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Abstract—In this paper, one-dimensional coupled heat and 
mass transfer is studied using the finite volume method. The 
simulated results are compared with the experimental results 
and show good agreements with the experimental data. Soil 
from Northern Victoria County (silt loam, a medium soil) is 
compacted in a cylinder with 5 heat pulse probes to measure 
the thermal and moisture responses. Moisture content at field 
capacity is used for the soil. 
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I.  INTRODUCTION  

Global warming is currently causing serious issues around 
the world such as typhoons [1], more diseases [2] for humans, 
and habitat damages [3]. Consequently, many governments 
around the globe have devoted heavy efforts in reducing global 
warming which results from heavy consumption of energies 
(mostly fossil fuels) [3, 4]. Renewable energies have been 
encouraged to be used as they are more environmental friendly 
than the fossil fuels. A highly abundant and attractive 
renewable energy is the solar radiation from the Sun. 

In order to store the thermal energy from solar radiation, 
thermal energy storages (TESs) are needed. A common and 
widely used TES form is the ground thermal energy storage 
(GTES). Storing at higher temperatures in the GTESs can 
better utilize the GTES. Consequently, it is better to store the 
solar heat in high-temperature (above 40oC) ground because 
the heat can be readily retrieved for space heating without the 
use of a heat pump. A first-in-the-world example of successful 
application of using high temperature GTES is the Drake 
Landing Solar Community in Okotos, Alberta, Canada. The 
GTES can provide 90% space heating needs for the 
Community. The ground in Okotos contains mostly clay which 
has low moisture diffusivity, so the GTES in the Drake 
Landing Solar Community can store and retain most of the heat 
in the summer. However, not everywhere in the world has such 
type of soil. Therefore, understanding how heat and moisture 
transfer in various soil types at high temperatures is beneficial 
to the design of high-temperature GTES. 

II. GOVERNING EQUATIONS 

Modeling transport phenomena in the ground has been of 
great interests. The pioneers in modeling include Philip and de 
Vries [5] and Luikov [6]. Governing equations were developed 
based on the soil’s hydraulic conductivity, temperature 
gradients, moisture potential, and volumetric moisture content. 
Heat conduction incorporating latent heat transfer by water 
vapor diffusion was considered and generalized with moisture 
and latent heat storage in vapor phase and sensible heat transfer 
by liquid migration in the soil. 

Another early work was done by Demsey [7] who studied 
the coupled heat and moisture transfer and applied the finite 
difference method to numerically study the one-dimensional 
moisture in Lakeland fine sand (AASHO Classification A-3) 
under isothermal conditions (maximum 25oC). Comparisons 
with laboratory experimental data showed good agreements 
between the numerical work and the lab data. 

Rees et al. [8] and Janssen et al. [9] coupled heat and mass 
transfer equations to study how the moisture content affects the 
heat losses in underground structures. The researchers found 
that the coupled calculations give significantly higher heat 
losses than the calculations from simple heat and moisture 
transfer. In addition, the latent heat transfer by thermal vapor 
diffusion has a notable influence on the foundation heat loss. 

Fully coupled heat and mass transfer equations can be 
formulated based on physical processes that occur in the soil 
can be described as follow [10]: 
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and more definitions can be found in [10]. 

Eq. 1a is the moisture transfer equation in the soil and Eq. 
1b is the energy transfer equation in the soil. The terms on the 
left hand sides correspond to the stored mass and energy due 
to the temporal change in matric potential and temperature. 
The first two terms on right hand sides account for the mass 
transfer (Eq. 1a) and heat transfer (Eq. 1b) respectively due to 
moisture and temperature gradients. The last term in Eq. 1a 
represents the mass transfer by gravitational effects while that 
in Eq. 1b is the sensible heat transfer by bulk liquid flow. The 
second term in square brackets of DTv is significant for ψ < -
10-4 m while the third term is needed for ψ < -10-5 m [10]. 

As indicated by Deru [10], the last term on the right hand 
side (RHS) of Eq. 1b is significant for only a short period after 
a large influx of moisture such as rainfall or irrigation. In the 
present experiment, there is no moisture addition into the soil 
during experimentation; therefore, the last term on the RHS of 
Eq. 1b is ignored. 

III. EXPERIMENTAL SETUP 

The soil used is called Victoria soil (coded NB2 [11]) from 
Northern Victoria County in New Brunswick, Canada. It is a 
silt loam with solid density of 2540 kg/m3, 16.6% clay and 
83.4% silt (by mass). The moist soil was prepared and packed 
carefully into a soil column. 

In order to verify the governing equations (i.e., Eq. 1), a 
soil cell assembly is made as shown in Fig. 1. The heat pulse 
method is used to obtain soil temperature response due to a 
heat pulse, and a computer program developed by Knight et al. 
[11] is used to post-process the temperature response data in 
order to determine soil thermal properties and moisture 
content.  

 
Figure 1. Soil cell assembly. 

Fig. 2 shows a close-up view of a heat pulse probe. For 
ease of viewing the inner soil column in Fig. 1, the outer 
stainless-steel tube and lids are shown transparently. Water 
hose connectors are connected to thermally-controlled water 
baths (which provide the heating and cooling to the aluminum 
plates) through water hoses. The soil column is a stainless-
steel tube (63.5 mm ID, 76.2 mm OD, 147.9 mm length) that 
has five slots for inserting five heat pulse probes. The 
heating/cooling plates are made of aluminum. The soil cell 
assembly is connected to a data acquisition system that 
collects experimental data.  

 

 
Figure 2. An in-house made heat pulse probe. 

IV. NUMERICAL SOLUTION 

A. One-dimensional Discretization Formulations – Finite 
Volume Method 

The one-dimensional finite volume formulations are 
developed according to the discretization schme shown in Fig. 
3 with the following assumptions: 

- The height of the soil column is h (distance from node A to 
node B) 

- There are n control volumes (CVs) along h 
- Each CV has length Δz of h/n 
- The distance from node A to node 1 is the same as that 

from n to B and is equal to Δz /2 
- There are n + 2 nodes  
- The temperatures at nodes A and B are known at all times 

 
Figure 3. One-dimensional discretization scheme. 

Discretizing Eq. 1 for nodes 2 to n – 1 gives: 

1654321 GTaaTaaTaa SSNNPP    (3a) 

2654321 GTbbTbbTbb SSNNPP    (3b) 

where
531 aaCa m   , 

642 aaCa mT  , 
531 bbCb T  
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where the superscript o means the value at previous time step, P 
means the centroid of the current CV being considered, N 
means the north of the CV’s centroid, S means the south of the 
CV’s centroid. 

The temperatures at nodes A and B (TA and TB) are 
measured in the experiment and therefore they are used as 
prescribed boundary temperatures. The moisture balance at 
nodes A and B, for impermeable surfaces due to the stainless-
steel lids, is [10]: 
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As a result of Eq. 4, the matric potential gradients at nodes 
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Applying Eq. 5a, the discretized governing equations at 
node 1 are: 

      
16524231211 GTaaTaaTaa AA    (6a) 

      
26524231211 GTbbTbbTbb AA     (6b) 

where  
531 aaCa m  
,   

642 aaCa mT  ,   
531 bbCb T  
,     

642 bbCb TT  ,  
 

 
223 mD

z

t
a 





 ,   
 

 
224 mTD

z

t
a





 ,      05 a ,      

 
    1126

2
amTD

z

t
a 





 , 

 
 

223 TD
z

t
b 





 , 
 

 
224 effk

z

t
b





 ,        

05 b ,     
 

    1126

2
beffk

z

t
b 





 ,     

1
















v

mmT
a DK

DD



 ,  

1
















v

TmT
b DK

DD



 , 
1K  means K at node 1, and  

 
1xxD  and  

1effk  mean 
xxD  and 

effk  of CV 1 respectively 

      

     

 



































 































 

























 



o

mT

booo

A

ooooo

mT

a

ooo

mT

oo

m

D

K
KK

z

t
TaTaa

D

K
KK

z

t

TaaCaCG

1

1262423

1

12

164131

1

11















, 

           
     

   o

A

ooooo

ooo

TT

oo

T

TbTbb

TbbCbCG

62423

164132

1

11
























 














. 

Applying Eq. 5b, the discretized governing equations at 
node n are: 
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where nK  means K at node n, and  
nxxD  and  

neffk  mean 

xxD  and effk  of CV n respectively. 

The initial conditions are as follows: 

1. The temperatures at all nodes are at room temperature 
(~23oC) 

2. The relative humidity (φ) of dry soil is the same as that 
of the lab room (~23%) 

3. The initial moisture content in wet soil can be used to 
calculate the initial matric potential using van 
Genuchten’s method [12]. 

B. Solution Method 

Identify applicable sponsor/s here. (sponsors)
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For faster convergence, the partial elimination algorithm 
(PEA) [13] is applied to Eqs. 3, 6, and 7 as follow: 

                   
321 GaTaa FFPP         (8a) 

                     
421 GTaTbb F

T
FPP        (8b) 

where 
SNFF aaa  53  ,  

SN TaTaGG 6413   

    
SNF

T
F TbTbTa 53  ,   

SN bbGG  6424   

The expressions for ai and bi, G1 and G2 can be derived 
from Eqs. 3, 6, and 7 for the nodes. 

Multiplying Eq. 8a with b2 and Eq. 8b with a2 and 
isolating P : 

                            PFFPP Baa     (9) 

where  
2

1221

b

baba
aP


   and   4

2

2
3 GTa

b

a
GB F

T
FP    

Similarly, multiplying Eq. 8a with b1 and Eq. 8b with a1 

and isolating PT : 

                           T
PF

T
FP

T
P BTbTa      (10) 

where  
1

1221

a

baba
aT

P


   and   3

1

1
4 Ga

a

b
GB FF

T
P     

Since the convection and diffusion coefficients are highly 
non-linear, an iterative approach is adopted from Moukalled 
and Saleh [13]: 

1. Assume reasonable values for ψ  guess  and T  guessT  

2. Calculate the physical properties of soil using guess  

and 
guessT  

3. Calculate the coefficients in Eqs. 3a, 6a, and 7a using 

guess  and 
guessT  

4. Obtain the coefficients in Eq. 9 using guess  and guessT  

5. Using tridiagonal matrix algorithm (TDMA), solve for 
nodal ψ values  i  where i means current iteration and 

11 
  i

P
T

P
T

P
i
F

T
F

i
P

T

P

guess

guess

guess

guess

guess

guess

guess

guess

aBa
a 


















 

6. Calculate the coefficients in Eqs. 3b, 6b, and 7b using 
i  and guessT  

7. Calculate the coefficients in Eq. 10 using i  and 
guessT  

8. Using TDMA, solve for nodal T values  iT  where i 
means current iteration and 

11 
  i

P
T

T
P

T

T
P

i
F

T

T
F

i
P

T

T
P TaBTaT

a

guess

i

guess

i

guess

i

guess

i


 



  

9. Compare i  and iT  with the corresponding 
guess  and 

guessT  as: 

        
guess

guess
i







       and    
guess

guess
i

T T

TT 
     

10. If 001.0  and 001.0T , proceed to the next 

time step. Otherwise, repeat steps 1 – 9 with 
i

guess    and i
guess TT   and i in steps 5 – 9 

becomes i + 1 and i – 1 becomes i 

C. Matlab Code Validation 

The computer code is programmed in Matlab. First, it is 
necessary to perform a grid sensitivity study for deciding the 
optimum amount of nodes for subsequent numerical study. 
Figure 4 shows a graph of the percentage root-mean-square 
differences of temperature (T) and moisture content ( ) vs. 
number of nodes at time of 30 minutes with a simulation time-
step of 1 s in the case of heating top of the soil column to 90C 
and cooling the bottom to 10C. The percentage root-mean-
square difference (% RMS Difference) is defined as: 

  



















nodesfewern

i nodesfewerinodesfever

nodesfewerinodesmorei

n

DifferenceRMS

1

2

,

,,132

%100

%   (11) 

where Ξi represents Ti or θi at node i and nfewer nodes is the total 
number of finite volumes or nodes in the case of fewer nodes. 
The successive increase of nodes is by tripling, i.e. more nodes 
= 3(fewer nodes), so that the same height points between the 
case of fewer nodes and the case of more nodes can be 
compared directly, i.e., node number of 2+3(i – 1) in the case 
of more nodes has the same position as node number i in the 
case of fewer nodes. 

From Fig. 4, it can be seen that, as the number of nodes 
increases, the successive percentage RMS differences of T and 
 become smaller, which means that the values of T and θ are 
converging toward an infinite-node solution. Due to limited 
computing power, memory and time constraint, it is decided to 
use 4437 finite volumes for the rest of the numerical study. For 
this number of finite volumes, the percentage RMS differences 
of T and  between 4000 and 6000 nodes are less than 1.1%, 
and the size of each finite volume is about 33.3 µm. 

 
Figure 4. % RMS differences of T and  vs. number of nodes. 

The next step is to validate the Matlab code by simulating 
two cases, namely: only heat transfer and only moisture 
transfer. For the first case, a soil column (assumed to be semi-
infinite) of height of 2 m, density of 2,000 kg/m3, thermal 
conductivity of 2.51 W/m·K, heat capacity of 837.2 J/kg·K, 
porosity of 0.50, and initial uniform temperature 293 K are 
used. The top surface temperature of the soil is suddenly 
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raised to 310 K (or 37°C) at time t = 0 and held constant. The 
numerical simulation is used to predict the temperature 
distribution in the soil after 1, 4, 9, 16, and 25 hours. The 
simulation time-step used is 1 s. The results obtained are 
compared to the analytical solution of transient pure 
conduction in a semi-infinite wall [A64], assuming the heat 
flows in the vertical direction only. The derivation of the 
analytical solution assumes constant thermal properties, so 
Case 1 is limited to small temperature difference of T = 310 
– 293 = 17 K to reduce the effect of temperature on the 
thermal properties. 

Fig. 5 shows the temperature distributions of the semi-
infinite soil column at different times from the numerical 
model (i.e., Eq. 1) and the analytical solution. As shown in 
Fig. 5, the numerical solution from the Matlab code matches 
with the analytical solution. 

 
Figure 5. Temperature distributions of semi-infinite soil 
column at different times from numerical and analytical 

solutions. 

For the second case, a column (0.4 m high, assumed semi-
infinite) of Yolo light clay soil is used to study the moisture 
behavior in the soil under isothermal condition at the room 
temperature. The soil initially is not fully saturated and 
subjected to an inflow of liquid water at the top surface such 
that the matric potential at the top surface (i.e., z = 40 cm) is 
always constant at 0 or -25 cm. The matric potential at the 
bottom surface (i.e., z = 0 cm) is always held constant at –600 
cm. Neglecting the vapor and thermal effects, the governing 
equation in one dimension can be written as [15]: 

                 
z

K

z
K

zt 





























 

  (12) 

The initial and boundary conditions are:  ψ(0 s, z) = –6 m,   
ψ(t, 0.40 m) = 0 m or  –0.25 m,  and ψ(t, 0 m) = –6 m. 

Fig. 6 shows the numerical and analytical (from Philip 
[15]) solutions of moisture distributions at four different times 
of 103 s (16.7 mins), 104 s (2.8 hrs), 4104 s (11.1 hrs) and 105 
s (27.8 hrs) after moisture is first added at the top surface of 
the soil. As shown in the figure, when the top surface is fully 
saturated (i.e., ψ is zero) or has a pool of water (i.e., ψ is 
positive), more moisture can infiltrate into deeper places of the 
soil column. In addition, the water slowly infiltrates through 
the soil as clay is a fine soil which has low moisture 
permeability. Again, the numerical solution from the Matlab 
code matches very well with the analytical solution. After the 
two validations of the code, it is ready to simulate an actual 
experimental case and compare the results. 

  

 
Figure 6. Moisture distributions in Yolo light clay soil column 
from numerical and analytical solutions for (a) ψ(t, 40 cm) = 

0 cm and (b) ψ(t ,40 cm) = -25 cm. 

V. VERIFICATION OF EQ. 1 

A comparison between numerical and experimental results 
is made for a case of vertical soil column with the top of the 
soil cell heated to 90C and the bottom cooled to 10C. The 
initial saturation ratio (SR) of the soil is 0.50 throughout the 
soil column. Each heat pulse probe can measure two positions 
of soil temperatures and moisture contents. Therefore, there 
are a total of ten positions from top to bottom of the soil 
column for the five probes; they are named N1 to N10, 
respectively. Fig. 7 shows the % Errors (in terms of T and θ) 
for all ten positions over the experiment period of 18 hours. 
The % Error is defined as follows: 

       
 experiment

experimentEq

orT

orTorT
Error


 

 1.%100%      (13) 

From the figure, it can be seen that the theoretical model 
(Eq. 1) over-predicts the moisture contents by as much as 
6.2% at N1 but under-predicts the temperatures by as much as 
2.1% at N1. When the moisture content is over-predicted, the 
temperature becomes lower as there is more moisture around 
the region, resulting in higher thermal capacitance of the soil. 
The top near N1 is the most critical region because it 
experiences high temperatures and thermal gradients 

  
 

Figure 7. Percentage error of T and θ (from Eq. 1) for NB2 
soil (SR  0.50) and vertically heated from top.  

VI. CONCLUSION 

The theoretical governing equations of fully coupled heat 
and mass transfer in soils by Deru [10] was used to study how 
the moisture and thermal responses behaved in a soil column 
containing a silt loam (NB2 soil) with initial moisture at field 
capacity, i.e. a saturation ratio of 0.5, and temperature settings 
of 90C and 10C at top and bottom plates. The one-
dimensional discretization formulations by the finite volume 

(a) 
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method were developed to numerically solve the governing 
equations. The numerical analysis was programmed in Matlab 
and verified to agree well with the existing literature. Running 
the Matlab code, the results showed good comparisons with 
the experimental results. The highest percent error appeared to 
be 6.2%. This is an encouraging preliminary result. Further 
experimental and numerical studies with different soils, 
temperature settings and initial moisture contents will be 
conducted to fully understand the coupled heat and moisture 
transfer in soils for high-temperature GTES. 

 
NOMENCLATURE 

C  Volumetric heat capacity (J/m3·K) 
Cp  Specific heat capacity (J/kg·K) 
CTv, CTm Thermal vapor and total moisture  capacitances (K-1) 
CψT, CTT Matric (J/m4) and thermal (J/m3·K) volumetric heat 

capacitances 
Cψv, Cψm Matric vapor and total moisture capacitance terms (m-1) 
Dva Molecular diffusivity of water vapor in air (m2/s) 
DT  Thermal diffusivity (m2/s) 
Dθ  Isothermal moisture diffusivity (m2/s) 
DTv, DTm Thermal vapor and total moisture diffusivities (m2/s·K) 
Dψv, Dψm Matric vapor and total moisture diffusivities (m2/s) 
DψT  Matric potential heat diffusivity (W/m2) 
f(), f  Correction and interpolation factors 
g  Gravitational acceleration (= 9.804 m/s2) 
hfg  Latent heat of vaporization (J/kg) 
K  Hydraulic conductivity of soil (m/s) 
k  Thermal conductivity (W/m·K) 
m   Mass flux (kg/m2·s) 
P  Total pressure in pore spaces (Pa) 
Pv  Partial vapor pressure in pore spaces (Pa) 
r  Radius (m) 
Rw Specific gas constant for water vapor (= 461.5 J/kg·K) 
S  Surface area (m2) 
t  Time (s) 
u  Bulk velocity (m/s) 
T  Temperature (K or C) 
z  Vertical distance (m) 
 
Greek symbols 

   Del operator (m-1) 
ε  Convergence criteria 
η Soil porosity (m3 of pore space per m3 of soil) 
κ  Permeability of soil (m2) 
μ  Dynamic viscosity (kg/m·s) 
ϖ  Relaxation factor of iteration 
ψ Matric liquid (capillary) potential (pressure head) (m) 
Φ Total soil matric potential for liquid flow (m) 
ρ  Density (kg/m3) 
σwa  Surface tension of water in air (N/m) 
τ Empirical constant used in hydraulic conductivity 

equation 
θ Volumetric moisture content/fraction (m3 of water per 

m3 of soil) 
Θ  Degree of saturation 
φ  Relative humidity 

   Temperature gradient ratio     TT p  /  

Ξ Dummy variable that represents another/other 
variable(s) 

 
Subscripts 
a  Air 
c  Critical 

CV  Pertaining to control volume 
eff  Effective 
l  Liquid 
p  Pore 
ref  Reference 
s  Solid 
sat  Saturation 
sv  Saturated vapor 
T  Pertaining to thermal conditions 
tot  Total 
ψ  Pertaining to moisture conditions 
v  Vapor 
w  Water 
 
Superscripts 
T  Transpose 
i  Current iteration 
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