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Abstract—The main goal of this paper is, to suggest improved
higher order refined theory to the analysis of perfectly bonded
stack sandwich and composite laminates with usual type
lamination  configurations. The analysis incorporates

continuous flexural and in-plane displacements in the interface.

Furthermore, the transverse shear stress is continuous and also
constrained with the Lagrange multiplier technique by
introducing new fourteen unknown variables. The unknown
variables expressed in terms of interfacial strain energy;
assuming the interfacial strain energy is continuous throughout
the thickness of the laminate. To determine the newly
introduced flexural and in-plane unknowns’ variables, total
potential energy (TPE) is minimized using varational calculus.
The numerical results are compared with existing reliable
published papers. In general, the aforementioned approach is
sufficient enough to analyze sandwich and laminate structures
with the required accuracy.
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l. INTRODUCTION

Nowadays, light weight sandwich and composite
structures are widely used in the aeronautical/aerospace and
marine industries to gain superior safety, higher payload and
good fatigue resistance property. To achieve the above
appropriate properties, multilayered laminate structure should
requires advanced understanding of statics and dynamical
behavior of composite materials[1]. Likewise, sandwich and
composite structures are complicated in analysis and design
aspect; because some unforeseen failure modes like
delamination’s are considered [2-4].To overcome the
aforementioned challenges inter-laminar strain  energy
continuity assumption based refined modeling has suggested.
This approach gives limitless ways to design and optimize the
laminates in accordance with the applied external load.

In general, there is no exact mathematical assumption to
analyze sandwich and laminated composite plate with the
required accuracy. To plug in the gap, this paper play a vital
role by considering layer by layer refined theory analytical
approach with assumption of perfect bond between layers and
the interfacial strain energy continuity throughout the
thickness of the laminate.

The energy in the interfaces to estimate the mechanical
behavior of the laminate structures. The theory is implemented
on layer by layer technique; in which total potential energy of
each layer has minimized by Lagrange multiplier, in-plane and
flexural displacement using varaitional calculus. To maintain
the principle of continuous uniform deformation theory the
plies are bounded perfectly and the continuity conditions
constrained by the Lagrange multipliers to satisfy the
boundary conditions in terms of in-plane and flexural
displacements. Using the above approach, the in plane and
flexural stresses can be easily analyzed in each layer of the
lamina [5-7].

In general, we considered a refined composite and
sandwich plate theory that incorporates continuous strain
energy within the interfaces to calculate the mechanical
behavior of laminate structures. Our theory is implemented
using a layer-by-layer technique in which the total potential
energy of each layer is minimized via the Lagrange multiplier
to obtain in-plane and flexural displacements using variational
calculus. To maintain the principles behind the continuous
uniform deformation theory, the plies are perfectly bonded and
the continuity conditions are constrained by the Lagrange
multipliers to satisfy the governing equilibrium equation using
boundary conditions to determine the unknown variables. By
applying this approach, the flexural and in-plane stresses are
easily analyzed at each layer of the lamina. Further, these
formulations are calculated to yield easier plate configurations
in two dimensions.
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II. POTENTIAL ENERGY MINIMIZATION

In order to determine the natural boundary conditions
and governing equilibrium equations in flexural and in-plane
form, we can use minimization of total potential energy. In ord
er to analyze the above geometry of plate we have been made t
he following fundamental assumptions.(1) The laminate have
uniform thickness and symmetrical at the mid-plane; to simplif
y the governing equilibrium equations; (2)The core is compres
sible ;(3) The global axes does not coincide with the local axes
of symmetry; (4) The skin plies bonds to core perfectly; (5) Th
e core and skin layers are linear elastic (6) The face and core |
ayers are considered as 2D and 3D structures respectively; (7)
The plate assumed to be flat and naturally it has no curve.
Under this assumption, all odd polynomial superscript coeffici
ents become zero in the equilibrium equations. Therefore, the
nine governing equilibrium equations of the laminate can be se
parated into five flexural and four in-plane components. By

incorporating the constraints, the total potential energy
minimized as follows.
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The interfacial strain energy formulated as follows
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I11.  ANALYTICAL CLOSED FORM SOLUTIONS

The aim of analytical closed form solutions is, to
determine the unknown variables analytically. The unknown

variables can be obtained from the displacement and inter-
laminar strain energy continuity formulas. For this approach
the Lagrange, in-plane and flexural displacements equations
are expanded as Fourier series based on boundary conditions.
Considering a load:

q=Qg, sinax,sin £x, (3)

IV. RESULTS

Symmetric three layered simply supported square

composite and sandwich plate with height is equal to h =10t
be used. Applying various aspect ratios(S) the numerical
results of flexural displacement, inter-laminar shear stress and
in plane stress are shown in the Table-1 and 2.Table-1 2 and 3
shows that, the percentage error obtained from the suggested
approach is in a good agreement with exact elasticity
solution[8] and in conclusion while the error percentages
decreasing as the plate aspect ratio increase. For S, equal to 4,
10 and 20, the new approach gives a better estimate of in-
plane stress and inter-laminar shear stress than other
approaches for the given aspect ratios. Furthermore, for very
thin ply (a/h=50 and above) the suggested theory contributes a
better accuracy for in-plane stresses as compared to other
classical models.

The results in the tables report are obtained by the
following non-dimensional formulas:

_ (100*h’E,, ) (100*h°E,,
U, =u, T Uy = U, T )

h2
0y =0p [E]
_ 100*h°E,, | _ h? ) _ h?
U; = U, [Tﬂj 101y =0y [q?] T =T [q?j’ (4)

layer-3 ] %

tc
Core

layer-1

Figure-1. Sandwich plate
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Table:1 Error Percentage of maximum stress in non-

dimensional form(0/core/0) SUMMARY

S source o b P . )
— 1 2 12 3 In this paper, we explored and analyzed the accuracy of a
+ =+ + . . -
2 | E as,tl"e:\':,y[s] ;22:6655933 ggggg ;g:ggg? 8:1285 layer-by-layer refined theory model with flexural and in-plane
Error 0.2375 0.05103  0.04277  0.07133 displacement continuity in a laminate composite and sandwich
4 Elasticity[8] ~ #1.512 +0.2533  +0.1481 0.1072 ; O ;
Now oo possana 301479 0.1075 pla'te'. The |mprpved higher ordgr theory was applied .for
Error 0.1257 0.063166  0.02057 0.2789 efficient execution of the refined theory. Inter-laminar
10 | Elasticityls] ~ £1.152  £0.1099  £0.0707  0.0527 continuity equations were also constrained using Lagrange
New +1153 010976  +0.07059 0.0529 o ) ) ) -
Error 0.0868 0.03639  0.15558 0.3795 multipliers by introducing new variables. The existing and
20 | Elasticity[8] ~ +1.110 +0.070 +0.0511 0.0361 newly introduced variables were then solved through a total
New #1112 #0.070017  +0.05118 0.0364 . s . .
Error 0.01801 0.0142 01524 0528 potential energy minimization technique. Here, Navier-type
50 Elasticity[8] +1.099 +0.0569 +0.0446 0.0306 analytical closed-form solutions were adopted for analyses.
New +1.0991  +0.056905 +0.04463  0.03064 L : s
Error 0,018 0.00878 0.0826 0615 Con3|der|ng_ simply supported bound..alry cond!tlons, we
100 | Elasticity[8] +1.098 +0.0550 +0.0437 0.0297 analyzed higher and lower-aspect ratio sandwich plates.
New +1.099 400551  +0.0438  0.02982 Further, the sandwich plate was subjected to sinusoidal
Error 0.015 0.0059 0.076 0.7403

distributed loading on the top face. Given this, we calculated
all flexural displacements, in-plane displacements, in-plane
stress, and interfacial shear stresses and then compared them

Table-2:Error percentage for orthotropic face sandwich with exact values presented in previous studies. Further, we

plate

S source — — — - performed some parametric tests, with results showing that the
u S .
u %2 g 2 aspect ratio increases the accuracy of the analysis also
2| Kant-2[5] +40665 0531  +05184  39.0218 mcreases for the above approach. W(_e al§o found that each
New +4.0668 05340 05171  39.042 displacement or stress component requires its own plate model
Error 0.0074 0.0073 0.2505  0.0518 i i i i i
4 Kant2[5] 17931 402128 405702 144949 (which differs according to the change in outputs) t.o obtain
New £17704 +02138  +0.2725 14.471 exact results. Further, the accuracy of the solution also
Error 5.79 5.46 476 6.0985 depends on thickness coordinate x, . The key advantage of our
10 | Kant-2[5] +0.8344 +0.1527  +0.1352  3.8899 _ N )
New +0.8345 +0.1533 +0.1354  3.8925 proposed approach is the ability to obtain remarkably accurate
Error 0.0046 0.052 0.1479  0.0668 ; ;
100 | Kant-2[5] 06647 400642 00699 10806 results To_r all ra_nges of aspect and modular ratios. Further, if n
New +0.6648 0.0641  +0.0700  1.0827 eeded, it is possible to enhance our proposed approach by deco
Error 0015 01558 00121  0.628 mposing the lower-aspect ratio layer into a number of higher a

spect ratio layers.
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