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Abstract— In this study, a laser additive manufacturing 

method, known as selective laser melting (SLM), was 

applied to produce cube blocks of 316L stainless steel. The 

microstructure and corrosion properties of the produced 

samples were analyzed using scanning electron microscopy, 

cyclic potentiodynamic polarization testing, and 

electrochemical impedance spectroscopy. The results were 

also compared with the properties of a conventional wrought 

316L stainless steel sample. The microstructural studies 

showed that the SLM-manufactured samples have a regular 

network of melt pools containing austenite grains along with 

elongated or equiaxed cellular sub-grains. The 

potentiodynamic polarization results depicted that the SLM 

fabricated samples had higher positive pitting potential and 

a wider passivation range than those of the wrought sample, 

corresponding to their better corrosion resistance. However, 

the SLM fabricated samples showed a weaker re-passivation 

property, which possibly is attributed to the presence of pre-

existing porosities in the structure of the SLM sample 

formed during the fabrication process. The EIS data also 

confirmed a larger capacitive arc for the SLM fabricated 

samples than its wrought counterpart, indicating a higher 

charge transfer impedance and a better corrosion resistance. 
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I. INTRODUCTION 

Nowadays, innovative and advanced 3-dimentional printing, 
also named additive manufacturing (AM), as a bottom-up 
method, is rapidly growing and has drawn many attentions 
from both academia and industry due to its capabilities in 
the production of near-net shaped components. Comparing 
with conventional manufacturing processes, such as casting 
or forming, this technology provides many advantages 
including fabrication of metallic parts with more complex 
shapes, less time from design stage to manufacturing, no 
need to post processing, and lower wastage precursors. In 
this technology, without the usage of specialized molds or 
tools, in a single step process, 3D components are fabricated 
through layer-wise addition of melted/sintered precursors 
powder on the substrate or previous layers, based on their 

digitally defined Computer Aided Design (CAD) data [1-6]. 
In recent years, various laser-based additive manufacturing 
methods for fabrication of metallic components have been 
developed, such as laser engineered net shaping (Lenz), 
direct metal deposition (DMD), laser solid forming (LSF), 
direct laser fabrication (DLF), laser metal deposition 
shaping (LMDS), direct metal laser sintering (DMLS), and 
selective laser melting (SLM) [1,5,7]. 

316L austenite stainless steel (316L SS) with excellent 
corrosion resistivity, decent mechanical properties, and good 
weldability is widely used for various applications in many 
industries, such as oil and gas, marine, and biomedical 
sectors. Currently, 316L components are mainly produced 
using conventional manufacturing methods, which do not 
allow for the production of complex shapes and therefore, 
final parts need to be welded or machined, consequently 
both fabrication time and cost increase. Additive 
manufacturing has emerged as an appropriate solution to 
resolve this issue. Nevertheless, the components built 
through these techniques have different microstructures and 
properties than those fabricated through conventional 
methods, which makes it crucial to study and research their 
as-printed properties [5,6,8]. In spite of existing 
comprehensive works on investigating various properties of 
SLM fabricated parts, there is very limited literature on 
corrosion related characteristics and electrochemical 
properties of AM components [9]. In the present study, the 
microstructure and corrosion performance of a 316L 
stainless steel (SS) produced through SLM technique were 
studied and the results were compared with a conventional 
wrought 316L SS. 

II. MATERIALS AND METHODS 

Several cube blocks of 316L SS with the edge length of 15 

mm were printed through SLM technique using a Renishaw 

AM 250 3D printer machine. The SLM processing 

parameters included powder layer thickness of 40 µm, laser 

power of 180 Watt, hatch distance of 0.08 mm, hatch offset 

of 0.18 mm, exposure time of 65 µs, and the bed 

temperature of 80°C. The precursor powder particle size for 

SLM was maximum 63 µm in diameter. 
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Table 1. Nominal chemical composition of the used wrought and SLM-316L SS (wt. %) 

Material C P Si Ni Mn S Cr Mo Fe 

Wrought 316L SS 0.017 0.032 0.540 10.090 1.570 0.025 16.890 2.040 Bal. 

SLM-316L SS  0.030 0.025 0.750 14.000 2.000 0.010 18.000 2.620 Bal. 

The chemical composition of SLM-316L SS and its wrought 

counterpart are presented in Table 1. To investigate the 

impact of the building direction, the SLM produced samples 

were cross sectioned both perpendicular and parallel to the 

building direction, provided the top and the side views, 

respectively. To study corrosion resistivity of the samples, 

Cyclic Potentiodynamic Polarization (CPP) and 

Electrochemical Impedance Spectroscopy (EIS) tests were 

carried out. Before the electrochemical testing, all samples 

were cold mounted into an epoxy resin to limit the exposed 

area of the sample to only one face, while a wire was 

connected to the back side of the sample through the resin, 

providing the electrical connection during the 

electrochemical tests. This was followed by standard 

grinding and polishing of the surface to a mirror-like surface 

finish. All the tests were performed using an IVIUM 

Potentiostat/Galvanostat instrument in a three electrodes cell 

system containing the sample as the working electrode, a 

platinum plate as the auxiliary electrode, and Ag/AgCl as 

the reference electrode. In all experiments, aerated 3.5 wt. % 

NaCl solution at room temperature (25±1 oC) was used as 

the electrolyte. Before every test, open circuit potential 

(OCP) was measured for 3600 s to ensure the samples 

reached to the stability. The CPP test was conducted at scan 

rate of 1 mV/s, starting from -0.2 V versus the OCP up to 

the vertex current of 10 mA, in which the scanning direction 

was then reversed. The EIS test was performed in an AC 

current with the amplitude perturbation of ±10 mV with 

respect to the OCP in a frequency range from 105 Hz to 10-2 

Hz in the 3.5 wt. % NaCl solution at 25 °C. For 

microstructural study, the polished samples were electro-

etched in 20% Nitric acid solution at the voltage of 1.7 V for 

15 s. 

III. RESULTS AND DISCUSSION 

Fig. 1 shows the microstructures of electro-etched wrought 

and SLM-316L samples. It can be seen that the SLM sample 

possesses a woven network of well-defined melt pools 

(Fig.1 a-d). This special structure has been resulted from the 

scanning action of the laser beam, where the long axis of the 

elliptical shaped melt pools corresponds to the direction of 

the laser scan in the SLM process (Fig. 1a-top view). Fig. 1d 

shows the cross-section of the printed sample across the 

plane parallel to the building direction (side view), revealing 

overlapped melt pools with semi-circular shapes. Clearly, 

the side view (Fig. 1d) contains higher density of the melt 

pool boundaries than the top view (Fig. 1a). At higher 

magnification, the austenite grains were appeared inside 

each melt pool and in each of the grains, elongated or 

equiaxed cellular sub-grains structure were revealed (Fig. 

1a, c). The size of the sub-grains is around 1 µm in 

diameter. These microstructural features are ascribed to 

extremely rapid solidification rate of the process, which in 

turn induces the elemental segregation and enrichment of 

sub-grain boundaries [7]. Trelewicz et al. [7] have shown 

that because of Mo and Cr segregation along the cell 

boundaries of SLM-316L, the corrosion characteristics of 

the intercellular regions are different, associated with rapid 

solidification and non-equilibrium nature of the process. 

Consequently, when the surface was electro-etched, the cell 

boundaries were not corroded as severe as the interior of the 

cells, resulting in unveiling the sub-grain structure. As 

expected, the microstructure of the wrought sample (Fig. 1e) 

contains annealed equiaxed grains along with recrystallized 

regions formed during annealing.  

The cyclic potentioadynamic polarization curves of the 

SLM (both top and side views) and wrought samples 

obtained in aerated 3.5 wt. % NaCl solution at room 

temperature are presented in Fig. 2. Electrochemical 

corrosion parameters including corrosion potential (ECorr), 

corrosion current (iCorr), pitting potential (Epit), defined as 

the inflection point in the anodic polarization curve, where 

the current density rapidly increases, and re-passivation 

potential (Erep), where the reverse scan intersects the forward 

scan, extracted from the CPP curves, are shown in Table 2. 

A combination of higher ECorr and lower iCorr corresponds to 

a better corrosion performance. Comparing the corrosion 

data reveals that the top side of the SLM-sample has the 

highest corrosion resistance. All samples exhibited a clear 

passive region. Similarly, the top surface of the SLM sample 

possessed the widest passive range with the highest Epit 

contributing to a better corrosion properties of the sample. 

Using Tafel equation and tangent lines slopes on the 

cathodic and anodic regions of the curves, corrosion rates of 

the samples were derived that were found to be consistent 

with the above-mentioned results. In all samples, sharp 

fluctuations in current density can be seen in passive region 

showing the pitting initiation, so called metastable pitting. In 

fact, metastable pitting represents the start, growth and re-

passivation of a micro-pit on the surface of the samples. 

However, when the critical value of the potential is reached, 

the micro-pit can be transformed to a stable pit and then the 

passive layer on the surface is permanently ruined [10]. 

Comparing the Erep of the samples, it is evidenced that SLM 

sample has weaker re-passivation property. 



 

 

 

 
Figure 1. The microstructure of 316L SS: top view of the AM fabricated 

sample (a-c), side view of the AM fabricated sample (d), wrought sample 

(e). 

 

Figure 2. Cyclic potentiodynamic polarization curves of the studied 

samples. 

No clear dependency so far has been reported between ECorr, 

iCorr, and Epit of additively manufactured products with 

porosity level of the sample [11]. However, it has been 

shown that the amount of Erep in additively manufactured 

products is dependent on their porosity level [11]. 

Therefore, the improved re-passivation behavior of the 

wrought sample can be justified if the porosity level of the 

sample is considered zero relative to the SLM sample 

containing numerous pre-existing porosities in its structure 

(see Fig. 1d). The SEM micrographs of the SLM samples 

after the CPP test are depicted in Fig. 3. It can be seen that 

there is no preferred position for pit formation on the surface 

and the specimen exhibits isolated corrosion pits. 

Additional experiment on the corrosion behavior of the 

samples were done by EIS tests to investigate the protective 

nature of the formed passive film on the 316L SS surface. 

The Nyquist plots in Fig. 4 depict a single semi-circle 

capacitive arc trend that corresponds to double layer and 

passive film formation on the samples’ surfaces. This 

indicates that the corrosion mechanism of all three samples 

were identical and typical of stainless steel material. The 

EIS data showed a larger capacitive arc, an indication of 

improved corrosion resistance, for the SLM samples (both 

top and side views) than that of the wrought 316L SS. It 

confirms the aforementioned CPP results of the corrosion 

properties. Comparing the results of the top and side views 

of the SLM sample reveals that the top view is covered by a 

more protective passive layer that can be correlated to the 

lower density of the melt pool boundaries on this face than 

that on the side view.  

IV. Conclusion 

In the present work, the corrosion properties of the selective 

laser melted 316L stainless steel and its wrought counterpart 

were studied. Microstructural analysis of the samples 

5µm 
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revealed that the SLM processed stainless steel contained 

very fine cellular sub-grain structure resulted from scanning 

action of the laser beam combined with rapid solidification 

of the melt pools, contributing to elemental segregation 

along the intercellular boundaries. Through electrochemical 

tests, it was found that SLM-316L SS has higher pitting 

resistance, lower corrosion rate, and more noble corrosion 

potential than those of the wrought sample. However, its re-

passivation potential was degraded, which was primarily 

attributed to the pre-existing porosities in its structure 

formed during the fabrication process. 

 

Table2. Corrosion characteristics of the studies samples 

Sample iCorr (µA/cm2) ECorr (V) iPitting (µA/cm2) EPitting (V) Corr. Rate (mm/y) ERep (V) 

Wrought SS 1.7957 -0.3 3.630 0.0922 0.01824 -0.2258 

SLM-SS-Top 0.1788 -0.1923 7.026 0.6542 0.002165 -0.2316 

SLM-SS-Side 0.1843 -0.2 2.723 0.3656 0.002059 -0.2412 

 

 

Figure 3. SEM micrograph of the AM sample after corrosion (side view). 

 

 

Figure 4. EIS measurement plots of the experimental samples. 
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