. Benjamin Blencowe at U of Toronto) 
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RNA libraries were made by the Donnelly Sequencing Centre using Illumina TruSeq 

stranded mRNA sample preparation. Sequencing was also performed by the Donnelly 

Sequencing Centre. For analysis, we utilized a multi-modular pipeline called VAST-

TOOLS to detect and quantify all major AS events in RNA-Seq reads, using the hg19 

genome release (https://github.com/vastgroup/vast-tools). Details of this pipeline are 

published (Irimia et al., 2014; Tapial et al., 2017). VAST-TOOLS is able to detect and 

quantify AS events by assembling libraries of exon-exon junctions (EEJs) for 

subsequent alignment of RNA-Seq reads. To detect cassette exon events, three 

complementary modules are used to assemble EEJs: first, a “transcription-based 

module” that employs cufflink and aligns expressed sequence tags (ESTs) and cDNAs 

with genomic sequence; second, a “splice site-based module” that employs the joining 

of all hypothetically possible EEJ combinations from annotated splice sites; and third, a 

“microexon module” which searches for pairs of donor and acceptor splice sites in 

intronic sequences to detect very short (i.e. 3-15nt) microexons. Alternative 5’- and 3’-

events (Alt3 and Alt5) are quantified based on the fraction of reads supporting the 

usage of alternative 5’- or 3’- splice sites. Intron retention events are detected using the 

pipeline recently described (Braunschweig et al., 2014), which uses a comprehensive 

set of reference exon-intron junctions (EIJs), intron midpoint sequences, and EEJs 

formed upon intron removal. Introns are classified as retained when there is a balanced 

accumulation of reads that map to the 5’ and 3’ EEJs as well as the midpoint sequence 

of the intron, relative to the EEJ sequence (Braunschweig et al., 2014; Irimia et al., 

2014).  
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3.3  Results  

3.3.1 Spliceosome components preferentially interact with H2A.Z-1  

Previously, we used an IP-MS approach to identify proteins that preferentially bind to 

H2A.Z-1-containing nucleosomes over H2A-containing nucleosomes. Specifically, we 

had compared Flag-immunoprecipitated mononucleosomes from HEK293T cells 

expressing either Flag-tagged H2A.Z-1 or Flag-tagged H2A (Draker et al., 2012). Of the 

top hits identified (Fig. 3-1A), we chose to further investigate the interaction between 

USP39 and H2A.Z-1-nucleosomes because of the role USP39 plays in spliceosome 

assembly, and the links between H2A.Z and splicing suggested by its association with 

other spliceosome components (Draker et al., 2012). Due to the lack of information 

regarding the roles of H2A.Z-1 and H2A.Z-2 and how these paralogs may differ in 

activity, we first extended our comparison to include Flag-tagged H2A.Z-2. These 

experiments confirmed the preferential binding of USP39 to Flag-tagged H2A.Z-1-

nucleosomes over Flag-tagged H2A-nucleosomes, using our previously described 

mononucleosome IP method followed by Western blot (Fig. 3-1B). Interestingly, while 

more USP39 binds to nucleosomes containing either H2A.Z-1 or H2A.Z-2 over those 

containing H2A, we also found a clear preference of USP39 for H2A.Z-1 over H2A.Z-2, 

suggesting that these almost identical isoforms are differentially associated with 

different amounts of USP39 (long exposure blot for USP39 on Fig. 3-1B ). Our initial IP-

MS screen also identified SF3B1, a component of the U2 snRNP, as a spliceosomal 

factor with a preference for interacting with H2A.Z-1-nucleosomes over H2A-

nucleosomes, and this preferential interaction was also confirmed by IP-Western blot 

(Fig. 3-1B). However, while SF3B1 also clearly prefers H2A.Z-1 nucleosomes over  



   101 
 

 

 

 

 



   102 
 

H2A.Z-2 nucleosomes, there was not difference in the amounts of SF3B1 binding to 

H2A.Z-2 or H2A nucleosomes. Lastly, we also tested the binding of PRPF8, a core 

component of U5 snRNPs, to H2A-, H2A.Z-1 and H2A.Z-2 nucleosomes. Unlike the 

other splicing factors, PRPF8 did not show any preference for any of these H2A/H2A.Z-

containing nucleosomes. (Fig. 3-1B). Altogether, these results provide evidence that 

USP39 has a specific preference for mononucleosomes containing H2A.Z-1 over 

H2A.Z-2, but the pattern of binding and preference of other splicing factors to the 

different types of nucleosomes are variable and possibly mediated by additional factors.  

 

3.3.2 A single amino acid difference between H2A.Z-1 over H2A.Z-2 confers a 
binding preference for USP39. 
 

We next examined the cause of the differential binding of USP39 to H2A.Z-1 in 

comparison to H2A.Z-2 and asked whether any of the H2A.Z-1-specific residues is 

specifically important or responsible for mediating the preferential interaction of H2A.Z-1 

for USP39. To this end, point mutants of H2A.Z-1 (T14A, S38T, V127A) and H2A.Z-2 

(A14T, T38S, A127V) were generated which express one swapped isoform-specific 

residue at a time. Using our mononucleosome IP approach, we found that the 

preference of USP39 for H2A.Z-1- over H2A.Z-2-nucleosomes is abolished when the C-

terminal-most amino acid of H2A.Z-1 is converted to that of H2A.Z-2 (i.e. V127A; Fig. 3-

2A), and is conversely gained when the C-terminal residue of H2A.Z-2 is converted to 

that of H2A.Z-1 (i.e. A127V; Fig. 3-2B). Sequence diversity amongst the H2A family is 

most pronounced in their C-terminal tails suggesting that this region is an important 

determinant of functional distinction amongst the H2A variants (Ausió and Abbott, 

2002), and this is consistent with a role for the C-terminus in mediating the differential  
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binding of USP39 between H2A.Z isoforms. To further validate the specificity of our 

H2A.Z mutants, we used another H2A.Z-specific binding protein, PHF6 to test for 

differential binding to the different point mutants. In contrast to USP39, PHF6 interacts 

similarly with both isoforms and accordingly it does not display any altered binding 

among the H2A.Z-1 mutants (Fig. 3-2A). Together, these results demonstrate that the 

preferential interaction of USP39 with H2A.Z-1 compared H2A.Z-2 is conferred by a 

single amino acid at the C-terminus of H2A.Z-1.  

 

3.3.3 H2A.Z-1 and USP39 co-regulate a subset of alternative splicing events in 
human cells. 
 
To address whether the physical interaction between H2A.Z-1 and USP39 may be 

functionally linked to pre-mRNA splicing, we performed RNA-Seq on HEK293T cells in 

which these factors were depleted by transfecting cells with siRNA pools targeting the 

corresponding transcripts (expressed from H2AFZ or Usp39; Fig. 3A). The RNA-Seq 

data were analyzed to identify changes in alternative splicing events on a genome-wide 

scale (by Dr. Ulrich Braunschweig at U of T). The RNA-Seq analysis pipeline we utilized 

(VAST-TOOLS) can detect and quantify all main classes of alternative splicing (AS) 

events (Irimia et al., 2014; Tapial et al., 2017). Using this pipeline, we generated 

quantitative estimates of “percent spliced in” (PSI) for alternative cassette exons (CE), 

microexons (MIC), alternative 5´ and 3´ splice site selection, and intron retention (IR) 

events and focused on significant (i.e. >10 PSI, p < 0.05; Fisher’s exact test) changes 

(Fig. 3b). In yeast, IR is the primary mechanism of AS and is disrupted in strains 

depleted of HTZ1 (yeast H2A.Z) (Neves et al., 2017; Nissen et al., 2017). In contrast, IR 

relatively is a rare AS event in invertebrates and vertebrates, which instead more  
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commonly utilize alternative CEs (Kim et al., 2008). Upon knockdown of either H2A.Z-1 

or USP39, we observe modest but significant changes in both CE and IR which 

comprise both skipping and inclusion events. Although correlations between CE and IR 

events shared by H2A.Z-1 and USP39 are weak (r = 0.37 or 0.38, respectively), these 

overlaps were found to be significant. We also observed an enrichment of IR events for 

intron skipping in H2AFZ depleted cells, which was not seen upon knockdown of USP39 

(where intron retention and skipping events where found to be roughly equal) (Fig. 3C).  

Finally, in order to confirm these patterns seen in genome-wide analyses, I 

performed RT-PCR analyses of a representative set of 20 CE events using RNA 

harvested from the siRNA treated cells analyzed by RNA-Seq (Fig. 3-4). For this, we 

chose events that were found to be affected by either H2A.Z depletion, USP39 

depletion, or both. Significantly, we find a modest correlation between the data analyzed 

by RNA-Seq and by RT-PCR by performing linear regression analysis (r2 = 0.6124).  
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3.4 Discussion 

Together, the results from co-IP and RNA-Seq analysis indicate that the U4/U6.U5 tri-

snRNP component USP39 specifically interacts with H2A.Z-1 in a manner dependent 

on its C-terminal isoform-specific residue and further suggest that this interaction 

reflects a coupling mechanism between USP39 and H2A.Z-1 that is responsible for the 

co-regulation of a subset of alternative splicing events in human cells.  

The spliceosome catalyzes the excision of non-coding introns and ligates exons 

through a two-step transesterification reaction (Fig. 3-5). For each intron, this multi-

megadalton ribonucleoprotein complex is assembled de novo from its five canonical 

snRNPs and various other non-snRNP factors (Will and Luhrmann, 2011). This process 

begins with recognition of the 5’ splice site (5’ SS) and the branch point sequence (BPS) 

by the U1 snRNP and U2 snRNPs, respectively, followed by recruitment of the U4/U6.5 

snRNP, which leads to assembly of pre-catalytic complex B (Will and Luhrmann, 2011). 

Major structural rearrangements within the spliceosome catalyzed by two helicases, 

Prp28 and Brr2, lead to subsequent formation of the catalytically competent complex B*, 

which carries out the first transesterification reaction. Prp28 catalyzes the exchange of 

U1 for U6 at the 5’ SS, whereas Brr2 catalyzes unwinding of the U4 and U6 snRNA 

duplex. The latter event allows liberated U6 snRNA to fold and pair with U2 snRNA, 

forming the catalytic centre of the spliceosome (Charenton et al., 2019; Mathew et al., 

2008; Staley and Guthrie, 1999; Will and Luhrmann, 2011). In the pre-catalytic complex, 

Brr2 is kept away from its U4 substrate by multiple interactions including its direct 

binding to USP39 (Agafonov et al., 2016; Charenton et al., 2019). Cryo-electron 
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microscopy has mapped USP39 to the interface between U5 and U4/U6 snRNPs, 

where it has also been proposed to stabilize the U4/U6.U5 tri-snRNP (Agafonov et al., 

2016). Our finding that USP39 is able to selectively bind H2A.Z-1-containing 

mononucleosomes suggests that USP39 is a splicing factor which can also engage 

chromatin outside the context of the large spliceosome complex. In this manner, it is 

possible that H2A.Z-1 is able to recruit USP39 to introns and in this way contribute to 

the regulation of splicing.  

In addition to USP39, we find that the U2 snRNP complex component SF3B1 

selectively associates with H2A.Z-1-mononucleosomes, further suggesting a 

nucleosome isoform-specific role in splicing. SF3B1 binds to branchpoint adenosines in 

the early stages of spliceosome assembly, and has been previously shown to bind 

chromatin and localize with exonic nucleosomes (Kfir et al., 2015). It is presumed that 

upon emergence of the 3’ ends of certain introns from RNAPII, SF3B1 and the U2 

snRNP translocate from exonic nucleosomes to the nascent mRNA (Kfir et al., 2015). It 

is also suggested that this transition is triggered by phosphorylation of SF3B1, as this 

modified form of SF3B1 is present within active spliceosome complexes (Kfir et al., 

2015). Our finding that SF3B1 selectively associates with H2A.Z-1-nucleosomes could 

therefore also suggest that functional links between H2A.Z-1 and SF3B1 in active 

splicing could involve H2A.Z-1-nucleosome mediated recruitment of an SF3B1 kinase. 

Incidentally, it has been reported that USP39 can be modified by SUMOylation (Wen et 

al., 2014a), although a role for USP39 SUMOylation in splicing has not been reported.  

Significantly, our finding that USP39 and SF3B1 are differentially enriched on 

H2A.Z-1- versus H2A.Z-2 nucleosomes implies that a single, conserved amino acid 
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substitution can be directly read by chromatin binding proteins. In the case of USP39, 

we demonstrate that the terminal isoform-specific residue of H2A.Z-1 (V127) enhances 

binding of USP39 to mononucleosomes. Interestingly, the terminal isoform-specific 

amino acid of H2A.Z is the only isoform-specific residue of the three that resides within 

the C-terminal domain. The C-terminal domain displays the greatest divergence 

amongst the histone H2A variants (Ausió and Abbott, 2002) and is consistent with this 

region mediating isoform-specific roles for H2A.Z-1 and H2A.Z-2.  

Recently, yeast H2A.Z (HTZ1) has also been linked to splicing (Neves et al., 

2017; Nissen et al., 2017). Specifically, it has been demonstrated that yeast H2A.Z can 

recruit the U2 snRNP to chromatin, and that depletion of H2A.Z primarily affects introns 

containing non-consensus splice sites or branchpoint sequences (Neves et al., 2017; 

Nissen et al., 2017). Our findings in human cells are therefore consistent with a 

conserved role for H2A.Z in splicing through its interaction with components of the U2 

snRNP. However, it should be noted that the amino acid sequence of the C-terminus of 

yeast H2A.Z is completely different from the human H2A.Z-1/H2A.Z-2 sequence and; 

therefore, the C-terminal residue mediating H2A.Z-1-specific engagement of USP39 is 

unlikely to be conserved in yeast H2A.Z. In addition, although human and yeast USP39 

share 65% identity in amino acid sequence, human USP39 is unique in that it possess 

an N-terminal RS-domain (Makarova et al., 2001), though it is not yet known if USP39 is 

regulated by phosphorylation. RS domains mediate protein-protein and protein-RNA 

interactions that are important for splicing and its regulation (Long and Caceres, 2009). 

As such, the RS domain of USP39 could participate in mediating interactions with 

H2A.Z-1 or other factors that control the alternative splicing events affected by the 
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depletion of these factors. Consequently, while yeast and human H2A.Z and USP39 are 

both implicated in splicing regulation, and their functional roles may be conserved, it is 

possible the interactions underlying their mechanism of regulation are divergent. 

However, we have not mapped the interaction domain of USP39 that mediates its 

interaction with H2A.Z-1, and therefore do not know whether that domain is conserved 

in yeast USP39. In the broader context, the question of whether the physical and 

functional links between human USP39 and H2A.Z-1 is evolutionary conserved could be 

further explored in future studies.  

 In addition to our interaction data and consistent with a proposed functional 

coupling between H2A.Z-1 and USP39, we identify shared alternative splicing events in 

human cells that are affected by depletion of H2A.Z-1 or USP39. Specifically, we find a 

significant enrichment in cassette exon (CE) skipping events upon depletion of either 

USP39 or H2A.Z-1 and a similar bias towards CE skipping of the shared events. CE 

skipping is the predominant form of alternative splicing in animals (Barbosa-Morais et 

al., 2012; Kornblihtt et al., 2013). In general, the strength of a splice site is inversely 

proportional to its divergence from the consensus sequence, but its use is also context-

dependent, and influenced through the interplay with chromatin and transcriptional 

machineries (Kornblihtt et al., 2013). However, we have yet to analyze the splice sites 

affected by H2A.Z-1 or USP39 depletion.  

  Interestingly, in addition to disrupting splicing of a subset of cassette exons, 

depletion of H2A.Z-1 also results in the inclusion of a large number of introns, whereas 

introns affected by USP39 depletion are equally included or skipped. This could indicate 

that H2A.Z-1 is involved in supporting constitutive intron splicing and regulates a subset 
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of splicing events independently of USP39. Previously, it has been reported that IR 

correlates with the accumulation of paused elongating RNAPII (i.e. Ser2 

hyperphosphorylated CTD RNAPII), and that it often elicits nonsense-mediated decay 

(NMD) to negatively regulate cytoplasmic transcript levels (Braunschweig et al., 2014). 

It is therefore possible that depletion of H2A.Z-1 results in additional IR events which 

were not detected by RNA-Seq due to mRNA instability. At the same time, IR in cells 

depleted of H2A.Z-1 could reflect a general role for H2A.Z in maintaining RNAPII 

elongation kinetics within the gene body as H2A.Z nucleosomes are reportedly 

favourable to the passage of RNAPII (Weber et al., 2010, 2014a). 

Altogether, our data suggest that H2A.Z-1 can modulate splice-site selection in 

human cells and that H2A.Z-1-mononucleosomes selectively interact with splicing 

factors involved in spliceosome assembly. Significantly, a direct-coupling mechanism 

may exist whereby H2A.Z-1-nucleosomes stabilize or recruit USP39 or the U2 snRNP 

to mediate a subset of splicing outcomes. As we observe USP39 to also preferentially 

interact with H2A.Z-2 nucleosomes in comparison to those containing H2A, it is possible 

that H2A.Z-2 can also regulate splicing events. In this regard, the ability of H2A.Z to 

form homotypic nucleosomes (i.e. those containing H2A.Z-1/H2A.Z-1, H2A.Z-1/H2A.Z-

2, or H2A.Z-2/H2A.Z-2) or heterotypic nucleosomes with one copy of H2A.Z and one 

copy of H2A might differentially modulate splicing outcomes by fine-tuning the levels of 

chromatin-bound splicing factors available at splice sites. 
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4 Closing remarks and future directions 
 
 
The term ‘epigenetics’ was coined by Conrad Waddington in 1940 to reference 

mechanisms through which an organism’s environment could affect its acquired 

phenotype without parallel mutations to its genotype (Waddington, 1953). Waddington 

had observed, for example, that Drosophila pupae exposed to heat shock or ether 

vapors developed phenotypes that could be passed to successive generations at a 

frequency exceeding that of genetic mutation (Skvortsova et al., 2018; Waddington, 

1953). We now know that heritable (or potentially heritable) changes to the genome 

which act “above” the linear sequence of DNA are executed by the information 

possessed within covalent modifications to DNA such as methylation, histone 

modifications, as well as by specialized non-coding RNAs. These factors establish cell 

type-specific regulatory programs and have the potential to be mitotically or meiotically 

inherited, and can thus be transmitted from parental gametes to the zygote, both directly 

or by proxy, through the ensuing programs they orchestrate. Epigenetic mechanisms 

provide an interface between the cell’s micro/environment and the regulation of cellular 

pathways in real-time (vs. evolutionarily) throughout its lifespan, and collectively these 

relationships refer to the cell’s ‘epigenome’ (Laubach et al., 2018; Roadmap 

Epigenomics Consortium et al., 2015). Importantly, while an organism possesses a 

single genome, in principle, it is characterized by at least as many epigenomes as it has 

cell types, and hence epigenetic networks can be inherently nuanced and contextual. 

This context-dependency underscores the importance of deciphering cross-talk 

amongst epigenetic mechanisms at the nucleosome-level on which multiple cellular 

pathways converge. Evolutionarily conserved and essential histone variant H2A.Z is 
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involved in many cellular processes; however, our understanding of its multi-faceted 

biological roles is still lacking due to our incomplete characterization of nucleosomes 

containing its modified forms. Additionally, true epigenome profiling studies necessitate 

cellular uniformity (Ganesan A., 2018). With respect to this, recent advances in low-cell 

and single-cell multi-omics techniques (including RNA-Seq, ChIP-Seq, chromatin 

accessibility and conformation, bisulfite sequencing of DNA methylomes, as well as 

genomic and proteomic techniques) are revolutionizing our ability to unravel the 

complexity of multicellular biological systems at unprecedented resolution (Kelsey et al., 

2017; Mincarelli et al., 2018). These approaches will become increasingly important in 

future studies to best infer the cause and effect relationships of complex processes.  

 

4.1 Interrogating the activities of H2A.ZUb1 
 
Monoubiquitylation of histone H2A at K119 is catalyzed by RING1A/B of the PRC1 

complex. Work in our lab previously established that H2A.ZUb1 is also mediated by 

RING1B, and thus H2A.ZUb1 and H2AUb1 may share some overlapping functions 

(Sarcinella et al., 2007). Recently, the complexity of PRC1 complexes is becoming more 

appreciated as they have been found extant in a large number of different forms that 

have the same general structure but with different proteins substituting each 

component. The variation of PRC1 complexes plays an important role in their targeting 

and function, though the extent of this diversity in vivo or their cell-type specificity is 

unknown. While both cPRC1 and ncPRC1 catalyze H2AK119Ub, less is known about 

the mechanisms of ncPRC1 complexes, which are not targeted to H3K27me3 through a 

CBX domain. (Bajusz et al., 2018). In the future, (conditional) knockout studies 
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systematically targeting PRC1 components will be useful in determining which 

complexes spatiotemporally mediate H2A.Z monoubiquitylation, and how or if they 

functionally overlap with PRC2.  

The Polycomb pathway is essential for maintaining the balance between 

pluripotency and differentiation, and preserves cell-type specific silencing programs. At 

the same time, a detailed mechanistic understanding of Polycomb silencing, including 

the direct role of H2AUb1, is lacking. H2AUb1 deubiquitination has been causally linked 

to H3K4 methylation through the activity of a growing number of H2AK119-specific 

deubiquitinases (DUBs), and our lab previously established that USP16, USP10, and 

2A-DUB are active towards H2A.ZUb1 (Draker et al., 2011; Sarcinella et al., 2007). To 

date, more than 100 putative DUBs have been annotated in the human genome. In the 

future, unbiased screening approaches will be useful to identify additional H2A.ZUb1 

DUBs, which may have further utility in targeted mechanistic studies. Interestingly, work 

in this thesis demonstrates that H2A.ZUb1-enriched nucleosomes preferentially 

associate with the H3K4 demethylase LSD1, raising the possibility H2A.ZUb1 is also 

linked to removal of H3K4 methylation and hence the active establishment of PcG 

domains. H2A.ZUb1 is reportedly present on bivalent nucleosomes in ESCs, and LSD1 

plays a role in decommissioning bivalent promoters and enhancers during lineage-

specific programming (Ku et al., 2012; Whyte et al., 2012). Studies interrogating a 

causal role for H2A.ZUb1 in demethylating H3K4 could be facilitated by assessing co-

localization of PTMs at regions of putative crosstalk in cell-lines exclusively expressing 

non-ubiquitylatable H2A.Z, which could be generated through CRISPR/Cas9 

mutagenesis.  
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At the same time, correlation of ChIP- and RNA-Seq data presented in this thesis 

reveals the enrichment of H2A.ZUb1 within genes that are silent, though not actively 

repressed under basal conditions by H2A.Z. This could reflect our use of a committed 

cell-line (HEK293T), in which case silencing by H2A.ZUb1 could be maintained through 

persistent crosstalk, or that H2A.ZUb1-targeted genes might require additional signals 

for activation or de-repression. Further, H2A.ZUb1 could play a delocalized regulatory 

role, affecting the transcription of genes irrespective of its location in relation to the TSS. 

To this end, characterizing exonic sites of H2A.ZUb1-nucleosome enrichment could 

provide functional insight. For example, I have shown that H2A.ZUb1-enriched 

nucleosomes promote chromatin binding by CTCF and cohesin. It will be interesting to 

determine where in the genome H2A.ZUb1 colocalizes with these architectural proteins, 

and whether their overlapping sites correspond to higher-order physical contacts 

identified in Hi-C data. 

Finally, one can envision other, non-exclusive functional consequences of an 

interaction between H2A.ZUb1, CTCF and cohesin. For instance, CTCF and cohesin 

localize to the -1 nucleosome at the TSS of divergent promoters, which transcribe RNA 

in both directions. At these sites, CTCF and cohesin have been proposed to supress 

spurious antisense transcription, the RNA products of which can otherwise in turn 

influence sense transcription (Bornelöv et al., 2015). It is tempting to speculate that 

H2A.ZUb1 plays a role in defining the -1 nucleosome of divergent promoters and is 

involved in targeting or stabilizing CTCF/cohesin, perhaps through a functional 

interaction with DNMTs. Testing this hypothesis directly could exploit the use of 

deactivated Cas9 (dCas9) to induce sequence-guided deubiquitination of H2A.ZUb1 on 



   120 
 

the -1 nucleosome at candidate promoters, followed by targeted evaluation of sense 

and antisense transcripts. 

 

4.2  Studying the interaction of H2A.Z with splicing  
 
In the second part of this thesis I propose an H2A.Z-1-specific role for H2A.Z in 

alternative splicing (AS) regulation through its interaction with USP39. This is based on 

identification of an H2A.Z-1 residue that mediates selective binding of USP39 to H2A.Z-

nucleosomes, and our detection of significantly overlapping changes in AS upon 

knockdown of H2A.Z-1 and USP39. It is important to note that work in this thesis has 

not explored the possibility of an H2A.Z-2-dependent role in AS which, if extant, could 

be dependent (antagonistically or cooperatively) or independent of H2A.Z-1/USP39. 

Nevertheless, several questions should be addressed regarding the interaction of 

H2A.Z-1 and USP39 in future studies.  

 First, since the AS changes observed upon siRNA knockdown were modest , 

future RNA-Seq experiments may reveal greater disruption of events by using inducible 

knockout cell-lines of H2A.Z-1 or USP39, as both proteins are present in high copy 

number. Moreover, to validate and further characterize the functional specificity of 

H2A.Z-1 and H2A.Z-2, cell-lines could be generated in which the C-terminal, isoform-

specific residue of endogenous H2A.Z-1 has been mutated to the terminal amino acid of 

H2A.Z-2 (i.e. V127A) using CRISPR-based genome editing methods, and then profiled 

for differential RNA-Seq patterns. These cell-lines could also serve as the basis of 

subsequent rescue experiments, where the wildtype H2A.Z-1 sequence is re-introduced 

to rule out off-target effects. As additional controls, and because we have found that 
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H2A.Z-2 is expressed in much lower amounts than H2A.Z-1 in HEK293T, the three 

isoform-specific residues of H2A.Z-1 can be mutated to those of H2A.Z-2 in order to 

compare the effects of H2A.Z-2 on splicing efficiency, as well as an additional cell-line 

derived from these, where the H2A.Z-2 terminal residue has been re-introduced.  

 Secondly, future studies are needed to resolve how and where H2A.Z-1 and 

USP39 interact to impart regulation of AS. As a starting point, this could be investigated 

by ChIP-Seq analysis of USP39 binding sites in WT or H2A.Z-1 knockdown cells to test 

whether H2A.Z-1 is required or facilitate recruitment of USP39 to their shared target 

loci. While it is possible H2A.Z-1 and USP39 are functionally coupled through direct 

recruitment at shared loci, H2A.Z is also known to influence RNAPII promoter-proximal 

pausing and elongation rate (Weber and Henikoff, 2014; Weber et al., 2010), and hence 

it may affect target AS events by modulating RNAPII elongation as well. In this manner, 

the association of USP39 with H2A.Z-1 could reflect a window-of-opportunity favorable 

to local interactions . Mammalian native elongation transcript-sequencing (mNET-Seq) 

and similar techniques could be used to compare the extent of RNAPII pausing at 

promoters and other cis elements. mNET-Seq uses IP to capture nascent RNA bound 

to different C-terminal domain (CTD) phosphorylated forms of RNAPII (Nojima et al., 

2015). In particular, sequencing from the 3’ ends of nascent transcripts bound to Ser5 

hyperphosphorylated RNAPII could be used to detect the locations of paused or slowed 

RNAPII in cells expressing wild-type H2A.Z-1 or H2A.Z-1(V127A). In addition, directly 

assessing the impact of H2A.Z-1, H2A.Z-2, and C-terminal mutants of H2A.Z-1/2 on co-

transcriptional splicing could be achieved using in vitro reporter assays. To this end, 

splicing efficiencies on pre-mRNA transcribed from a chromatinized template comprised 
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of recombinant nucleosomes from different H2A.Z constructs could be compared in the 

presence or absence of USP39.  

 Finally, it would be important to analyse chromatin-bound USP39 for its 

association with different spliceosomal snRNPs (e.g. U1, U2, U4/U6 snRNPs, and 

U4/U6.U5 tri-snRNPs), as well as additional spliceosome factors, to infer the functional 

state of USP39-H2A.Z-1-nucleosome complexes with respect to stage of assembly of 

associated splicing complexes. To this end, techniques such as co-IP or sucrose 

gradient ultracentrifugation combined with tandem mass spectrometry, or analysis of 

putative factors a posteriori, could yield greater insight.  

 

 

4.3 Closing remark 
 
As exemplified by its indispensability during lineage commitment, variant histone H2A.Z 

is closely integrated with a number of fundamental processes, and these specific 

activities appear to correlate with distinct patterns of histone PTMs. The 

functionalization of individual nucleosomes into chromatin domains and subsequent 

higher-order organizations - which then feedback to nucleosome regulation – could in 

theory precipitate from individually-targeted histone modifications. An extreme example 

is provided by H2A.Z-1 and H2A.Z-2 which, notwithstanding possible differences in their 

temporal regulation, can have varied effects on chromatin, implying that these isoforms 

are distinguishable by a single, conserved residue having no obvious impact on 

nucleosome structure. In contrast to this high degree of selectivity, histone modifications 

converge on the same nucleosome and engage in crosstalk. Therefore, a highly 
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selective signal within a regulatory program can in principle be modulated through 

multiple different histone modifications. Redundancy presumably acts to maintain the 

responsiveness of a system to a variety of signals, and deciphering how selectivity is 

maintained by the cell in light of this necessitates mechanistic studies which are able to 

assign some degree of causality. Hopefully the data accumulated in this thesis will help 

us develop testable hypotheses to address this aim in the future.  
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