Textile Waste & The 3R’s:
Textile waste strategy recommendations for the City of Toronto

by
Nicole Thompson

supervised by
Ellie Perkins

A Major Paper
Submitted to the Faculty of Environmental Studies
in partial fulfillment of the requirements for the degree of Master in Environmental Studies
York University, Toronto, Ontario, Canada

July 27th, 2017
Abstract

The outsourcing of manufacturing to low-wage countries in concert with the rise of fast fashion business models has resulted in an abundance of low-cost and low-quality textile products. This has led to increased consumption and shortened product lifecycles, the consequence of which is increased textile waste. This waste stream generates environmental, economic, and social consequences in countries of both production and consumption. As such, it is necessary for municipalities, like the City of Toronto, to adopt a comprehensive textile recycling strategy to divert these materials from landfills. The 3R Waste Hierarchy provides a framework on which to model such a strategy. Strategies based on the 3R components of Reduce, Reuse, and Recycle help to minimize the amount of waste disposed while conserving natural resources and extracting the maximum value out of already produced products. The first component, Reduce, focuses on changing consumption habits to prevent the creation of waste, and in the context of textile waste aim to move consumers away from the purchase of fast fashion products. The fast fashion retail model is premised on introducing new products to stores as quickly as possible. In this model, clothing quickly becomes outdated or falls apart, leading to disposal. The second component, Reuse, focuses on using an item again and prolonging its life. Textiles can be sold or donated to second-hand retailers to be used by a new owner. Thrift stores comprise the largest portion of the second-hand market. They accept donations of used clothing, which are then sold in their retail stores or to for-profit recyclers to generate revenue. Lack of information is a major barrier to the success of reuse strategies. Consumers generally do not understand what can be donated, choosing instead to throw away items they thought donation centres would not accept. The final component, Recycle, involves recovering the valuable raw materials from a product and utilizing these as inputs into a new product. Mechanical and chemical textile recycling processes are used to break down textiles and produce new fibres. Depending on the process, the resulting fibres are either of lower or same quality as the original fibres, and can be utilized for a variety of applications. For each 3R component, strategies to address textile waste are identified and evaluated according to their potential efficiency, effectiveness, and feasibility. Textile handling and collection strategies are also analyzed using the same criteria. Accordingly, to address its textile waste, the City of Toronto is recommended to introduce voluntary reduction strategies, such as textile collection boxes and green procurement, and education campaigns. Over time the City should move towards full compliance using by-laws mandating building diversion levels and landfill bans. By implementing such a strategy, the City of Toronto can address the impact of its textile waste, and serve as a model for other Canadian municipalities looking to do the same.
Foreword

My MES Major Paper relates to numerous aspects of my MES Plan of Study ("POS"). My major paper, *Textile Waste & The 3R’s: Textile waste strategy recommendations for the City of Toronto*, examines the issue of textile waste and outlines an appropriate strategy the City of Toronto can adopt to address this waste stream. My POS is focused on business strategies for recycling and waste management, concentrating on waste management practices, the life-cycle of products, and waste reduction implementation strategies.

Specifically, my major paper relates to the following learning objectives. In Component 1, which focuses on waste management practices and considers how industry can operate in open- and closed-loop systems, my paper addresses learning objectives 2 and 3. In Component 2, which looks at the life-cycle of products, my paper addresses learning objective 2. Finally, in Component 3, which considers how to successfully implement waste management strategies, my paper addresses learning objectives 2 and 3.
Table of Contents

Abstract ii
Foreword iii
Table of Contents iv
List of Figures vi
List of Tables vii

Chapter One: Overview
The Textile Industry 1
Issues with Textile Waste 3
The 3R Waste Hierarchy 7

Chapter Two: Toronto & Textile Waste

Chapter Three: Reduce
The Fast Fashion Model 15
The Emergence of Fast Fashion 16
Opportunities for Reduce 19

Chapter Four: Reuse
The Second-Hand Market 23
Vintage Retailers 23
Consignment Retailers 24
Thrift Stores 24
Barriers to Reuse 26
Lack of Information & Convenience 26
Export of used clothing 26
Opportunities for Reuse 28

Chapter Five: Recycle
Collection & Handling of Textiles 32
Curbside Pickup 33
Collection Boxes 33
Extended Producer Responsibility 34
Processing of Textiles 35
Barriers to Recycling 36
Loss of Quality 36
Blended Materials & Sorting Requirements 37
Investment & Demand 37
Opportunities for Recycling 38

Chapter Six: Recommendations
Additional Considerations 45
Economic Considerations 45
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Policy Considerations</td>
<td>47</td>
</tr>
<tr>
<td>Overall Recommendations</td>
<td>48</td>
</tr>
<tr>
<td>Appendix A</td>
<td>52</td>
</tr>
<tr>
<td>Appendix B</td>
<td>53</td>
</tr>
<tr>
<td>References Cited</td>
<td>54</td>
</tr>
</tbody>
</table>
List of Figures

Figure 1: 3R Waste Hierarchy & Textiles 8
Figure 2: What Happens After Textiles Are Sold 11
Figure 3: Legal vs. Illegal Textile Collection Box 12
Figure 4: Global Fibre Consumption vs. Canadian Household Spending on Apparel 16
Figure 5: Fast Fashion Retailers 17
Figure 6: Prices at H&M and Forever 21 18
Figure 7: Textile Waste Generation & Municipal Spending on Waste Management 46
List of Tables

Table 1: Comparison of Hourly Labour Cost in Textile Industry .. 2
Table 2: Overview of Textile Production Processes & Associated Issues 3
Table 3: Current Textile Waste Strategies Worldwide ... 13
Table 4: Comparison of Textile Waste Strategies ... 40
Table 5: Comparison of Textile Collection & Handling Strategies 43
Table 6: Comparison of Service Providers .. 44
Table 7: Ten-Year Textile Strategy Timeline ... 50
Chapter One
Overview

The textile industry is a massive global manufacturing industry, valued at $842 billion USD¹, and producing an ever-increasing amount of new clothing, shoes, bedding, towels, uniforms, and other products to satisfy consumer demand. The rise of fast fashion, a business model focused on bringing new products to market as quickly as possible², and rapidly changing consumer preferences, has encouraged increased consumption among consumers. At the same time, clothing’s use period has become shorter. Fast fashion garments typically are worn only ten times before they begin falling apart³, and much of the time, consumers discard items after only a couple wears⁴.

As a result of increased consumption, shortened lifecycles, and a shift to synthetic fibres, which do not decompose post-disposal, textile waste has emerged as a prominent issue. This waste stream generates environmental, economic, and social consequences in the countries both of production and of consumption. This paper examines the implications of textile waste, how it should be handled, and how this issue relates to the City of Toronto (“The City”) and other Canadian municipalities.

The Textile Industry

The global textile and apparel industry accounts for 2% of the world’s Gross Domestic Product (“GDP”) and employs upwards of 57 million people worldwide⁵. While 25 years ago, developed countries in Europe and North America dominated textile and apparel production and supply, globalization and the search for lower production costs have resulted in a market shift towards Asia, primarily China⁶. In Canada, domestic production of finished manufactured textiles decreased by 29% between 1992 and 2015⁷. Over this same period, textiles imports increased by 75%⁸. Accordingly, domestic market share of clothes made in Canada dropped to 4.8% in 2015⁹, down from 40% in 2004¹⁰.

In 2005, the phase out of the Multi-Fibre Arrangement was completed, dismantling previous barriers to yarn, fabric, and clothing trade¹¹. The Multi-Fibre Arrangement, introduced in 1974, imposed quotas on developing countries that exported textiles and apparel to developed

³ Cynthia Goudeau, “Ready to Tear? A Study on Fashion and Consumer Disposal Behavior” (PhD diss., Oklahoma State University, 2014).
countries, in an attempt to protect textile industries in developed nations12. Following the break-up of the arrangement producers in developed countries shifted more of their production to developing countries characterized by low wages13, such as China, India, and Bangladesh. As labour constitutes 20-40\% of the cost of garment production14, offshoring production presented producers from developed countries with opportunities to lower production costs in this labour-intensive industry. As a result, China has dominated the global textile and apparel export market for over a decade, with countries like Bangladesh, Vietnam, and India capturing an increasing portion of these expanding export markets15. Table 1 provides a comparison of textile sector wages among apparel exporting and importing countries.

Table 1: Comparison of Hourly Labour Cost in Textile Industry16

<table>
<thead>
<tr>
<th>Country</th>
<th>Hourly Labour Cost (in US$/Hour)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bangladesh</td>
<td>$0.62</td>
</tr>
<tr>
<td>Vietnam</td>
<td>$0.74</td>
</tr>
<tr>
<td>Indonesia</td>
<td>$0.95</td>
</tr>
<tr>
<td>India</td>
<td>$1.12</td>
</tr>
<tr>
<td>China</td>
<td>$2.65</td>
</tr>
<tr>
<td>United States</td>
<td>$17.71</td>
</tr>
<tr>
<td>Germany</td>
<td>$30.03</td>
</tr>
<tr>
<td>France</td>
<td>$31.61</td>
</tr>
</tbody>
</table>

The textile and apparel industries are expected to continue to grow into the future. The global textile market, valued at $842.7 billion USD in 2016, is predicted to reach approximately $1,004.6 billion USD by 2021, with an average annual growth rate of 3.6\%. Additionally, the global apparel retail industry’s value is forecasted to grow 5.7\% annually between 2015 and 2020, increasing from $1,254.1 billion USD in 2015 to approximately $1,652.7 USD by 202017. Rising population, disposable income, and urbanization, especially in emerging economies like China, India, and Mexico, all drive world demand for textile and apparel products18. Furthermore, consumption focused business models, like the fast fashion model, encourage increased expenditure on low-cost, low-quality clothing, which further stimulates demand as well as a high turnover of product. Along with escalating production and consumption, there has been a corresponding increase in the environmental and social harms associated with the textile industry.

12 Supra at note 6.

13 Supra at note 11.

14 Cline, Overdressed, 42.

15 Supra at note 8.

17 Supra at note 1.

Issues with Textile Waste

Textile waste is created at both the pre-consumer and post-consumer stages. Pre-consumer waste includes the by-products of the textile industry, whereas post-consumer waste includes any clothing or household textiles that are no longer wanted or needed\(^\text{19}\). While most textile waste can be recycled in some way, a large portion ends up discarded in landfills. In the United States the volume of post-consumer textile waste increased by 40% between 1999 and 2009; however, the textile waste diversion rate only increased by 2% over the same period. This means growing amounts of textile waste end up in landfills\(^\text{20}\). Disposal of textile waste via landfills raises a myriad of environmental, economic, and social issues which occur at both the production level and the post-consumption level. These are discussed in more detail below.

Disposing of textiles via landfills creates further demand for raw materials and more production to create new products to replace those which were thrown away. This leads to the continuation of unsustainable production practices in the textile industry, which are outlined in Table 2.

Table 2: Overview of Textile Production Processes & Associated Issues\(^\text{21}\)

<table>
<thead>
<tr>
<th>Step</th>
<th>Associated Issues</th>
<th>Prominent Examples</th>
</tr>
</thead>
</table>
| Fibre Production: The cultivation or production of fibres. Includes plant-based, animal-based, and synthetic fibres. | **Plant-Based Fibres:** Cotton, the most widely used natural fibre, is highly water and pesticide dependent, and requires considerable amounts of land to be diverted from other potential land or crop use.
Animal-Based Fibres: These fibres, such as wool, camel hair, and cashmere, require large parcels of land to be used for animal grazing, leading to increased soil salinity and loss of biodiversity\(^\text{22}\). Animal agriculture also consumes large amounts of water and utilizes pesticides and insecticides to prevent disease and stimulate higher yields, which can pollute waterways\(^\text{23}\). Animal-based fibres also raise issues around animal rights, with many allegations of animal abuse in the industry.
Synthetic Fibres: These man-made fibres are energy intensive and produced using petroleum, a non-renewable resource. Additionally, the production of plant, animal, and synthetic fibres all require energy use, which result in greenhouse gas (“GHG”) production. | 1. **Conditions in the Aral Sea**
Because of large-scale water withdrawal for irrigation of cotton producing land, the water levels of the Aral Sea are less than 10% of what they were 50 years ago. This has led to collapse of surrounding communities and fisheries, extinction of native fish species, and surface salination of former lake area\(^\text{24}\).
2. **Pesticide Use**
Cotton is extremely chemically dependent, resulting in 25 to 77 million cases of acute and chronic pesticide poisoning in agricultural workers and children each year\(^\text{25}\). |

| **Yarn & Fabric Production:** | During these processes, numerous chemicals are added to fibres and yarn to increase strength and reduce friction. These chemicals can be potentially hazardous.
GHG emissions are also produced during both stages. |
| **Textile Treatment:** | During this stage, fabrics are treated with a variety of potentially hazardous chemicals and dyestuffs to achieve different colours, prints, and finishes. These processes produce wastewater, which is then released into local waterways, leading to water degradation. Chemicals found in discharged wastewater are highly toxic to aquatic life and bio-accumulate in fish.
Given the nature of waterways, the environmental risk posed by wastewater is not confined to the immediate area, as wastewater discharged into rivers may eventually flow into the sea, and then continue to spread around the globe.
GHG emissions are also produced during these stages of production. |
| **Garment Construction:** | As garment construction is a labour-intensive process, much of this work has been offshored to low-wage countries, raising human rights issues. In the textile industries in countries like Bangladesh, Vietnam, and Indonesia wages before tax and including overtime provide workers with less than one-third of the income required for a living wage. |

Sources

26 *Supra* at note 23.
33 *Supra* at note 23.
Workers endure ‘sweatshop-like’ conditions, with long hours and compulsory overtime in unsafe and hazardous working conditions. Workers have limited protections available to them, and are threatened with non-renewal of their contracts if they engage in union activities, turn down overtime, or raise complaints.

This stage of production also produces textile waste, as approximately 15% of fabric intended for garment construction ends up on the cutting room floor and is discarded. GHG emissions are also produced during these stages of production.

Transport:
This includes transport of materials through all stages of production and transport of finished product to end market.

As evidenced above, the production processes of textiles and garments involve numerous steps, and each of these steps does not necessarily occur in the same area, or even the same country. As such, transport does not only occur at the end of the production process to take products to their final markets for retail, but also throughout the entire production process. Each movement within the textile supply chain results in GHG emissions.

1. Import Transportation Costs
Over two pounds of carbon dioxide ("CO₂") equivalent emissions are generated when transporting a single t-shirt from Xinjiang, China to Los Angeles. Considering 98% of clothing bought in the United States is imported, transportation generates a significant amount of GHGs.

Sources:
“Cleaning up the Fashion Industry,” Institute of Public & Environmental Affairs, April 2012.
“Impact of Fashion,” Reformation.

Another concern related to the disposal of textile waste is the physical presence of such waste in landfills. Despite high recyclability, it is estimated that textile waste comprises five to ten percent of materials in Canadian landfills, and as noted above, the volume of textile waste is rising rapidly, increasing by nearly 40% between 1999 and 2009. Each Toronto household is estimated to throw away 18 kilograms of textiles each year. In addition to the negative and

37 Ibid.
39 Supra at note 20.
social consequences discussed previously, improper disposal also fails to capture the potential reuse and recycling value that remains in these materials. The impacts of these discarded textiles differ depending on their makeup. Specifically, there is a distinction between natural and synthetic fibres.

Natural fibres biodegrade over time; however, issues arise when these materials decompose in anaerobic conditions, like those found in landfills. Decomposition in these environments produces both landfill gasses and acid leachate. Landfill gasses are comprised of GHGs, including CO\(_2\) and methane, as well as hydrogen and various sulfides. Furthermore, as textiles decompose, the various chemicals, dyes, and other compounds they have been treated with seep into the soil, creating acid leachate. In both these cases, gasses and leachate can continue to be produced long after the items have been discarded and the landfills are closed. Consequently, landfills require ongoing management, even after they have been closed. The City of Toronto continues to care for 160 closed landfill sites, costing the City considerable money and resources. Additionally, it is difficult to contain these gasses and leachate in the immediate area of the landfill. Thus, the surrounding air quality may become compromised and groundwater contaminated.

Synthetic fibres, on the other hand, do not decompose. This means when synthetic fibres are discarded, they permanently occupy space within the landfill. This raises a significant issue when landfill capacity limitations are considered. Currently, the Toronto owned Green Lane Landfill, purchased in 2007, has an estimated remaining site life of 10.52 years, if current diversion rates remain constant. Once the landfill reaches capacity, the City will be required to find a new landfill location, which raises socio-economic issues of siting and imposes high costs on the municipality. Residents tend to resist development of new landfills in their neighbourhoods, citing odour, unattractiveness, perceived health impacts, and depression of property values of surrounding residential areas. Consequently, waste facilities tend to be disproportionately located in minority and low-income areas, where communities lack both access to information about the health and economic risks associated with landfills, and the resources to protest and block development.

Establishing comprehensive textile recycling programs can aid in diverting textile waste from landfills. This, in turn, helps mitigate the environmental, social, and economic concerns arising during the pre-production and post-consumption stages.

41 Supra at note 21.
44 Supra at note 21.
46 Supra at note 21.
48 Supra at note 21.
The 3R Waste Hierarchy

A strategy for addressing and combatting the increasing problems of textile waste is to develop programs that incorporate the 3R Waste Hierarchy. The 3R strategy helps minimize the amount of waste being disposed of while conserving natural resources and extracting the maximum value out of already produced products. The components of the 3R strategy - Reduce, Reuse and Recycle - are ordered according to priority. The hierarchy can be utilized as a management tool to guide allocation of resources and policy formation.

“Reduce” challenges our current consumption driven culture, encouraging us to be mindful in our consumption through buying less, and in turn throwing away less. Since some level of consumption is always necessary, “Reuse” involves using an item again and again in its original state. The item can either be repeatedly used for the same purpose, or it can be repurposed for something new, for example, worn out clothing can be reused as cleaning rags. Likewise, the product can be reused by the initial owner or by someone who has purchased it second-hand. The last step of the hierarchy is to “Recycle”. This involves recovering raw materials either through physical or chemical processes, and turning these inputs into new products.

Some scholars propose a 4R strategy, which includes “Repair” as one of the components, but for the purpose of this paper “Repair” strategies will be discussed in relation to the “Reduce” stage.

The 3R Waste Hierarchy grew in popularity during the late 20th and early 21st centuries as increasing concern about global environmental issues and the depletion of natural resources facilitated a shift in waste management policies. Historically, waste management policies were focused on environmentally conscious waste treatment to avoid pollution at the local level. However, the emergence of large scale issues, like climate change, has resulted in more integrated policies motivated by sustainability and curbing waste generation. The 3R strategy is integrated in the United Nation’s Sustainable Development Goals. For example, the target of Goal 12 is to ensure sustainable consumption and production patterns by aiming to substantially reduce waste generation through prevention, reduction, recycling, and reuse by 2030.

Numerous countries and cities around the world, including Canada and the City of Toronto, also incorporate and encourage 3R principles as part of their waste management strategies.
A 3R strategy generates both economic and environmental benefits. As waste management is one of the costliest public services, reducing the volume of waste by either preventing its generation or diverting it to recycling facilities can substantially decrease these costs\(^6\). Additionally, through reuse and recycling, the maximal amount of value can be extracted from a product. In turn, these strategies conserve precious resources and limit the amount of unnecessary production, thereby limiting harmful by-products. As well, since waste management and GHG emissions are strongly correlated\(^6\), 3R strategies can aid in GHG reduction, which is already a major goal for many cities. Reducing waste while promoting recycling reduces GHG emissions through reduction in energy utilization and waste incineration, and prevents methane gas generation in landfills\(^6\).

The 3R principles can be extended to address textile waste and serve as a basis for textile recycling programs. As the 3R strategy is well-known and intuitive, a textile recycling program based on this concept will be easy for individuals to understand and use. Figure 1 illustrates the 3R Waste Hierarchy and options to address textile waste using “Reduce, Reuse, and Recycle” strategies. These specific strategies are discussed in greater detail in Chapters 3, 4, and 5.

Figure 1: 3R Waste Hierarchy & Textiles

![Diagram of 3R Waste Hierarchy & Textiles]

Given the size of the global textile industry, which is continuing to grow with the support of constant consumer demand, steps need to be taken to address the growth of textile waste. The disposal of textile waste produces local environmental and economic problems through landfiling and enables the continuation of harmful production processes. By adopting a comprehensive textile waste strategy that incorporates the 3R principles, cities can address local waste related issues while reaping economic gains. This also encourages residents to break the cycle of consumption and disposal that accepts environmentally and socially destructive

\(^6\) Supra at note 51.

\(^6\) Ibid.
practices in producing countries. The City of Toronto’s experience with waste management and the challenges and opportunities with regards to textile waste are discussed in detail in the next chapter.
Chapter Two
Toronto & Textile Waste

Toronto, the capital of Ontario, is one of Canada’s largest and most diverse cities, and manages one of North America’s largest municipal solid waste (“MSW”) management operations. Currently solid waste management services (“SWMS”) in Toronto collect waste and recycling curbside and accept materials at transfer stations, drop-off depots, and at Community Environment Days. This accumulated 483,000 tonnes of blue bin recycling and green bin organics and 524,000 tonnes of garbage in 2014. Overall, the City handles waste coming from residential sources, including single family residences and residences above commercial units, as well as approximately two-thirds of the City’s multi-residential units. Additionally, the City is also responsible for waste coming from small commercial establishments, government divisions, charities, institutions, religions institutions, elementary and secondary schools, and it accepts private industrial, commercial, and institutional waste at transfer stations and landfills. All other waste is managed by the private sector, who do not need to adhere to the City’s collection and diversion by-laws. The overall cost for the City to deliver its MSW services is around $378 million a year. This system is primarily funded through user and tipping fees, which accounts for 74% of funds generated. The City also receives funds as part of Extended Producer Responsibility (“EPR”) systems, like the Blue Bin program which is partially funded by paper and packaging industry stewards. Under an EPR program, producers are responsible for their products over the entirety of their lifecycle, including the disposal stage. Legislated EPR programs are mandatory for producers and have been used to manage a variety of materials, including electronic equipment, batteries, ozone-depleting substances, and used tires.

When it comes to textiles, Toronto currently advises residents to donate their unwanted textiles to non-profit organizations or bring them to City sponsored Community Environment Days. If neither of those options is possible, residents are then instructed to throw textiles in the garbage. The City discourages residents from placing textiles in recycling bins as the material can become caught in sorting machines, which can damage equipment and cause injuries. The City previously piloted a curb-side textile recycling pickup program in Etobicoke in the mid 1990s’s; however, the program was dropped due to high operating costs and problems with textiles becoming wet and devaluing the loads.
Textiles and clothing items are also collected through Toronto charities. Commonly this is done through drop off at collection boxes or charity locations; however, some charities, like Diabetes Canada and the Ontario Federation for Cerebral Palsy, will pick up donations from resident’s homes. These organizations generate their revenue by selling collected items to charity-affiliated for-profit thrift stores like Value Village. Textiles and clothing items donated to charities are sorted and pieces with high resale potential, about 20% of the items, are sold in the charities’ shops\(^\text{73}\). Due to space and labour constraints, not all items received can be kept by the organizations, and the remaining 80% is sold to second-hand textile recyclers\(^\text{74}\). In both these cases, revenue is generated for the organization, which is used to fund their charitable activities. Figure 2 outlines what happens to the textiles once they have been sold to second-hand recyclers.

Figure 2: What Happens After Textiles Are Sold\(^\text{75}\)

![Chart showing the fate of textiles after sale](chart.png)

The majority of the textiles, 45%, are classified as wearable and exported as second-hand clothing to developing and low-income countries. The rest of the textiles are classified as unwearable; 30% of these are re-purposed as industrial rags and cloths, 20% are broken down into fibre using either mechanical or chemical recycling methods, and the final 5% is unusable and ends up as waste\(^\text{76}\).

Several issues arise with Toronto’s current textile waste strategy. While the City provides locations where residents can drop off textiles and clothing for donation, there are only a limited

\(^{74}\) Ibid.

\(^{75}\) *Ibid.*

\(^{76}\) *Ibid.*
number of places on this list77. Given that research has shown that 64\% of people do not want to drive more than five miles to drop off reusable clothing78, the apparent lack of locations for donation, and the distance to reach a location, may result in people opting to trash their textiles as the City also suggests. Clothing drop boxes, which appear mainly in parking lots, offer alternative locations to take textiles, yet the City does not advertise this as an option or provide a list of drop box locations, despite providing permits for 594 such boxes79. As controversy has arisen around these drop boxes, with numerous illegitimate boxes operated by for-profit clothing exporters popping up around the City80, the City’s failure to mention these boxes as a donation option may lead residents to doubt their authenticity. Figure 3 shows a photo of a legal, permitted collection box (left) and an illegal box (right).

\textbf{Figure 3: Legal vs. Illegal Textile Collection Box}81

The City’s website also advises residents to donate items “in good condition82”; however, as most textiles are recyclable in some way, even items in poorer condition should still be donated. The City’s message further adds to the confusion around textile recycling, with consumers feeling they should only donate items that are valuable and intact, resulting in a 15\% textile diversion rate, with the rest being landfilled83. Furthermore, the City’s current strategy only targets residential textiles, while overlooking textile waste generated by institutional sources such as hospitals, schools, and government buildings, which can all produce considerable amounts of waste, particularly in facilities where uniforms are required. Finally, the City does

77 “ReUseIt,” City of Toronto, accessed from http://www1.toronto.ca/wps/portal/contentonly?vgnextoid=46d433112b02410VgnVCM10000071d60f89RCRD

79 “Clothing Drop-Box Locations,” City of Toronto, November 2016, accessed from http://www1.toronto.ca/wps/portal/contentonly?vgnextoid=6b48c17be9337510VgnVCM10000071d60f89RCRD

81 Nicole Thompson, \textit{Textile Collection Boxes}, 2017.

82 \textit{Supra} at note 70.

not address carpet waste, which accounts for 4% of landfill waste in Canada. Again, the City of Toronto advises residents to put unwanted carpets in the garbage, despite these materials being recyclable. Innovative companies, like Interface, can covert reclaimed carpets into new carpet tiles and divert materials from landfills.

Both the City of Toronto and the province of Ontario have recognized the implications of textiles in the waste stream and have committed to addressing this issue in their long-term waste strategies, specifically Toronto’s Waste Strategy and Ontario’s Bill 151, Waste-Free Ontario Act. Toronto’s Waste Strategy aims to achieve a 70% residential waste diversion rate between 2016 and 2066 by emphasizing 3R activities, including better promotion and facilitation of the reduction and reuse of textiles. According to the City, strategies such as developing a textile diversion awareness campaign, providing support for reuse events, and establishing mobile and permanent drop-off centers, have the potential to divert up to 15,000 tonnes of textile waste from landfills over a ten-year period. At the provincial level, Bill 151, Waste-Free Ontario Act plans to move the province towards a circular economy, primarily through the transition to a full Extended Producer Responsibility framework. Textiles and clothing have been identified as materials that may fall under this system, where the producers or first importers are financially responsible for dealing with waste, in the future.

Various cities and countries worldwide have recognized the issues associated with textile waste and have begun acting to manage this waste stream. These programs provide models that Toronto can emulate when implementing its own textile waste management strategy. Table 3 provides an overview of textile waste strategies implemented nationally and internationally and where they fall in the 3R Waste Hierarchy.

Table 3: Current Textile Waste Strategies Worldwide

<table>
<thead>
<tr>
<th>Location</th>
<th>Description</th>
<th>3R Waste Hierarchy</th>
</tr>
</thead>
<tbody>
<tr>
<td>United Kingdom</td>
<td>Love Your Clothes Campaign – awareness campaign that promotes better consumer habits and provides options for unwanted clothes</td>
<td>Reduce, Reuse, Recycle</td>
</tr>
<tr>
<td>San Francisco, CA</td>
<td>Collection bins through partnership with Goodwill</td>
<td>Reuse, Recycle</td>
</tr>
<tr>
<td>Markham, ON</td>
<td>Collection bins through partnership with The Salvation Army</td>
<td>Reuse, Recycle</td>
</tr>
</tbody>
</table>

86 Supra at note 45.
87 Ibid.
88 Ibid.
90 “About,” Love Your Clothes, accessed from http://loveyourclothes.org.uk/about
92 Supra at note 83.
<table>
<thead>
<tr>
<th>Location</th>
<th>Waste Management Strategy</th>
<th>Recycle/Reuse</th>
</tr>
</thead>
<tbody>
<tr>
<td>New York City, NY</td>
<td>Collection bins through partnership with Housing Works, curbside collection partnership with Goodwill, collection bins at farmers markets</td>
<td>Reuse, Recycle</td>
</tr>
<tr>
<td>Colchester, N.S.</td>
<td>Curbside pick-up of textiles</td>
<td>Recycle</td>
</tr>
<tr>
<td>France</td>
<td>EPR system set up for clothing, linen, and footwear</td>
<td>Recycle</td>
</tr>
<tr>
<td>Weymouth, MA</td>
<td>Clothing collection through public schools</td>
<td>Recycle</td>
</tr>
</tbody>
</table>

Sources:

3 “Market Players,” *ECO-TLC.*

The strategies listed in Table 3, as well as the textile waste strategies currently proposed by the City of Toronto, are discussed in further detail in the following chapters. Through the implementation of a comprehensive textile waste strategy that incorporates all three aspects of the 3R Waste Hierarchy, Toronto can address and decrease the amount of textile waste the City produces each year. Furthermore, following the examples set by other cities and countries, and learning from their successes and failures, will increase the likelihood of program success in the City and help alleviate implementation issues.

Chapter Three
Reduce

The first principle in the 3R Waste Hierarchy is Reduce. This component focuses on changing our consumption habits to prevent the creation of waste. By encouraging consumers to be mindful of their purchases, and to question whether all purchases are needed, this strategy avoids the accumulation of unnecessary and unused items that would eventually go into the waste stream. However, a significant obstacle to reducing textile waste is the widespread adoption of the fast fashion business model by apparel retailers and consumers.

The Fast Fashion Model

The fast fashion model is a retail strategy premised on supplying trendy products to retail stores as quickly as possible. Moving away from traditional fashion retail methods, which are characterized by seasonal fashion trends, fast fashion retailers constantly put out new inventory throughout the year. In addition to the ever-incoming selection of new merchandise, fast fashion is known for low prices, continually changing assortment, fashionable styles, and lower quality.

Unlike for technology, where innovation results in improvements to products, innovation in the fashion results in arbitrary changes in style, creating a new ‘must-have’ trend. This issue is exacerbated by social media. Social media has aided fast fashion since new styles are put on display, which drives consumers to emulate trends. Fast fashion retailers provide consumers with an inexpensive way to be fashionable, and because retailers are on top of new and emerging trends by offering continually incoming product, consumers can use these retailers to keep up with changing trends.

As a result, consumers are buying more apparel at lower prices. As Figure 4 illustrates, the global demand for fibre has been increasing steadily; however, the percentage of household expenditure on apparel items in relation to total consumption spending has been decreasing. This suggests that while households are spending less overall on clothing, they are buying more clothing items than before. This is a direct consequence of fast fashion models. This is a global trend, with more than 80 billion clothing items purchased worldwide every year, an increase of 400% from twenty years ago.

97 Cline, Overdressed, 96.
98 Cline, Overdressed, 111.
The consequence of increased clothing consumption is that many pieces of clothing will either quickly go out of style, be discarded, or fall apart, resulting in more textile waste.

The Emergence of Fast Fashion

Traditionally, fashion retailers followed six month cycles, producing a fall/winter collection and a spring/summer collection. Consumers in the early 1980’s generally were less aware of changing trends. As such, retailers could forecast several seasons in advance.104

104 Supra at note 3.
However, due to socio-cultural changes and social media105, consumers have become more knowledgeable about current fashion trends, more style-orientated106, and have begun to demand current, on-trend items. This demand became more pronounced in the 2000’s with increasing access to the internet. Access to the internet enabled consumers to watch fashion shows, read apparel blogs, and see images of street-style and celebrities, exposing them to the fashion industry from which many were previously excluded107.

At the same time, outsourcing, as a result of globalization, resulted in long supply chains, with different manufacturing steps occurring in different countries. This led to long lead times, the time between placing an order and receiving it, and required apparel collections to be decided upon more than a year before items would arrive in stores108. Despite efforts to predict what would be popular once styles arrived in stores, traditional fashion retailers are often inaccurate, meaning pre-season forecast errors can be as high as 50\%109. As a result, products sit on shelves longer and are subject to constant sales and markdowns to sell unwanted stock110.

To overcome these obstacles, the fast fashion business model focuses on quick response strategies, which shorten the time between production and distribution. Fast fashion retailers institute flexible supply chains, establishing both long-standing and short-term supplier relationships111. To ensure this model works, fast fashion companies rely on a constant exchange of information between retail locations, factories, and corporate headquarters about what is currently selling in stores and what trends are emerging112. As a result, forecast accuracy can be as high as 95\%, with a 95\% sell-through rate113. Utilizing these quick response techniques, fast fashion retailers have new products in their stores in a matter of weeks. Zara, considered the first fast fashion retailer, can design, produce, and deliver new garments to stores within a two-week time frame. For Forever 21, this process takes six weeks, and for H&M, this process takes eight weeks114.

\textbf{Figure 5: Fast Fashion Retailers}115

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fast_fashionRetailers.png}
\end{figure}

106 Supra at note 3.
107 Supra at note 3.
108 Cline, \textit{Overdressed}, 97.
110 Ibid.
111 Ibid.
112 Cline, \textit{Overdressed}, 98.
113 Supra at note 109.
114 Cline, \textit{Overdressed}, 98-99.
The fast fashion model is profitable, despite low clothing prices. Fast fashion models profit because they encourage a high volume of purchasing from consumers. Short product lifecycles and limited availability are used to achieve this continued consumption. Product lifecycles are the time from introduction of the product in retail locations until its decline, either due to the product selling out or the style falling out of fashion. Product lifecycles have become increasingly shorter with the emergence of fast fashion, with the product lifecycle of fast fashion apparel products being understood as one month or less. Additionally, retailers produce relatively small batches of each style, which ensures there is always something new in stores and encourages consumers to frequently revisit stores. This also limits overstock and the need for sales. For example, Zara’s unsold inventory accounts for less than 10% of their stock, whereas the industry average is 17-20%. Combined, short product lifecycles and limited availability create a sense of product scarcity, which encourages consumers to purchase products immediately and shop more frequently. As a result, despite low unit prices, the average garment price is around $15, and fast fashion retailers have been outperforming traditional apparel companies with average profit margins of approximately 16%, compared to 7% with traditional apparel models.

Figure 6: Prices at H&M and Forever 21

118 Cline, Overdressed, 99.
119 Ibid.
120 Supra at note 117.
121 Supra at note 3.
122 Supra at note 3.
123 Nicole Thompson, Prices at Fast Fashion Retailers, 2017.
Given the cheap prices of fast fashion apparel, consumers do not necessarily feel a sense of risk when it comes to purchasing products. The perceived scarcity of fast fashion items, due to limited supply and availability, encourages impulse buying. Because the price is low, if consumers make an impulse purchase they may not end up using, the impact of that decision to consumers is also low. As a result, it is reported that only about 20% of clothing in the average person’s closet is worn on a regular basis. There are numerous reasons for why consumers may overlook items in their wardrobe. Social media can influence the way consumers view their clothes. It can lead to feelings of boredom towards clothing and create pressure to continually wear something new, as not to be pictured in the same outfit twice. Furthermore, minor faults, such as improper fit, may not seem important when engaging in impulse buying, but prevent consumers from wearing the item later. Finally, return restrictions by retailers, such as short return timeframes or final sale of marked down items, may discourage consumers from returning their impulse buys.

The low price of fast fashion items also persuades consumers to accept a lower level of quality. Consumers believe fast fashion garments should cost about half the price of conventional apparel products, and both acknowledge and accept this means the product quality will be lower. This trade-off is justifiable for consumers as they commonly purchase fast fashion items for a one-time event or to follow a trend, which will quickly fall out of fashion. Therefore, most fast fashion items are only worn once or twice before being discarded, and as noted most fast fashion garments can only withstand ten wears before beginning to fall apart.

The result of this is increased turnover: low-quality fast fashion products break down faster and are thrown out faster. Then, due to the low price, they are replaced by something new, creating a vicious cycle leading to increased waste. Fast fashion items are discarded at approximately twice the frequency of non-fast fashion apparel. Furthermore, consumers equate the low-quality of fast fashion items with disposability, making them more likely to discard of items via landfills.

Opportunities for Reduce

One way for Toronto to implement Reduce strategies for textile waste is to introduce education and awareness campaigns. The focus of such campaigns should be to educate consumers about sustainable purchasing and use decisions. Individuals who recognize the impact of environmental degradation are more likely to adjust their purchasing and consumption behaviours. By illustrating the negative impacts of textile waste, both in the pre- and post-consumption phases, awareness campaigns can cultivate environmental concern and encourage

124 Supra at note 117.
127 Supra at note 125.
128 Supra at note 105.
130 Supra at note 3.
131 Supra at note 129.
individuals to wear garments longer, purchase less, and move away from fast fashion consumption.

Educational campaigns should connect the consumer with products by educating consumers about product quality and environmental and social impacts of the product. Creating a connection between garments and consumers helps remove the connotation that these items are disposable. Encouraging people to wear clothing they already own reduces resource demand: an additional nine months of wear reduces waste, carbon, and water footprints by 20 to 30%.

Another strategy is educating consumers about the manufacturing process of textiles, so they understand their garments are more than just a piece of clothing, but rather, a cumulation of finite resources and labour. Honest-By is an example of how retailers can be involved in educating consumers before purchase, by requiring suppliers to share information about their production processes. This information is shared on the clothing labels, resulting in 100% transparency. Reformation is another retailer employing a similar strategy. The carbon dioxide, water, and waste savings of each product compared to the industry average is calculated and shared with consumers.

These standards help consumers understand what has gone into their products and where production takes place, giving them the information to make informed purchasing decisions. The City of Toronto could encourage local designers to engage in similar behaviours by providing incentives for retailers who adopt such strategies, through funding or access to resources. The City of Toronto can also highlight the work of already established groups such as Fashion Revolution, which encourages consumers to ask brand retailers “who made my clothes?” to illustrate supply chain conditions.

Labour violations and exploitation in the garment industry has been an issue among consumers and in the media. Raising awareness about issues within the textile manufacturing sector may encourage consumers to research where and how retailers produce before buying a product, slowing their pace of consumption and moving them away from fast fashion retailers. Additionally, by aligning with a social movement, citizens have the opportunity to become involved with changing the fashion industry. When an individual becomes actively involved in such a movement, the assumption is that their consumption behaviours will change to match their social beliefs.

The second component of textile waste awareness campaigns should address textile quality. Higher quality clothing will last longer, thus reducing the amount of textile waste produced. As society shifted from making their own clothing at home to purchasing from retailers, understanding of garment construction faded. Now, many people are unsure of how

133 Cline, Overdressed, 221.
137 Supra at note 135.
139 Cline, Overdressed, 87.
to check for quality and durability when purchasing clothing140, and have become increasingly uninterested in the makeup of their clothing141. Awareness campaigns could provide information to help consumers gauge clothing quality, including how to evaluate seams, linings, and fabric content, as well as how to understand wash and care instructions, which will prolong the life of the garment if followed properly142. To stress the importance of quality and garment longevity, awareness campaigns could employ side-by-side visuals. Side-by-side visuals could contrast higher quality garment with a similar fast fashion item, showing the condition of each garment after multiple wears.

The City of Toronto could model an educational campaign after the U.K.’s successful \textit{Love Your Clothes Campaign}. The campaign, which was launched in 2014 by the U.K charity WRAP, was developed in concert with industry, non-profit, and governmental actors. The campaign is aimed at changing the way consumers buy, use, and dispose of their clothing by educating consumers about the entire lifecycle of garments143. The campaign was short-listed for the Chartered Institution for Wastes Management’s ‘most effective communications campaign’ in 2016144. It uses infographics, instructional videos, community engagement, and provides event information to encourage consumers to change their purchasing habits, provide better care for clothing they already own, and dispose of unwanted clothing properly145. The campaign also utilizes social media to promote its mission, which would also be an important method of communication in a campaign launched by the City of Toronto.

In Canada, over 62\% of citizens over the age 13 engage on various social media networks, including Facebook, Twitter, and Instagram146, with the City of Toronto being one of the top three connected cities147. Furthermore, social media usage is increasing among millennials148, the group primarily targeted by fast fashion retailers, making an awareness campaign integrated with social media an opportune way to reach this demographic.

In addition to awareness campaigns, The City of Toronto can also promote and provide support for repair and swap events. Once again, as society shifted from making clothing to purchasing clothing, people failed to retain sewing and repair skills149. Now, few people have the skills to repair to garments, choosing instead to discard items150. The City of Toronto currently supports the Toronto Repairathon, a free public event where people can bring one to two clothing items to be repaired by volunteers, while also running workshops to teach basic mending skills151. The City of Toronto should continue to support this program, aiming to increase the

141 Cline, \textit{Overdressed}, 85.
143 supra at note 90.
145 David Crichton, “Love Your Clothes Shortlisted for Prestigious CIWM Award,” \textit{IE Brand}, October 2016, accessed from https://www.iebrand.co.uk/blog/love-your-clothes-shortlisted-prestigious-ciwm-award
147 Ibid.
149 supra at note 90.
150 supra at note 142.
151 Toronto Repairathon, accessed from http://repairathon.com/
number of events held each year from the 6 held in 2016152. Additional ways the City could further encourage reclamation of repair and sewing skills could be to provide easy-to-follow tutorials on how to do common repairs, such as darning a hole or mending a seam. These tutorials could be made available through the City’s website. The City of Toronto could also run promotions offering subsidized sewing classes at community centres, and providing complimentary basic repair kits at Repairathon events.

The City can also facilitate swap events, where individuals get together and exchange their unwanted clothing items. Events can be done on a neighbourhood level, in apartment complexes, or in student housing. City facilitated events provide structure to swaps that ensures they do not contribute to litter or illegal dumping of items and provides the City an opportunity to track waste diversion153. Additionally, the City can provide guidelines and tips for how to host a swap for people who wish to organize a more informal event, such as within a group of friends. Finally, the City can promote swap events held around the City by other organizations, such as Nathalie-Roze & Co’s Uber-SWAP154.

Employing educational and awareness campaigns while simultaneously supporting repair and swap opportunities enables the City of Toronto to influence consumer purchasing and use behaviours, in turn decreasing textile waste. Educational campaigns teach consumers how their clothing is made and what happens to it when they are finished with it. When consumers understand that a t-shirt is more than just a piece of fabric, but a collection of resources and human labour, which has an lasting impact once disposed, they will be more conscious of what they purchase and how they use those items. Once they have this knowledge, the City of Toronto can further encourage sustainable use behaviours by providing opportunities for individuals to repair and swap their clothes, extending the life of those items and limiting waste generation.

\begin{itemize}
 \item 152Ibid.
 \item 153Supra at note 45.
 \item 154“Spring Uber-SWAP: a used & vintage women’s clothing exchange,” Facebook, accessed April 11th, 2017 from https://www.facebook.com/events/1524634344214897/\
\end{itemize}
Chapter Four
Reuse

The second R in the 3R Waste Hierarchy is Reuse. Reuse focuses on using an item again, prolonging its life. The item can be used again in its original state, commonly by a new owner who purchases the item second-hand, or can be repurposed for something new, for example, through upcycling. Reusing textiles extends their useful life and thereby reduces water, carbon, resource, and waste footprints. In practice, the most common example of Reuse in Canada is through the second-hand market.

The Second-Hand Market

The second-hand economy is comprised of retailers selling used merchandise, including used clothing and textiles. This market contributes approximately $36 billion to Canada’s GDP. Individuals can participate in the second-hand market either as consumers, by purchasing used items, or suppliers, by donating or selling their unwanted goods. The majority of citizens have participated in the market, with eight in ten North Americans reporting to have purchased used goods at some point in their lives. Economic, ethical, and hedonic motivations all play a role in participation in the second-hand market. For textiles specifically, the second-hand market can be broken down into three main types of retailers: vintage, consignment, and thrift stores.

Vintage Retailers

Vintage retailers are for-profit retailers concentrating on clothing from a specific era, with items typically being twenty years or older. Higher quality garments often have a high value, with focus being placed on unique, stylish, and historic pieces. Retailers actively search for products, sourcing from rag houses, thrift stores, estate sales, antique fairs, and auctions. With styles from past decades re-emerging as current trends, vintage shops offer consumers a way to access these fashions in a more authentic way than retail chains. While fast fashion retailers offer similar vintage styles, these pieces lack the history and uniqueness of second-hand pieces, and also have an environmental and social footprint. Furthermore, vintage retailers can provide a shopping experience large fast fashion brands are unable to replicate. Feelings of nostalgia, the thrill of treasure hunting, and opportunity for social interaction are all hedonic motivations for consumers shopping at vintage retailers. There are numerous vintage shops throughout Toronto, with a large concentration in Kensington Market.

158 Ibid.
159 Ibid.
161 Ibid.
162 Supra at note 157.
Consignment Retailers

Consignment retailers also operate on a for-profit basis and act as a mediator between sellers and consumers\(^\text{163}\). Sellers can bring unwanted items into consignment stores, which will sell the goods for the individuals and take a percentage of the profit. These percentages range from 25\% to 40\% of the retail price. Additionally, instead of cash, consignment stores may offer store credit, offering as high as 50\%\(^\text{164}\). This reduces costs for both parties, since individuals avoid advertising, location, and display costs\(^\text{165}\), and store owners avoid the time and effort costs vintage shops incur by not needing to actively search out inventory.

Economic and ethical motivations are important incentives for both suppliers and consumers of consignment retailers. For individuals selling items to the shops is a way for them to make money off their unwanted items and recover some of the price they originally paid. Additionally, selling their items to the consignment shop ensures that they stay out of the landfill and extends their useful life. For customers of consignment shops, they can purchase relatively new, branded items at inexpensive prices. Clothing in consignment shops is typically one to two years old, in generally good condition, and seasonal\(^\text{166}\). As well, by purchasing used, customers avoid the environmental costs associated with new products. There are multiple consignment shops in Toronto, catering to different needs, including sporting apparel, children’s clothing, and designer goods.

Thrift Stores

Thrift stores comprise a large portion of the second-hand market. Thrift stores accept donations from individuals, which are then sold in their stores, where the profits go towards supporting charitable initiatives. Donations are collected several ways: through donation centres, drop-off clothing bins, or by being picked up directly from the residents’ homes\(^\text{167}\).

Unlike vintage and consignment stores, which focus on fashionability, thrift stores are not particular in what they accept. Even items in poor condition are accepted and contribute to thrift stores’ revenue streams\(^\text{168}\).

Thrift stores can be divided into non-profit and charity affiliated for-profit operating systems. Some thrift stores are operated by national charities, like The Salvation Army, on a non-profit basis\(^\text{169}\). For The Salvation Army, thrift store sales account for 22\% of their total revenue\(^\text{170}\), which is then used to support a variety of community initiatives. On the other hand, charity affiliated for-profit thrift stores purchase items from charitable organizations, which they then sell for a profit\(^\text{171}\). For example, Value Village buys second-hand clothing in bulk from

\(^{163}\) Supra at note 157.
\(^{165}\) Supra at note 157.
\(^{166}\) Supra at note 157.
\(^{167}\) Supra at note 83.
\(^{168}\) Supra at note 157.
\(^{169}\) Supra at note 157.
\(^{171}\) Supra at note 157.
charities like the Canadian Diabetes Association. Over the past ten years Value Village has purchased over one billion dollars’ worth of clothing from such organizations172.

Thrift stores divert large quantities of textiles from landfills. In 2016, The Salvation Army diverted 31.2 million kilograms of used clothing and household items in Canada and Bermuda173. In the same year, Value Village collected a further 343 million pieces of clothing through their Canadian, American, and Australian operations174.

In addition to the environmental benefits of waste diversion and extending product life, these operations offer social benefits as well. Profits are used to achieve organizations’ charitable goals. For large charities, like The Salvation Army, funds are directed towards many large national and international causes. Conversely, many smaller, independent thrift stores use profits and donations to assist at the community level by supporting women’s shelters and providing clothing for new Canadians and lower-income workers175. Furthermore, because of the low prices of thrift store items (the average price of an item at Value Village is $4.50176), low-income individuals can shop for basic clothing necessities.

With the decline in clothing prices, charities have begun to see an influx of barely used clothing donations, and have passed the point where they can sell everything they receive177. Only around 20\% of clothing donations received are sold in charity thrift stores178; the remaining 80\% is baled and sold to private sector recyclers, which provides thrift stores with additional revenue179. As shown in Chapter 2, Figure 2, 45\% of these textiles are classified as wearable and are further reused180. Commonly, this clothing is exported as second-hand clothing to developing countries. Clothing is separated into numerous categories, weighed, labeled, and then baled181. Baled textiles are packed into 40-foot shipping containers, which contain around 300 55 kilogram bales182. Wholesalers in developing nations purchase containers and sell the bales to smaller traders183, who then sell the clothes in local markets in Africa, Asia, Central and South America, and Eastern Europe184. In 2016 Canada exported over $166 million in used clothing, with a large amount of exports going to Kenya, Ghana, India, Tanzania, and Tunisia185. The clothing that is deemed to be unwearable is sold to shoddy industries186, which remanufactures...
rags and shreds of soft worsted fabrics into fibre187. From here, 30\% of the materials are repurposed into rags for wiping and polishing in commercial, residential, and industrial settings188. A further 20\% is sold to fibre buyers, who use mechanical and chemical recycling processes to break materials down into fibre components189. These fibres are then reused in other products such as padding, insulation, or new pieces of clothing190. The remaining 5\% is unusable and ends up as waste191.

Barriers to Reuse

Lack of Information & Convenience

Given the large percentage of reusable and recyclable clothing that is disposed of in landfills each year, there appears to be a lack of understanding about the donation and reuse process. A general misconception is that only items in relatively good condition can be donated192. Therefore, torn, stained, and lower quality items, like fast fashion clothing, are often thrown away193 194. A Value Village survey of North American consumers found that 62\% of respondents threw away items because they did not think a donation centre would accept them195. However, even if items cannot be resold through charity thrift shops, they still provide a valuable revenue stream, as these items can be sold to for-profit recyclers.

Convenience is another obstacle to promoting reuse, both in encouraging donations and the consumption of used clothing. As discussed in relation to vintage shopping, some individuals enjoy the thrill of ‘treasure hunting’ for used pieces of clothing. However, for others, purchasing used is not as convenient as buying new. These consumers often feel they do not have the time to search through large batches of items to find something they want. Similarly, the time commitment required for donating clothing and accessibility of donation locations deter people196, with non-donors finding it easier to simply throw away items. When donating, 30 minutes appears to be the upper limit on how long people are willing to travel197, with 64\% of people unwilling to drive farther than five miles to drop off donations198.

Export of Used Clothing

Exporting used clothing can be beneficial for low-income nations by providing inexpensive clothing options and jobs in the used clothing supply chain. However, this process also undermines the local clothing industries. The second-hand market in sub-Saharan African

188 Supra at note 176.
189 Cline, *Overdressed*, 130-131.
190 Ibid.
191 Supra at note 134.
192 Supra at note 83.
195 Supra at note 156.
196 Supra at note 38.
197 Supra at note 156.
198 Supra at note 78.
nations is dominated by used clothing, comprising over half of the clothing sector by volume199. The saturation of the market with cheap, used clothing, on average 38\% cheaper than new clothing200, is a significant barrier to the advancement of local clothing manufacturing. Low cost second-hand clothing undercuts new local goods, as they must be retailed at higher prices to cover costs of production. Since affordability is a key consideration in consumer purchasing decisions, local textiles are unable to compete with cheap second-hand goods201.

Used clothing is not the sole obstacle for local clothing industries, as cheap Asian imports, high capital costs, lack of access to credit, and inefficient infrastructure are also barriers to production202. However, trade liberalization, which opened African marketplaces to second-hand clothing imports, coincided with the contracting of local industries. A negative correlation has been found between second-hand clothing imports and African clothing production, with a 1\% increase in imports corresponding to a 0.26\% decrease in production203. Such trends are evident in Ghana, where employment in the textile and clothing sector fell by 80\% between 1975 and 2000, as well as in Nigeria, which supported a workforce of 200,000 people, and now the industry is almost non-existent204.

Some countries have implemented or have proposed bans on imported second-hand clothing in order to protect domestic clothing industries. However, porous borders and corruption enable the illegal import of used clothing into markets that are officially closed205.

The creation of new jobs in the used clothing supply chain is often used as a counterargument against the detrimental impact to local economies; however, these jobs are not necessarily preferable. Jobs in the second-hand clothing market are informal, and as such do not provide the same social and legal protections as the formal sector206. Additionally, second-hand clothing trade can be volatile and is influenced by local socio-political circumstances and transport costs, which can lead to rapid shifts in export destinations207. This can hurt the retailers who depend on second-hand clothing for their livelihoods.

The second-hand clothing trade is also characterized by power imbalances and information asymmetries. Second-hand traders in developing nations are disadvantaged as they lack power in their exchange relationships with exporters. This power imbalance exists throughout the supply chain. Exporters make profit off the volume of used clothing exported, and so, they have an incentive to include not only desirable items in bales, but also low-quality waste items, and items that are in low demand. The used clothing importers are required to accept mixed packaging lists and end up with undesirable items208. For example, African importers are obligated to accept packing lists that include suits and heavy coats, which are unpopular and unsuitable for the climate.

200 Supra at note 181.

201 Supra at note 199.

202 Supra at note 199.

203 Natalie Hoang, “Clothes Minded: An Analysis of the Effects of Donating Secondhand Clothing to Sub-Saharan Africa” (Scripps Senior Thesis, 2015), accessed from http://scholarship.claremont.edu/scripps_theses/671

204 Supra at note 181.

205 Supra at note 181.

206 Supra at note 199.

207 Supra at note 181.

208 Supra at note 181.
There is a further discrepancy in power between the used clothing wholesalers and market retailers. Retailers are required to pay upfront for bales, are unable to examine bales prior to purchase, and cannot return bales if unhappy with contents. The purchase of bales is likened to a lottery, as the bales contain a mixture of fashionable, high quality clothing as well as low-quality, worn-out, damaged, and even unsellable items. The presence of low-quality items in bales is increasing, partially due to the increase of fast fashion items which are lower quality to begin with. It is estimated that up to a quarter of clothing in bales are unsellable. Low-quality items must either be sold at a lower price or end up being thrown out. The inherent risk associated with the purchase of bales makes retailers vulnerable, as bales with predominately low-quality items result in operating losses. This risk makes capital accumulation and upward mobility difficult for retailers, further challenging the assertion that job creation in the second-hand clothing supply chain can counteract the negative impacts of these imports.

Since retailers are unable to sell low-quality items and rags, these pieces are simply thrown away. This raises a concern that a situation similar to what has occurred with the export of electronic waste may arise. Much like second-hand clothing, e-waste is shipped to developing countries in Asia and Africa in shipping containers labeled as second-hand goods. Much of what is classified as second-hand goods is in reality the developed nation’s garbage and cannot be reused in importing countries. This e-waste is then processed in informal recycling centres to extract valuable components with the remaining items dumped in landfills. Both informal recycling and landfilling generate environmental and health issues, including: discharge of acids into waterways, release of toxic fumes into the atmosphere, contamination of groundwater, and neurological, digestive, and bone problems in those living or working near e-waste sites.

Since it is unlikely developing nations have the same infrastructure as Canada and other developed countries to deal with textile waste, this waste is more often landfilled. This makes these areas vulnerable to the environmental consequences of landfills outlined in Chapter 1, including creation of landfill gas and acid leachate. The export of e-waste and textile waste to developing countries illustrates a larger social issue where Western countries use African and Asian countries as a dumping ground for unwanted items instead of dealing with the consequences of their consumption.

Opportunities for Reuse

The City of Toronto should focus on two components for their Reuse strategy: information campaigns and collaboration. When implementing their textile recycling program, The City of Markham found that people were open to recycling their textiles, but needed more information about the process. This indicates that there is a public willingness to participate in a textile recycling strategy, but the current level of knowledge is too low. To address this, the City should expand upon the awareness campaign discussed in the Chapter 3 to include information on reuse. This includes educating the public about reuse from both a consumption

209 Supra at note 199.
210 Supra at note 181.
212 Ibid.
213 Claudia Marsales, “Markham Textile Diversion Strategy: what we learned and where we are going” (presented at Tip of the Iceberg: Textile Diversion Strategies and Extended Producer Responsibility Symposium, Markham, Ontario, May 4, 2016).
and disposal perspective. The City should educate consumers about the benefits of buying used and donating or selling unwanted clothing, highlighting how these actions extend product lifecycles, reduce environmental impacts, and support local communities.

On the consumption side, the City should try to make buying used clothing fashionable, by featuring local vintage and consignment shops on their website and social media. The focus should be on these second-hand retailers as they are more fashion orientated than thrift stores. Additionally, the website and social media accounts could present profiles of used clothing shoppers and feature their second-hand outfits, favourite shopping locations, and shopping tips.

On the disposal side, the City should educate people about what types of textiles can be donated. Additionally, the City should educate citizens about what happens to clothes once they are donated. As most people tend to believe donated items are reused within their own community, they may be uncomfortable with the idea of donations becoming commodities. Educating the public that when items are sold on the second-hand market the items still generate revenue for the initial charities, may help alleviate these anxieties and encourage donations. Additionally, the City should consider redesigning the ReUseIt section of its website, which displays donation locations for various goods on a map. This should be expanded to include consignment locations as well as legal parking lot clothing donation boxes. Furthermore, the option of search by location type (thrift store, consignment shop, and donation boxes) should be given to make it easy for users. Since inconvenience is a significant barrier to clothing donation, including these alternative donation locations will help illustrate that donation is more easily accessible than residents may have believed.

The second component of the City’s Reuse strategy should be collaboration. This includes collaboration between non-profits and collaboration with vintage and consignment shops.

Collaboration with existing non-profits like The Salvation Army ensures that municipal efforts to combat textile waste does not detract from non-profits, which depend on clothing donations to fund their charitable missions. Such a collaboration would be mutually beneficial, as non-profit collaborators could expect to benefit from an increase in textiles collected. The City would also benefit because they would not need to spend capital on sorting and storage infrastructure, as the existing non-profit infrastructure would be utilized.

San Francisco, New York City, and Markham all provide examples of how such collaboration can be successfully carried out. San Francisco partnered with Goodwill as part of their textile recycling program. San Francisco uses electronic collection bins, which are placed in apartment buildings and managed by Goodwill.

New York City (“NYC”) employs a similar scheme, partnering with numerous organizations to facilitate textile recycling. NYC works with Housing Works, a charity serving the homeless and people affected by HIV/AIDS, to place and maintain non-electronic collection boxes in apartment buildings. Working with Wearable Collections, a for-profit entity that raises

214 Supra at note 181.
215 Supra at note 77.
216 Supra at note 91.
money for charities217, NYC established textile collection at numerous weekly farmer’s markets218. Finally, NYC organized a curbside collection event with the participation of Goodwill. Utilizing clean sanitation trucks, bags specifically designated for textiles were picked up from approximately 250,000 homes, which were then brought to a Goodwill warehouse219.

Closer to the City of Toronto, the City of Markham has launched an aggressive textile recycling campaign. Markham employs collection boxes which feature its logo and are managed by The Salvation Army220. The boxes are located around the city, in supervised locations, such as fire stations and have sensors to indicate when the bins are full221. The City of Markham received funding from the Federation of Canadian Municipalities to launch the program, with implementation estimated to cost $90,000 over 2016 and 2017222. Additionally, the operating costs of the program, including operation of smart sensors and lifecycle costs of bins, is expected to be $6,000 a year, with collection operating costs incurred by The Salvation Army223. Furthermore, these costs are expected to be offset by the reduction in collection fees224, as Markham expects they will save $86,000 in 2017 in curbside collection rates225. To fully support the program, Markham has also introduced a ban of textile items in garbage; Markham uses clear garbage bags and will not collect bags with visible textiles226.

The City of Toronto can draw upon these examples in implementing its own textile recycling program. Collaborating with non-profits ensures that these organizations continue to receive revenue generating donations. Utilizing donations as a means of collection also ensures revenue generated is redirected back into supporting communities. Additionally, as the City of Markham has illustrated, such programs can be implemented without excessive cost to the municipality.

The City of Toronto should also consider collaborating with vintage and consignment retailers. Some retailers offer interactive experiences to engage customers and educate them on second-hand clothing. Examples include hosting fashion shows and holding upcycling contests227. The City could partner with retailers to help facilitate these events, which would help bring used and vintage dressing into the mainstream, and illustrate the fashionability of such items. Additionally, supporting such events and directing attention toward these retailers may increase their revenues, and help boost the local economy.

Promoting reuse through education campaigns and engaging events allows the City to effectively convey the benefits of both donating and purchasing used clothing. Additionally, by leveraging non-profit infrastructure, the City can establish convenient collection systems. The City can draw on the experiences of other municipalities as a guideline for implementation. Such

217“Learn About Our Company,” \textit{Wearable Collections}, accessed from http://wearablecollections.com/about/
218Supra at note 71.
219Supra at note 93.
220Supra at note 194.
221Supra at note 83.
223Ibid.
224Ibid.
226“Markham Recycles Textiles,” \textit{The City of Markham}, accessed from http://www.markham.ca/wps/cm/connect/markhampublic/fc7b22f9-2df0-4265-a110-94f4dda2fcb/TextileRecyclingPDF-WEB.pdf?MOD=AJPERES&CACHEID=f7cb22f9-2df0-4265-a110-94f4dda2fcb
227Supra at note 157.
a strategy will lower the cost of implementation for the City, as they will not need to duplicate efforts in designing collection boxes or bags or researching how to effectively deliver the program.
Chapter Five
Recycle

The third and final R in the 3R Waste Hierarchy is Recycle. Recycling involves recovering the valuable raw materials from a product, using either mechanical or chemical recovery processes, and utilizing these as inputs into new products. This process keeps unnecessary waste out of landfills and conserves virgin materials. Widespread adoption of textile recycling can help to move the apparel industry away from a traditional linear economy, in which products are produced, consumed, and disposed of, to a circular economy. In a circular economy, products are produced and consumed, but resources from discarded products are recovered and reused in the production process. A circular economy reduces the impacts associated with a linear system by extracting the maximum value from materials and ensuring cultivation of new resources is not required. The recycling process includes two stages: the collection and handling of textiles, and; the processing of textiles.

Collection & Handling of Textiles

The first stage in the recycling processes is collection and handling of textile waste. Waste is created at both the pre- and post-consumer stages. Pre-consumer waste is created during the production process. This includes waste produced during fibre and yarn production and unused scrap fabric from cut-and-sew operations. Conversely, post-consumer waste consists of items disposed by the public following consumption. Collecting pre-consumer waste requires the coordination of industry players, while recovery of post-consumer waste entails public cooperation and buy-in.

The collection and handling strategies described below will focus solely on post-consumer waste. As mentioned in Chapter 1, most textile production in Canada is outsourced. As such, the City of Toronto will have little influence over the global textile industry. Strategies targeting pre-consumer waste should be carried out by a larger governing body, such as the provincial or federal government. However, since municipalities are responsible for waste management, the City of Toronto can influence, and therefore should target, post-consumer waste.

There are different ways for the City to manage the collection and handling of textile waste. Three strategies widely utilized in other municipalities and countries are curbside pickup, collection boxes, and extended producer responsibility schemes. These strategies are outlined below. A discussion of the potential draw-backs of each system and their applicability for the City of Toronto is included in Chapter 6.

229 Ibid.
230 Ibid.
231 Ibid.
Curbside Pickup

Curbside pickup involves collecting textiles along with the pickup of other recyclable goods, such as paper and plastic, and waste. This process can be implemented by the municipality, as is done in Colchester, Nova Scotia. In Colchester, the city picks up household textiles along with other recyclable materials. Textiles are placed in the already existing fibre recycling bags with paper products232, which are then manually sorted at recycling facilities233. Three weeks after Colchester implemented their curbside pickup service, over 680 kg of textiles had been diverted from the landfill234.

Municipalities can also contract out curbside pickup services to third parties, such as textile recycling companies. Queen Creek, Arizona uses a textile recycling company to pick up curbside textile recycling235. This arrangement generates revenue Queen Creek, and local charitable organizations. Queen Creek receives 10 cents for each pound collected, and 10 cents for each tonne collected is given to charity236.

Textiles are more difficult to manage via curbside collection because they can become contaminated or ruined when mixed with other items. Because of this, specialized equipment is often required for pickup. This can include providing residents with bags specifically for textiles, to ensure they stay dry, or using modified recycling trucks with separate compartments for textile materials237.

A considerable advantage of a curbside pickup strategy is the low cost to residents, in terms of time and effort. Since residents are already familiar with the curbside pickup process, which is used for paper and plastic items, adding textiles to the collection schedule does not require any major behaviour change for individuals. Increasing the ease of textile recycling for individuals should increase participation and, in turn, increase the volume of textiles collected and diverted from landfills.

Collection Boxes

The use of charity collection boxes to gather textiles was discussed in Chapter 4. For-profit entities and municipalities can also be responsible for the operation of textile collection boxes. I:Collect (“I:CO”), a closed-loop textile recycler, is an example of such a for-profit organization. I:CO provides logistics services to more than 60 brands around the world, including H&M, American Eagle Outfitters, Levi Strauss & Co, Puma, and Forever 21238. The company provides retailers with customizable collection bins239 where consumers can drop off unwanted clothing in exchange for in-store vouchers240. I:CO then organizes the transportation of

232 Supra at note 94.
234 Ibid.
236 Ibid.
237 Ibid.
240 Supra at note 238.
items to sorting and recycling plants241. Since 2009, the company has collected over 70,000 tonnes of used textiles242.

I:CO’s role as a logistics provider helps consolidate textile recycling efforts at the retailer level. This service enables retailers, who may not have the capital, time, or knowledge to participate in the textile recycling system, to be part of the circular apparel economy. However, a criticism of this system is the use of in-store vouchers as customer incentives. While this encourages consumer involvement, it also promotes the continuation of the purchase-disposal cycle and does not address the underlying issue of overconsumption.

Municipalities can also partner with for-profit textile recyclers to implement collection box programs. For example, this was done in Weymouth, Massachusetts. Weymouth initiated a campaign focused on collecting “the good, the bad, and the ugly” textiles by placing collection boxes in public schools243. Logistical services were provided by the for-profit recycler Bay State Textiles, who supplied and serviced the containers244. Schools were provided with a start-up incentive and paid $100 per tonne of textiles. Not only did the municipality divert 78.8 tonnes of textiles during the two years the program was in operation, but the program also helped raise revenue for school programs245. Additionally, engaging schools in the recycling process provided students and school facilitators with more knowledge about issues of textile waste and the solutions. This knowledge is then brought home with the students and shared within their households and the wider community.

Given that households are not the only source of textile waste, with institutions, such as schools and hospitals, also generating waste246, establishing collection campaigns in these locations, in conjunction with other collection efforts, would allow the City of Toronto to address multiple sources of waste generation.

Extended Producer Responsibility

Extended Producer Responsibility (“EPR”) systems put the onus of responsibility on producers for the entirety of their product’s lifecycle. Several EPR programs already exist in Canada, covering packaging and printed materials, beverage containers, and electronic waste, among others247. Currently, there are no EPR programs that address textile waste in Canada; however, the Canadian Council of Ministers have recommended this category be incorporated into the existing EPR framework248.

243 Supra at note 71.
244 Supra at note 96.
245 Ibid.
246 Supra at note 83.
247 “Inventory of Programs,” Environment and Climate Change Canada, accessed from https://www.ec.gc.ca/gdd-mw/default.asp?lang=En&n=9FBB4989-1&xsd=genericsearchrenderer&%2Cresult&searchoffset=1&searchdisplaycount=75&databasematch=WSGlobal&filtername=searchname&formtype=gdd-mw®ion=D1CF2A68-3DC4-472F-B6C1-780DD616131&product=&submit=Search#resulttop
France provides an example of an operational textile EPR system. The French TLC EPR program targets clothing, household linens, and footwear. Companies who market products in France are responsible for providing or managing the recycling at the point of disposal. Companies have the option to establish their own recycling program, which is approved by French authorities, or they can contribute to ECO TLC, the industry steward. Over 94% of the industry has chosen to contribute to ECO TLC, who manages the textile recycling program on their behalf. Each company pays a set fee to ECO TLC based on the quantity of items sold. In 2015, ECO TLC received €16.3 million in contributions, which ECO TLC used to operate the program, provide educational materials, and fund selective R&D. Financial incentives are also in place to encourage innovation and investment into recycled textiles. Companies using textiles with recycled content of 15% or more pay less in contributions per item. ECO TLC’s recycling program primarily uses collection bins to gather textiles, with additional collection through non-profit organizations, in-store drop offs, and door to door collection. Textiles are then sent to an eligible sorting facility. The program collected 195,000 tonnes of textiles in 2015, an increase of 11% over the previous year. As EPR systems are already commonplace in Canada, a program targeting textiles could draw on the experience of the ECO TLC model to fit into the existing Canadian EPR framework.

Processing of Textiles

The second stage of textile recycling is the processing of collected textiles. Depending on how the textiles are processed, they will either contribute to an open-loop system or a closed-loop system. In an open-loop system, the material cannot be recycled indefinitely, either because of degradation of the raw material during the recycling process or inclusion of the raw material in non-recyclable products. An open-loop system will postpone waste generation, but ultimately does not prevent it. On the other hand, in a closed-loop system, the material can be recycled continually without degradation of the raw material. Of the two methods used for textile recycling, mechanical recycling represents an open-loop system, whereas, chemical recycling is part of a closed-loop system.

In the mechanical recycling process, textiles are broken down through cutting, shredding, and carding processes. The fibres produced through this process are weaker and shorter than virgin fibres. To increase quality these fibres are blended with virgin fibres, resulting in a...
Mechanically recycled fibres are used in various applications, including upholstery, insulation materials, carpet underlays, disposable diapers, napkins, wiping, and fillings, among others. In the chemical recycling process, fibre molecules are broken down and re-polymerized and then re-spun into new fibres. Unlike mechanical recycling, there is no loss of quality since the resulting fibres are the same length and quality as virgin fibres. As such, the outputs of the chemical recycling process can easily be reintroduced into the production chain.

Currently this process is most commonly used for synthetic textiles, particularly polyester. Teijin, a Japanese company, has developed a fibre-to-fibre polyester recycling process, and through their ECO CIRCLE program, works with over 150 partner companies, including Patagonia. Teijin’s process, whichformulates new, raw polyester materials by breaking down discarded polyester fabric into monomers, results in an energy saving of 76% and a 71% CO₂ emissions reduction compared with polyester produced from virgin materials. Additionally, this process does not require the use of petroleum in the production process.

Chemical recycling techniques exist for natural fibres as well, however these technologies are not yet widespread. Re:newcell and Evrnu are two companies at the forefront of this process. Re:newcell recycles cotton and other cellulosic textiles into a dissolving pulp, which can be introduced into the textile production chain. Similarly, Evrnu’s technology also creates a pulp by shredding and breaking post-consumer cotton waste down at the molecular level. The resulting pulp can then be used to create high quality fibres. This process uses 98% less water than traditional cotton fibre and reduces CO₂ by 90% compared to polyester production.

Barriers to Recycling

Loss of Quality

Mechanical recycling of textiles is currently the most common and scalable option for textile recycling. However, since this process operates in an open-loop system, it is not as sustainable as chemical recycling. The fibres resulting from the mechanical recycling process are lower quality and cannot be continually recycled. This necessitates blending of reprocessed materials.
fibres with virgin materials to achieve acceptable quality. As a result, there is still demand for virgin resources and the continuation of harmful environmental and social practices associated with their cultivation and extraction. Although chemical textile recycling would be preferable, as it can achieve a circular system, it is more expensive than mechanical recycling.\(^{279}\)

Blended Materials & Sorting Requirements

The prominence of blended fibres poses another barrier to textile recycling. Blended fibres, like poly-cotton, are popular as they allow manufacturers to combine the benefits of different fibre types in one fabric. However, different processing systems are used in the breakdown of natural and synthetic fibres, and different performance specifications are required for each type of fibre. This adds an additional level of complexity to the recycling process.\(^{280}\) Worn Again is working to advance potential technologies to separate blended fibres via chemical recycling; however, this is not yet commercially viable.\(^{281}\)

Since different fibre classes need to be recycled using different systems, the sorting of textiles is a crucial step in the recycling process. Incorrect sorting can result in textiles being used for low-grade applications when they could have been recovered for higher-grade uses.\(^{282}\) Textile sorting is a labour-intensive process as it is generally done by hand.\(^{283}\) This could be a disincentive to establishing textile recycling in Canada, due to higher wages when compared with other countries. Automatic sorting technology, which uses near infrared spectroscopy to sort fibres based on composition and colour,\(^{284}\) is a more efficient option for handling large amounts of textiles.\(^{285}\) However, like the blended fibre case, this technology is not yet commercially viable.\(^{286}\)

Investment & Demand

As highlighted above, there are numerous emerging technologies which streamline the textile recycling process. However, these technologies are not yet commercially viable. A major obstacle for textile recycling is the need for investment and demand to bring these technologies into the mainstream. Increasing investment into textile recycling technologies can help to increase efficiency in the recycling process and results in higher quality outputs. Additionally, stimulating demand ensures a stable market for the resulting products. As a result, the textile recycling industry can work to achieve economies of scale, reducing their overall production costs. However, the abundance of cheap fabric available to the apparel and textile market poses a barrier to the widespread acceptance of recycled textile materials.\(^{287}\) Furthermore, current production costs, uncertain supply chains, and lower quality fibres from mechanical techniques are additional challenges facing textile recyclers.\(^{288}\) These obstacles are all disincentives for

\(^{280}\) Supra at note 228.

\(^{281}\) Supra at note 263.

\(^{283}\) Supra at note 264.

\(^{284}\) Supra at note 282.

\(^{285}\) Supra at note 264.

\(^{286}\) Supra at note 265.

\(^{287}\) Supra at note 228.
investment in the industry. Moreover, while some large retailers like Patagonia and H&M have introduced recycled fibres into their product lines, more demand by manufacturers is needed to ensure a stable end market.

Opportunities for Recycling

In its strategy for textile recycling, the City of Toronto should aim to develop a comprehensive collection and handling system. The system should include further logistical considerations and support investment and demand for recycled products and technologies.

First, the City of Toronto should decide on the most appropriate way for the municipality to carry out textile collection. Curbside pickup, collection boxes, or EPR schemes represent potential options for collection. To ensure public participation, whichever system is chosen should be characterized by ease of access for residents and relative cost effectiveness for the City. These options and their suitability for use in the City of Toronto are discussed in detail in Chapter 6. Additionally, as collection is only one aspect of the textile recycling process, the City must consider how textile waste will be managed when implementing a textile recycling system. The City could be solely responsible for managing collected waste and ensuring that it is reused and recycled. Alternatively, the City could partner with a third-party, such as a charity or textile recycler, to take on this role. Again, the benefits and drawbacks of the various partners is discussed further in the following chapter.

Second, the City should support initiatives that increase investment into, and demand for, recycled textiles. To do this, the City should focus on education for consumers and producers and employ green procurement strategies.

In line with the awareness campaigns discussed in previous chapters, the City should educate consumers about the benefits of products containing recycled material. For example, the City could highlight how these products help reduce the need for raw materials, save energy, and reduce CO\textsubscript{2} emissions. Additionally, the City can showcase retailers who use recycled textile materials on their website. The City can provide the same information to local Toronto producers, to encourage them to adjust their production to include recycled fibres and textiles. The City can also provide producers with information on how to find and connect with recycled textile suppliers. Furthermore, the City could offer incentives to local producers who use recycled material in their products, such as subsidizing a portion of the material cost, or promoting retailers on the City website and social media channels. Targeting consumers and retailers in such a way will help stimulate demand for products containing recycled textile materials.

Finally, the City should adopt green procurement practices. Green procurement involves the selection of products that minimize environmental impact. In the textile industry, green procurement would focus on the purchase of textiles, such as uniforms, that contain recycled materials. Adopting such a strategy would legitimize the City’s other textile waste initiatives, since the City would be implementing the behaviours it is promoting. This could also serve as a

289 *Supra* at note 21.
signal for other municipalities and organizations. The City can encourage adoption and help facilitate green procurement in other organizations. For example, the City could encourage green procurement amongst institutions that require uniforms, like private schools and hospitals, or require large amounts of other textiles, like hotels and bedding. Again, this will help increase demand in the textile recycling industry and drive investment.
Chapter Six
Recommendations

As discussed in the previous chapters, the issue of textile waste is an important one, with social, environmental, and economic implications both locally and on a broader scale. As such, it is important that the City of Toronto take action in addressing this issue. The previous chapters have outlined numerous strategies for addressing textile waste drawing from all three stages of the 3R Waste Hierarchy. In choosing an appropriate strategy or combination of strategies and carrying out implementation, the City of Toronto should look to achieve three broad goals: increasing awareness about textile waste and the issues it creates; reducing textile waste in landfills; and encouraging sustainable consumption and the use of recycled fibres. The strategies discussed are analyzed here according to different criteria to determine their ability to meet these goals and the City’s best course of action moving forward.

Three criteria are used to evaluate each strategy recommendation: efficiency, effectiveness, and feasibility. Efficiency is the ratio of inputs to outputs. Specifically, efficiency is determined by the outcomes of an action in relation to the resources required. An efficient strategy is one that achieves the desired goal of textile waste diversion, at the lowest cost. Effectiveness is the extent to which a policy or strategy achieves the desired goal. An effective textile waste strategy is one that can meet the diversion goals set by the City. Finally, feasibility involves numerous aspects, including whether policies can obtain political and social support, whether the required technology and infrastructure is in place, and whether such strategies are administratively possible.

Table 4 ranks each strategy as either high, medium, or low in terms of the potential efficiency, effectiveness, and feasibility. Additional details as to why such a rating assigned are also listed; bearing in mind that it is difficult to determine the overall impacts of a policy until after implementation.

Table 4: Comparison of Textile Waste Strategies

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Education Campaigns (Chapters 3, 4, 5)</th>
<th>Retailer Support (Chapter 3, 4, 5)</th>
<th>Event Support (Chapters 3, 4)</th>
<th>Green Procurement (Chapter 5)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Education on issues of textile waste.</td>
<td>• Subsidies for retailers.</td>
<td>• Hosting Repairathon events, vintage fashion shows, and swaps.</td>
<td>• Green procurement at municipal level.</td>
</tr>
<tr>
<td></td>
<td>• Education on benefits of 3R textile strategies.</td>
<td>• Promotion of retailers through City website.</td>
<td></td>
<td>• Facilitation of voluntary green procurement for institutions and businesses.</td>
</tr>
<tr>
<td>Efficiency Rating</td>
<td>High</td>
<td>Low</td>
<td>High</td>
<td>Medium</td>
</tr>
<tr>
<td></td>
<td>• Costs to the City would include staff and materials.</td>
<td>• Subsidies require an outlay of municipal money and are</td>
<td>• The City would take on a facilitative role.</td>
<td>• Depending on prices, this may require an increase in government</td>
</tr>
</tbody>
</table>

292 Ibid.
If the focus is placed on utilizing the website and social media for delivery, costs will be lower as there is less need for physical resources. Cost savings will be lower as there is less need for physical resources. Instead, promotion of retailers would be more efficient, as costs to government would be lower and could be combined with the education campaign. Promotion of retailers would increase knowledge about local businesses, which could lead to a boost for the local economy. Promotion and staff will be the only major costs incurred by the City. Any physical items required, such as tables, chairs, and sewing machines, may already be available at venues, or can be reused if purchased. Promoting vintage repair also could stimulate the local economy. Subsidies may be necessary to facilitate green procurement for institutions and business. However, this is more efficient than subsidies for retailers, as the ones receiving the subsidy are also the end consumers. In the long term, the prices of recycled fabric could be expected to drop due to increased demand and awareness.

<table>
<thead>
<tr>
<th>Effectiveness Rating</th>
<th>Medium-High</th>
<th>Low</th>
<th>Medium-High</th>
<th>High</th>
<th>Low-Medium</th>
</tr>
</thead>
<tbody>
<tr>
<td>To be successful, the information provided by the City needs to lead to behaviour changes. This requires public and retailer buy-in. Education campaigns have the potential to influence a range of behaviours, including production, consumption, and disposal behaviours. Surveys have found people are interested in textile disposal, but lack information on the issue.</td>
<td>Same issues as discussed in relation to efficiency. A subsidy’s success is dependent on both retailer and consumer participation. Because of the prominence of large chain retailers, it could be difficult to change individual buying behaviours.</td>
<td>Events like swaps and Repairathons can divert significant amounts of textile waste. However, success is dependent on public participation. These events also provide an opportunity to educate individuals about the impacts of textile waste, and the importance of sustainable consumption.</td>
<td>Green Procurement encourages the use of recycled fabrics and stimulates the market. The more institutions and private businesses that participate, the more effective the strategy will be. The City needs to ensure participants are aware of how to properly dispose of old textiles to ensure this does not lead to more textile waste.</td>
<td>The City has successfully employed Green Procurement strategies in other areas. The City would need to determine textile needs and connect with appropriate suppliers.</td>
<td></td>
</tr>
<tr>
<td>The City has experience with information campaigns, and have introduced similar campaigns in the past. Successful textile waste awareness campaigns have been introduced.</td>
<td>Subsidies are already widely used and do not carry the same negative connotations as taxes. Additional staff would be required to research and identify appropriate retailers for subsidies.</td>
<td>The City has supported successful events like these in the past. The City would need to identify vintage retailers who would be appropriate to partner with.</td>
<td>The City has successfully employed Green Procurement strategies in other areas. The City would need to determine textile needs and connect with appropriate suppliers.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

294 Supra at note 213.
295 Supra at note 40.
296 Supra at note 70.
297 “Green Fleet,” City of Toronto, accessed from http://www1.toronto.ca/wps/portal/contentonly?vgnextoid=a47107ceb6f8e310VgnVCM10000071d60f89RCRD
elsewhere, like the U.K., and provide examples of what information should be included in the City’s campaign.

- The City would need to reassign or hire additional staff to manage the website and social media accounts.
- Using online sources as the primary method of delivery could raise issues of accessibility, as low-income residents may not have easy access to the internet.
- The provincial government is responsible for school curriculum. Therefore, provincial support is needed for the City to extend education campaigns to schools.

Additional Notes

How to measure the strategy’s success:

- By comparing diversion rates before and after introduction of education campaign.
- The number of hits to website and interaction on social media.

How to measure the strategy’s success:

- Increased business for retailers receiving subsidies and being promoted on website.
- Wider use of recycled textiles overall.
- Drop in prices of recycled fabric in the long term.

How to measure the strategy’s success:

- The volume of items diverted through swaps.
- Number of items repaired at Repairathon events.
- The number of events hosted each year, indicating if demand for events is increasing.
- Increased business for vintage retailer partners.

Surveys should be employed at swap and Repairathon events to determine what individuals would have done with unwanted or broken items otherwise.

How to measure the strategy’s success:

- Percentage of the City’s textile needs that are fulfilled using recycled fabric.
- The number of institutions and private businesses participating in green procurement.
- Drop in prices of recycled fabric in the long term.

Sources:

“Bad Things Happen When the Wrong Items and Recycling Get Together,” *City of Toronto.*

“Green Fleet,” *City of Toronto.*

“Renewable Energy,” *City of Toronto.*

In addition to textile waste policies, the City of Toronto needs to determine the most appropriate way to collect and handle textile waste. Table 5 provides a ranking of collection and handling strategies based on their potential efficiency, effectiveness, and feasibility.

Table 5: Comparison of Textile Collection & Handling Strategies

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Curbside Pickup (Chapter 5)</th>
<th>Collection Boxes (Chapters 4, 5)</th>
<th>EPR (Chapter 5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efficiency Rating</td>
<td>Low</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>• Implementation would require capital and infrastructure investment.</td>
<td>• It is not necessary for the City to spend money on designing boxes as these products already exist.</td>
<td>• The government would be responsible for the costs of designing and implementing policy. However, producers would bear the operation costs.</td>
</tr>
<tr>
<td></td>
<td>• The City would need to modify existing collection trucks or acquire new ones.</td>
<td>• The City will be responsible for the maintenance and operation costs of bins.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Or the City would need to supply residents with supply bags and boxes.</td>
<td>• Depending on who manages the collected waste, the City may not be responsible for collection and processing costs.</td>
<td></td>
</tr>
<tr>
<td>Effectiveness Rating</td>
<td>High</td>
<td>Medium</td>
<td>Medium</td>
</tr>
<tr>
<td></td>
<td>• Curbside pickup provides individuals with an easy way to recycle textiles. Since convenience is a determiner of disposal behaviour, this would likely increase the amount collected.</td>
<td>• There is evidence from other cities that collection boxes are effective in textile waste collection.</td>
<td>• Other EPR programs have been effective in reducing waste, such as electronic waste.</td>
</tr>
<tr>
<td></td>
<td>• There is a risk of material contamination early on.</td>
<td>• Success requires resident participation.</td>
<td>• Success is still dependent on public buy-in. If individuals do not change their behaviours, diversion will remain low.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Collection boxes provide an opportunity to increase collection from multi-resident dwellings. Multi-resident housing represents almost 50% of structural dwelling type in the City of Toronto.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Depending on their location, collection boxes could also make drop off easier for single unit residents.</td>
<td></td>
</tr>
</tbody>
</table>

300 Supra at note 225.
301 Supra at note 38.
Feasibility Rating

<table>
<thead>
<tr>
<th>Rating</th>
<th>Medium</th>
<th>High</th>
<th>Low</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• The City can use existing recycling collection routes.</td>
<td>• The City would be required to determine the number of collection boxes to install, and where they would be most effective.</td>
<td>• EPR programs are administratively difficult and not feasible for the City of Toronto to implement in isolation.</td>
</tr>
<tr>
<td></td>
<td>• Residents are already familiar with the curbside pickup process; therefore, inclusion of textiles does not require additional learning or effort on their part.</td>
<td>• The City may need to hire additional staff to service boxes.</td>
<td>• Successful implementation of an EPR program would require provincial and/or federal support.</td>
</tr>
<tr>
<td></td>
<td>• The City would be required to update recycling centres as they currently cannot process textiles.</td>
<td></td>
<td>• If done in isolation, retailers may move out of the City if they see the policy as an added cost to business.</td>
</tr>
<tr>
<td></td>
<td>• The City may require additional staff to facilitate the pickup and processing of materials.</td>
<td></td>
<td>• An EPR program should be socially acceptable given that costs are not passed onto consumers.</td>
</tr>
</tbody>
</table>

Sources:
- Amanda Persico, “Markham’s Textile Recycling Program to Save Taxpayers $86,000,” York Region, January 2017.
- “Bad Things Happen When the Wrong Items and Recycling Get Together,” City of Toronto.

Finally, the City of Toronto must also decide who will be responsible for handling textile waste. Table 6 outlines the advantages and disadvantages of each option.

Table 6: Comparison of Service Providers

<table>
<thead>
<tr>
<th>Provider</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Municipality</td>
<td>• The sale of collected textiles can generate revenue for the municipality.</td>
<td>• The City would be required to invest in additional infrastructure and capital required to manage textile waste.</td>
</tr>
<tr>
<td></td>
<td>• The municipality has control over what happens to collected textiles. They can choose to sell to a textile recycler whose mission and practices are aligned with the City’s.</td>
<td>• The City would be responsible for the collection and processing costs.</td>
</tr>
<tr>
<td>Charities</td>
<td>• This would increase the volume of textiles going to the partnered charity, which increases their total revenue.</td>
<td>• The City has little to no control over what the charity does with collected waste.</td>
</tr>
<tr>
<td></td>
<td>• Any additional revenue generated can be channeled back into community.</td>
<td>• Partnering with one specific charity may reduce donations to other charities that depend on donations as a source of revenue.</td>
</tr>
<tr>
<td></td>
<td>• Using a charity’s name may add legitimacy to the program and encourage people to participate.</td>
<td>• As mentioned in Chapter 4, people may be resistant to donate if they believe items will not be used in the local community.</td>
</tr>
<tr>
<td></td>
<td>• The City would not incur collection and processing costs, as these actions would be carried out by the charity.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Charities already have infrastructure in place to deal with textile waste.</td>
<td></td>
</tr>
<tr>
<td>For-Profit Recycler</td>
<td>• Using a local recycler could result in a boost to the local economy.</td>
<td>• This may reduce the level of donations to charities, which depend on them for a source of revenue.</td>
</tr>
<tr>
<td></td>
<td>• This presents an opportunity for profit sharing between the textile recycler and the municipality.</td>
<td></td>
</tr>
</tbody>
</table>

304 Supra at note 70.
• The City would not incur collection and processing costs, as these actions would be carried out by the recycler.	• The City has little to no control over what the recycler does with collected waste.
	• Recyclers already have infrastructure in place to deal with textile waste.
	• This could reduce transportation costs and CO\textsubscript{2} emissions, as the recycler would receive waste directly instead of from a charity.
	• This may result in an increase of waste exports to developing countries.
	• As mentioned in Chapter 4, people may be resistant to idea of their unwanted items being used as commodities instead of as donations.

Additional Considerations

Aside from deciding on which strategies to pursue and who will carry them out, there are additional economic and policy considerations the City should keep in mind while devising its overall textile waste approach.

Economic Considerations

In addition to the financial and economic factors discussed in relation to specific strategies, the City must consider broader economic implications as well. First, Reduce strategies will be more cost-efficient than Recycling strategies. Targeting waste reduction can reduce system costs and save the City money due to lower collection, processing, and disposal costs.\(^{305}\) This idea is reinforced by the structure of the 3R Waste Hierarchy, with Reduce being the highest priority and most preferable option in the hierarchy.

Second, the City needs to consider the impacts on municipal spending. Figure 7 outlines the City of Toronto’s budget, and expected budget, for municipal waste services, including collection, transfer, processing, and transport costs. Note, in this case waste management refers only to the management of garbage, and does not include recyclable or compostable materials. An estimation of yearly textile waste generated by Toronto households is also shown in Figure 7.

\(^{305}\) *Supra* at note 71.
As shown in the above figure, the City’s expenditure on waste management has increased since 2015, and is expected to continue to increase into the future. Textile waste generated by Toronto households is expected to increase over the same period. Furthermore, local governments in Ontario spent an average of $12 per person on the operation of disposal facilities in 2014, compared to $8 per person on operation of recycling facilities. Encouraging a reduction in textile waste can help reduce the financial burden of managing waste services and disposal facilities. Any savings in these areas can be diverted towards recycling operations.

A reduction in textile waste in landfills will correspond to an increase in textile materials for reuse and recycling. As a result, the City will also need to consider the long-term impacts of increased textile materials. An increase in the amount of textile materials collected will put a strain on the already existing recycling infrastructure, such as sorting and mechanical recycling facilities. To manage an influx of collected materials, the City should plan for future investments to upgrade or replace infrastructure. Lower expenditures on waste management and disposal facilities could help offset the costs of future infrastructure requirements.
Finally, the City should consider the impacts on job availability. Diverting textiles from landfills to textile recyclers could create jobs in the textile reclamation industry. On a per-tonne basis, the textile recycling industry can employ 85 times more workers than landfills and incinerators. Therefore, new job creation could make up for the job losses resulting from less landfill waste.

Policy Considerations

There are additional policy implications the City must consider when choosing and implementing a textile waste strategy. Depending on which option, or options, the City chooses to pursue, additional policies may be needed to ensure the program’s success.

The City should implement additional regulations that support and encourage the use of the new collection system to ensure it is effective. For example, the City of Markham has banned textiles from disposal, and curbside collection will not pick-up bags that contain clothes and household textiles. This strategy helps support their textile collection box system. Additionally, landfill bans have been used in conjunction with EPR programs, such as with electronic waste, to prohibit disposal via landfills and ensure items are recycled properly.

Another option is for the City of Toronto to implement by-laws which support waste division goals. By-laws could target multi-residential buildings and institutions by mandating diversion requirements. The purpose of these regulations is to change residents’ disposal behaviours to ensure unwanted textiles are diverted from landfills and are directed to the proper collection program.

Additionally, second-hand clothing exports may increase as the volume of textiles collected by charities or third-party recyclers increases. To ensure waste products are not exported, as discussed in Chapter 5, enhanced regulation regarding second-hand clothing exports may be necessary. The City should require full transparency from any charities or third-party recyclers they partner with for textile collection and handling. This can be accomplished by requiring collaborators to provide detailed information on how textiles are handled in their facilities and to whom textiles and waste are sold. Furthermore, the City can require any secondary recyclers to whom textiles are sold to be subject to audit practices and obtain approval to do business with City partners.

In Canada, waste management is regulated at the provincial level. However, municipalities are responsible for delivering waste and recycling services. While municipalities have some regulatory power via by-laws, such as bans and limits on garbage generation. Collaboration with other municipalities, and provincial and federal government may be necessary for the realization and success of select policies. In some cases, such as with EPR programs or export regulation, the City of Toronto may not have the administrative capacity or authority to implement such policies on its own. Furthermore, if policies that target businesses

311 Supra at note 21.
312 Supra at note 226.
314 Supra at note 71.
are implemented in isolation, retailers may relocate to other areas which do not have such heavy restrictions. By collaborating with other levels of government and municipalities, a comprehensive textile strategy could be implemented across the province. This would both help to keep a level playing field, as businesses would pay the same costs wherever they operated in the province, and enable the implementation of more complex strategies, such as an EPR program.

Finally, the City needs to consider how it will implement and enforce its textile waste strategy. The City can approach this in several ways. On the one hand, the government can take an approach that favours voluntary participation. In this case, individuals and businesses are encouraged to participate in textile waste strategies, but are under no obligation to do so. Instead, the government relies on moral suasion to change behaviours. For example, this could involve putting collection bins and information about textile waste in apartment buildings. Residents would then voluntarily put what they wanted in the bins. Voluntary approaches are generally considered politically friendly due to their flexibility. However, these types of policies are subject to free-rider problems, in which individuals may choose not to participate but still benefit from the actions of others. Furthermore, without accountability and public participation these strategies generally do not achieve the desired targets.

Alternatively, the City could adopt a stricter stance, such as a command-and-control strategy. Command-and-control strategies include setting a target for diversion, which is achieved by using regulations everyone must adhere to. This strategy would involve installing collection bins, and then mandating a level of diversion the building must achieve. These types of strategies tend to be successful in achieving targets; however, they can be politically unpopular, can be inefficient, and provide little incentive for individuals or businesses to go beyond the minimum threshold of compliance.

Rather than using a single approach, the City could consider a combination of the voluntary and command-and-control tactics. In this case, the City would introduce these strategies in a gradual manner, starting first with voluntary programs and moving onward to stricter regulation and enforcement. To do this, the City should set clear and publicly available textile diversion targets and timelines to achieve those targets. If residents and businesses know what the set targets and timelines are, they can begin adapting their behaviour in the voluntary phase in preparation for future regulation. Additionally, diversion targets should increase over time to encourage innovation.

Overall Recommendations

There are numerous tools and strategies the City of Toronto could use in its textile waste strategy. Outlined below is a recommendation of the strategies, approach, and timeline the City of Toronto can adopt to address its textile waste.

317 Ibid.

318 Ibid.
When implementing the textile waste strategy, the City should adopt a phased in approach, like that described in “Policy Considerations”. The City should begin by focusing on voluntary reduction strategies and education campaigns, and over time move towards full compliance using by-laws and bans. As mentioned above, taking this approach gives residents and businesses time to learn about the issue and adjust their behaviours, making the eventual transition towards compliance based policies smoother.

The City should utilize collection boxes, operated in collaboration with a selected charity, to collect and handle textile waste. Collection boxes have proven successful with other municipalities, notably in the nearby City of Markham, which also provides an opportunity for information and best practice sharing. Collection boxes should be placed in public spaces, residential buildings, institutions, and retail spaces to make drop off as convenient as possible for individuals. Furthermore, collection boxes can be worked into an EPR framework, as evidenced by the French TLC EPR program\(^{319}\), if this system is later adopted by the province. Collaborating with a charity, such as The Salvation Army, to manage the collection boxes would save the City money and ensure that municipal efforts do not detract from charity textile collection, an important source of their revenue. This also provides legitimacy and familiarity with the program for residents, since charity collection boxes already exist in the City.

Initially, the City should focus on Reduce strategies, such as education campaigns and event support. Reduce strategies are cost-effective, and by attempting to prevent waste generation, the City can reduce or avoid long-run infrastructure and waste management costs. Additionally, education based campaigns provide residents and businesses with an information base and ensures they understand the negative impacts of this waste stream. This also ensures they understand the reason behind the implementation of stricter by-laws in the future, which in theory should make acceptance of regulation more likely.

During this time, the City should also begin introducing voluntary initiatives for retailers, residential buildings, and institutions. For example, the City could install collection boxes and introduce green procurement strategies. The City should also clearly state when voluntary initiatives will become mandatory. This provides an incentive to participate in the voluntary phase, and allows participants time to adjust their behaviours and determine what will be the most cost-effective way for them to meet requirements.

Eventually, the City should implement several by-laws relating to textile waste, based on previously voluntary initiatives. First, by-laws should require textile collection boxes in residential buildings, textile retailer spaces, and institutions, such as hospital and schools. The City has flexibility in determining thresholds for requirement. For example, only residential buildings with over a certain number of units, or retailers that transact a set dollar amount of business a year, will be required to have a collection box. This prevents small and low-volume businesses and buildings, in which diversion would also likely be small, from incurring costs of compliance that may be too high for them to continue to operate.

Following the implementation of textile waste by-laws, the City should pass a by-law which requires a minimum level of textile diversion for buildings. Such a by-law would prohibit

\(^{319}\) Supra at note 250.
buildings from disposing textile waste via garbage and require this material be diverted for reuse or recycling. Waste received at transfer stations would be monitored, with loads containing textile waste above a set threshold receiving verbal warnings or monetary fines. The acceptable threshold level can decrease, and the fine level can increase, over time. This by-law should be supported by a landfill ban on textiles.

Finally, the City should eventually implement a procurement by-law for municipal departments, making the previous voluntary green procurement initiative mandatory for this group. Once again, beginning with a voluntary program gives departments time and flexibility to identify their textile needs, find the most appropriate suppliers, and resolve any budget issues before the program becomes mandatory.

Table 7 provides an example of how the City of Toronto could implement the strategy described above over a ten-year period. Table 7 also suggests textile diversion targets the City should pursue, with the baseline being a 15% diversion rate320.

Table 7: Ten-Year Textile Strategy Timeline

<table>
<thead>
<tr>
<th>Phase</th>
<th>Timeline</th>
<th>Strategies</th>
<th>Diversion Target</th>
</tr>
</thead>
</table>
| Phase 1 | Years 1-3 | • Education campaign.
• Event support.
• Installation of collection boxes in public spaces
• Voluntary installation of collection boxes in private spaces (retailers, residential buildings, and institutions). | 25% |

| Phase 2 | Years 3-6 | • Continuation of education campaigns and event support.
• By-laws requiring textile collection boxes in residential buildings and in retailer spaces.
• Voluntary green procurement for municipal departments, retailers, and institutions. | 40% |

| Phase 3 | Years 6-10 | • Continuation of education campaigns and event support.
• Landfill ban on textile materials.
• Procurement by-law for municipal departments
• By-laws mandating building diversion levels. | 55% |

The City should ensure that it is monitoring and tracking key indicators of the program’s success, such as diversion rate and tonnes of textiles collected. This information should then be made publicly available. This provides government transparency and accountability as well as political rationales for the program. Additionally, throughout this process, the City of Toronto should pressure the Ontario provincial government to implement a provincial strategy targeting textile waste. The provincial government is better equipped to carry out more complex programs, such as EPR. Moving past the initial ten years, a more comprehensive program like EPR will further increase the likelihood of achieving more ambitious diversion targets.

320 Supra at note 83.
As textile production, consumption, and disposal continue to increase worldwide, action must be taken to mitigate the numerous issues this waste stream creates. The 3R Waste Hierarchy provides a template for designing solutions. Combined, Reduce, Reuse, and Recycle strategies can address these environmental and social issues by promoting sustainable consumption, discouraging waste generation, prolonging product life, and preserving resources. Furthermore, a textile waste strategy can provide the City with many benefits, including stimulating local businesses, creating jobs, and reducing waste management costs. The textile waste strategy recommended in this paper can be adopted and adapted to serve other municipalities with similar waste diversion goals as the City of Toronto. By implementing a comprehensive textile waste strategy, the City of Toronto can address its impact in this area, and serve as a model for other Canadian municipalities looking to do the same.
Appendix A

Figure 4: Global Fibre Consumption vs. Canadian Household Spending on Apparel

World Apparel Fibre Consumption (million tons)

<table>
<thead>
<tr>
<th>Year</th>
<th>Fibre Consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>69,728</td>
</tr>
<tr>
<td>2011</td>
<td>75,864</td>
</tr>
<tr>
<td>2012</td>
<td>82,540</td>
</tr>
<tr>
<td>2013</td>
<td>89,800</td>
</tr>
<tr>
<td>2014</td>
<td>93,700</td>
</tr>
<tr>
<td>2015</td>
<td>96,314</td>
</tr>
<tr>
<td>2016</td>
<td>99,000</td>
</tr>
</tbody>
</table>

Fibre consumption was estimated for the years 2011, 2012, and 2015 as data was unavailable for these years.
- 2011 and 2012 figures were calculated based on the assumption of an 8.8% increase over the previous years. Assumption is based on a steady state rate of change between 2010 and 2013.
- 2015 consumption numbers were calculated based on the assumption of a 2.9% increase over the previous year. Assumption is based on a steady state rate of change between 2014 and 2016.

Apparel Spending as a Percentage of Household Spending

<table>
<thead>
<tr>
<th>Year</th>
<th>Household Consumption Spending</th>
<th>Household Clothing & Footwear Spending</th>
<th>Apparel Spending as Percentage of Consumption Spending</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>$54,013</td>
<td>$3,053</td>
<td>5.65%</td>
</tr>
<tr>
<td>2011</td>
<td>$55,227</td>
<td>$2,870</td>
<td>5.20%</td>
</tr>
<tr>
<td>2012</td>
<td>$56,330</td>
<td>$2,946</td>
<td>5.23%</td>
</tr>
<tr>
<td>2013</td>
<td>$58,576</td>
<td>$3,024</td>
<td>5.16%</td>
</tr>
<tr>
<td>2014</td>
<td>$59,057</td>
<td>$2,983</td>
<td>5.05%</td>
</tr>
<tr>
<td>2015</td>
<td>$60,516</td>
<td>$2,871</td>
<td>4.74%</td>
</tr>
</tbody>
</table>

Household consumption spending refers to food, shelter, household operations, household furniture and equipment, clothing, transportation, health care, personal care, recreation, reading materials, education, tobacco, alcohol, games of chance, and miscellaneous expenses incurred by households during the reference year.
Appendix B

Figure 7: Textile Waste Generation & Municipal Spending on Waste Management

The City of Toronto Spending on Waste Management

<table>
<thead>
<tr>
<th>Year</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
<th>2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waste Collection & Transfer ($000s)</td>
<td>$29,138.6</td>
<td>$28,419.3</td>
<td>$30,470.7</td>
<td>$31,386.3</td>
</tr>
<tr>
<td>Processing & Transport ($000s)</td>
<td>$28,994.7</td>
<td>$30,824.2</td>
<td>$30,895</td>
<td>$30,946.6</td>
</tr>
<tr>
<td>Total Spending ($000s)</td>
<td>$58,133.3</td>
<td>$59,243.5</td>
<td>$61,365.7</td>
<td>$62,332.9</td>
</tr>
</tbody>
</table>

The City of Toronto Textile Waste Generation

<table>
<thead>
<tr>
<th>Year</th>
<th>2011</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
<th>2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Occupied Households</td>
<td>1,989,705</td>
<td>2,105,833</td>
<td>2,135,910</td>
<td>2,166,415</td>
<td>2,197,356</td>
</tr>
<tr>
<td>Total Waste Generated (000 kg)</td>
<td>N/A</td>
<td>37,905</td>
<td>38,446</td>
<td>38,995</td>
<td>39,552</td>
</tr>
</tbody>
</table>

The number of occupied households was estimated for the years 2015, 2017, and 2018 as data was unavailable for these years.

- Figures were calculated based on the assumption of a 1.43% increase over the previous years. Assumption is based on a steady state rate of change between 2011 and 2016.

Total textile waste generated was estimated using the assumption that each Toronto household produces 18 kg of textile waste each year.
References Cited

“2016 City of Toronto Budget Summary.” The City of Toronto. Accessed from http://www1.toronto.ca/City%20of%20Toronto/Strategic%20Communications/City%20Budget/2016/PDFs/GFOA%202016%20City%20of%20Toronto.pdf

“Bad Things Happen When the Wrong Items and Recycling Get Together.” City of Toronto. Accessed from http://www1.toronto.ca/wps/portal/contentonly?vgnextoid=5627e8660d035510VgnVCM10000071d60f89RCRD

“Green Fleet.” *City of Toronto.* Accessed from http://www1.toronto.ca/wps/portal/contentonly?vgnextoid=a47107ceb6f8e310VgnVCM10000071d60f89RCRD

“ReUseIt.” *City of Toronto*. Accessed from http://www1.toronto.ca/wps/portal/contentonly?vgnextoid=c46d433112b02410VgnVCM1000071d60f89RCRD

Salman, A. “2017: Canadians love social media but Canadian businesses hate to embrace it.”

Statistics Canada. “Canadian International Merchandise Trade Database.” *CANSIM.* Accessed from http://www5.statcan.gc.ca/cimt-cicm/topNCountries-pays?lang=eng&getSectionId()=0&dataTransformation=0&refYr=2017&refMonth=3&freq=12&countryId=0&getUsaState()=0&provId=1&retrieval=Retrieve&save=null&country=null&tradeType=1&topNDefault=10&monthStr=null&chapterId=63&arrayId=0§ionLabel=XI%20-

“Statistics Database.” World Trade Organization.

“Textiles Market Analysis by Raw Material (Cotton, Chemical, Wool, Silk), By Product (Natural-Fibres, Polyester, Nylon), By Application (Household, Technical Fashion & Clothing), By Region (North America, Europe, Asia Pacific, And Segment Forecasts,

Thompson, N. “Textile Collection Boxes.” 2017

Toronto Repairathon, accessed from http://repairathon.com/

