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Abstract

Since the 2008 global financial crisis, regulators have been paying considerable at-

tention to the credit and liquidity risks. Two such concepts (related to credit and

liquidity risks) that have been repeatedly mentioned in the regulatory announce-

ments are the credit value adjustment (CVA) and the Incremental Risk Charge

(IRC).

The CVA is an adjustment to the previous trade price when the counterparty

risk has been added. The IRC is a new type of risk charge defined in Basel II which

covers the major exposures of the counterparty and liquidity risk in the trading

book.

The current models on CVA and IRC have specific shortcomings. The CVA

is currently calculated on a one-period model with restriction on the number of

defaults. The IRC is computed using the time consuming Monte Carlo simulations.

In this dissertation, we have made significant contributions to risk analysis by

solving CVA in both two-default and full model without the restriction on the

number of defaults as well as providing an analytical method for calculating IRC.

Our research can be considered as a major step forward in expanding the current

credit and liquidity risks models.

Compared to the current one-default CVA calculations, our two-default and

full calculations offer the distinct advantages of more accurate and practical CVA

results. On top of that, our PDE method provides the speed and accuracy which
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allows us to finish a thorough risk exposure analysis and identify the conditions

when the first default CVA overestimates or underestimates the counterparty risk.

As opposed to the current numerical approach of calculating IRC, we offer an an-

alytical method which provides an approximation of VaR on the two-period model

and exact value of VaR on the infinite-default model. This is the first analytic so-

lution in the literature on the multi-period capital model and may impact the view

of current measure of risk controls in the banks. Thus credit risk control can be

greatly improved if this new analytic solution can be applied in financial industry.

Combined together, the work in this dissertation makes significant improve-

ments in credit risk analysis in the multi-period credit and liquidity risks models.
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I Introduction

The 2008 global financial crisis may be the worst financial crisis in the past 70

years. It resulted in the plummet of stock markets around the world, the collapse

and subsequent bailout of large financial institute by government, prolonged high

unemployment rate, and the subsequent European sovereign-debt crisis. Even to

this day, many economies have not fully recovered from the crisis.

The crisis was the result of the false assumption that the housing prices would

continue to rise. Before the crisis, thanks to poor regulations, home buyers with

even poor credit could easily apply for a mortgage and later refinancing their mort-

gages. This process led to formation of a complicated loan system that exposed

banks to many defaults. As a result, banks decided to reduce their risk to default

by packing and selling these similar loans mortgages as Collateralized Debt Obliga-

tion (CDO) or Collateralized Loan Obligation (CLO). The CDOs or CLOs issues

several tranches according to the default risk level. A most common example of

tranches are senior, junior and equity tranches. Banks kept the most risky equity

tranche and sold investors the less risky junior and senior tranches. The market

ignored the large number of subprime mortgages that were included in the CDOs

and CLOs and underestimated the default risk of the junior and senior tranches.

In addition, banks charged investors higher spread for these over valued tranches

and earned a greater profit. When the housing prices kept rising, borrowers with

highest default risk could simply keep refinancing to pay back their mortgage. The
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underlying default risks were neglected. Clearly, a proper risk control may forbid

the banks issuing this large amount of CDOs and CLOs. However, banks were re-

luctant to execute proper risk controls because of the considerable profit they have

made.

Despite the unhealthy practice of issuing subprime mortgages, the stability of

the market, due to the consistently increasing house prices, enabled the banks to

neglect the long term drawbacks of such mortgages. In reality, the major risk factor

of the sub-prime loans is the default of the borrowers.

When the housing bubble burst, the values of all securities related to the U.S.

real estate began to plunge. Even the highest classes of CDS with zero default pos-

sibility and AAA rating lost value due to thousands of defaults. Rapid loss of value

in a very wide range of securities combined with the inability of the risk models to

properly assess the risk factors spread crippling fear in the markets. Banks magni-

fied the counterparty risk in an effort to address the massive number of defaults and

significantly reduced the amount of money they were lending. Consequently, mar-

kets went through a period of harsh illiquidity in the trading book which resulted

in tremendous losses for all the involved parties.

With the crisis growing, the counterparty risk emerged as a major threat to all

global financial institutions leading to a global freeze of lending practices bringing

billions of dollars in losses. Finance researchers, economists and policy makers

began to investigate the cause of this crisis. That was the time when the importance

of credit and liquidity risk controls were realized by bankers and regulators.

As reported in the Financial Crisis Inquiry Commission Report (2011) [18] lack

of financial regulation and supervision was claimed as one of the most important

factors contributing to this crisis. Realizing the lack of financial regulation and the

importance of counterparty credit risk, regulators established a list of procedures
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as a precaution aimed at effective prevention of such a crisis. As an immediate re-

sponse to the financial crisis, the Basel Committee on Banking Supervision (BCBS)

announced a series of changes to the Basel II framework in April 2008. These en-

hancements, referred as Basel 2.5 or Basel II Enhanced included revisions to the

Basel II market risk framework and guidelines for computing capital for incremen-

tal risk in the trading book. In 2010, the BCBS announced Basel III to regulate

bank capital adequacy, stress testing and market liquidity risk. Basel III raised the

quality, consistency, and transparency of the capital base, emphasized the liquidity

risk, strengthened the risk coverage of the capital framework in which the Credit

Valuation Adjustment (CVA) risk was added. These announcements brought vari-

ous changes to the financial markets all over the world and changed the bank credit

risk analysis system.

To fulfil the new requirements set in Basel III, all banks faced pressures from

regulators to improve their credit risk management and implement new risk models

with specific requirements.

In Canada, the Office of the Superintendent of Financial Institutions (OSFI)

encouraged the banks to develop their own models to calculate Incremental Risk

Charge (IRC). These models needed to be fully vetted inside each bank and sent

to OSFI for approval. If the model of a bank was not approved by OSFI, the

bank would be charged a “standard” capital requirement. The “standard” capital

requirement is a fixed capital charge set by OSFI. It is normally much higher than

the model-based capital charge. From the perspective of the banks, a higher capital

charge means less risky but also less profitable investments. Banks have a strong

huge motive to develop their own capital models that meet the requirement of the

regulations.

Among all important changes of the regulations, the counterparty credit and
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liquidity risks in the trading books were frequently addressed. For credit risks,

CVA and IRC are the two most important concepts. In this dissertation, we will

discuss and analyze CVA, IRC and related issues..

CVA is defined as the change of price when counterparty risk is added. In

recent years, counterparty risks has started to play an increasingly important role

in evaluation of credit risks. When a counterparty defaults, a replacement contract

is established and there is a probability that the cost of the replacement contract is

significantly higher than that of the original one. The difference between these two

prices is called the credit value adjustment (CVA). In some of the earlier pricing

literature for credit swaps, counterparty and investor are considered to be default

free as in Duffie (1999) [14] and Hull, et al.(2000a) [28]. Counterparty default risk

is considered in some studies (as in Hull, et al.(2000b) [29]) while the volatility

of the credit spread is neglected (the hazard rate is assumed to be a constant).

In other studies, volatility of the credit spread is included but the interest rate

of the underlying is assumed to be a constant as in Brigo, et al. (2005) [8] and

Sorensen (1994) [38]. In more recent work Brigo, et al. (2008a) [6], Brigo, et al.

(2010) [7] and Brigo, et al. (2008b) [9], both stochastic interest rate and hazard

rate models are used. In Brigo, et al. (2008a) [6] and Brigo, et al. (2008b) [9], both

investor and counterparty defaults, or “bilateral counterparty risk”, are included

in the models. However, possible correlation between credit spread volatility and

interest rate is not considered. In Assefa, et al.(2011) [1], Crepey (2012a) [12] and

Crepey (2012b) [13], applications of bilateral counterparty risk have been discussed

and analyzed.

In this dissertation, we considered the pricing problem of a new product which

is called credit contingent interest rate swap (CCIRS). Following recent literature,

we assumed that both hazard rate and interest rate are stochastic with a possible

4



correlation. Our main objective is to investigate the effect of a possible second

default and subsequent defaults, which have been neglected in all the existing lit-

erature. The basic question we addressed was whether it is justified to ignore the

cost associated with one or more possible defaults of the replacement contract of

the original CCIRS under normal market conditions. To do so, we first solved the

pricing problem of CCIRS without the possibility of a second default. We also find

the price of a CVA by allowing a second default and then without the restriction on

the number of defaults, and compare the prices using reasonable parameter values

for the interest rate and hazard rate.

In the second part of this dissertation, we focus on calculation of the IRC.

In response to the financial crisis, the Basel Committee introduced the concept

of unsecuritised credit product in trading book (see Basel (2013b) [3]). IRC is

measured as the one-year Value-at-Risk (VaR) of unsecuritised credit products in

trading book at 99.9 percentile confidence level. Currently, most proposed IRC

models are based on a multi-factor multi-period Monte Carlo Simulation model

(MC) as in CreditMetrics (2011) [11], Finger (2011) [19], Wilkens, et al.(2013) [45]

and Yavin, et al.(2010) [46]. In the latest Basel proposal, IRC would be replaced

by Incremental Default Risk (IDR), in which a two-factor modeling framework is

suggested (as in Basel (2013a) [2]) and only default losses are considered.

In the model based IRC rules, a few new concepts in the credit risk measure-

ments are introduced by Basel. Among these new concepts, liquidity horizon and

constant level of risk over one-year capital horizon are particularly interesting. The

liquidity horizon concept allows the banks to model the differences in the under-

lying liquidity of the trading book position. It represents the time required to sell

the position or to hedge all material risk covered by the IRC model in a stressed

market. Currently the standard VaR measure is defined as 99-percentile/10-day
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VaR, embedded with 10 day liquidity horizon assumption. As witnessed during the

financial crisis, banks experienced significant illiquidity in a wide range of credit

products held in the trading book.

Another important concept introduced in IRC is the constant level of risk over

one-year capital horizon, which allows the banks to model portfolio rebalance of

their trading positions in a manner that maintains the initial risk level. Based

on my practical observations as an analysist in the bank for four years, proper

portfolio re-balancing assumptions are important concepts that makes the IRC

model more risk-sensible and relevant to the actual trading portfolio behavior.

For more liquidity and highly rated positions, the portfolio rebalancing provides a

benefit relative to assuming the same position throughout the capital horizon. On

the other hand, in order to hold the initial risk level, one would have to replace the

position that defaults within the one-year time horizon and the replaced positions

would then carry the same high default risk.

The credit risk capital model in Basel II is the internal rating-based approach

(IRB), which is based on Asymptotic Single Risk Factor (ASRF) model. It has been

the standard capital charge model for the banking book and is often required as a

benchmark by regulators for the trading book. The principle of ASRF model is to

model a large credit portfolio via a one risk factor model, which is straightforward

and analytically trackable. It assumes that the portfolio is infinitely fine grained

driven by one systematic risk factor with the idiosyncratic risk fully diversified away.

Since ASRF was introduced, the pros and cons of the IRB approach have been the

topic of extensive research in Hibbeln (2010) [27] and Lütkebohmert (2009) [31].

From the credit portfolio management perspective, the major weakness of ASRF

model is its inability to capture the concentration risk. Credit concentrations, in-

cluding both name concentrations and sector concentrations, are probably the sin-
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gle most important cause of major credit problems, which are behind most of the

major banking disasters including the most recent financial crisis as mentioned in

Basel (2000) [4] and Basel (2006) [5]. Within the IRB approach, the undiversi-

fied idiosyncratic risk can be approximated analytically via a granularity adjust-

ment(GA) approximation. GA was first introduced in 2000 by Gordy (2003) [20].

The model was improved and re-established on a more rigorous foundation by Mar-

tin, et al.(2002) [32], Wilde (2001) [44], Giyrueriyx, et al.(2000) [26]. A survey of

these developments and a primer on the mathematical derivation is presented in

Gordy (2004) [21] and a rigorous proof of GA has been done recently by Fermanian

(2013) [17]. In recent years, the concept of GA has also been expanded in both the

application to model other risks (as in Gordy, et al. (2010) [22]) and credit portfolio

risk measures other than capital charges as in Düllmann, et al. (2006) [15], Pykhtin

(2004a) [34], Pykhtin (2004b) [35] and Voropaev (2011) [41].

The ASRF measure and its GA are almost fully developed and researched. How-

ever, the IRC calculation relies on the time consuming Monte Carlo simulations. So

the banks used more efficient ASRF (and its GA) as important measures for effec-

tive capital management for banks. In order to achieve a risk sensible comparison,

in this dissertation we present a general framework of two-period conditional VaR

model in the context of IRC modeling framework in which the liquidity horizon

and constant level of risk are considered. Given any time horizon, a two-period

adjustment term is derived on top of the standard ASRF model. At the end of

the first period, the portfolio is rebalanced to ensure a constant level risk as mea-

sured by the credit rating. The analytical approach is then compared with IRC

MC models with and without portfolio rebalancing, ASRF with and without stan-

dard one-period GA to show how concentration risk, liquidity, and constant level

of risk are captured in the new analytical approach. From the IRC (and IDR)

7



modeling perspective, the analytical model can be readily applied to case, in which

the portfolio rebalanced at six months with constant level of risk of the portfolio

being rating/exposure-at-default based. Then finally, we considered one important

question remaining about the multi-period VaR model, which is how to choose

a proper liquidity horizon. We presented an exact analytical VaR solution for the

infinite-period model, which provides the boundary of VaR with respect to different

liquidity horizons.

By solving CVA calculation and analytical approach of VaR calculation by al-

lowing two defaults and without the restriction on the number of defaults, we have

made significant and valuable progress in expanding the credit risk research to

different dimensions. While the existing research is still completing the current

framework of one-period model, our research not only opened a separate door for

the future research on CVA and IRC, but also provided guidelines for other poten-

tial multi-period credit risk research.

Rest of this thesis is arranged as follows. Chapter II studies the CVA model,

applies PDE in a specific CVA pricing problem and extends it to a two-default

case and then an no-restriction default case. We also have achieved a thorough

risk exposure analysis. Chapter III studies the basic capital requirement model,

extends it to a two-period model and solves it analytically by borrowing the logic

of GA technique. Then we present an exact analytical solution for infinite-period

model. The Chapter IV concludes this dissertation.
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II A Multiple Defaults CVA Problem: Credit

Contingent Interest Rate Swap Pricing—What

Happens after the Default?

An interest-rate swap is a contract between two parties where one party (e.g. the

bank) receives a fixed amount periodically in exchange for the LIBOR linked float-

ing payments to the counterparty. When a counterparty defaults, a replacement

contract is established and there is a probability that the cost of the replacement

contract is significantly higher than that of the original one. The difference be-

tween these two prices is called the credit value adjustment (CVA). From the risk

management point of view, it is important for financial institutions such as banks

to understand the risk of counterparty defaults and estimate CVA of their port-

folios. Currently, many banks operate under the assumption that CVA is the one

time replacement cost of an existing contract. Completely ignoring the fact that

the counterparty of the replacement contract could also default. Therefore, they

either overestimate or underestimate the true CVA. In this chapter, we systemati-

cally investigate the risk involved in the current practice. Using Credit Contingent

Interest Rate Swap (CCIRS) as an example, we present a detailed analysis of the

CVA and strong evidences that the risk involved by ignoring the possibility of sub-

sequent default of counterparties could be significant, especially for relatively long

contracts with low credit ratings.
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Our results are useful for financial institutions and financial regulators as they

can serve as guidelines for estimating the true value of counterparty risk.

II.1 CVA and CCIRS

Its credit value adjustment (CVA) is the expected cost due to interest rate

changes as well as the replacement costs in the cases of defaults of both parties. In

Brigo, et al. (2008a) [6] and Brigo, et al. (2008b) [9], a general formula for pricing

CVA was introduced using the following notations:

τI : default time of investor,

τC : default time of counterparty,

τU : default time of underlying.

T : maturity of the underlying,

A = {τI ≤ τC ≤ T}, B = {τI ≤ T ≤ τC},

C = {τC ≤ τI ≤ T}, D = {τC ≤ T ≤ τI},

E = {T ≤ τI ≤ τC}, F = {T ≤ τC ≤ τI}.

The price of a CVA under these notations is given as

E{ΠD(t, T )|Ft} = E{Π(t, T )|Ft}

+ E{LGDI · I(A ∪B) · P (t, τI) · [−NPV(τI)]
+|Ft}

− E{LGDC · I(C ∪D) · P (t, τC) · [NPV(τC)]+|Ft},

where E{Π(t, T )|Ft} is the price under the assumption that both the investor and

counterparty are default-free, and the second and third terms are the replacement

costs. Ft contains the full information before time t, LGD = (1−RecoverRate) is the

loss given default, NPV(t) is net present value of the residual payoff for the investor
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until maturity from time t, P (t1, t2) is the price at t1 of a zero coupon bond matured

at time t2, i.e. the discount rate from time t1 to t2. If only counterparty risk is

considered from the viewpoint of the bank (investor), the cost due to counterparty

default is

E
{
ΠD(t, T )|Ft

}
= E {Π(t, T )|Ft}

− E
{
LGDC · I(τC < T ) · P (t, τC) · [NPV(τC)]+|Ft

}
. (II.1.1)

Notice that the CVA is always non-negative when only the counterparty risk is

taken in to account. But if the bilateral counterparty risk exists, CVA also can be

negative. More importantly, the above formulas are correct only when the swap

expires at the defaults, or the counterparty of the replacement contract is default

free.

CCIRS is a contract which can cover the loss due to the counterparty default in

interest rate swap. Suppose the bank enters an interest-rate swap with a counter-

party so that the bank receives from the counterparty a fixed amount periodically

in exchange for the LIBOR linked floating payment from the bank. If the counter-

party defaults, the bank needs to enter another swap agreement. However, the fixed

rate will likely be different from the original one since the interest rate environment

and number of remaining payments have changed. Thus, the bank bears the risk

of making higher payment due to the possibility of default of the counterparty.

There is also the possibility that in case of a default, the new rate is lower, but this

scenario is of no concern to the bank from a risk management point of view. The

purchase of a CCIRS eliminates that risk, and the fair price of CCIRS should be

the expectation of the possible loss at the time when CCIRS is issued. Therefore,

the pricing problem of CCIRS is equivalent to that of a CVA problem for interest

rate swap when only counterparty risk is considered as in formula (II.1.1), under

the assumption that the replacement contract is default free. When the counter-
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party of the replacement contract is not default free, the pricing formulae (II.1.1)

underestimates the risk.

II.2 CCIRS with Default-Free Replacement Contracts

To price a CCIRS, we first describe how an interest rate swap works and the

relationship between the fixed and floating legs of the swap. A swap is a derivative

contract in finance in which two counterparties enter an agreement to exchange

certain benefits of one party’s financial instrument another. The benefits in ques-

tion depend on the type of financial instruments involved. Specifically, if the two

counter-parties agree to exchange one stream of interest rate payments against

another stream of payments, the derivative is an interest rate swap. If the two

counter-parties sign an interest rate swap contract, then one counterparty agrees

to make fixed payments at specified times. Normally the payment is the product of

the notional value, the time interval between payments and the agreed fixed rate

, i.e. Nol × ∆t × Rfixed. In return, it will receive a stream of payments based

on the floating rate. Similarly, the payment is normally the product of notional

value Nol, the time between payments ∆t and the current floating rate Rfloating(t),

which is usually an indexed reference rate (such as LIBOR) with a fixed spread Sp

(can be 0). i.e. Nol × ∆t × (Rfloating(t) + Sp). For example, a company signs an

interest rate swap contract with a bank. The swap requires the company to pay a

fixed rate at 5% in each payment time and the company receives a payment at the

LIBOR rate in return. The notional value is $1,000,000. The maturity of the swap

is five years and payment is made semi-annually. Every half a year, company pays

1, 000, 000× 0.5× 5% = $25, 000 and receives 1, 000, 000× 0.5×LIBOR(t), where

t is the time when payment is made.
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II.2.1 CCIRS Pricing

In an interest rate swap, one party is required to make payments during each

∆t period, from t1 to tn. Let t be the current time, the (random) default time

for the counterparty is τ , the next payment time is tk, the last payment time

is tn and T is the expiry time for the swap. If the default does not occur, the

present value of the remaining payments at time τ is Nol · Aτ (τ, T )K, where

Aτ (τ, T ) = ∆ti
∑n

i=kτ
P (τ, ti) is the remaining annuity after time τ and P (τ, ti)

is the ti-maturity zero coupon bond price at time τ . When the counterparty de-

faults at time τ , the payment of the replacement contract is Nol · ∆tRτ (τ, T ),

where Rτ (τ, T ) is the new fixed swap-rate calculated at time τ . The present

value of the remaining payments (assuming no additional defaults) at time τ is

Nol · Aτ (τ, T )Rτ (τ, T ). Normally a fraction of the present value Rec can be re-

covered at default. Therefore, only the portion 1 − Rec needs to be covered by

CCIRS.

When the counterparty of the replacement contract is default-free, we can now

write down the cost of replacing the swap. For the counterparty paying the fixed

rate, the possible loss when τ < T is

v(τ) = (1−Rec)(Nol · Aτ (τ, T )Rτ (τ, T )−Nol · Aτ (τ, T )K)+

= Nol · (1−Rec)Aτ (τ, T )(Rτ (τ, T )−K)+;

while for the counterparty receiving the fixed rate, the possible loss is

v(τ) = (1−Rec)(Nol · Aτ (τ, T )K −Nol · Aτ (τ, T )Rτ (τ, T ))
+

= Nol · (1−Rec)Aτ (τ, T )(K −Rτ (τ, T ))
+.

The derivative price at time t is simply the discounted expected value of v(τ) at

time t under the risk-neutral measure, i.e., v(t) = E
[
Iτ<T exp(−

∫ τ

t
r(s)ds)v(τ)|Ft

]
.
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In our case, we only considered the price of CCIRS when the investor is paying the

fixed rate. The price at default time τ is

v(τ) = Nol · (1−Rec)Aτ (τ, T )(Rτ (τ, T )−K)+. (II.2.1)

The derivative price at time t is

v(t) = Nol · (1−Rec) · E
[
Iτ<T exp(−

∫ τ

t

r(s)ds)Aτ (τ, T )(Rτ (τ, T )−K)+
∣∣∣∣Ft

]
.

(II.2.2)

Since both Nol and Rec are constants, we only need to compute the scaled price

E

[
Iτ<T exp(−

∫ τ

t

r(s)ds)Aτ (τ, T )(Rτ (τ, T )−K)+
∣∣∣∣Ft

]
. (II.2.3)

The final price can be obtained by multiplying Nol × (1−Rec).

II.2.2 Model Selection

Since the default time τ involves hazard rate process, a proper model of this

process needs to be chosen. On top of that, we need to choose a proper model for

interest rate as well. In our research, we assume the hazard rate process is the same

for all counter-parties with a same credit rating. Then we assume that both the

interest rate and hazard rate follow the mean reverting Cox-Ingersoll-Ross (CIR)

model (introduced in Cox et al. (1985) [10]), a widely used model in industry. CIR

model is given by

dr = a1(b1 − r(t))dt+ σ1

√
r(t)dB1

t (II.2.4)

dλ = a2(b2 − λ(t))dt+ σ2

√
λ(t)dB2

t (II.2.5)

where d[B1
t , B

2
t ] = ρdt, i.e., the hazard and interest rates are correlated with coeffi-

cient ρ. When 2a1b1 > σ2
1 and 2a2b2 > σ2

2, this model ensures the interest rate and

hazard rate are always positive and will never touch zero.
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II.2.3 Fixed Rate for an Interest Rate Swap

In this subsection, we derive the formula for the fixed rate for an interest rate

swap Rt(t, T ), signed at time t, maturing at time T , with n payments at time

t1, t2, . . . , tn. Suppose the time t for issuing the new swap is between tk−1 and tk,

which means the next payment time is tk.

For the fixed leg, the present value of all the fixed payment at time t is

Nol ·Rt∆t

n∑
i=k

P (t, ti),

where Nol is the notional amount, Rt (short for Rt(t, T )) is the fixed rate, P (t, ti)

is the zero-coupon bond price at time t and matures at time ti. For the floating leg,

one can use no-arbitrage argument to show that the present value of the payments

is equivalent to an investment in bonds that mature at ti (i = k, ..., n), which is

given by Nol · [1−P (t, tn)+Sp∆t
∑n

i=k P (t, ti)], where Sp is the fixed spread added

on floating index (i.e. LIBOR, etc), tn is the last payment date.

We can now compute the fixed rate of swap by equating the value of the fixed

leg and floating leg since the swap contract itself has no value at the time of signing

the contract.

Rt(t, T ) =
1− P (t, tn)

∆t
∑n

i=k P (t, ti)
+ Sp (II.2.6)

In fact ∆t
∑n

i=k P (t, ti) = At(t, T ), At(t, T ) is the into-forward annuity from time

t to maturity T observed at time t. From (II.2.3), it can be seen that Sp can be

absorbed into the fixed rate K in the valuation. Without loss of generality, we

assume Sp = 0 in rest of this dissertation.
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II.2.4 Discount Factor under Stochastic Short Rate

Denoting the discount factor from time t1 to time t2 is P (t1, t2), we expect

P (t1, t2) = E[exp(−
∫ t2

t1

r(s)ds)|Ft1 ],

where r(s) is short rate at time s and it follows:

dr = a1(b1 − r(t))dt+ σ1

√
r(t)dB1

t .

Since exp(−
∫ t1
r

r(s)ds)P (t1, t2) is a martingale, P (t1, t2) satisfies the partial differ-

ential equation (PDE)

∂tP + a1(b1 − r)∂rP +
1

2
σ2
1r∂rrP = rP (II.2.7)

with terminal condition P (t2, t2) = 1. This PDE is solved analytically as

P (t1, t2) = Λ(t1, t2) exp(−B(t1, t2)r(t)), (II.2.8)

where

Λ(t1, t2) =

{
2γ exp[1

2
(a1 + γ)(t2 − t1)]

(γ + a1){exp[γ(t2 − t1)]− 1}+ 2γ

} 2a1b1
σ2
1

,

B(t1, t2) =
2{exp[γ(t2 − t1)]− 1}

(γ + a1){exp[γ(t2 − t1)]− 1}+ 2γ

with γ =
√

a21 + 2σ2
1.

II.2.5 Solution Methodologies

II.2.5.1 Monte Carlo Method

To use the Monte-Carlo method (MC), we generate M realizations for r(t) and

λ(t) based on equations (II.2.4) and (II.2.5) . The default time τ is generated using
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the process of λ(t). We compute Aτ (τ, T ) and Rτ (τ, T ) using (II.2.6) and (II.2.8)

given in the previous sections. The value of a CCIRS is computed using equation

(II.2.1) at the default time τ . In each realization where r(t) becomes a constant

process, we find the discounted value of v(τ) at the initial time (t = 0) with a

discount rate exp
(
−
∫ τ

t
r(s)ds

)
. This discounted value is the initial price of CCIRS

for each path. The expected CCIRS price is obtained by taking the average value

of all the M realizations of Monte Carlo simulated paths. When M is large, the

computational speed of Monte Carlo simulations decreases quickly which limits the

implementation of Monte Carlo simulations.

II.2.5.2 PDE Approach

Although Monte Carlo method is easy to implement, the PDE based approach

provides a more efficient alternative compared to time consuming Monte Carlo

simulations. In this subsection, we derive the partial differential equations that are

needed for pricing a CCIRS.

Lemma II.2.1 τ is the first jump time of a Poisson Process with parameter λ.

V (t) = E

[
exp(−

∫ τ

t

r(s)ds)f(τ)

∣∣∣∣Ft

]
where Ft = Gt ∪ σ(It>τ , 0 ≤ t ≤ T ). Ft contains the full information before time t,

σ(It>τ , 0 ≤ t ≤ T ) contains the information that whether there has been a default

before time t. Gt contains the full information before time t except the information

contained in σ(It>τ , 0 ≤ t ≤ T ). Use Et[•] to represent E[•|Gt] for short. Then we

have:

V (t) = It<τEt

[∫ T

t

f(s)λ(s)exp(−
∫ s

t

(r(u) + λ(u))du)ds

]
Proof See [30], Prop 3.1.
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The value of CCIRS at time t can be represented as

v(t) = E

[
Iτ<T exp(−

∫ τ

t

r(s)ds)Aτ (τ, T )(Rτ (τ, T )−K)+
∣∣∣∣Ft

]
.

Actually the PDE of v(t) is the direct result of Feynman-Kac theorem. We

decided to elaborate the proof here for the completeness of our thesis.

Theorem II.2.2

F (t) = v(t)exp(−
∫ t

0

(r(u) + λ(u))du) +

∫ t

0

f(s)λ(s)exp(−
∫ s

0

(r(u) + λ(u))du)ds

is a martingale, where

f(t) = It<TAt(t, T )(Rt(t, T )−K)+.

Proof Use Lemma II.2.1, we have

v(t) = Et

[∫ T

t

f(s)λ(s)exp(−
∫ s

t

(r(u) + λ(u))du)ds

]
, (II.2.9)

which gives

F (t) = v(t)exp(−
∫ t

0

(r(u) + λ(u))du) +

∫ t

0

f(s)λ(s)exp(−
∫ s

0

(r(u) + λ(u))du)ds

= Et

[∫ T

0

f(s)λ(s)exp(−
∫ s

0

(r(u) + λ(u))du)ds

]
.

Notice the last expression above is a martingale since the expectation does not

contain t. Denote the function inside the expectation as H. This means F (t) =

Et (H). Given the definition of a martingale, we only need to show

1. Et (|H|) < ∞;

2. Et [F (s)] = F (t), (s > t).
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The first inequality is true evidently. Since

Et [F (s)] = Et [Es(H)] = Et (H) = F (t),

F (t) is a martingale.

Theorem II.2.3 The PDE satisfied by v(t, r, λ) is

(∂t + L)v + λ(f − v)− rv = 0 (II.2.10)

with terminal condition v(T, r, λ) = 0, where

L = a1(b1 − r)∂r +
1

2
σ2
1r∂rr + a2(b2 − λ)∂λ +

1

2
σ2
2λ∂λλ + ρσ1σ2

√
rλ∂rλ,

f = At(t, T )(Rt(t, T )−K)+

Proof To simplify notation, we denote

D̂(t) = exp(−
∫ t

0

(r(u)+λ(u))du), M(t) =

∫ t

0

f(s)λ(s)exp(−
∫ s

0

(r(u)+λ(u))du)ds

and F (t) = v(t)D̂(t) +M(t). Recall the models for r and λ

dr = a1(b1 − r(t))dt+ σ1

√
r(t)dB1

t , dλ = a2(b2 − λ(t))dt+ σ2

√
λ(t)dB2

t .

Applying Ito’s lemma

dD̂(t) = −D̂(t)(r(t) + λ(t))dt, dM(t) = f(t)λ(t)D̂(t)dt,

and

dv = vtdt+ vrdr + vλdλ+
1

2
vrrdrdr + vrλdrdλ+

1

2
vλλdλdλ,

= vtdt+ vr(a1(b1 − r)dt+ σ1

√
rdB1

t ) + vλ(a2(b2 − λ)dt+ σ2

√
λdB2

t )

+
1

2
vrrσ

2
1rdt+ ρσ1σ2

√
rλvrλdt+

1

2
vλλσ

2
2dt
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= (∂t + L)vdt+ vrσ1

√
rdB1

t + vλσ2

√
λdB2

t .

This leads to

dF (t) = v(t)dD̂(t) + D̂(t)dv + dM(t)

= −v(t)D̂(t)(r(t) + λ(t))dt

+ D̂(t)
(
(∂t + L)vdt+ vrσ1

√
rdB1

t + vλσ2

√
λdB2

t

)
+ f(t)λ(t)D̂(t)dt

= D̂(t) [(∂t + L)v − v(r + λ) + fλ] dt+ D̂(t)vrσ1

√
rdB1

t + D̂(t)vλσ2

√
λdB2

t .

From Theorem II.2.2, we know F (t) is a martingale. Therefore the coefficient of

the dt term in dF (t) must vanish, which gives

(∂t + L)v − v(r + λ) + fλ = 0,

which can be rearranged to

(∂t + L)v + λ(f − v)− rv = 0.

The remaining task is to find the terminal and boundary condition for it. If the

counterparty defaults at or after the maturity T , there is no need to replace the

original swap. In this case, the price of CCIRS is zero. This gives us the terminal

condition as

v(T, λ, r) = 0. (II.2.11)

For the boundary condition, we can look at the characteristic function of r

and λ. For r = 0, the dr
dt

= a1b1 > 0. And for this PDE, we have a terminal

condition which means we need to solve backward. And from the direction of the

characteristic function of r on r = 0, we can clearly see the value goes towards the

boundary line. For r = ∞, the diffusion term can be ignored because its order
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is
√
r. So dr

dt
= a1(b1 − r) < 0 , this means the value goes towards the boundary

line as well. The behavior of the value respect to λ is the same. This means for

boundary condition, we can simply replace the derivative on the boundary with the

derivative of the inside point beside the boundary.

The PDE with the terminal and boundary conditions is solved using finite dif-

ference method, second order in time and alternating-direct-implicit in time.

II.2.6 Numerical Results

II.2.6.1 Parameter Values

In this section, we will do a rough estimation by using real data to calculate the

parameters of our CIR Model. This estimation is used here to give us a reasonable

sense about how these parameters should be picked up.

For interest rate, it is widely accepted that the risk-free rate curve is the best

approximation of short rate. And LIBOR rate curve is always used when a risk-free

curve is needed. Theoretically, if all LIBOR curves are risk-free, they should be

identical if compounded to an annual rate. In our paper, we can reasonably assume

the 12 Month LIBOR Rate is the best approximation of risk-free rate. So we used

the 5-year data of 12 Month LIBOR Rate starting from May 1st, 2009 to April 30,

2014.

Partial data of 12 Month LIBOR rate has been put in Table 1. We used the

rate 0.5490% on April 30, 2014 as the initial rate. The mean is used as the long

term average, i.e.,

b1 = mean(data) = 0.909%

and

mean(data) =

∑N
i=1 ri
N

,
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where N is number of data in five years and ri is the 12 Month LIBOR in ith day.

And we know the conditional variance of the interest rate at any time t is

V ariance[rt|r0] = r0
σ2
1

a1
(e−a1t − e−2a1t) +

b1σ
2
1

2a1
(1− e−a1t)2. (II.2.12)

For sufficient large t, this variance will turn into a long term variance and r0 has

almost no effect. Then we let t = 100, and then we can reasonably assume the long

term variance equals to the variance of the 12 month LIBOR rate. Then we can

have

σ1 =

√
V ariance(data)
b1
2a1

(1− e−100a1)2

and

V ariance(data) =

∑N
i=1(ri − r̄)2

N − 1
,

where r̄ = 1
N

∑N
i=1 ri. Assuming a1 = 1, we have σ1 = 0.038060013. These estimated

parameters of b1, σ1 and a1 have been put in Table 2.

For hazard rate, a commonly model applied in industry is the CDS spread

approach. This model assumes

λ(t) =
spread(t)

1−R
, (II.2.13)

where R is recovery rate and normally assumed to be 0.4.

We used the USD Financial sector 12 Month CDS spread data from May 1st,

2009 to April 30, 2014. Partial data of these CDS spreads has been put in Table

1 as well. Applying the model in (II.2.13), we used the rate on April 30, 2014 to

approximate the initial hazard rate. The mean is used to estimate the long term

average, i.e.

b2 =
mean(data)

1−R

and

mean(data) =

∑N
i=1 spreadi

N
.
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And we have the same formula for conditional variance of the hazard rate at any

time t as (II.2.12),

V ariance[λt|λ0] = λ0
σ2
2

a2
(e−a2t − e−2a2t) +

b2σ
2
2

2a2
(1− e−a2t)2. (II.2.14)

Since the relationship between the hazard rate and spread in (II.2.13) exists, it

is reasonable to assume the variance of spread equal to the variance of the hazard

rate. Then we have

σ2 =

√
V ariance(data)
b2
2a2

(1− e−100a2)2

and

V ariance(data) =

∑N
i=1(spreadi − spread)2

N − 1
,

where spread = 1
N

∑N
i=1 spreadi. Assume a2 = 1, we can then get σ2. All these

parameters for different ratings are shown in Table 3.

The rating A is normally used as a testing grade. So we used the parameters

for rating A here, i.e., λ0 = 0.64683%, b2 = 1.1736%, σ2 = 0.035502957, a2 = 1.

The other parameters are set as follows, maturity T is set to be 5 years. The fixed

rate K for original swap is 0.909%, ρ=0.2 and the notional value is $250,000,000.

II.2.6.2 Monte-Carlo Results

In the Monte Carlo simulations, we set the number of realizationsM as 1,000,000

and divide the time to maturity (T ) into 2,000 equal parts. The computational time

is 648 seconds and the price is $2,204.58.

II.2.6.3 PDE Results

We use a 100×100 grid for the interest rate and hazard rate and the number of

time steps is 600 over a 5 year period. The price for CCIRS is $2,236.22, which is
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close to the result got by the Monte Carlo simulation, within 1.9 seconds. When we

increase the number of time steps to 2000, the same numbers used in the Monte-

Carlo simulations, the total computational time increases to 3.62 seconds and the

price is $2,235.02, which suggests that the time step is sufficiently acceptable for the

spatial grid chosen. We have also obtained the result by assuming constant hazard

rate, which is obtained by solving the reduced PDE, with a 100 grid points in r

and 600 time steps over 5 years. The price for a constant hazard rate is $1,201.53,

quite different from the one with a stochastic hazard rate given in the table.

Table 4 shows the comparison of results obtained by using the PDE method

and Monte Carlo simulation. The differences are small but PDE approach is much

faster.

In addition to the savings in computational time, the PDE approach also gener-

ates the price of CCIRS for the entire range of interest and hazard rates, as shown

by Figures 1. It can be seen that the price is in general an increasing function of

the interest and hazard rates, since higher hazard rates mean higher probability of

default.

II.3 CCIRS with Defaultable Replacement Contract

In the previous section, when the counterparty defaults and a new replacement

swap contract is signed, it was assumed that the counterparty of the new contract

is default-free. Therefore, the CCIRS price obtained in the previous section is only

an approximation, which may underestimate the real price. This is justified for

a counterparty with a high credit rating when the time to maturity is short. In

practice, however, the time to maturity of these contracts is relatively long (e.g.,

10 years). Therefore, it will be of practical interest to investigate the effect of the

default-free assumption, which is the focus of this section.
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II.3.1 PDE for the Second Default Problem

We assume that the replacement contract could also default but its replacement

is default free. In the rest of the thesis, this is called “two-default” problem, which

is a more accurate approximation of the time cost than the default free replacement

contract model, or the “one-default” problem discussed previously. The “second”

default problem is actually conditional on the happening of the first default. Let

τ1 and τ2 (τ2 > τ1) be the default times of the original and replacement counter-

parties, respectively. They are the first and the second jumps time of the Cox

process with hazard rate λ given by (II.2.5). Recall that the price of CCIRS with

a default-free replacement contractor is given by (II.2.3) as

V (t) = Nol · (1−Rec)E

[
Iτ<T exp(−

∫ τ1

t

r(s)ds)Aτ1(τ1, T )(Rτ1(τ1, T )−K)+
∣∣∣∣Ft

]
.

We can rewrite this equation as:

V (t) = Nol · (1−Rec)E [D(t, τ1)f(τ1)|Ft] , (II.3.1)

where

f(τ1) =

 Aτ1(τ1, T )(Rτ1(τ1, T )−K)+, τ1 < T ;

0, τ1 ≥ T ,

and

D(t, τ1) = exp

[
−
∫ τ1

t

r(s)ds

]
.

Again,Nol · (1− Rec) is a constant and we will drop it in the following discussion

knowing that the final price can be obtained by multiplying our numerical solution

with it. When the counterparty of the replacement contractor is allowed to default,

there are three scenarios.

(i). Only one default occurs before maturity. Based on equation (II.2.1), the loss

at the first default τ1 is

v(τ1) = Aτ1(τ1, T )(Rτ1(τ1, T )−K)+
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(ii). Both defaults occur before maturity. The fixed rate for a new swap at τ2 is

Rτ2(τ2, T ). The fixed rate payment of the replacement swap between τ1 and

τ2 is ∆tRτ1(τ1, T ) and the fixed rate payment of the second replacement swap

between τ2 and T is ∆tRτ2(τ2, T ). The discounted value of all the payments

between τ1 and τ2 is Aτ1(τ1, τ2)Rτ1(τ1, T ). The discounted value of all the

payments between τ2 and T is D(τ1, τ2)NAτ2(τ2, T )Rτ2(τ2, T ). The value of

CCIRS at time τ1 is the sum

v(τ1) = Aτ1(τ1, τ2)(Rτ1(τ1, T )−K)+ + Aτ2(τ2, T )(Rτ2(τ2, T )−K)+D(τ1, τ2).

(iii). The first default happens after maturity. There is no cost and the value of

CCIRS is zero.

Considering all cases above, the CCIRS price is given by

W (t) = E [D(t, τ1)f(τ1, τ2)|Ft]

where

f(τ1, τ2) =



0 τ2 > τ1 > T ;

Aτ1(τ1, T )(Rτ1(τ1, T )−K)+ τ2 > T > τ1;

Aτ1(τ1, τ2)(Rτ1(τ1, T )−K)+

+Aτ2(τ2, T )(Rτ2(τ2, T )−K)+D(τ1, τ2) T > τ2 > τ1.

To simplify notation, let

Ã(t1, t2) =


At1(t1, t2) T > t2 > t1;

At1(t1, T ) t2 > T > t1;

0 otherwise.

(II.3.2)

We rewrite f(τ1, τ2) as

Ã(τ1, τ2)(Rτ1(τ1, T )−K)+ + Ã(τ2, T )(Rτ2(τ2, T )−K)+D(τ1, τ2)
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and W (t) can be written as

W (t) = E
{
D(t, τ1)[Ã(τ1, τ2)(Rτ1(τ1, T )−K)+

+ Ã(τ2, T )(Rτ2(τ2, T )−K)+D(τ1, τ2)]
∣∣∣Ft

}
. (II.3.3)

To derive the PDE for W (t), we need the following theorems and corollaries.

Corollary II.3.1 For any T > 0 and τ > t, let Zt be a Gt-adapted stochastic

process and Zt ̸≡ 0 when t ≥ T , then:

E [D(t, τ)Zτ |Ft] = Et

[∫ +∞

t

ZsλsD̂(t, s)ds

]
.

Proof Denote ti = i∆t, i = 0, 1, ..., we have Z
(i)
s = ZsIti≤s<ti+1

and Zs =
∑∞

i=0 Z
(i)
s .

It follows that

E [D(t, τ)Zτ |Ft] = E

[
D(t, τ)

∞∑
i=0

Z(i)
τ

∣∣∣∣Ft

]
(Since D(t, τ)Z(i)

τ > 0, by Tonelli′s Theorem)

=
∞∑
i=0

E

[
D(t, τ)Z(i)

τ

∣∣∣∣Ft

]
.

Since each Z
(i)
τ = 0 when τ ≥ ti+1, Theorem II.2.2 applies and

∞∑
i=0

E

[
D(t, τ)Z(i)

τ

∣∣∣∣Ft

]
=

∞∑
i=0

Iτ≥tEt

[∫ ti+1

t

Z(i)
s λsD̂(t, s)ds

]
=

∞∑
i=0

Iτ≥tEt

[∫ ti+1

t

ZsI(ti ≤ s < ti+1)λsD̂(t, s)ds

]
= Iτ≥t

∞∑
i=1

Et

[∫ ti+1

ti

ZsλsD̂(t, s)ds

]
(Since

∫ ti+1

ti

ZsλsD̂(t, s)ds > 0, by Tonelli′s Theorem)

= Iτ≥tEt

[
∞∑
i=1

∫ ti+1

ti

ZsλsD̂(t, s)ds

]
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= Iτ≥tEt

[∫ +∞

t

ZsλsD̂(t, s)ds

]
. (II.3.4)

This ends the proof.

Corollary II.3.2 From Corollary II.3.1, let rt ≡ 0 and Z(t) ≡ 1, for any τ > t

we have

1 = Et

[∫ +∞

t

λsexp

(
−
∫ s

t

λudu

)
ds

]
.

Theorem II.3.3 (This is a stronger result than Corollary II.3.2.)∫ ∞

t

λsexp

(
−
∫ s

t

λudu

)
ds = 1.

Proof From the proof of Proposition 3.1 in [30], the density of the default time for

s > t is given by

∂

∂s
P(τ ≤ s|τ > t,GT ) = λsexp

(
−
∫ s

t

λudu

)
.

We know the integration of density function is 1, which proves Theorem II.3.3.

Theorem II.3.4

Au(u, s) = Au(u, T )− E[D(u, s)As(s, T )|Fu].

Proof First, we have

Au(u, T )− Au(u, s) = ∆t
n∑

i=ku

P (u, ti)−∆t

js∑
i=ku

P (u, ti),= ∆t
n∑

i=js+1

P (u, ti).

where ku is the next payment time after time u, and js is the closest payment time

which is before or equal to s.

Since

P (u, ti) = E[D(u, s)D(s, ti)|Fu],

28



we have

∆t
n∑

i=js+1

P (u, ti) = E

[
∆t

n∑
i=js+1

D(u, s)D(s, ti)

∣∣∣∣∣Fu

]

= E

[
D(u, s)∆tEs

[
n∑

i=js+1

D(s, ti)

]∣∣∣∣∣Fu

]

= E

[
D(u, s)∆t

n∑
i=js+1

P (s, ti)

∣∣∣∣∣Fu

]

= E [D(u, s)As(s, T )|Fu] .

Corollary II.3.5

Ã(u, s) = Ã(u, T )− E[D(u, s)Ã(s, T )|Fu] (s > u).

Proof For s > T , the left-hand-side equals to Ã(u, T ), and the right-hand-side

equals to Ã(u, T ) − 0. Therefore the Corollary is true. For u > T , both sides of

the equation equal to zero. Finally, for s < T , the left-hand-side equals to A(u, s)

and the right-hand-side equals to Au(u, T )−E[D(u, s)As(s, T )|Fu]. Applying The-

orem II.3.4 proves the Corollary.

With these preparations, we are now in the position to derive the PDE for W (t).

We note that

W (t) = E
{
D(t, τ1)[Ã(τ1, τ2)(Rτ1(τ1, T )−K)+

+ Ã(τ2, T )(Rτ2(τ2, T )−K)+D(τ1, τ2)]
∣∣∣Ft

}
= E

{
D(t, τ1)E

[
Ã(τ1, τ2)(Rτ1(τ1, T )−K)+

+ Ã(τ2, T )(Rτ2(τ2, T )−K)+D(τ1, τ2)
∣∣Fτ1

]∣∣∣Ft

}
= E

{
D(t, τ1)E

[
Ã(τ1, τ2)(Rτ1(τ1, T )−K)+

∣∣Fτ1

]∣∣∣Ft

}
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+ E
{
D(t, τ1)E

[
Ã(τ2, T )(Rτ2(τ2, T )−K)+D(τ1, τ2)

∣∣Fτ1

]∣∣∣Ft

}
,

which can be separated into two parts as

WA(t) = E
{
D(t, τ1)E

[
Ã(τ1, τ2)(Rτ1(τ1, T )−K)+

∣∣Fτ1

]∣∣∣Ft

}
, (II.3.5)

and

WB(t) = E
{
D(t, τ1)E

[
Ã(τ2, T )(Rτ2(τ2, T )−K)+D(τ1, τ2)

∣∣Fτ1

]∣∣∣Ft

}
. (II.3.6)

II.3.1.1 PDE for WA(t)

From the definition of Ã(t1, t2) in (II.3.2), when τ2 > T , Ã(τ1, τ2) = Aτ1(τ1, T ) ̸≡

0. Using Corollary II.3.1 yields

E
[
Ã(τ1, τ2)

∣∣Fτ1

]
= Iτ2>τ1Eτ1

[∫ ∞

τ1

Ã(τ1, s)λ(s)D̂(τ1, s)ds

]
= Eτ1

[∫ ∞

τ1

Ã(τ1, s)λ(s)D̂(τ1, s)ds

]
since τ2 > τ1. Denote

l(u) = Eu

[∫ ∞

u

Ã(u, s)λ(s) exp

(
−
∫ s

u

λkdk

)
ds

]
,

and note that l(u) = 0 when u ≥ T , due to Ã(T, s) ≡ 0 by the definition of Ã(t1, t2).

With this new notation, we have

WA(t) = E
{
D(t, τ1)(Rτ1(τ1, T )−K)+E

[
Ã(τ1, τ2)|Fτ1

]∣∣∣Ft

}
= E

[
D(t, τ1)(Rτ1(τ1, T )−K)+l(τ1)

∣∣∣Ft

]
= Et

[∫ T

t

D(t, s)λ(s)(Rs(s, T )−K)+l(s)ds

]
.

Since D(0, t)v1(t) +
∫ t

0
D(t, s)λ(s)(Rs(s, T )−K)+l(s)ds is a martingale. we obtain

the PDE for WA(t) as

(∂t + L)WA + λ(f −WA)− rWA = 0 (II.3.7)
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with WA(T, r, λ) = 0, where f = l(t)(Rt(t, T )−K)+ and

L = a1(b1 − r)∂r +
1

2
σ2
1r∂rr + a2(b2 − λ)∂λ +

1

2
σ2
2λ∂λλ + ρσ1σ2

√
rλ∂rλ.

By Corollary II.3.5, we have

l(u) = Eu

[∫ ∞

u

(Ã(u, T )−D(u, s)Ã(s, T ))λ(s)exp

(
−
∫ s

u

λkdk

)
ds

]
= Eu

[∫ ∞

u

Ã(u, T )λ(s)exp

(
−
∫ s

u

λkdk

)
ds

]
− Eu

[∫ ∞

u

Ã(s, T )λ(s)D(u, s)exp

(
−
∫ s

u

λkdk

)
ds

]
= Ã(u, T )Eu

[∫ ∞

u

λ(s)exp

(
−
∫ s

u

λkdk

)
ds

]
− Eu

[∫ ∞

u

Ã(s, T )λ(s)D̂(u, s)ds

]
.

By Theorem II.3.3, we have Eu

[∫∞
u

λ(s)exp
(
−
∫ s

u
λkdk

)
ds
]
= 1, then

l(u) = Ã(u, T )− Eu

[∫ ∞

u

Ã(s, T )λ(s)D̂(u, s)ds

]
.

Denote

h(u) = Eu

[∫ ∞

u

Ã(s, T )λ(s)D̂(u, s)ds

]
.

Since Ã(s, T ) = 0 for s > T , and Ã(s, T ) = As(s, T ) for s < T , we have

h(u) = Eu

[∫ ∞

u

As(s, T )λ(s)D̂(u, s)ds

]
.

It can be verified that

D̂(0, u)h(u) +

∫ u

0

D̂(0, s)λ(s)As(s, T )ds

is a martingale, which yields the PDE for h(u) as

(∂t + L)h+ λ(f − h)− rh = 0 (II.3.8)
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with h(T, r, λ) = 0, where f = At(t, T ) and

L = a1(b1 − r)∂r +
1

2
σ2
1r∂rr + a2(b2 − λ)∂λ +

1

2
σ2
2λ∂λλ + ρσ1σ2

√
rλ∂rλ.

After we obtain h(t), we can find l(t) using l(t) = Ã(t, T )−h(t) and solve the PDE

for WA(t).

II.3.1.2 PDE for of WB(t)

From (II.3.6), we have

WB(t) = E
[
D(t, τ2)Ã(τ2, T )(Rτ2(τ2, T )−K)+

∣∣∣Ft

]
= E

[
D(t, τ1)E

[
Ã(τ2, T )(Rτ2(τ2, T )−K)+P (τ1, τ2)

∣∣∣Fτ1

] ∣∣∣Ft

]
= E

[
D(t, τ1)Eτ1

[∫ T

τ1

Ã(s, T )(Rs(s, T )−K)+λ(s)D(τ1, s)ds

] ∣∣∣Ft

]
.

Here we have used Lemma II.2.1. Let

p(u) = Eu

[∫ T

u

Ã(s, T )(Rs(s, T )−K)+λ(s)D(u, s)ds

]
.

When s ≤ T , since Ã(s, T ) = As(s, T ) by definition, we can rewrite p(u) as

p(u) = Eu

[∫ T

u

As(s, T )(Rs(s, T )−K)+λ(s)D(u, s)ds

]
.

Thus,

WB(t) = E
[
D(t, τ1)p(τ1)

∣∣Ft

]
(by Lemma II.2.1)

= Et

[∫ T

t

D(t, s)λ(s)p(s)ds

]
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It can be verified that D(0, t)g(t)+
∫ t

0
D(t, s)λ(s)p(s)ds is a martingale, from which

we obtain the PDE for WB(t) as

(∂t + L)WB + λ(p−WB)− rWB = 0 (II.3.9)

with WB(T, r, λ) = 0, where

L = a1(b1 − r)∂r +
1

2
σ2
1r∂rr + a2(b2 − λ)∂λ +

1

2
σ2
2λ∂λλ + ρσ1σ2

√
rλ∂rλ.

Since p(u) = Eu

[∫ T

u
As(s, T )(Rs(s, T )−K)+λ(s)D(u, s)ds

]
is defined similarly as

the value in equation (II.2.9), we can derive the PDE for p(u) in a similar way,

which is given by

(∂t + L)p+ λ(f − p)− rp = 0 (II.3.10)

with p(T, r, λ) = 0, where

L = a1(b1 − r)∂r +
1

2
σ2
1r∂rr + a2(b2 − λ)∂λ +

1

2
σ2
2λ∂λλ + ρσ1σ2

√
rλ∂rλ ,

f = At(t, T )(Rt(t, T )−K)+.

II.3.1.3 CCIRS Price W (t)

We solveWA(t, r, λ) using two PDEs (II.3.7)-(II.3.8) andWB(t, r, λ) using (II.3.9)-

(II.3.10) numerically with the ADI finite difference method. We can then obtain

the final CCIRS price using W (t, r, λ) = WA(t, r, λ) +WB(t, r, λ).

II.3.2 Results

II.3.2.1 Verifications

We used the same parameters given in the previous section. In the Monte-Carlo

simulations, we run 1,000,000 realizations and partition the 5 year to maturity into

2,000 equal parts. The computational time is 660 seconds and the price is $2,223.51.
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The reliability of PDE usually lies on its convergence test. To test the stability

and convergence of our PDE, we have done the convergence test in Appendix A. The

results in this Appendix give us confidence that our numerical results are reliable.

After this convergence test, we cover the time, interest rate, hazard rate with a

600× 100× 100 grid and solve this PDE. The computational time is 4.07 seconds,

due to the fact that we need to solve four PDEs. The CCIRS price is $2,263.50. We

can see these results are consistent to the ones from the Monte-Carlo simulation.

The comparison is given in Table 5.

The PDE technique can also provide the solution on any point of the grid. We

have chosen a simulated path for r and λ. Using the same time for calculating the

price of CCIRS with 2-default, we quickly got the price on each annual node. The

results are shown in Table 6.

II.4 CCIRS: Full Problem

In the previous section we showed that the model based on one default under-

estimate CCIRS price, by comparing the additional cost to the one-default price.

In this section, we consider the full problem where no restriction on the number of

defaults is imposed.

II.4.1 A New PDE

Without any restriction on the number of defaults, we have developed a more

accurate model that gives the precise price of CCIRS. The CCIRS value at t is the

expected value of all the losses after the first default τ1(τ1 > t).

Case1, if τ1 ≥ T , the value is 0.

Case2, if τ1 < T , at time τ1, the new CCIRS should cover all the losses starting
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from τ2, but it does not cover the loss between τ1 and τ2.

Now in case 2, we can discuss 2 other cases. Case2-1, if τ2 ≥ T , the the loss

between τ1 and τ2 is f(τ1) (i.e. Aτ1(τ1, T )(Rτ1(τ1, T )−K)+).

Case2-2, if τ2 < T , the the loss between τ1 and τ2 is Aτ1(τ1, τ2)(Rτ1(τ1, T )−K)+.

So by combining two cases, we can write

W (t) = E
[
D(t, τ1)W̃ (τ1, τ2)

∣∣∣Ft

]
(II.4.1)

where

W̃ (t1, t2) =

 0 t1 ≥ T ;

W (t1) + f̃(t1, t2), t1 < T ,
(II.4.2)

and

f̃(t1, t2) =

 At1(t1, T )(Rt1(t1, T )−K)+, t1 < T ≤ t2 ;

At1(t1, t2)(Rt1(t1, T )−K)+ t1 < t2 < T .
(II.4.3)

Or simply rewrite the formula of W̃ (t1, t2) using the notation in equation (II.3.2),

W̃ (t1, t2) =

 0 t1 ≥ T ;

W (t1) + Ã(t1, t2)(Rt1(t1, T )−K)+ t1 < T .
(II.4.4)

So the way to get the PDE should be the same complexity as the 2-default case

following the similar procedures.

(∂t + L)W + λf − rW = 0 (II.4.5)

with W (T ) = 0, where f = l(t)(Rt(t, T )−K)+. l(t) is defined in previous section

as:

l(u) = Eu

[∫ ∞

u

Ã(u, s)λ(s) exp

(
−
∫ s

u

λkdk

)
ds

]
.

Solving l(u) has been done as well. l(t) = Ã(t, T )− h(t) and PDE for h(t) is

(∂t + L)h+ λ(f − h)− rh = 0 (II.4.6)

with h(T, r, λ) = 0, where f = At(t, T ).

35



II.4.2 Numerics

To compare the prices of the one-default, two-default and full model (ie., the

model without restriction on the default numbers), the parameters have been chosen

the same as previous tests. The results are shown in the Table 7. The PDE solution

of the difference of full model price and two-default prices for different initial interest

rate and hazard rate is in Figure 2 and Figure 3. The PDE solution of the difference

of two-default and one-default prices for different initial interest rate and hazard

rate is in Figure 3. On top of that, we have also shown the difference of these prices

with respect to different correlations between the interest rate and hazard rate in

Table 8.

These comparisons provide us the first impression that the second and more

defaults can have non-trivial effect on the CCIRS price. In the next section, we

will more clear knowledge about the second and more default impact by applying

a thorough risk exposure analysis.

II.5 Risk Exposure Analysis

In actual markets, most exposures of the credit products come from the credit

risk exposure, notional exposure and maturity exposure. Certainly, the interest rate

exposure should be included in CCIRS pricing model. Since the notion is a constant

and proportional to the price of CCIRS, only the other three kinds of mentioned

exposures will be examined by comparing prices under two different models in this

section.

From the simulation results, we found Monte Carlo method can only provide

a large range of results. This instability may have impact on the risk exposure

analysis and leads to a wrong conclusion. In this section, only PDEs technique has
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been applied and achieved a great results.

First we have weighed the impact of hazard rate model parameters of different

ratings on one, two defaults and the full models. We used the parameters in Table

2 and Table 3 to achieve more reasonable results. Maturity is now 10 years, ρ = 0.2

and K = 1%. The values of three different models are shown in Table 9. We can

see if the counterparty has a high credit ratings (AAA or AA), these three prices

in Table 9 are very close. If the counterparty has a medium credit ratings (A or

BBB), the difference between these three prices are small but not noticeable. If

the counterparty has a low credit ratings (BB or B), the difference between these

three prices are huge and cannot be ignored. We have a first insight of these three

models and how they behaved with respect to different ratings.

The second test we have done is the impact of the long term average hazard rate

on the prices of three models, under the assumption that the initial hazard rate

equals the long term average hazard rate. The results can be can be observed clearly

in Figure 4. We found when the long term average hazard rate is larger, the value

is larger. This can be easily understood because when the hazard rate is higher,

the two-default model captures more exposures and the full model without the

restriction on the default numbers captures the real exposures. More risk exposures

means higher prices.

From the previous two test, since the difference of three values is generally very

small for high rating counterparties, it is hard to test the impact of other parameters

on the comparison ratios if we choose AAA and AA as the testing grade. Among

the other four credit ratings, A is always used as a standard testing rating and the

testing of B rating will generate the most visible impact on the difference. So in

the rest of the tests, we used the parameters close to the rating A and B to see how

the parameters can affect the values of three models and their comparison ratios.
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In the next step, the impact on CCIRS price of reverting speed and volatility of

hazard rate on three model prices have been tested as well. The prices comparison

from rating A and B are shown in Table 10 and Table 12. The ratios comparison

of two-default model price/one-default model price and the full model price/one-

default model price from rating A and B are shown in Figure 5 and Figure 7. The

parameters for interest rate are from Table 2. The results show the values and

the ratios are not that sensitive to the hazard rate volatility and reverting speed.

Combined this new results and the results from the first and second test above, we

can say that the value of hazard rate itself plays a major role in affecting the ratio

of the two default model price and the full model price.

In the second groups of tests, the impact of the interest rate on the three model

prices has been assessed. In the first test, the initial and long term average interest

rate is ranging from 0.4% to 2%, a1 is chosen to be 0.5, 1, 1.5 and 2 respectively.

The other parameters are chosen as rating A and B parameters in Table 3. The

notional value is $250,000,000, ρ = 0.2, Maturity is 5 years and K = 0.5%. The

different model prices with different chosen parameters have been put in Table

14∼21. From these results, we find when the interest rate is larger, all three values

increase quickly. This behavior can be easily explained. The CCIRS price mainly

relies on the excessive amount of the new fixed rate over the old one. From equation

(II.2.6), it is easy to prove that if the interest rate is constant, the reasonable fixed

rate of the swap is very close to the interest rate. So when the long term average

interest rate is larger, it has higher probability to sign a new contract with a higher

fixed rate, i.e. the value of CCIRS is higher.

The comparison of ratios of two-default value/one-default price and the full

value/one-default price are shown in Figure 9∼16. The observations from these

results are more complicated. Actually there are three factors affecting the ratios.
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These three factors are number of defaults, reverting speed of interest rate and the

trend of interest rate change. Because of the complexity of these effects from the

three factors, we discuss them in two cases.

In the first case when the long term average is smaller than K, the number of

defaults and the reverting speed dominates the ratios. The reason for this dom-

ination is intuitive. When the interest rate is low, it is less likely to sign a new

fixed rate higher than K. So on the one hand more defaults actually provides more

chances of signing a higher fixed rate. So in this case more defaults mean higher

price of CCIRS. On the other hand when the reverting speed of interest rate is

larger, the interest rate will concentrate more around the average. So when the

average is smaller than K, lower reverting speed can provide more randomness of

the interest rate to be higher than K. Then again, more defaults means higher

price.

In the second case when the long term average is above K, the effect of number

of defaults becomes less important. Because when average is already higher than

K, the fixed rate signed at the first default time is likely to be more thanK, so more

defaults did not provide much more chances of signing higher fixed rate. Especially

when the reverting speed is large, it is very obvious that all values become close to

each other when the average rate is around and above K.

The other observation we found is for very large average rate, the two-default

value can be even smaller and the full value is the smallest. To better understand

this phenomenon, we have run two new tests.

We wanted to test the three model prices when the interest rate will gradually

increase or gradually decrease. So in the first new test, we let the initial interest

rate be 0.549% and long term average rate ranges from 0.6% to 5%. In the second

new test, we let the initial interest rate be 4% and long term average rate ranges
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from 0.4% to 2%. The reverting speed of interest rate is 0.1. The parameters of

hazard rate model is chosen as the parameters for rating B. K = 1%, maturity is

10 years and ρ = 0.2. The results are shown in Figure 18 and Figure 20. In test 1

where the interest rate gradually increases, the newer fixed rate after each default

will likely be larger. So intuitively the two-default value is larger and the full value

is the largest, as proved by the results in Figure 18. However, when the interest rate

gradually decreases, the newer fixed rate after each default will likely be lower. In

this case, the CCIRS holder can actually take benefit from more defaults. Because

the two-default price can be lower and full price is the lowest.

In the next test, the effect of the volatility of interest rate is tested as well and

the three model prices are in Table 22 and Table 23. The ratios comparison of

two-default model price/one-default model price and full model price/one-default

model price from rating A and B are shown in Figure 21 and Figure 22. The other

parameters are chosen as in Table 2 and Table 3. K = 1%, ρ = 0.2 and maturity

is 10 years. The results reflect that volatility provides higher chance of signing the

new fixed rate higher than K and pushes the value higher. And in this case when

the average rate is close to K, more possible defaults actually brings more chances

of signing higher fixed rate as well. The combination of these two effects leads to

the higher ratio of two defaults value and full model value to one default value when

the volatility is higher.

The last test studies the maturity exposure in three different default model.

The maturity is chosen from 5 years to 15 years. The initial and long term average

interest rate are 4% and the initial and long term average hazard rate are 10%. The

results shown in Table 24 and Table 25. The ratios comparison of the two-default

model price/one-default model price and the full model price/one-default model

price from rating A and B are shown in Figure 23 and Figure 24. The results follow
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the intuition as well. More possible defaults will happen with longer maturity.

When the average interest rate is around the K, more defaults lead to greater risk

of getting higher fixed rate than one default.

After these analyses of risk exposures, it is reasonable to conclude that the

effect of the possible second default or more defaults in CCIRS pricing model can

not be neglected, especially when the risk of default is not low and the interest rate

floats around the original fixed swap rate, in which case the sensitive impact of its

randomness greatly affects the two-default price. The two-default model might be

good enough for the pricing of rating A default risk. But for counterparties with

higher default risks, the full model captures the correct risk.

II.6 Chapter Conclusion

In this chapter, we investigated the importance of additional defaults in the

pricing of CCIRS. We compared the results using both the Monte-Carlo simulation

and PDEs based methods. As the PDE approach is computationally more efficient,

it allows us to carry out extensive risk exposure analysis. Our results indicate that

the risk due to the default of the replacement contract in an interest rate swap is

significant. Therefore, the assumption of a default-free replacement contract may

overestimate or underestimate CCIRS price and the risk exposure due to counter-

party default. The CVA of the second and subsequent defaults can only be ignored

when the credit risk is very low, i.e. when the counterparty has a high credit rating

with short maturity. In addition, our results also show that the interest rate envi-

ronment and maturity of the contract play important roles in the risk composition

of the final CCIRS price.

One shortcoming of the two-default model is that the effect of subsequent de-

faults is assumed to be small and consequently are not modelled. To overcome
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this shortcoming, we have considered the pricing problem with no restriction on

the number of defaults. The price computed using this full model captures the

real or true cost of the counterparty risk and can be used as a benchmark when

comparing the prices computed using the one-default and two-default model, both

are approximations.
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III An Analytical Value at Risk (VaR)

Approach for Credit Portfolio with Liquidity

Horizon and Portfolio Rebalancing

Current Incremental Risk Charge (IRC) calculation relies on time consuming

Monte Carlo simulation (MC), so the banks still use more efficient Asymptotic

Single Risk Factor (ASRF) and its Granularity Adjustment (GA) as important

measures for the effective capital management for banks. In order to achieve a risk

sensible comparison, we provide a general framework of two-period conditional VaR

model in the context of IRC modeling framework in which the liquidity horizon and

constant level of risk are considered. Compared to the original ASRF model, two-

period conditional VaR model is more practical from the risk point of view when

liquidity risk is added. So finding a proper analytic solution is a very valuable

research work. By borrowing the GA technique, we will then present an analytic

approach to the two-period conditional VaR in this chapter. On top of that, we

will also provide an exact solution to VaR in the infinite-period model.
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III.1 General Framework of two period conditional VaR

model

III.1.1 ASRF model for Credit Portfolio and the GA approximation

The general framework of ASRF and its GA are presented in this section. For a

credit portfolio, the loss function within a one-factor modeling framework is defined

as

LN =
N∑
i=1

uiI{Xi>Ui} , (III.1.1)

Xi = ρiS +
√
1− ρ2i ξi , (III.1.2)

where LN is the portfolio loss, ui is the loss given default of the ith asset, ξi is

the idiosyncratic factor, ρi is the positive correlation between asset factor Xi and

systematic factor S, and Ui is the threshold to determine if the default of the ith

trade will happen. S and all the ξi are assumed to be i.i.d Gaussian variables

N(0, 1).

Denote αq(·) as the q percentile value of random variable. i.e.,

P (X ≤ αq(X)) = q . (III.1.3)

Then the q percentile VaR of this portfolio is denoted αq(LN), which can be

found by MC.

Although there is no direct analytic solution for the q percentile VaR, its ap-

proximation can be calculated in ASRF. In ASRF, the most important assumption

is that when the portfolio is large enough, the individual risk of each trade will be

diversified away. With this assumption and by the law of large numbers, Gordy
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(2003) [20] demonstrated:

LN → E(LN |S), a.s. (III.1.4)

This means αq(LN) ≈ αq[E(LN |S)]. If the conditional expectation of loss func-

tion f(s) = E[LN |S = s] is monotonic,which is the assumption of most models, we

have αq[E(LN |S)] = E(LN |αq(S)) because of the monotonic property of αq(·). If

the loss function is defined as in (III.1.1), we have

αq(LN) ≈ αq[E(LN |S)]

= αq

[
N∑
i=1

ui

(
1− Φ

(
Ui − ρiS√

1− ρ2i

))]

=
N∑
i=1

ui

(
1− Φ

(
Ui − ρiαq(S)√

1− ρ2i

))
(III.1.5)

This is how the capital requirement calculation (IRB approach) is implemented

based on the ASRF assumption. In practice, however, the infinitely fine grained

portfolio does not exist, so there is a difference between VaR (i.e. αq(LN)) and

E(LN |αq(S)). The summation of E(LN |αq(S)) and the difference of αq(LN) and

αq[E(LN |S)] is considered to be the new VaR. This calculation of the difference is

the main goal of GA.

The key method of GA proposed by Gordy (2003) [20] was the second order

Taylor expansion. We know

αq(LN) = αq[E(LN |S) + ε(LN − E(LN |S))]|ε=1 .

Let z(ε) = αq[E(LN |S) + ε(LN − E(LN |S))]; applying the second order Taylor

expansion on ε = 0, we have,

z(ε) ≈ z(0) + z′(0)ε+ z′′(0)
ε2

2
. (III.1.6)
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αq[E(LN |S) + ε(LN − E(LN |S))]|ε=1

=z(1)

≈z(0) + z′(0) · 1 + z′′(0) · 1
2

2

=αq[E(LN |S)] +
∂αq

∂ε
[E(LN |S) + ε(LN − E(LN |S))]|ε=0

+
1

2

∂2αq

∂ε2
[E(LN |S) + ε(LN − E(LN |S))]|ε=0 . (III.1.7)

Then the value of GA, the difference between αq(LN) and αq[E(LN |S)], is ap-

proximately the sum of the first and the second derivatives. Wilde (2001) [44]

proved that GA can be expressed as

GAN = − 1

2h(αq(S))

d

dx

(
σ2(LN |S = x)h(x))

dE(LN |S=x)
dx

)∣∣∣∣∣
x=αq(S)

, (III.1.8)

where h is the density function of the systematic risk factor S. The detailed ex-

pression of h(x), E(LN |S = x) and σ2(LN |S = x) depend on the chosen model.

III.1.2 Analytical VaR with Liquidity Horizon and Portfolio Rebalanc-

ing

III.1.2.1 Two-period Credit Portfolio VaR measure and its ASRF and

GA terms

The two-period credit portfolio valuation and loss model will be described in this

section. In order to model the portfolio rebalancing within one year time horizon,

we divide the one year horizon into two half-year periods. In the first half, the credit

portfolio follows standard factor model as outlined in III.1.1. Then at the end of the

first period, the portfolio can be rebalanced according to what happens in the first
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period. For example, if one asset defaults in the first period, we choose to replace it

with a similar asset of the same LGD and rating (i.e. same default probability and

asset correlation). Then we can say that at the end of six month, the portfolio is

replenished such that it maintains a constant level of risk. For some assets, we can

also assume that no action is needed. From the default risk perspective, this has

the embedded assumption that this asset has a liquidity horizon of one year. In this

chapter, we assume that all assets have a six month liquidity horizon. Therefore,

we need to model the losses aggregated in two periods with the losses in the second

period conditional on the portfolio rebalancing assumptions.

Let S1, S2 be the realizations of the systematic factor in the end of the first and

second period. They are assumed to be independent. Similar to one-period default

model (III.1.1), the two-step one-factor default model is:

LN =
N∑
i=1

[
uiI{T (i)

1 >Ui}
+ uiI{T (i)

2 >Ui}

]
, (III.1.9)

where:

T
(i)
1 = ρiS1 +

√
1− ρ2i ξi , (III.1.10)

T
(i)
2 = ρiS2 +

√
1− ρ2i ξ

′
i , (III.1.11)

ui is the loss given default of asset i, all the ξi and ξ′i are the idiosyncratic factors

which are independent across each other and across each systematic factor S1, S2

and ρi is the positive correlation between asset factor T
(i)
1 and systematic factor

S1. It is the same as the correlation between asset factor T
(i)
2 and systematic factor

S2 since the trade has the same behavior as the trade in the first period no matter

it defaults or not. Ui is the threshold to determine if the default of the ith trade

will happen. S1, S2 and all the ξi and ξ′i are assumed to be Gaussian distributed

variables N(0, 1).

Similar to the standard GA, the second order Taylor expansion can be applied.
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Rewrite LN = αq[E(LN |S1, S2)] + ε[LN − E(LN |S1, S2)]|ε=1 .

Use Taylor expansion and proceed as (III.1.7):

αq(LN) = αq[E(LN |S1, S2)] + ε[LN − E(LN |S1, S2)]|ε=1

≈ αq[E(LN |S1, S2)] +
∂αq

∂ε
[E(LN |S1, S2) + ε(LN − E(LN |S1, S2))]|ε=0

+
1

2

∂2αq[E(LN |S1, S2) + ε(LN − E(LN |S1, S2))]

∂ε2

∣∣∣∣
ε=0

. (III.1.12)

If we can calculate the values of the three components of the sum in (III.1.12),

we will know the VaR of this portfolio. The summation of the first and the second

derivative is the value of GA.

III.1.2.2 Two-period “ASRF” Term in Equation (III.1.12)

With the formula of LN in (III.1.9), E(LN |S1, S2) is calculated as:

E(LN |S1, S2) =
N∑
i=1

{
uiE[I{T (i)

1 >Ui}
|S1, S2] + uiE[I{T (i)

2 >Ui}
|S1, S2]

}
=

N∑
i=1

{
ui[1− Φ(

Ui − ρiS1√
1− ρ2i

)]

}

+
N∑
i=1

{
ui[1− Φ(

Ui − ρiS2√
1− ρ2i

)]

}
, (III.1.13)

where Φ(·) is the cumulative distribution function of standard normal distributed

variable. Denote

X = E(LN |S1, S2) , (III.1.14)

l(s) =
N∑
i=1

{
ui[1− Φ(

Ui − ρis√
1− ρ2i

)]

}
. (III.1.15)
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So (III.1.13) can be simply written as

X = l(S1) + l(S2) . (III.1.16)

Since ρi is always positive, it is obvious that l(s) is a strictly monotonically

increasing function and

lim
s→−∞

l(s) = 0 , (III.1.17)

lim
s→+∞

l(s) =
N∑
i=1

ui . (III.1.18)

To simplify the rest narrations in this chapter, the limit of any function f(·)

will be rewritten as:

f(±∞) = lim
x→±∞

f(x) . (III.1.19)

So the limits of function l are rewritten as:

l(−∞) = 0 , (III.1.20)

l(+∞) =
N∑
i=1

ui . (III.1.21)

To calculate αq(X), the cumulative distribution function of X needs to be cal-

culated, which is

FX(t) = P (X ≤ t) . (III.1.22)

From (III.1.17) and (III.1.18), function l(s) is bounded between 0 and
∑N

i=1 ui.

So

FX(t) =

 0, if t ≤ 0 ;

1, if t ≥ 2
∑N

i=1 ui .
(III.1.23)
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For any 0 < t < 2
∑N

i=1 ui,

X ≤ t

⇔ l(S1) + l(S2) ≤ t

⇔


{S2 ≤ l−1(t− l(S1)), S1 > l−1(t−

∑N
i=1 ui)}∪

{S2 ∈ R, S1 ≤ l−1(t−
∑N

i=1 ui)}, t ≥
∑N

i=1 ui ;

{S2 ≤ l−1(t− l(S1)), S1 < l−1(t)}, t <
∑N

i=1 ui .

(III.1.24)

The FX(t) in both cases can be calculated given the systematic factor S1 and

S2 are normally distributed and uncorrelated. The density function of X will be

calculated here for future use.

(i) In the first case, i.e. 2
∑N

i=1 ui > t ≥
∑N

i=1 ui,

FX(t) =

∫ +∞

l−1(t−
∑N

i=1 ui)

ϕ(s1)Φ(l
−1(t− l(s1)))ds1 + Φ(l−1(t−

N∑
i=1

ui)) , (III.1.25)

where ϕ(·) is the density function of the standard normal random variable. Note

when t =
∑N

i=1 ui, FX(t) =
∫ +∞
−∞ ϕ(s1)Φ(l

−1(t − l(s1)))ds1. This does not vio-

late the formula of FX(t) in (III.1.25) with the notation (III.1.19), i.e. Φ(−∞) =

limx→∞Φ(x) = 0.

To calculate fX(t), the following propositions are required.

Proposition III.1.1 let F (t) =
∫ a(t)

b(t)
f(t, x)dx, where f(t, x) ∈ C(D), ∂f(t,x)

∂t
∈

C(D), D = {(x, t)|x ∈ [α, β], t ∈ [m,n]}, C(D) is the set of all continuous functions
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on D. a′(t) and b′(t) exist when t ∈ [m,n]. And α ≤ a(t) ≤ β, α ≤ b(t) ≤ β. then

F ′(t) = f(t, a(t))a′(t)− f(t, b(t))b′(t) +

∫ a(t)

b(t)

∂f(t, x)

∂t
dx . (III.1.26)

Proposition III.1.2

dl−1(t)

dt
=

1

l′(l−1(t))
. (III.1.27)

Then use Proposition III.1.1 and Proposition III.1.2 in the calculation of fX(t).

When t ̸=
∑N

i=1 ui,

fX(t) = F ′
X(t)

= −ϕ(l−1(t−
N∑
i=1

ui))Φ(l
−1(

N∑
i=1

ui))
1

l′(l−1(t−
∑N

i=1 ui))

+

∫ +∞

l−1(t−
∑N

i=1 ui)

ϕ(s1)ϕ(l
−1(t− l(s1)))

1

l′(l−1(t− l(s1)))
ds1

+ ϕ(l−1(t−
N∑
i=1

ui))
1

l′(l−1(t−
∑N

i=1 ui))

(Since Φ(l−1(
N∑
i=1

ui)) = Φ(+∞) = 1)

= −ϕ(l−1(t−
N∑
i=1

ui))
1

l′(l−1(t−
∑N

i=1 ui))

+

∫ +∞

l−1(t−
∑N

i=1 ui)

ϕ(s1)ϕ(l
−1(t− l(s1)))

1

l′(l−1(t− l(s1)))
ds1

+ ϕ(l−1(t−
N∑
i=1

ui))
1

l′(l−1(t−
∑N

i=1 ui))

=

∫ +∞

l−1(t−
∑N

i=1 ui)

ϕ(s1)ϕ(l
−1(t− l(s1)))

1

l′(l−1(t− l(s1)))
ds1 .

(III.1.28)
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When t =
∑N

i=1 ui,

fX(t) = F ′
X(t)

=

∫ +∞

−∞
ϕ(s1)ϕ(l

−1(t− l(s1)))
1

l′(l−1(t− l(s1)))
ds1

(since l−1(0) = −∞)

=

∫ +∞

l−1(t−
∑N

i=1 ui)

ϕ(s1)ϕ(l
−1(t− l(s1)))

1

l′(l−1(t− l(s1)))
ds1 .

(III.1.29)

So in case (i),

fX(t) =

∫ +∞

l−1(t−
∑N

i=1 ui)

ϕ(s1)ϕ(l
−1(t− l(s1)))

1

l′(l−1(t− l(s1)))
ds1 . (III.1.30)

(ii) In the second case, i.e. 0 < t <
∑N

i=1 ui,

FX(t) =

∫ l−1(t)

−∞
ϕ(s1)Φ(l

−1(t− l(s1)))ds1 , (III.1.31)

Similarly, use Proposition III.1.1 and Proposition III.1.2 to calculate fX(t).

fX(t) = ϕ(l−1(t))Φ(l−1(t− t))
1

l′(l−1(t))

+

∫ l−1(t)

−∞
ϕ(s1)ϕ(l

−1(t− l(s1)))
1

l′(l−1(t− l(s1)))
ds1

(Since Φ(l−1(t− t)) = Φ(−∞) = 0)

=

∫ l−1(t)

−∞
ϕ(s1)ϕ(l

−1(t− l(s1)))
1

l′(l−1(t− l(s1)))
ds1 . (III.1.32)
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Following are the values of fX(t) on two boundaries in both cases. In case (i)

when t =
∑N

i=1 ui,

f(t) =

∫ +∞

−∞
ϕ(s1)ϕ(l

−1(t− l(s1)))
1

l′(l−1(t− l(s1)))
ds1 , (III.1.33)

and in case (ii) when t →
∑N

i=1 ui,

lim
t→
∑N

i=1 ui

f(t) =

∫ +∞

−∞
ϕ(s1)ϕ(l

−1(t− l(s1)))
1

l′(l−1(t− l(s1)))
ds1 . (III.1.34)

In case (i) when t → 2
∑N

i=1 ui,

lim
t→2

∑N
i=1 ui

fX(t) =

∫ +∞

+∞
ϕ(s1)ϕ(l

−1(t− l(s1)))
1

l′(l−1(t− l(s1)))
ds1 = 0 , (III.1.35)

and in case (ii) when t → 0,

lim
t→0

fX(t) =

∫ −∞

−∞
ϕ(s1)ϕ(l

−1(t− l(s1)))
1

l′(l−1(t− l(s1)))
ds1 = 0 . (III.1.36)

The two conditions (III.1.33) = (III.1.34) and (III.1.35) = (III.1.36) = 0

give the continuity of the density function for all t ∈ R.

Then

fX(t) =
∫ +∞
l−1(t−

∑N
i=1 ui)

ϕ(s1)ϕ(l
−1(t− l(s1)))

1
l′(l−1(t−l(s1)))

ds1, if 2
∑N

i=1 ui > t ≥
∑N

i=1 ui ;∫ l−1(t)

−∞ ϕ(s1)ϕ(l
−1(t− l(s1)))

1
l′(l−1(t−l(s1)))

ds1, if
∑N

i=1 ui > t ≥ 0 ;

0, otherwise .

(III.1.37)

To simplify the expression of fX(t), define a function gt(s1) on{
(t, s1)

∣∣∣∣∣(t, s1) ∈
[

N∑
i=1

ui, 2
N∑
i=1

ui

)
×

(
l−1(t−

N∑
i=1

ui),+∞

)
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∪[
0,

N∑
i=1

ui

)
×

(
−∞, l−1(t)

)}
(III.1.38)

as

gt(s1) = l−1(t− l(s1)). (III.1.39)

Since l(x) is a strictly monotonically increasing function, gt(s1) is a strictly

monotonically decreasing function w.r.t s1.

Define an interval Ω(t) as:

Ω(t) =

 (l−1(t−
∑N

i=1 ui),+∞), Case 1: 2
∑N

i=1 ui > t ≥
∑N

i=1 ui ;

(−∞, l−1(t)), Case 2:
∑N

i=1 ui > t > 0 .

(III.1.40)

Then

fX(t) =


∫
Ω(t)

ϕ(s1)ϕ(gt(s1))(l
′(gt(s1)))

−1ds1, if 2
∑N

i=1 ui > t ≥ 0 ;

0, otherwise .

(III.1.41)

Then using (III.1.25) and (III.1.31) to solve the αq(X) numerically from equa-

tion

FX(αq(X)) = q . (III.1.42)

III.1.2.3 Calculate the Second Term in Equation (III.1.12)

Define Y = LN − E(LN |S1, S2), then the first order term can be rewritten as

∂αq(X + εY )

∂ε

∣∣∣∣
ε=0

. (III.1.43)

Here Rau-Bredow(2002) [36] proved the following theorem.
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Theorem III.1.3 Consider two random variables X and Y with a joint density

function f(x, y) and αq(·) is defined in the same way as in this chapter. Then:

∂αq(X + εY )

∂ε
= E [Y |X + εY = αq(X + εY )] , (III.1.44)

∂2αq(X + εY )

∂ε2
= (III.1.45)

−
[
∂σ2(Y |X + εY = s)

∂s
+ σ2(Y |X + εY = s)

∂lnfX+εY (s)

∂s

]
s=αq(X+εY )

,

(III.1.46)

where fX+εY (s) is the density function of X + εY and σ2(Y |X + εY = s) is the

conditional variance of Y .

Using Theorem III.1.3:

∂αq(X + εY )

∂ε

∣∣∣∣
ε=0

= E [Y |X = αq(X)]

= E[LN − E(LN |S1, S2)|E(LN |S1, S2) = αq(E(LN |S1, S2))]

= E[LN |E(LN |S1, S2) = αq(E(LN |S1, S2))]

− E[E(LN |S1, S2)|E(LN |S1, S2) = αq(E(LN |S1, S2))] .

(III.1.47)

Since E(LN |S1, S2) is σ(S1, S2)-measurable, and

σ(E(LN |S1, S2) = αq(E(LN |S1, S2))) ⊆ σ(S1, S2),

by tower property,

E[E(LN |S1, S2)|E(LN |S1, S2) = αq(E(LN |S1, S2))]

= E[LN |E(LN |S1, S2) = αq(E(LN |S1, S2))] . (III.1.48)
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So
∂αq(X + εY )

∂ε

∣∣∣∣
ε=0

= 0 . (III.1.49)

It is elaborate that the first derivative of two-period GA, as well as the first

derivative of one-period GA, are both 0.

III.1.2.4 Calculate the Third Term in Equation (III.1.12)

Using Theorem III.1.3:

1

2

∂2αq[E(LN |S1, S2) + ε(LN − E(LN |S1, S2))]

∂ε2

∣∣∣∣
ε=0

=
1

2

∂2αq(X + εY )

∂ε2

∣∣∣∣
ε=0

= −1

2

[
∂σ2(Y |X = s)

∂s
+ σ2(Y |X = s)

dlnfX(s)

ds

]
s=αq(X)

. (III.1.50)

First, the value of σ2(Y |X = s) is required:

σ2(Y |X = s) = σ2(LN −X|X = s)

= σ2(LN − s|X = s)

= σ2(LN |X = s)

= E(L2
N |X = s)− E2(LN |X = s) . (III.1.51)

Then E(LN |X = s) and E(L2
N |X = s) are calculated for the value of σ2(Y |X =

s) in section III.1.2.4.1 and III.1.2.4.2.

Second, the derivative of the variance (i.e. ∂σ2(Y |X=s)
∂s

) is calculated in section

III.1.2.4.3.

Finally, dlnfX(s)
ds

is calculated in section III.1.2.4.4.

III.1.2.4.1 Calculate E(LN |X = s)
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Please recall the loss function LN is defined as

LN =
N∑
i=1

[
uiI{T (i)

1 >Ui}
+ uiI{T (i)

2 >Ui}

]
, (III.1.52)

where:

T
(i)
1 = ρiS1 +

√
1− ρ2i ξi , (III.1.53)

T
(i)
2 = ρiS2 +

√
1− ρ2i ξ

′
i , (III.1.54)

ui is the loss given default of asset i, all the ξi and ξ′i are the idiosyncratic factors

which are independent across each other and across each systematic factor S1, S2

and ρi is the correlation between asset factor T
(i)
1 and systematic factor S1. It

is the same as the correlation between asset factor T
(i)
2 and systematic factor S2

since the trade has the same behavior as the trade in the first period no matter

it defaults or not. Ui is the threshold to determine if the default of the ith trade

will happen. S1, S2 and all the ξi and ξ′i are assumed to be Gaussian distributed

variables N(0, 1).

Then

E(LN |X = s) = E

{
N∑
i=1

[
uiI{T (i)

1 >Ui}
+ uiI{T (i)

2 >Ui}

]
|X = s

}

=
N∑
i=1

{
uiE[I{T (i)

1 >Ui}
|X = s] + uiE[I{T (i)

2 >Ui}
|X = s]

}
.

(III.1.55)

By symmetry,

E[I{T (i)
1 >Ui}

|X = s] = E[I{T (i)
2 >Ui}

|X = s] (∀i = 1, 2, ..., N) . (III.1.56)

So the formulas for E[I{T (i)
1 >Ui}

|X = s] are enough to give the value of E(LN |X =

s).
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Remember X = l(S1) + l(S2) is defined in (III.1.15). Proposition B.1 in the

Appendix B can be directly applied. To simplify the calculation, the definition in

(III.1.41) will be used:

E[I{T (i)
1 >Ui}

|X = s]

= E[I{ρiS1+
√

1−ρ2i ξi>Ui}
|X = s]

=
1

fX(s)

∫ +∞

−∞

∫
s1∈Ω(s)

I{ρis1+
√

1−ρ2i x>Ui}
ϕ(x)ϕ(s1)ϕ(gs(s1))(l

′(gs(s1)))
−1dxds1

=
1

fX(s)

∫
s1∈Ω(s)

∫ +∞

Ui−ρis1√
1−ρ2i

ϕ(x)ϕ(s1)ϕ(gs(s1))(l
′(gs(s1)))

−1dxds1

=
1

fX(s)

∫
s1∈Ω(s)

[
1− Φ

(
Ui − ρis1√

1− ρ2i

)]
ϕ(s1)ϕ(gs(s1))(l

′(gs(s1)))
−1ds1 .

(III.1.57)

Then all E[I{T (i)
1 >Ui}

|X = s] are able to be calculated based on formula (III.1.57).

Following the equation (III.1.56), all E[I{T (i)
2 >Ui}

|X = s] are known by symmetry.

Then E(LN |X = s) is calculated by equation (III.1.55).

III.1.2.4.2 Calculate E(L2
N |X = s)

First,

E(L2
N |X = s)

= E


{

N∑
i=1

[
uiI{T (i)

1 >Ui}
+ uiI{T (i)

2 >Ui}

]}2
∣∣∣∣∣∣X = s


= E


N∑
i=1

u2
i I{T (i)

1 >Ui}
+

N∑
i,j=1(i ̸=j)

uiujI{T (i)
1 >Ui}

I{T (j)
1 >Uj}

+
N∑
i=1

u2
i I{T (i)

2 >Ui}

+
N∑

i,j=1(i̸=j)

uiujI{T (i)
2 >Ui}

I{T (j)
2 >Uj}

+
N∑

i,j=1

uiujI{T (i)
1 >Ui}

I{T (j)
2 >Uj}
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+
N∑

i,j=1

uiujI{T (i)
2 >Ui}

I{T (j)
1 >Uj}

∣∣∣∣∣X = s

}

=
N∑
i=1

u2
iE
(
I{T (i)

1 >Ui}
|X = s

)
+

N∑
i,j=1(i ̸=j)

uiujE
(
I{T (i)

1 >Ui}
I{T (j)

1 >Uj}
|X = s

)

+
N∑
i=1

u2
iE
(
I{T (i)

2 >Ui}
|X = s

)
+

N∑
i,j=1(i̸=j)

uiujE
(
I{T (i)

2 >Ui}
I{T (j)

2 >Uj}
|X = s

)

+ 2
N∑

i,j=1

uiujE
(
I{T (i)

1 >Ui}
I{T (j)

2 >Uj}
|X = s

)
. (III.1.58)

A property of indicator function, which is I2{event} = I{event}, has been used in

this calculation.

Second, in order to calculate E(L2
N |X = s), the values of the following are

required:

E
(
I{T (i)

1 >Ui}
|X = s

)
, E
(
I{T (i)

1 >Ui}
I{T (j)

1 >Uj}
|X = s

)
, E
(
I{T (i)

2 >Ui}
|X = s

)
,

E
(
I{T (i)

2 >Ui}
I{T (j)

2 >Uj}
|X = s

)
and E

(
I{T (i)

1 >Ui}
I{T (j)

2 >Uj}
|X = s

)
.

Again, by symmetry,

E
(
I{T (i)

1 >Ui}
|X = s

)
= E

(
I{T (i)

2 >Ui}
|X = s

)
, (III.1.59)

E
(
I{T (i)

1 >Ui}
I{T (j)

1 >Uj}
|X = s

)
= E

(
I{T (i)

2 >Ui}
I{T (j)

2 >Uj}
|X = s

)
, (III.1.60)

E
(
I{T (i)

1 >Ui}
I{T (j)

2 >Uj}
|X = s

)
= E

(
I{T (j)

1 >Uj}
I{T (i)

2 >Ui}
|X = s

)
. (III.1.61)

The value of E
(
I{T (i)

1 >Ui}
|X = s

)
has already been calculated in section III.1.2.4.1.

Similarly, apply Proposition B.1 in the Appendix B to calculate

E
(
I{T (i)

1 >Ui}
I{T (j)

1 >Uj}
|X = s

)
and E

(
I{T (i)

1 >Ui}
I{T (j)

2 >Uj}
|X = s

)
as:

E
(
I{T (i)

1 >Ui}
I{T (j)

1 >Uj}
|X = s

)
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= E
[
I{ρiS1+

√
1−ρ2i ξi>Ui}

I{ρjS1+
√

1−ρ2jξj>Uj}
|X = s

]
=

1

fX(s)

∫ +∞

−∞

∫ +∞

−∞

∫
s1∈Ω(s)

I{ρis1+
√

1−ρ2i x1>Ui}
I{ρjs1+

√
1−ρ2jx2>Uj}

· ϕ(x1)ϕ(x2)ϕ(s1)ϕ(gs(s1))(l
′(gs(s1)))

−1dx1dx2ds1

=

∫
s1∈Ω(s)

∫ +∞

Ui−ρis1√
1−ρ2i

∫ +∞

Uj−ρjs1√
1−ρ2j

ϕ(x1)ϕ(x2)ϕ(s1)ϕ(gs(s1))(l
′(gs(s1)))

−1dx1dx2ds1 ·
1

fX(s)

=

∫
s1∈Ω(s)

[
1− Φ

(
Ui − ρis1√

1− ρ2i

)]1− Φ

Uj − ρjs1√
1− ρ2j


· ϕ(s1)ϕ(gs(s1))(l′(gs(s1)))−1ds1 ·

1

fX(s)
. (III.1.62)

E
(
I{T (i)

1 >Ui}
I{T (j)

2 >Uj}
|X = s

)
= E

[
I{ρiS1+

√
1−ρ2i ξi>Ui}

I{ρjS2+
√

1−ρ2jξ
′
j>Uj}

|X = s
]

= E
[
I{ρiS1+

√
1−ρ2i ξi>Ui}

I{ρjgs(S1)+
√

1−ρ2jξ
′
j>Uj}

|X = s
]

=
1

fX(s)

∫ +∞

−∞

∫ +∞

−∞

∫
s1∈Ω(s)

I{ρis1+
√

1−ρ2i x>Ui}
I{ρjgs(s1)+

√
1−ρ2jx

′>Uj}

· ϕ(x)ϕ(x′)ϕ(s1)ϕ(gs(s1))(l
′(gs(s1)))

−1dxdx′ds1

=

∫
s1∈Ω(s)

∫ +∞

Ui−ρis1√
1−ρ2i

∫ +∞

Uj−ρjgs(s1)√
1−ρ2j

ϕ(x)ϕ(x′)ϕ(s1)ϕ(gs(s1))(l
′(gs(s1)))

−1dxdx′ds1 ·
1

fX(s)

=

∫
s1∈Ω(s)

[
1− Φ

(
Ui − ρis1√

1− ρ2i

)]1− Φ

Uj − ρjgs(s1)√
1− ρ2j


· ϕ(s1)ϕ(gs(s1))(l′(gs(s1)))−1ds1 ·

1

fX(s)
. (III.1.63)

Finally, E(L2
N |X = s) is calculated based on the formulas (III.1.57), (III.1.62)

and (III.1.63).
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So now σ2(Y |X = s) can be calculated through (III.1.51).

III.1.2.4.3 Calculate ∂σ2(Y |X=s)
∂s

In (III.1.51), we showed that

σ2(Y |X = s) = E(L2
N |X = s)− E2(LN |X = s) , (III.1.64)

together with the results we proved in (III.1.55) and (III.1.58) , ∂σ2(Y |X=s)
∂s

can be

calculated step by step by calculating each following terms:

∂E
(
I{T (i)

1 >Ui}
|X = s

)
∂s

, (III.1.65)

∂E
(
I{T (i)

1 >Ui}
I{T (j)

1 >Uj}
|X = s

)
∂s

, (III.1.66)

∂E
(
I{T (i)

1 >Ui}
I{T (j)

2 >Uj}
|X = s

)
∂s

. (III.1.67)

Some preparations are required before the calculation is proceeded. First, the

derivative of function gs(s1) with respect to s is calculated as:

∂gs(s1)

∂s
=

∂l−1(s− l(s1))

∂s

=
1

l′(l−1(s− l(s1)))

=
1

l′(gs(s1))
. (III.1.68)

Second, define a new function β(·) as:

β(s, s1) =
∂ϕ(gs(s1))

∂s
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= ϕ′(gs(s1))
∂gs(s1)

∂s

= ϕ′(gs(s1))
1

l′(gs(s1))
. (III.1.69)

Third, find the formulas for f ′
X(s).

Equation (III.1.41) gives the density function of fX(s).

However, the values of limx→±∞
l′(x)
ϕ(x)

are required before the analytic formula of

f ′
X(s) is derived.

lim
x→±∞

l′(x)

ϕ(x)
= lim

x→±∞

N∑
i=1

ui
ρi√
1− ρ2i

exp

−1

2

(
Ui − ρix√
1− ρ2i

)2

+
1

2
x2


= lim

x→±∞

N∑
i=1

uiρiexp
[
− 1

2(1−ρ2i )

]
√

1− ρ2i
exp

[
(2ρ2i − 1)x2 − 2ρiUix+ U2

i

]
= 0 or ∞ . (III.1.70)

From (III.1.70), limx→±∞
l′(x)
ϕ(x)

is∞ or 0 based on different sets of pre-determined

{ρi}. If limx→±∞
l′(x)
ϕ(x)

= 0, i.e. limx→±∞
ϕ(x)
l′(x)

= ∞, the continuity in a closed area

condition of Proposition III.1.1 is not satisfied. So the formula of f ′
X(s) cannot

be derived by applying Proposition III.1.1 when s ̸=
∑N

i=1 ui. In this case, the

f ′
X(s) can only be calculated numerically. And then all the first derivatives of the

conditional expectations have to be calculated numerically using simple numerically

partial differential equation technique. In the rest of this chapter, it is assumed that,

limx→±∞
ϕ(x)
l′(x)

= 0 .

With this assumption, Proposition III.1.1 can be applied as follows:

(i) If 2
∑N

i=1 ui > s ≥
∑N

i=1 ui,

when s ̸=
∑N

i=1 ui,

f ′
X(s) =

d
∫
Ω(s)

ϕ(s1)ϕ(gs(s1))
1

l′(gs(s1))
ds1

ds
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= −ϕ(l−1(s−
N∑
i=1

ui))ϕ(gs(l
−1(s−

N∑
i=1

ui)))

· 1

l′(gs(l−1(s−
∑N

i=1 ui)))

1

l′(l−1(s−
∑N

i=1 ui))

+

∫
Ω(s)

1

(l′(gs(s1)))2
ϕ(s1)

[
l′(gs(s1))

∂ϕ((gs(s1))

∂s
+ ϕ((gs(s1))

∂l′(gs(s1))

∂s

]
ds1

= −ϕ(l−1(s−
N∑
i=1

ui))

[
lim

x→+∞

ϕ(x)

l′(x)

]
1

l′(l−1(s−
∑N

i=1 ui))

+

∫
Ω(s)

1

(l′(gs(s1)))2
ϕ(s1)

[
l′(gs(s1))

∂ϕ((gs(s1))

∂s
+ ϕ((gs(s1))

∂l′(gs(s1))

∂s

]
ds1

(It is already assumed limx→+∞
ϕ(x)
l′(x)

= 0)

=

∫
Ω(s)

1

(l′(gs(s1)))2
ϕ(s1)

[
l′(gs(s1))β(s, s1) + ϕ((gs(s1))

∂l′(gs(s1))

∂s

]
ds1 ;

(III.1.71)

when s =
∑N

i=1 ui, Ω(s) = (−∞,+∞)

f ′
X(s) =

∫
Ω(s)

1

(l′(gs(s1)))2
ϕ(s1)

[
l′(gs(s1))β(s, s1) + ϕ((gs(s1))

∂l′(gs(s1))

∂s

]
ds1 .

(III.1.72)

(ii) If
∑N

i=1 ui > s > 0,

f ′
X(s) =

d
∫
Ω(s)

ϕ(s1)ϕ(gs(s1))
1

l′(gs(s1))
ds1

ds

=

{
ϕ(l−1(s))ϕ(gs(l

−1(s)))
1

l′(gs(l−1(s)))

+

∫
Ω(s)

1

(l′(gs(s1)))2
ϕ(s1)

[
l′(gs(s1))

∂ϕ((gs(s1))

∂s
+ ϕ((gs(s1))

∂l′(gs(s1))

∂s

]
ds1

}
=

{
ϕ(l−1(s))

[
lim

x→−∞

ϕ(x)

l′(x)

]
+

∫
Ω(s)

1

(l′(gs(s1)))2
ϕ(s1)

[
l′(gs(s1))

∂ϕ((gs(s1))

∂s
+ ϕ((gs(s1))

∂l′(gs(s1))

∂s

]
ds1

}
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(It is already assumed limx→−∞
ϕ(x)
l′(x)

= 0)

=

∫
Ω(s)

1

(l′(gs(s1)))2
ϕ(s1)

[
l′(gs(s1))β(s, s1) + ϕ((gs(s1))

∂l′(gs(s1))

∂s

]
ds1 .

(III.1.73)

We find out that no matter in case (i) or (ii), the formula for f ′
X(s) is the same

as follows

f ′
X(s) =

∫
Ω(s)

1

(l′(gs(s1)))2
ϕ(s1)

[
l′(gs(s1))β(s, s1) + ϕ((gs(s1))

∂l′(gs(s1))

∂s

]
ds1 .

(III.1.74)

To simplify the remaining of the calculations, define a function p(s, s1) as

p(s, s1) =
1

(l′(gs(s1)))2
ϕ(s1)

[
l′(gs(s1))β(s, s1) + ϕ((gs(s1))

∂l′(gs(s1))

∂s

]
.

(III.1.75)

So f ′
X(s) can be rewritten as

f ′
X(s) =

∫
Ω(s)

p(s, s1)ds1 . (III.1.76)

Now we can proceed to the calculation of ∂σ2(Y |X=s)
∂s

. From the results in

(III.1.41), (III.1.57), (III.1.68), (III.1.69) and (III.1.76),

∂E
(
I{T (i)

1 >Ui}
|X = s

)
∂s

=

∂

{
1

fX(s)

∫
s1∈Ω(s)

[
1− Φ

(
Ui−ρis1√

1−ρ2i

)]
ϕ(s1)ϕ(gs(s1))(l

′(gs(s1)))
−1ds1

}
∂s
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=
1

f 2
X(s)


∂
∫
s1∈Ω(s)

[
1− Φ

(
Ui−ρis1√

1−ρ2i

)]
ϕ(s1)ϕ(gs(s1))(l

′(gs(s1)))
−1ds1

∂s
fX(s)

+

∫
s1∈Ω(s)

[
1− Φ

(
Ui − ρis1√

1− ρ2i

)]
ϕ(s1)ϕ(gs(s1))(l

′(gs(s1)))
−1ds1f

′
X(s)

}

=
1

f 2
X(s)

{
fX(s)

∫
s1∈Ω(s)

[
1− Φ

(
Ui − ρis1√

1− ρ2i

)]
p(s, s1)ds1

+

∫
s1∈Ω(s)

[
1− Φ

(
Ui − ρis1√

1− ρ2i

)]
ϕ(s1)ϕ(gs(s1))(l

′(gs(s1)))
−1ds1

∫
s1∈Ω(s)

p(s, s1)ds1

}
.

(III.1.77)

From the results in (III.1.41),(III.1.62), (III.1.68), (III.1.69) and (III.1.76),

∂E
(
I{T (i)

1 >Ui}
I{T (j)

1 >Uj}
|X = s

)
∂s

=
1

f 2
X(s)

fX(s)

∫
s1∈Ω(s)

[
1− Φ

(
Ui − ρis1√

1− ρ2i

)]1− Φ

Uj − ρjs1√
1− ρ2j

 p(s, s1)ds1

+

∫
s1∈Ω(s)

[
1− Φ

(
Ui − ρis1√

1− ρ2i

)]1− Φ

Uj − ρjs1√
1− ρ2j


· ϕ(s1)ϕ(gs(s1))(l′(gs(s1)))−1ds1 ·

∫
s1∈Ω(s)

p(s, s1)ds1

}
. (III.1.78)

From the results in (III.1.41),(III.1.63), (III.1.68), (III.1.69) and (III.1.76),

∂E
(
I{T (i)

1 >Ui}
I{T (j)

1 >Uj}
|X = s

)
∂s

· ϕ(s1)ϕ(gs(s1))(l′(gs(s1)))−1ds1f
′
X(s)

}

=
1

f 2
X(s)

fX(s)

∫
s1∈Ω(s)

[
1− Φ

(
Ui − ρis1√

1− ρ2i

)]
1− Φ

Uj − ρjgs(s1)√
1− ρ2j

 p(s, s1)
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+
ρj√
1− ρ2j

ϕ

Uj − ρjgs(s1)√
1− ρ2j

ϕ(s1)ϕ(gs(s1))(l
′(gs(s1)))

−2

 ds1

+

∫
s1∈Ω(s)

[
1− Φ

(
Ui − ρis1√

1− ρ2i

)]1− Φ

Uj − ρjgs(s1)√
1− ρ2j


· ϕ(s1)ϕ(gs(s1))(l′(gs(s1)))−1ds1 ·

∫
s1∈Ω(s)

p(s, s1)ds1

}
. (III.1.79)

Finally ∂σ2(Y |X=s)
∂s

is derived using the results just calculated in (III.1.77), (III.1.78)

and (III.1.79).

III.1.2.4.4 Calculate dlnfX(s)
ds

With the formula of f ′
X(s) in (III.1.76), dlnfX(s)

ds
is easily calculated as

dlnfX(s)

ds
=

1

fX(s)
f ′
X(s) . (III.1.80)

Finally, every component of the second order derivative in (III.1.50) has been

derived, and αq(LN) could be calculated based on formula (III.1.12).

III.2 Numerical Results

The behavior of our two-period model is illustrated by comparing against the

ASRF, ASRF plus standard (one period) GA, and one-period MC model, two-

period MC model with and without portfolio rebalancing. The two-period MC

model with portfolio rebalancing simulates the portfolio loss as outlined in III.1.9.

If an asset defaults during the first period, the defaulted asset will be replaced with

one having the same notional and rating in the second period. It can be viewed as
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simplified factor simulation model for IRC. This model serves as the benchmark to

check how good our two-period conditional VaR behaves.

In order to understand the behavior of our model, we also benchmark against

one-period MC model and two-period MC without portfolio rebalancing. In the

latter, the defaulted asset is not replaced, which is the same assumption embedded

in one-period MC and standard ASRF and GA.

In all numerical tests shown below, we assume a credit portfolio in which each

asset is modeled as notional=LGD=1, a specific one-period default probability

(which can be tied to rating from the modeling perspective) and a correlation

within one-factor framework (i.e. each asset is correlated to one common factor).

The VaR at any given percentile is expressed as a percentage of total notional of

the portfolio.

III.2.1 ASRF with standard GA and Two-period Conditional VaR

The general behavior of two-period conditional VaR model are shown in Tables

26 and 27, where we show the 99.9 percentile VaR in different scenarios computed

by different models. In Table 26, we assume a portfolio of 100 assets with uniform

one-period PD being 1 percent and different levels of correlation. The correlation

is fixed at 0.5 and the number of assets in the portfolio is changed in Table 27. The

following observations can be summarized:

• Compared with one-period MC model, the ASRF and standard one-period

GA behave as expected, which is, when the correlation approaches 1 and

the portfolio become large, ASRF tends to converge with MC results and

standard GA also serves as a reasonable approximation.

• ASRF does not converge to the two-period MC in the case of very large
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portfolio and high correlations. This means that in the presence of liquid-

ity horizon and portfolio rebalancing, the standard one-period ASRF is not

practical enough as an analytical solution to credit portfolio VaR measure, .

• Compared with two-period MC model, the two-period conditional VaR model

serves as a reasonable approximation. It has the same behavior as the stan-

dard GA in a sense that it converges to MC in the case of high correlation

and large portfolio. As shown Appendix C, the order of each error terms is

same as the standard one-period GA approximation.

Figure 25 shows the ratios of ASRF, ASRF plus standard GA, two-period con-

ditional VaR to the two-period MC VaR w.r.t different number of assets. It can

be seen that the two-period conditional VaR is a reasonable approximation to the

full simulation model while at the same time, standard ASRF with and without

standard GA is not enough.

One major observation from Tables 26 and 27 is the differences between two

MC simulations. In order to understand the differences, we designed an additional

MC model in which the portfolio is not rebalanced. The results of three MC

models at the tail distributions (99 percentile and above) are shown in Figure

26. First of all, given all parameters are same, one-period MC has largest VaR

at most percentile points. When we employ the two-period MC without portfolio

rebalancing, VaR numbers at different percentile points become lower. When we

switch on the portfolio rebalancing, VaR numbers become large but still smaller

than that of one-period points. This behavior shows to two competing factors:

• The so called ”‘correlation leaking”’ effect within multi-period factor modeling

framework. Danniel Staumann [39] showed and discussed that the correlated

default scenarios are different in one-period and multi-period simulation. In
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the example here a two-period MC simulation would cut off the possible joint

default events in the first period and the second period. This will in general

leads to less joint defaults given same level correlation.

• The portfolio rebalancing assumption at the end of first period means that, if

an asset default in the first period and get replaced with a similar asset, it can

default again. This will add more default scenarios compared with the one-

period simulation. This is why even in the limitation of perfect correlation,

one-period MC will be different from multi-period MC.

Due to the multiple defaults, the 100 percentile for two-period VaR is always

higher than one-period since the entire portfolio can default multiple times. It is

difficult to show in Figure 26 but if we increase the PD to seven percent, we can

clearly see that the computational VaR by one-period and two-period models cross

at the 99.9 percentile as shown in Figure 27. With higher PD, we have more chances

that one asset default in the first period and the replaced asset also default in the

second period.

Both Figure 26 and Figure 27 clearly show that the tail distributions in the

presence of liquidity horizon and portfolio rebalancing are different from standard

one-period models such as ASRF. It also shows that depending on the credit quality

of the portfolio, standard ASRF can both be conservative and aggressive.

The two-period conditional VaR at different percentiles are shown in both Figure

26 and Figure 27. We can see that our analytical solution does capture the impact

of liquidity horizon and portfolio rebalancing. It does provide a sensible comparable

measure to the MC simulation.
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III.2.2 Concentration Risk captured in the two-period conditional VaR

model

The conditional VaR model is further assessed to see how good it is in capturing

concentration risk in the presence of portfolio rebalancing. In our assessment, we

designed two cases. In the first case, we create a portfolio of 50 assets with non-

uniform PDs with the results shown in Table 28. Table 29 shows the case with

non-uniform notional of the asset in the portfolio by change the weight of the one

asset. We can see that in both cases the conditional VaR model behave reasonably

better and closer to the MC results. More results with different notional weights

are plotted in Figure 28. We can clearly see that it is necessary to do granularity

adjustment to capture concentration risk and a two-period one does a better job

than the standard one.

III.3 Discussion

This chapter provides a general two-period conditional VaR model for the credit

portfolio that accounts for liquidity horizon and portfolio rebalance, as proposed

in the IRC model for Basel 2.5. The portfolio is re-balanced at the end of the

first period so that constant level of risk can be maintained. The Profit and Loss

(P&L) and VaR contribution from the second period is conditional on the portfo-

lio re-balance assumptions, in which for the credit portfolio is rating based. The

methodology is an extension of GA model.

We have examined the numerical behavior of the model by benchmarking against

one period MC model, two-period MC with and without portfolio rebalancing,

standard ASRF, and standard (one-period) GA. Our major conclusions can be

summarized as follows:
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• As expected, when compared to two-period MC with portfolio rebalancing,

our analytical model has a very similar behavior to the standard GA in cap-

turing concentration risk of the credit portfolio.

• More importantly, the two-period conditional VaR model does captures the

impact of liquidity horizon and portfolio rebalancing as confirmed by MC.

The method can achieve a comparable measure for the standard MC based

IRC/IDR model with much higher computational efficiency.

• It is shown that the standard one-period ASRF (with and without standard

GA) is not enough to achieve a comparable risk measure when the liquidity

horizon and portfolio rebalancing. The tail distribution with and without

portfolio rebalancing are very different due to two competing factors. One

is that the default correlation and its relationship between asset correlations

are different for different time windows. The other factor is the portfolio

rebalancing that allows multiple defaults. This addresses the fact that the

defaulted asset will be replaced with another asset which can default again.

We believe that this is an important feature for trading book that should be

included in the capital calculation.

• Depending on the credit quality of portfolio and percentile, the ASRF will

always be aggressive at the 100 percentile but can be both conservative and

aggressive for other percentiles in the presence of portfolio rebalancing within

the modeled time horizon. This means if we intend to come up with some an-

alytical benchmark measure, we do need to factor in the portfolio rebalancing

assumption as shown by our analysis.

In this dissertation we only considered one factor case, which can be expanded to

a multi-factor as proposed by Pykhtin [34]. In the actual credit portfolio, different
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trades are assigned different liquidity horizons, which can be modeled in the current

approach readily. For example, the longer liquidity horizon can be modeled by

assuming no portfolio rebalancing at the end of the first period. Although rating is

taken as the constant level of risk measure, we do not consider the rating migration

P&L. Extending the current approach to include rating P&L is straightforward but

the analytical solution for it is too complicated. In practice, rating migration to

junk is the largest component in the rating migration P&L. We can treat migration

to junk as default and merger the default probabilities. Also it may be worth to

mention that in the latest Basel trading book fundamental review [2], IRC will be

replaced with IDR, which is only default risk driven.

The model can also be extended to other types of risk factor by modeling the

portfolio rebalancing assumption via some discretized values like rating ranks. The

portfolio rebalancing assumption can be either exposure based like the case for

credit portfolio discussed in this dissertation, or risk based, is defined as the sensi-

tivity to the risk factors. In our opinion, this direction of research is important to

address the liquidity modeling, and this was discussed in trading book fundamental

review [2].

III.4 Infinite-period Analytic VaR Model

One remaining question regarding the two-period VaR model is what is the best

liquidity horizon we should use. The answer is unknown to everyone. However, from

our analysis, the analytic VaR can be achieved easily through central limit theorem.

Although the VaR of infinite-period model is not practical and we can hardly find its

financial application, we can use it as the boundary of these VaR based on different

liquidity horizons. This result can at least tell us how the liquidity horizon can

affect the VaR. So this test result can be very valuable for future research when the
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optimum liquidity horizon is concerned.

This infinite-period VaR calculation will be discussed in Appendix D and the

formula for q-percentile VaR under infinite-period model is given in (D-29).

To compare this model with one-period and two-period default model, the nu-

merical results of three models given the same parameters are showed in Table 30.

The results are differentiated by various number of assets and default probability

of the whole period. There is a valuable observation that the 99.9% VaR decreases

to a much lower amount while the number of periods goes to infinity. The result

suggests that in practice, it will be a very challenging topic to choose the proper

liquidity horizon in the default model since the liquidity horizon can have huge

impact on the VaR.

III.5 Chapter Conclusion

In this chapter, we provided a general framework of two-period conditional VaR

model in the context of IRC modeling framework in which the liquidity horizon and

constant level of risk are considered. In this dissertation, we successfully found an

analytic approach to the two-period conditional VaR calculation by borrowing the

GA technique. Considering all current IRC calculations rely on time consuming

MC, and the banks still use more efficient but less practical ASRF (and its GA) as

important measures for the effective capital management for banks. Our research

is significant progress of expanding current IRC research on liquidity risk. Our

research may have impact on the industry and improve their risk management

level.

One concerning we have on the multi-period capital model is there is no optimum

length liquidity horizon in any existing models. How does the liquidity horizon affect

the VaR was unknown and the topic worth further research. So in this dissertation,
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we presented an exact analytic solution of infinite-period VaR which allows the

liquidity horizon goes to zero. By comparing the infinite-period VaR result with

two-period VaR result, we can clearly see the length of liquidity horizon matters.

Although most IRC models are based on a finite period model, the exact infinite-

period VaR calculation gives the boundary of VaR when liquidity horizon goes to

0. Our infinite-period analysis provides a great insight for the future research and

regulations on how to choose the liquidity horizon properly.
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IV Conclusion

In this dissertation, we have elaborated the multiple default models in two

important credit risk issues Credit Valuation Adjustment (CVA) and Incremental

Risk Charge (IRC), which received more and more attention after the 2008 financial

crisis. The problem for each bank is the regulators kept changing their requirements

constantly because there is not any widespread market standard acceptance. So

the banks normally faced large pressures to fulfill these new regulations. From

academic perspective, it is very valuable to investigate these significant concepts of

credit risk for future reference.

First we focused on using PDEs on Credit Contingent Interest Rate Swap

(CCIRS) pricing, a specific CVA pricing problem. Our research not only provided a

successful multi-period PDEs solution in a multi-period model, it may also have an

important impact on current CVA research framework. The previous research on

CVA have not assessed the risk brought by the second and the subsequent defaults.

By extending the pricing model to a two-default model and then a full model where

we have no restriction on the number of defaults, we have successfully applied and

numerically solved much more complicated two-dimensional PDEs. Because of the

accuracy of PDE compared to the unstable Monte Carlo simulation, we have ap-

proached a thorough risk analysis using the results solved by PDE. This research

suggests that the CVA of subsequent multiple defaults cannot be ignored.

Second, we focused on the second issue IRC, a new capital charge announced
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by BCBS. Our research is large progress of expanding current IRC research on

liquidity risk and may also provide a guideline for future research on multi-period

model. As introduced in this dissertation, IRC is essentially the credit VaR with

liquidity horizon and constant level of risk, for which a new multi-period default

model is required. The multi-period VaR can easily be calculated by Monte Carlo

simulation but its accuracy and efficiency has always been criticized in the real

business. We successfully found an analytic approach to the two-period conditional

VaR calculation by borrowing the GA technique. The order of error term has been

calculated as well and this provided an assessment of the accuracy of our analytic

method. We also achieved a financially meaningful risk analysis by comparing the

one, two-period ASRF term and VaR numbers. This analysis is very valuable on

explaining the financial meanings and difference between one-period and two-period

model. In the end, to test how the liquidity horizon affects VaR, we presented an

accurate analytic solution for an infinite-period default model, which provided the

boundary value of VaR by choosing different liquidity horizons. By comparing the

VaR in one-period, two-period and infinite-period model, we complete our research

and provide a valuable insight on how the liquidity horizon will affect VaR.

One thing we should mention is, in the multi-period model, systematic factors

in each period are assumed to be independent. In the future research, we may

expand our analytical approach by considering the dependence of the systematic

factors in each period.

Compared to the current one-period CVA and numerical IRC calculation re-

search, our research not only opened the door to a different dimensional research

on these two important concepts but also provided guidelines for other potential

multi-period credit risk research.
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Table 1: 12 Month LIBOR Rate and CDS spread of dif-

ferent ratings (from May 1st, 2009 to April 30, 2014)

LIBOR

Date 12 Month

20140430 0.5490%

20140429 0.5490%

20140428 0.5495%

20140425 0.5495%

20140424 0.5495%

20140423 0.5483%

. . . . . .

20090507 1.7813%

20090506 1.8200%

20090505 1.8589%

20090504 1.8644%

20090501 1.8644%

variance 0.0007%

mean 0.909%

CDS Spread

Date AAA AA A BBB BB B

20140430 0.0938% 0.1670% 0.3881% 0.5722% 1.7952% 4.1154%

20140429 0.1105% 0.1679% 0.3985% 0.5913% 1.7995% 4.1502%

20140428 0.1113% 0.1685% 0.3992% 0.5894% 1.9206% 4.2556%

20140425 0.1113% 0.1673% 0.3826% 0.5697% 1.8139% 4.2349%

20140424 0.0968% 0.1676% 0.3807% 0.5806% 1.5016% 4.2173%
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20140423 0.1111% 0.1686% 0.4037% 0.5774% 1.7221% 4.3761%

. . . . . . . . . . . . . . . . . . . . .

20090507 0.3075% 0.9621% 1.6332% 3.4747% 8.4460% 28.0827%

20090506 0.3599% 1.1833% 1.8355% 3.6819% 8.8693% 26.2862%

20090505 0.3695% 1.1359% 1.8929% 3.8222% 9.1412% 26.5660%

20090504 0.4343% 1.2053% 2.0017% 3.8649% 9.3918% 26.4036%

20090501 0.4366% 1.1579% 2.0539% 3.9778% 8.8810% 26.9790%

variance 0.0001% 0.0005% 0.0007% 0.0032% 0.0168% 0.2053%

mean 0.2476% 0.5264% 0.7041% 1.0387% 2.7020% 7.4352%

Table 2: Interest Rate Model Parameters estimations

r0 b1 σ1 a1

0.5490% 0.909% 0.038060013 1

Table 3: Hazard Rate Model Parameters estimations

λ0 b2 σ2 a2

AAA 0.15633% 0.4127% 0.020113992 1

AA 0.27833% 0.8774% 0.032584086 1

A 0.64683% 1.1736% 0.035502957 1

BBB 0.95367% 1.7312% 0.060824805 1

BB 2.99200% 4.5034% 0.086378396 1

B 6.85900% 12.3920% 0.182026115 1
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Table 4: Comparison of results obtained using PDE and

Monte-Carlo methods for one default case (maturity=5,

K=0.00909, 1 million simulation paths).

PDE(ADI) PDE(ADI) Monte Carlo

time steps 600 time steps 2000

Price $ 2,236.22 $ 2,235.02 $ 2,204.58

Time (seconds) 1.19 3.62 648

Table 5: Comparison of results using PDEs and Monte-

Carlo methods for the two default case. (maturity=5,

K=0.00909, 1 million simulation paths)

PDE PDE MC

timestep 600 timestep 2000 timestep 2000

Price $ 2,264.26 $ 2,263.50 $ 2,223.51

Time (seconds) 4.07 14.68 660

Table 6: Price of CCIRS on different annual node (ma-

turity=5, K=0.00909)

Year r(t) λ(t) Price

0 0.5490% 0.6468% 2,264.26

1 0.5301% 0.5383% 1,293.70

2 0.6261% 0.6664% 705.00

3 0.7932% 1.0683% 401.82
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4 0.9933% 0.8382% 146.92

Table 7: Comparison of the one-default, two-default and

full prices (timestep=2000, maturity=5, K=0.00909).

one-default two-default full

Price $ 2,235.02 $ 2,263.50 $ 2,263.51

Table 8: Comparison of the one-default, two-default and

full prices w.r.t different correlation (timestep=600, ma-

turity=5, K=0.01).

ρ one-default two-default full

0 2,075 2,100 2,100

0.1 2,155 2,182 2,181

0.2 2,236 2,264 2,264

0.3 2,319 2,349 2,348

0.4 2,404 2,435 2,434

0.5 2,490 2,522 2,522

0.6 2,578 2,611 2,611

0.7 2,668 2,702 2,702

0.8 2,759 2,794 2,794
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Table 9: Comparison of the one-default, two-default and

full prices of different ratings.(maturity=10, K=0.01

Rating one-default two-default infinity-default

AAA 303.76 310.24 310.29

AA 632.60 661.51 662.15

A 822.47 875.13 876.85

BBB 1,215.01 1,330.24 1,336.12

BB 2,548.34 3,185.29 3,279.92

B 4,224.85 6,964.76 8,283.93

Table 10: CCIRS price with different reverting speed of

hazard rate (rating A)

a2 one-default two-default full

0.50 840 891 892

0.70 835 887 888

0.90 827 879 881

1.10 819 871 873

1.30 812 865 866

1.50 806 859 860

Table 11: CCIRS price with different reverting speed of

hazard rate (rating B)

a2 one-default two-default full
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0.50 4,479 7,134 8,382

0.70 4,372 7,092 8,381

0.90 4,270 7,008 8,320

1.10 4,184 6,923 8,248

1.30 4,114 6,846 8,178

1.50 4,056 6,779 8,114

Table 12: CCIRS price with different volatility of hazard

rate(rating A)

σ2 one-default two-default full

0.02 786 836 838

0.04 833 886 888

0.06 880 937 939

0.08 927 987 989

0.10 972 1,035 1,037

Table 13: CCIRS price with different volatility of hazard

rate(rating B)

σ2 one-default two-default full

0.10 3,973 6,573 7,803

0.20 4,278 7,045 8,384

0.30 4,559 7,445 8,894

0.40 4,801 7,754 9,304
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Table 14: CCIRS price under different assumptions

(a1=0.1, rating A)

b1 one-default two-default full

0.60% 28,958 29,021 29,017

0.80% 57,022 57,006 56,998

1.00% 89,027 88,930 88,918

1.20% 122,530 122,365 122,348

1.40% 156,397 156,174 156,153

1.60% 190,142 189,868 189,842

1.80% 223,568 223,246 223,216

2.00% 256,595 256,228 256,194

Table 15: CCIRS price under different assumptions

(a1=0.1, rating B)

b1 one-default two-default full

0.60% 279,104 285,694 285,625

0.80% 516,726 519,715 518,818

1.00% 805,868 804,440 802,527

1.20% 1,107,340 1,102,014 1,099,080

1.40% 1,411,499 1,403,424 1,399,581

1.60% 1,716,088 1,705,702 1,701,004

1.80% 2,015,771 2,003,456 1,997,976

2.00% 2,313,791 2,299,663 2,293,428
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Table 16: CCIRS price under different assumptions

(a1=0.5, rating A)

b1 one-default two-default full

0.60% 18,422 18,425 18,422

0.80% 50,912 50,820 50,812

1.00% 86,042 85,888 85,876

1.20% 121,013 120,808 120,792

1.40% 155,553 155,300 155,278

1.60% 189,630 189,329 189,304

1.80% 223,240 222,894 222,864

2.00% 256,388 255,998 255,963

Table 17: CCIRS price under different assumptions

(a1=0.5, rating B)

b1 one-default two-default full

0.60% 165,118 167,209 167,047

0.80% 458,605 453,699 452,074

1.00% 775,979 768,176 765,469

1.20% 1,091,566 1,081,910 1,078,361

1.40% 1,401,960 1,390,520 1,386,187

1.60% 1,708,185 1,694,906 1,689,799

1.80% 2,009,844 1,994,755 1,988,890

2.00% 2,307,735 2,290,852 2,284,243
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Table 18: CCIRS price under different assumptions

(a1=1, rating A)

b1 one-default two-default full

0.60% 15,213 15,181 15,179

0.80% 50,162 50,053 50,045

1.00% 85,571 85,408 85,396

1.20% 120,579 120,365 120,348

1.40% 155,124 154,862 154,841

1.60% 189,201 188,892 188,866

1.80% 222,813 222,457 222,426

2.00% 255,963 255,562 255,527

Table 19: CCIRS price under different assumptions

(a1=1, rating B)

b1 one-default two-default full

0.60% 135,630 133,882 133,425

0.80% 452,671 445,975 444,031

1.00% 771,919 763,247 760,422

1.20% 1,086,414 1,075,819 1,072,185

1.40% 1,396,353 1,383,793 1,379,356

1.60% 1,702,193 1,687,699 1,682,474

1.80% 2,003,896 1,987,535 1,981,546

2.00% 2,301,607 2,283,420 2,276,685
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Table 20: CCIRS price under different assumptions

(a1=1.5, rating A)

b1 one-default two-default full

0.60% 14,493 14,448 14,446

0.80% 49,923 49,809 49,801

1.00% 85,355 85,188 85,176

1.20% 120,360 120,143 120,126

1.40% 154,898 154,633 154,612

1.60% 188,969 188,656 188,630

1.80% 222,575 222,215 222,185

2.00% 255,720 255,316 255,281

Table 21: CCIRS price under different assumptions

(a1=1.5, rating B)

b1 one-default two-default full

0.60% 130,105 126,869 126,201

0.80% 450,915 443,942 441,951

1.00% 769,497 760,500 757,658

1.20% 1,083,581 1,072,560 1,068,895

1.40% 1,393,396 1,380,371 1,375,897

1.60% 1,699,130 1,684,159 1,678,898

1.80% 2,000,768 1,983,913 1,977,888

2.00% 2,298,370 2,279,668 2,272,898
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Table 22: CCIRS price with different volatility of interest

rate (rating A)

σ1 one-default two-default full

0.02 25 27 27

0.04 997 1,060 1,061

0.06 3,797 3,984 3,988

0.08 7,974 8,308 8,316

0.10 12,921 13,405 13,415

Table 23: CCIRS price with different volatility of interest

rate (rating B)

σ1 one-default two-default full

0.02 112 218 290

0.04 5,181 8,438 9,973

0.06 21,458 31,854 36,061

0.08 47,282 66,491 73,668

0.10 78,937 107,272 117,388

Table 24: CCIRS price with different Maturity (rating

A)

Maturity one-default two-default full

5 560 572 572

7 765 792 793
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9 824 869 870

11 821 883 885

13 805 884 888

15 751 841 847

Table 25: CCIRS price with different Maturity (rating

B)

Maturity one-default two-default full

5 4,511 5,506 5,637

7 5,219 7,141 7,621

9 4,667 7,235 8,259

11 3,797 6,677 8,355

13 2,999 5,965 8,378

15 2,268 5,016 7,953

Table 26: the Comparison of ASRF VaR, 1-period GA

VaR, 2-period Conditional VaR and 2-period MC VaR

with Different ρ (N=100, PD=1%, LGD=1)

ASRF 1-period GA 1-period MC 2-period Cond. 2-period MC

ρ VaR VaR VaR VaR VaR

0.1 3.96% 10.72% 8.00% 11.76% 8.00%

0.2 7.11% 10.72% 10.00% 10.14% 9.00%

0.3 11.84% 14.35% 14.00% 12.32% 12.00%

0.4 18.56% 20.49% 20.60% 17.09% 17.00%
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0.5 27.77% 29.32% 29.00% 24.68% 24.10%

0.6 40.05% 41.31% 41.60% 35.76% 36.00%

0.7 55.97% 56.97% 57.00% 51.18% 50.70%

0.8 75.61% 76.35% 76.50% 71.64% 71.40%

0.9 95.20% 95.61% 95.60% 94.16% 94.30%

Table 27: the Comparison of ASRF VaR, 1-period GA

VaR, 2-period Conditional VaR and 2-period MC VaR

with Different Number of Assets N (ρ=0.5, PD=1%,

LGD=1)

ASRF 1-period GA 1-period MC 2-period Cond. 2-period MC

N VaR VaR VaR VaR VaR

20 27.77% 35.53% 35.00% 31.49% 30.00%

40 27.77% 31.65% 32.50% 27.23% 27.53%

60 27.77% 30.36% 30.00% 25.82% 25.17%

80 27.77% 29.71% 31.25% 25.11% 25.25%

100 27.77% 29.32% 29.00% 24.68% 24.10%

200 27.77% 28.55% 28.50% 23.83% 23.95%

400 27.77% 28.16% 28.50% 23.41% 23.36%

500 27.77% 28.08% 27.80% 23.32% 23.50%

700 27.77% 27.99% 28.14% 23.23% 23.42%

1000 27.77% 27.92% 27.00% 23.15% 23.36%
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Table 28: the Comparison of ASRF VaR, 1-period

GA VaR, 2-period Conditional VaR and 2-period MC

VaR w.r.t Mixed Default Probabilities (ρ = 0.5, N=50,

LGD=1)

PD ASRF VaR 1-period GA VaR 2-period Cond. VaR MC VaR

mixed 31.17% 34.31% 31.70% 31.90%

5% 61.32% 64.70% 62.44% 62.47%

1% 27.77% 30.89% 26.38% 26.39%

0.10% 6.18% 8.60% 7.42% 7.80%

Table 29: the Comparison of ASRF VaR, 1-period GA

VaR, 2-period Conditional VaR and 2-period MC VaR

w.r.t Different Notional Weights of the first asset(the

other assets are equally weighted, PD=1%, N=100,

ρ=0.5, LGD=1)

weight ASRF VaR 1-period GA VaR 2-period Cond. VaR MC VaR

1% 27.77% 29.32% 24.68% 24.10%

11% 27.77% 30.89% 26.40% 26.28%

21% 27.77% 35.60% 31.55% 33.77%

31% 27.77% 43.44% 40.14% 42.85%

41% 27.77% 54.42% 52.17% 51.13%
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Table 30: the Comparison of One, Two and Infinite Pe-

riods Analytic VaR w.r.t Different Default Probabilities

PD 1% 1% 1% 0.10% 0.10% 0.10%

Periods 1 2 ∞ 1 2 ∞

N VaR VaR VaR VaR VaR VaR

20 35.53% 31.49% 11.81% 12.18% 11.22% 3.29%

40 31.65% 27.23% 8.94% 9.18% 8.05% 2.39%

60 30.36% 25.82% 7.67% 8.18% 7.00% 1.98%

80 29.71% 25.11% 6.91% 7.68% 6.47% 1.75%

100 29.32% 24.68% 6.39% 7.38% 6.15% 1.58%

200 28.55% 23.83% 5.11% 6.78% 5.52% 1.18%

400 28.16% 23.41% 4.20% 6.48% 5.20% 0.89%

500 28.08% 23.32% 3.97% 6.42% 5.14% 0.82%

700 27.99% 23.23% 3.67% 6.36% 5.07% 0.72%

1000 27.92% 23.15% 3.40% 6.30% 5.01% 0.64%
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Figure 1: CCIRS price as a function of interest and hazard rates.
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Figure 2: Difference of the full price and two-default price
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Figure 3: Difference of two-default and one-default price
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Figure 4: Price comparison with different initial and long term average hazard

rates
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Figure 5: Price comparison with different reverting speed of hazard rate (For rating

A)
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Figure 6: Price comparison with different reverting speed of hazard rate (For rating

B)
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Figure 7: Price comparison with different volatility of hazard rate (For rating A)
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Figure 8: Price comparison with different volatility of hazard rate (For rating B)
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Figure 9: Price comparison with different long term average interest rates when

a1=0.1 (For rating A)
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Figure 10: Price comparison with different long term average interest rates when

a1=0.1 (For rating B)
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Figure 11: Price comparison with different long term average interest rates when

a1=0.5 (For rating A)
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Figure 12: Price comparison with different long term average interest rates when

a1=0.5 (For rating B)
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Figure 13: Price comparison with different long term average interest rates when

a1=1 (For rating A)
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Figure 14: Price comparison with different long term average interest rates when

a1=1 (For rating B)
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Figure 15: Price comparison with different long term average interest rates when

a1=1.5 (For rating A)

0.4% 0.6% 0.8%   1% 1.2% 1.4% 1.6% 1.8%   2%
 90%

100%

110%

120%

130%

140%

150%

160%

170%

180%

initial and long term average interest rate

m
or

e−
de

fa
ul

t v
al

ue
/o

ne
−

de
fa

ul
t v

al
ue

 

 
100%
two−default value/one−default value
fullvalue/one−default value

Figure 16: Price comparison with different long term average interest rates when

a1=1.5 (For rating B)
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Figure 17: Price comparison when interest rate gradually increases (For rating A).
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Figure 18: Price comparison when interest rate gradually increases (For rating B).
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Figure 19: Price comparison when interest rate gradually decreases (For rating A).
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Figure 20: Price comparison when interest rate gradually decreases (For rating B).
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Figure 21: Price comparison with different volatility of interest rate (For rating A)

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

140%

160%

180%

200%

220%

240%

260%

280%

volotility of interest rate

m
or

e−
de

fa
ul

t v
al

ue
/o

ne
−

de
fa

ul
t v

al
ue

 

 
two−default value/one−default value
fullvalue/one−default value

Figure 22: Price comparison with different volatility of interest rate (For rating B)
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Figure 23: Price comparison with different Maturity (For rating A)
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Figure 24: Price comparison with different Maturity (For rating B)
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Figure 25: The comparison of ratio of ASRF, One-period, two-period analytic VaR

to 2-period MC VaR w.r.t different N (20 to 1000) when ρ=0.5, PD=1%
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Figure 26: One-period, two-period MC paths and two-period MC paths without

rebalancing when N=100, ρ=0.5, PD=5%
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Figure 27: One-period and two-period MC paths value and 2-period Conditional

VaR, when PD=7%, N = 200, ρ = 0.5
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Figure 28: The comparison of ratio of ASRF, one-period, two-period analytic VaR

to two-period MC VaR w.r.t different weight of the first asset (1% to 40%) when

N=100, ρ=0.5, PD=0.1%
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A Convergence Analysis

The solutions obtained by numerical methods are usually not the exact solutions

of the problem. There are two types of errors: round-off errors and truncation

errors. Roundoff errors came from the limitation of a finite-state machine which

cannot display the infinite real numbers. Truncation errors are resulting from the

difference of the approximate solution and the exact solution. Once an error is

generated, it will generally propagate through the calculation. So the convergence

test is a very important criterion to guarantee the numerical solution moves towards

the real solution. The solution of the discretized problem converges to the solution

of the continuous problem as the grid size goes to zero, and the speed of convergence

is one of the factors of the efficiency of the method.

In this appendix, we will carry out a convergence investigation of one-default,

two-default and full model PDEs solutions. Many different experiments are per-

formed with different size of interest rate, hazard rate and time steps. Since the

analytic solution is not available in these experiments, we choose the results gained
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from the finest grid as our reference solution. Then we compute the absolute error

between the reference solution and the solution obtained on the coarser grid. The

convergence rate is the divisions of two corresponding absolute errors.

• Convergence test for the price under one and two defaults models.

To calculate the convergence rate, we perform eight experiments with varying

grids. In the grids, r and λ steps are 45, 68, 101, 152, 228, 342. So the r and λ

decrease by the ratio of 1.5. Then ∆r and ∆λ ≈ 0.00222, 0.00147, 0.00099, 0.00066,

0.00044, 0.00029 and 0.0001949. The maturity is 5 years and the time steps is set

to be 600 (so ∆t is about 0.00833 ). The parameters are chosen from Table 2 and

Rating A row in Table 3. K = b1, M = 5 and ρ = 0.2.

Table 30 shows the convergence analysis for r and λ. From this table we see

that our numerical algorithm converges faster when the step sizes get smaller and

the convergence rate is around 1.52 = 2.25, which gives the order of our algorithm

is about two.
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Table 30: Convergence Test

Steps Value error

r λ time one two full one two full

45 45 600 2,319 2,347 2,347 105.70 104.40 104.00

68 68 600 2,268 2,296 2,296 54.40 53.40 53.00

101 101 600 2,238 2,266 2,266 24.90 23.90 23.50

152 152 600 2,224 2,252 2,252 10.60 9.60 9.30

228 228 600 2,220 2,248 2,248 6.30 5.30 5.00

342 342 600 2,217 2,245 2,245 4.00 3.00 2.60

513 513 600 2,216 2,244 2,244 2.90 2.00 1.60

error percentage Convergence rate

r λ time one two full one two full

45 45 600 4.7757% 4.6557% 4.6375%

68 68 600 2.4579% 2.3814% 2.3633% 1.94 1.96 1.96

101 101 600 1.1250% 1.0658% 1.0479% 2.18 2.23 2.26

152 152 600 0.4789% 0.4281% 0.4147% 2.35 2.49 2.53

228 228 600 0.2846% 0.2364% 0.2230% 1.68 1.81 1.86

342 342 600 0.1807% 0.1338% 0.1159% 1.58 1.77 1.92
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513 513 600 0.1310% 0.0892% 0.0713% 1.38 1.50 1.62

Reference Solution

r λ time one two full

546 546 20000 2,213 2,242 2,243

• Remarks

From Table 30 we see that our algorithms converge to the exact solution when

the step sizes go to zero. This gives us confidence that our numerical methods for

the PDE of PG and PS are convergent and trustable. Hence the numerical results

we have obtained in this dissertation are good.

109



B Proposition Required for 2-Period Analytic

VaR solution

Proposition B.1 . Let X be defined as (III.1.14), S1, S2 are the same independent

systematic factors as previously defined. Function l(s) is defined as (III.1.15).

Function gs(·) is defined as (III.1.39). Interval Ω(s) is defined as (III.1.40).

Assume X1, X2, ...Xn, S1, S1 are i.i.d and their common density function is f(·)

and common distribution function is F (·). Then we could have:

E[h(X1, X2, ...Xn, S1, S2)|X = s]

=

[∫ +∞

−∞
...

∫ +∞

−∞

∫
Ω(s)

h(x1, x2, ..., xn, y, gs(y))

· f(x1)f(x2)...f(xn)f(y)f(gs(y))
∂gt(y)

∂t

∣∣∣∣∣
t=s

dx1dx2...dxndy

]

·
[∫

Ω(s)

f(y)f(gs(y))
∂gt(y)

∂t

∣∣∣∣
t=s

dy

]−1

=

[∫ +∞

−∞
...

∫ +∞

−∞

∫
Ω(s)

h(x1, x2, ..., xn, y, gs(y))

· f(x1)f(x2)...f(xn)f(y)f(gs(y))(l
′(gs(y)))

−1dx1dx2...dxndy

]
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·
[∫

Ω(s)

f(y)f(gs(y))(l
′(gs(y)))

−1dy

]−1

.

(B-1)

Proof First we know if X = s, then S2 = gs(S1). And

E[h(X1, X2, ...Xn, S1, S2)|X = s]

= E[h(X1, X2, ...Xn, S1, gs(S1))|X = s]

=

∫ +∞

−∞
...

∫ +∞

−∞
h(x1, x2, ..., xn, y, gs(y))

· fX1,X2,...,Xn,S1|X(x1, x2, ..., xn, y|s)dx1dx2...dxndy ,

(B-2)

where fX1,X2,...,Xn,S1|X(x1, x2, ..., xn, y|x) is the conditional density function and it

satisfies:

fX1,X2,...,Xn,S1|X(x1, x2, ..., xn, y|x) =
f(x1, x2, ..., xn, y, x)

fX(x)
. (B-3)

Here f(x1, x2, ..., xn, y, x) is the joint density function of X1, X2, ..., Xn, S1 and X.

fX(x) is the marginal density function of X and it is already derived in equation

(III.1.41).

Now let’s get

f(x1, x2, ..., xn, y, x) =
∂F (x1, x2, ..., xn, y, x)

∂x1∂x2...∂xn∂y∂x
. (B-4)

F (x1, x2, ..., xn, y, x)P (X1 ≤ x1, X2 ≤ x2, ..., Xn ≤ xn, S1 ≤ y,X ≤ x)
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(X1, X2, ...Xn, S1, S2 are independent)

P (X1 ≤ x1)P (X2 ≤ x2)...P (Xn ≤ xn)P (S1 ≤ y,X ≤ x)

F (x1)F (x2)...F (xn)P (S1 ≤ y,X ≤ x) .

(B-5)

Now as always, we need to discuss in two cases:

case 1: x >
∑N

i=1(ui);

case 2: 0 < x ≤
∑N

i=1(ui).

In case 1, let s̃(x) = l−1(x−
∑N

i=1(ui)).

So, if y ≤ s̃(x), X will be always less than x,

P (S1 ≤ y,X ≤ x) = P (S1 ≤ y) = F (y) ; (B-6)

if y > s̃(x),

P (S1 ≤ y,X ≤ x)

= P (X ≤ x, S1 ≤ y, S2 ≤ s̃(x)) + P (X ≤ x, S1 ≤ s̃(x), S2 > s̃(x))

+ P (X ≤ x, s̃(x) < S1 ≤ y, S2 > s̃(x))

= F (s̃(x))F (y) + F (s̃(x))(1− F (s̃(x))) + P (s̃(x) < S1 ≤ y, s̃(x) < S2 ≤ gx(S1))

= (1− F (s̃(x)) + F (y))F (s̃(x)) +

∫ y

s̃(x)

f(s1)[F (gx(s1))− F (s̃(x))]ds1 . (B-7)
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From (B-6) and (B-7) we can get the joint density function as:

f(x1, x2, ..., xn, y, x)

= f(x1)f(x2)...f(xn)

·
[
f(y)f(s̃(x))s̃′(x) + f(y)f(gx(y))

∂gt(y)

∂t

∣∣∣∣
t=x

− f(y)f(s̃(x))s̃′(x)

]
I(y > s̃(x))

= f(x1)f(x2)...f(xn)f(y)f(gx(y))
∂gt(y)

∂t

∣∣∣∣
t=x

I(y > s̃(x))

= f(x1)f(x2)...f(xn)f(y)f(gx(y))(l
′(gx(y)))

−1I(y > s̃(x)) . (B-8)

So from (III.1.41) and (B-8), we have

E[h(X1, X2, ...Xn, S1, S2)|X = s]

=

∫ +∞

−∞
...

∫ +∞

−∞
h(x1, x2, ..., xn, y, gs(y))

f(x1, x2, ..., xn, y, s)

fX(s)
dx1dx2...dxndy

=

[∫
Ω(s)

f(y)f(gs(y))(l
′(gs(y)))

−1dy

]−1
[∫ +∞

−∞
...

∫ +∞

−∞
h(x1, x2, ..., xn, y, gs(y))

· f(x1)f(x2)...f(xn)f(y)f(gs(y))(l
′(gs(y)))

−1I(y > s̃(s))dx1dx2...dxndy

]

=

[∫
Ω(s)

f(y)f(gs(y))(l
′(gs(y)))

−1dy

]−1
[∫ +∞

−∞
...

∫ +∞

−∞

∫
Ω(s)

h(x1, x2, ..., xn, y, gs(y))

· f(x1)f(x2)...f(xn)f(y)f(gs(y))(l
′(gs(y)))

−1dx1dx2...dxndy

]
. (B-9)

This result is the same as the result in (B-1).

Now let us prove (B-1) still holds in case 2.
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If y ≥ l−1(x), we have:

P (S1 ≤ y,X ≤ x)

= P (X ≤ x, S1 < l−1(x)) + P (X ≤ x, y ≥ S1 ≥ l−1(x))

= P (S1 < l−1(x), S2 < gx(S1)) + 0

=

∫ l−1(x)

−∞
f(s1)F (gx(S1))ds1 . (B-10)

If y < l−1(x), we have:

P (S1 ≤ y,X ≤ x)

= P (S1 ≤ y, S2 < gx(S1))

=

∫ y

−∞
f(s1)F (gx(S1))ds1 . (B-11)

From (B-10) and (B-11) we can get the joint density function as:

f(x1, x2, ..., xn, y, x)

= f(x1)f(x2)...f(xn)

[
f(y)f(gx(y))

∂gt(y)

∂t

∣∣∣∣
t=x

]
I(y < l−1(x))

= f(x1)f(x2)...f(xn)f(y)f(gx(y))(l
′(gx(y)))

−1I(y < l−1(x)) . (B-12)

So from (III.1.41) and (B-12), we have

E[h(X1, X2, ...Xn, S1, S2)|X = s]

=

∫ +∞

−∞
...

∫ +∞

−∞
h(x1, x2, ..., xn, y, gs(y))

f(x1, x2, ..., xn, y, s)

fX(s)
dx1dx2...dxndy
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=

[∫
Ω(s)

f(y)f(gs(y))(l
′(gs(y)))

−1dy

]−1
[∫ +∞

−∞
...

∫ +∞

−∞
h(x1, x2, ..., xn, y, gs(y))

· f(x1)f(x2)...f(xn)f(y)f(gs(y))(l
′(gs(y)))

−1I(y < l−1(x))dx1dx2...dxndy

]

=

[∫
Ω(s)

f(y)f(gs(y))(l
′(gs(y)))

−1dy

]−1
[∫ +∞

−∞
...

∫ +∞

−∞

∫
Ω(s)

h(x1, x2, ..., xn, y, gs(y))

· f(x1)f(x2)...f(xn)f(y)f(gs(y))(l
′(gs(y)))

−1dx1dx2...dxndy

]
. (B-13)

This result is the same as the result in (B-1).
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C Order of 2-Period Analytic VaR Adjustment

The two-period conditional VaR is based on the value of the second derivative

in Taylor expansion (III.1.12). This appendix provides the order of error term in

this approximation and the higher order derivative, i.e. the order of each derivative

of VaR of a fine-grained portfolio. The full Taylor expansion is

αq(LN) = αq(X) +
+∞∑
m=1

∂m

∂εm
αq(X + εY )

∣∣∣∣
ε=0

.

Without loss of generality, simply assume
∑

ui = 1. Since the portfolio is fine-

grained, it is reasonable to assume that

∃C > 0, for all N, s.t. max(ui) ≤
C

N
. (C-1)

A special case of fine-grained portfolio is the homogenous portfolio, in which

the trades have the same default probability, the same exposure and the same

correlations, so each ui =
1
N
.

To proceed, a few new notations and a proposition will be presented.

For any integer m, if p is a partition of m, denote by p ≺ m, then p can be
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indicated by

p = 1ep1 , 2ep2 , ...,mepm , (C-2)

where ei is the frequency of the number i in the partition and then

m = ep1 + 2ep2 + ...+mepm . (C-3)

The number of summands of p is expressed by |p|, which is the sum

|p| = ep1 + ep2 + ...+ epm . (C-4)

The notation p̂ indicates the partition when each summand of a partition p is

increased by 1, i.e.

p̂ = 1ep1+1, 2ep2+1, ...,mepm+1 . (C-5)

Proposition C.1 Denote

αp =
m!∏m

i=1[(i!)
epiepi!]

. (C-6)

Then the mth order derivative of VaR is

∂mαq(X + εY )

∂εm

∣∣∣∣∣
ε=0

=(−1)m

{ ∑
p≺m,u≺s≤|p|−1

[
αpαû(|p|+ |u| − 1)!

(s+ |u|)!(|p| − 1− s)!
· (−fX(x))

−|p|−|u|

·

(
s∏

i=1

[
difX(x)

dxi

]eui)

· d|p|−1−s

dx|p|−1−s

(
m∏
i=1

[
di−1(E(Y i|X = x)fX(x))

dxi−1

]epi)]}∣∣∣∣∣
x=αq(X)

.

(C-7)
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Proof See section 4.5.6.2.4 in Hibbeln, 2010 [27].

Now Proposition C.1 can be used to get the order of each derivative with respect

to N when m ≥ 2 (note the first derivative is 0).

In equation (C-7), the number of trades N is independent of this part

αpαû(|p|+ |u| − 1)!

(s+ |u|)!(|p| − 1− s)!
· (−fX(x))

−|p|−|u| ·

(
s∏

i=1

[
difX(x)

dxi

]eui)∣∣∣∣∣
x=αq(X)

. (C-8)

So the mth order derivative of VaR can be written as a simplified form

∂mαq(X + εY )

∂εm

∣∣∣∣∣
ε=0

= g

(∑
p≺m

m∏
i=1

[µi(Y |X = x)]epi

)∣∣∣∣∣
x=αq(X)

, (C-9)

where g is a function that is independent of N and µi is the ith moment about the

origin. Denote ηi is the ith moment about the mean. Remember X = E(LN |S1, S2)

and Y = LN − E(LN |S1, S2), so it is possible to rewrite

∑
p≺m

m∏
i=1

[µi(Y |X = x)]epi
∣∣∣∣
x=αq(X)

=
∑
p≺m

m∏
i=1

[E[(LN − E(LN |S1, S2))
i|X = x]]epi

∣∣∣∣
x=αq(X)

(Since σ(X) = σ(E(LN |S1, S2)) ⊆ σ(S1, S2), by tower property)

=
∑
p≺m

m∏
i=1

[E[E[(LN − E(LN |S1, S2))
i|S1, S2]|X = x]]epi

∣∣∣∣
x=αq(X)

=
∑
p≺m

m∏
i=1

[E[ηi(LN |S1, S2)|X = x]]epi
∣∣∣∣
x=αq(X)

. (C-10)

Now lets find the order of ηi(LN |S1, S2) with respect to the number of trades
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N . Since the ηi is additive to independent random variables only when i ≤ 3 and

η1 ≡ 0, two situations will be discussed here.

In the first case, i = 2 or 3. Then

ηi(LN |S1, S2) = ηi

(
N∑
j=1

[
ujI{T (j)

1 >Uj}
+ ujI{T (j)

2 >Uj}

] ∣∣∣∣S1, S2

)
. (C-11)

Conditioning on σ(S1, S2), all I{T (j)
1 >Uj}

and I{T (j)
2 >Uj}

are independent, so equation

(C-11) can be simplified as

ηi(LN |S1, S2) = ηi

(
N∑
j=1

[
ujI{T (j)

1 >Uj}
+ ujI{T (j)

2 >Uj}

] ∣∣∣∣S1, S2

)

=
N∑
j=1

(uj)
i

[
ηi

(
I{T (j)

1 >Uj}

∣∣∣∣S1, S2

)
+ ηi

(
I{T (j)

2 >Uj}

∣∣∣∣S1, S2

)]
.

(C-12)

For any S1 and S2, it is obvious

∣∣∣∣ηi(I{T (j)
1 >Uj}

∣∣∣∣S1, S2

)∣∣∣∣ < 1, so

|ηi(LN |S1, S2)| ≤ 2
N∑
j=1

(uj)
i

(by assumption (C − 1))

≤ 2N ·
(
C

N

)i

= O

(
1

N i−1

)
. (C-13)

In the second case, i > 3. Then

ηi(LN |S1, S2) =
∑

p≺i,ep1=0

ap

i∏
j=2

(κj(LN |S1, S2))
epj ,
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where κj is the cumulants and ap is the coefficient which can be found through

the Faà di Bruno’s formula. One proposition is required here to get the order of

ηi(LN |S1, S2) with respect to N .

Proposition C.2

|κi(LN |S1, S2)| ≤ O

(
1

N i−1

)
. (C-14)

Proof κi is additive to the independent random variables. So

κi(LN |S1, S2) = κi

(
N∑
j=1

[
ujI{T (j)

1 >Uj}
+ ujI{T (j)

2 >Uj}

] ∣∣∣∣S1, S2

)

=
N∑
j=1

(uj)
i

[
κi

(
I{T (j)

1 >Uj}

∣∣∣∣S1, S2

)
+ κi

(
I{T (j)

2 >Uj}

∣∣∣∣S1, S2

)]
.

(C-15)

Because

∣∣∣∣κi

(
I{T (j)

1 >Uj}

∣∣∣∣S1, S2

)∣∣∣∣ =
∣∣∣∣∣∑
p≺i

b(1)p

i∏
j=1

[
µj

(
I{T (j)

1 >Uj}

∣∣∣∣S1, S2

)]epj ∣∣∣∣∣
≤
∑
p≺i

|b(1)p | (C-16)

and similarly,

∣∣∣∣κi

(
I{T (j)

2 >Uj}

∣∣∣∣S1, S2

)∣∣∣∣ ≤∑
p≺i

|b(2)p | , (C-17)
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then

|κi(LN |S1, S2)| ≤
N∑
j=1

(uj)
i

(∑
p≺i

|b(1)p |+
∑
p≺i

|b(2)p |

)

(by assumption (C − 1))

≤

(∑
p≺i

|b(1)p |+
∑
p≺i

|b(2)p |

)
·N ·

(
C

N

)i

= O

(
1

N i−1

)
. (C-18)

This ends the proof.

With Proposition C.2,

|ηi(LN |S1, S2)| =

∣∣∣∣∣∣
∑

p≺i,ep1=0

ap

i∏
j=2

(κj(LN |S1, S2))
epj

∣∣∣∣∣∣
≤

∑
p≺i, ep1=0

|ap|O
(

1

N i−|p|

)

= O

(
1

N i−|p|

) ∣∣∣∣
p≺i, ep1=0

(Since i > 3, then i− |p| ≥ 2)

= O

(
1

N2

)
(C-19)

Now combine the conclusions in (C-13) and (C-19), and apply them on (C-10).

If m = 2, ∣∣∣∣∣∑
p≺m

m∏
i=1

[µi(Y |X = x)]epi
∣∣∣∣
x=αq(X)

∣∣∣∣∣
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= E[η2(LN |S1, S2)|X = x]|x=αq(X)

≤O

(
1

N

)
. (C-20)

If m ≥ 3, ∣∣∣∣∣∑
p≺m

m∏
i=1

[µi(Y |X = x)]epi
∣∣∣∣
x=αq(X)

∣∣∣∣∣
=

∣∣∣∣∣∑
p≺m

m∏
i=1

[E[ηi(LN |S1, S2)|X = x]]epi
∣∣∣∣
x=αq(X)

∣∣∣∣∣
≤
∑
p≺m

O

(
1

N2|p|

)

=O

(
1

N2|p|

) ∣∣∣∣
p≺m

(Since |p| ≥ 1)

≤O

(
1

N2

)
(C-21)

So it is proved that the order of the second derivative is at least O
(

1
N

)
, and the

order of higher derivative is at least O
(

1
N2

)
.
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D Infinite-Period Analytic VaR

D.1 General M-period Model

Similar to the two-period default model (III.1.9), the M -period model is defined

L
(M)
N =

M∑
j=1

[
N∑
i=1

uiI{T (j)
i >Ui}

]
, (D-1)

where

T
(j)
i = ρiSj +

√
1− ρ2i ξ

(j)
i , (D-2)

ui is the loss given default of asset i, all the ξ
(j)
i are the idiosyncratic factors which

are independent across each other and across each systematic factor Sj, and ρi is

the positive correlation between asset factor T
(j)
i and systematic factor Si. Note

ρi is the same in each jth period since the trade has the same behavior over the

systematic factor in any time before the maturity. Ui is the threshold to determine

if the default of the ith trade will happen. The default level is assumed to be con-

stant, so Ui is the same in each jth period. Again, all Sj and ξ
(j)
i are i.i.d. standard

normal random variables.
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D.2 Analytic VaR by Central Limit Theorem

Denote

Xj =
N∑
i=1

uiI{T (j)
i >Ui}

. (D-3)

Then

L
(M)
N =

M∑
j=1

Xj . (D-4)

It is easy to find out all Xj are i.i.d.. By central limit theorem,

√
M(L

(M)
N /M − µ)

σ

d−→ N(0, 1), when M → ∞ , (D-5)

where µ = E(Xj) and σ2 = σ2(Xj). This means

L
(M)
N

d−→ N(µM, σ2M), when M → ∞ . (D-6)

So when M is large enough, the VaR of this portfolio, αq(L
(M)
N ) can be approx-

imated as

αq(L
(M)
N ) ≈ µM +

√
Mσ2Φ−1(q) . (D-7)
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D.3 Expectation and Variance of Xj

Now it is necessary to find the expectation and variance of Xj.

µ = E(Xj)

=
N∑
i=1

uiE
(
I{T (j)

i >Ui}

)
=

N∑
i=1

uiP (T
(j)
i > Ui)

=
N∑
i=1

uiPD
(j)
i , (D-8)

where PD
(j)
i is the default probability of the ith trade in the jth period. In the

multi-period model, default probability is assumed to be on a constant level. And

PDi, the default probability of the ith trade within the whole period is given. By

the property of survival probability

M∏
k=1

P (the ith trade survives in the kth period)

= P (the ith trade survives in all periods) (D-9)

i.e.

M∏
k=1

(1− PD
(k)
i ) = (1− PD

(j)
i )M = 1− PDi . (D-10)

Then

PD
(j)
i = 1− (1− PDi)

1
M . (D-11)
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So we have

µ =
N∑
i=1

ui[1− (1− PDi)
1
M ] . (D-12)

The variance is a little more complicated.

σ2 = E(X2
j )− (E(Xj))

2 . (D-13)

E(Xj) is given by (D-8), and E(X2
j ) can be calculated as

E(X2
j ) =

N∑
i=1

u2
iE
(
I2
{T (j)

i >Ui}

)
+

N∑
i,k=1(i̸=k)

uiukE
(
I{T (j)

i >Ui}
I{T (j)

k >Uk}

)

=
N∑
i=1

u2
iE
(
I{T (j)

i >Ui}

)
+

N∑
i,k=1(i̸=k)

uiukE
(
I{T (j)

i >Ui}
I{T (j)

k >Uk}

)
, (D-14)

where E
(
I{T (j)

i >Ui}
I{T (j)

k >Uk}

)
is

E
(
I{T (j)

i >Ui}
I{T (j)

k >Uk}

)
= P ((T

(j)
i > Ui) ∩ (T

(j)
k > Uk))

= P (T
(j)
i > Ui|T (j)

k > Uk)P (T
(j)
k > Uk)

=

∫ ∞

−∞
ϕ(s)

[
1− Φ

(
Ui − ρis√
1− ρ2i

)][
1− Φ

(
Uk − ρks√

1− ρ2k

)]
ds · PD

(j)
k

=

∫ ∞

−∞
ϕ(s)PD

(j)
i (s)PD

(j)
k (s)dsPD

(j)
k . (D-15)

PD
(j)
i (s) is the default probability of the ith trade in the jth period given the

systematic factor is equal to s. Again, by the property of survival probability, we
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have

(1− PD
(j)
i (s))M = 1− P (the ith trade is default|S1 = s, S2 = s, ..., SM = s) .

(D-16)

Assume

P̃Di(s) = P (the ith trade is default|S1 = s, S2 = s, ..., SM = s) , (D-17)

then

PD
(j)
i (s) = 1− (1− P̃Di(s))

1
M . (D-18)

So

E
(
I{T (j)

i >Ui}
I{T (j)

k >Uk}

)
=∫ ∞

−∞
ϕ(s)[1− (1− P̃Di(s))

1
M ][1− (1− P̃Dk(s))

1
M ]dsPD

(j)
k . (D-19)

Finally, the formula of variance is derived

σ2 =
N∑
i=1

u2
i [1− (1− PDi)

1
M ]

+
N∑

i,k=1(i̸=k)

uiuk

∫ ∞

−∞
ϕ(s)[1− (1− P̃Di(s))

1
M ][1− (1− P̃Dk(s))

1
M ]ds

· [1− (1− PDk)
1
M ]− µ2 . (D-20)
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D.4 Infinite periods

Now the only question remains is when M goes to infinity, does the limit of

αq(L
(M)
N ) exist? By (D-7),

lim
M→∞

αq(L
(M)
N ) = lim

M→∞
(Mµ+

√
Mσ2Φ−1(q)) . (D-20)

First, let us see if limM→∞ µM exist.

lim
M→∞

Mµ =
N∑
i=1

ui lim
M→∞

M [1− (1− PDi)
1
M ]

(let Y =
1

M
)

=
N∑
i=1

ui lim
Y→0

1− (1− PDi)
Y

Y

(by L′Hopital′s rule)

=
N∑
i=1

ui lim
Y→0

−(1− PDi)
Y ln(1− PDi)

=
N∑
i=1

ui(−ln(1− PDi)) . (D-21)

Second, let us see if limM→∞ Mσ2 exist.

lim
M→∞

Mσ2 =
N∑
i=1

u2
i lim
M→∞

M [1− (1− PDi)
1
M ]

+
N∑

i,k=1(i̸=k)

uiuk lim
M→∞

{
M

∫ ∞

−∞
ϕ(s)[1− (1− P̃Di(s))

1
M ]

· [1− (1− P̃Dk(s))
1
M ]ds · [1− (1− PDk)

1
M ]

}
− lim

M→∞
Mµ2 . (D-22)
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The limit of the first and the third part is easier, similarly to the derivation of

limM→∞ Mµ,

N∑
i=1

u2
i lim
M→∞

M [1− (1− PDi)
1
M ] =

N∑
i=1

u2
i (−ln(1− PDi)) ; (D-23)

lim
M→∞

Mµ2 = 0 . (D-24)

For the limit of the second part, Lebesgue’s dominated convergence theorem

is applied. Since

∣∣∣ϕ(s)[1− (1− P̃Di(s))
1
M ][1− (1− P̃Dk(s))

1
M ]
∣∣∣ ≤ ϕ(s) , (D-25)

then

lim
M→∞

∫ ∞

−∞
ϕ(s)[1− (1− P̃Di(s))

1
M ][1− (1− P̃Dk(s))

1
M ]ds

=

∫ ∞

−∞
lim

M→∞
ϕ(s)[1− (1− P̃Di(s))

1
M ][1− (1− P̃Dk(s))

1
M ]ds

=0 . (D-26)

The limit of the rest of the second part is already known,

lim
M→∞

M [1− (1− PDk)
1
M ] = −ln(1− PDk) . (D-27)

So the limit of the second part is −ln(1− PDk) · 0 = 0.

Finally, we have

lim
M→∞

Mσ2 =
N∑
i=1

u2
i (−ln(1− PDi)) . (D-28)
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Substitute the results in (D-21) and (D-28),

lim
M→∞

αq(L
(M)
N ) =

N∑
i=1

ui(−ln(1−PDi))+

√√√√ N∑
i=1

u2
i (−ln(1− PDi))Φ

−1(q) . (D-29)

In other words, the result in (D-29) can also be used as the approximation of

the VaR when M is chosen large enough.

Now the analytic VaR of a portfolio based on large enough time-step have been

solved successfully. [1]
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ment, In: Szegö G (eds) Risk Measures for the 21st Century, Jon Wiley and

Sons

[22] Gordy, M. and Marrone, J. (2010) Granularity Adjustment for Mark-to-Market

Credit Risk Models, Journal of Banking & Finance, Elsevier, vol. 36(7), pages

1896-1910

[23] Gordy, M. and Monfort, A. (2009) Granularity in a Qualitative Factor Model,

Journal of Credit Risk, The Journal of Credit Risk (29-61), Volume 5/Number

4, Winter 2009/10

[24] Gordy, M. and Lütkebohmert, E. (2007) Granularity Adjustment for Basel II,

Discussion Paper Series 2 Banking and Financial Studies 2007-02-09, Deutsche

Bundesbank

[25] Gouriéroux, C. and Jasiak, J. (2008) Granularity Adjustment for Default Risk

Factor Model with Cohorts, Journal of Banking & Finance, Elsevier, vol. 36(5),

pages 1464-1477

[26] Gouriéroux, C., Laurent, J.P. and Scaillet, O. (2000) Sensitivity Analysis of

Values at Risk, Journal of Empirical Finance 7(3-4). 225C245

134



[27] Hibbeln, M. (2010) Risk Management in Credit Portfolios–Concentration Risk

and Basel II, Berlin Heidelberg: Springer-Verlag

[28] Hull, J. and White, A. (2000a) Valuing credit default swaps I: No counterparty

default risk, Journal of Derivatives, 2000, 8, pp.29-40

[29] Hull, J. and White, A. (2000b) Valuing credit default swaps II:Modling default

correlations, Journal of Derivatives, 8, pp.12-22

[30] Lando, D. (1998)On cox processes and credit risky securities, Review of Deriva-

tives Research, 2(2/3), pp.99-120

[31] Lütkebohmert, E. (2009) Concentration Risk in Credit Portfolios, Berlin Hei-

delberg: Springer-Verlag

[32] Martin, R., Thompson, K. and Browne, C. (2002) Unsystematic Credit Risk,

Risk Magazine 15 (11)): 123-128

[33] Martin, R., Thompson, K. and Browne, C. (2001) VaR: Who Contributes and

How Much?, Risk Magazin 24 (8): 99-102

[34] Pykhtin, M. (2004a) Multi-Factor Adjustment, Risk Magazine 17 (3): 85-90

[35] Pykhtin, M. (2004b) Name Concentration Correction, Risk Magazine, Decem-

ber 2010, pages 90-95

135



[36] Rau-Bredow, H. (2002) Credit Portfolio Modelling, Marginal Risk Contribu-

tions, and Granularity Adjustment, working paper.

[37] Rosenthal, J. S. (2006) A First Look at Rigorous Probability Theory, Singapore:

World Scientific Publishing Co. Pte. Ltd., Second Edition.

[38] Sorensen, E.H. and Bollier, T. F. (1994) Pricing Swap Default Risk, Financial

Analysts Journal, 50, pp.23-33

[39] Straumann, D (2009) What Happened to My Correlation?, Discussion Paper,

on the Whiteboard Series, RiskMetrics Group

[40] Thomas, J.W. (1995) Numerical Partial Differential Equations: Finite Differ-

ence Methods, New York: Springer-Verlag

[41] Voropaev, M. (2011) An Analytical Framework for Credit Portfolio Risk Mea-

sures, Risk Magazine 24(5), 72-78.

[42] Wilde, T. (2003) Derivatives of VaR and CVaR, working paper, CSFB

[43] Wilde, T. (2001a) IRB Approach Explained, Risk Magazine 14 (5): 87-90

[44] Wilde, T. (2001b) Probing Granularity, Risk Magazine 14 (8):103-106

[45] Wilkens, S., Brunac, J., and Chorniy, V. (2013), IRC and CRM: Modeling

Framework for the Basel 2.5 Risk Measures, working paper

136



[46] Yavin, T., Zhang, H., Wang, E., Clayton, M. (2010), Transition Probability

Matrix Methodology for Incremental Risk Charge, working paper

137


