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Abstract 

Researchers are often interested in testing for the equivalence of population variances. 

Traditional difference-based procedures are appropriate to answer questions about 

differences in some statistic (e.g., variances, etc.). However, if a researcher is interested 

in evaluating the equivalence of population variances, it is more appropriate to use a 

procedure specifically designed to determine equivalence. A simulation study was used to 

compare newly developed equivalence-based tests to difference-based variance 

homogeneity tests under common data conditions. Results demonstrated that traditional 

difference-based tests assess equality of variances from the wrong perspective, and that 

the proposed Levene-Wellek-Welch test for equivalence of group variances using the 

absolute deviations from the median was the best performing test for detecting 

equivalence. An R function is provided in order to facilitate use of this test for 

equivalence of population variances. 

 

keywords: equivalence testing, homogeneity of variances, ANOVA, dispersion 

  



3 

 

Equivalence of Population Variances:  

Synchronizing the Objective and Analysis 

 Homogeneity of variances occurs when population distributions have similar 

dispersion. Researchers are becoming increasingly interested in the properties of their 

data aside from central tendency, such as dispersion. For instance, Borkenau, Hrebícková, 

Kuppens, Realo, and Allik (2013) hypothesized that self-reported personality scores 

would have similar variability across males and females. Salgado (1995) examined 

whether the variability in validity coefficients in self-report tests for a specific construct 

was equivalent to the variability in validity coefficients in psychomotor tests evaluated by 

an external rater of the same construct. A more well-known reason for exploring 

variances is to verify the homogeneity of variances assumption related to traditional 

parametric tests of mean differences. Regardless of the reason, researchers need a valid 

test for assessing questions related to variability. 

There has been substantial research on different tests that can be used to test for 

differences in variances. This paper discusses whether traditional tests of variance 

homogeneity address the problem of variance equality from the wrong perspective. We 

argue that to test for variance homogeneity, one should use equivalence tests because the 

research hypothesis of variance equality is properly aligned with the alternate hypothesis, 

not the null hypothesis. To that end, we first situate a test for equality of group variances 

within the equivalence testing framework. Even though difference-based procedures are 

appropriate to answer questions about differences in some statistic (e.g., means, 

variances, etc.), these procedures are not appropriate to address questions related to 

equivalence.  Then, the main goal of this paper is to compare our newly developed tests 
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for equivalence of group variances to currently recommended variance homogeneity tests 

under data conditions common in educational and psychological research. A review of 

traditional variance homogeneity tests as well as equivalence testing is outlined before 

developing the new equivalence testing procedures for detecting variance homogeneity. 

Why Test for Equivalence of Variances? 

One of the most common reasons that researchers want to test for equivalence of 

group variances is to justify the use of tests that assume variance homogeneity in their 

primary analysis. In this case, the researcher would like to find that the variances are 

equal across groups. It is important to note that it is not necessary to use a preliminary 

test of variance homoscedasticity in order to justify the use of heteroscedastic procedures 

(e.g., Welch’s heteroscedastic ANOVA instead of the traditional ANOVA) because these 

tests are generally effective regardless of whether variances are equal or unequal across 

groups. Many researchers have suggested abandoning non-robust parametric procedures 

completely in favor of robust procedures that do not require the homogeneity of variances 

assumption (e.g., Wilcox, Charlin, & Thompson, 1986; Zimmerman, 2004). However, 

researchers in the educational and behavioral sciences still widely use traditional 

parametric procedures and need to screen for the assumptions associated with these tests.  

A more interesting reason for assessing equivalence of variances is that the 

primary research question is concerned with whether the dispersion of the dependent 

variable is similar across multiple groups. As Parra-Frutos (2009) discusses, researchers 

are becoming more interested in the properties of their data aside from central tendency, 

such as dispersion or variability. For instance, research questions concerning 

"uniformity" or "similarity" of groups are increasingly common, which encompasses 
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questions about the comparability of the dispersion of scores among groups. Bryk and 

Raudenbush (1988) argue that the presence of heterogeneity of variance across groups 

can have important implications for the research conclusions. Specifically, the presence 

of heterogeneity of variances in an experimental study indicates the presence of an 

interaction between person characteristics and treatment group membership. In other 

words, heterogeneity of variances can indicate that individuals vary in their response to 

the treatment (assuming the treatment group was a fixed effect).  This could be an 

important consideration for researchers, and valid tests for evaluating heterogeneity or 

homogeneity of variances (depending on the researcher's expectations) would be 

important to evaluate within an experimental design. Indeed, in more complex modeling 

procedures, comparing the variability associated with a particular effect (e.g., variability 

around the intercept or slope in a latent growth curve model) between different groups is 

a common research goal (e.g., there are no differences between the groups on the 

variability around the slope).  

Given these two reasons for testing for variance homogeneity, a valid test for 

assessing equivalence of variances is quite relevant to the kinds of questions educational 

researchers (and researchers in related disciplines) are interested in and necessary if a 

researcher wants to justify the use of a traditional mean difference test. However, as we 

argue in this paper, the currently available procedures are incorrectly assessing variance 

equality, so new procedures need to be developed and evaluated. 

 Traditional Approaches to Testing for Variance Homogeneity 

In order to assess variance homogeneity, Levene (1960) proposed transforming 

the sample scores to the absolute deviations of the sample scores from the sample mean 
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with jijij MXz   , where Xij is the score of the ith individual in the jth group and Mj is 

the mean of the jth group, and then using a traditional ANOVA F-test on the ijz  to assess 

variance equality across groups. The null hypothesis for Levene's procedure is that the 

population variances of all J groups are equal, 22

2

2

10 : JH    . The alternate 

hypothesis states that at least one group variance is not equal to at least one other.  

Since Levene’s test was published, there have been numerous modifications 

proposed because the original version demonstrates some undesirable statistical 

properties, such as low power compared to other tests (especially when sample sizes are 

unequal), and non-robustness to non-normally distributed Xij. Previous simulation studies 

(e.g., Conover, Johnson, & Johnson, 1981; Keselman, Games, & Clinch, 1979; Lim & 

Loh, 1996; Nordstokke & Zumbo, 2010) have made a wide range of recommendations 

regarding the optimal homogeneity of variance test that is also robust to non-normality. 

For instance, Conover et al. (1981) suggest that the original Levene test using the median 

is one of the best performing statistics across a wide range of analytic conditions. Lim 

and Loh (1996) similarly recommend the Levene test using the median, but suggest that a 

bootstrapped version improves the performance of this statistic. Nordstokke and Zumbo 

(2010) recommended a rank-based Levene test as the most robust test statistic across 

many data conditions, and rank-based Levene tests were also recommended in the 

Conover study as having some desirable properties under certain conditions. Keselman et 

al. (1979) report that no single test could be uniformly recommended, as the performance 

of many variance homogeneity statistics depended on the analytic condition. They did 

suggest, however, that the original Levene using the median or the Levene using the 
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median with a Welch adjustment might be the best choices. In a later study, Keselman et 

al. (2008) looked at trimmed-means strategies and suggested that the original Levene 

with trimmed means or the Levene using trimmed means with a Welch adjustment 

performed the best across the conditions evaluated (based on Type I error rates only). 

They further suggest, contrary to the Lim and Loh study, that bootstrapping was not 

necessary because satisfactory Type I error rates can be obtained without bootstrapping. 

Despite nearly 50 years of research, there does not seem to be a general consensus for a 

single test statistic for evaluating homogeneity of variances that works uniformly well 

across common data scenarios. However, the Levene test based on the median has often 

been recommended because it performs well across a wide range of conditions.    

Traditional Variance Homogeneity Procedures Evaluated in the Current Study. The 

current study evaluated four traditional difference-based tests for homogeneity of 

variances, each of which is described below. 

Levene’s (1960) original test for homogeneity of variances ("Lev_mean"). 

Although Levene's (1960) test was not recommended in the literature (e.g., Conover et 

al., 1981; Lim & Loh, 1996), it is still regularly reported in popular statistical software 

programs, so it was included in this study.  

Levene’s test using the median ("Lev_mdn"). This modification of Levene's 

test, originally proposed by Brown and Forsythe (1974), was considered the best 

procedure in Conover et al.’s (1981) simulation study, in terms of most accurate Type I 

error rates. Instead of using the jth sample mean in the sample score transformation, this 
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modification uses the transformation, jijij MDNXz ~ , where jMDN  is the jth sample 

median. The transformed scores are analyzed using an ANOVA F- test.  

Levene’s original test with a Welch adjustment ("LevWelch_mean"). 

Welch’s (1951) heteroscedastic adjusted degrees of freedom procedure has been 

proposed as a solution to unequal variance issues in independent groups design 

procedures like Student’s t-test and the ANOVA F-test. However, the Welch adjustment 

to the ANOVA F-test also has relevance to Levene’s test for homogeneity of variances 

(and its modifications), given that Levene’s test uses the ANOVA F-test and thus also 

assumes homogeneity of variances (more specifically, homogeneity of the variances of 

absolute values of the deviation scores, zij). It seems illogical to have a test for 

homogeneity of variances that, itself, assumes homogeneity of variances. Thus, 

researchers have proposed using the Welch-adjusted statistic to test for homogeneity of 

variances (e.g., Keselman et al., 1979; Parra-Frutos, 2009; Wilcox, Charlin, & 

Thompson, 1986).  

 As with the original Levene test, one simply substitutes the transformed scores,

jijij MXz  , into the F` equation to assess homogeneity of variances (without 

requiring the homogeneity of variances assumption), so that the test statistic becomes: 
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where 
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Levene’s median-based test with Welch adjustment ("LevWelch_mdn"). This 

procedure uses the absolute deviations from the median, jijij MDNXz ~ , to conduct 

the Welch ANOVA F` to assess homogeneity of variances (outlined previously). In this 

case jZ is the mean of the ijz~ for the jth group. Given that the Brown-Forsythe version of 

the procedure is most widely recommended in the literature, a Welch-version of this test 

was included in this study. 

Problems with Traditional Tests for Equivalence of Variances 

Even though the results of previous simulation studies have found a number of 

homogeneity of variance tests to perform adequately under different data conditions, they 

are all fundamentally incorrect for the problem of determining the equality of population 

variances, in that these difference-based procedures aim to fail to reject a null hypothesis 

regarding the exact equality of group variances. Specifically, if one is using a traditional 

test for homogeneity of variances, the goal is to fail to reject the null hypothesis for these 

tests, 
22

2

2

10 : JH    (where J = number of groups). In other words, the research 



10 

 

hypothesis that the variances are equal is aligned with the null hypothesis rather than the 

alternate hypothesis. The probability of a Type I error when testing the null hypothesis
 

22

2

2

10 : JH      is the chance of incorrectly concluding there is a difference 

between the variances when, in fact, there are no differences in the variances. Type I 

error rate control is protection against incorrectly identifying a difference among two or 

more variances when they are the same. However, if one fails to reject a true null 

hypothesis, one cannot conclude that the variances are equivalent; failure to reject the 

null hypothesis 22

2

2

10 : JH     
 
only implies that there is not enough evidence to 

conclude that there is a difference among the variances. 

 Another issue with traditional tests is that rejection or non-rejection of the null 

hypothesis of homogeneity of variance conveys very little about the potential similarity 

of the group variances in question. Specifically, the null hypothesis evaluated by 

difference-based homogeneity of variance tests is too specific and impractical for 

assessing the equivalence of the group variances. For instance, if there is a large sample 

size and a very minor difference among the group variances, it is likely that a difference-

based variance homogeneity test will reject the null hypothesis and declare the population 

variances unequal. However, small differences in the variances are usually expected, and 

thus the results of the traditional homogeneity of variance test and subsequent 

conclusions regarding the similarity of the population variances in this case could be 

impractical. Conversely, smaller sample sizes may result in very little power to detect 

important differences in the variances, resulting in inaccurate conclusions about the 

population variances. More generally, traditional difference-based procedures are less 
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likely to detect equality of variances as sample size increases, which is incongruent with 

typical null hypothesis testing expectations.  

Equivalence Testing 

 Equivalence tests are appropriate for a research question that deals with a lack of 

association. For example, a researcher may be interested in demonstrating that the means 

of groups are equivalent, that no relationship exists between two variables, or that 

variables do not interact (e.g., Cribbie, Gruman, & Arpin-Cribbie, 2004; Cribbie, 

Ragoonanan & Counsell, in press; Goertzen & Cribbie, 2010; Robinson, Duursma, & 

Marshall, 2005; Rogers, Howard, & Vessey, 1993, Schuirmann, 1987; Wellek, 2010), or 

that the variances of two or more populations are equal (as proposed in the current study). 

In equivalence testing, a lack of association implies that the difference between two 

statistics is so small that it can be considered inconsequential or meaningless. This 

difference is defined a priori as the equivalence interval (e.g., -δ, δ; discussed in more 

detail later). In other words, an equivalence test assesses whether the relationship 

between two or more entities (e.g., difference between population variances) falls within 

a specified interval which defines an unimportant difference (e.g.,   2

2

2

1 ).  

Novel Equivalence-Based Homogeneity of Variance Tests Evaluated in the Current 

Study 

Given the fundamental problems with traditional tests for homogeneity of 

variances, we developed an equivalence-based test for homogeneity of variances along 

with several modifications. Previously, Wellek (2010) developed an approach for 

assessing the equivalence of variances for two groups that utilizes the ratio of the largest 

to smallest variance, which, as suggested by an anonymous reviewer, is similar in nature 
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to the Fmax test developed by Hartley (1950). The current research explores an alternative 

approach that uses the raw difference rather than the ratio and is suitable for two or more 

independent groups. The null hypothesis for the one-way equivalence test for 

homogeneity of variances is that the difference among the variances of the groups is 

equal to or larger than an a priori determined cutoff (ε
2
):  

22*
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where 2* quantifies the difference among the variances of the groups and ε
2
 represents 

the smallest difference in the variances that is considered meaningful. Note that the 

equivalence interval includes any value less than ε
2
, and contains a lower bound of zero 

since we are working in squared units (which differs from the equivalence interval of 

many other equivalence tests which are symmetric around zero). More discussion 

regarding ε
2 

is provided below. 

 Levene-Wellek test for equivalence of variances ("LW_mean"). This 

procedure is based on Wellek's (2010) original one-way equivalence test statistic (which 

simultaneously evaluates the equivalence of all J population means), substituting 

Levene's original transformation in place of the raw scores. This new hybrid test statistic 

can be presented as: 
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with Levene’s original transformation, jijij MXz  , so that 
j
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represents the noncentrality parameter, which is computed by multiplying the average 

group size by the squared upper bound of the equivalence interval. It is important to note 

that for simplicity we have framed the LW as a noncentral F statistic as opposed to the 

traditional formulation in the metric of ψ
2
 (Wellek, 2010).

 
As mentioned previously, both the original Levene test and Wellek’s one-way test 

assume homogeneity of variances, which is an unreasonable assumption when these tests 

are used to evaluate homogeneity of variances. In addition, previous research on 

traditional difference-based homogeneity of variance tests have found that certain 

modifications of the original Levene test perform better. Thus, this study included three 

additional procedures based on modifications of this newly developed Levene-Wellek 

test, as described next.  

Levene-Wellek using the median ("LW_median"). This procedure is an 

adaptation of the Levene-Wellek test (defined above) using the absolute deviations from 

the sample median instead of the absolute deviations from the sample mean (i.e., Brown-

Forsythe transformation of the sample scores). 

Levene-Wellek-Welch ("LWW_mean").  This version of the procedure is based 

on the Levene-Wellek test on the mean, but including a Welch adjustment to test for 

equivalence of group variances without assuming homogeneity of (transformed score) 

variances. The new equivalence-based robust test statistic can be presented as: 
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As with the LW test, the test statistic is approximately distributed as noncentral F with 

the noncentrality parameter  ̅ε
2
, J-1 numerator degrees of freedom and denominator 

degrees of freedom of: 
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 Levene-Wellek-Welch using the median ("LWW_median"). The final novel 

procedure developed for this study uses the previously defined Levene-Wellek-Welch 

test, but instead of the original Levene transformation, this procedure uses the Brown-

Forsythe transformation of the absolute deviations of the sample scores from the median. 

The Equivalence Interval 

Wellek (2010) provides several broad recommendations in terms of selecting 

equivalence intervals. However, the nature of the research should be the determining 

factor in the selection of an appropriate equivalence interval. Indeed, Wellek and other 

equivalence testing researchers have cautioned that general recommendations or fixed 

general rules regarding the selection of an equivalence interval is not advisable, but 

should be a point of careful consideration that is specific to the individual study. Epsilon 

( ) can be described as the maximum difference in the variances that one would consider 

unimportant. In general, Wellek suggests that entities differing by no more than 10% are 

very similar, while differences of more than 20% are practically significant. Thus, a 10% 
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difference would be a strict equivalence criterion (ε = .25) and 20% would be a more 

liberal equivalence criterion (ε = .50; see Wellek, 2010, pp. 16, 17, & 22 for details).  

Issues to Consider in Comparing Equivalence Tests and Difference Tests  

 It is important to discuss some difficulties with comparing the results of 

difference-based tests to those of equivalence-based tests. The major issue is that these 

two types of tests evaluate different hypotheses. Difference-based tests evaluate a point-

null hypothesis that is very specific, and in the case of variance equality, quite 

impractical. For example, it is strictly impossible to find that variances are exactly equal, 

if one uses enough decimal places. In addition, the research hypothesis regarding 

variance equality is aligned with the null hypothesis, rather than the alternate hypothesis, 

so the researcher's goal is to “accept” the null hypothesis.  

 Equivalence-based tests evaluate the null hypothesis that the difference among the 

variances falls outside a pre-specified equivalence interval. Thus, to determine that the 

variances are nearly equivalent, one wants to reject this null hypothesis and find instead 

that the difference among the variances falls within the equivalence interval. In this case, 

the research hypothesis is the alternate hypothesis, which is congruent with normal null-

hypothesis testing procedures. However, comparisons could be made regarding the 

overall pattern of results for detecting homogeneity of variances between these two 

testing methods. The outcome in this study was the proportion of declarations of 

equivalence. In other words, what was the probability of detecting equivalence (“power” 

to detect equivalence)? This outcome was defined by the proportion of non-rejections of 

the null hypothesis in the difference-based tests and by the proportion of rejections of the 

null hypothesis for the equivalence-based tests. 
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Method 

Monte Carlo simulations were used to compare the probability of declaring 

equivalence for the four difference-based tests for homogeneity of variances to that of the 

four novel equivalence-based tests for equality of variances. In addition, Type I error 

rates and power for the equivalence procedures were assessed and compared. The 

performance of the eight homogeneity of variance tests was evaluated using a normal 

population distribution as well as a positively skewed population distribution (χ² with 3 

degrees of freedom). In order to evaluate the Type I error rates of the equivalence-based 

procedures, the liberal bounds of α ± 0.5α (Bradley, 1978) were used. Therefore, with an 

α level of .05, a procedure was considered to have an accurate empirical Type I error rate 

in a specific condition if the rate fell between .025 and .075. It is important to note that if 

an inaccurate Type I error rate is obtained for a specific condition, the corresponding 

power rate for that condition should also be interpreted with caution since it could be 

artificially inflated or deflated as a result of the imprecise Type I error control. The 

simulations were conducted with the open-source statistical software R (R Development 

Core Team, 2016). 

The definition of “power” is different for the equivalence-based tests compared to 

the difference-based tests because, as discussed previously, these two types of tests have 

different null hypotheses. Therefore, instead of determining the probability of rejecting a 

false null hypothesis, that is, “power” for any particular test, this study determined the 

“probability of finding equivalence” for both the equivalence-based and the difference-

based procedures. In other words, this study focused on the probability that a particular 

test declares the variances equivalent when they are in fact equivalent (where 
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“equivalent” is defined by the null hypothesis for the difference-based tests and by the 

alternate hypothesis for the equivalence-based tests). Empirical Type I error rates for the 

equivalence-based tests were obtained by deriving the differences in the variances that 

matched the bounds of the equivalence interval (i.e., 22  ) in conditions where the 

population variances differed across groups. See Figure 1 for further clarification. 

We looked at J = 4 groups for all conditions. Several variables were manipulated 

in this study including sample size ( ̅ = 10, 25, 50, 100), balanced versus unbalanced 

designs (i.e., equal versus unequal group sizes), equality/inequality of population 

variances, and pairings of unequal sample sizes with unequal population variances. The 

summary of the conditions tested in this study can be found in Table 1. For the 

equivalence-based tests, the conservative and liberal equivalence limits of ε = .25 and ε = 

.50, respectively, were used (Wellek, 2010). However, the pattern of results for both 

equivalence limits were similar, so only the results for ε = .50 are presented. As expected, 

the power rates for ε = .25 were lower across all conditions.  

For the normally distributed conditions, nj standard normal observations were 

generated for the jth group, where j = 1, …, J, and the resulting values were multiplied 

by σj so that the observations would have variances, σ
2

j, as outlined in Table 1. In order to 

examine the effects of positively skewed distributions on the performance of the test 

statistics, nj observations were generated for each of the J groups from a χ² distribution 

with three degrees of freedom. In order to ensure the observations from the χ² distribution 

had the variances specified in Table 1, first the mean and variance of the distribution had 

to be set to 0 and 1, respectively. This was accomplished by subtracting the mean (mean 

= df = 3) and dividing by the standard deviation (sd = √    = √       ≈ 2.45) of the χ² 
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distribution. The resulting values were then multiplied by σj to produce a distribution of 

observations with the variances outlined in Table 1. 

 Unbalanced designs (i.e., unequal sample sizes across the groups) that are paired 

with unequal variances can severely affect Type I and Type II error control of ANOVA-

type procedures (Keselman et al., 1998; Othman et al., 2004). Thus, the current study 

examined both positive (directly) and negative (inverse) pairings of the variances and 

sample sizes. Positive pairing occurs when the largest group size is paired with the largest 

variance and the smallest group size is paired with the smallest variance. Negative pairing 

occurs when the largest group size is paired with the smallest variance and the smallest 

group size is paired with the largest variance. Previous research on the robustness of 

ANOVA-type procedures (Othman et al., 2004; Yin & Othman, 2009) has found that 

positive pairings result in conservative Type I error rates and negative pairings result in 

liberal Type I error rates. The sample size pairings can be found in Table 1. 

Once the observations were generated for each replication, the four difference-

based procedures and the four equivalence-based procedures were performed on the data 

of each replication. To determine the probability of declaring equivalence for the 

difference-based tests, it was noted when the null hypothesis was not rejected. In order to 

determine the probability of declaring equivalence for the equivalence-based tests (i.e., 

power), it was noted when the null hypothesis was rejected. This process was repeated 

across 10,000 replications per condition to obtain the probability of declaring equivalence 

for each condition.  

Results 
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 As noted previously, due to similar patterns of results, only results for ε = .50 are 

presented
1
.  

Equivalence-Based Procedures 

 Empirical Type I error rates.  

 A summary of the Type I error rate results can be found in Table 2; recall that 

these are the Type I error rates that were obtained when 22*  . It is hoped that this 

table will help provide an easily interpretable summary of the Type I error control of the 

procedures. More specific observations are also discussed below.  

 Normal Distributions. Type I error rates in the equal sample size conditions were 

maintained close to the nominal level, ranging from .0381 to .0702. For the positive 

pairing conditions, the Levene-Wellek-Welch procedures (LWW_mean, LWW_median) 

had acceptable Type I error rates for all sample sizes. However, both of the Levene-

Wellek procedures (i.e. LW_mean, LW_median) had overly liberal Type I error rates at 

the highest sample size (.084 and .0869). For the negative pairing conditions, 

LWW_median had a very liberal Type I error rate at the smallest sample size condition 

(.1014 at  ̅ = 10). However, at the larger sample sizes in the negative pairing conditions, 

the Type I error rates were acceptable for the LWW_median. The other three equivalence 

procedures maintained the Type I error rates within the bounds of .025 to .075 in all of 

the negative pairing conditions. 

 Positively Skewed Distributions (χ², 3 df). All of the equivalence procedures 

maintained accurate Type I error rates when variances were negatively paired with 

                                                 

1
 Tables/Figures of the full results of all conditions evaluated in this study can be obtained by emailing the 

corresponding author. 
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unequal sample sizes. However, when variances were positively paired with the largest 

unequal sample size,  ̅ = 100, only the LWW_median had an accurate Type I error rate. 

Additionally, the LWW_mean had a Type I error rate that was too conservative (.0196) 

when  ̅ = 10 and sample sizes were positively paired with the variances, and a Type I 

error rate too liberal (.0814) in the largest equal sample size condition. 

 Power 

 A summary of the power results for the equivalence procedures can be found in 

Table 3. When variances were exactly equal, the difference in the variances (i.e., zero 

difference) fell within the equivalence interval, so this was a power condition for the 

equivalence-based procedures. Additionally, for a 2:1 variance ratio this difference in the 

variances was within the equivalence interval for the equivalence procedures, such that 

ψ*² < ε
2
; therefore, this condition was another test of the power of these procedures. 

 Normal Distributions. Over 90% power for detecting equivalence was achieved 

when  ̅ = 50, and reached nearly 100% in the largest sample size conditions. This result 

occurred for equal sample sizes as well as positive and negative pairing conditions. 

 For a 2:1 variance ratio in the largest sample size condition, power was 

approximately 41% to 61%. All four equivalence procedures had comparable power rates 

across all sample size and variance combinations under normal distribution conditions.  

 Positively Skewed Distributions (χ², 3 df). Power approached 99% for the median 

based-procedures when variances were exactly equal. However, for the mean-based 

procedures, power was slightly lower, at approximately 95%.  

 For a 2:1 variance ratio, when sample sizes were equal, the median-based 

procedures had the highest power at all sample sizes. This power advantage for the 
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median-based tests was also observed when unequal sample sizes were positively paired 

with variances and when unequal sample sizes were negatively paired with variances. See 

Figure 2. 

False declarations of equivalence  

 For a 6:1 variance ratio, 2* was greater than ε²; thus, the differences in the 

variances exceeded the equivalence interval and the equivalence procedures should not 

reject the null hypothesis of variance heterogeneity. This was also another evaluation of 

the Type I error rates of the equivalence procedures, given that the null hypothesis of 

variance heterogeneity was true in this condition. Specifically, the difference among the 

group variances exceeded the equivalence interval. Note, however, that the error rates in 

this variance ratio condition should be less than the Type I error rates obtained when the 

differences among the variances matched the bounds of the equivalence interval.  

 Normal Distributions. As expected, the probability of declaring equivalence was 

low at small sample sizes and was zero in the larger sample size conditions. 

 Positively Skewed Distributions (χ², 3 df). The error rates were almost zero when 

sample sizes were equal, or unequal sample sizes were positively paired with the 

variances. The error rates were slightly higher for the negative pairing conditions, 

although they remained close to the empirical Type I error rates.In the largest sample 

sizes conditions, the error rates across all conditions were at or nearly zero (see Figure 3).  

Difference-Based Procedures 

 Normal Distributions. When the population variances of the groups were exactly 

equal, this was a Type I error condition for the difference-based procedures. Therefore, 

the probability of declaring equivalence (i.e., failing to reject the null hypothesis) in this 
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condition should have been approximately 1 – α (in this case, .95), regardless of sample 

size. Although in most cases the rates were close to .95, with positive and negative 

pairings of unequal sample sizes and variances and small sample sizes, the rates were, as 

expected, sometimes too conservative or too liberal.  

 For the 2:1 variance ratio condition, the difference-based tests had a very high 

probability of declaring equivalence at  ̅ = 10 (note that this is an incorrect decision, i.e., 

a Type II error). In the largest sample size conditions ( ̅ = 100), the probability of 

declaring equivalence was much lower in the equal sample size conditions. It is important 

to note that the 2:1 variance ratio in this condition meant the null hypothesis of the 

difference-based procedures was false, and thus these results were not unexpected. 

However, the backward nature of using difference-based tests for addressing questions of 

equivalence was apparent, as equivalence is found up to 97% of the time at small sample 

sizes, but this same difference in the variances was statistically significant most of the 

time in the largest sample size conditions. 

 For a 6:1 variance ratio in the smallest sample size conditions, the probability of 

declaring equivalence was as high as 85% in the negative pairing conditions, and was as 

high as 72% in equal sample size conditions.  

 Positively Skewed Distributions (χ², 3 df). As discussed previously, when the 

variances of the groups were exactly equal, this condition evaluated Type I error rates for 

the difference-based procedures. Therefore, the probability of declaring equivalence in 

this condition should have been approximately 1 – α (.95) for the difference-based 

procedures. This result was obtained for most replications with the median-based tests, 

but the mean-based procedures demonstrated rates that were often very conservative. The 
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rates across the procedures ranged from approximately 95% with the Levene test using 

the median, but were as low as 80% for the other procedures. Thus, the probability of 

declaring equivalence was less than what was found in the normally distributed 

conditions. Note that, as before, sample size did not impact the probability of declaring 

equivalence in this condition for the difference-based tests.   

 When there was a 2:1 variance ratio, again, the point-null hypothesis for the 

difference-based procedures was false. Consequently, the probability of declaring 

equivalence (i.e., not rejecting the null hypothesis) decreased as sample sizes increased. 

See Figure 2. 

 For a 6:1 variance ratio, many false declarations of equivalence were observed for 

the difference-based procedures in the smaller sample size conditions (see Figure 3). 

However, in the largest sample size conditions, the rate was approximately zero.  

Discussion 

 Results of the simulation study demonstrated the backward nature of the 

traditional difference-based procedures for assessing equality of population variances. 

Specifically, power for detecting equivalence was in the wrong direction such that 

increased sample sizes resulted in decreased power for detecting equivalence of the 

variances. Additionally, the simulation results helped demonstrate that the traditional null 

hypothesis is impractical, which is important because small differences in the variances 

are often inconsequential and are expected. Even though the difference-based tests often 

failed to reject the null hypothesis when there were small differences in the variances, 

this was because they were not performing correctly. As sample sizes increased, the 

chances of declaring small differences in the variances as important differences 
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increased. Conversely, large and arguably important differences in the group variances 

were often declared nonsignificant by the difference-based tests when sample sizes were 

small.  

 Given these problems with the traditional difference-based procedures, 

equivalence-based procedures are more appropriate if the research goal is to evaluate 

variance equality. Equivalence tests align the research hypothesis of variance equality 

with the alternate hypothesis, so that power to detect equivalence and reject the null 

hypothesis increases with sample size, as expected when using null-hypothesis testing 

procedures. Additionally, the use of an interval hypothesis, rather than a point-null 

hypothesis, allows researchers to dictate how much or little overlap in the variances 

might be important. In general, small differences in the variances are expected and 

usually are inconsequential, so a test designed to assess approximate equality is far more 

practical than tests that evaluate exact equivalence (i.e., zero difference among the 

population variances). This study developed four procedures, combining existing 

procedures for variance equality and equivalence testing logic. 

  Based on the Type I error rates and power results, the median-based Levene-

Wellek-Welch equivalence test was the most robust procedure across the conditions 

tested, with consistently higher power over the other procedures. Therefore, it is 

recommended to researchers who wish to assess equality of group variances.  

 In order to facilitate use of our newly developed procedure, a function for the 

Levene-Wellek-Welch procedure based on the absolute deviations from the median was 

developed in R (R Project, 2015) and is available at http://cribbie.info.yorku.ca  

Limitations 
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 Although this study attempted to be as comprehensive as possible, there are many 

other conditions that could be tested to further evaluate the new equality of variances 

equivalence procedures. It is difficult to test every data scenario a researcher might 

encounter. However, the results supported the objectives of this study, in that the 

fundamental flaws of traditional difference-based tests were revealed, and the newly 

developed equivalence-based procedures were subjected to various data conditions to 

evaluate their robustness. In addition, the conditions selected for this study represent 

common data analytic conditions in educational and psychological research. However, 

research into the performance of the proposed equivalence-based tests of homogeneity of 

variance across a wider range of conditions is definitely recommended. 

A broader limitation of equivalence testing procedures in general involves the 

decision around appropriate equivalence intervals. Specifying the equivalence interval is 

the most challenging aspect of equivalence testing because there are no concrete rules to 

help researchers choose the appropriate equivalence interval. The equivalence interval 

must be selected based on researchers’ knowledge of their field, their expertise with the 

constructs and samples being used, and an understanding of how “meaningless” might be 

quantified for their particular research question. While this could be construed as a 

limitation, we challenge researchers to think carefully about meaningless differences 

among their groups when selecting equivalence intervals rather than relying on rules of 

thumb or generic guidelines. 

Applied Example 

 This section presents a demonstration of how to use the Levene-Wellek Welch 

test, the best-performing equivalence-based homogeneity of variance test in terms of 
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power and Type I error control, using a substantive example from psychological research. 

We also contrast the results of this test with that of the original Levene median-based test 

using the same data. This example achieves two goals: 1)  demonstrate the use of the new 

equivalence-based homogeneity of variance procedure; and 2)  highlight the fundamental 

flaws of the original Levene-type difference-based tests for homogeneity of variances. 

 Data were taken from Arpin-Cribbie, Irvine, and Ritvo (2011). Participants 

scoring very high on maladaptive perfectionism were randomly assigned to one of three 

groups: no treatment, general stress management, or cognitive behavioural therapy 

(CBT). Participants were measured on various outcomes at pretest and again following 

the intervention 11 weeks later (posttest). The overall sample size was 83. Of interest was 

ensuring that the three randomly assigned groups did not differ on baseline measures in 

terms of central tendency, but also to ensure that the dispersion of scores within each 

group was comparable between groups. The original study looked at equivalence of the 

groups on all pretest measures, but the current example just tests for the equivalence of 

variances on the baseline measure of the Perfectionism Cognitions Inventory (PCI; Flett, 

Hewitt, Blankstein, & Gray, 1998) for the purpose of demonstration. The variances for 

the stress management group (s
2
 = 110.79) and the no treatment group (s

2
 = 156.28) were 

similar, but the CBT group variance (s
2
 = 241.79) was more than two times larger than 

the Stress Management group. 

 The original Levene test indicated that there were no statistically significant 

differences among the group variances when using the popular α = .05, F = 2.50, p = .09. 

The Levene test using the median (i.e., the Brown-Forsythe modification of the Levene 

test) also indicated that there were no statistically significant differences in group 
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variances, FMed = 2.10, p = .13. Next, the newly developed median-based Levene-Wellek-

Welch equivalence test was used, setting an equivalence interval to ε = .50. This 

equivalence test found that the variances were not significantly equivalent (LWWmed = 

6.42 > Fα, J-1, N-J,  ̅   = 4.10). Thus, the difference-based tests found that the group 

variances were not different, but the equivalence test indicated that the group variances 

were not equivalent. The primary reason this occurred was discussed in the introduction: 

Because the sample sizes of the groups were relatively small, power to detect even non-

trivial differences in the variances by the traditional tests was reduced. Consequently, the 

difference-based procedures declared non-trivial differences between the group variances 

equivalent, whereas the equivalence test found that the difference in these group 

variances exceeded the pre-specified equivalence limit. Using the new equivalence-based 

procedure ensures that researchers who are evaluating variance equality have a valid test 

for assessing this problem, and will, therefore, reach accurate conclusions regarding the 

equality of their group variances.  

Future Directions 

 Future research should include discussions regarding the importance of examining 

the variances associated with one's data and the implications of homogeneity or 

heterogeneity of group variances. For example, Bryk and Raudenbush (1988) suggest that 

heterogeneity within groups can indicate the presence of an interaction between person 

characteristics and group membership. Alternatively, homogeneity of group variances in 

the presence of mean differences might indicate that, even though the groups may 

represent different populations, they do share similarities in composition that might be 

interesting to explore. However, discussions regarding variance homogeneity or 
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heterogeneity from a theoretical perspective are not as popular in the educational and 

behavioral sciences as in other disciplines. For example, Sagrestano, Heavey, and 

Christensen (1998) argue that different perspectives tend to focus on different aspects of 

variability. An individual differences approach focuses on between-group variability 

while neglecting within-group variability, whereas a social structural approach focuses on 

within-group variability but may neglect between-group differences. Future research 

might be focused on unifying these approaches, such that comparing the within-group 

variability between groups becomes an important research consideration, thus, 

methodological support for these research goals will be needed. 

Conclusions 

 This study provided evidence to researchers regarding the problems with 

assessing equality of variances with difference-based tests. Most notably, difference-

based tests assess equality of variances from the wrong perspective, encouraging 

researchers to support their research hypotheses by failing to reject the null hypothesis. 

Thus, four novel equivalence procedures to assess equality of variances were proposed. 

Of these procedures, the Levene-Wellek-Welch equivalence of variances test based on 

the absolute deviations from the median was the best-performing test statistic in terms of 

accurate Type I error rates and highest power for detecting equivalence across the 

conditions evaluated. Therefore, researchers should evaluate research hypotheses of 

equivalent population variances using this median-based Levene-Wellek-Welch 

equivalence test. 
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Table 1.  

Equivalence intervals (ε), population variances (σ
2
), distribution shapes (λ), and sample sizes (n) for the simulation study. 

Condition  

Type 

σ
2
 (λ = Normal)

 
σ

2 
(λ = χ

2
, 3 df) 

ε = .25 ε = .50 ε = .25 ε = .50 

Type I Error 1, 1.22, 1.45, 1.67 1, 1.64, 2.28, 2.92 1, 1.28, 1.56, 1.84 1, 1.85, 2.70, 3.55 

Power 1, 1, 1, 1 1, 1, 1, 1 1, 1, 1, 1 1, 1, 1, 1 

Type I Error 1, 3, 4, 6 1, 3, 4, 6 1, 3, 4, 6 1, 3, 4, 6 

Power 1, 1.1, 1.2, 1.3 1, 1.33, 1.66, 2 1, 1.1, 1.2, 1.3 1, 1.33, 1.66, 2 

Sample Size Conditions 

  ̅ = 10  ̅ = 25  ̅ = 50  ̅ = 100 

equal samples sizes 10, 10, 10, 10 25, 25, 25, 25 50, 50, 50, 50 100, 100, 100, 100 

positive pairings 5, 8, 12, 15 18, 22, 28, 32 25, 40, 60 75 50, 80, 120, 150 

negative pairings 15, 12, 8, 5 32, 28, 22, 18 75, 60, 40, 25 150, 120, 80, 50 
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Table 2.  

Type I error rates summary: Minimum and maximum empirical Type I error rates and number of times the Type I error rates 

exceeded the bounds of .025 - .075 for the equivalence procedures over the 24 null conditions (only where Ψ
2
 =  2

)*. 

 

 

 

 

 

 

 

 

 

 

 

*Note: This table does not include conditions where Ψ
2
 >  2

. 

  

Test 

 

Minimum 

Empirical 

Type I Error 

Rate 

 

Maximum 

Empirical 

Type I Error 

Rate 

 

 

Number of Times 

Type I Error Rate 

Exceeded the 

Bounds of .025-.075 

 

 

Levene-Wellek 

mean .0228 .1113 4 

 

Levene-Wellek 

median .0223 .0869 3 

 

Levene-Wellek-

Welch mean .0196 .0850 3 

 

Levene-Wellek-

Welch median 

 

.0356 

 

.1014 

 

1 
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Table 3. 

 

Power summary: Number of conditions (out of 48 conditions) in which a specific equivalence procedure had the highest power (i.e., 

conditions where the null hypothesis was false).  

 

 

 

 

 

 

Test 

Test had  

Highest Power 

in Equal 

Sample Size 

Conditions 

(out of 16) 

Test had  

Highest Power 

in Positive 

Pairing 

Conditions 

(out of 16*) 

 

Test had  

Highest Power 

in Negative 

Pairing 

Conditions 

(out of 16) 

 

 

Levene-Wellek  

mean 

 

 

0 

 

0 

 

0 

Levene-Wellek 

median 

 

15 7 6 

Levene-Wellek-

Welch mean 

 

0 0 0 

Levene-Wellek-

Welch median 

 

1 6 10 

 
  * Excluding conditions where there was a tie for best performing procedure 
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Figure 1. Description of differences in the definition of power, Type I errors, and Type II errors between difference tests and 

equivalence tests. For the difference based tests, Equivalent implies that the variances are all identical, whereas for the equivalence-

based tests, Equivalent implies that the difference in the variances is less than the minimum meaningful difference. Further, for the 

difference based tests Not Equivalent implies any difference in the variances whereas for the equivalence-based tests Not Equivalent 

implies a difference greater than or equal to the minimum meaningful difference.  Diff = difference-based test. Equiv = equivalence 

test. 

 

                                                                    POPULATION 

 

    Equivalent 
 

Not equivalent 

 

 
 

Equivalent 

  Diff – correct 
decision 

Diff – Type II error 

SAMPLE 

Equiv – Power Equiv – Type I error 

 

 
Not 

Equivalent 

Diff – Type I error Diff – Power 

 

Equiv – Type II 
error 

Equiv – correct 
decision 
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Figure 2. Average probability of declaring equivalence; ε = .50, 𝜎2 
= 1, 1.33, 1.66, 2 (Ψ

2
 <  2

); χ² distributions; Left panel = 

equivalence procedures; Right panel = difference-based procedures
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Figure 3. Average probability of declaring equivalence; ε = .50, 𝜎2 
= 1, 3, 4, 6 (Ψ

2
 >  2

); χ² distributions; Left panel = 

equivalence procedures; Right panel = difference-based procedures. 


