PubMed Central Canada & Faculty Perspectives: Open Access to Health Research at York University

Rajiv Nariani
Science Librarian, York University Libraries
CLA 2012 National Conference
1st June 2012
rajivn@yorku.ca
PMC Canada, UK PMC & PubMed Central
Why PubMed Central Canada?

• Question: How do we strengthen PMC Canada?
 – How can it be unique?
 – Users perspectives about this online archival repository of published, peer-reviewed health and life sciences research publications

• UK PMC & PubMed Central: Guides
Timelines: PMC, UK PMC, PMCC

2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011

PubMed Central

NIH (Voluntary)

Wellcome Trust

British Heart Foundation, Arthritis Research Campaign

UKPMC - Classic

NIH (Mandatory)

CIHR

Cancer Research, UK

PMCC (officially)

PMCC (current)

National Institute of Health Research, UK
Launched 28th April 2010
PMC CANADA WEBINAR

You can now view the PMC Canada recorded Webinar which was offered in October and November 2010. Questions and answers that followed the Webinars are also posted for your benefit.

View the [PMC Canada Webinar](#) [Corrections]
Read the [Webinar questions and answers](#).

SUBMISSIONS?

PMC Canada supports CIHR's [Policy on Access to Research Outputs](#), which requires grant recipients to ensure that their peer-reviewed publications are freely accessible online within six months of publication.
CIHR Policy on Access to Research Outputs

Policy Summary

Beginning January 1, 2008, researchers awarded new or renewed funding from CIHR are reminded to adhere with the following new responsibilities:

- ensure that all research papers generated from CIHR funded projects are freely accessible through the Publisher's website or an online repository within six months of publication;
- deposit bioinformatics, atomic, and molecular coordinate data into the appropriate public database (e.g. gene sequences deposited in GenBank) immediately upon publication of research results;
- retain original data sets for a minimum of five years (or longer if other policies apply);
- and acknowledge CIHR support by quoting the funding reference number in journal publications.

Adhering with the new policy – Open access publications

For journal publications, there are two ways to adhere with the policy:

- Submit your manuscript to a journal that offers immediate open access (e.g. BioMed Central, PLoS) or offers open access to the paper on its website within six months (e.g. NEJM).
- Submit your manuscript to a journal that does not offer open access, but will permit you to archive the peer-reviewed manuscript in a central or institutional repository within 6 months of publication.

The SHERPA/RoMEO database contains a searchable listing of journal publisher's copyright and self-archiving policies which will help researchers to determine journal's that adhere with CIHR policy.
Compliance to CIHR Policy on OA

Know your Journal!
- Is the journal open access? DOAJ, PMC Journal list
- Does the journal permit archiving? See SHERPA/RoMEO database

- Notify publisher of CIHR policy
- Amend agreement and retain rights

Address Copyright (e.g. CARL Author Addendum)

Deposit in Open Access Archive
- PMCC
- Institutional Repository

Publish in an OA Journal
- Fees are an eligible expense
MSS

- Grants awarded as of Jan 1/08
- Only CIHR funded researchers may submit
- Peer-reviewed final Manuscripts
Journal List: CIHR Policy Compliance

http://pubmedcentralcanada.ca/pmcc/journals/
Steacie celebrates new open-access network on health research

York’s Steacie Science & Engineering Library will today celebrate the launch of PubMed Central (PMC) Canada, a new Canadian partner in an international network providing free or open access to health research.

Faculty and graduate students are invited to find out how York University Libraries can help make their research available to the world through PMC Canada. Join the science librarians at Steacie Science & Engineering Library at 4:30pm and listen to guest speakers, including Lesley Beagle, associate dean of professional & international programs in the Faculty of Health; Gordon Flett, associate dean of research & graduate education in the Faculty of Health; and biology University Professor Ron Pearlman of the Faculty of Science & Engineering. Pearlman has worked extensively with the Canadian Institutes of Health Research (CIHR) in encouraging faculty to support open access (OA) publishing.
CIHR funding & York University
CIHR publications: York University

WEB OF KNOWLEDGE™ DISCOVERY STARTS HERE

All Databases | Select a Database | Web of Science | Additional Resources

Search | Author Finder | Cited Reference Search | Advanced Search | Search History

Web of Science®

Search

Canadian Institutes of Health Research OR CIHR
Example: National Center

AND
York Univ SAME Canada
Example: Yale Univ SAME hosp (view abbreviations list)

AND
Example: Cancer® OR Journal of Cancer Research and Clinical Oncology

Add Another Field >>

Search | Clear

Searches must be in English

Current Limits: Save As My Defaults

Timespan

- All Years
- From 2009 to 2012 (default is all years)

Citation Databases

- Science Citation Index Expanded (SCI-EXPANDED) --1899-present
- Social Sciences Citation Index (SSCI) --1898-present
- Arts & Humanities Citation Index (A&HCI) --1975-present
- Conference Proceedings Citation Index - Science (CPCI-S) --1990-present
- Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH) --1990-present
1. Title: Effects of moderate electrical stimulation on reactive species production by primary rat skeletal muscle cells: Cross talk between superoxide and nitric oxide production
 Authors: Lambartucci Rafael Haring; Silveira Leonardo Dos Reis; Hiracara Sandro Masso, et al.
 Times Cited: 0 (from Web of Science)

2. Title: Models for Humanitarian Health Care Ethics
 Authors: Schwartz Larry; Hunt Matthew; Binding Chris, et al.
 Source: PUBLIC HEALTH ETHICS Volume: 5 Issue: 1 Pages: 81-90 DOI: 10.1093/phe/peh005 Published: APR 2012
 Times Cited: 0 (from Web of Science)

3. Title: From "Sex Toy" to Intrusive Imposition: A Qualitative Examination of Women's Experiences with Vaginal Dilator Use Following Treatment for Gynecological Cancer
 Authors: Cullen Kimberley; Fergus Karen; DasGupta Tracy, et al.
 Times Cited: 0 (from Web of Science)

4. Title: Posttraumatic growth in coronary artery disease outpatients: Relationship to degree of trauma and health service use
 Authors: Leung Yinifie W.; Alter David A.; Pilar Peter L., et al.
 Times Cited: 0 (from Web of Science)
Suppression of a MEF2-KLF6 Survival Pathway by PKA Signaling Promotes Apoptosis in Embryonic Hippocampal Neurons

Author(s): Salma, J (Salma, Jahan)1,2,4, McDermott, JC (McDermott, John C.)1,2,3,4

Abstract: In the mammalian nervous system, regulation of transcription factor activity is a crucial determinant of neuronal cell survival, differentiation, and death. The myocyte enhancer factor 2 (MEF2) transcription factors have been implicated in cellular processes underlying neuronal survival and differentiation. A core component of the MEF2 complex is the MEF2D subunit. Recently, we reported that cAMP-dependent protein kinase (cAMP/PKA) signaling negatively regulates MEF2D function in myogenic cells. Here, we assessed whether cAMP signaling converges on the prosurvival role of MEF2D in Sprague Dawley rat embryonic (E18) hippocampal neurons. Initially, we observed that experimental induction of cAMP/PKA signaling promotes apoptosis in primary hippocampal neurons as indicated by TUNEL and FACS analysis. Luciferase reporter gene assays revealed that PKA potently represses MEF2D trans-activation properties in neurons. This effect was largely reversed by engineered neutralizing mutations of PKA phospho-acceptor sites on MEF2D (S1211/190A). Kruppel-like factor 6 (KLF6) was identified as a key transcriptional target of MEF2 in hippocampal neurons, and siRNA-mediated knockdown of KLF6 expression promotes neuronal cell death and also antagonizes the prosurvival role of MEF2D. These observations have important implications for understanding the pathways controlling cell survival and death in the mammalian nervous system.

Accession Number: WOS:000300716600022

Document Type: Article

Language: English

KeyWords Plus: MYOCYTE-ENHANCER FACTOR-2; CENTRAL-NERVOUS-SYSTEM; FACTOR 2D MEF2D; TRANSCRIPTION FACTOR; PROTEIN-KINASE; ALZHEIMERS-DISEASE; GENE-EXPRESSION; FACTOR 2A; DIFFERENTIATION; MUSCLE

Reprint Address: McDermott, JC (reprint author), York Univ, Dept Biol, 327 Farquharson,4700 Keele St, Toronto, ON M3J 1P3, Canada

Addresses:
1. York Univ, Dept Biol, Toronto, ON M3J 1P3, Canada
2. York Univ, Ctr Res Mass Spectrometry, Toronto, ON M3J 1P3, Canada
3. York Univ, Muscle Hlth Res Ctr, Toronto, ON M3J 1P3, Canada
4. York Univ, Ctr Res Biomol Interact, Toronto, ON M3J 1P3, Canada

Email Address: jmcderm@yorku.ca

Funding:

<table>
<thead>
<tr>
<th>Funding Agency</th>
<th>Grant Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canadian Institutes of Health Research (CIHR)</td>
<td></td>
</tr>
</tbody>
</table>
Results: 44

1. Psychometric validation of the Cardiac Rehabilitation Barriers Scale
 Sharmila Shanmugasegaram, Lucia Gagliese, Paul Oh, Donna E Stewart, Stephanie J Brister, Victoria Chan, Sherry L Grace

2. Life-long Bilingualism Maintains White Matter Integrity in Older Adults
 Gigi Luk, Ellen Bialystok, Fergus I. M. Craik, Charyl L. Grady
 J Neurosci. Author manuscript, available in PMC 2012 January 16.

3. Overexpression of Prothrombin Alpha Predicts Poor Disease Outcome in Head and Neck Cancer
 Sathyendra Chandra Tripathi, Ajay Matha, Jatinder Kaur, Jorg Grigull, Shyam Singh Chauhan, Aksh Thakar, Nootan Kumar Shukla, Ritu Duggal, Ajoy Roy Chouchary, Siddhartha Datta Gupta, Mehar Chand Sharma, Ranju Ralhan, K W Michael Siu

4. Reactions to a targeted intervention to increase fecal occult blood testing among average-risk adults waiting for screening colonoscopy
 S Elizabeth McGregor, Paul Ritvo, Jill Timmou, Ashley Korblum, Ronald Myers, Robert J Hileden, Lawrence F Paszat, Linda Rabeneck
 Can J Gastroenterol. 2011 May; 25(5): 248-252

5. Globular Adiponectin, Acting via AdipoR1/APPL1, Protects H9c2 Cells from Hypoxia/Reoxygenation-Induced Apoptosis
 Min Park, ByungSoo Youn, Xi-long Zheng, Donghai Wu, Aimin Xu, Gary Sweeney
YU Papers in PubMed Central (2008-2012): CIHR funding

13. An APPL1-AMPK signaling axis mediates beneficial metabolic effects of adiponectin in the heart
 Xiangping Fang, Rengasamy Palanivel, Justin Cresser, Kristin Schram, Riya Ganguly, Farah S. L. Thong, Joseph Tuinei, Aimin Xu, E. Dale Abel, Gary Sweeney
 PMCID: PMC2980363

14. Nuclear S100A7 Is Associated with Poor Prognosis in Head and Neck Cancer
 Satyendra Chandra Tripathi, Ajay Matta, Jatinder Kaur, Jorg Grigull, Shyam Singh Chauhan, Alok Thakar, Nootan Kumar Shukla, Ritu Duggal, Siddhartha DattaGupta, Ranju Ralhan, K. W. Michael Siu
 PMCID: PMC2914786

15. Somatic symptom overlap in Beck Depression Inventory–II scores following myocardial infarction
 Brett D. Thombs, Roy C. Ziegelstein, Louise Pilote, David J. A. Dozois, Aaron T. Beck, Keith S. Dobson, Samantha Fuss, Peter de Jonge, Sherry L. Grace, Donne E. Stewart, Johan Ormel, Susan E. Abbey
 PMCID: PMC2894982

16. Drive time to cardiac rehabilitation: at what point does it affect utilization?
 Janette Brual, Shannon Gravely-Witte, Neville Suskin, Donna E Stewart, Alison Macpherson, Sherry L Grace
 PMCID: PMC2900239

 Alistair B. Coulthard, Christina Alm, Iulia Cealici, Don A. Sinclair, Barry M. Honda, Fabrizio Rossi, Patrizio Dimitri, Arthur J. Hilliker
 PMCID: PMC2881131
York University Chart: CIHR

Number of Articles

Year	WoS (CIHR Funding)	PMC (CIHR Ack.)	PMCC (CIHR Ack.)	OA
2012 | 28 | 2 | 1 | 0
2011 | 93 | 13 | 6 | 8
2010 | 72 | 15 | 12 | 5
2009 | 70 | 18 | 12 | 3
2008 | 40 | 6 | 5 | 5

Percentages:
- 2011: 14%
- 2010: 21%
- 2009: 26%
- 2008: 15%
CIHR publications: PubMed, PMC

PubMed
(20225 citations: CIHR)

PubMed Central
[3051 papers acknowledge CIHR funding in PMC (15.08%)]

UK PMC

PMC Canada

27th May 2012
Launched in 2000

PMC is a free full-text archive of biomedical and life sciences journal literature at the U.S. National Institutes of Health's National Library of Medicine (NIH/NLM).
Overview
The NIH Public Access Policy ensures that the public has access to the published results of NIH funded research. It requires scientists to submit final peer-reviewed journal manuscripts that arise from NIH funds to the digital archive PubMed Central upon acceptance for publication. To help advance science and improve human health, the Policy requires that these papers are accessible to the public on PubMed Central no later than 12 months after publication.

NIH Public Access Policy Details
The NIH Public Access Policy implements Division G, Title II, Section 218 of PL 110-161 (Consolidated Appropriations Act, 2008). The law states:

The Director of the National Institutes of Health shall require that all investigators funded by the NIH submit or have submitted for them to the National Library of Medicine’s PubMed Central an electronic version of their final, peer-reviewed manuscripts upon acceptance for publication, to be made publicly available no later than 12 months after the official date of publication: Provided, That the NIH shall implement the public access policy in a manner consistent with copyright law.
Compliance rates NIH: PMC

INTERAGENCY PUBLIC ACCESS COORDINATION

A REPORT TO CONGRESS ON THE COORDINATION OF POLICIES RELATED TO THE DISSEMINATION AND LONG-TERM STEWARDSHIP OF THE RESULTS OF FEDERALLY FUNDED SCIENTIFIC RESEARCH

This policy, and its subsequent fine tuning, has led to a dramatic increase in the number of NIH papers posted to PMC. Since 2008, NIH has been able to collect over 260,000 papers under the Policy. Overall, the compliance rate stands at 75 percent and continues to edge upward. This success is due to the combined efforts of NIH, its investigators and the voluntary support of publishers. Thousands of journals voluntarily submit peer-reviewed author manuscripts to PMC to assist authors in complying with the Public Access process. Several hundred journal publishers voluntarily deposit final published versions of articles in PMC automatically on behalf of their authors. Publishers representing about 1000 journals voluntarily submit the full content of their journals to PMC, regardless of whether the issue contains an article subject to the NIH Public Access Policy.
A unique, free, information resource for biomedical and health researchers

Search 25 million+ abstracts and 2 million+ full text research articles from PubMed and PubMed Central
Discover who is citing who, find related data resources and browse summaries of key terms
Access additional content including biological patents, clinical guidelines, PhD theses and research reports

News from the UKPMC Blog

April deluge (01 May 2012)
Citation Sort Order and Navigation (13 Mar 2012)
Introducing UKPMC Labs (02 Feb 2012)

Recent articles

Calpain 3 is important for muscle regeneration: Evidence from patients with limb girdle muscular dystrophies
Aspirin has little additional anti-platelet effect in healthy volunteers receiving prasugrel
Common variants in 22 loci are associated with QRS duration and cardiac ventricular conduction
Stereocilin-deficient mice reveal the origin of cochlear waveform distortions
Novel Bluetongue Virus Serotype from Kuwait

Try these searches

Drosophila microbiota (Full Text Articles)
Small cell lung cancer
Common cold virus (Theses)
Limiting to articles generated from grant-funding bodies: UK PubMed Central
Grant Lookup Tool

Search All

Notes
Click on the titles below to show/hide the notes.

About Grant Lookup
General
Search All
PI Name - Initials
PI Name - Surname
Project Title
Keyword
Institution
Grant ID
Funder(s)

Funder(s)
✓ Action on Hearing Loss
✓ Arthritis Research UK
✓ Austrian Science Fund FWF
✓ Biotechnology and Biological Sciences Research Council
✓ Breakthrough Breast Cancer
✓ British Heart Foundation
✓ Cancer Research UK
✓ Chief Scientist Office
✓ The Dunhill Medical Trust
✓ Marie Curie Cancer Care
✓ Medical Research Council
✓ Motor Neurone Disease Association
✓ Multiple Sclerosis Society
✓ Myeloma Trust
✓ National Institute for Health Research (Department of Health)
✓ Parkinson's UK
✓ Telethon Italy
✓ Wellcome Trust

Select All | Select None
<table>
<thead>
<tr>
<th>#</th>
<th>Funder</th>
<th>Grant ID</th>
<th>PI Name</th>
<th>Project Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Wellcome Trust</td>
<td>072217</td>
<td>Dr R Andrew</td>
<td>α reduced glucocorticoids: novel agonists of the hepatic glucocorticoid receptor in obesity.</td>
</tr>
<tr>
<td>2</td>
<td>Wellcome Trust</td>
<td>072598</td>
<td>Ms S Badger</td>
<td>A genetic diagnosis for obesity: Society and moral experiences of the body and responsibility in childhood.</td>
</tr>
<tr>
<td>3</td>
<td>Wellcome Trust</td>
<td>066692</td>
<td>Professor M Ashford</td>
<td>Adipose hormone signaling in hypothalamic neurones and the regulation of obesity.</td>
</tr>
<tr>
<td>4</td>
<td>Wellcome Trust</td>
<td>073153</td>
<td>Dr DTT Huynh</td>
<td>Assessment of risk factors for early onset obesity in pre-school children in Ho Chi Minh City, Vietnam</td>
</tr>
<tr>
<td>5</td>
<td>Wellcome Trust</td>
<td>073152</td>
<td>Dr Y Cheng</td>
<td>Changing dietary patterns and obesity in school aged children in Xi'an city, Shaanxi province, China</td>
</tr>
<tr>
<td>6</td>
<td>Wellcome Trust</td>
<td>061713</td>
<td>Dr L Heisler</td>
<td>Delineation of discrete brain circuitry regulating obesity and type 2 diabetes in mice.</td>
</tr>
<tr>
<td>7</td>
<td>Wellcome Trust</td>
<td>065287</td>
<td>Prof D Withers</td>
<td>Determination of the role of insulin receptor substrate proteins in leptin and insulin-sensitive hypothalamic neurones and their relation to feeding and obesity.</td>
</tr>
<tr>
<td>8</td>
<td>Wellcome Trust</td>
<td>065287</td>
<td>Professor M Ashford</td>
<td>Determination of the role of insulin receptor substrate proteins in leptin and insulin-sensitive hypothalamic neurones and their relation to feeding and obesity.</td>
</tr>
<tr>
<td>9</td>
<td>Wellcome Trust</td>
<td>061627</td>
<td>Prof SR Bloom</td>
<td>Development of novel analogues of the satiety hormone pancreatic polypeptide (Y4 receptor agonist) as an anti obesity agent.</td>
</tr>
<tr>
<td>10</td>
<td>Wellcome Trust</td>
<td>071397</td>
<td>Dr NM Morton</td>
<td>Dietary (lipid) regulation of the glucocorticoid metabolising enzyme 11beta-hydroxysteroid dehydrogenase type 1 and its implications for obesity and metabolic disease.</td>
</tr>
</tbody>
</table>
Differences at Article Level: PMC Canada (PMCC), PMC & UK PMC
Transforming growth factor-beta inhibits aromatase gene transcription in human trophoblast cells via the Smad2 signaling pathway

Hong Zhou,¹,² Guodong Fu,¹ Hui Yu,¹ and Chun Peng¹*¹

¹Department of Biology, York University, Toronto, Ontario, M3J 1P3, Canada
²School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China

Received October 26, 2009; Accepted December 9, 2009.

Abstract

Background
Transforming growth factor-beta (TGF-beta) is known to exert multiple regulatory functions in the human placenta, including inhibition of estradiol production. We have previously reported that TGF-beta1 decreased aromatase mRNA levels in human trophoblast cells. The objective of this study was to investigate the molecular mechanisms underlying the regulatory effect of TGF-beta1 on aromatase expression.

Methods
To determine if TGF-beta regulates aromatase gene transcription, several reporter constructs containing different lengths of the placental specific promoter of the human aromatase gene were generated. JEG-3 cells were transiently transfected with a promoter construct and treated with or without TGF-beta1. The promoter activity was measured by luciferase assays. To examine the downstream signaling molecule...
Some concerns with PMC Canada

A Multi-Site Examination of Sex Differences in Cardiac Rehabilitation Barriers by Participation Status

Sherry L. Grace, PhD, Shannon Gravelle-Witte, MSc, Sheena Kayaniyi, BSc, Janette Brual, BA, Neville Suskin, MBChB, and Donna E. Stewart, MD

Sherry L. Grace, York University, University Health Network Women's Health Program and University of Toronto, Contributing Information
Sherry L. Grace, sgrace@yorku.ca; Shannon Gravelle-Witte, sgravelle@yorku.ca; Sheena Kayaniyi, skayaniyi@yorku.ca; Janette Brual, jbrual@yorku.ca; Neville Suskin, neville.suskin@uhn.on.ca; Donna E. Stewart, donna.stewart@uhn.on.ca

Address for correspondence: Sherry Grace, Bethune 368, York University, 4700 Keele St, Toronto, ON M3J 1P3, Tel: 416-736-2100 x 22384, Fax: 416-736-8774, Email: sgrace@yorku.ca

The publisher's final edited version of this article is available at J Women's Health (Larchmt)

See other articles in PMC that cite the published article.

Abstract

BACKGROUND

Despite its proven benefits and need, women are significantly less likely to participate in and complete cardiac rehabilitation (CR) than men. The purpose of this study was to quantitatively investigate sex differences in CR barriers by participation status.

METHODS

1406 cardiac patients (42.0, 38.7%, female) of 27 cardiologists completed a mailed survey to...
Error 404
Not Found

The page requested could not be found at this location.

Web sites belonging to the National Research Council are constantly being updated. If you cannot find the page you are looking for, may we recommend that you

- Go to the Home page
- Or use your browser's "Back" button to return to the Referring page

Date modified: 2005-07-05

Transforming growth factor-beta inhibits aromatase gene transcription in human trophoblast cells via the Smad2 signaling pathway.

Zhou H, Fu G, Yu H, Peng C.
Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada. zhouhongsh@yorku.ca

Abstract

BACKGROUND: Transforming growth factor-beta (TGF-beta) is known to exert multiple regulatory functions in the human placenta, including inhibition of estroidal production. We have previously reported that TGF-beta decreased aromatase mRNA levels in human trophoblast cells. The objective of this study was to investigate the molecular mechanisms underlying the regulatory effect of TGF-beta on aromatase expression.

METHODS: To determine if TGF-beta regulates aromatase gene transcription, several reporter constructs containing different lengths of the placental-specific promoter of the human aromatase gene were generated. JEG-3 cells were transiently transfected with a promoter construct and treated with or without TGF-beta1. The promoter activity was measured by luciferase assays. To examine the downstream signaling molecule mediating the effect of TGF-beta on aromatase transcription, cells were transiently transfected with dominant negative mutants of TGF-beta type II (TbetaRII) and type I receptor (ALK5) receptors before TGF-beta treatment. Smad2 activation was assessed by measuring phosphorylated Smad2 protein levels in cytosolic and nuclear fractions. Smad2 expression was silenced using a siRNA expression construct. Finally, aromatase mRNA half-life was determined by treating cells with actinomycin D together with TGF-beta and measuring aromatase mRNA levels at various time points after treatment.

RESULTS AND DISCUSSION: TGF-beta1 inhibited the aromatase promoter activity in a time- and dose-dependent manner. Deletion analysis suggests that the TGF-beta response element resides between -422 and -117 nucleotides upstream from the transcription start site where a Smad binding element was found. The inhibitory effect of TGF-beta was blocked by dominant negative mutants of TbetaRII and ALK5. TGF-beta1 treatment induced Smad2 phosphorylation and translocation into the nucleus. On the other hand, knockdown of Smad2 expression reversed the inhibitory effect of TGF-beta1 on aromatase transcription. Furthermore, TGF-beta1 accelerated the degradation of aromatase mRNA.

CONCLUSION: Our results demonstrate that TGF-beta exerts regulatory effects on aromatase gene at both transcriptional and post-transcriptional levels. The transcriptional regulation of aromatase genes by TGF-beta1 is mediated by the canonical TGF-beta pathway involving TbetaRI, ALK5, and Smad2. These findings further support the role of TGF-beta in regulating human placental functions and pregnancy.
Abstract

Background

Transforming growth factor-beta (TGF-beta) is known to exert multiple regulatory functions in the human placenta, including inhibition of estradiol production. We have previously reported that TGF-beta1 decreased aromatase mRNA levels in human trophoblast cells. The objective of this study was to investigate the molecular mechanisms underlying the regulatory effect of TGF-beta1 on aromatase expression.

Methods

To determine if TGF-beta regulates aromatase gene transcription, several reporter constructs containing different lengths of the placental specific promoter of the human aromatase gene were generated. Jeg-3 cells were transiently transfected with a promoter construct and treated with or without TGF-beta1. The promoter activity was measured by luciferase assays. To examine the downstream signaling molecule mediating the effect of TGF-beta on aromatase transcription, cells were transiently transfected with dominant negative mutants of TGF-beta type II (TbetaRII) and
Transforming growth factor-beta inhibits aromatase gene transcription in human trophoblast cells via the Smad2 signaling pathway.

(PMID: 20003190)

Abstract

BACKGROUND: Transforming growth factor-beta (TGF-beta) is known to exert multiple regulatory functions in the human placenta, including inhibition of estradiol production. We have previously reported that TGF-beta1 decreased aromatase mRNA levels in human trophoblast cells. The objective of this study was to investigate the molecular mechanisms underlying the regulatory effect of TGF-beta1 on aromatase expression.

METHODS: To determine if TGF-beta regulates aromatase gene transcription, several reporter constructs containing different lengths of the placental specific promoter of the human aromatase gene were generated. JEG-3 cells were transiently transfected with a promoter construct and treated with or without TGF-beta1. The promoter activity was measured by luciferase assays. To examine the downstream signaling molecule mediating the effect of TGF-beta on aromatase transcription, cells were transiently transfected with dominant negative mutants of TGF-beta type II (TbetaRII) and type I receptor (ALK5) receptors before TGF-beta treatment. Smad2 activation was assessed by measuring phosphorylated Smad2 protein levels in cytosolic and nuclear fractions. Smad2 expression was silenced using a siRNA expression construct. Finally, aromatase mRNA half-life was determined by treating cells with actinomycin D together with TGF-beta1 and measuring aromatase mRNA levels at various time points after treatment.

RESULTS AND DISCUSSION: TGF-beta1 inhibited the aromatase promoter activity in a time- and dose-dependent manner. Deletion analysis suggests that the TGF-beta1 response element resides between -422 and -117 nucleotides upstream from the transcription start site where a Smad binding element was found. The inhibitory effect of TGF-beta1 was blocked by dominant negative mutants of TbetaRII and ALK5. TGF-beta1 treatment induced Smad2 phosphorylation and translocation into the nucleus. On the other hand, knockdown of Smad2 expression reversed the inhibitory effect of TGF-beta1 on aromatase transcription. Furthermore, TGF-beta1 accelerated the degradation of aromatase mRNA.

CONCLUSION: Our results demonstrate that TGF-beta1 exerts regulatory effects on aromatase gene at both transcriptional and post-transcriptional levels. The transcriptional regulation of aromatase gene by TGF-beta1 is mediated by the canonical TGF-beta signaling pathway involving TbetaRII, ALK5 and Smad2. These findings further support the role of TGF-beta1 in regulating human placental functions and pregnancy.

Funding

Canadian Institute of Health Research [MOP-53174, MOP-81376]
Faculty Survey: PMC Canada

- Survey done April 2012
- Number of faculty who completed the survey: 42
- Completed by faculty who had CIHR grants post 2008 and also those without CIHR funding
 - 21% of them had received CIHR funding
- Faculty from 10 Departments/Schools
Survey Questions

1. PubMed Central Canada & Faculty Perspectives

I am conducting the survey to gauge faculty perceptions of PubMed Central Canada and how it can be of assistance to the research community. Since your article(s) are deposited in PubMed Central Canada (PMC Canada) or you have received Canadian Institute of Health Research (CIHR) funding and/or have published in an open access journal, I will appreciate it if you can kindly devote 7-10 minutes of your time and complete this survey. No personal information is being collected. This project has been reviewed and approved by the Human Participants Review Committee at York University. Please let me know if you require additional information. Thank you very much for your time.

Rajiv Narain
Science Librarian
York University Libraries
(rajvn@yorku.ca - ext. 20396)

1. Subject/Disciplinary Area

- Biology
- Business
- Chemistry
- Computer Science & Engineering
- Earth & Space Science & Engineering
- Environmental Studies
- Faculty of Liberal Arts & Professional Studies
- Fine Arts
- Geography
- Health Policy & Management
- Kinesiology & Health Sciences
- Mathematics & Statistics
- Natural Science
- Neuroscience
- Nursing
- Physics & Astronomy
- Psychology
- Science & Technology Studies
- Other (please specify)

PMC Canada

1. Features that are particularly important while browsing/searching content in PubMed Central Canada (http://pubmedcentralcanada.ca/)

<table>
<thead>
<tr>
<th>Feature</th>
<th>Very Important</th>
<th>Important</th>
<th>Not Important</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ease of depositing articles in PMC Canada</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>PMC Canada User Guide</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>Clarity about journal deposit policies</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>Ability to locate similar articles</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>Ability limit to articles receiving research grants (including NSERC, SSHRC)</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>Ability to search genetic/biological information related to the article</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>Ability to create e-mail alerts</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>Ability to search Patents</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>Ability to export citation to a reference management program</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>Ability to search Author manuscripts</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>Initiate new searches or refine existing searches on a selected facet</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>Restrict results to systematic reviews or guidelines</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>List of Open Access journals</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>List of Open Access journals for a specific field</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>Number of downloads for each article</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>Times cited for each article</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>RSS feeds</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>Ability to post to social networking tools (Twitter, Facebook etc)</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
</tbody>
</table>

Any other criteria (if any)
Where is your article available?

Is your article(s), stemming from CIHR grant-funded research, made available through any of the portals/repositories? (You can choose more than one response)

- PubMed Central: 4
- PubMed Central Canada: 2
- UK PubMed Central: 0
- Available on my website: 1
- Available on Principal Investigator's website: 0
- Available in an Open Access journal: 4
- YorkSpace (York Institutional repository): 1
- Not Applicable: 18
- Not sure: 9
- Other response: 3
Who deposited your article?

Have you personally deposited your peer-reviewed publication(s) in PubMed Central Canada?

- Yes, 2
- Not Applicable, 2
- Deposited by Publisher, 1
- Other (please specify), 1
<table>
<thead>
<tr>
<th>Feature</th>
<th>PMC Canada</th>
<th>UK PubMed Central</th>
<th>York Faculty Responses Important/V.Imp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Export to citation management program</td>
<td>thru' publishers’ platform</td>
<td>RIS format for every article</td>
<td>Very Imp./Imp. 89%</td>
</tr>
<tr>
<td>Ease of depositing articles</td>
<td>Yes – make guide/tutorial more visible</td>
<td>User guide on depositing articles – open to all</td>
<td>Very Imp./Imp. 93%</td>
</tr>
<tr>
<td>Links to patent databases</td>
<td>No</td>
<td>Yes</td>
<td>Not Imp. 81.5%</td>
</tr>
<tr>
<td>Faceted searching - Ability to locate similar articles</td>
<td>No</td>
<td>Yes</td>
<td>Very Imp/Imp 93%</td>
</tr>
<tr>
<td>Clarity about journal deposit policies & policy on OA</td>
<td>Make it more upfront</td>
<td>Yes – one of the tabs</td>
<td>Very Imp. 90%</td>
</tr>
<tr>
<td>User Guide</td>
<td>Webinar on PMCC- Guide make it more visible</td>
<td>PDF Guide – detailed with screenshots</td>
<td>V.Imp./Imp. 69%</td>
</tr>
<tr>
<td>Feature</td>
<td>PMC Canada</td>
<td>UK PubMed Central</td>
<td>York Faculty Responses Important/V.Imp</td>
</tr>
<tr>
<td>--</td>
<td>-----------------------------</td>
<td>-------------------</td>
<td>--</td>
</tr>
<tr>
<td>Times cited</td>
<td>No – some publishers provide data</td>
<td>Yes</td>
<td>V.Imp./Imp. 89.5%</td>
</tr>
<tr>
<td>No. of downloads</td>
<td>No</td>
<td>No</td>
<td>Vimp/Imp. 68%</td>
</tr>
<tr>
<td>Limit to Syst. Reviews</td>
<td>No</td>
<td>Yes, meta-analysis, RCTs, Clin. Trials</td>
<td>V.Imp./Imp. 72%</td>
</tr>
<tr>
<td>Searching for author manuscript</td>
<td>Limits from PMC</td>
<td>Easier</td>
<td>Very Imp./Imp. 90%</td>
</tr>
<tr>
<td>Ability to limit to NSERC, SSHRC papers</td>
<td>No</td>
<td>Other funders – through Grant Lookup tool</td>
<td>Not Imp. 70.4%</td>
</tr>
<tr>
<td>search genetic information related to the article</td>
<td>No</td>
<td>Yes</td>
<td>50 (Yes) - 50 (No)</td>
</tr>
</tbody>
</table>
OA Journals and publisher deposit policies

Were you aware of the PubMed Central journal list that outlines participating journals and free access timelines? [link](http://pubmedcentralcanada.ca/prender.cgi?tabindex=1&lang=en-ca)

Yes, 13.3%

No, 06.7%

Are you aware of SHERPA/RoMEO?

Yes, 2

No, 28
How can academic librarians play a role in assisting your information needs on PMC Canada?

- Clarifying journal policies on Open Access (OA): 80.0%
- Clarifying CIHR policies on OA: 45.7%
- Clarifying CIHR policies on OA to research data: 34.3%
- Authenticity/credibility of OA journals/OA publishers: 37.1%
- Help with PubMed Central Canada deposit policies: 68.6%
Have you downloaded an article from PubMed Central Canada, US PubMed Central or UK PubMed Central in the last one year?

- From PubMed Central Canada: 1
- From PubMed Central US: 16
- From UK PubMed Central: 2
- None of the above: 12
- Not sure which d/b: 2
Do we need PMC Canada?

Is there a need for a Canadian life science repository like PMC Canada or is PMC US sufficient for your needs?

- PMC Canada is required: 2
- PubMed Central US is sufficient: 9
- Both are required: 3
- Not sure: 17
- Doubtful: 1
What do the results tell us?

• Bare basics of an archival life sciences repository then value difficulty to prove
 – Not sure why we need another repository
• Librarians & Research Officers will need to explain the value of this repository
 – Scholarly communication & promotion activities
• Extend study to other universities
 – Those receiving major CIHR funding
PMC Canada: Road Ahead

• Improve user-friendliness of site
• Develop tools for researchers e.g. export citations, fund agencies limiters
• Expand PMC Canada content to non-CIHR funded health researchers?
• Increase publisher bulk deposits
References

• **UK PMC: a full text article resource for life sciences**

• **UK PubMed Central (UK PMC)**

• **UK PubMed Central: becoming the information resource of choice for the UK’s life sciences research community**

• **Enabling Exploratory Search in UK PMC**
Thank you & Questions!