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Abstract

With the advancements in deep learning and other techniques, synthetic speech is
getting closer to a natural sounding voice. Some of the state-of-art technologies
achieve such a high level of naturalness that even humans have difficulties distin-
guishing real speech from computer generated speech. Moreover, these technologies
allow a person to train a speech synthesizer with a target voice, creating a model
that is able to reproduce someone’s voice with high fidelity.

With this research, we thoroughly analyze how synthetic speech is generated and
propose deep learning methodologies to detect such synthesized utterances. We first
collected a significant amount of real and synthetic utterances to create the Fake or
Real (FoR) dataset. Then, we analyzed the performance of the latest deep learning
models in the classification of such utterances. Our proposed model achieves 99.86%
accuracy in synthetic speech detection, which is a significant improvement from a

human performance (65.7%).
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1 Introduction

1.1 Synthetic Speech Detection Overview

Synthetic speech refers to any utterance generated by a computer. With the ad-
vancements in deep learning and other techniques, synthetic speech is getting closer
to a natural sounding voice. Some of the state-of-art technologies achieve such
a high level of naturalness that even humans have difficulties distinguishing real
speech from computer generated speech. Moreover, these technologies allow a per-
son to train a speech synthesizer with a target voice, creating a model that is able
to reproduce someone’s voice with high fidelity. Such technologies can have neg-
ative consequences, since one could maliciously impersonate someone’s voice. An
example would be training a model with the voice of a famous person and then
using this model to generate an utterance with malicious content to defame the
person publicly. This kind of impersonation can be seen in several videos online!,

where both image and speech were synthesized to generate a fake video. With this

L https://www.youtube.com/watch?v=cQ54GDm1leL0
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research, we thoroughly analyze how synthetic speech is generated and propose

methodologies to detect such synthesized utterances.

1.1.1 Synthetic Speech Generation Systems

The first step in creating a system that is able to detect synthetic speech is to thor-
oughly understand how the synthetic speech generators work. The first studies in
generating speech with a computer date back to the late 80’s [1]. However, it took
decades for computer-generated speech to sound more natural. The traditional ap-
proach for computer-generated synthesized speech depends on using Hidden Markov
Models (HMMs) and Gaussian Mizture Models (GMMs) to learn specific speech fea-
tures and replicate them. Although those methods are able to produce clear and
understandable speech, they lack naturalness. Recent studies explore the use of
Deep Neural Networks (DNNs) for synthetic speech generation. DNN-based sys-
tems are able to ingest a large quantity of speech data and generate a model that can
be used to generate utterances, even for unseen words. DNN-based systems usually
generate more natural utterances than the HMM/GMM ones, and for this reason
are being used in the majority of the modern Text-To-Speech (TTS) applications,

such as Amazon Polly and Microsoft T'TS.



1.1.2 Synthetic Speech Detection Systems

As any emerging technology, modern TTS systems can be used with malicious
intent. One could use DNN-based TTS systems to create a speech model for a target
person. With this model, the malicious actor could perform a series of spoofing
attacks, including impersonation and/or bypassing automated speaker verification
systems. As an attempt to minimize the likelihood of such attacks, researchers have
been studying methods to detect synthesized speech. With the increasing concern
on the malicious use of such technologies, researchers across the globe created a
challenge, called ASVSpoof?, in which they release a dataset of real and spoofed
voices so the community can come up with ways to identify the computer-generated
utterances. Several papers have been published showing methods to detect spoofed
utterances. The majority of the proposed solutions are based on extraction of
frequency features utilizing HMM and GMM models.

Although this challenge is an important milestone in the synthetic speech de-
tection community, the dataset did not contain the most recent state-of-the-art
TTS technologies. Also, as in the literature there are already methodologies that
achieves high accuracy on the ASVSpoof dataset, we identified a need for a new
dataset containing the latest TTS solutions to reflect our current speech synthe-

sis scenario. Therefore, as the synthetic speech generation systems become more

http:/ /www.asvspoof.org/



complex, it is important to explore more complex solutions (such as Deep Neural

Networks) for the synthetic speech detection task.

1.2 The Fake or Real Dataset

The first step toward training a Synthetic Speech Detection system is to collect a
significant amount of computer-generated speech as well as real human speech. For
our research we created a dataset, called Fake or Real (FoR), which contains more
than 84,000 synthetic utterances as well as more than 111,000 real utterances. Al-
though previous researchers also generated datasets containing real and synthetic
utterances [57, 54|, in this research we focus on the latest speech synthesis tech-
nologies using neural network architectures. We also focus not only on open-source
systems, but also on commercial tools that can be used to generate synthetic speech.
The FoR dataset was openly released to the public under the GNU GPLv3 license.
The dataset is published in four versions: for-original, for-norm, for-2seconds and,
for-rerecorded. The first version, named for-original contains the files as collected
from the speech sources, without any modification. The second version, called
for-norm, contains the same files, but balanced in terms of gender and class and
normalized in terms of sample rate, volume and number of channels. The third
one, named for-2seconds is based on the second one, but with the files truncated

at 2 seconds. The last version, named for-rerecorded, is a rerecorded version of the
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for-2second dataset, to simulate a scenario where an attacker sends an utterance

through a voice channel (i.e. a phone call or a voice message).

1.2.1 Collecting Synthetic Utterances

Before starting to collect synthetic audio, extensive research was conducted to iden-
tify the latest methodologies in speech synthesis, being Text-To-Speech (TTS) sys-
tems or Voice Conversion (VC) systems. In this research, several open source and

commercial systems were identified, such as:

DeepVoice 3 [35]

Neural Voice Cloning [4]

Baidu TTS?

Microsoft Azure TTS*

Amazon AWS Polly®

e Google Cloud TTS with Wavenet®

3https://www.home-assistant.io/components/tts.baidu/

4https:/ /azure.microsoft.com/en-ca/services/cognitive-services/text-to-speech/
Shttps://aws.amazon.com/polly/

Shttps://cloud.google.com /text-to-speech/



With the synthetic speech generators identified, the next step was to identify
phrases that will be used as input for the T'TS systems. To achieve a good spread of
grammatical phrase formations, a dataset of English phrases was used”. This phrase
dataset contains more than 152,000 English phrases as well as their translation to
the French language. As in this study we focus on English utterances, the French
part of the dataset was discarded as well as English phrases with more than 30
words. This results in a phrase dataset with more than 105,000 phrases in a wide
range of grammatical structures. The list of phrases was then randomly divided
into 40 phrase-buckets that was then distributed across the T'TS systems.

After identifying the TTS systems and generating a list of English phrases,
the next step was to run each TTS system with a set of phrases to obtain the
corresponding generated synthetic speech. The utterance extraction process varies
according to each TTS system and will be described in detail in the next sections,
but in general, the open source TTS systems were ran locally while the commercial
tools were used through HTTP APIs. With that done, we obtained a collection
of synthetic utterances that will be later pre-processed and used in the training

process.

7 https://www.kaggle.com /percevalw/englishfrench-translations



1.2.2 Collecting Real Utterances

Collecting real utterances is a complex task: we need to ensure a variety of recording
methods, a variety of speaker genders, a variety of speaker ages, a variety of accents
and even a variety of microphones used for recording. This variety is required to
avoid a situation where an algorithm learns patterns in the training audio instead
of learning the real differences between a synthetic and a real utterance, and end up
performing badly in unseen data. An extensive research was performed to identify
speech datasets that could be used in this research. We identified and collected
utterances from a series of open source speech datasets as well as other sources of
real speech, such as TED Talks and Youtube videos.

After collecting the audio from the data sources, all long utterances (over 10
seconds) were split into 10-second maximum utterances. To keep the naturalness
of the speech files, the split was done using the SoX® audio processing tool, which is
able to detect silences in the audio and truncate the utterance in between phrases.
With that done, we then have the final for-original dataset, which was later used

as base for the next dataset versions.

8http://sox.sourceforge.net/



1.2.3 Audio Normalization

With both synthetic and real data collected and the for-original dataset finalized,
the next step was to pre-process the data so it can be used by the machine learning
algorithms. The pre-processing steps are described below and were performed in

the following order:

1. Filetype Conversion: As the files were collected from several different data
sources, the first pre-processing step is to convert all the files to the same
filetype. As the WAV format is the most common format in machine learning

and digital audio processing, all the files were converted to the WAV filetype.

2. Volume Normalization: As each speech source has their own volume settings,
it is important to normalize the volume of all utterances to eliminate the
possibility of volume becoming a distinguishing factor. All the utterances,

both synthetic and real, were normalized to 0dB.

3. Sample-Rate Normalization: The majority of the T'T'S systems generate audio
at 16kHz sample rate, while the majority of the real audio was recorded
at 48kHz sample rate. To decrease training time, all the audio files were
downsampled to 16kHz. Considering that the human speech typically ranges
from 300Hz to 5000Hz, the downsampling to 16kHz should not cause major

quality loss in the audio, since a 16kHz sample rate allows frequencies up to

8



SkHz.

. Channel Mixing: As the majority of the TTS systems generate audio in a
single channel (mono) and the majority of the real audio had two channels
(stereo), all two-channel files were converted to a single channel using channel
mixing, which is, combining two audio tracks into a mono track by scaling

each track by 0.5 and adding the signals to result in a single track.

. Silence Removal: In early experiments it was noted that synthetic utterances
had around 0.5s of silence in the beginning and end of each utterance, while
real utterances had a more random silence pattern. To remove any silence

bias, we removed the silence from the beginning and end of each utterance.

. Gender Balancing: The synthetic utterances were predominantly from female
voices, while real audio was mainly from male speakers. To avoid any gen-
der bias during training and classification, the dataset was balanced using
downsampling. This resulted in a dataset with even distribution between

genders.

. Class Balancing: After gender balancing, the dataset contained more real
utterances than synthetic utterances. To have a class balanced dataset, the
dataset was downsampled to ensure a 50/50 distribution between synthetic

and real utterances.



With these steps completed, we then have a pre-processed dataset, named for-

norm, ready to be used in the experiments.

1.2.4 Length Normalization

In early experiments it was noted that synthetic utterances were considerably
shorter than real utterances. As this can be a bias factor in the dataset, all the
utterances with more than 2 seconds were truncated, while utterances with less
than 2 seconds were discarded. This resulted in a dataset, named for-2seconds,

containing only utterances 2-second long.

1.2.5 Speech Rerecording

To simulate a real world scenario, where an attacker sends a synthetic utterance
through a voice channel (i.e. phone call, voice message, etc.), we rerecorded the for-
2second dataset. The idea is playing the utterances using one device, and recording
them with another (using a non-professional microphone). This smoothes the fre-
quency spectrum (specially in high frequencies) and add room reverberation to
synthetic utterances, making a more realistic scenario.

This rerecording process originated the fourth and last version of the dataset,

the for-rerecorded.

10



1.2.6 Dataset Division

As is common practice in machine-learning research, the dataset was divided into

training, validation and testing:

e Training: Contains 77.73% of the dataset, utilized to train the machine learn-

ing models. Gender and class balanced.

e Validation: Contains 15.58% of the dataset, utilized to validate the accuracy
of the machine learning models. Gender and class balanced. The validation

utterances are unseen during the training phase.

e Generalization Testing: Contains 6.68% of the dataset. Contains only syn-
thetic voices from one unseen algorithm (Google TTS Wavenet) and unseen
real voices. Gender and class balanced. It is utilized to test if the trained
model can generalize and detect unseen TTS algorithms and unseen real

voices.

With the dataset pre-processed and divided, it is ready to be used as training

input for our synthetic speech detection classifiers.

11



1.3 Synthetic Speech Detection Classifier

The goal of a Synthetic Speech Detection Classifier (SSDC) is to accurately classify
an utterance as real or synthesized. Although previous research has achieved very
good results in the past [54, 58], they did not use in their dataset the latest state-of-
art machine-learning T'TS systems, such as DeepVoice 3 [35] and Google Wavenet .
We use five different approaches for extracting features from the audio: Fast Fourier
Transform (FFT), Short-Term-Fourier-Transformation (STFT), Mel-Spectrogram,
Mel-Frequency Cepstral Coefficients (MFCC), and Constant-Q Transform (CQT).
Those features are then analyzed with 4 traditional machine learning techniques
with global frequency analysis (also referred as “frequency based analysis”) and 9
deep learning architectures. In this research we study the 65 possible combinations
of feature extraction and analysis against two of the dataset versions: for-2seconds

and for-rerecorded.

1.3.1 Frequency Analysis with Traditional Machine Learning

The Frequency Analysis approach consists of analyzing the frequency patterns of
an utterance without considering timing features. As an example, using an Av-
erage Short-Term-Fourier-Transformation (A-STFT) we can quickly obtain infor-

mation about the amplitude of the audio in each frequency range. This can be

https://cloud.google.com /text-to-speech/
12



useful in simple classification tasks, such as classifying if the speaker is male or fe-
male, since male voices exhibit higher amplitude in lower frequencies, while women
tend to have higher pitched voices resulting in higher amplitude in higher frequen-
cies. Even though the timing features and original content of the audio are lost
using this technique, previous research has shown that this approach can be use-
ful in synthetic speech detection [54]. However, synthetic speech generators have
evolved and the traditional approaches may not be as efficient as with previous
TTS algorithms. In this research, we explore five different approaches for extract-
ing the Global Frequency Features: Fast Fourier Transform, Average Short-Term-
Fourier-Transformation, Average Mel-Spectrogram, MFCC, and Average Constant-
Q Transform.

After extracting the frequency features for each audio file, we use the data in
a variety of machine learning techniques to analyze the performance of each algo-
rithm. With that, we analyze which machine learning algorithm performs better
and create a baseline for comparison against the Deep Neural Network approach.
The tests were ran using the Weka Project!® and include the following machine
learning techniques: Naive Bayes, Support Vector Machines, Decision Tree, and

Random Forests.

Ohttps:/ /www.cs.waikato.ac.nz/ml/weka/
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1.3.2 Deep Neural Networks

Although Frequency Analysis provides reasonable classification results, it discards
temporal structures in an utterance, which may be useful for detecting synthetic
speech. Previous research has shown that the variations of frequencies over time do
increase performance in synthetic speech detection [56] and for this reason we need a
solution that considers not only the frequency features, but also the timing informa-
tion. An approach for processing both temporal and frequency structures is using
audio representations (i.e. a spectrogram) with Deep Neural Networks (DNNs).
The DNNs are good feature extractors and are able to learn both frequency and
temporal structures given an audio representation of frequency over time of an ut-
terance. The general idea of this approach is extracting the audio representations
(STFT, MFCC, Mel-Spectrogram, CQT) from each utterance in the dataset and
using those representations as input to a variety of DNN architectures. By doing
this, we can compare which architectures perform better in the specific synthetic

speech detection problem. For this study, the following DNNs were selected:

e 4-Layer Fully Connected Neural Network

e 2-Layer Convolutional Neural Network

e 3-Layer Convolutional Neural Network

14



VGG16 and VGG19 [43]

InceptionV3 [47]

ResNet [45]

MobileNet [20]

XceptionNet [9]

1.4 Research Contribution

With this research, we provide to the research community a framework for the

study of synthetic speech detection. This framework includes:

e A dataset for speech synthesis studies containing more than 87,000 synthetic
utterances as well as more than 111,000 real utterances, which can be used

for training classifiers as well as other frequency analysis tasks;

e A thorough analysis of the performance of deep neural networks for synthetic
speech detection, showing the DNN architectures’ performance for this specific

problem.

15



1.5 Thesis Outline

This thesis is divided into five chapters and three appendix sections. In this first
chapter, we presented an overview of our research and the expected contributions
to the community. In Chapter 2, we present an extensive literature research in
synthetic speech detection and related areas. In Chapter 3, we present the details
of the FoR Dataset and its versions. In Chapter 4, we present the main experiments
related to our research and a discussion about their results. In Chapter 5, we present
a conclusion chapter, with the key findings of our research and potential future
work. Extra details about the dataset pre-processing can be found in Appendix A.
Additional experiments related to the frequency analysis approach can be found in
Appendix B, while additional experiments related to deep learning techniques can

be found in Appendix C.
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2 Background

In this chapter we summarize the ideas and discuss previous research in the main
areas touched by this research, including: Neural network architectures; Digital
audio and machine learning; Synthetic speech synthesis; and Computer-generated
media detection. This chapter is organized in four sections, one for each relevant
area. Each section contains an overview of the area and subsections describing the
relevant work on the topic. We describe how each area evolved and how they are

important in the synthetic speech detection task.

2.1 Neural Networks

The idea behind neural networks goes back to 1943, when researchers created a
computational model called threshold logic [36]. The model consists of a collec-
tion of connected units that perform logic tasks. Each unit, also called neuron,
is composed by an input, an activation function and an output. The neurons can

be interconnected using their inputs/outputs and a weight factor. This forms a

17



computational network, also called, artificial neural network. The Figure 2.1 shows
an example of a basic 2-layer fully connected neural network, containing two inputs
and one output. It is possible to note that every node of the network is a function
of the previous layer multiplied by weights. Each “column” of the neural network
is called a layer. As the number of layer increases, the computational cost of the

neural network increases.

| FC(xI*w1) + (x2tw2))| | F((o1*h1) + (02%hd) + (03*h7)) |

Activation
Function

Activation
Function

Weight 1

Activation
Function

Activation
Function

Activation
Function

Activation
Function

Y \ T J V | ;
INPUT LAYER HIDDEN LAYER 1 HIDDEN LAYER 2 OUTPUT LAYER

Figure 2.1: Example of a fully-connected neural network

The real potential of neural networks was only explored later in 1975, when
researchers from Harvard University published their back-propagation algorithm
[53]. This algorithm enabled neural networks to efficiently learn by adjusting the

weights in each node, making it possible to train complex neural network models
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using supervised data. The back-propagation algorithm is still in use today, decades
after its creation.

Since the publication of the back-propagation algorithm, scientists started to
use neural networks in more complex tasks, such as multi-variable inputs and im-
age processing. Such tasks contain a large amount of input parameters and require
a large amount of layers and neurons. This complexity creates issues such as the
vanishing gradient problem, in which due to the back-propagation process, the
numbers on the neural network shrink exponentially. The vanishing gradient prob-
lem can be minimized with the use of rectifiers, such as the ReLU [17]. Another
important achievement that improved image processing was the introduction of
the max-pooling technique [22], which minimized the impact of shift variance and

deformation in image recognition.

2.2 Main Neural Networks Architectures

For this thesis, several publications were analyzed to understand which architectures
are relevant for the synthetic speech detection domain. The following subsections

describe the relevant architectures for this research.
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2.2.1 Convolutional Neural Networks (CNNs)

When first published in the 80’s, the idea of Convolutional Neural Networks (CNNs)
was a groundbreaking finding [15]. More than a decade later, researchers were able
to use this architecture to ingest a multi-dimensional input (eg. an image) and learn
dimensional/positional relations between the pixels [26], which enable the neural
networks to recognize shapes and patterns. The main idea of a convolutional layer
is breaking an image into small squares and comparing each square to learnable
filters through the use of a convolution operator. Stacking convolutional layers
with classic fully-connected layers creates a powerful architecture that is able to
identify patterns in an image, from shapes (in the lowest layers) to complex objects
(in the highest layers). These architectures can be leveraged for other domains,
such as audio and speech processing, hence the reason for studying these image
processing methodologies.

One of the main publications related to CNNs is an article from 2012 by Alex
Krizhevsky, Ilya Sutskever and Geoffrey E. Hinton regarding the use of convolu-
tional neural networks for image classification [23]. In their publication, the authors
discuss the use of an eight-layer convolutional network over the ImageNet dataset
[38] to detect and classify objects in pictures. The research incorporates several

novelties in CNNs, such as: the use of ReLLU non-linearity functions (instead of
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traditional binary and sigmoid functions); the use of dropout layers in order to
minimize overfitting; and the use of data augmentation techniques for decreasing
overfitting and increasing accuracy. The results of this CNN were impressive at
the time of the publication. It achieved 15.3% of top5 error in the ILSVRC (Im-
ageNet Large-Scale Visual Recognition Challenge) competition, which is an error
significantly lower than any other competitors at that time. Due to its novelty and
impressive results, this paper is considered one of the most influential publications
in the field.

One of the biggest challenges when working with CNNs and images is to un-
derstand what the neural network is learning and how the model is predicting that
an input belongs to a specific class. To help in this challenge, researchers from
MIT published in 2016 a methodology to create class activation maps (CAMs) that
shows which areas of an image are more relevant for the classification process [63].
The idea behind CAMs is to use the global average pooling layers proposed in [27]
on the convolutional feature maps to identify regions of the image that are active
during the classification process. The trained CAM model can be used to not only
understand what the model is learning, but also to perform image localization.
The authors achieved 37.1% top-5 error on the image localization challenge of the

ILSVRV2014 dataset, which is close to the best results published regarding this
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challenge (34.2% [24]). An implementation of this work can be found on github'!.

Following the groundbreaking research of Krizhevsky et al. on CNNs for image
classification, Matthew D. Zeiler and Rob Fergus published a paper in which they
analyze methods to improve the work done previously [60]. The authors argue
that the architecture presented in the previous work was based on trial and error,
which means that there is a need for properly understanding the methodology so
improvements can be made. The authors use a modified version of DeconvNet [31],
which is a reverse engineering technique for convolutional neural networks. With
this modified DeconvNet, they are able to visualize each layer of the network in
the format of an image, which allows them to observe which features are extracted
in each layer, helping them to identify which layers are relevant for the problem
and which are not. The DeconvNet methodology works by implementing the same
components of the original CNN, but in the reverse order, allowing each layer to be
translated to the pixel space (image). With the improved model, the authors reach
a record in image classification performance: 14.8% of top5 error on the ImageNet
dataset, which was the best result at the time the paper was published. Moreover,
to prove the efficacy of the new methodology, the authors use the improved CNN
model in other image datasets, also obtaining outstanding results compared to

previous work.

Hhttps://github.com/jacobgil /keras-cam
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2.2.2 Long-Short-Term-Memory (LSTM) Networks

Convolutional neural networks are good at identifying dimensional /positional cor-
relation in the input, however they lack in understanding temporal correlation (e.g.
understanding a sequence of events). They also have the constrain that the in-
put/output size must be fixed, which can be a problem for audio/speech processing
since the duration of a speech segment can vary.

The idea of Long-Short-Term-Memory (LSTM) Networks is based on the con-
cept of Recurrent Neural Networks (RNNs), in which the output of one layer is
used as input to the same layer [19]. This provides the architecture with some kind
of “memory” and allows it to understand correlation in sequences. In this archi-
tecture, instead of using the classical neurons, it uses a memory cell, composed
by several components and operations to provide long term memory. The major
drawback of LSTM networks is that as the gap between instances (eg. words in a
phrase) increase, the learnability of the correlation decreases, and for this reason,
several modified versions of LSTMs were proposed.

In 2014, Ilya Sutskever, Oriol Vinyals and Quoc V. Le published a paper intro-
ducing an end-to-end methodology for sequence-to-sequence learning using LSTM
networks. Previously, all the work related to sequence learning was based on inputs

and outputs of fixed lengths, which restrict their use for several real-world problems,
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such as natural language translation. The authors suggest the use of two Long Term
Short Memory (LSTM) networks to remove the fixed input/output constraint: The
first LSTM maps the input sequence into a vector of fixed dimensionality, while the
second LSTM decodes the target sequence from this fixed-dimensionality vector.
This multi-layer approach solves the input fixed-size problem, allowing the inputs
and outputs to have any size. One interesting side finding of this work is that
inverting the order of the input (eg. inverting the order of the words on the input
phrase) increases the performance of the methodology. Although the authors do
not provide a theoretical explanation for this fact, it is believed that inverting the
order of words reduces the distance between them during the training phase (where
the output is given after the input), improving the performance in long inputs.
The performance achieved in this work (BLEU'? score: 34.8) is very similar to the
performance of the state-of-art methods (BLEU score: 33.3). As this architecture
was new at the time, the authors argued that it could be fine-tuned and potentially
surpass the state-of-art performance.

Although the LSTM architecture is capable of learning short term structure de-
pendencies, the model accuracy quickly decreases if the length of the input (number
of words in a phrase) increases. The main reason for this fact is that the encoder

in a traditional LSTM network only has a limited-length vector to represent the

12 Bilingual Evaluation Understudy, more information can be found at
https://www.aclweb.org/anthology /P02-1040.pdf
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whole phrase, meaning that in long phrases information may be lost in the process.

To improve the performance of recurrent neural networks for long inputs, re-
searchers published a paper about an alignment mechanism that is able to identify
which parts of the input are important for predicting the output [6]. The main dif-
ference between the regular encoder-decoder architecture to the alignment mecha-
nism is that the first one tries to encode the whole input into a fixed-length vector,
while the proposed methodology learns which inputs have higher impact on the
inference and uses them during decoding. The authors apply this idea to the ma-
chine translation problem and also argue that in this specific problem, the “future
input” (next words in the phrase) are also relevant in the inference process. To
solve this future dependency, the authors propose a bi-directional Recurrent Neural
Network (RNN): one part of the RNN analyses the phrase in the normal order
and the other part analyzes the words in reversed order. This allows the network
to have visibility of past and future words during inference. The results of this
proposed methodology show a higher performance (especially with regard to long
input phrases) compared to previous machine-learning-based translation solutions.
Moreover, the translation accuracy using this methodology is close to the accuracy
of the state-of-the-art translation mechanisms using non-machine-learning phrase-
translation. This attention mechanism is used by several key publications and real

world applications, such as the Google Translator and the Baidu Deep Voice TTS
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system, which will be discussed later in this chapter.

Following the work on sequence-to-sequence neural networks, researchers pub-
lished a paper where they combine previous sequence-to-sequence techniques to
approach the speech-to-text problem [8]. The authors propose a methodology com-
posed by a listener and a speller that is capable of processing audio input and
outputting a sequence of words contained in the audio. The listener component is
a pyramidal Bidirectional Long Short Term Memory (pBLSTM) neural network.
Basically, the pBLSTM inputs audio through filter-bank-spectra frames and reduces
its dimensionality using a pyramidal approach in BLSTM. The listener outputs a
vector that represents the input audio. The speller component (also called “Attend
and Spell”) works as a decoder by adopting an attention-based LSTM approach. At
each step, the transducer outputs a probability distribution over the next character
based on the input audio and the previous characters seen. The key contribu-
tion of this publication is an end-to-end solution for listening-to-spelling problem.
However, there are other interesting side findings that are relevant for our synthetic
speech detection research. As an example, the authors describe a technique for data
augmentation for audio databases that consists in adding noises (room simulators,
background noise, reverberations, etc) to the original audio. Those techniques will
be used in our research, since it helps to increase the resilience of the network and

avoid overfitting over the selected training data.
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2.2.3 Generative Adversarial Networks (GANs)

Researchers from the University of Montreal published a paper in 2014 to introduce
a new approach for distribution learning using machine-learning algorithms called
Generative Adversarial Networks (GANs) [18]. Their idea is to use two oppos-
ing (adversarial) neural networks: the generator, which generates an output (e.g.
image); and the discriminator, which is basically a classifier network.

The key here is that each network helps to train the other: the generator creates
an image which is then evaluated by the discriminator. If the image is not “good
enough”, the weights of the generator are updated. To better understand the
concept, the authors use an analogy of a counterfeiter (generative model) trying to
produce synthetic currency that the police (discriminator model) will not flag as
synthetic. So the counterfeiters will learn ways to improve their currency generator
to not get caught.

Mathematically, this can be translated into a min-max game, in which one part
(generator) wants to minimize the chances of a mistake, while the other (discrim-
inator) wants to maximize the amount of synthetic utterances flagged. Although
the authors argue that this architecture can be used with any machine learning
technique, they also argue that using neural networks provides an advantage due

to the fact that the whole scheme can be trained using the same back-propagation

27



process. This is done by training the discriminator for n interactions (using data
from the dataset and from the generator), then, training the generator (using the
discriminator as ground truth), then, training the discriminator again for another
n interactions, and so on.

The authors do not present any concrete comparison numbers between the re-
sults of GANs with previous approaches, however, they present images generated
by the proposed approach and argue that the results are comparable to the existing
methodologies. Moreover, the authors claim that their results can be more appeal-
ing since the generated images are sharp, which contrasts the other methods (such

as encoder/decoder networks) that generate blurred images.

2.2.4 State-of-Art Neural Networks

With the advances in hardware, machine learning researchers are able to exper-
iment with more complex models. As machine learning techniques are basically
a sequence of matrix multiplications, the latest GPUs (which are optimized for
matrix multiplications) are now able to solve in hours computations that used to
take weeks. This allowed the research community to increase the complexity of
the models, by increasing the number of layers and/or by adding more complex
layers in their traditional neural networks. This increase in the model complexity

translates into higher accuracy in complex problems.
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In late 2014, researchers from Google published a paper introducing a new archi-
tecture called Inception, which not only explores deeper neural networks, but also
wider [46]. The idea is to use the traditional convolutional layers in parallel to cre-
ate a module called Inception Module. These modules (with parallel convolutional
layers) are then stacked up to form a deep neural network. This approach not only
achieved state-of-the-art results in image classification at the time of publication,
but also contains significantly fewer parameters than predecessors, showing that
with a proper architecture it is possible to achieve better results with less compu-
tation efforts. The core of the Inception network is based on the inception module,
which is a parallel aggregation of convolutions with various convolution sizes (1x1,
3x3, 5xb and 7x7). These convolutions are then concatenated by a filter concate-
nation, which merges the results of the parallel layers and is used as input for the
next inception module. It is important to note that all the parameters (includ-
ing filters) are learned during the backpropagation process, improving the results
achieved. The authors implemented a neural network, called Google Net, based
on the Inception architecture. This neural network achieved state-of-the-art results
at the ILSVRC14 competition, which is a well-known image-processing event. The
implemented network contained 22 layers: 3 traditional convolutional layers, 18 in-
ception modules and one fully connected layer. The implementation contains three

soft-max layers at different stages, which are then averaged to generate the final
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output. The Inception architecture is later improved in Inception v2/v3 [48], and
recently in Inception v4/ResNet [45]. In these newer architectures, the researchers
experiment with variations in the inception module (such as the use of residual
networks) and, again, achieve state-of-the-art results by the time the paper was
published.

The Inception architecture also motivated the research of similar architectures
that explore the idea of Network-in-Network, or in other words, using stacked com-
putational modules. The Xception Net is inspired by the Inception Net, however,
instead of using inception modules, the researchers use “Extreme Inception” mod-
ules, which are composed by depthwise separable convolutions [9]. The use of
depthwise separable convolutions reduces significantly the computational cost of
the network, allowing the network to grow as deep as 36 convolutional layers (plus
fully connected and softmax layers) and to learn more complex features of the in-
put. The researchers of the Xception Net use the ImageNet dataset [38] to compare
the performance of the Xception architecture with the predecessor Inception archi-
tecture. The results shows a small improvement in accuracy but a considerable
improvement in training performance.

Later in 2017, researchers also from Google proposed a new architecture type,
called Transformer, which is based only in attention mechanisms [52]. This ar-

chitecture does not use the typical convolutional or recurrent layers. Instead, it
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uses only attention-based layers. In their publication, the researchers apply this
novel neural-network architecture for machine translation and achieve state-of-the-
art BLEU scores. Moreover, the training time of the Transformer network is up
to a hundred times faster than previous state-of-the-art models. Considering the
translation problem, the idea behind the Transformer architecture is to learn the
dependencies between the words independent of how far the words are and gener-
ate the output based on these dependencies. Also, in the Transformer network, the
output word is based not only on the input phrase, but also on the previous output
words, improving the context-awareness of the model. One of the main differences
to previous LSTM networks with attention is that the Transformer architecture
is based on multi-head attention components, as opposed to the single attention
head used in LSTM networks. This multi-head attention component allows the
network to learn from information in different representation subspaces and differ-
ent positions, meaning that the heads are able to learn things like coreferences and
correlations at the same time. To test the flexibility of this model, the researchers
applied the same architecture in different problems, such as constituency parsing
and phrase generation. In both problems, the proposed model outperformed the
state-of-the-art methodologies by a significant margin. That publication opens the
door for future research using Transformer networks for other areas, such as our

speech processing research. Another key contribution for the research community
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is that the authors also created a library, called tensor2tensor, that allows the easy

creation and training of such networks.

2.3 Digital Audio and Machine Learning

With the increase in the research of machine learning methods, the academic com-
munity started to experiment with the use of machine learning techniques for digital
audio processing. The improvements in hardware allowed neural networks to be-
come more versatile and ingest more complex inputs, such as audio data. This
allowed a variety of interesting applications, from audio processing to audio syn-
thesis. In this section, we discuss publications in three areas of digital audio that
are directly related to our research: Audio synthesis; Audio processing; and Speech

Classification.

2.3.1 Audio Synthesis

The first interesting machine learning application for digital audio processing is
audio synthesis. With the use of neural networks, researchers were able to both
input and output audio from a model. It is important to note that the evaluation
of synthesized audio is subjective, since audio and music perception are dependent
on the listener.

In late 2016 a ground-breaking paper called “Wavenet: A generative model for
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raw audio” was published by researchers from Google UK [32]. In their research,
the authors show that using a modified version of CNNs allows dependencies on
past inputs to be learned. This architecture, called Wavenet, can be applied to
several audio-related problems such as Tezt-To-Speech (TTS), music generation
and speech recognition. Prior to Wavenet, the majority of the research on machine
learning for audio processing were using Recurrent Neural Networks (RNNs) due
to its ability of learning sequences. Before the publication, CNNs were adopted
mostly for image recognition/classification, due to their ability to recognize patterns
using convolutional filters. To be able to learn sequences using CNNs, the authors
used “dilated causal convolutional layers”, which expand the receptive field by
skipping the output of a normal convolution by few steps. In this way, the output
of a higher-layer is based on a large number of inputs in the lower layers. This
architecture is more efficient than the previously used RNNs, meaning that the
training time is lower and the prediction accuracy is higher. In the paper, this
architecture was applied to several audio processing problems. The most interesting
results were on text-to-speech generation, in which this methodology was able to
generate high-quality speech audio that surpassed any previous TTS methodology.
In fact, the score given by a survey test shows that the WaveNet-generated speech
is very close to natural speech. This paper is important to show the possibility of

the use of convolutional neural networks for audio processing, which sparked the
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interest of other researchers to improve this architecture. The only downside of
this publication is the amount of data and time required to generate the output:
the dataset was composed by more than 20 hours of training data and it required
around 90 minutes to synthesize one second of audio. This is improved in future
publications, such as DeepVoice 3[35], which are capable of generating speech in
real time.

The publication of the WaveNet paper inspired further research in the audio
processing area. For instance, the use of a WaveNet-like architecture to synthesize
musical notes [13]. The key achievement in this research is the development of an
architecture based on Wavenet that is able to learn long-term structures without
external conditioning, meaning that this improved architecture performs well on
long scale signals, which was a problem for the original Wavenet implementation.
This is achieved by using a deeper convolutional neural network (30 layers) and
a variety of specific values for strides and kernels. Another contribution that this
paper brings is a large scale dataset containing musical notes. This dataset contains
more than 300,000 musical notes across more than a thousand instruments. It
is important to note that the majority of these audio snippets were generated
by computer software, which doesn’t contain the human aspect when playing an

instrument.
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2.3.2 Audio Processing

The second interesting application of machine learning into the digital audio domain
is on audio processing. In the last decade several papers were published showing
how neural networks can be applied in audio processing problems that are too
complex to be solved by traditional procedural applications.

As example, in 2015, two researchers from University of Alberta submitted their
research regarding using Deep Belief Networks (DBNs) to transcribe guitar audio
[7]. The main idea proposed by the authors is to use two DBNs to estimate the
pitch and note given an audio frame. With those values estimated for each frame,
a MIDI file is generated with a representation of the original audio. With the MIDI
generated, the authors then use a non machine-learning technique to translate the

MIDI into common western music notation and guitar tablature.

2.3.3 Speech Processing

The third interesting application of machine learning into the digital audio domain
is the use of neural networks for Speech Processing, which includes speaker isolation,
emotion recognition and synthetic speech synthesis (which will be discussed in the
next section).

The speaker isolation problem, also known as the “cocktail party” problem, aims
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to mimic the human capability of isolating and paying attention to one speaker
in an environment with noise and/or several other speakers. Previous research
only accomplished speaker isolation when the same audio was recorded by two
microphones in different positions. However, in April 2018, researchers from Google
proposed a methodology for speaker isolation using a combination of audio and
video [14]. The intuition is that it is easier to identify the source of an audio
when the solution can “see” the face of the speaker, due to mouth movements
and face expressions. The first challenge for the researchers was to have a dataset
containing high quality audio and video from single speakers. For that, the authors
used video snippets from high-quality one-speaker sources, such as lectures, TED
talks and tutorial clips. Those videos were then broken down into small clips (3-
10 seconds long) and filtered to remove the clips where the face of the speaker is
not visible. With that, the authors build a dataset with more than 2000 hours
of video segments of single speakers containing high-quality audio and video, and
with a clear picture of the face of the speaker. This dataset, named AvSpeech
Dataset, is available to the public and it is one of the main contributions of the
research. With the dataset ready, the authors then implemented a neural network
that has as inputs the audio and video (containing multiple speakers) and outputs
isolated audio segments for each speaker. This neural network contains two input

processing modules: the convolutional dilated network for audio processing and
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the convolutional neural network for image processing. After the initial processing,
both image and audio features are merged using an audio-visual fusion layer. This
layer is then input into a bidirectional LSTM layer and three fully connected layers.
The neural network then outputs audio spectrograms for each face, which can then
be converted to waveforms. The results of this solution are posted on the Google
Research blog!® and are impressive: Just by inputting a video and selecting the
face of one of the speakers, the system outputs the audio for the person. The audio
quality has room for improvements, however the voice is clear and it is possible
to understand the words spoken by each speaker. More than just publishing the
dataset, the authors also released the source code of the solution, which is written
in TensorFlow, opening a door for the community to research and improve the
proposed technology.

Other significant area on speech processing is the speech emotion recognition
(SER). Several papers were published introducing deep-learning based methodolo-

gies to classify the sentiments in an utterance [49, 44].

L3https:/ /arstechnica.com/gadgets/2018 /04 /google-works-out-a-fascinating-slightly-scary-way-
for-ai-to-isolate-voices-in-a-crowd/
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2.4 Speech Synthesis

One of the key aspects for synthetic speech detection research is to understand
how synthetic speech is generated. In this section, we describe how academic
research evolved such that the generation of synthetic speech was possible. We
start this section by presenting traditional non-machine learning techniques for
speech synthesis. Then, we discuss the first relevant publications that introduced
machine-learning-based Text-To-Speech solutions. Last, we discuss the state of art

of Speech-to-Speech synthesis.

2.4.1 Traditional Speech Synthesis

Synthetic speech refers to the creation of speech by a machine, which can be a
mechanical equipment (such as a replication of the vocal tract) or software that
is capable of generating speech. In this research we focus on the latter, that is,
computer software that is able to replicate human speech. This software is divided
into two categories: Text-to-Speech (TTS) systems and Voice Conversion (VC)
systems. TTS systems are able to synthesize human-like speech based on words or
phonemes, while VC systems convert the voice of an utterance into another voice
(keeping the same word content).

One of the first speech synthesis techniques published is through speech con-
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catenation [10]. The idea is to concatenate several pre-recorded speech segments to
form a new phrase. This technique produces an utterance with a natural-sounding
voice but with several audio glitches due to the lack of speech flow and differences
in voice variations during speech. However, even with poor speech naturalness, this
speech synthesis technique is adopted in several applications, such as broadcast
messages [25].

Another speech synthesis technique is through formant synthesis. The idea is
using acoustic models with tuned parameters (such as voice, fundamental frequency
and noise) to synthesize speech [50]. These systems do not use human speech
samples as input, resulting in a robotic-sounding speech which can be useful if a
human-like voice is not required.

Articulatory speech synthesis is a technique that models the human vocal tract
and the vocal biomechanics to produce speech. Although this technique was not
adopted in large commercial systems, research on this topic is still active [28].

HMM-based speech synthesis algorithms are based on Hidden Markov Models
(HMM), which are capable of modulating speech properties, such as frequency
spectrum, fundamental frequency and duration. Several implementations of such
models can be found online!* and in published articles [61], however the naturalness

of the generated speech is low compared to the latest deep learning methodologies.

Y“http://hts.sp.nitech.ac.jp/
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With the increase of the use of deep neural networks for media synthesis, the
scientific community started to investigate ways of generating speech using neural

networks. Such techniques are discussed in Section 2.4.3.

2.4.2 Style Transfer

The concept of style transfer was originally conceived for images. It consists of
extracting the style from one painting (e.g. brushstrokes, colours, etc.) and applying
it to the content (e.g. buildings, a mountain, a river, etc.) of a second image. This
image style transfer concept is interesting for synthetic speech because in speech
we also have the idea of the content (the spoken words) and voice style (pitch,
intonation, etc.).

One of the first major publications on image style transfer was in 2016 by two
German authors. At that time, three researchers from University of Tuebingen
(Germany) published an interesting paper about the use of CNNs for image style
transfer [16]. The idea is to create artistic images with high perceptual quality by
extracting the artistic style from one image (ie. painting) and applying it to the
content of a target photograph. For that, first, the authors formalized two concepts
regarding image analysis with CNNs: Image Content and Image Style. The first
one, as the name suggests, is the content of the image, or in other words, what is

in the image (i.e. buildings, animals, objects, etc). Image Style is how the content
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is represented (i.e. the colour of the building, the rotation of the object, textures,
etc.). As Convolutional Neural Networks are capable of extracting the content from
an image (i.e. for image classification), the authors had the idea of using a CNN to
extract content and the style of images. The authors use a VGG16 neural network
architecture [43] with weights pre-trained in the ImageNet database as base for
their work. For the content extraction, the authors ran the original photograph
through the VGG16 neural network and extracted the feature vector from the last
fully-connected layer, since it is the layer that contains the high-fidelity content
representation. For the style extraction, the authors run the style image (i.e. a Van
Gogh painting) through the same VGG16 network. However, to extract the style,
the authors extracted the difference between the original image and the content-
representation of the image in each layer of the neural network. The difference
between the content-representation in each layer and the original image is the style
representation. The authors extracted the style representation for each layer of the
CNN and summed them up to generate the final style representation. For the image
generation process, the authors define the loss function as a combination of style loss
and content loss. This loss is then minimized by a modified version of the gradient
descent algorithm: Normally, in a typical neural network implementation, we aim
to minimize the target loss function by varying the weights of the neural network.

However, in this paper, the authors minimize the loss by keeping the weights fixed
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(trained for image classification) and varying the pixels of the target image. In this
way, the final image is constructed by the gradient descent, which after few thousand
of iterations outputs the final image. The paper presents interesting results, where
the style of famous paintings was transferred to regular photos. The generated
images present a high perceptual quality, meaning that they look produced by real
artists.

In 2018, a paper was published discussing the use of style transfer in the au-
dio domain, including music and speech [42]. The authors of this paper argue
that using only a log-magnitude STFT to represent the audio is not sufficient to
represent rhythmic and harmonic nature of audio. Therefore, they proposed an im-
proved methodology using the log-magnitude STFT with other techniques, such as
Mel spectrograms or Constant @ Transforms (CQT). The idea is that merging the
original log-magnitude STFT with the other techniques will provide a better repre-
sentation of the rhythm and harmonic style. The authors also argue that adopting
a key-invariant content representation may improve the final results. Considering
that the audio domain has specific characteristics that are not present on image
processing (such as the fact that audio is a sequence), the authors also suggest to
change the neural network architecture by using SELU activation units instead of
RELU, as originally proposed. The results presented by the paper showcase better

musical quality than the original audio-style transfer previously proposed in the
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literature, however, the generated audio is still far from a proper audio-style trans-
fer. In some of the results it is hard to relate the generated sound with the original

content, which leaves room for improvement in the audio style transfer domain.

2.4.3 Deep Learning Text-To-Speech Synthesis

The majority of the machine-learning based Text-To-Speech systems use neural
networks to learn from utterances how to produce an audio signal (speech) given a
sequence of characters (phrase). In the early days, most of those systems were being
developed by private companies and their architectures were proprietary. However,
researchers from the Baidu Labs published in early 2017 a paper about their project
called Deep Voice, which aims to create a production-level end-to-end solution for
Text-To-Speech (TTS) [5]. The key points of Deep Voice is that it does not require
any specialist knowledge during the training/inference process and that the solution
is able to generate audio in real-time. Deep Voice breaks down the T'TS problem

into five models:

e Grapheme-to-phoneme model: Responsible for converting written text (eg.
English, Chinese, etc) into phonemes. This is helpful as in the majority of
the languages, the same sequence of characters may produce different sounds
based on the surrounding characters. For example, in the words “Frost”

(Phoneme: frost) and “Roast” (Phoneme: rost), the sequence “ro” have to-
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tally different sounds, resulting in different phonemes in each word.

Segmentation model: Utilized only during the training phase. It is responsible
for finding the start and ending of phonemes in an audio signal. Once the
start and end is found, the audio is isolated so the neural network is able to

learn the sound for the exact phoneme.

Phoneme duration model: Responsible for determining the duration of a
phoneme. This is helpful to generate natural-sounding audio, since the same
phoneme can have different duration depending on the word, or even on the
context of the phrase. As an example, the phoneme “mo” in the words
“model” and “more” has different duration: in the first one, it is a short

sound, while in the second it’s a longer sound.

Fundamental frequency model: Responsible for predicting whether a phoneme
is voiced. If it is, predicts the fundamental frequency throughout the phoneme’s
duration. This is also very important for generating natural-sounding audio,
since in the majority of the languages there are phonemes in words that are
not pronounced. As an example, in the word “island”, the “s” is silent and

should not be pronounced.

Audio synthesis model: Responsible for generating audio based on the phoneme,

duration and fundamental frequency. This model is heavily based on the
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WaveNet project, however it implements several improvements that allow the

audio generation to be done in real-time.

The majority of the previous works on machine learning based TTS only imple-
mented one or two of those models and relied in specialist-engineered solutions for
the other parts of the TTS. However, the problem with relying on specialists is
that it may take weeks to fine tune the parameters and find a natural-sounding
voice. In the Deep Voice project, all five components are implemented using neural
network models, which requires minimal specialist effort. According to the publi-
cation, these machine-learning models have similar or better performance than the
traditional non-machine learning methods. Another key contribution of the paper
is the fact that the authors share a good amount of detail on how this architecture
can be implemented to maximize the performance over CPU and/or GPU. The
authors compare the execution using several parallelization methods and propose
an implementation with impressive results. The authors claim that the inference
in DeepVoice is 400 times faster than WaveNet.

Few months after the publication of the Deep Voice paper, researchers from the
same company published Deep Voice 2, which is an expansion of the first proposed
methodology [3]. In the second paper, the authors propose the following improve-
ments to the original publication: Multi-speaker support, segmentation of modules

and increase in training data. Although the overall architectures of both method-
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ologies are very similar, the authors tune the system to achieve better performance
and provide the above mentioned new features. The key difference between Deep
Voice 1 and Deep Voice 2 is the support for multi-speaker datasets. This can be
achieved by using a low-dimensional embedding of each speaker in each module
of the Deep Voice 2 architecture, so during training and inference the network is
able to assimilate the features of each specific speaker. Another improvement from
Deep Voice 1 on the new proposed methodology is the use of a much larger dataset,
with more than 250 hours of speech. The results presented by Deep Voice 2 were
fairly impressive at the time of the publication. The audio quality surpassed the
previous TTS methodologies and accuracy numbers shows that the proposed model
is approaching the ground truth. However there is still a statistically significant
difference between a human speaker and a computer-generated voice.

After the success of Deep Voice 1 and Deep Voice 2, researchers from the same
company published a third paper regarding their continued work, which they called
Deep Voice 3 [35]. In this new paper, the researchers proposed a new architecture
totally different from the one used in Deep Voicel and Deep Voice2. With this new
architecture, the system is able to train faster, allowing them to scale up to more
than 800 hours of training data containing more than 2400 voices. The new architec-
ture is based on an encoder-decoder scheme, or in other words, a fully-convolutional

sequence-to-sequence (character to spectrogram) model. The encoder, which is a
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full-convolutional encoder with convolution blocks, is responsible for receiving the
written words and transforming them into an internal learned representation. The
decoder, which is a fully-convolutional causal decoder with an attention mechanism,
is responsible for decoding this learned representation into a low-dimensional audio
representation (mel-scale spectrograms). These audio representations are sent to
converters so they can be transformed into audio using traditional (Griffin-Lim,
WORLD) or machine-learning (WaveNet) methods. The results were impressive
at the time of publication. The Deep Voice 3 training time outperformed other
TTS systems showing to be 10 times faster than the latest technologies (Tacotron).
The authors claim that the system is able to process more than 10 million TTS
requests a day with just one server with a single GPU. Moreover, Deep Voice 3
converges with significantly fewer interactions than other TTS systems. Also, with
the improvements in the attention-based convolution blocks, the authors were able
to reduce the common errors presented by attention-based networks, meaning that
the output phrase had less mistakes (repetitions, mispronunciations, etc.) than
previous systems. The naturalness levels of the audio generated by DeepVoice 3
is also leading the rank in comparison with previous researches, showing that even

with a fast algorithm it is possible to achieve human-like voice audio.
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2.4.4 Speech-To-Speech synthesis

With the evolution of machine-learning based TTS systems, the academic commu-
nity started to research ways of creating a speech-to-speech synthesis model. The
idea to have as input an utterance spoken by person A, and having as output an
utterance with the same content (words) but in the voice of person B. Although
there are legitimate uses for this technology, such as the creation of personalized
voices for commercial applications, this could be used for malicious reasons, i.e.
impersonating someone.

Early in 2018, researchers from Baidu Labs started to investigate ways of per-
forming voice cloning [4]. Moreover, their objective was to generate an unseen
speaker voice using just few samples. The overall idea is to train an encoder-
decoder model capable of listening to someone’s voice (decoding) and reproducing
the same words but in someone else’s voice (encoding). Multi-speaker generative
models have already been explored in the past (as seen on Deep Voice and other
projects), however the key of this project is an audio-to-audio system capable of
cloning a voice with just a few examples (in contrast to previous work that re-
quired more than 2 hours of recordings to train a model). The researchers use
an encoder-decoder architecture similar to the one used on the project Deep Voice

3: an attention-based convolution deep neural network. However, instead of text-
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to-speech (as in the Deep Voice 3 project), they use a speech-to-speech model
that has audio as input and output. The researchers propose two approaches for
cloning voices with few samples: speaker adaptation and speaker encoding. The
first one is basically fine-tuning a trained multi-speaker model. This fine tuning
can be done through modifying the speaker embedding or through re-training the
generative model with the few samples provided. The other approach, speaker en-
coding, consists of re-training the encoding model from scratch to directly infer a
speaker embedding from the cloning audio, which is used in the generative model.
The authors compare the results from both approaches and show that the speaker
adaptation produces better similarity (between original audio and generated audio)
and better naturalness of speech. However, speaker embedding requires less time
and uses less memory during the inference process, meaning that it may be more
suitable in cases where resources such as CPU and memory are a bottleneck. The
authors also published!® audio generated by the proposed cloning method and the

results show a cloned voice very similar to the original voice.

2.4.5 Commercial Speech Synthesis Tools

Even before the first papers published about machine-learning speech synthesis,

several companies were already developing in-house T'TS systems for their own use.

5https://audiodemos.github.io/
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Although those companies do not release their source code nor their methodology,
one can use APIs to access the TTS systems and generate synthetic speech. It is
important to note that some of the commercial systems can generate speech audio
that sounds more realistic than the open source counterparts discussed so far. For
this reason, we extend our research to include some of the main commercial systems
that can be accessed by anyone to generate synthetic speech. Also, some of the
systems have the capability of being re-trained with speech samples, meaning that
using those commercial systems we could generate synthetic speech to impersonate
a target victim.

Google utilizes a combination of machine learning techniques (such as WaveNet)
and traditional speech synthesis methods to provide a TTS service'® that can be
used by third-part applications through APIs. This service not only accepts text as
input, but also SSML'7 (Speech Synthesis Markup Language), which enables the
user to describe how a phrase should be spoken, including the duration of pauses
and the intonation in specific words.

Baidu, the largest Chinese internet-related services and products provider, has
their own TTS system!® that can be accessed publicly. Although Baidu released

to the public few research papers detailing the use of machine learning for TTS

https://cloud.google.com/text-to-speech/
1https:/ /www.w3.org/ TR /speech-synthesis11/
Bhttps://cloud.baidu.com/product /speech /tts
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(Deep Voice 1, 2 and 3), their commercial system (which is sold as a service) has
higher performance than the open source codes released on the internet. For this
reason, in this research we utilized not only the open source Deep Voice code, but
also audio generated by the commercial version of the system.

Amazon provides among its services the Amazon Polly'®. Amazon Polly is a
text-to-speech service in which a user pays a subscription and is able to synthesize
speech given a phrase. The service supports SSML and contains voices in more
than 20 languages, from both male and female speakers.

Microsoft recently released a new product called Microsoft Text To Speech?.
Given an input phrase, this product is able to generate utterances in more than 16
different voices. Moreover, Microsoft TTS allows any person to upload voice sam-
ples (in conjunction with the dataset of spoken phrases) so their machine learning
model can be re-trained to output a desired voice. This allows any person to create

a model of their voice that can be saved and used later to generate utterances.

2.5 Synthetic Media Detection

Considering the advancements in synthetic media generation, the academic com-

munity started to study methods to detect computer generated media. Those

Yhttps://aws.amazon.com /polly/

20https:/ /azure.microsoft.com /en-us/services/cognitive-services,/text-to-speech /
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techniques are mostly based in machine-learning algorithms, which are able to de-
tect patterns on the synthesized audio. Although synthetic video and audio can be
useful in commercial applications, the main concern of the research community is
that such technologies can be used for malicious reasons. For example, a malicious
actor could generate a synthetic video of a person to denigrate the image of the

1

victim?!. In this section, we analyze efforts in detecting synthetic content in two

media outlets: images and audio.

2.5.1 Fake Images Detection

With the advancements of image editing and image generation using machine learn-
ing, several malicious actors are using this technology to create public misinforma-
tion. The concern around false content on the internet is increasing and will worsen
in the future due to advancements in technology.

Based on this concern, researchers from University Frederico IT (Italy) explored
the use of machine learning techniques to detect fake images [29]. In this publica-
tion, the authors train a neural network to detect GAN-generated images posted in
social networks. The proposed methodology presents interesting results, achieving
an average of 89.55% accuracy across a large dataset containing images generated

by the most famous image-to-image translation neural networks. The methodology

https: / /www.youtube.com/watch?v=cQ54GDm1eL0
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presented by the authors is fairly intuitive. First, the authors identify the most
famous image-to-image translation neural networks. Then, they create thousands
of images with those neural networks, which are then put into a dataset in con-
junction with real images. This dataset is used to train a variety of neural network
architectures, so then the authors can analyze which architecture presents better
results. After finding the architecture with best results, the authors test it against
a testing dataset, containing both uncompressed and compressed images. Dur-
ing the experiment, the researchers found out that more complex neural network
architectures, such as InceptionNet v3 and XceptionNet often produce the best
accuracy for both uncompressed and compressed data. The authors observed that
after compression (using the same image compression method that Twitter uses),
several characteristics of machine-learning-generated images are lost, meaning that
the overall accuracy is decreased when the image is compressed. However, as men-
tioned, more complex neural networks still perform well even with compressed data.
The research is key to the community because it brings an automated way of rec-
ognizing GAN-generated images. This methodology opens the possibility of later
being integrated into the social network algorithms to flag to the user if an image
in their timeline is fake. The results presented show that compression may be an
issue when classifying the images. However, this issue can be minimized with the

use of very deep neural networks, such as XceptionNet.
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Following the research in detecting GAN-generated images in social networks,
several other authors created machine-learning-based methodologies for identify-
ing fake content. However, as with any complex machine learning methodology,
to improve the results it is necessary to have a large dataset containing fake im-
ages for training. Based on this need, researchers from Germany and Italy created
a dataset containing more than half a million edited images using state-of-the-art
image generation technology [39]. With this database, the authors also trained neu-
ral networks to recognize fake content in images and videos. These neural networks
achieved better performance than humans, showing how the technology can help in
this problem. The dataset, called FaceForensics, is based on more than 1000 videos,
mainly from the YouTube platform. Those videos were split into short clips, which
were then analyzed by a face-detection technology. The clips that didn’t contain
a face were discarded, while the ones containing a human face were kept. With
those clips, the authors then used two state-of-the-art technologies to forge the
video clips: Source-to-Target Reenactment, which is when a source face is applied
to a target face; and Self-Reenactment, which is when the original face is kept in-
tact and only the facial expressions changes (which can be used for lip-syncing).
The results of both forgeries were then combined into the FaceForensics dataset.
With the dataset in hand, the authors performed some experiments with it. First,

the authors created a classifier that is capable of identifying if a video frame was
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forged or not. This was done by training several neural network architectures with
forged and non-forged images. The authors also consider factors such as compres-
sion during testing, since most of the fake videos are uploaded into social media
platforms, which compress the media. After the experiments, the authors conclude
that compression reduces the accuracy of the majority of architectures. However,
XceptionNet performs well in both compressed and non-compressed media. The
second experiment that the authors perform with the dataset is the forgery segmen-
tation task. In this case, the researchers are interested in identifying which regions
(or pixels) of an image were forged. Although this task is more challenging and
presented poorer results than the classification task, XceptionNet still was the best
performing architecture. The third experiment performed by the authors was the
refinement task, which is using the classification neural network model to improve
the current image-generation algorithms. Since the model is capable of identifying
the fake frames, this can be used to improve the generated frames. The results for
this task are interesting: although the images were perceptually improved (which
made humans more prone to mistakes when classifying between fake/non-fake), for
the XceptionNet, there was almost no impact. This shows that the perceptual
image (what a person sees) is not directly impacting what the XceptionNet had
learned, which means that the proposed classifier was able to learn features that

humans do not notice.
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2.5.2 Synthetic Speech Datasets

With the increase in Automatic Speaker Verification (ASV) solutions, the research
community started to develop interest in ways of detecting spoofing attacks against
those systems. A replay spoofing attack consists in recording someones’ voice and
replaying it in an attempt to fool the ASV system and gain access to a system. Moti-
vated by this threat, researchers from across the globe created a dataset containing
real voices and spoofed voices [21]. With this dataset in mind, the researchers
created a challenge, called ASVSpoof Challenge, so the research community could
study and propose methodologies that solved the ASV replay spoofing attack. One
of the most cited versions of this dataset is the ASVSpoof2015 dataset, which
contains not only spoofed utterances, but also computed-generated speech. The
synthetic utterances were generated using traditional text-to-speech systems and
voice-conversion systems, which lack in naturalness of speech. The ASVSpoof2015
dataset does not include the latest deep-learning-based synthetic speech systems.
The key contribution of this challenge is that it sparked parallel research across the
globe in such attacks. More than 49 papers were submitted proposing a solution
for the ASVspoof Challenge, some of them achieving error rates (ERR) as low as
6.73%.

In a paper published in early 2016, researchers discuss methodologies for identi-
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fying spoofing attacks using automated solutions [55]. In their study, they analyze
the effectiveness of 5 text-to-speech systems (TTS) as well as 8 voice-conversion
(VC) systems against three automatic speaker-verification (ASV) systems. Their
conclusion is that the ASV systems are vulnerable to those spoofing attacks. How-
ever adding their proposed spoofing detection system can lower the false-acceptance
rates to less than 1%. The main difference between the study in [55] and previous
studies is that the authors compare a variety of spoofing systems against a vari-
ety of ASV systems, making the study more broad and generic. Also, they focus
their research on speech synthesis and voice conversion spoof attacks, in contrast
to previous authors that focused on speech replay and impersonation. Although
this study considers a large variety of attacks, none of the 13 spoofing method-
ologies uses the current state-of-art technologies, such as deep neural networks and
Wavenet. Instead, the spoofing attacks used in this research mainly uses HMM and
GMM based algorithms. Nonetheless, the study brings several interesting findings
to the research community. Apart from the key contribution of developing an anti-
spoofing system, the authors also published to the research community a dataset,
called Spoof and Anti-Spoof (SAS) dataset, that include thousands of utterances
from real speakers and synthetic speech. In addition to the main contributions,
several interesting side-findings were presented in the publication. The authors

observed that the performance of a speech-synthesis algorithm is higher in male
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voices. The authors speculate that it is harder to model a female voice due to the
higher variability of female speech. Also, the authors note that using higher sam-
ple rates increases the performance of spoofing attacks. To prove the efficiency of
their proposed anti-spoofing methodology, the authors compare the performance of
their system to human performance. For that, the researchers recruited 100 native
English listeners for a variety of tasks, including the classification of an utterance
into synthetic or real. Although the human performance was fairly good (with an
average error rate of 7%), the proposed system outperformed humans achieving
less than 1% error rate. However, it is important to note that the TTS and VC
systems utilized in this research are outdated compared to the current state-of-art

speech-synthesis systems.

2.5.3 Synthetic Speech Detection

In mid 2017, a paper was published proposing a set of short-term spectral fea-
tures that can drastically improve the accuracy in the synthetic speech detection
[33]. The authors provide a thorough analysis of the differences between synthetic
speech and real speech. The researchers start by extracting features from the au-
dio using several different methods, such as: Mel-Frequency Cepstral Coefficients
(MFCC), Modified Group Delay Functions (MGDF') and Cosine-Normalized Phase

features. With those representations, the authors compare general features from
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both synthetic and real speech and identify interesting patterns, such as the fact
that lower frequencies (<1kHz) and high frequencies (>7kHz) are the most useful
frequencies for discrimination between synthetic and real. Based on those findings,
the authors suggest improvements to previous models. For example, since high fre-
quencies are important for classification and since MFCCs lose precision in higher
frequencies, the authors propose using inverted MFCCs (IMFCCs), so that higher
frequencies are in the beginning of the spectrum and have better representation.
The combination of this and other improvements (such as the use of dynamic co-
efficients and frequency warping) resulted in 100% accuracy in almost all synthetic
speech generation algorithms in the ASVSpeech2015 dataset. However, it is im-
portant to note that the dataset did not contain the latest state-of-the-art speech
synthesis algorithms.

A good portion of the speech synthesis detection studies focuses on extract-
ing frequency information and using this information to train a classifier. This
kind of approach usually assumes frame-by-frame independence and does not learn
long-term temporal information. However, a study published in 2013 shows that
having temporal data increases the performance of synthetic speech classifiers [56].
In the publication, researchers use modulation features deviated from the magni-
tude/phase spectrum in conjunction with the traditional frequency analysis (such

as MFCCs) to achieve better classification results. According to the published re-
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sults, using temporal features with the traditional MFCC analysis results in 7.17%
error (down from 10.98% using only MFCCs). Similarly, using MGDCC with tem-
poral features results in a 0.89% error (down from 1.25% using only MGDCC). This
shows that for the speech synthesis classification problem the variation of the fre-
quencies over time contains valuable information for the identification of synthetic

speech.

2.5.4 Synthetic Speech Detection Using Deep Neural Networks

With the increase in the popularity of Deep Neural Networks (DNN) solutions, a
paper was published in late 2017 regarding the use of DNNs for speech spoofing
detection [58]. The main idea is to use DNNs to extract dynamic acoustic features
and classify an utterance as real or spoofed. The research shows that this pro-
posed methodology overperforms the traditional static feature analysis with GMMs
classifiers. Previous studies [40, 59] show that dynamic acoustic features (such as
dynamic filter banks, dynamic MFCCs and dynamic linear prediction cepstral coef-
ficients) are better candidates for spoofing detection than traditional static features
(such as magnitude-based features and cosine normalized phase features). Based
on that and the fact that DNNs are well known for their capabilities of extracting
dynamic features, the researchers decided to implement a 5-layer deep neural net-

work in conjunction with 5 different dynamic filter-bank-based scoring methods to
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perform classification on the AVSpeech2015 dataset. Although this dataset does
not cover the latest deep-learning based TTS systems (such as DeepVoice3), it is
a good starting point to train a DNN to detect spoofed speech. The results of
the experiment show that DNNs with dynamic features present better performance
than the previous methodologies using static features and GMM models. Also, as a
side finding, the researchers state that it was observed during the dynamic-feature
extraction that higher frequency contributes more for classification than lower fre-
quencies. Another interesting finding is that using a human log-likelihood scoring
method presents better performance for spoofing detection than using a traditional
log-likelihood ratio scoring method.

Researchers from Japan published a study where they used the ASV system
developed in [55] to improve speech synthesis [41]. Inspired by adversarial neural
networks, the idea is to use the output of the ASV classifier in the loss function
during the speech generator training. This approach increased considerably the
naturalness of speech according to a user study performed by the researchers. In
their publication, the authors compared real speech against synthesized speech and
noted that the machine-generated audio is prone to over-smoothing, which leads to
a less natural utterance. To minimize this effect, during the training phase of the
5-layer deep neural network, the authors then use the ASV system output as part of

the loss that is minimized during training. This leads to a synthesizer that is able to
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not only generate speech, but also speech that is close to real speech. As objective
evaluation, the trained model is then used against the original ASV algorithm. In
this case, a significant increase in the spoofing success is observed when compared
to a model trained without the adversarial loss. The authors performed human
evaluation and concluded that the proposed method is preferred by the listeners
in 60% of the cases, meaning that it brings a slight improvement in the audible
quality of the utterance.

In mid-2017, researchers published a paper regarding their investigation of deep-
learning frameworks for speaker verification anti-spoofing [62]. In their research,
the authors propose the use of CNNs in conjunction to RNNs to identify synthetic
speech. Using as baseline the ASVSpoof2015 dataset, the proposed methodol-
ogy presents the state-of-the-art performance for an end-to-end single system. In
the research, the authors explore three different input types (i.e. STFT Spec-
trograms, TEO-CB-Auto-Env features and Minimum Variance Distortionless Re-
sponse (PMVDR) features) as well as four deep neural networks structures (i.e.
4-layer DNN, CNN, RNN and CNN+RNN). The experiments show that although
using TEO-CB-Auto-Env features and PMVDR features are effective for synthetic
speech classification, the best results are found by using STFT Spectrograms as
input with a classifier that uses CNN and RNN. The idea of using both architec-

tures in one system is that CNNs are good feature extractors while RNNs are good
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at recognizing long-term dependencies in the time domain. Using both together
(in a single system that can be trained all together) provides high accuracy even in
unseen spoofed voices. As side finding, the researchers also show that the size of the
utterance matters in classification: in small utterances (2.5s or less), the accuracy
is considerably reduced. The optimum audio length hovers around 4 seconds. Also,
the researchers show that the performance of spectrograms with CNNs (without the
RNN part) is also very satisfactory, having the best performance in the majority
of the 10 synthesized voices.

Xiaohai Tian and Xiong Xiao published a paper regarding their work on spoofed
speech detection using temporal convolutional networks [51]. Their idea is to use a
single convolutional neural network to classify an utterance instead of using hand-
crafted feature extractors with traditional machine learning approaches. The pro-
posed architecture is tested against the ASVspoof2015 dataset and shows a relevant
improvement, especially in unseen spoofing attacks and in temporal-based speech
synthesizers. First, the researchers extract temporal and spectral features by gener-
ating spectrograms from the input audio. Then, the spectrograms are used as input
on the proposed CNN. The CNN contains only three layers: a convolution layer, a
max-pooling layer and a feed forward layer. One of the key points of the project is
using temporal convolutional neural networks, or in other words, CNNs that have

the convolutional filters covering the whole frequency range and few frames of au-
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dio. For example, if the spectrogram contains 256 frequency bins, then the height
of the convolutional filter is also 256. Also, in their research, the convolutional
filter length was 11, meaning that 11 frames of the audio were considered in each
convolution. In their experiments, the researchers analyze the performance of the
proposed temporal CNN against unseen spoofing attacks and show that the CNN
performs better than the traditional approaches.

In late 2017 a paper was published exploring the use of CNNs for end-to-end
speech spoofing detection [30]. Although the proposed approach is not new and uses
the outdated ASVspoof2015 dataset, the authors present an interesting analysis of
what features are being learnt by the model. In this analysis, the authors show that
the proposed architecture is mainly learning discriminative information from the
lower and higher frequencies, which matches with previous studies that used manual
feature extraction with traditional machine-learning algorithms. This shows that
the DNN is able to extract frequency features right from the raw audio and that the
DNN learns from the same spectrum regions than the traditional approach, with a
similar or higher accuracy.

Following the research trend in using DNNs for end-to-end speaker spoofing
detection, a paper was published in late 2018 regarding the use of raw audio as
input in DNNs for the speech spoofing classification problem [12]. In their work,

the authors investigate a variety of DNNs, CNNs and RNNs with raw audio as
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input and propose a combined model (CNN+LSTM) that provides the highest
accuracy on the ASVspoof2015 dataset at the time of publication. The authors
start the discussion showing the performance of traditional approaches to the ASV
problem, including the use of MFCC and CQCC with traditional machine learn-
ing algorithms. Then, the authors show the individual performances of some deep
learning approaches, such as DNNs, CNNs and RNNs. The individual performance
is relatively good but does not surpass the traditional approach for the problem.
The authors argue that CNNs are good at extracting frequency features and that
RNNs are good at extracting timing features, so it is a good idea to combine both
approaches in one single model, in which we have a CNN (to extract frequency fea-
tures) connected to a RNN (to extract timing features), ending in a fully connected
layer and a classification layer. This approach results in the highest accuracy for the
ASVspoof2015 dataset at the time of publication. Apart from the proposed archi-
tecture, the authors also discuss a series of interesting side findings. For example,
they discuss the importance in the length of the sampled audio and conclude that,
for end-to-end RNN architectures, it is better to use small frame sizes and large
sequence lengths. They also conclude that the amount of training data is crucial for
avoiding overfitting, and that the ASVspoof2015 dataset may not contain enough

data points.
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2.6 Background Analysis

From the literature reviewed in our research, several needs were identified:

e Need for a larger dataset: As identified in [12], the main synthetic speech
datasets do not contain enough data to train complex deep learning algo-
rithms. This creates a need for a larger dataset that contains enough data to

train the latest DNNs.

e Need to address latest speech synthesizers: The most utilized dataset for syn-
thetic speech classification is the ASVSpoof2015 dataset, which was released
more than four years ago. In this meantime, several high-end speech synthe-
sizers were released, such as the DeepVoice 3 [35], Microsoft TTS and Amazon
Polly. This creates a need for a dataset containing the latest T'TS systems as

well as real utterances.

e Need to understand the human performance against latest speech synthe-
sizers: To our knowledge, the last major human study on synthetic speech
perception was published in 2016 [55]. Since then, several high-end TTS

systems were released, creating a need for a new user study.

e Need to propose an updated model for synthetic speech detection: The major-

ity of the papers published in synthetic speech detection focus on an outdated
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dataset (ASVSpeech2015). With the creation of an updated dataset it is pos-
sible to train and analyze the performance of the latest DNN models on the

synthetic speech detection problem.

Our research aims to contribute to the research community by introducing a
large dataset, presented in Chapter 3, containing utterances from real humans and
the latest speech synthesizers. This dataset can be used by researchers to train
complex machine learning algorithms that classify the veracity of an utterance.
We utilize the introduced dataset to perform a user study, presented in Section
4.2, to better understand the human perception of synthetic speech. In Chapter
4 we utilize the created dataset to train some of the latest neural network models
to demonstrate the learnability of the problem and propose a model capable of

distinguishing between real and synthetic utterances.
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3 FoR Dataset

An important component for the development of a Synthetic Speech Detection sys-
tem is a dataset containing both synthetic speech and real speech. Although in the
past several such datasets were published [21, 54, 58], the vast majority of them do
not contain utterances from the latest deep-learning-based speech synthesis algo-
rithms. Another limitation of previous publications is that the number of utterances
was not enough for training complex neural network models [12]. Moreover, the
majority of the published datasets focus on the detection of spoofed utterances for
automatic speaker verification systems. In this research, we introduce the Fake or
Real (FoR) dataset, which is composed by more than 84,000 synthetic utterances
as well as more than 111,000 real utterances (from a large variety of individuals).
The main difference between the FoR dataset and previous works is that our
dataset contains utterances from the state-of-the-art speech synthesis algorithms,
which are utterances with naturalness similar to real human speech. Also, our

dataset contains a large number of data points and, according to our experiments,
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it is enough to train complex models, such as InceptionV3, without overfitting.
The FoR dataset is under GNU GPLv3 license and is publicly available to the
community?2.
In this chapter, we present how the data was collected in Section 3.1 and Section
3.2. Then, we present the various dataset versions in Section 3.3. Last, we discuss

the dataset division in Section 3.4.

3.1 Collecting Synthetic Speech

The first half of the dataset is the synthetic utterances. As previously discussed,
the use of deep learning for speech generation has increased in the past few years.
With that in mind, an extensive research was conducted to identify the latest
methodologies in speech synthesis, both Text-To-Speech (TTS) systems and Voice
Conversion (VC) systems. For this research, several open source and commercial

systems were identified, such as:

e DeepVoice 3 [35]: An open-source system developed by Baidu that is capable
of learning speech synthesis from a dataset of phrases and utterances. This
system is considered a groundbreaking study since it is an end-to-end TTS

system that is able to train without any human tuning.

2Zhttp://bil.eecs.yorku.ca
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e Neural Voice Cloning [4]: An end-to-end solution for voice cloning in which
the input is real speech and the output is synthesized speech in a different

voice uttering the same sentence.

e Baidu TTS?3: Developed by the same team that published DeepVoice 3, Baidu

T'TS is the commercial version of their publication.

e Microsoft Azure TTS?*: A cloud solution for TTS that is based on deep-
learning techniques with supervision and tuning of speech specialists. This
combination of machine learning with human supervision resulted in synthe-

sized speech very close to real speech.

e Amazon AWS Polly?®: Similarly to Microsoft TTS, Amazon AWS Polly com-
bines the deep-learning techniques with human supervision to provide a high-

quality TTS system.

e Google Cloud TTS?6: Although Google already had developed a TTS system
in the past, they recently published a new cloud TTS service that uses deep
learning and traditional techniques to generate speech. Moreover, in one of its

versions, the Google Cloud TTS incorporates the Wavenet architecture into

Zhttps://www.home-assistant.io/components/tts.baidu/
24https://azure.microsoft.com/en-ca/services/cognitive-services/text-to-speech/
ZPhttps://aws.amazon.com/polly/

26https://cloud.google.com /text-to-speech/
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their T'TS system, achieving very high naturalness in the generated speech.

With the scope of TTS systems defined, the next step is to generate a list of

phrases that will be used to generate utterances.

3.1.1 Phrases

All the TTS algorithms have as input a phrase and as output audio containing
the generated utterance. One of the main concerns when creating a dataset is to
have a high variety of data points to ensure that the underlying distribution is well
represented in the dataset. With that in mind, it is important to choose a high
variety of phrases to be used as input in the TTS systems.

In our research, we utilized a phrase dataset?” that is commonly used in natural
language translation. This dataset is open to the public and contains over 150,000
English phrases and their French translation. Since our work focuses on the English
language, the French part of the dataset was discarded, leaving us with a dataset
of English phrases with a high variety of grammatical structures (passive/active
phrases, simple/complex phrases, short/long phrases, affirmative/question phrases,
etc.). The 150,000 phrases were filtered to remove duplicate phrases as well as
phrases surpassing 30 words, resulting in a final phrase dataset containing 105,000

phrases.

2Thttps: / /www.kaggle.com/percevalw /englishfrench-translations /kernels
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The resulting phrase dataset was then randomly divided into 40 phrase buckets,
containing 2645 phrases each. Each phrase bucket was used by only one T'TS voice.
This ensures that there are no repeated utterances in the dataset, minimizing the
risk of the model learning specific words/phrases instead of a generalized model to
differentiate between real and synthetic speech. With the phrase-buckets ready, we

then proceed to extract utterances from each TTS system.

3.1.2 DeepVoice 3

The DeepVoice 3 system is an end-to-end TTS solution developed by the Baidu
Labs[35]. This model is capable of generating an audio representation (spectro-
gram) given a phrase as input. This representation can then be transformed into
an utterance using a spectrogram to audio function or a Wavenet architecture.
For this experiment we obtained an implementation of the DeepVoice 3 system?®
which was then trained using the utterances from the LJSpeech speech dataset
(see Section 3.2.1). The reason for using LJSpeech for both generating synthetic
utterances as well as for the real utterances part of the dataset is to ensure that the
model is learning real characteristics of synthetic and real speech, since using the
same voice for both classes minimizes the chances of the model classifying based

on voice properties (pitch, intensity, etc.).

28https://github.com/r9y9/deepvoice3_pytorch
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After the model was trained on the LJSpeech dataset, one phrase-bucket was

used to generate utterances, resulting in a total of 2645 speech files.

3.1.3 Google TTS

The original Google T'TS is one of the most known text-to-speech systems. It is
present in several Google products, such as Google Translate?® and Google Home.
Although this system does not utilize the latest deep learning techniques, it is a
popular TTS system thus it is included in our research.

As Google TTS is a proprietary system, it is not possible to get access to its
source code. However, it is possible to use API calls to extract audio from the
system. By creating a script that reads a list of phrases, sends API requests and
saves the returning result, we were able to generate 2645 utterances from this

system.

3.1.4 Google Cloud TTS

With the increase in the popularity on cloud TTS services, Google created its

own cloud TTS service®®. This service uses the latest deep learning techniques

in conjunction to manual tuning to provide a cloud TTS service. The resulting

29https:/ /translate.google.com/
30https://cloud.google.com /text-to-speech/
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utterances have a high naturalness, approaching human-like speech. Moreover, the
system also accepts a SSML3! (Speech Synthesis Markup Language) file as input,
meaning that one can define several speech variables, such as emphasis and break
times.

To extract utterances from the cloud API, first it was required to create a Google
Cloud account. Then, it was required to create a project key so the API can be
accessed. After having the keys created, it was required to install the Google SDK
and create a script that reads a file containing phrases and retrieves the utterances
from the Google Cloud. With that done, 5290 utterances were extracted in two

different voices (2645 utterances per voice).

3.1.5 Google Wavenet TTS

Similarly to the Google Cloud TTS, Google released a premium version of its
TTS system. This premium version, called Google Cloud Text-to-Speech with
Wavenet®?, uses a mixed model using deep learning techniques in conjunction to a
Wavenet model to generate the utterances. The system also accepts as input SSML
files, meaning that precise speech can be generated. This improved model is able

to generate utterances with very high naturalness, where the synthesized speech is

3https://www.w3.org/ TR /speech-synthesis11/
32https://cloud.google.com /text-to-speech/
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almost indistinguishable from real speech.

The process of utterance extraction on the Google Cloud TTS Wavenet is very
similar to the non-premium Google Cloud TTS: First it is necessary to obtain API
keys, then install the Google SDK and finally use a script to iterate over a text file
and obtain the utterances through the API. With that done, 5290 utterances were

extracted in two different voices (2645 utterances per voice).

3.1.6 Microsoft TTS

Similar to Amazon and Google, Microsoft recently released its text-to-speech solu-
tion. Called Microsoft Azure Text-To-Speech?, this service is capable of generating
utterances from input phrases. The interesting part about Microsoft TTS is that it
provides 16 voices just for the English language (in a variety of accents). Moreover,
the Microsoft T'TS system allows any person to upload samples of their voice so the
model can learn and reproduce their voice. This allows a much more customized
experience for customers, since one can have their own voice being spoken in a
system.

The process to extract utterances from the Microsoft T'TS system is fairly sim-
ple: First, you create an API key to access the service. Then, using an HTTP

request, one can send a phrase to the system that answers with an MP3 file. To au-

33https://azure.microsoft.com /en-us/services/cognitive-services/text-to-speech/
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tomate the collection, a script was created to read an input file (containing phrases)
and submit POST requests to the Microsoft TTS server, which then returns an MP3
file. A total of 42,320 utterances were synthesized from the Microsoft TTS system,

2645 utterances for each one of the 16 voices.

3.1.7 Amazon Polly

Amazon Polly3* is one of the most known TTS systems. Similar to other com-
mercial solutions, this service allows the synthesis of utterances using the latest
deep learning techniques. At the moment this research was conducted, 8 English
voices were available in a variety of accents (American English, British English,
Australian English and Indian English). One of the main advantages of Amazon
Polly is that it is able to synthesize natural speech with high pronunciation accu-
racy (including abbreviations, acronym expansions, date/time interpretations, and
even homograph disambiguation).

To synthesize utterances using Amazon Polly first it is necessary to create an
Amazon AWS account. With the account created, it is possible to generate an API
key that enables the access to the Polly TTS system. A script was created to read
phrases from a text file and interact with the Polly API to retrieve the utterances.

A total of 21160 utterances were extracted from this system, 2645 utterances for

34https://aws.amazon.com/polly/
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each one of the 8 speakers.

3.1.8 Baidu TTS

Although Baidu published research papers detailing the use of machine learning for
TTS (DeepVoice 1 [5], DeepVoice 2 [3] and DeepVoice 3[35]), they also developed
a commercial system (which is sold as a service) that has higher performance than
the open source codes released on the internet. This service, called Baidu Cloud
TTS3 is able to generate utterances given text as input. Although the system
is mainly trained for the Chinese language, the service is also offered in English
(however, with lower naturalness compared to the Chinese voice).

Baidu offers an interface through their speech synthesis app through which it is
possible to submit phrases and obtain audio files. To automate the process, a script
was created to generate HT'TP requests to the app and receive the resulting MP3
file. As there is only one English voice available, 2645 utterances were extracted

from this system.

3.2 Collecting Real Speech

The second half of the dataset consists of real utterances, i.e. speech recordings from

humans. The process of collecting real utterances is a complex task since we need

35https://cloud.baidu.com/product /speech /tts
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to ensure that the collection methods are not impacting on the training results. For
example, it is necessary to ensure that the utterances are recorded using a variety of
microphones, otherwise the machine learning algorithm may learn to classify based
on features specific to one recording device, instead of learning the real differences
between a synthetic utterance and a real utterance. Similarly, for the same reasons,
it is required to have a large variety of voices (from all genders) as well as a good
variety of accents.

The first step was to identify potential sources of real utterances. Two main
source categories were identified: Open source datasets, which provide a large
amount of pre-processed speech; and Internet recordings, in which we extract speech

from online content, such as Youtube.

3.2.1 Open Source Datasets

Open source speech datasets are a quick way of obtaining real speech. Those
datasets usually are already pre-processed and provide a clean recording. For this

study, the following open source datasets were selected:

e Artict Dataset®S: This dataset contains 1132 utterances spoken by 7 profes-
sional voice actors, resulting in a total of 7924 utterances. This dataset was

chosen because it contains a good variety of accents as well as having utter-

36http://festvox.org/cmu_arctic/
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ances from all genders. Also, as we have the same utterances being spoken by
7 different speakers, it increases the chances of the classifier learning a more

generalized model for real/synthetic classification.

e LJSpeech Dataset®”: The LJSpeech dataset contains 13,100 utterances from
one female speaker. This dataset is a well known real-speech dataset used in
several TTS publications, such as DeepVoice 3[35], and for this reason it was
chosen for this research. Also, this dataset was used to train the DeepVoice
3 model, meaning that we have synthetic and real utterances from the same
voice, increasing the chances of the classifier learning a more generalized model

for real /synthetic classification.

e VoxForge Dataset®: VoxForge is an open source real-speech dataset in which
any person can record and submit utterances to the project. This creates
a dataset with a large variety of voices, recording devices and even audio
quality. At the time of the collection, this dataset contained more than 86,000
utterances, from more than 1,200 persons using a large variety of recording
devices. This dataset was chosen due to its large amount of different voices

as well as the large variety of recording devices, which increases the chances

of the classifier learning a more generalized model.

3Thttps://keithito.com /LJ-Speech-Dataset/

38http://www.voxforge.org
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3.2.2 Internet Recordings

Social media platforms, such as Youtube, can be an excellent source for speech
data: they provide a high variability of voices as well as recording devices. However,
audio from such sources usually contains a large amount of background noise and/or
background music. To minimize the chances of background noise and poor recording
quality, we selected a variety of educational videos as source of speech. Educational
videos (such as TED talks, online courses and tutorials) are good candidates because
they typically are recorded in a silent environment (using a high quality recording
device) and typically contain only one speaker.

For this research, 140 videos (speakers) were selected. From those videos, the
full audio was extracted and the SoX3? tool was utilized to segment the audio where
a silence of 2 seconds or more was detected. The purpose of segmenting the audio
based on silence is to avoid broken utterances, where audio is cut while someone is

speaking. This process resulted in a total of 3720 utterances from 140 speakers.

3.3 Dataset Versions

Since the dataset is used in a variety of machine learning models, it is important

to pre-process the utterances in a way that eliminates bias. Based on the pre-

39http:/ /sox.sourceforge.net/

80



processing applied, we identified and generated four different versions of the dataset

for our study. In this section we describe each one of them.

3.3.1 Original Dataset (for-original)

The original dataset, named for-original, contains the files as collected from the
speech sources, without any modification or class/gender balancing. A total of
195,541 utterances are present in this dataset version. The gender and class distri-

butions can be found in Figure 3.1.

Gender/Class Distribution (for-original)
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Figure 3.1: Gender Distribution - FoR Original

Although the data in this dataset version is heavily unbalanced (in terms of
gender distribution and class distribution), it is being published so the research

community can use the raw data with their own pre-processing techniques.
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3.3.2 Normalized Dataset (for-norm)

As the dataset is composed by utterances from several audio sources, it is essential
to normalize the data to eliminate any bias due to data collection. The normalized
dataset, named for-norm contains the same files as the original dataset but with
the audio converted to WAV, normalized to 0dBFS, downsampled to 16kHz sample
rate, converted to mono and with silences removed from beginning and end of the
utterances. The details of each of the normalization steps can be found on .

As this dataset version is used in some of the experiments, we also balanced
the data to achieve even distribution between genders and classes (synthetic/real).
The resulting distributions can be seen in Figure 3.2, where it is possible to note
a more even picture in terms of class and gender. Due to the balancing process
(which includes downsampling), the resulting dataset version contains a total of

69,400 utterances.

3.3.3 2-Second Dataset (for-2seconds)

After initial analysis on the original dataset, it was noted that the synthetic audio
was considerably shorter than the real audio. While the synthetic audio was on
average 2.35 seconds long (with a standard deviation of 0.83), the real utterances

were on average 5.05 seconds long (with a standard deviation of 1.95). Figure
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Gender/Class Distribution (for-norm)
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Figure 3.2: Gender Distribution - FoR Normalized

3.3 shows the audio length distribution for both real and synthetic audio. This
significant length difference may affect the classification, since the neural network
may learn to distinguish between real and synthetic based on the length of the

audio.

Audio Length Distribution

6000
5000

4000

3000 I Synthetic
M Real

2000

Number of Utterances

1000

0
05 10 20 30 40 50 60 70 80 90 100 110 120 13.0 140 150 160 170 180 190 200

Lenght (seconds)

Figure 3.3: Audio Length Distribution
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To solve this, we modify the normalized version of the dataset (for-norm) as
follows. We start by discarding all files shorter than 2 seconds. Then, we truncate
the remaining files at the two-second mark. The last step is to re-balance the
dataset to achieve the same distribution as the for-norm version of the dataset.
The resulting version of the dataset, named for-2seconds, contains a total of 17,870

utterances and it is the main version to be used in our experiments.

3.3.4 Re-recorded Dataset (for-rerecorded)

To simulate a real-world synthetic speech attack, it was decided to test the resiliency
of the model against audio re-recording. The idea is that in a real-world scenario,
a malicious person may generate/play the synthetic speech with one device (e.g. a
computer) and record it using another device (e.g. smartphone). This is an example
where the attacker is trying to impersonate someone via a communication channel
(e.g. a phone call or a voice message).

To simulate this scenario, we played the utterances from the for-2seconds dataset
using a regular computer speaker and recorded them using a non-professional micro-
phone, simulating a casual attacker. The resulting version of the dataset, referred to
as for-rerecorded, contains re-recorded utterances that simulate a real world attack.
As the utterances were already recorded at 16kHz sample rate and the volume was

constant during recording, there is no need for downsampling nor volume normal-
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1zation.

To get a better understanding on which frequencies were most affected by the

re-recording process, we used the Chi-Square technique (described in Section 4.3.1)

to identify which frequencies are more distinct between original and re-recorded

audio. The results of this analysis can be seen in Figure 3.4, in which it is possible

to observe that higher frequencies in synthetic speech were more affected by re-

recording. This reduces considerably the differences on high frequencies between

real and synthetic speech.

Synthetic Speech
OHz 2kHz 4kHz 6kHz 8kHz
I
Figure 3.4: Chi-Squared Frequency Change Map - Synthetic Speech
Real Speech
OHz 2kHz 4kHz 6kHz 8kHz

Figure 3.5: Chi-Squared Frequency Change Map - Real Speech

The same analysis was made for the differences between real speech from the

original dataset and re-recorded dataset. The results are fairly similar, the higher

frequencies are the most affected by the re-recording process. However, it was

noted that the differences in the frequency bins are not as high as in synthetic
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audio, meaning that the re-recording process has less affect on real utterances.

Figure 3.5 shows the most impacted frequencies in real speech.

3.4 Dataset Division

After the dataset is pre-processed, it is ready to be used to train the classifiers.
As is common practice in machine-learning research, all the dataset versions were

divided into:

e Training: Contains 77.73% of the dataset, utilized to train the machine learn-

ing models. Gender and class balanced.

e Validation: Contains 15.58% of the dataset, utilized to validate the accuracy
of the machine learning models. Gender and class balanced. The validation

utterances are unseen during the training phase.

e Generalization Testing: Contains 6.68% of the dataset. Contains only syn-
thetic voices from one unseen algorithm (Google TTS Wavenet) and unseen
real voices. Gender and class balanced. It is utilized to test if the trained
model can generalize and detect unseen TTS algorithms and unseen real

voices.

With the dataset versions created, processed and divided, they are ready to be

used in our experiments.
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4 Experiments

With the dataset completed, the next step consists in performing experiments to
compare ways of detecting synthetic audio. We start this chapter by presenting the
tools used in this research. Then, we present the performance of humans in the
synthetic speech detection task. In Section 4.3 we present a series of experiments to
analyze the accuracy of several detection methods against the for-2second dataset.
Also, we present an analysis of a real-world attack scenario using the re-recorded
dataset (for-rerecorded). For both dataset versions we also present the performance

of the proposed models on a totally unseen TTS algorithm.

4.1 Tools

The main tool utilized for audio processing is the SoX*® tool, which is a cross-
platform command line utility for audio processing. The tool not only is capable

of converting audio, but also applying effects, filters and generating spectrograms.

40http:/ /sox.sourceforge.net /
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Since it is a command line tool, it can be easily scripted to automate pre-processing
in large datasets.

The Weka*! tool is a software for data mining analysis well-known in the aca-
demic community. This tool provides a GUI interface for several data mining
algorithms, making it easy to run experiments and compare results. This tool was
utilized in the non deep learning experiments, such as the frequency analysis and
audio feature analysis.

The deep learning experiments were performed using the TensorFlow*? Python
library, which is an open source library for high performance numerical compu-
tation. The advantages of using Tensorflow is the easy implementation of neural
network models as well as the increased performance due to support for GPU pro-
cessing.

To simplify the implementation of the most common deep learning models, the
Keras*? library was chosen. This library runs on top of the TensorFlow library
and provides a high level API for neural networks. Keras allows easy and fast
prototyping through its modularity. The majority of the well-known deep learning

architectures are already implemented in it and ready to use.

4https: //www.cs.waikato.ac.nz/ml/weka/
“2https: //www.tensorflow.org/

43https://keras.io/
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4.2 Synthetic Speech Detection by Humans

As one of our goals is to present a synthetic speech detection technique that per-
forms better than humans, the first step is to analyze the human performance in
this task. With the latest advancements in synthetic speech, the naturalness of
computer-generated speech is getting closer to human speech. To evaluate the hu-
man perception of synthetic speech, we conducted a survey with 29 participants.
Similar to a Turing test, the idea is playing utterances and asking people to judge

if the speech was generated by a computer or not.

4.2.1 Preparation

Ten synthetic utterances and ten real utterances were selected from the original
dataset (for-original). For the synthetic speech, we randomly selected one utterance
from each speech source (eg. one from DeepVoice3, one from Amazon Polly, etc.).
For real utterances, two audio files were randomly sampled from each real-audio
source, resulting in 10 real utterances.

The online survey, named “Fake or Real?”#*, is seen in Figure 4.1, were it is
possible to see the survey instructions and the first questions. This survey contains
20 questions, one for each utterance. Each question contains only two options:

“Fake” (for synthetic speech) and “Real” (for human speech).

4https: //ca.surveygizmo.com/s3 /50043593 / Fake-or-Real
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Fake or Real?

Page 1/2

Welcome to the Fake or Real study! Can you distinguish between a human and a machine? Listen to each audio file once and select
fake or real.

INFORMED CONSENT

In this survey, you will be asked to listen to an audio clip and answer related questions. Listen to the clips in the most comfortable volume level for you. By
clicking 'Submit’ you consent to your answers being stored anonymously and being used in aggregate form.

If you are interested in knowing your score, write your answers in a separate paper, the correct answers will be released in a future date.

INSTRUCTIONS:

- Listen to each audio just once

- Select one of the options (Fake/Real)

- Submit the quiz just once, do not redo the quiz.

P 000/0:04 @ o)
1

QO Fake

QO Real

Figure 4.1: “Fake or Real?” Survey

4.2.2 The Survey

The participants of the survey were asked to listen to each audio just once (to
simulate a real environment where you hear the speech only once) and select the
options “Fake” or “Real” according to their guess. To ensure privacy, no personal
information was collected. The survey was answered by a total of 29 participants

over a period of three weeks.

4.2.3 Results

After the period of three weeks, the results were gathered, compiled and analyzed.
The average overall human accuracy is 64.83%, 60.34% for synthetic speech and

69.31% for real speech. Figure 4.2 shows the accuracy per question as well as the
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overall average accuracy, in which it is possible to note that some synthetic speech
algorithms are detected easier than others. For example, question 2 (Traditional
Google TTS voice) had 0% human error, while question 4 (Microsoft TTS) had

48.28% error.

Human Accuracy Per Question
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Figure 4.2: Survey Results - Accuracy Per Question

To better understand the variance in human accuracy, Figure 4.3 shows the
accuracy distribution for this survey.

The numbers on this survey show that, on average, humans would miss 1 out
of 3 synthetic utterances. If considering only high-performance algorithms (such as
Microsoft TTS and Amazon Polly), humans mistake synthetic for real about half
the time. This shows that the human perception of synthetic speech is vulnerable
to the latest speech synthesizers and that an automated synthetic speech detector

is needed.
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Figure 4.3: Survey Results - Accuracy Distribution

4.3 Synthetic Speech Detection

With the human performance evaluated, the next step is to propose and analyze
the performance of a variety of synthetic speech detection methodologies. For
this experiment we use the for-2seconds version of the dataset to understand the

performance of both frequency analysis and deep learning approaches.

4.3.1 Frequency Analysis

The frequency analysis experiments consist in using traditional machine learning
techniques to classify utterances on the FoR dataset. This creates a baseline to com-
pare the traditional machine learning methods with the deep learning approaches.
These experiments are based on frequency analysis, i.e. the extraction of a frequency

representation and classification using machine learning techniques.
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The process for this experiment consists in extracting an audio representation
(such as an STFT matrix) for each audio file, averaging the representation over
time to obtain a frequency-activation vector, inputing this vector into Weka with
the appropriated classes (synthetic/real) and comparing the results of the main
algorithms. Even though during the averaging process the temporal information
is lost, this technique is still valid for several audio classification problems and is
useful since the full audio representation is too complex for the traditional ma-
chine learning approaches. The following audio representations were chosen for

this experiment:

e Fast Fourier Transform (FFT): It is a computation of the discrete Fourier
transform to convert a signal in its original domain (in this case, time) to a

representation in the frequency domain.

e Short-time Fourier Transform (STFT): It is a type of Fourier transform that
calculates the frequency content of local sections of a signal. In our case,
transforms an audio signal into a matrix representing the audio magnitude in

terms of frequency and time.

e Mel-Spectrograms: Similar to STFT, it is a transformation that calculates
the frequency content of local sections of the signal, but in this case, in a
non-linear mel-scale frequency.
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e Mel-frequency Cepstral Coefficients (MFCC): The coefficients that collec-
tively make up an MFC, derived from a cepstral representation of the audio

clip.

e Constant-Q Transform (CQT): Similar to a Fourier transform, it transforms
a data series into a frequency-domain representation using a series of loga-

rithmically spaced filters.

The audio files were processed using the Librosa®® audio processing library,
which was used to generate audio representations in the following formats: STFT
(128 frequency bins), STFT (1024 frequency bins), FFT (1024 frequency bins),
Mel-Spectrograms (128 frequency bins), Mel-Spectrograms (1024 frequency bins),
MFCC (128 coefficients) and Constant-Q Transform (1008 frequency bins). The
matrix-shaped audio representations (STFT, Mel-Spectrograms, MFCC and CQT)
were then averaged on a horizontal axis, meaning, the frequency features were

averaged over time. This results in one vector for each utterance.

FoR-2seconds (validation)

Algorithm STFT 1024 | FFT1024 Mel 128 | Mel 1024 | MFCC128 | €QT 1008
Naive Bayes 65.95% 62.84% 65.14% 79.22% 60.40%
SVM 78.27% 80.53% 92.07% 84.32%
Decision Tree (J48) 91.93% 93.17% 93.20% 86.37%

Random Forests

96.81% 96.60% 94.01%

Figure 4.4: Frequency Analysis Accuracy - FoR 2 Seconds

45https://librosa.github.io/
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Figure 4.4 shows the results of the frequency analysis experiments, in which it
is possible to observe that using the MFCC audio representation with the Random
Forests method achieves up to 98.54% accuracy on the validation dataset. This
shows that even though frequency analysis may not be the best method, using just
frequency information it is possible to achieve high accuracy.

To better understand the classification accuracy and the differences in the fre-
quency spectrum, we decided to investigate which frequency ranges are more im-
portant for the classification task. We used two attribute ranking methods, Chi-
Square[11] and Information Gain[37], to generate a Frequency Classification Acti-
vation Map (FCAM).

Using the STFT (1024 bins) audio representation (due to its frequency bin
linearity) we utilized the Weka tool to calculate the values of Chi-Square and In-
formation gain for each of the frequency bins. To help with the visualization of
the results, the frequencies were ordered (from OHz to 8kHz) and a colour was at-
tributed to it: red meaning high-importance for classification, green meaning low
importance for classification. The resulting frequency classification activation map
can be seen in Figure 4.5.

The results of this experiment show that high frequencies (above 7.2kHz) are
the most important frequencies to distinguish real speech from synthetic speech

in its original form. Additional experiments to understand the audio distinctions
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FoR 2 Seconds (for-2seconds)
OHz 2kHz 4kHz 6kHz 8kHz

Figure 4.5: Frequency Classification Activation Map - FoR 2 Seconds

between real and synthetic speech can be found in Appendix B.

4.3.2 Deep Learning

In this subsection we detail the experiments conducted involving deep learning
techniques for synthetic speech detection. Following previous literature, we trans-
late the audio classification problem into an image classification problem by using
visual audio representations (i.e. spectrograms). This conversion is useful since the
majority of the deep learning models available are designed for image classification.
Figure 4.6 shows an example of a STFT spectrogram for synthetic speech and real
speech.

The deep learning experiments consist in extracting audio features (STFT, Mel-
Spectrograms, MFCC and CQT) from the FoR dataset (for-2seconds) and convert-
ing it to an image. This process was done using a custom script and the Librosa
library. The resulting images were then used to train each one of the nine selected
architectures for a maximum of 50 epochs (early stop if accuracy improvements

were not seen in the last 10 iterations). The selected architectures are:
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Synthetic

Figure 4.6: Example spectrograms

e 4 Layer Fully Connected

e 2-Layer CNN with extra 2 fully connected layers

e 3-Layer CNN with extra 2 fully connected layers

e VGG16[43] using the ImageNet weights and re-training only the last 5 layers

e VGG19[43] using the ImageNet weights and re-training only the last 5 layers

e InceptionV3[48] using the ImageNet weights and re-training only the last 2

inception blocks (249 layers)

e ResNet[45] using the ImageNet weights and re-training all the layers

e MobileNet[20] using the ImageNet weights and re-training all the layers

e XceptionNet[9] using the ImageNet weights and only re-training the last top

layer
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The results can be seen in Figure 4.7, where it is possible to observe that the
VGG16 and VGG19 models with STFT audio representations presented the highest
validation accuracy (99.96% and 99.94% respectively). As a side finding, we noted
that simpler models (such as 4-Fully connected layer) were not able to learn the
problem at all. The MobileNet, which is one of the top performers, is considerably
faster to train/classify than the other top performer algorithms, meaning that it

could be a good candidate if time is a constrain.

FoR-2seconds (validation)
Algorithm STFT1024 | Mel128 MFCC 128

4-Layer Fully Connected
2-Layer CNN (+2FC)
3-Layer CNN (+2FC)
VGG16

VGG19

InceptionV3

ResNet

MobileNet

XceptionNet

Figure 4.7: Deep Learning Accuracy - FoR 2 Seconds

One interesting technique in deep learning is the generation of Classification
Activation Maps (CAMs). These maps show which areas of an image are more
important for the classification task. As an example, Figure 4.8 contains the acti-
vation maps for dog images, where it is possible to observe that the eyes and ears

are the main classification factors for detecting a dog.
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CAM-Guided Mapping

0 25 50 75 100 125 150 175 200 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200

Figure 4.8: Example CAMs for dog classification

Similarly to the example in Figure 4.8, we created activation maps for real speech
and synthetic speech. Figure 4.9 shows activation maps for randomly selected real
utterances, while Figure 4.10 shows activation maps for randomly selected synthetic
utterances. In both images, the X-axis represents the time in milliseconds while
the Y-axis represents the spectrogram frequency bins. The CAMs were generated

using the VGG19 model and the STFT audio representation.

Classification Activation Maps (CAMs) - Real Speech

B 8 & I8 & 18 8
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Figure 4.9: Example of CAMs for real utterances

Classification Activation Maps (CAMs) - Synthetic Speech
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2s 0s 1s 2 Os 1s 29 0s

Figure 4.10: Example of CAMs for synthetic utterances
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To create a general activation map, we generated the individual CAM for each
spectrogram in the dataset and averaged the results into one CAM. The Average
Classification Activation Map (ACAM) for real and synthetic speech of the for-
2seconds dataset (VGG19 model, STFT audio representation) can be seen in Figure

4.11.

Average Activation Map for Synthetic Speech Average Activation Map for Real Speech
)

(for-2seconds-validation-fake (for-2seconds-validation-real)

8kH 8kH

6kHZ

oﬂzl = ‘

2s 0s 0.5s 1s 1.5s 2s

Figure 4.11: Average CAM for Real and Synthetic audio

From both individual CAMs and the average CAM it is possible to note that
the higher frequencies are the most critical area for classification, especially in
real utterances. This may indicate that synthetic speech generates audio mostly
on the frequencies related to speech, while real audio may contain data in higher
frequencies due to background noise or recording noises. Also, due to the fact that
synthetic speech is mostly generated at 16kHz sample rate, the signal amplitude in
frequencies close to 8kHz is low. This matches with the results on the frequency

analysis experiments, which showed that high frequencies play an important role
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for synthetic speech detection.
Additional experiments related to deep learning techniques, such the impact of
noise in classification accuracy and the use of waveforms for classification, can be

found in Appendix C.

4.3.3 Experiment Discussion

Although the deep learning techniques presented the highest accuracy (99.96%),
the frequency analysis methodologies also presented good results (98.54%). This
indicates that there are clear distinctions on the frequency spectrum of real speech
and synthesized speech. Those frequency discrepancies could be observed in both
Frequency Classification Activation Map (Figure 4.5) and aCAM (Figure 4.11),
which shows that synthetic speech has lower amplitudes in higher frequencies when
compared to real speech.

The next experiment (Section 4.4) tests the performance of the proposed method-
ologies against a totally unseen TTS algorithm. With that, we can evaluate if the
frequency discrepancies are present in the new Google TTS Wavenet algorithm and
if just the frequency discrepancies (without a seen voice/algorithm during training)

are enough to detect synthetic speech.
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4.4 Unseen Algorithm - Synthetic Speech Detection

To evaluate the generalization ability of the proposed models and to evaluate if
just frequency discrepancies are enough to detect synthetic speech, we test the
performance of the models trained in Section 4.3.1 and Section 4.3.2 against the
testing part of the dataset (see Section 3.4), which is a totally unseen T'TS algorithm
(Google TTS Wavenet, which was not included in the training/validation dataset).
This experiment also simulates how the models would react if an attacker creates

a new TTS system.

4.4.1 Frequency Analysis

The first step is to observe the performance of frequency analysis methodologies
against the unseen algorithm. Following the same process as the previous exper-
iments, we generate the audio representations for the testing dataset and use the

previously trained Weka models to classify the utterances of the unseen algorithm.

FoR-2seconds (testing)

Algorithm STFT 128 | STFT 1024 | FFT1024 Mel 128 Mel 1024 | MFCC 128 | CQT 1008
Naive Bayes 52.38% 53.21% 54.77% 54.59% 48.25% 59.00%
SVM 48.89% 50.00% 47.79% 79.50% 79.59% 76.01% 83.91%
Decision Tree (J48) 55.14% 57.99% 55.51% 63.51% 65.62% 55.79% 73.71%
Random Forests 53.21% 59.46% 48.16% 83.36% 82.07% 56.98% 86.94%

Figure 4.12: Frequency Analysis Accuracy - Unseen Algorithm

Figure 4.12 shows the result of this analysis. One interesting point to note
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is that the top performer audio representation (MFCC) from the last experiment
(Section 4.3.1) had its accuracy drastically reduced. This may indicate that for
unseen algorithms, MFCC may not be the best representation. However, the CQT
audio representation presented good performance (94.01%) in the first experiment

(Section 4.3.1) and now presents the best performance (86.94%).

Unseen Algorithm

OHz 2kHz 4kHz 6kHz 8kHz
(W N 1 1 A | I Wl

Figure 4.13: Frequency Activation Map - Unseen Algorithm

The frequency classification activation map (using Chi-Square and STFT) was
generated for the testing dataset and can be seen in Figure 4.13. It is possible to
note that the frequency classification regions are similar to the ones in the original
experiment (Section 4.3.1), meaning that even though it is a new algorithm, the

biggest differences between synthetic audio and real audio are still on the high

frequencies.
FoR-2seconds (testing - mixed)
Algorithm STFT 1024 Mel 128 | Mel 1024 | MFCC128 | €QT 1008
Naive Bayes 53.67% 56.25% 56.70% 51.65% 59.46%
sVM 81.15% | 81.70% | 93.65% | 87.59%
Decision Tree (J48) 87.40% 88.87% 90.62% 80.14%
Random Forests 91.81% | 93.65% | 99.17% | 87.40% |

Figure 4.14: Frequency Analysis Accuracy - Learning a New Algorithm

To investigate if the models would be able to learn a new algorithm, we added
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200 utterances (approximately 7 minutes) of the testing dataset into the training
dataset and re-evaluated the testing dataset. The results can be seen in Figure
4.14, which shows that the models were able to adapt to the new TTS algorithm

and deliver high accuracy (99.17%).

4.4.2 Deep Learning

To verify if deep learning algorithms perform better than frequency analysis on
unseen algorithms, we used the same deep learning analysis process as the previous
experiments on the testing part of the dataset. We used the models trained in

Section 4.3.2 to classify the Google Wavenet TTS utterances.

FoR-2seconds (testing)
Algorithm STFT1024 | Mel128 MFCC 128

4-Layer Fully Connected
2-Layer CNN (+2FC)
3-Layer CNN (+2FC)
VGG16

VGG19

InceptionV3

ResNet

MobileNet

XceptionNet

Figure 4.15: Deep Learning Accuracy - Unseen Algorithm

Figure 4.15 shows the results of this experiment. Similarly to the Frequency
Analysis methodology, the accuracy also decreased but stayed significantly high

(92.00% using CQT and MobileNet). One interesting observation is that STFT,
104



which in the previous experiment (Section 4.3.2) was the top performer, is now the
audio representation with lowest accuracy. This may indicate that in unseen cases,
CQT audio representation is the best option to be adopted.

To better understand the decline in the accuracy, we generated the ACAM
for the synthetic part of the testing dataset. The ACAM was generated using
CQT audio representation and the VGG19 model (second highest performance
since MobileNet currently does not support reverse engineering). The results can
be seen in Figure 4.16, which shows that high frequencies were still the main reason
for the classification. This aligns with the results previously presented (Section
4.4.1), which shows that the biggest difference between Google Wavenet TTS and

real utterances is on the high frequencies.

Average Activation Map for Synthetic Speech

(for-2seconds-testing-fake)

8kH

4kH

OHz*

0s ‘ 0.5s 1s ' 1.5s 2s

Figure 4.16: Averaged Class Activation Maps (ACAMs) for Unseen Synthetic Ut-

terances
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To investigate if the models would be able to learn a new algorithm, we added
200 utterances (approximately 7 minutes) of the testing dataset into the training
dataset. Then, we re-trained the models (with STFT audio representation) and
checked the testing accuracy. The results are shown in Figure 4.17, where it is
possible to observe a considerable improvement in the testing accuracy(99.82%).
This shows that although the proposed deep learning models had a significant
decrease in performance with a fully unseen algorithm, only a small amount of
data is required from the new TTS system to regain the original performance on

the deep learning models.

FoR-2second (test mixed)
Model STFT
4-Layer Fully Connected
2-Layer CNN (+2FC)
3-Layer CNN (+2FC)

VGG16 98.85%
VGG19 98.99%
InceptionV3 98.16%
ResNet

MobileNet 98.71%
XceptionNet 88.24%

Figure 4.17: Deep Learning Accuracy - Mixed Dataset

4.4.3 Experiment Discussion

In this experiment it is possible to observe that the behaviour of deep learning
models was very similar to the frequency analysis methodologies: The accuracy

drops with an unseen T'TS algorithm but it is regained if just few utterances are
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added to the training data. However, throughout the whole experiment, the accu-
racy presented by the top performing deep learning methodology is higher than the
one presented by the frequency analysis methodologies.

To better visualize the accuracy changes between the experiments in Section 4.3
and the unseen-TTS experiments, we present in the Figure 4.18 the accuracy drop
for frequency-based methodologies, and in Figure 4.19 the accuracy drop for the
deep learning approaches. It is interesting to note that some audio representations
(such as MFCC for frequency analysis and STFT for deep learning) had a significant
decrease in accuracy when compared to the experiments in Section 4.3. This may
indicate that there is no general best solution for audio representation, instead, each
case (seen or unseen TTS algorithms) has its own properties and requires different

audio representations.

Accuracy Drop (Frequency Analysis): Seen TTS >> Unseen TTS

Algorithm STFT 128 STFT 1024 FFT1024 Mel 128 Mel 1024 | MFCC 128 | CQT 1008
Naive Bayes -8.94% -12.74% -13.51% -8.07% -10.55% -30.97% -1.40%
SVM -7.26% -7.11% -9.46% 1.23% -0.94% -16.06% -0.41%
Decision Tree (J48) -22.00% -14.65% -15.47% -28.42% -27.55% -37.41% -12.66%

Random Forests -29.34% -21.50% -28.80% -13.45% -14.53% -1.07%

Figure 4.18: Accuracy Drop - Unseen Algorithm - Frequency Analysis

In the next experiment, we test if the proposed methodologies are able to deliver
good performance in a dataset where the magnitudes in the frequency bins are more

uniform. As seen in Section 3.3.4, the re-recorded dataset presents lower frequency
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Accuracy Drop (Deep Learning): Seen TTS >> Unseen TTS
Algorithm STFT 1024 Mel 128 MFCC 128 [
4-Layer Fully Connected 0.82% 3.86% 0.05% 0.02%
2-Layer CNN (+2FC) 2.44% 21.02% -18.15% 0.01%
3-Layer CNN (+2FC) -0.10% 32.85% -17.92% 2.24%
VGG16 -6.88% -32.70% -8.39%
VGG19 -8.64% -21.42% -6.86%
InceptionV3 -10.82% -21.29% -7.24%
ResNet -0.75% 0.15%
MobileNet -23.32% -4.89%
XceptionNet -21.70% -9.97%

Figure 4.19: Accuracy Drop - Unseen Algorithm - Deep Learning

discrepancies between synthetic/real speech, especially in higher frequencies.

4.5 Rerecorded Synthetic Speech Detection

To evaluate the efficiency of the aforementioned detection approaches in a real-world
scenario where an attacker plays a synthetic utterance through a voice channel, we
apply them to the re-recorded dataset (for-rerecorded). This experiment is also
important to test the accuracy of our models in a dataset where the differences in

the high frequencies are reduced due to the rerecording process.

4.5.1 Frequency Analysis

Using the same process as in Section 4.3.1, we generated the frequency analysis
results for the for-rerecorded dataset. The results from Weka are presented in Figure

4.20, which shows that the highest performance (95.05%) is with the MFCC audio
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representation and Random Forests, the same as the for-2second results (Section
4.3.1). It is also possible to note a small drop in accuracy when compared to the
for-2seconds result (from 98.54% to 95.05%). The presented numbers indicate that
even though the frequencies were more uniform, the algorithms were still able to

identify the reduced frequency differences.

FoR-rerecorded (validation)

Algorithm STFT128 | STFT1024 | FFT1024 | Mel128 | Mel1024 | MFCC 128 | CQT 1008
Naive Bayes 61.98% | 65.24% | 6203% | 60.16% | 6020% | 79.01% | 69.11%
SVM 56.77% | 53.23% | 5227% | 77.18% | 79.09% | 8114% | 76.60%
Decision Tree (148) 60.73% 63.81% 60.78% 86.09% 83.68% 87.03% 75.84%

Random Forests 66.97% 70.49% 66.97% 93.44% 92.11% 90.55%

Figure 4.20: Frequency Analysis Accuracy - FoR Rerecorded

To better understand the decline in the accuracy, a binary classification exper-
iment was conducted with original synthetic utterances and re-recorded synthetic
utterances. Then, we used traditional frequency analysis techniques, such as Naive
Bayes and Random Forests, to perform the classification. The result was a classifi-
cation accuracy of 99.86% (using random forests), showing that there are significant
differences between original and re-recorded audio.

The main hypothesis for the decline in the accuracy is related to the fact that, as
seen in Section 3.3.4, the re-recording process reduces the frequency discrepancies

between synthetic and real speech, especially in high frequencies.
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4.5.2 Deep Learning

Using the same process presented in Section 4.3.2, we analyzed the impact of speech
re-recording for deep learning models. The idea is to test if deep neural networks
are able to distinguish real and synthetic utterances in re-recorded audio.

Using the re-recorded dataset presented in Section 4.5 (for-rerecorded), we
trained and evaluated the deep learning models selected for this research. Fig-
ure 4.21 shows the result of this analysis, where it is possible to observe that the
highest validation accuracy (VGG19 and STFT, 99.63%) is similar to the highest
accuracy on the for-2second dataset (VGG16 and STFT, 99.96%). This shows that
the re-recording process had little-to-no impact on the performance of the deep

learning methodologies.

FoR-rerecorded (validation)
Algorithm STFT 1024 Mel 128 MFCC 128

4-Layer Fully Connected
2-Layer CNN (+2FC)
3-Layer CNN (+2FC)
VGG16

VGG19

InceptionV3

ResNet

MobileNet

XceptionNet

Figure 4.21: Deep Learning Accuracy - FoR Rerecorded

To better understand what is being learned by the model, the ACAMs were
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generated for both synthetic and real audio (using STFT and VGG19), which can be
seen in Figure 4.22. The interesting point is that the model now presents a smoother
classification area, showing that the discrepancies in the higher frequencies are not

as drastic as in the for-2second dataset.

Average Activation Map for Synthetic Speech Average Activation Map for Real Speech

(for-rerecorded-validation-fake) (for-rerecorded-validation-real)

Figure 4.22: Averaged Class Activation Maps (ACAMs) on Re-recorded Dataset

4.5.3 Experiment Discussion

This experiment shows the advantages of using deep learning techniques over fre-
quency based ones. The rerecording process had little-to-no impact on the accuracy
of deep learning classification techniques, while the frequency analysis approaches
had a considerable decrease in accuracy. To observe the accuracy changes from
the original experiments (Section 4.3), we created the Figure 4.23, which shows
the accuracy drop between the original frequency analysis experiment and the rere-

corded frequency analysis experiment. It is possible to note a significant decrease
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in accuracy, specially for the STFT audio representation.

Similarly, we calculated the accuracy drop for Deep Learning, shown in Fig-
ure 4.24. It is possible to observe an overall lower impact on the accuracy when
compared to frequency analysis. It is interesting to note that, while for frequency
analysis the STFT was the most affected audio representation, for deep learning it

had almost no impact on the accuracy (especially on the VGG19/VGG16 architec-

tures, which were the best performing ones).

Accuracy Drop (Frequency Analysis): FoR-25econds >> FoR-Rerecorded

Algorithm STFT 128 STFT 1024 FFT1024 Mel 128 Mel 1024 | MFCC 128 | CQT 1008
Naive Bayes 0.66% -0.71% 3.58% -2.68% -4.94% -0.21%

SVM 0.62% -3.88% -4.98% -1.09% -1.44% -10.93% -71.72%
Decision Tree (J48) -8.83% -10.20% -5.84% -9.49% -6.17% -10.53%
Random Forests -10.47% -9.99% -3.37% -4.49% -3.49% -3.46%

Figure 4.23: Accuracy Drop - Rerecorded Dataset - Frequency Analysis

Accuracy Drop (Deep Learning): FoR-2Seconds >> FoR-Rerecorded
Algorithm STFT 1024 Mel 128 MFCC 128 car
4-Layer Fully Connected -0.31% 4.98% -0.87% 1.13%
2-Layer CNN (+2FC) 3.35% 7.54% -39.55% 1.11%
3-Layer CNN (+2FC) 0.84% 48.18% -3.48% 0.95%
VGG16 -0.35% -3.61% -1.42% -4.94%
VGG19 -0.31% -6.27% -1.97% -2.43%
InceptionV3 -3.58% -9.30% -8.50% -7.08%
ResNet -4.02% -4.48%

MobileNet -0.31% -2.79% -4.30% -5.02%
XceptionNet -4.60% -4.88% -6.49% -8.90%

Figure 4.24: Accuracy Drop - Rerecorded Dataset - Deep Learning

Since in the rerecorded dataset the frequency spectrum is more uniform between

real and synthetic (see Section 3.3.4), the frequency based approaches were more
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impacted by the rerecording process, while the deep learning based methods were
almost not impacted by the rerecording process and delivered an accuracy similar
to the original for-2second dataset.

The final and most challenging test is to analyze the performance of the proposed
methodologies against a totally unseen TTS algorithm (Google TTS Wavenet) in

a rerecorded scenario. This experiment is presented in the next section.

4.6 Unseen Algorithm - Rerecorded Synthetic Speech De-

tection

To evaluate the generalization capabilities (through an unseen TTS algorithm) in
a frequency-uniform dataset (through rerecording) we analyzed the performance of
the proposed methodologies against the rerecorded version of the testing dataset
(for-rerecorded - testing). This simulates a scenario where an attacker possesses a
new TTS algorithm and sends the utterances through a voice-channel (i.e. a voice

message or a call).

4.6.1 Frequency Analysis

As in the previous experiments, we start by analyzing the performance of the fre-

quency based methodologies against the testing part of the rerecorded dataset (for-
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rerecorded). Following the same methodology, we generated the comparison be-
tween audio representations and classification models. The comparison can be seen

in Figure 4.25.

FoR-rerecorded (testing)
Algorithm STFT128 | STFT1024 | FFT1024 | Mel128 | Mel1024 | MFCC 128 | CQT 1008
Naive Bayes 56.25% 58.57% 56.98% 58.57% 57.35% 85.78% 82.35%
SVM 53.06% | 53.06% | 50.49% | 75.61% | 75.49% | 68.62% | 76.83%
Decision Tree ()48) | 58.08% | 55.02% | 57.23% | 70.95% | 6558% | 65.44% | 72.05%
Random Forests 60.66% 62.99% 61.88% 80.26% 84.43% 74.50% 85.17%

Figure 4.25: Frequency Analysis Accuracy - Unseen FoR Rerecorded

As seen in Figure 4.25, the highest accuracy (85.78%, CQT and Random Forests)
is considerably lower than the original for-2second dataset (98.54%, MFCC and
Random Forests). This shows that the frequency analysis method is significantly
impacted by the rerecording of an unseen TTS algorithm. It is interesting to note
that the shift in the best audio representation, from MFCC to CQT, is similar to
the unseen TTS experiments (Section 4.4.1). This confirms our theory that CQT
may be the best audio representation if it is an unseen algorithm (independent from
it being rerecorded or not).

To better understand which frequencies are more relevant for the classification
process, we generated the Frequency Classification Activation Map (using STFT)
for the unseen utterances of the re-recorded dataset. The FCAM can be seen in

Figure 4.26.
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Unseen Rerecorded Utterances
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Figure 4.26: Frequency Classification Activation Map - Unseen FoR Rerecorded

The FCAM shows a shift in the high-relevance classification area (red and orange
areas of the FCAM) when compared to the FCAM presented for the for-2second
dataset (in Section 4.3.1). In this experiment, the high frequencies were not the
main factor for classification, potentially due to the fact that the rerecording process
reduces the discrepancies on high frequencies. Interestingly, the main classification
area was shifted to low frequencies (around 140Hz), which may justify the decrease

in the accuracy.

4.6.2 Deep Learning

Similarly to previous experiments, we took the target dataset (for-rerecorded -
testing), converted to a variety of audio representations and generated a comparison
between audio representations and deep learning models. The results can be seen
in Figure 4.27.

The highest accuracy across this experiment (91.42%, CQT and VGG19) is
reduced when compared to the for-2second dataset but is still high (over 90%).

This shows that although the deep learning algorithms were affected by the fact
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for-rerecorded (testing)
Algorithm STFT 1024 Mel 128 MFCC 128

4-Layer Fully Connected
2-Layer CNN (+2FC)
3-Layer CNN (+2FC)
VGG16

VGG19

InceptionV3

ResNet

MobileNet

XceptionNet

Figure 4.27: Deep Learning Accuracy - Unseen FoR Rerecorded

that the utterances were unseen and rerecorded, the best deep learning performer
still performed well on the synthetic speech detection task. It is also interesting
to note that the shift in the best accuracy for audio representation, from STFT
to CQT, is the same shift observed in the non-rerecorded algorithm. This is one
more piece of evidence that for unseen TTS, the CQT is the best performing audio
representation.

To visualize what is being learned by the model, the ACAM for the VGG19
model (CQT audio representation) was generated and can be seen in Figure 4.28.
Similarly to what was observed in the frequency analysis, the main classification
area is now the lower frequencies. This aligns with the previous observation that
the rerecording process smooths out the high frequencies, which leads to a shift on

the classification areas in the ACAM.
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Figure 4.28: Averaged Class Activation Maps (ACAMs) on Unseen Re-recorded

Dataset

4.6.3 Experiment Discussion

This experiment shows a clear distinction between the performance of frequency
analysis and deep learning methodologies. While the best accuracy on the frequency
analysis had a decline of 12.76% in accuracy, the best accuracy on deep learning
had a decline of only 8.54%. This means that deep learning models are 66.92%
(8.54% over 12.76%) more effective than frequency analysis in the detection of
unseen synthetic speech in a re-recorded environment.

To better visualize the accuracy drop (from seen for-rerecorded to unseen for-
rerecorded) between each audio representation and model, we created Figure 4.29

that shows the accuracy drop for frequency analysis methods and Figure 4.30 that
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shows the accuracy drop for deep learning methods.

Accuracy Drop (Frequency Analysis): Seen Rerecorded >> Unseen Rerecorded
Algorithm STFT128 | STFT1024 | FFT1024 | Mel 128 | Mel 1024 | MFCC 128
Naive Bayes -5.73% -6.67% -5.05% -1.59% -2.85% 6.77%
SVM -3.71% -0.17% -1.78% -1.57% -3.60% -12.52%
Decision Tree (J48) -2.65% -8.79% -3.55% -15.14% -18.10%
Random Forests -6.31% -7.50% -5.09% -13.18% -7.68%

CQT 1008

Figure 4.29: Accuracy Drop - Unseen Rerecorded - Frequency Analysis

Accuracy Drop (Deep Learning): Seen Rerecorded >> Unseen Rerecorded
Algorithm STFT 1024 Mel 128 MFCC 128 car
4-Layer Fully Connected 1.13% -1.12% 0.92% -0.39%
2-Layer CNN (+2FC) 1.66% 0.89% -0.93% -1.10%
3-Layer CNN (+2FC) -0.94% -40.51% -22.68% -0.96%
VGG16 -32.45% -5.69% -26.99% -4.10%
VGG19 -31.62% -6.33% -26.04% -3.73%
InceptionV3 -39.44% -6.55% -21.95% -4.27%
ResNet -17.45% -14.28% -5.18%
MobileNet -37.75% -18.32% -1.92%
XceptionNet -12.09% -18.06% -7.75%

Figure 4.30: Accuracy Drop - Unseen Rerecorded - Deep Learning

Similarly to the unseen for-2second experiments (Section 4.4), it is possible to
observe a significant drop in certain audio representations: MFCC for frequency
analysis and STFT for deep learning. This confirms our theory that there is
no generalized best audio representation for synthetic speech detection and each
case should adopt its own appropriate audio representation. For deep learning ap-
proaches in seen data, the STFT audio representation is recommended, while for
unseen data CQT is recommended. For frequency based approaches, MFCC is rec-

ommended for seen data while CQT is recommended for unseen data. It is also
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interesting to note that CQT presented the lowest averaged accuracy drop in all
experiments, which may indicate the CQT is the most reliable audio representation
if the type of the data (original/rerecorded, seen/unseen) is unknown.

Across all our frequency analysis experiments, it was possible to note that Ran-
dom Forests presented the best performance in 3 out of 4 experiments (being only
0.61% behind in the unseen rerecorded experiment), meaning that it may be the
best frequency based model for synthetic speech detection.

Across all deep learning experiments, the VGG19 model presented the best per-
formance in 2 out of 4 experiments, being behind only 0.06% in the first experiment
and 1.28% behind on the second experiment. This shows that VGG19 presents an
overall good performance and may be the best classifier model for synthetic speech

detection.
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5 Conclusion

As synthetic speech generation improves, the need for synthetic speech detection
speech increases. With this work we hope to stimulate further research in synthetic
speech detection. In this section, we discuss the conclusions from our research,
including the overall results from our experiments, thesis contributions and a pro-

posed roadmap for future work.

5.1 Overall Results

To summarize the results from all experiments, we created a diagram, shown in
Figure 5.1, presenting the accuracy for all experiments performed. From those
results it is possible to observe and compare the impact of the experiments in the
overall accuracy.

From all the experiments in our research, it is possible to observe that, in general,
the results from the top-performers deep learning based techniques present better

accuracy than the top-performers traditional frequency analysis methods.

120



Freq.

Analysis 98.54%
Deep 99.96%
FoR Learning

2 Seconds

Freq.
Analysis

86.94%

Unseen
Deep

g 92.00%
Learning

FoR

Dataset

Freq.

Analysis 95.05%

Deep
FOR Learning

Rerecorded

99.63%

Freq.

. 85.78%
Analysis
Unseen
Deep

H 91.42%
Learning

aEgggan

Figure 5.1: Experiments Results Summary

5.2 Thesis Contributions

To summarize the observations from this research, we compiled a list of key findings

in this thesis:

e The performance of humans against the latest speech synthesizers: According
to our study presented in Section 4.2.2, the human performance on detect-
ing the latest TTS algorithms is low (64.83%). This shows the need for an

automated system that is capable of detecting synthetic utterances.

e The frequency discrepancies between real and synthetic speech: From the ma-

jority of experiments presented in Chapter 4, it was possible to note that the
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major differences between real and synthetic speech is on the high frequencies
(above 7.2kHz). Those discrepancies were the main classification factor for

both frequency based methodologies and deep learning techniques.

The impact of rerecording in synthetic speech detection: According to our
observations, the rerecording process (which simulates an attacker sending an
utterance through a voice channel) mainly impacts the higher frequencies of
the audio. After the rerecording, the discrepancies between real and synthetic
speech in high frequencies were minimized, causing a reduction on accuracy,

specially on frequency based methodologies.

The importance of audio normalization: Since the synthetic utterances and
real utterances came from very distinct sources, with distinct audio properties
(such as sample rate, number of channels, etc.), we noted that performing pre-
processing to normalize the audio is very important. In early experiments, the
discrepancies in sample rate and audio channels were directly interfering on
the learning process. After normalization, the bias resulting from the audio

collection process was minimized.

The advantages of using deep learning techniques for synthetic speech detec-
tion: In all our experiments, the top performing deep learning methodologies

presented higher accuracy than frequency based ones. Also, the deep learning
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techniques are better at generalizing and adapting to different scenarios, such

as detecting rerecorded synthetic utterances and unseen TTS algorithms.

With this publication, we provide to the community a solid framework for syn-

thetic speech analysis and detection. This framework includes:

e A new synthetic speech dataset: The FoR dataset was released to the public
with the hope that the community explore the data and find even more inter-
esting aspects about the synthetic speech detection. Containing more than
195,000 utterances, the FoR Dataset includes the latest TTS algorithms and

a large variety of real speech.

e A thorough comparison of synthetic speech detection: Our study includes 7
audio representations, as well as 9 deep learning architectures and 4 frequency
analysis methods. This large variety of audio representations and models
provide a detailed analysis of which algorithms and representations perform

better in each synthetic speech detection scenario.

e A series of trained models for synthetic speech detection: Our study produced
a total of 72 trained deep learning architectures and 56 trained frequency

analysis models. The accuracy of each model is presented in Chapter 4.
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5.3 Future Work

There are several additional research topics that could be explored, such as:

e Raw-audio classifiers: The majority of our deep learning research was based
on the transformation of audio into spectrograms. However, as seen in papers
such as Wavenet[32], it is possible to directly input raw audio into neural
networks, without the conversion to spectrograms. This was widely explored
for speech synthesis. However, to the best of our knowledge, raw-audio was
never used as classifier for the synthetic speech detection problem. This may
increase the classification accuracy and reduce the pre-processing time (since

spectrograms are not needed).

e Temporal Convolutional Networks: The experiments performed in this work
were using regular convolutional networks (squared convolution filters). How-
ever, as the spectrogram is a series of frequency-magnitude measurements, one

could try to implement a classifier based on temporal convolutional networks[34].

e A generic model for synthetic speech detection: In our work, we created
separate models for detecting “original” synthetic speech and rerecorded syn-
thetic speech. One interesting research topic would be creating a unified
model that is able to properly detect a synthetic utterance independently if

it is re-recorded or not.
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e A heterogeneous rerecorded dataset: Our utterance rerecording was per-
formed using only one type of speaker and microphone. An interesting ex-
periment would be using a large variety of recording/playing devices in a
large variety of recording rooms. This would create a more heterogeneous
rerecorded dataset and would create a more generalized synthetic speech de-

tection model.

e A in-depth study about the accuracy variation across audio representations:
As observed in our experiments, some audio representations perform well on
a specific experiment and poorly in others. An interesting research topic
would be understanding the reason behind this phenomenon and whether

audio compression plays a role in this variation.

e A browser plugin: Since we developed models for synthetic speech detection,
one could create an application (such as a browser plugin) that is able to
detect if synthetic audio is being played in a web page. This would benefit the
community by telling people if the audio that they are listening is synthesized

or real, reducing the likelihood of successful impersonation attacks.
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Appendix A: Dataset Pre-Processing

In this appendix chapter, we describe in more details the pre processing steps
applied on the for-original dataset to create the subsequent dataset versions.

A.1 Filetype Conversion

The original dataset contains audio in two formats: WAV and MP3. Since WAV
is the preferred format for input for the machine learning solutions, all audio files
were converted to WAV using the ffmpeg® tool. To automate the conversion of all
the files, a script was created to convert the whole dataset keeping the same folder
structure.

One of the concerns during the experiments was that the format in which the file
was recorded could impact on the classification accuracy. To test this hypothesis,
we performed an experiment in which we converted the whole dataset to MP3
and then converted everything back to WAV. This process did not affect the final
accuracy, which may suggest that, for our synthetic speech detection problem, the
MP3 compression does not affect in the classification process.

A.2 Volume Normalization

Normalizing the volume in an audio dataset is a common practice in machine learn-
ing research, since inconsistent volume levels can impact on learning and classifi-
cation. As the files were collected from several data sources, each one with their
own volume settings, it is important to normalize the volume of all utterances to
eliminate the possibility of volume becoming a distinguishing factor. Using the SoX
tool?”, all the audio files were normalized to 0dBFS.

46https://www.ffmpeg.org/
4Thttp:/ /sox.sourceforge.net/
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A.3 Sample Rate Normalization

The sample rate is an important factor when training a machine learning algo-
rithm: all the input audio should be at the same sample rate to ensure the audio
is processed correctly. The majority of the audio files had 16kHz as sample rate,
but there were also files recorded at 22kHz, 24kHz and 48kHz. Since the human
voice frequency spectrum typically ranges from 300Hz up to 5000Hz, using 16kHz
as default sample rate provides enough room for the task, since it can accurately
represent audio signals up to 8000Hz.

Using the SoX tool*® in conjunction with a custom script, the whole dataset
was downsampled to 16kHz.

A.4 Channel Mixing

All the synthetic speech solutions generate audio in a single channel (mono), while a
good fraction of the real utterances were recorded in two channels (stereo). To avoid
this becoming a distinguishing factor, all the audio files were converted to mono
using the SoX tool*. This tool uses a channel mixing technique, which combines
two audio tracks into a mono track by scaling each track by 0.5 and adding the
signals to result in a single track.

A.5 Silence Removal

During early experiments with our dataset, it was noted that one distinguishing
factor between real and synthetic speech was the beginning and the end of each
file. After manual analysis, it was noted that synthetic audio always had around
0.2 seconds of silence in the beginning and in the end of the utterance, while in real
utterances this silence was longer in most of the cases. This means that one of the
classifying factors that a neural network could incorrectly learn is the amount of
silence in the beginning and end of the file. As we want the neural network to learn
the real differences between synthetic and real audio, it was necessary to remove
the silence in the beginning and end of all the files.

The SoX tool has a feature which allows to remove the silence in the beginning
of an audio file. To automate the process, a script was created to automate the
silence removal in the whole dataset. As SoX does not have a feature to remove the
silence in the end of the file, first we had to reverse the audio file (also using the

48http:/ /sox.sourceforge.net/

Ohttp:/ /sox.sourceforge.net/
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SoX tool), then cut the silence from the beginning, then reverse the audio again.
As a result of this processing step, all the files have no silence in the beginning nor
in the end of the audio.
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Appendix B: Frequency Analysis - Additional
Experiments

In this appendix chapter, we discuss the additional experiments performed related
to frequency analysis. We start by presenting an interesting analysis using data from
real and synthetic utterances of the same voice, showing that the speech synthesis
process does affect frequency information of the audio. Also, we perform a study
to analyze other audio features of real and synthetic audio, such as roughness and
brightness.

B.1 Frequency Analysis - Same-voice Classification Analysis

One of the main concerns when performing any kind of machine learning analysis is
to ensure that the classifier is learning the real characteristics of the problem instead
of any bias in the data. In our research, the main concern is that the classifier may
learn features that are not the real differences between real and synthetic audio. To
test this hypothesis, we used one of the voices of the real dataset to train one of the
synthetic speech generators. This resulted in a temporary dataset where the real
voice and the synthesized voice are from the same person, eliminating any voice
bias.

The LJSpeech dataset (which is included in our FoR dataset) was selected as
source of real voice since it contains clear recordings of a professional speaker. This
dataset was used to train a DeepVoice 3 model®. The resulting model was able
to generate speech with the same voice as the input voice. With this sub-dataset
created, the audio representation was extracted (using Librosa STFT 1024 bins)
and the data was input into the Weka tool.

Using Random Forests, the accuracy achieved is 95.63%, showing that even
though the voices are the same, the synthesizing process does affect the overall
frequency spectrum. Upon inspection of the generated audio it is possible to note
differences on the low and high frequencies of the synthetic utterances: High fre-

50https://github.com/r9y9/deepvoice3_pytorch
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quencies are more noticeble in real audio, while low frequencies are more evident
in synthetic speech. This finding confirms the observations in the activation map
experiment, where it was noted that the main differences are in lower and higher
frequencies.

B.2 Timbre Model Analysis

From manual inspection of the real and synthetic utterances it is possible to observe
a substantial difference in the audio features, such as brightness and roughness. To
test this observation, we extracted measurements for four main timbre models based
on the AudioCommons standards [2]:

e Brightness: A bright sound is one that is clear/vibrant and/or contains sig-
nificant high-pitched elements.

e Hardness: A hard sound is one that conveys the sense of having been made
by something solid, firm or rigid; or with a great deal of force.

e Depth: A deep sound is one that conveys the sense of having been made far
down below the surface of its source.

e Roughness: A rough sound is one that has an uneven or irregular sonic tex-
ture.

Those timbre models were extracted using the Audio Commons®! tool, which is
able to generate scores for each of the above mentioned features and much more.

With the timbre models extracted for each utterance in the dataset (unbalanced
for-norm), the data was then input into Weka for analysis. First, we evaluated how
well would a classifier perform if only those four features were provided. Figure 5.2
shows the results of this experiment. Using Random Forests we achieved 79.38%
accuracy in the validation dataset and using SVM 73.46% accuracy in the testing
dataset (which contains unseen algorithms). These numbers show that although
they are not the best classification attributes, timbre models are statistically dif-
ferent in real utterances and synthetic utterances.

The next step was to understand which of the four audio features was more
effective in the differentiation between real and synthetic utterances. To analyze
that, both Chi-Square and Information Gain techniques were utilized. As seen
in Figure 5.3, the depth of the audio is the main differentiator between real and
synthetic audio. The average depth score for synthetic utterances is 43.84 (standard

Shttps://www.audiocommons.org/2018/07/15/audio-commons-audio-extractor.html
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Timbre Models (Brightness + Hardness + Depth + Roughness)
Algorithm Training/Validation Testing
Accuracy RMSE Precision Recall Accuracy RMSE Precision Recall
Naive Bayes 69.71% 0.4368 0.729 0.788 67.27% 0.4536 0.69 0.673
SVM 69.91% 0.5485 0.724 0.699 73.46% 0.5151 0.741 0.735
Decision Tree (148)| 76.78% 0.3990 0.787 768 70.26% 0.4459 0.709 0.703
Random Forests 79.38% 0.3782 0.804 0.794 71.47% 0.4382 0.717 0.715

Figure 5.2: Timbre Model Analysis

deviation 5.62) while for real utterances is 45.11 (standard deviation 9.35), which
shows that real speech is, on average, deeper than synthetic speech.

Info. Gain Chi-Squared
Depth 0.2668 6090.496
Roughness 0.1048 2644.937
Brightness 0.0845 2088.347
Hardness 0.0599 1425.328

Figure 5.3: Timbre Models Information Gain

B.3 Overall Results

To summarize the experiments of this section, we create a diagram, shown in Figures
5.4, presenting all the additional experiments described in this appendix. From
those results it is possible to observe and compare the impact of the experiments
in the overall accuracy.
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Figure 5.4: Additional Frequency Analysis Experiments Results
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Appendix C: Deep Learning - Additional
Experiments

In this appendix chapter, we discuss the additional experiments performed related
to deep learning methodologies. We explore the possibility of using only waveform
images for classification instead of spectrograms. After that, we apply several
frequency filters to the audio to observe the impact on the accuracy. Also, to
simulate a real world scenario, we investigate the impact of noise on the classifier
performance. Last, we investigate the detection of a real-world attacks using the
re-recorded dataset.

C.1 Waveform Classification

As seen in the Experiments section, the accuracy using spectrograms is very high.
This prompts the idea that simpler audio representations, such as waveform im-
ages, may be enough for the classification of real and synthetic utterances. Figure
5.5 shows an example of a waveform from a synthetic utterance as well as a real
utterance.

Synthetic Real

Figure 5.5: Waveform Example

For this experiment, we use the gender-unbalanced 2-second version of the
dataset (for-2seconds). The ffmpeg tool®® was used to convert the audio files into

5Zhttps:/ /www.ffmpeg.org/
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waveforms. With that done, the resulting images were then input into the VGG19
model for training and validation.

Using purely the waveform image with the VGG19 model, we achieved 89.79%
accuracy on the validation dataset. This shows that although it is possible to
classify using only waveforms, spectrograms provide a much higher accuracy in
synthetic speech detection.

C.2 Dynamic Range Compression Analysis

To ensure that the classification is not being made due to volume variations, we
analyze the use of dynamic range compression (DRC) in the dataset. DRC reduces
the volume of loud sounds and amplifies the quiet sounds to reduce the dynamic
range of the audio. An example of dynamic range compression can be seen in Figure
5.6, where a high amount of compression is applied to an utterance.

Original Utterance Compressed Utterance

Figure 5.6: Example of Dynamic Range Compression

For this experiment, we use the gender-unbalanced 2-second version of the
dataset (for-2seconds). Then, using the SoX tool we apply compression to the ut-
terances using the following command: soz input.wav output.wav compand 0.01,1
6:-70,-60,-0.1 5 -90 0.2. The effect of this compression can be seen in Figure 5.6,
where the lower parts of the utterances were amplified while keeping the loud parts
intact. This procedure was applied to every utterance in the dataset.

The compressed dataset was transformed into waveform images (as in Section )
that were used to train a VGG19 model. This model achieved a validation accuracy
of 89.15%, which is slightly lower than the original waveform performance (89.79%).
This result shows that volume discrepancies have little-to-none affect in the results
presented.
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C.3 Frequency Filter Analysis

As in the Experiments section we identified that high frequencies are the most im-
portant in the classification phase, it was decided to test if without those frequencies
the model would learn different features. To test this hypothesis, we applied a va-
riety of low-frequency and high-frequency cut filters to analyze the impact on the
accuracy.

For this experiment, we use the gender-unbalanced version of the dataset cropped
at two seconds (for-2seconds). Then, using the SoX tool we generated the spectro-
grams for the dataset. With the spectrograms created, we cropped the spectrogram
image horizontally in different sections to simulate frequency filters. Figure 5.7
shows the list of filters applied and their accuracy using the VGG19 architecture
and STFT audio representation.

VGG19 Accuracy
Frequency Filter Training  Validation
> 300Hz 99.98% 99.87%
< 300Hz 99.61% 98.94%
>300Hz & < 7kHz 99.73% 97.14%
> 300Hz & < 4kHz 99.56% 99.06%
> 3kHz & < 5kHz 97.04% 93.35%

Figure 5.7: Frequency Filter Analysis

As seen in Figure 5.7, applying filters reduce the accuracy of the model. How-
ever, the performance is still high. This shows that the neural network was able
to learn different features of the audio. To test this hypothesis, we generated the
Average Classification Activation Maps for the utterances with low cut at 300hz
and high cut at 4kKz. The resulting ACAM can be seen in Figure 5.8, in which it
is possible to observe that the neural network learned features from different parts
of a spectrogram.

C.4 Signal/Noise Ratio Analysis

An important factor widely analyzed by previous research in synthetic speech de-
tection is the relation between noise and model accuracy. The idea is to investigate
how noise impacts on the accuracy of the model by adding a variety of levels of
pink noise to the utterances and observing the model performance.

For this experiment, we use the gender-unbalanced version of the dataset cropped
at two seconds (for-2seconds). Then, using the SoX tool we apply pink noise in a
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CAM-Guided Mapping: Average Activation Map for Real Speech (low-high-cut) CAM-Guided Mapping: Average Activation Map for Synthetic Speech (low-high-cut)
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Figure 5.8: Averaged CAM for frequency-filtered spectrograms

variety of volume levels, from 2% to 50% of the resulting audio. This results in six
sub-datasets, each one related to a level of noise. We then use each of the six sub-
datasets to train an independent VGG19 model (with STFT audio representation).
The noise levels and related accuracies can be seen in Figure 5.9.

VGG19 Accuracy
Noise Level Training  Validation
2% 99.76% 99.71%
20% 97.73% 96.86%
35% 97.35% 94.23%
40% 84.05% 82.93%
45% 50.56% 49.92%
50% 50.49% 49.96%

Figure 5.9: Noise ratio and accuracy on VGG19

Figure 5.10 shows the data plotted into a graph in which it is possible to observe
that the higher the noise level, the lower the accuracy is. It is also possible to note
that up to 35% noise volume the accuracy of the model is still high, showing that
the architecture is fairly robust against noise. With a noise volume higher than 40%
the accuracy starts to drastically decrease. When the noise level is equal or higher
than 45%, the VGG19 is not able to distinguish between synthetic or real. It is
important to note that a 45% noise ratio generates a poor quality utterance, making
it hard even for humans to distinguish between a real and a synthetic utterance.
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Figure 5.10: Noise ratio and accuracy chart

C.5 Overall Results

To summarize the experiments of this section, we create a diagram, shown in Figures
5.4, presenting all the additional experiments described in this appendix. From
those results it is possible to observe and compare the impact of the experiments
in the overall accuracy.
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Figure 5.11: Additional Deep Learning Experiments Results
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