Turn, Turn, Turn: Seasons in the life of a digital object

Through the lens of the digital curation lifecycle
What is Digital Curation?

"Digital curation involves maintaining, preserving and adding value to digital research data throughout its lifecycle."

Create or Receive

How do we get well formed data?

We create *curation* ready data!
Develop
Influence
Create
Collect
Develop
POLICY!

such SIP specification
Definition of SIP

Submitted by nruest on Tue, 07/02/2013 - 15:54

Submission Information Package (SIP)

- The information package that is delivered to York University Digital Library for use in the construction of one or more AIPs.
- The format of the SIP may vary from submitter to submitter, based on the submitters willingness and ability to provide the content and metadata in a specific format.
- For a given Content Type, any requirements or restrictions on the type of content that can be contained in the SIP will be described in that Content Type's Preservation Action Plan.

Tags:
Documentation
Digital Preservation Policy
Well formed data/objects?

What does that look like!?
Openness
Portability
Quality
Sample file format policy
The DCC Curation Lifecycle Model

- Conceptualise
- Dispose
- Transform
- Create or Register
- Appraise & Select
- Reappraise
- Ingest
- Preserve
- Preservation Action
- Representation Information
- Community Watch & Participation
- Description
- (Digital Objects or Databases)
- Curate
- Migrate
- Access, Use & Reuse
Everything that we choose to preserve means that something else won't be.
How do we decide?

- Needs of users (Designated Community)
- Feasibility of preservation
- Legal and IP rights
- Criticality of data
- Presence of associated data/metadata
POLICY!
The DCC Curation Lifecycle Model

CONCEPTUALISE

CREATE OR RECEIVE

CURATE

PREPARATION PLANNING

DESCRIPTION

Data (Digital Objects or Databases)

PRESERVATION ACTION

PRESERVATION

INGEST

REAPPRaise & RETARGET

APPRaise & SPECIFY

STORE

ACCESS, USE & REUSE

TRANSFORM

MIGRATE
SIPs to AIPs
Step 1: Submit
Step 2: Ingest
What's an AIP?
Reference Information
Provenance
Context Information
Fixity Information
Process!
1. Receive and accept SIP
2. Prepare the SIP for storage and management
3. Perform quality assurance activities on the SIP
4. Initiate format conversion to create the AIP
5. Generate AIP
POLICY!

Definition of AIP
Definition of AIP

Submitted by nriest on Tue, 07/02/2013 - 15:54

Archival Information Package (AIP)

- The information package consisting of the Content Information (CI), Preservation Description Information (PDI), Packaging Information (PI), and Descriptive Information (DI) that is archived at York University Library.
- The level of content in a York University Digital Library AIP can vary, depending on the amount of content provided by the submitter.
- This description will use the OAIS Information Model to illustrate completeness of our conceptual model, and will describe, in general terms, what a York University Library AIP looks like.

Content Information (CI)

- The Content Data Object is generally stored with from the primary preservation metadata file, which is held in Fedora Commons.
- Representation Information is maintained, and contains information on the CDO's file format, version, and a reference to a format registry in order to provide information on how to interpret the file. See: registry of file formats

Preservation Description Information (PDI)

- Reference Information - Identifiers are stored for each object identifying it globally (e.g. YUL PID) and locally (e.g. URI).
- Provenance Information - Provenance metadata is maintained for each object that provides a history of preservation events in the object's lifetime, beginning at ingest into the YUL Digital Library repository and referencing any preservation activities taken on the object (e.g., replacement due to corruption, format migration, etc.).
- Context Information - As appropriate, information on how a CDO relates to other CDOs or to other conceptual entities. Examples of these relationships can include: a newer version of an object that supersedes an older one.
- Fixity Information - Fixity information is generated at the time of ingest in order to later determine whether or not the item remains in the same state as when it was ingested. This information can be used to determine integrity of an object being copied within the system (as in the case of a change in storage location), or for periodic integrity checks.

Packaging Information (PI)

- YUL preservation metadata packages both the descriptive and preservation metadata together.

Descriptive Information (DI)

- Depending on the type of CDO, the format of this descriptive metadata can vary (MODS or Dublin Core), but is selected to maximize findability. In all cases, the descriptive metadata will be recreated within the preservation metadata.

Tags:
- Documentation
- Digital Preservation Policy
Policy. Policy. Policy.

- Sort & Identify
- List data/objects
- Uncompress
- Virus & malware
- Permanent identifiers
- Acknowledge receipt
- Depositor agreement
- Decrypt
- Fixity
- Transform/derivatives
The DCC Curation Lifecycle Model

1. CONCEPTUALISE
2. CREATE OR RECEIVE
3. APPRAISE & SELECT
4. INGEST
5. CURATION ACTION
6. PRESERVATION ACTION
7. PRESERVE
8. REPRESENTATIONAL INFORMATION
9. DESCRIPTION
10. PRESERVATION PLANNING
11. TRANSFORM
12. CREATE OR RECEIVE
13. DISPOSE

Steps:
- Conceptualise
- Create or receive
- Appraise & select
- Ingest
- Curation action
- Preservation action
- Preserve
- Representational information
- Description
- Preservation planning
- Transform

Key Actions:
- Access, use & reuse
- Store
- Migrate
Preservation Action

Anything that we do to maintain the

- Integrity
- Authenticity
- Usability

of our content.
Usability

3 main strategies:

- Technology preservation
- Technology emulation
- Information migration
Case 1:

Disabled or young? Relative age and special education diagnoses in schools

Elizabeth Dhuey, Stephen Lipscomb

Abstract

This study extends recent findings of a relationship between the relative age of students among their peers and their probability of disability classification. Using three nationally representative surveys spanning 1988–2004 and grades K–10, we find that an additional month of relative age decreases the likelihood of receiving special education services by 2–5 percent. Relative age effects are strong for learning disabilities but not for other disabilities. We measure them for boys starting in kindergarten but not for girls until 3rd grade. We also measure them for white and Hispanic students but not for black students or differentially by socioeconomic quartiles. Results are consistent with the interpretation that disability assessments do not screen for the possibility that relatively young students are over-represented for evaluation. Lastly, we present suggestive evidence that math achievement gains due to disability classification may differentially benefit relatively young students.

1. Introduction

Students with disabilities represented about 13.7 percent of the public school enrollment in the United States by 2003–2006, with about half diagnosed with learning disabilities. All students with disabilities are entitled by law to a free and appropriate public education, which can be considerably more costly than educating students not classified with special needs. Spending on students with disabilities has been estimated to be 90 percent higher than for other students, on average (Chambers, Parrish, and Harr, 2004). Special education spending also has grown faster than regular education spending since the 1980s, representing a larger share of district budgets (Lankford & Wyckoff, 1995; Parrish, 2001).

A recent study by Elder and Lubovsky (2008) finds compelling evidence that school officials may use relative standards in classifying children as having a disability. Their results indicate that children who start school at older biological ages are less likely to be classified with Attention Deficit Disorder (ADD) or Attention Deficit Hyperactivity Disorder (ADHD) by fifth grade. The effects are larger: starting school a year older decreases the likelihood of diagnosis with one of these conditions by 67 percent. Conditional on
Case 2:
The 2 arrows

- Migration
- Reappraisal
POLICY!
Digital Preservation Strategic Plan

Submitted by nruest on Tue, 07/02/2013 - 15:40

YUL Digital Preservation: Strategic Plan

“Preservation is not a place into which content is put for safe-keeping, but rather, it is a process in which content evolves proactively and reactively through the application of strategy-embodied services.”

The purpose of the York University Library Digital Preservation Plan is to outline the digital preservation strategy used by York University Library to ensure continued access to its digital collections by the Designated Community.

Objectives: The primary focus of the YUL’s digital preservation activities is on preserving the intellectual content of the materials digitized by the library, materials deposited into YorkSpace, and born digital materials acquired by Clara Thomas Archives and Special Collections. This means that YUL will prioritize the preservation of the content of all materials ingested, as opposed to the look and feel of the document.

The following properties are those which will be prioritized in all preservation activities:

- The intellectual content of the object in the repository. This will be defined on a collection-level, type-by-type basis and includes all supplemental materials and the relationship between these objects, as can be determined from metadata or other context at the time of ingest.
- Metadata included with the object at the time of ingest, especially that which relates it to other objects within the repository, or to the universe of its collection type overall.
- The intellectual rights to the object held by YUL and members of its designated community. While these properties are used to control access to the content and to determine its preservation level, they are also
Digital Preservation Implementation Plan

Submitted by nruest on Tue, 07/02/2013 - 15:43

Preservation Activities

YUL’s preservation strategies are based around the preservation of the intellectual content of the digital objects contained in YUL’s digital repositories (YorkSpace, YUDL) through the transformation of these objects to delay or present file obsolescence. In the course of these transformations, priority is given to maintaining the information contained in an individual content object, as opposed to preserving its appearance or a specific question.

To this end, YUL utilizes the following approaches to preservation:

Archival File Formats: YUL is committed to the use of file formats that support long term sustainability. In general, the considerations for selecting file formats include the “openness” of the file format, its level of support as a preservation format in the academic/scholarly community, and its uptake among YUL’s Designated Community, as well as its well-suitedness to later format migration.

Normalization: As mentioned above, YUL works to identify file formats well-suited to its approach to preservation and access. Upon ingest, materials not conforming to YUL’s accepted standards will be converted to one of the previously identified formats. To the extent possible, YUL will attempt to preserve the essential characteristics of the object. In cases requiring compromise, transformations that maintain the content of the object will be prioritized over those that preserve the presentation.

Format Migration: When YUL perceives that a portion of its content is stored in a format that is at risk of obsolescence, a new version of this content will be created in a format more suited to long-term preservation and use. This transformation may consist of migration to a newer version of the content’s existing format, or
Image - Preservation Action Plan

Submitted by nruest on Wed, 10/02/2013 - 11:47

Introduction

This document describes the preservation plan for image content in the York University Digital Library. Most of the image content is from the Clara Thomas Archives and Special Collections. The preservation plan for image content follows from policies and practices described in the Digital Preservation Strategic Plan and the Digital Preservation Implementation Plan. This document explains practical steps that York University Libraries take to preserve the intellectual content of image in digital format. It outlines the basic tools, methods, and standards used for the long-term preservation of image content.

Content Formats

For the preservation of image content, York University Libraries require uncompressed TIF versions of the content, and descriptive metadata. During the ingest process, derivatives are created for display. York University Libraries continuously monitors developments in file formats to determine if and when formats require migration (see Environmental Monitoring of Preservation Formats).

SIP Format

Image SIPs (see Definition of SIP) generally consist of a TIF file, and an associated MODS descriptive metadata file.

Analysis on Ingest

Upon ingest, every file in the repository is subject to identification of its file format and validation using FITS. The output of the FITS identification and validation processes are recorded to a technical metadata datastream XML. FITS files are also included in the technical datastream.
The DCC Curation Lifecycle Model

- Conceptualise
- Dispose

- Create or Receive
- Appraise & Select

- Transform
- Reappraise

- Preserve
- Reappraise

- Curate
- Reappraise

- Description
- Representation Information

- Data (Digital Objects or Databases)
- Community Watch & Participation

- Store
- Access, Use & Reuse

- Create, Use, Reuse
- Transform

- Circles and arrows indicating a cyclical process.
wow
such backup
not preservation
much part of preservation
very 1110 0001
0010 1010 1101
Policy!

backup plan, URIs, file naming plan, fixity
URI Policy

Submitted by nruest on Wed, 01/22/2014 - 07:52

Policy Statement

URIs created by York University Digital Library

- York University Digital Library uses a systematic convention to generate unambiguously unique identification for digital objects within its repository. This convention will create a stable name or reference to an object that can be permanently associated with that object, regardless of future changes to organizational structure or to digital access protocols.
- This is in conformance with section 4.2.4 of Metrics for Digital Repository Audit and Certification (CCSDS, June 2009) which states that a compliant repository "shall have and use a convention that generates persistent, unique identifiers for all AIPs" and "its components."
- This convention will ensure that "each AIP can be unambiguously found in the future" and that "each AIP can be distinguished from all other AIPs in the repository"

Implementation

Islandora object

York University Digital Library canonical URIs are consistently constructed in the following manner:

- /islandora/object/PID

These URIs are aliased using Islandora Pathauto to the following pattern:

- [fedora:pid]/[fedora:label]

Example:

- **Photograph**: New Woodbine: racehorses train for opening of season
- **Canonical URI**: http://digital.library.yorku.ca/islandora/object/yul:88675
- **Aliases URL**: http://digital.library.yorku.ca/yul-88675/new-woodbine-racehorses-train-opening-season

Tags:
- Documentation
- Digital Preservation Policy
Fixity procedures

Submitted by nruest on Thu, 06/27/2013 - 12:51

Policy Statement
York University Library are committed to maintaining the integrity of objects in its care. This includes creating checksums for all archival format objects -- plus associated datastreams -- ingested into the repository, and regular fixity checking of those objects.

Implementation
At the time of ingest an MD5 checksum value is calculated for the archival format object, and is stored along the object in the repository.

Daily, a set number of files in the repository will have their current checksum calculated (using a single checksum) and compared to this stored value, which is expected to match. In cases where the calculated and stored values do not match, this is reported to the repository manager.

Tags:
- Documentation
- Digital Preservation Policy
ensure that sufficient description and representation information is stored with data
use a reliable storage medium and geographically distributed backups systems
monitor events that might trigger other preservation actions
regularly check to ensure the integrity of the stored data and their description and representation information
ensure system and physical security
maintain and replace the technical infrastructure as necessary
develop, and administer as necessary, data recovery procedures
There is NO preservation without access.
What's required?

- Appropriate metadata to ensure data can be located.
- Appropriate legal permissions to ensure data can be (re-)used.
- Tools to allow the use of data.
- Access controls.
Policy!
Definition of DIP

Submitted by nruest on Tue, 07/02/2013 - 15:54

Dissemination Information Package (DIP)

- OAIS describes a DIP as "the Information Package, derived from a part, or all, of one or more AIPs, received by the Consumer in response to a request to the OAIS."
- York University Library's DIPs are always generated from a single AIP.
- User access to archival objects is generally provided through the [YUDL website](http://digital.library.yorku.ca) (http://digital.library.yorku.ca).
- The user is first authenticated, and will, depending on their level of access, see basic object metadata, and a link to the object article as available.
- Context information is provided in the form of links to other items in a given collection.
- The DIP is retrieved using the URI for the corresponding AIP. In turn, the AIP contains metadata tying it back to the SIP.

Tags:
Documentation
Digital Preservation Policy
The DCC Curation Lifecycle Model

CONCEPTUALISE

DISPOSE

MIGRATE

ACCESS, USE & PUBLISH

STORE

REAPPRaise

INGEST

PRESERVATION ACTION

PRESERVE

COMMUNITY WATCH & PARTICIPATION

REPRESENTATION INFORMATION

DATA (Digital Objects or Databases)

APPRaise & SElECT

APPraise & SELECT

CREATE OR RECEIVE

TRANSFORM

CURATE
Transform
Transformation

- Can be invoked:
 - At Ingest
 - At time of access
 - As a preservation action

- At ingest: Received formats are not always suitable for preservation
- At access: preservation formats are not always suitable to user needs.
- As preservation: mainly associated with 'Information migration' preservation strategy.
Community
Thatched roof cottages