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Abstract

Question answering over knowledge base (KB-QA) has recently become a popular

research topic in NLP. One of the popular ways to solve the KBQA problem is to

make use of a pipeline of several NLP modules, including entity discovery and link-

ing (EDL) and relation detection. Recent success on KBQA task usually involves

complex network structures with sophisticated heuristics. Inspired by a previous

work that builds a strong KBQA baseline, we propose a simple but general neural

model composed of fixed-size ordinally forgetting encoding (FOFE) and deep neural

networks, called FOFE-net to solve KB-QA problem at different stages. For eval-

uation, we use two popular KB-QA datasets, SimpleQuestions, WebQSP, and our

newly created dataset, FreebaseQA. The experimental results show that FOFE-net

performs well on KBQA subtasks, entity discovery and linking (EDL) and relation

detection, and in turn pushing overall KB-QA system to achieve strong results on

all the datasets.
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1 Introduction

1.1 Motivation

Question Answering System is capable of returning proper responses given the

questions asked by the human in natural language. The earliest QA systems can be

traced back to early 1960s, which tried to answer the questions about baseball games

and scientific facts. These progenitors of QA systems started to use two major

paradigms, information-retrieval-based and knowledge-base-based, to pull answers

from an unstructured collection of textual information and structured knowledge

base in response to user requests in natural language [21].

The modern QA systems pay more attention to factoid question answering.

Factoid question, by definition, is the question asked about a concise fact that

relate to a person, an organization, or a numerical expression etc. Questions below

are examples of factoid question of which answer type is a country, a song and an

American football team respectively.
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• Which country hosted the 1936 Summer Olympic Games?

• Which song from Mary Poppins won the Academy Award for Best Song?

• The Chicago Bears defeated which team 73-0 in the 1940 NFL Championship

game?

To answer these factoid questions, IR-based QA system uses information re-

trieval methods to query voluminous texts on the Web or in the collection to find

the relevant documents and passages to the question, then adopt reading compre-

hension approaches to extract the answer from retrieved documents and passages.

KB-based QA system, instead, tries to form a query over knowledge base in re-

sponse to natural language request. In this thesis, we focus on KB-based question

answering and its problem. Our proposed solution will be discussed in Chapter 4.

Knowledge Base Question Answering is the task that aims to answer

questions over knowledge bases. The current approaches of this task can be cat-

egorized into three main streams: Semantic Parsing, Vector modeling and

Information Extraction. Semantic Parsing-based methods translate natural

language question into a standard logical form (e.g. lambda calculus) and then

perform a query over knowledge base. Vector Modeling based methods represent

questions and facts stored in knowledge bases as low dimensional vectors. Thus, the

questions can be answered by computing similarity scores between these vectors.

2



Information Extraction based methods detect the entities conveyed in question

and use these entities along with their neighbors to construct a KB sub-graph.

Sub-graph nodes satisfied with specific rules can be viewed as candidate answers.

Through feature extraction of candidate answers and building a classifier to measure

the relevance of the question to each candidate, the final answer can be selected.

Recently, neural approaches have become popular in the KBQA field, while

many of them show unnecessary complexity in dealing with KBQA task. Besides,

these neural approaches are so data hungry that they arouse huge demand for more

training data. In this research, we propose a simple and straightforward model to

solve the KBQA task and create a new trivia-type question answering dataset for

the evaluation of our model.

1.2 Contribution and Outline of the Thesis

In this thesis, we propose a Fixed-size Ordinally-Forgetting Encoding

(FOFE) based approach to solve the problem and create a new dataset, Free-

baseQA, to evaluate it. Our contributions are summarized as follows:

• Many previous works adopt various complex models to tackle with KBQA

subtasks. Albeit promising results their models achieve, it is still arguable

whether we need such complex models as most of them more or less show un-

necessary complexity. In contrast, we combine FOFE, a simple representation

3



algorithm that has been proved to be effective for many Natural Language

Processing (NLP) problems, with a deep feed-forward neural network to deal

with KBQA subtasks such as entity linking and relation detection. The ex-

perimental result shows FOFE-based method works well on these sub-tasks

of KBQA despite its simplicity.

• We construct a stage-based KBQA system by combining FOFE-based models,

and examine it on existing KBQA datasets, WebQSP and SimpleQuestions.

The experimental result shows our KBQA system’s performance is very com-

petitive.

• We also create a new data set, FreebaseQA, for evaluation of our KBQA

model. In comparison with other existing KBQA datasets, FreebaseQA is ei-

ther larger in scale or more complex linguistically, so it would be very suitable

for model training and testing in factoid QA tasks.

The rest of the thesis is organized as the following: Chapter 2 reviews the

modern approaches for KBQA task. Chapter 3 reviews the text representation

approaches for extracting features to feed the deep feed-forward neural network.

Chapter 4 reviews the deep feed-forward neural network and how to apply it into

NLP tasks. Chapter 5 gives our proposed method to combine FOFE and other

encoding methods with deep feed-forward neural network in tackling with overall

4



KBQA task as well as its subtasks. Chapter 6 presents our new factoid QA dataset

and approaches of its creation. Chapter 7 shows the experimental results of our

proposed KBQA system. Chapter 8 concludes the thesis and outlines future work.
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2 Modern KBQA Systems

Knowledge bases (KBs) have been intensively studied as a tool to create effective

methods to answer factoid questions in natural language processing (NLP). There

are several very large-scale knowledge bases [5, 11, 22] available for KB-QA tasks,

which are usually organized as a graph and formatted as sets of Resource Descrip-

tion Framework (RDF) triples.

A RDF triple has three fields: a subject, a predicate and an object. Fig. 2.1

shows an excerpt of Freebase, an RDF knowledge base that has more than 3 billion

triples, and Table 2.1 shows the corresponding RDF triples.

In many cases, people want to operate these knowledge bases in the similar

way as they operate relational databases so that SPARQL [28], a semantic query

language, has been come up with to enable users to access the correct resources

stored in these knowledge bases. However, this query language is not very user-

friendly due to its high demand on user’s familiarity with its grammar as well

as the structure and vocabulary of knowledge bases. Accordingly, many works

6



Figure 2.1: An excerpt of Freebase. The prefixes of predicates are omitted for

readability.

have been done with an attempt to bridge the gap between natural languages and

SPARSQL [38, 2].

With the growing interest in complex NL question answering, researchers find

that it is difficult to translate the complex NL question to SPARSQL query. Instead,

they have shifted to map NL question to answer via predicate calculus. Many

related works have emerged in recent years [3, 4, 31, 40].

The recent success of deep learning on other Artificial Intelligence (AI) appli-

cations also inspire NLP community to apply this new technique into QA task.

Bordes et al. [8] firstly introduce neural-network based methods for the KB-QA

problem, which maps questions and KB triples to low-dimensional space and the

7



Subject Predicate Object

m.01z1jg Name Jin Yong

m.0w2d 7 Name Zhang Wuji

m.02xhgwq Name Novelist

m.061tlb Name The Heaven Sword and Dragon Saber

m.01z1jg Profession m.02xhgwq

m.01z1jg Book written m.061tlb

m.061tlb Book character m.0w2d 7

m.01z1jg Fictional character created m.0w2d 7

Table 2.1: The set of RDF triples corresponding to the graph in Fig. 2.1.

representations of questions. The corresponding answers are made to be more sim-

ilar throughout the learning process. At the test stage, the best candidate answer

will be selected by computing a similarity measure between two projected vectors.

Bordes et al. [6] further improve their method by enriching the representation of

the answer. The new representation of answers involves question-answer path and

all entities associated with the answer.

Similarly, there is an important line of research work in an end-to-end learning

for the KB-QA problem. Bordes et al. [7] introduce a new single-relation KB-QA

benchmark dataset (SimpleQuestions) and apply memory network into this KB-
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QA task. They represent the facts of KB as a bag-of-symbol vector and questions

as a bag-of-ngrams vector. Then the answer would be returned based on the best

cosine similarity of a supporting fact in KB with the question. He and Golub [17]

propose a character-level encoder-decoder framework enhanced by the attention

mechanism for single-relation question answering. This framework uses character-

level Long Short-Term Memory (LSTM) and character-level Convolutional Neural

Networks (CNNs) to encode the questions and the pairs of predicates and entities

in the KB respectively. The decoder in this framework is an LSTM with attention

mechanism used to generate the topic entity and predicate. Lukovnikov et al. [24]

use a Gated Recurrent Unit (GRU) based model to encode questions and entities

on both character and word level and to encode the relations on the word level. The

answers might be found by computing the cosine similarities between the question

and the entity, and between the question and the predicate [16].

Moreover, some previous works divide the KB-QA task into several NLP sub-

tasks: entity discovery, entity linking, relation detection, and constraint detection

(optional) [10, 42, 36, 43, 30, 15]. Figure 2.2 shows the pipeline of such KB-QA

systems. Firstly, named entity detector is responsible for locating topic subject

mentions in the question. Secondly, an entity linker will link the detected topic

subject mention to the entity node in the knowledge base. Next, relation detector

is used to choose the right paths from the entity node to search for the answers. At

9



Figure 2.2: The general pipeline to solve KB-QA problems, adopt in this thesis.

Given input questions: Who was elected president of the Philippines?, the named

entity detector should detect topic subject mention: {Philippines} in question,

and entity linker further links this mention to subject entity: {m.05v8c}. Relation

detector detects relation / inferential chain implied in the question, which is

{Governing Officials, Government Position Holder} in this case. A set of candidate

answers can be queried by using the predicted subject-relation pair. With the

constraint: {President} and {Past} (not showing in this Figure) get detected,

only former presidents of the Philippines will be returned as the final answers.

10



last, the constraint detector imposes the potential constraints based on the ques-

tion, which will be used to further prune the found paths and produce a set of

answers that may best match the question.

Semantic parsing approaches have also been developed in the era of deep learn-

ing. For example, Yih et al. [40] propose a new semantic parser with deep Con-

volutional Neural Networks (CNN) for identifying the core inferential chain in the

NL question.

Despite the exciting improvement in the KBQA task we have seen recently, the

neural network structures go increasingly complex. Mohammed et al. [26] build a

strong baseline for KB-QA task and prove through experiments that best models

at most provide modest gains over their baselines and some of those models show

unnecessary complexity. Following their findings, we are curious to look for a

simple but stronger architecture that is enabled to compete with the state-of-the-

art models on KB-QA task.

Recently, fixed-size ordinally forgetting encoding (FOFE) method [44] has been

proposed to model variable-length sequences into fixed-size representations in a

lossless way. This simple ordinally-forgetting mechanism has been applied to some

NLP tasks, e.g. language modeling [44, 35], word embeddings [32], named entity

recognition (NER) [37], and has achieved very competitive results. Due to its

practical simplicity and technical soundness, we extend this method to KB-QA

11



task, which will be introduced in Chapter 5.
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3 Text Representation

In this chapter, we introduce how to encode a variable-length text to a fixed-size

dense vector, which can be used as features to train the Deep Neural Network

(DNN).

3.1 Bag-of-Words (BOW)

Bag-of-Words (BOW) is a very simple and straightforward way to model a variable-

length text (such as a sentence or a document). This representation only keeps the

word frequency in the text, with disregard for word order and syntax. Suppose

we have two texts “He joined NBA in 2003 and won his first NBA championship

in 2012.”, “He won his second NBA championship in 2013.” and a vocabulary

[in, 2012, 2013, He, his, first, second, NBA, championship, won, 2003, joined,

and ], then we can represent those text as bag-of-words (See Table 3.1). We can

only keep the second column and the third column in the table and view them

as vector representations, then we have [2,1,0,1,1,1,0,2,1,1,1,1,1 ] to represent the

13



Word Frequency in T1 Frequency in T2

in 2 1

2012 1 0

2013 0 1

He 1 1

his 1 1

first 1 0

second 0 1

NBA 2 1

championship 1 1

won 1 1

2003 1 0

joined 1 0

and 1 0

Table 3.1: Bag-of-Words representations of two texts “ He joined NBA in 2003

and won his first NBA championship in 2012.” and “He won his second NBA

championship in 2013.”.
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text “He joined NBA in 2003 and won his first NBA championship in 2012.” and

[1,0,1,1,1,0,1,1,1,1,0,0,0 ] to represent the text “He won his second NBA champi-

onship in 2013.”. Note that albeit different length of original texts, their text

representations have the same dimension |V |, the vocabulary size. However, these

vector representations are too sparse to train the neural network, In Section 4.5, we

will show how to convert these sparse vectors to condense ones by a simple matrices

multiplication. Then they will be suitable for training the neural network.

3.2 TF-IDF

TF-IDF is another algorithm to model a collection of text (such as a sentence or

a document). This algorithm is a product of two terms, term frequency and

inverse document frequency.

Term frequency tij is the frequency of term i in document j. Usually we want

to downweight the importance of term that has a high frequency, so logarithmic

term frequency is used to substitute for the raw one, which is presented below:

tij =


1 + log10count(i, j), if count(i, j) > 0

0, otherwise

(3.1)

Inverse document frequency is used to assign importance to the words that can

only be found in a few documents. Because these words are more informative and

15



helpful for discriminating these documents from the rest. The definition of inverse

document frequency is:

idfi = log10
N + 1

dfi + 1
+ 1 (3.2)

where N is the total number of documents in the collection, dfi is the number

of documents that contains term i.

Then the tf-idf weight wij for the term i in a document j can be calculated as

the product of term frequency and inverse document frequency:

wij = tij × idfi (3.3)

we use L2 norm to normalize the wij into the range [0, 1], then we have:

wnormij
=

wij√∑
iw

2
ij

(3.4)

Let’s use an example to show what the tf-idf weighted vector of documents

would look like. Suppose we have three documents in the collection:

Document D1: “I got the answer”

Document D2: “What is the answer to this question”

Document D3: “I do not know the answer”

16



Their tf-idf weighted vectors are shown in Table 3.2. Similar to Bag-of-Words

algorithm, TF-IDF method can also represent a variable-length text to a vector of

length |V |.

Word D1 D2 D3

answer 0.391 0.247 0.286

do 0.0 0.0 0.484

got 0.663 0.0 0.0

I 0.504 0.0 0.368

is 0.0 0.419 0.0

know 0.0 0.0 0.484

not 0.0 0.0 0.484

question 0.0 0.419 0.0

the 0.391 0.247 0.286

this 0.0 0.419 0.0

to 0.0 0.419 0.0

What 0.0 0.419 0.0

Table 3.2: The TF-IDF representations for Document D1, Document D2 and

Document D3.
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3.3 Fixed-size Ordinally Forgetting Encoding

Fixed-size ordinally forgetting encoding (FOFE) is proposed to encode any sequence

of variable length into a fixed-size representation [44]. It has shown that the FOFE

encoding is lossless and unique.

Let V be a vocabulary set, with each word represented as a one-hot vector.

FOFE extends bag-of-words (BoW) by incorporating a forgetting factor to capture

positional information. Let S = w1, w2, · · · , wT represent a sequence of T words,

and et represent the one-hot vector of the t-th word in S, where 1 ≤ t ≤ T . Then

the FOFE encoding of the partial sequence w1w2 · · ·wt is defined recursively as

follows:

zt =


0, if t = 0

α · zt−1 + et, otherwise

(3.5)

where α denotes the forgetting factor picked between 0 and 1. Same with bag-

of-words and tf-idf, the size of zt is fixed at |V |.

For example, assume a vocabulary V containing the words “I”, “think”, “,”,

“therefore”, “am”, with corresponding one-hot vectors [1, 0, 0, 0, 0], [0, 1, 0, 0, 0],

[0, 0, 1, 0, 0], [0, 0, 0, 1, 0] and [0, 0, 0, 0, 1] respectively. Then the FOFE encoding of

the partial sequences of “I think, therefore I am” are shown in the Table 3.3.

It is shown that the encoded word sequences can be unequivocally recovered [44].
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Partial Sequence FOFE

I 1,0,0,0,0

I think α, 1, 0, 0, 0

I think, α2, α, 1, 0, 0

I think, therefore α3, α2, α, 1, 0

I think, therefore I α4 + 1, α3, α2, α, 0

I think, therefore I am α5 + α, α4, α3, α2, 1

Table 3.3: Partial encoding of “I think, therefore I am”

The uniqueness of the FOFE encoding is guaranteed by the following two theorems:

Theorem 1. For 0 < α ≤ 0.5, FOFE is unique for any countable vocabulary V

and any finite value T .

Theorem 2. For 0.5 < α < 1, given any finite value T and any countable vocab-

ulary V , FOFE is unique almost everywhere, except only a finite set of countable

choices of α.

The uniqueness is not guaranteed when α is chosen to be between 0.5 and 1,

the chance of coming across such scenarios is very slim due to quantization errors

in the system. Therefore, we can confidently assume that FOFE can uniquely

encode any sequence of words of arbitrary length, yielding fixed-size and lossless
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representations.

3.4 Word2Vec

In the sections above, we introduce three algorithms to encode a variable-length

text to a fixed-length vector. However, these algorithms result in sparse repre-

sentations, which means most of their elements are zero. In NLP field, we prefer

dense representation than sparse representation since it requires fewer parameters

in training and helps to avoid overfitting.

Similar to the way that texts can be represented as vectors, semantics of words

can also be encoded into a vector space to capture the closeness of each word in the

vocabulary. Word2Vec is an algorithm to produce a dense vector of a word [25]. By

combining this method with one of the above three text representation methods, a

variable-length text can be represented as a dense vector.

The intuition of word2vec is very simple, it trains a classifier to predict the

likelihood of a word wi occurs near the word wj. By doing the prediction task, the

embedding representation for each word is learned as well.

Consider a set S+ of correct word-context pairs and a set S− of the incorrect

word-context pairs. The goal of this algorithm is to maximize the following objective

function:
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L (θ) =
∑

(w,c)∈S+

logP (1w, c) +
∑

(w,c)∈S−

logP (0w, c) (3.6)

where (w, c) is a word-context pair.

Normally, the probability function P (1w, c) is a sigmoid function over similarity

score s(w, c):

P (1w, c) =
1

1 + e−s(w,c)
(3.7)

s(w, c) is known as cosine similarity, which is widely used to measure the simi-

larity between word w and context word c, which can simply be a normalized dot

product of two vectors:

s(w, c) =
w.c

‖w‖ . ‖c‖
(3.8)

We can see that the cosine similarity is based on the dot product, which tends

to be large when the two vectors have large values in the same dimensions. But

the raw dot product is problematic since it favors frequent words that have long

vectors. To solve the problem, people tend to normalize the raw dot product of

the two vectors by dividing it by the lengths of each of the two vectors. (See

Equation 3.8).

Interestingly, another common similarity metric, Squared Euclidean Distance,

is proportional to the cosine similarity (See Equation 3.9). In practice, these two
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types of metrics can be used interchangeably, as maximizing the cosine similarity

of the two vectors is equivalent to minimize the squared euclidean distance between

them.

E(w, c) =

√(
w

‖w‖
− c

‖c‖

)2

=

√(
w

‖w‖

)2

+

(
c

‖c‖

)2

− 2× w.c
‖w‖ . ‖c‖

=
√

2− 2× s(w, c) (3.9)

Given two random initialized V × d matrices W and C. d is a parameter that

is usually set to be in the range from 100 to 500. Each row of these matrices

is a dense representation of a word, and they will be updated during the training

process. Finally, words having similar contexts are expected to have similar vectors,

such as “cat” and “dog”. However, “dog” and “flag” should be far from each other

since they are semantically unrelated.

Once matrices W and C are converged, we can add these two embeddings

together as a new d-dimensional word embedding U .

3.5 Dense Text Representation

As discussed above, Bag-of-Words, TF-IDF and FOFE can represent an arbitrary

length text to a sparse vector of length |V |, which we denote as E. Word2Vec

can produce a V × d word embedding matrix U , each row of which is a dense

representation of a word. We want to project the high dimensional sparse vector
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of texts onto a low dimensional space, which can be done by a simple matrices

multiplication:

M = EU (3.10)

where M is a 1× d dense vector so that it can be used as a feature to train the

deep feedforward neural network. In Chapter 5, we will show how to combine the

feedforward neural network with this dense text representation to solve the KBQA

task as well as its subtasks.
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4 Deep Neural Network

In this chapter, we review the concept of Deep Feedfoward Neural Network and

how to apply this architecture into NLP tasks.

4.1 Deep Feedforward Neural Network

Deep Feedforward Neural Network is a common kind of neural network, which is

acyclic, fully-connected, multilayer and always passes the computing results from

the units in preceding layers to the units in succeeding layers. The goal of a Feedfor-

ward Neural Network is to approximate a function f ∗ that maps input x to target

t [14].

Recall that each layer of FFNN consists of a number of hidden units, each of

which has a weight vector w and a bias scalar b. We denote the weight of the

connection from the i-th input unit xi to the the j-th hidden unit hj in the n-th

layer as W n
ij. The weight matrix for the n-th layer can be represented as W (n) by

combining weight Wij for every input unit i and hidden unit j pair. Similarly, bias
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bi for unit i in the n-th layer can be combined as vector bn. Let ai be the output

from layer i, and zi be the combination of weights and biases W iai−1 + bi. The

algorithm for computing the result of an n-layer feedforward neural network in the

forward step is presented below:

. a0 = x

1: for i← 1...n do

2: zi = W iai−1 + bi

3: ai = φi(zi)

4: end for

5: ŷ = an

ŷ is the estimation made by a feedforward neural network. Assume there is

a function f ∗ that can perfectly fit every given input-target pair (x, t). We want

feedforward neural network can learn a function f that estimate ŷ as similar as

possible to gold target t given certain input x. That is, in other words, the function

f is expected to be as similar as possible to the function f ∗. To realize this goal, we

must update two learnable parameters: the weight matrix W (n) and the bias vector

bn, iteratively during the training process. The learning process will be discussed

in the following section.
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4.2 Training DNN

In Sec. 4, we introduce how the information flow through the feedforward neural

network from the input x to produce the output ŷ. Once the output ŷ is produced,

a loss function will be used to measure how incorrect the output ŷ is given the

target t. Assume this is a binary classification task, which means the target t can

either be 1 or 0. Then we can choose loss function to be Cross Entropy Loss:

LCE (ŷ, t) = − [t log ŷ + (1− t) log (1− ŷ)] (4.1)

or Hinge Loss:

LHL = max (0, γ + ŷ− − ŷ+) (4.2)

where ŷ− is the estimation value ∀t = 0, ŷ+ is the estimation value for t = 1, γ

is a constant number.

Once the loss is produced, the information will flow backward through the net-

work to compute the gradient of the loss function with respect to the parameters.

This step is called Back-propagation.

Let ∇θL (f (x; θ) , t) be the gradient of the loss function with respect to the

parameters θ. Optimization algorithm such as Stochastic Gradient Descent (SGD)

can be used to minimize the loss function by computing ∇θL (f (x; θ) , t) after each
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training iteration. Suppose the training data consist of n tuples (x1, t1), (x2, t2), ...,

(xn, tn), we can use the following SGD algorithm to learn the neural network:

1: function Stochastic Gradient Descent(x,t,η)

. η: Learning Rate

. Randomly initialize parameters θ

2: while θ not converged do

3: Randomly shuffle examples in the training set.

4: for i← 1...n do

5: θ ← θ − η∇θL (f (xi; θ) , ti)

6: end for

7: end while

8: return θ

9: end function

4.3 Apply DNN Architecture Into NLP Tasks

As discussed above, Feedforward deep neural networks (DNNs) use rather simple

structure consisting of several fully-connected layers to perform as a powerful uni-

versal approximators for mapping any given inputs to desired outputs [18]. It is

very natural to apply this architecture into NLP tasks, which is expected to make
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predictions based on textual information.

However, a major deficiency of feedforward deep neural network in tackling with

NLP tasks is that this architecture requires fixed size input while we are interested

in making prediction based on texts of varying length (a sequence of letters in

the sentence, a sequence of words in the sentence, a sequence of sentence in the

paragraph and so on) in most cases.

A traditional way to solve this problem is to feed Continuous Bag-of-Words

(CBOW) representation into the feedforward deep neural network. But this method

suffers from losing useful positional information [13].

Recurrent Neural Network and Convolutional Neural Network are two variants

of Neural Network that are capable of extracting fixed size representation from the

text of arbitrary length without losing useful ordering information. Hence they can

be integrated with feedforward neural network for the prediction tasks. But the

drawback of building such hierarchical structure is that this would involve more

parameters to train and the training time would increase as the error has to go

backward from the DNN for the final task through the RNN or CNN for the text

representation.

A better solution is to combine DNNs with the fixed-size ordinally forgetting

encoding (FOFE) method. FOFE is used as a frontend encoding method to convert

any sequence of words in an NLP task into a fixed-size representation without losing
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Figure 4.1: The FOFE-net framework.
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any information and the simple DNNs are used as universal function approximators

to map these fixed-size representations into any desirable NLP target labels. This

framework, called FOFE-net (See Figure 4.1 ), may be appealing to many NLP tasks

since FOFE is simple and fast and requires neither learning nor feature engineering

(except a single hyperparameter), and DNNs are also much easier and faster to

manipulate than RNNs and CNNs. This is particularly important on many NLP

tasks when a large corpus is involved in training.
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5 FOFE-net for KBQA

In this chapter, we present our proposed model, FOFE-net, for the KBQA task as

well as its subtasks.

5.1 General Pipeline of Our KBQA system

We tackle the KB-QA task with the following four steps: topic subject discovery,

entity linking, relation detection, and constraint detection. In this work, we propose

to apply the above FOFE-net model to solve each of the sub-tasks in the pipeline.

Given a question, a FOFE based local detector will examine all word segments in a

sentence and generates all candidates along with a probability of being a topic sub-

ject mention for the question. After pruning, topic subject mention candidates will

be used as keywords to look up the Freebase to generate some candidates of entity

nodes in Freebase. Each entity node candidate will be scored by an entity linker,

which is a FOFE-net model taking each Freebase node and the corresponding sub-

ject mention contexts in the question as input to compute the similarity between
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them. The results from entity linker are fed to the relation detector, which is im-

plemented as another FOFE-net model to score the similarity between the question

and the predicates 1 (and paths) from each target Freebase node. Different from

the previous works that combine various models in different stages of KB-QA task,

our system is mainly built by using the FOFE-net framework. The details for each

component in our KB-QA system are described below.

5.2 Topic Subject Mention Discovery

We follow the idea of named entity recognition (NER) in [37] to discover the po-

tential topic subject mentions from each question in the KB-QA task. For each

fragment hypothesis and its left and right contexts, FOFE-NER extracts the fol-

lowing features as inputs.

Features for each fragment hypothesis:

• Bag-of-word (BoW) of the underlying fragment, e.g. the bag-of-words

vector of ‘robert’, ‘lamm’ in Figure 5.1.

• Character-level FOFE code for the underlying fragment viewed as a left-

to-right character sequence, e.g. FOFE code of the sequence “‘r’, ‘o’,

..., ‘m’ , ‘m’ ” in Figure 5.1.

1In Freebase, relations between nodes are labeled with certain predicates.
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• Character-level FOFE code for the underlying fragment viewed as a

right-to-left character sequence, e.g. FOFE code of the sequence “‘m’,

‘m’, ..., ‘o’ , ‘r’ ” in Figure 5.1.

• Character-level CNN representation for the underlying fragment viewed

as a character sequence.

Features for contexts of each fragment hypothesis:

• Word-level FOFE codes for the left context, e.g. one FOFE code of the

left context including the fragment:“which songs have robert lamm”, and

another FOFE code of the left context excluding the fragment: “which

songs have”.

• Word-level FOFE codes for the right context, e.g. one FOFE code of the

right context (including the fragment) as a backward word sequence of

“? to lyrics written lamm robert”, and another FOFE code for the right

context excluding the fragment: “? to lyrics written”.

Different from regular named entity recognition tasks, detected candidates of

topic subject mention has to match any names, alias, or Wikipedia keys in freebase.

Those failed to match will be discarded. We then rank the remaining candidates

based on their probabilities of being a topic subject mention, as computed by the

FOFE-net model. Among all candidates, we only keep the ones whose probability
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Figure 5.1: The FOFE-net model for NER in the KB-QA pipeline.

is larger than a threshold θ (0 ≤ θ ≤ 1).

5.3 Entity Linking

Once a topic subject mention is detected in a question, it will be used as a keyword

to look up entity nodes in Freebase. Usually, each detected subject mention will

have multiple matched entity nodes in Freebase (See Figure 2.2, subject mention:

Philippines has three matched entities: {m.05v8c, m.0ck9jp8, m.07ly87t}). Thus,

an entity linker plays an important role in the process of choosing the correct entity

that is relevant to the underlying question. Here, we have built the FOFE-net

model for entity linking to determine which entity in Freebase should be selected
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Figure 5.2: The FOFE-net model for entity linking in the KB-QA pipeline. The

detected subject mention in this case is “robert lamm”.

for each detected topic subject mention. To model the relevance between a detected

subject mention and each Freebase entity, the FOFE-net model takes both Freebase

node and the context of detected subject mention in the question as input. In the

following, we describe the features used to represent each input.

Features for each subject in the question: Without losing information,

each detected subject mention must be represented by its contexts (both left and

right) in the given question. Since its left and right contexts may be viewed as a

sequence of words, they may be easily encoded as fixed-size FOFE codes.

As shown by the example in Figure 5.2, the FOFE-net model for entity linking

takes the following features for each subject mention in the question:

• Bag-of-word (BoW) of each detected subject, e.g. the bag-of-word vector of
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‘robert’, ‘lamm’.

• Word-level FOFE codes for left context, e.g. one FOFE code of left context

including the detected subject mention:“which songs have robert lamm”, and

another FOFE code of left context excluding the subject mention: “which

songs have”.

• Word-level FOFE codes for right context, e.g. one FOFE code of right context

(including the subject mention) as a backward word sequence of “? to lyrics

written lamm robert”, and another FOFE code for right context excluding the

subject mention: “? to lyrics written”.

Features for each Freebase entity node: The FOFE-net also needs to use

features to fully depict the information of entity node in Freebase. In this work, As

shown in Figure 5.2, we use the following feature for each Freebase node:

• Number of facts: the total number of associated facts is computed for each

node and A hot value is quantized into 10 discrete values and represented as

a 10-D one-hot vector [23].

• TF-IDF2 code for the description of entity node: many Freebase nodes contain

a short description of the corresponding entity and a bag of TF-IDF code is

2We compute the TF-IDF by using TfidfTransformer provided by sklearn. https:

//scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.

TfidfTransformer.html
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computed for the short description.

• TF-IDF code for the relations associated with the entity node: the predicates

of all associated relations from the Freebase nodes are all viewed as word

sequences and another bag of TF-IDF code is computed for them.

Loss Function: We use a hinge loss function to train our FOFE-net model for

entity linking:

Llinker = max
(
0, γ + sl

(
qc, e

−)− sl (qc, e+)) (5.1)

where qc denotes question contexts for the detected subject mention, e+ denotes

the gold subject entity (a positive samples), and e− for all other candidate subject

entities (negative samples), γ is a margin constant.

Entity Re-Ranking: To further improve the entity linking, we do the entity

re-ranking by combining the linking score with NER score and relation detection

score:

s (q, e) = s (q,m) + sl (qc, e) + max
r∈Re

sr (q, r) (5.2)

where s (q,m) is a similarity score computed by the named entity detector between

given question and a topic entity mention. sl (qc, e) is a similarity score computed by

the entity linker between given question contexts and an entity. sr (q, r) is another

score computed by the relation detector between a raw question and a relation. Re

denotes the set of all relations associated with entity e. The number of associated
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Figure 5.3: The FOFE model for Relation Detection

facts of an entity is used to break the tie when more than one entity has the same

score.

5.4 Relation Detection

The relation detection module attempts to detect the correct relation that a ques-

tion refers to. Here we also use the FOFE-net framework to build our relation

detector, which takes a question pattern3 and a relation as input to compute a

similarity score between them. As shown in Figure 5.3, the following features are

fed to the FOFE-net model for relation detection:

3Question pattern is formatted by replacing the topic subject mention of the question with a
special symbol <e>.
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Features for Question:

• Word-level FOFE code for the underlying question pattern viewed as

a left-to-right word sequence, e.g. FOFE code of the sequence “which

songs have <e> written lyrics to ?” in Figure 5.3.

• Word-level FOFE code for the question pattern viewed as a right-to-left

word sequence, e.g. FOFE code of the sequence “? to lyrics written <e>

have songs which” in Figure 5.3.

Features for Relation:

• A bag of TF-IDF code for relation when the relation predicates are

simply viewed as a bag of words, e.g. the relation of

“music.lyricist.lyrics written” is viewed as a bag of words of “‘music’,

‘lyricist’, ‘lyrics’, ‘written’”.

• Character n-gram feature: the overlap of character n-grams between the

question and the relation predicate.

Loss Function: Similarly, we also use a hinge loss function to train our FOFE-

net model for relation detection.

Lrel = max
(
0, γ + sr

(
qp, r

−)− sr (qp, r+)) (5.3)

where qp denotes the underlying question pattern, r+ for its gold relation (as positive
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example), and r− for other candidate relations associated with the node (as negative

samples), and γ denotes a constant margin parameter.

5.5 Answer Selection

Answer selection has two main steps: path scoring and answer scoring. For the

path scoring step, we score each candidate paths (m,e,r) based on the following

formula:

s (m, e, r; q) = s (q, e) + sr (qp, r) (5.4)

With the score of each path, we can score each answer candidate based on the

following formula:

sa =
∑

(m,e,r)∈(PN
q ∩Pa)

s (m, e, r; q) (5.5)

where Pa is the paths that can lead to the answer a, PN
q is the top N best scoring

paths of the question q.

This step is called answer scoring. In this step, the top N best scoring paths of

the question q are selected to generate the candidate answers to the question. The

score of each candidate answer is the sum of the scores of the paths that can lead

to it. We keep the candidate answers with the highest scores as the final candidate

answer set.
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5.6 Constraint Detection

In WebQSP dataset and FreebaseQA, many of candidate answers of the question

can be queried by the same subject-relation pair (which means they may have

the same score), while only a few of them are correct because of various kind of

constraints implied by the question. Similar to [40, 41, 43], we also use a few pre-

defined keywords to detect temporal constraints and ordinal constraints4. The type

entity can be suggested by the predicted inferential chain and detected through

text matching.5 For example, inferential chain:{Governing Official, Government

Position Holder} suggests several possible constraints: President, Vice President

and Prime Minister, etc. Through text matching we can see President is the best

match constraint to the question: “who was elected president of the Philippines”.

All detected constraints will be used to prune the answer candidates and produce

the final answers to the question.

4For example, {was, were, did} and {first, last} is used to detect past constraint and ordinal
constraint in the question respectively.

5We have collected all inferential chains and their associated constraints from the training set.
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6 FreebaseQA: A New Factoid QA Dataset

A number of datasets are available for KBQA, such as Free917 [9], WebQues-

tions [3], WebQuestionsSP (WebQSP) [41], SimpleQuestions [7], ComplexQues-

tions [1]. However, these existing datasets are either small-sized or linguistically

simple. In this chapter, we first discuss three of popular KBQA benchmarks and

then elaborate our method to create a new KBQA dataset, FreebaseQA [19].

6.1 KBQA Benchmarks

6.1.1 WebQuestions

WebQuestions is introduced in [3], which contains 5,810 question-answer pairs.

The questions in this dataset are obtained by Google Suggest API and involve

human judgment to ensure these questions can be answered over Freebase. Since

their question generation procedure is completely independent from the Freebase,

questions in this dataset are more natural and sensible. Besides, the statistics also

show this dataset is very diverse lexically.
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6.1.2 WebQuestionsSP

WebQuestionsSP (WebQSP) [41] is another dataset from the family of WebQues-

tions, which enhances the WebQuestions with human-annotated semantic parses

and questions removal for those that are not answerable by using Freebase. Their

method results in 3,098 questions for training and 1,639 questions for validation.

Moreover, they empirically demonstrate that training with semantic parse labels

can lead to the improvement of KBQA system.

6.1.3 SimpleQuestions

SimpleQuestions [7] consists of a total of 108,442 questions written by human anno-

tators with corresponding facts extracted from Freebase. Compared to WebQues-

tions, this dataset has a larger scale but has obvious drawbacks. First, the gener-

ation of question is highly dependent on Freebase, which asks human annotators

to phrase the question according to given Freebase facts, albeit ambiguous and

unlikely to be asked in real life. This results in the appearance of many unnatu-

ral questions, such as ”what is the book e about” and ”what country is fearless

from”.6 Second, all questions are generated based on a single fact, which makes it

less challenging for modern KBQA system.

6In the second example, fearless refers to an album released in 1998.
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6.2 Constructing the FreebaseQA Dataset

In light of many shortcomings of existing KBQA benchmarks discussed above, we

build a new large-scale factoid QA dataset, FreebaseQA, which consists of 54,611

matches and 28,348 unique questions. Similar to SimpleQuestions, each question

in FreebaseQA is paired with answers and corresponding facts, which makes the

training and evaluation on KBQA subtasks, i.e. named entity recognition (NER),

entity linking (EL) and relation detection (RD), possible.

6.3 Preparation of Question-Answer Pairs

In FreebaseQA, rather than generate any new question-answer pairs, we have col-

lected pre-composed trivia-type factoid questions from various sources. Different

from SimpleQuestions and WebQSP, these questions are independently composed

for human contestants in trivia-like competitions. As a result, these questions are

more complicated linguistically and have a broader coverage for diverse topics than

almost all existing KBQA datasets.

Particularly, we prepare our QA pairs by choosing the TriviaQA [20] dataset

as the primary source with the supplement of questions collected from the trivia

websites, KnowQuiz (http://www.knowquiz.com), QuizBalls(http://www.quizba

-lls.com), and QuizZone (https://www.quiz-zone.co.uk). Duplicate entries are
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removed and the rest of them are merged into a single source. We then run two

named entity recognition (NER) systems: TAGME [12] and FOFE NER [37] on

each question for the extraction of possible subjects. Confidence thresholds of 0.2

and 0.9 are chosen for the respective systems to ensure the quantity and the quality

of the produced subjects.

6.4 Freebase Matching

The matching step starts with Freebase nodes corresponding to the produced sub-

jects. For each such node, we retrieve object nodes that directly connect to it,

and then check if the names or the alias of retrieved object nodes can match the

answer to the question. Once a match is found, Freebase ID of the subject node,

the predicate, and the Freebase ID of the object node are saved as a supporting

triple the represents the question-answer pair. Note that one question-answer pair

may have multiple triple matches.

However, this matching procedure is inefficient as it only goes unidirectionally,

i.e. from the subject nodes in the question to the answer nodes. For the optimiza-

tion, we adopt a two-way search strategy, which enables the matching procedure

to start from both subject and answer nodes. Then, the search concludes when

the same object node is found from both starting points of the search. By using

this search strategy, we have accelerated the Freebase matching algorithm by more
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Components Example 1 Example 2

Question [Answer] Which 18th century author What is the correct name of the

wrote Clarissa (or The character voiced by Angela

History of a Young Lady), Lansbury in Beauty and The Beast?

said to be the longest novel [Mrs Potts]

in the English language?

[Samuel Richardson]

Subject (Freebase ID) Clarissa (m.05s1st) Angela Lansbury (m.0161h5)

Predicate book.written-work.author film.actor.dubbing-performances

Secondary Predicate - film.dubbing-performance.character

Object/Answer (ID) Samuel Richardson (m.0hb27) Mrs Potts (m.02vw823)

Table 6.1: Two typical examples to illustrate the data format of all matches in

FreebaseQA.

than ten-fold.

6.5 Mediator Nodes

Freebase is curated to have special type of nodes called a mediator node. A mediator

is an intermediate node that connects a subject node to an object node through a

two-hop predicates. These mediator nodes do not have any name or alias associated

with them, but they are crucial when constructing the FreebaseQA dataset. In the

FreebaseQA dataset, we assume that all answers are reachable from the subject
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entities in the question through either paths of length 1 or paths of length 2 via

the mediator nodes. If the above two-way search reaches a mediator, our searcher

will go one step further to look through all nodes linked to this mediator to acquire

a secondary predicate so as to bridges the subject to the answer via the mediator

node. We provide an example to illustrate how the mediator mechanism works,

which is described as Example 2 in Table 6.1.

6.6 Human Annotation

To assure the high-quality supervision, the human verification of the collected

matches is involved. We hire 10 native English speakers for the annotation of

all the collected matches. Each human annotator is asked to rate the level of rele-

vancy of the triple matches to corresponding questions. We have defined three levels

of relevancy, “Completely Relevant”, “Somewhat Relevant” and “Not Relevant”.

Each individual only needs to make a one-out-of-three choice throughout the anno-

tation process, which make the human involvement in the creation of FreebaseQA

dataset very light. Unlike the creation of SimpleQuestions [7] and ComplexWe-

bQuestions [34] in which human annotators are asked to compose or rephrase the

questions, this method significantly reduce the cost of QA data collection. Fig. 6.1

illustrates the user interface for this data annotation procedure.

In order to facilitate the model training, the matches rated “Completely Rele-
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Figure 6.1: Human annotators use this website interface to label all automatically-

generated matches, rating either Completely Relevant, Partially Relevant, or Not

Relevant.

vant” by human annotators are randomly chosen to populate the training, evalu-

ation, and development sets of FreebaseQA, respectively. We also ensure that all

of such matches for a single question-answer pair can only exist in one of the sets.

Moreover, the matches rated Partially Relevant are kept as a separate set, which

may be useful for the model training as well.

A summary of the number of collected question-answer pairs along with the

number of matches from each source are provided in Table 6.2. We see that except

for KnowQuiz, the number of matches in Freebase roughly equals to the number

of questions in each source. Among all the generated matches, 54,611 matches in
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total are kept as true positives by human annotators.

Source Questions Matches

TriviaQA 98,973 99,523

KnowQuiz 9,996 2,389

QuizBalls 15,370 17,856

QuizZone 7,686 7,289

Total 132,025 127,057

Table 6.2: A summary of the number of question-answer pairs from each source

along with the number of matches generated from the above Freebase matching

procedure.

Since multiple Freebase matches may refer to the same collected question-answer

pair, we then merge the matches referring to same question-answer pair together,

which result in a new QA dataset consisted of 28k unique questions. We name this

new dataset as FreebaseQA and release it for public use. 7

7https://github.com/infinitecold/FreebaseQA
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6.7 Statistics of FreebaseQA

Table 6.3 and 6.4 provides some Statistics of FreebaseQA as well as that of two

popular QA datasets, SimpleQuestions and WebQSP. We can see that FreebaseQA

is larger than WebQSP in the number of unique questions while it is only a quarter

of SimpleQuestions in the number of unique questions.

Dataset train dev eval Total

SimpleQuestions 75,910 10,845 21,687 108,442

WebQSP 3,098 - 1,639 4,737

FreebaseQA 20,358 3,994 3,996 28,348

Table 6.3: Total numbers of unique questions found in each data set.

Dataset The Average # of Words Per Question

SimpleQuestions 7.65

WebQSP 6.62

FreebaseQA 13.35

Table 6.4: The average number of words per question on each data set.

Another important factor that should be taken into account for these datasets is
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Figure 6.2: A histogram showing the spread of the length of the questions in each

data set.

their linguistic sophistication. We use question length, i.e. the number of words, as

one of the metric to evaluate how linguistic sophisticated the questions are on each

dataset. From Table 6.4, we see that the average question length on FreebaseQA

is 13.81, about double the length for either dataset. We also present a histogram

to depict the spread of the length of the questions in each data set, which is shown

in Fig. 6.2.
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We provide three sample questions in Table 6.5 to prove that FreebaseQA is

more difficult. These three questions are asking for the same predicate, loca-

tion.partially contains. It is quite obvious that questions in FreebaseQA is not

only longer but also more diverse in language use. Besides, long questions are more

likely to contain entities (German, North Sea and Hamburg in the example ques-

tion) that does not directly connect to the answer. This may make entity linking

process more challenging since it is not trivial for entity linker to know the Czech

Republic is the topic entity instead of German or North sea or Hamburg.

52



Dataset SQ WQ FQ

Questions

Which river is What is the Which German

partially located rainforest in river flows 1159

in Belgium? Peru called? kilometres from the

Czech Republic

flowing into the

North Sea just

north of Hamburg?

Subject
Belgium Peru Czech Republic

(m.0154j) (m.016wzw) (m.01mjq)

Predicate
location.partially location.partially location.partially

contains contains contains

Secondary Predicate - - -

Object/Answer(ID) Sambre (m.03xhvv) Andes (m.0p2n) Elbe (m.0ddlt)

Table 6.5: Sample questions extracted from SimpleQuestions (SQ), WebQSP (WQ)

and FreebaseQA (FQ) respectively. The red text refers to topic entities that connect

to the answer, the blue text refers to other entities.
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7 Experiments

To evaluate the effectiveness of our proposed FOFE-net models, we have used two

popular KB-QA dataset, SimpleQuestions, WebQSP and our newly created dataset,

FreebaseQA, in our experiments. We compare our overall QA performance with

other systems reported in the published literature [40, 41, 42, 43, 26, 15, 33]. Mean-

while, we also investigate the performance of each FOFE-based module in the KB-

QA pipeline, i.e. entity linking and relation detection, and compare with other

results reported under the same experimental settings [42, 43, 29].

7.1 Datasets and Evaluation Metric

SimpleQuestions: The SimpleQuestions dataset [7] is a single-relation KB-QA

dataset provided by Facebook along with two extracted subsets of Freebase, i.e.

FB2M, and FB5M. Following previous works[7, 42, 43, 26, 15], we use FB2M as the

knowledge base and evaluate our system in terms of subject-relation pair accuracy

on this benchmark.
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WebQSP: WebQSP dataset is a small-scale KB-QA dataset that contains

single-relation and multi-relation questions [41]. Following previous works [41, 43],

we use entire Freebase for this dataset and choose true accuracy, i.e., a question

is considered answered correctly only if the predicted answer set is exactly same

as one of the answer sets, as the evaluation metric. We use the official evaluation

script to evaluate our system on this benchmark.

FreebaseQA: FreebaseQA dataset [19] is a large-scale dataset with 28K unique

open-domain factoid questions which collected from triviaQA dataset [20] and

other trivia websites (KnowQuiz : http://www.knowquiz.com, QuizBalls : http:

//www.quizballs.com, QuizZone : https://www.quiz-zone.co.uk). All of the

questions in this dataset have been matched to the Freebase for generating the

subject-predicate-object triples and verified by human annotators. We generate

a new extract of Freebase (including 182M triples, 16M unique entities) for this

dataset and choose true accuracy as the evaluation metric.8

7.2 Experimental Configurations

We use the same settings as that of [37] for the topic subject detection model.

For the entity linking and relation detecting models, our settings are described as

8The Freebase extract can be found in: https://www.dropbox.com/sh/dkg02j3uwehkt1j/

AADqofTAPRA7QpKkhPSW-CJva?dl=0
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below. Our hyperparameters are chosen empirically based on the performance of

the development sets.

Network structure: For the feedforward neural networks for entity linking,

we choose a structure of 4 fully-connected layers of 1024 nodes with ReLu activation

functions on all the datasets. For the network structure for the relation detection

model, we use a network of 4 fully-connected layers with ReLu activation function on

all the datasets. The number of node in each layer for SimpleQuestions, WebQSP,

FreebaseQA is 735, 256, 600 respectively.

Embedding Matrices: For the entity linker, we use case-insensitive pre-

trained word embeddings of 128 dimensions on all the datasets. For our relation

detector, we choose case-insensitive pre-trained word embeddings with 128 dimen-

sions on WebQSP and FreebaseQA, and case-insensitive pre-trained word embed-

dings with 256 dimensions on SimpleQuestions. Our vocabulary is constituted of

the top 100k frequent words from English gigaword [27].

Dropout Rate: For relation detection models, we have set the dropout rate

to 0.24, 0.05, 0.15 on SimpleQuestions, WebQSP and FreebaseQA datasets respec-

tively. For entity linking, we set the dropout rate to 0.15 for all the datasets.

Optimizer and Learning rate: To minimize the loss function of our mod-

els, we use the standard SGD (stochastic gradient descent) optimizer with a slow

schedule to decay the learning rate. The learning rate is initialized to be 0.01.
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Forgetting Factor: we have used α = 0.8 for relation detection on all datasets,

and α = 0.95, α = 0.95 and α = 0.8 for entity linking on SimpleQuestions, WebQSP

and FreebaseQA datasets respectively.

Training Data Preparation: To train our FOFE-net models for topic subject

discovery, entity linking and relation detection on each specific QA dataset, we only

use entire Freebase or its extract to generate negative samples based on this specific

QA dataset for model training.

Our proposed model is compared with the following baseline methods:

• STAGG [41]: Staged Query Graph Generation (STAGG) algorithm views a

KBQA task as a staged problem, so they adopt Structured Multiple Addi-

tive Regression Trees (S-Mart) model for entity linking and deep CNN for

identifying the relation.

• AMPCNN [42]: This method uses bidirectional LSTM with Conditional Ran-

dom Field (CRF) model for entity mention detection and Attentive MaxPool-

ing CNN (AMPCNN) for predicate-pattern matching.

• HR-BiLSTM [43]: Hierarchical Bidirectional LSTM (HR-BiLSTM) is focused

on relation detection task. The author combines this model with S-Mart and

AMPCNN entity linker for the WebQSP dataset and SimpleQuestions dataset

respectively.
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• BiLSTM-BiGRU [26]: Author builds a strong baseline by using Bidirectional

LSTM as an entity linker and Bidirectional GRU for relation detection.

• PESQA [15]: Pattern-revising Enhanced Simple Question Answering

(PESQA) utilizes BiLSTM-CRF model to detect the entity mention span and

sophisticated heuristics to improve the pattern extraction. LSTM is adopted

as a relation detector in their settings.

• GRAFT-Net [33]: This method builds a sub-graph of KB by running an

existing entity linker, S-Mart, on the question. The edges of such sub-graph

are weighted by the similarity of their corresponding relation vector to the

LSTM encoding of the question. The Personalized PageRank algorithm is

used to propagate the embeddings through the graph and the answers are

selected by doing binary classification on each candidate nodes.

7.3 Overall KB-QA Performance

In Table 7.1, we have listed the overall KB-QA performance of our models on two

datasets and compared with other stage-based models reported in the published

literature. Column 2 and column 3 list the models that they used for entity discov-

ery and linking (EDL) and relation detection (RD). We can see the previous works

usually combine various models together for the KB-QA task, while our work only
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Accuracy

Previous works EDL RD SQ WQ

STAGG [41] S-MART CNN - 63.9

AMPCNN [42] BiLSTM-CRF AMPCNN 76.4 -

HR-BiLSTM [43] BiLSTM-CRF/S-MART HR-BiLSTM 77.0 63.0

BiLSTM-BiGRU [26] BiLSTM BiGRU 75.1 -

PESQA [15] BiLSTM-CRF LSTM 80.2 -

GRAFT-Net [33] S-MART LSTM - 66.7

Our work FOFE-net FOFE-net 77.3 67.6

Table 7.1: Comparison of the overall KB-QA accuracy (in %) on the test sets of

SimpleQuestions (SQ) and WebQSP (WQ).

Accuracy

Models SQ WQ FQ

HR-BiLSTM [43] 77.0 63.0 -

FOFE-net 77.3 67.6 37.0

Table 7.2: Accuracy (in %) on the test (eval) sets of SimpleQuestions (SQ), We-

bQSP (WQ) and FreebaseQA (FQ).
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use FOFE-net throughout all the stages, which makes the pipeline easy to imple-

ment. Our FOFE-net also achieves very strong performance on the two examined

data sets. As shown, our FOFE-net based model is competitive with other CNN,

LSTM, regression tree based state-of-the-art model combinations on SimpleQues-

tions benchmark, and outperform GRAFT-Net [33] by 0.9% on WebQSP in terms

of true accuracy. These results prove the effectiveness of our proposed model and

suggest that the FOFE-net can be universally applied to other NLP tasks, such as

entity discovery and linking (EDL) and relation detection.

Hao et al. [15] report a fresh result on SimpleQuestions dataset that outperforms

other previous works as well as ours by a quite large margin (around 3%). Their

model is enhanced by a quite sophisticated rule-based pattern revising method that

pushes their performance from 77.8% to 80.2%. Compared to their model, we only

use a few heuristics and simple functions in combining models at different stages.

This simplicity may suffer from some disadvantages on performance while we believe

it can make the pipeline more straightforward and easier to adapt to other KB-QA

tasks.

Table 7.2 shows that our FOFE-net model achieves 37.0% in terms of accu-

racy on FreebaseQA dataset. This performance is much worse than that on other

datasets, which prove that our FreebaseQA dataset is more challenging than Sim-

pleQuestions and WebQSP.
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Top-K 1 10 20 50

AMPCNN [42] 72.7 86.9 88.4 90.2

HR-BiLSTM [43] 79.0 89.5 90.9 92.5

HTTED [29] 81.1 91.7 93.4 95.1

Our FOFE-net 82.2 92.5 93.6 94.7

(a) The accuracy (in %) comparison of various entity linking models on the test set

of SimpleQuestions in the number of candidates kept in the list.

Top-K 1 2 3 5

S-Mart [39] 88.0 93.3 94.7 96.0

Our FOFE-net 89.1 93.2 93.7 94.1

(b) The accuracy (in %) comparison of various entity linking models on the test set

of WebQSP in the number of candidates kept in the list.

Top-K 1 2 3 5 10 20 50

Our FOFE-net 52.4 70.7 79.6 85.7 89.3 90.8 92.0

(c) The accuracy (in %) of FOFE-net on the test set of FreebaseQA in the number

of candidates kept in the list.

Table 7.3: Entity Linking Result of FOFE-net on test (eval) set of SimpleQuestions,

WebQSP and FreebaseQA.
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Accuracy

Models SQ WQ FQ

AMPCNN [42] 91.3 - -

HR-BiLSTM [43] 93.3 82.53 -

Our FOFE-net 93.3 83.26 76.6

Table 7.4: Comparison of relation detection accuracy (in %) on the test sets of

SimpleQuestions (SQ), WebQSP (WQ) and FreebaseQA (FQ).

7.4 Entity Linking Results

To investigate the performance of FOFE-net in entity linking task, we have com-

pared it with three state-of-the-art entity linkers [42, 43, 29] on SimpleQuestions

and S-Mart [39] entity linker on WebQSP benchmark. From the results in Table

7.3a and Table 7.3b, we can see that our entity linker achieves a very competitive

result in this subtask and outperforms the Hierarchical Types constrained Topic

Entity Detection (HTTED) model in terms of top 1 accuracy.9

According to the results in Table 7.3a, 7.3b, and 7.3c, we can also see that entity

linking on FreebaseQA is more difficult than it is on WebQSP and SimpleQuestions.

To analyze the reason, we calculate the average ratio of the number of topic entity

9In sec. 5.2, we choose a large θ to prevent entity linker from being overwhelmed by a large
number of candidate entities, which affects the entity linking result when K goes large.
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Model Word-level Features Char-level Feature Accuracy

Our FOFE-net FOFE(Q)+TF-IDF(R) 3 83.26

FOFE(Q)+TF-IDF(R) 7 81.44

BOW(Q)+TF-IDF(R) 3 80.29

FOFE(Q)+BoW(R) 3 81.30

Table 7.5: The relation detection accuracy (in %) comparison of various features

combination of FOFE-net on the test set of WebQSP

mention candidates to the number of gold topic entity mentions for questions on test

(eval) set of three datasets. The results show that that ratio on SimpleQuestions,

WebQSP and FreebaseQA is 8.0, 4.4, 11.6 respectively, which have a linear positive

correlation with the average length of questions in these datasets. Same as we

discussed in Chapter 6, too many redundant matches in Freebase may confuse the

entity linker and worsen its performance.

7.5 Relation Detection Results

To investigate the FOFE-net performance on relation detection task, we have com-

pared it with the best relation detector reported in the published literature [42, 43]

on SimpleQuestions and WebQSP benchmark. As shown in Table 7.4, our FOFE-
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net based relation detector yields very competitive results on both dataset, which

ties HR-BiLSTM on SimpleQuestions and slightly outperform it on WebQSP by

0.73%.

From Table 7.4, we can also see that even the result our FOFE-net model

achieves on FreebaseQA is quite reasonable, the number is still worse than it is on

either WebQSP or SimpleQuestions dataset. This is another proof of the value of

our FreebaseQA dataset, since it poses a bigger challenge to the KBQA system.

To figure out what contributes more to the FOFE-net on relation detection,

we conduct an ablation test. Result is shown in Table 7.5. The best result was

achieved by using FOFE code of question, TF-IDF code of relation, and char-

level ngram as features. By removing the char-level feature, the result drops from

83.26% to 81.44%. This proves char-level feature is important on relation detection

because it can alleviate the zero-shot problem, i.e., a relation is unseen in the

training set but similar to the question in the surface form. By replacing FOFE

code of question with a sum of Bag-of-word (BoW), the performance drops by

around 3%. This proves FOFE successfully captures the useful ordinal information

in the question and improves the model’s performance on the relation detection

task. By replacing TF-IDF code of relation with a sum of Bag-of-word (BoW), the

performance drops by 1.96%, we believe it is because some relations share similar

lexicons, e.g. location.geocode.latitude and location.geocode.longitude, a sum of
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Bag-of-word (BoW) is hard to represent these relations distinctively. However, TF-

IDF can do it well by assigning a low value to the frequent words, i.e. location and

geocode, and high value to the infrequent words, i.e. latitude and longitude.
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8 Conclusion

In this chapter, we will give our conclusion of this thesis and discuss the potential

follow-up works.

8.1 Conclusion

FOFE, a simple fixed-size encoding method, has been successfully applied to many

NLP tasks. In this thesis, we have further extended this method to solve several

sub-tasks in the KB-QA pipeline, including topic subject discovery, entity link-

ing and relation detection. Our experimental results have shown that this simple

framework, FOFE-net, works well in all examined sub-tasks, and in turn push-

ing our overall KBQA system to achieve competitive results on popular KBQA

datasets.

Besides, we present a new data set, FreebaseQA, for open-domain factoid QA

over structured knowledge bases in this thesis. FreebaseQA is shown to be more

challenging than currently available KBQA datasets. Therefore, FreebaseQA may
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be a valuable resource for further investigation of more advanced KBQA system.

8.2 Future Works

There are several possible improvements, which could be done in the future. We

divide them into two directions:

Compositional Questions Currently FreebaseQA assumes that all questions can

be answered via one-hop from the topic entity. This assumption is somehow

too naive to test the machine as a human being is capable of answering the

question through multiple steps of reasoning. Many emergent reading com-

prehension tasks have already involved this type of question, which can be

one of the sources to extract more data for the expansion of our FreebaseQA

dataset.

Entity Linking Our entity linker extracts the topic entity from the question solely

based on the textual information of itself as well as that of its context. How-

ever, the interaction between the topic entity and other entities conveyed

in the question should be taken into account. Take the sample question in

Table 6.5 as an example, German, Hamburg and North Sea are assumed to

connect to the true topic entity, Czech Republic, on the Freebase. Then how

to leverage this as supportive information for entity linking will be left for

67



future exploration.
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