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ABSTRACT

Understanding and modeling human vision is an endeavor which can be; and has been, approached from

multiple disciplines. Saliency prediction is a subdomain of computer vision which tries to predict human

eye movements made during either guided or free viewing of static images. In the context of simulation

and animation, vision is often also modeled for the purposes of realistic and reactive autonomous agents.

These often focus more on plausible gaze movements of the eyes and head, and are less concerned with

scene understanding through visual stimuli. In order to bring techniques and knowledge over from

computer vision fields into simulated virtual humans requires a methodology to generate saliency

maps. Traditional saliency models are ill suited for this due to large computational costs as well as

a lack of control due to the nature of most deep network based models. The primary contribution of

this thesis is a proposed model for generating pseudo-saliency maps for virtual characters, Parametric

Saliency Maps (PSM). This parametric model calculates saliency as a weighted combination of 7

factors selected from saliency and attention literature. Experiments conducted show that the model is

expressive enough to mimic results from state-of-the-art saliency models to a high degree of similarity,

as well as being extraordinarily cheap to compute by virtue of being done using the graphics processing

pipeline of a simulation. The secondary contribution, two models are proposed for saliency driven gaze

control. These models are expressive and present novel approaches for controlling the gaze of a virtual

character using only visual saliency maps as input.
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“Would you tell me, please which way I ought to go from here?”

“That depends a good deal on where you want to get to.” said the cat.

“I dont much care where.” said Alice.

“Then it doesn’t much matter which way you go.”

“...So long as I get somewhere.”

“Oh, you’re sure to do that, if only you walk long enough.”

− Lewis Carroll, Alices Adventures in Wonderland
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CHAPTER 1

INTRODUCTION

Much work is being done in the field of computer vision to create saliency models, which are able

to approximate how humans perceive stimuli (in the form of images) and output representations of

human attention with respect to these stimuli. These models are constantly improving and well

adapted to their problem domains. However, they are often computationally expensive and somewhat

uninterpretable due to being developed largely as machine learning models. This leads to challenges

when trying to utilize them in real-time settings, particularly in simulation. These concepts can be

migrated into virtual settings through simple computational models of saliency which take advantage

of the control and information available in simulated scenarios.

The goals of this work are to describe the process and methods required to A) generate

pseudo-saliency map approximates in a real-time simulation in an efficient and neuro-physiologically

plausible manner, and B) use those saliency maps for procedurally generating human gaze movements

in a simulated humanoid character. This work specifically targets the area of casual pedestrians with

minimal interactions. The driving belief behind these ideas is that basing virtual human gaze on

real-time measures of visual attention allows for the generation of more realistic and interpretable

gaze behaviours as well as opens the door for more exploration and application of research from the

computer vision and vision sciences. By basing gaze control on visual input (in the form of saliency),
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there is a new freedom to be found in the compartmentalization of attention and top-down psychological

factors away from the low-level visual-motor responses of humans to given interpreted stimuli. The

psychological and biological factors for real humans are complex, as such modelling these factors is

challenging. In this case, trying to model human vision must also contend with complexities such as

goals, personality, intent etc. which can all impact the viewing behaviours of humans. As an example,

a person walking down a city street they live on will likely place different importance on things like

street signage versus someone unfamiliar with the area. Being able to easily define and apply factors

such as this is extraordinarily valuable for those wishing to model virtual humans.

Portions of this document have been accepted for publication in [28] and [29]. These pub-

lications include content in Sections 2.2, 2.3, and Chapter 3. The Concepts in Chapters 3 and 4

were jointly developed between authors Peter Caruana, Melissa Kremer, Dr. Brandon Haworth, Dr.

Mathew Schwartz, Dr. Mubbasir Kapadia, and Dr. Petros Faloutsos. Content in Chapter 4 has been

submitted for review and is under consideration. Conceptualization and implementation of the work

outlined in chapter 3.1 were done jointly between Peter Caruana and Melissa Kremer, with advice

and guidance from Dr. Brandon Haworth, Dr. Mubbasir Kapadia and Dr. Petros Faloutsos. Dataset

generation in chapter 3.2 was implemented by Melissa Kremer, with conceptualization done between

Melissa Kremer and Peter Caruana. The parameter optimization process, details and evaluations were

done by Peter Caruana. In Chapter 4, conceptualization was done primarily by Peter Caruana, with

input from Dr. Brandon Haworth Dr. Mathew Schwartz and Dr. Petros Faloutsos. Implementation

details and research were done by Peter Caruana.

Chapter 2 covers the theoretical background on human gaze, saliency and attention, fixation

prediction and gaze control. It discusses physiological and psychological mechanisms which underlie

how humans view and perceive stimuli. There is an emphasis on how these findings have been translated

into work in the domain of computer vision, as well as simulation in the form of gaze control.

Chapter 3 explains the proposed approach to generate pseudo-saliency maps representing

human visual attention in urban virtual settings, for the purposes of simulation. It discusses the

factors which comprise the parametric model, as well as their origins in prior works. Additionally, this

chapter explains and demonstrates how the proposed model can be optimized to mimic the output

of state-of-the-art saliency models. The relative similarity of the optimized output is examined with

respect to the SALICON saliency model as a baseline.

Chapter 4 presents two possible models for utilizing real-time pseudo-saliency maps for con-

trolling the gaze of a virtual agent. The particle model interprets gaze as a physical particle being
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acted upon by attractive forces. These forces come from interpreting saliency maps as a potential

field where areas of high salience are represented as ”wells” in the potential field thus drawing the

particle towards them. The Probabilistic model treats saliency maps as their original interpretation,

probability densities for fixations. Fixation points are drawn from the distribution, and the gaze of

the observer is interpolated to look at these points.

Chapter 5 is the conclusion, and it summarizes the main points of this work as well as discusses

possible future work.
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CHAPTER 2

RELATED WORK

2.1 Human Gaze

2.1.1 Gaze Movements

Human gaze movements have been the subject of much study for well over a century. Over this time

eye movements have been classified into seven categories. The standard set of eye movements generally

agreed upon are (From Tsotsos et al.[62]):

1. Saccades: Voluntary jump-like movements that move the retina from one point in the visual

field to another;

2. Microsaccades: Small, jerk-like eye movements similar to voluntary saccades, but with much

smaller amplitudes from 2 to 120 arc-minutes;

3. Vestibular-Ocular Reflex: These movements stabilize the visual image on the retina by caus-

ing compensatory changes in eye position as the head moves;

4. Optokinetic Nystagmus: This stabilizes gaze during sustained, low-frequency image rotations

at constant velocity;
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5. Smooth Pursuit: Voluntary eye movements which track moving stimuli;

6. Vergence: Coordinated movements of both eyes, convergence for objects moving towards and

diverging for objects moving away from the eyes;

7. Torsion: Coordinated rotation of the eyes around the optical axis dependent on head tilt and

eye elevation;

There are quite a few different types of eye movements, each with its own complexities as

well as implications for human gaze. For the scope of this work, the focus will be primarily on eye

movements; saccades, microsaccades and smooth pursuits (and to a small degree, vestibular-ocular

reflex); though it is beneficial to be familiarized with the full suite of eye movements human vision

utilizes. Becker [4] summarizes much of the current understanding of saccadic control. A model for

saccadic control can be quite complicated, as it is represented by a 4th order ODE however a 1st order

approximation can suffice. The relationship between saccade duration and saccade amplitude can be

written then as a linear relationship D = D0 + d ·A; which can be used to interpolate gaze to fixation

points, where:

• D0 ≃ 20− 30 ms

• d ≃ 2− 3 ms/deg

• A is amplitude in degrees

In addition to eye movements, head movements are also a crucial part of gaze. Due to the

slower and more limited nature of head movements, they tend to be less categorized. As a general

rule, humans tend to simply align their heads with what they are looking at. According to Nakashima

et al.[42], this is because a discrepancy between head and eye movements can cause interference in

visual processing as well as a degradation in accuracy for localizing attentional focus and hand-eye

coordination. Head movements are less erratic than saccades largely due to the greater moment of

inertia of the head as compared to the eyes. Sudden fast head movements put a large strain on

the human neck, and thus are generally avoided in casual free-viewing. One study [10], found that

head movement duration can range between 200 to 800 ms after a series of saccades make up a gaze

shift, with head rotation speeds increasing for larger gaze shifts. In contrast, a single saccade-fixation

action typically lasts around 200 ms. In one study, Freedman [11] found that head movement duration

averaged 450 ms, while saccades took around 200 ms in a single trial. From this same work, Freedman

also observed a 100 ms delay of peak head velocity after peak eye velocity is reached. This is in line
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with what papers like Ruhland et al. [55] use when modelling head and eye movements, where they

utilize a delay of 20 to 50 ms. To package this all nicely, head movements are slower and delayed,

typically following along after a gaze shift. The combined set of eye and head movements will be

referred to frequently as gaze movements.

A model which aims to emulate human gaze should be able to parameterize and replicate

these kinds of gaze movements, or at least a sufficient subset of them. The large problem however

with generalizing a control structure is that human gaze behaviours tend to be very diverse, and very

idiosyncratic as noted by Ruhland et al. [55]. There are also subtle but measurable effects in eye

movements, such as differences in vergence dependent on the motion being horizontal or vertical [13].

In light of these complexities, the scope of a model must be clearly defined. Gaze target selection

draws from attention, with consideration of deliberate intent (e.g. “I want to look at that sign”).

which then informs the corresponding gaze movement. For example, a slow-moving object of interest

in view will elicit a smooth pursuit. However, if this target is moving beyond a certain speed, smooth

pursuit becomes no longer possible and the human visual system will resort to “catch-up” saccades to

keep track of the object. A model of gaze should be able to generate a wide range of plausible gaze

movements given knowledge, or a map of how the person is attending to their world.

2.1.2 Memory and Inhibition of Return

Inhibition of return (or IOR) is described by Klein and Ivanoff [25] as a delayed response to stimuli in

a peripheral location which was previously attended to or looked at. Originally found in Posner et al.’s

[48] 1984 study, and later defined in their 1985 followup [49], inhibition of return’s function appears to

be orienting gaze towards novel locations which facilitates foraging and other search behaviours. It is

fairly intuitive why humans do this, for example, if one were searching their office for a specific item

it would make sense to avoid searching where they have already looked. Alternatively, if they were

just trying to gather information about their environment, the same mechanism aids in information

gathering. IOR typically appears in the literature when the stimulus event is not task-relevant, or there

is no task given to the observer [25]. When test subjects were tasked with making saccadic movements

which seemed most comfortable to them after viewing a brief stimulus, they most often would look

away from the location of the stimulus. Across multiple studies, it was found that IOR is often encoded

in environmental coordinates rather than retinal coordinates [25, 26]. This effect also appears in early

IOR literature [49, 48]. Further studies have also shown that in some instances IOR appears to be

encoded on an object basis [59, 60, 1, 14]. Both environmental location and object attachment as IOR
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encodings have strong experimental evidence supporting the existence of both strategies. The question

then becomes, what are the circumstances in which either encoding occurs? Klein [25] suggests that

this change in encoding depends on contextual factors such as whether the observer or objects in view

are moving, as well as what the task and intent of the observer are. In early studies, IOR appeared

as related to a reluctance of motor response to focus on particular locations, as opposed to inhibition

or suppression of attention. However, studies have found IOR to occur in spatial tasks as well, not

just in stimulus-response. These findings have shifted the general consensus that IOR does indeed

occur on an attentional level as well as ocular motor response. The reasoning, again, appears to be

contextual. For example, the types of stimuli along with the difficulty in discriminating the stimuli

within the visual field both affect how IOR is introduced on the attentional level. The presence of

IOR on attention is further supported by findings that IOR also appears in auditory [40, 41, 57] and

tactile [59] modes. Results are consistent in demonstrating that inhibition of return’s effect is to inhibit

responses typically associated with stimuli. Narrowing down how IOR mechanisms will function is a

difficult task, affected by many factors. Studies have found that IOR typically takes between 100 and

200 ms of cued saccade fixation to kick in, aligning with the reported latency between saccades at

around 200 to 250 ms [12]. The effects can last several seconds, however, this can easily be affected by

changes in the scene or task, as well as the observer’s internal state.

The multitude of open questions as well as contextual changes makes it difficult to define

an inhibition of return mechanism which can be used as part of a gaze control system. Factors like

environment, agent factors, intent, and task all need to be taken into account to decide on things like

which encoding to use etc. That is not to mention the open questions on specific mechanisms within

IOR. There are many valid ways to implement IOR. In this work, the attempt is to focus on a subset

of factors and contexts and suggest an IOR mechanism contingent on that, based on the previously

mentioned literature. It is the hope that implementing gaze control systems based on attention and

vision literature opens up possibilities to explore many of the open challenges yet unexplained.

2.2 Saliency and Attention

Human visual attention is a complex process which involves multiple cognitive and sensory systems.

These systems use both extrinsic and intrinsic information to formulate visual perception [63]. There

is much overlap in interpretations of saliency and visual attention. For the purposes of this work, the

distinction is made between attention as it pertains to controlling gaze versus saliency which represents

pre-attentive processing of where one is likely to attend. Saliency maps are the most common way
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to represent saliency in 2D static images. In the most common conceptualization of saliency maps,

they describe where and to what an observer is likely to pay attention by mapping a distribution of all

possible scan paths [6, 19, 21]. Put another way, a saliency map tells the probability that a person will

look at a particular location. By understanding saliency maps in this way, they can represent potential

targets for gaze shifts, with priority (or probability) given in order of decreasing salience [61].

A saliency map which is designed to replicate human cognitive processing should reflect

outcomes in attention, implicitly encoding targets for fixations. Indeed, generating plausible repre-

sentations of saliency should require consideration of the types of factors which impact and draw

attention. Kümmerer et al. [34] found that high-level features (objects) are often good predictors

for fixations, and therefore attention. Treue [61] noted that how humans perceive saliency appears to

be an interplay between bottom-up features (in the form of visual stimuli) and top-down behavioural

and attentional factors. Bottom-up saliency gets combined with top-down modulatory effects coming

from visual attention. The effect is that stimuli are either strengthened or weakened on the basis of

behavioural or semantic importance. Studies from Martinez et al. [39], Reynolds and Desimone [52],

and Reynolds et al. [53] have demonstrated that attention modulates and enhances the contrast of

stimulus in the visual field. In general, it is understood that humans also tend to direct more attention

to things closer to the center of their field of view [9, 22, 38]. This effect is often referred to as a

center bias, and is commonly included when considering models of saliency. However, Brefczynski and

DeYoe [5] found neurological evidence that human attention can also be directed to other locations

in the visual field beyond the center of gaze, showing the plausibility and biological basis for localized

attention modulation. Other common features which have high salience include the speed of stimuli

[24], human faces [22], and proximity [36]. The human visual system often optimizes gaze to aid in

identification of targets. When viewing faces for example, one such study demonstrated that gaze is

consistently aimed slightly below the target’s eyes [47].

2.2.1 Rule-Based Saliency

The salience of visual stimuli can be thought of as measuring the stimulus relevance with respect to the

human visual system. One method for producing saliency maps is by estimating stimuli salience with

respect to a human observer in accordance with well-defined analytical rules. This concept has evolved

over previous decades, beginning with Itti et al.’s seminal work [20]. Today referred to as the IKN

model, they proposed a bottom-up visual attention model for 2D images to produce corresponding

saliency maps. There have been numerous follow-up models over the years. Bruce and Tsotsos [6]
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proposed Attention based on Information Maximization (AIM), which is derived from the principle

that attention seeks to select the most informative visual content. Around the same time, the DVA

model from Hou and Zhang [17] is based on the rarity of visual features. As noted by Bruce and

Tsotsos [7], it is difficult to directly evaluate the performance of rule-based saliency models, and there

remains disagreement regarding the accuracy of results as compared to human eye-fixations from eye

tracking studies.

2.2.2 Machine Learning-Based Saliency

More recent approaches for saliency map generation utilize deep neural networks. Most commonly,

these models aim to implicitly encode pre-attentive processing from large sets of human eye tracking

data. Notably, models such as Huang et al’s SALICON [18] or Kümmerer et al.’s DeepGazeII [32]

used eye tracking data as ground truth for training models to generate saliency maps to more closely

match real humans. Qualitatively, these kinds of models tend to focus highly on objects, humans,

and human faces. In Judd et al. [22], information from face detection was explicitly included in their

models for visual saliency. It is a fair assumption to make that machine learning based models which

use human-generated ground truth data will tend to assign salience to common features found in eye

tracking studies [21, 34, 44].

2.2.3 Pseudo-Saliency

In traditional terms, saliency models are meant to run on images of the real world and are calculated

from information within the images given to them. Pseudo-saliency, by contrast, is an attempt to

mimic ideas from saliency and use them in the context of a virtual scene. By pre-embedding and

calculating saliency in a simulation, one can use the concept of saliency for a variety of real-time

tasks without actually worrying about visual processing. In some sense, this approach is closer to

a replication of human processing which is not entirely dependent on the colours of stimuli we see,

but on a complex understanding of objects, their movement, importance etc. Some approaches do not

represent saliency visually, such as Oyekoya et al.’s work [43] or their follow-up [27]. These methods use

a weighted sum of various factors to calculate a saliency score for all objects within view of a character.

Factors include speed, orientation, proximity and angular speed. These models are simple and allow

for easy target selection through ranked ordering of targets. The simplicity and effectiveness of such

parametric models directly inspired the Parametric Saliency Maps model described in this work. Ağıl

et al. [2] proposed a very similar model in order to compute points of interest, however also tried to
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include social factors such as considering grouped entities, gaze copying and more. Their function for

calculating saliency is the same as Oyekoya et al., however, includes some additional factors. Notably,

they include what they called attractiveness; a value representing the importance inherently tied to an

entity. While simple, this idea is quite powerful as it allows for simple intuitive tuning of the model

towards particular targets. For example, a uniformed officer or firefighter would likely be much more

interesting and draw a person’s attention than your average pedestrian in a crowd. Similarly, the

ability to decrease saliency on an entity level may facilitate an IOR mechanism.

2.2.4 Saliency Metrics

Noted by Bylinskii et al.[8], Comparing and scoring saliency maps is notoriously difficult. It is easy

to define metrics, and indeed one does not have to search hard to find tens of different metrics.

Interpreting results is not always a straightforward task. This leads to challenges when comparing

results with respect to ground truth as well as between models themselves. Different metrics tend to

penalize and reward different things, making comparisons often unfair. For this reason, it is highly

recommended by experts in the field [8, 33, 54] to use multiple metrics for evaluation. Bylinskii et

al. [8] in particular showed that the choice of metric combinations needs to be diverse as well as

complementary, as many metrics can often contradict each other. Kullback-Liebler divergence (KL)

measures how different two probability distributions are, with a score of 0 when distributions are

identical. It is often used as a metric in machine learning algorithms such as generative adversarial

networks (GANs), but it is also often used in the saliency literature to measure the dissimilarity of

saliency maps [35, 51, 58]. Kümmerer et al.[33] and Riche et al.[54] both recommend that Kullbach-

Liebler divergence be used in combination with some other location-based score, such as similarity

score (SIM) or correlation coefficient (CC). Bylinskii et al. showed that KL-Divergence and SIM

complement each other quite well and are good candidates for a set of metrics.

For discrete distributions P (x), Q(x) defined on probability space χ, Kullback-Liebler diver-

gence (KL) is defined as:

DKL(P ||Q) =
∑
x∈χ

P (x) log

(
P (x)

Q(x)

)
(2.2.1)
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Similarity score (SIM) is defined as:

SIM(P,Q) =
∑
x∈χ

min(P (x), Q(x)) (2.2.2)

2.3 Fixation Prediction

Fixation prediction refers to models and algorithms which aim to replicate the mechanisms for saccadic

selection in humans and output prediction for a fixation point and/or a series of fixation points. Active

fixation prediction from Wloka et al. [64] aims to generate a temporal series of fixation positions within

a 2D image. Connecting each fixation in temporal order generates a scan path. They accomplish this

using a tiered saliency approach, which blends a coarse feature map on the periphery of the view

with a highly detailed saliency map located at the point of fixation. In combination with a temporal

inhibition of return (IOR) mechanism, this method is able to generate plausible scan paths on images

which are highly similar to the structure of ground truth scan path data. A notable takeaway from

this approach is the importance that selective attention suppression in the periphery plays in making

local micro-saccadic point predictions. Additionally, the inclusion of IOR is highly important, as

noted by Klein [26] that IOR is consistently found to be present in studies on fixation and saccadic

movements. A more recent example of fixation prediction comes from the Deepgaze III model from

kümmerer et al. [31], where they trained a deep neural network to predict and generate temporal

fixation location predictions from fixation density maps (saliency maps) for free-viewing of natural

images. The model is of particular interest due to the greater importance placed on scene content for

predicting the next fixation points, over previous scan path history. The limitation there would be

that this would de-emphasize IOR as an important mechanism in preventing subsequent predictions in

nearby areas. Many findings summarized by Zetsche [65] conclude that saccadic selection in humans;

and to a similar degree in primates, favours regions with greater visual structure within images and

the visual field. Comparing data from real human fixation studies versus random point selection on

datasets of images, regions selected from human fixations consistently show higher signal variance. The

mean-variance ratio of random versus real fixations σ2
eye/σ

2
rand is typically found to be approximately

1.35. A reasonable expectation is that in the active-vision context, fixations should be focused around

areas of structure, typically synonymous with interesting stimuli such as other humans, signs, vehicles

etc.

The problem generally with most approaches to fixation prediction is the focus on free viewing
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of static images. As noted by Tstotsos, J., the limitation with this is that humans do not process the

world in static 2D images. Changes in gaze do not affect the viewing image in the same way that

the view seen by a person in real life is constantly changing as they look and move around their

environment. Human visual systems contend with stimuli changes from dynamic environments in

addition to egocentric effects when gaze and locomotive movements occur, i.e. turning your head

entirely changes what you see, as does moving your position. Fixation prediction in active-vision

applications such as simulation or robotics must contend with temporally changing environments,

changes in observer location, gaze orientation and spatial-temporal memory.

2.4 Gaze Control

One of the closest implementations to the saliency-driven gaze control described in this work is Peters

et al. [46]. They used the IKN model [20] to generate saliency maps from the perspective of a virtual

agent. The map was used to determine which objects within view would be “salient” and queued

them as targets in the scene database. Additionally, in their work, there was an implemented form

of memory where agents would keep track of scene objects that they have observed. Noted by the

authors, their work was done according to a spirit of ‘sensory honesty’, which meant attempting to use

as little simulation knowledge as possible. The saliency-driven gaze control methods described in this

work build off of their philosophy but attempt to take it further by including no information about the

transforms of objects in the scene database in gaze, driving gaze entirely by visual stimulus alone. By

their own comments, the most significant limitation of the authors was the lack of a top-down attention

component. The pseudo-saliency map generation method, parametric saliency maps (PSM), described

by this work is meant to address this limitation in the prior art. The benefit of using parametric

saliency maps is that the processing time is limited only by the cost of the attention model and the

rendering pipeline. Another limitation of prior virtual gaze control models is simply that humans don’t

have a scene database to draw information from. Approaching the problem of gaze and attention from

a visual stimulus-driven standpoint opens the door for more grounded modelling of virtual humans. For

over two decades there have been numerous complex totalistic models developed for automating gaze

behaviour, in the form of cognitive models of attention and intent which form a high-level controller

[23, 3, 37]. Rather interestingly, these models attempt to join ideas of task relevance and action to

inform gaze movements. This is often overlooked in more simple gaze control models, despite things

such as environmental conditions impacting visual understanding of the environment as well as general

locomotion and movements. For example, the increase in foot clearance on steps in different lighting
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levels [15]. Similarly, binocular vision is an important facet in how footholds are located during

locomotion, and degradation of binocular vision impacts visuomotor control [13]. The active gaze

control methods proposed in this work do not seek to supersede these prior models, instead they pose

a simpler framework for authoring and generating gaze behaviours in a way which compartmentalizes

attention and intent away from control. This work fits in as a link between the vision-based approach

by [46] and the high-level control structures of [23, 3, 37]. There are pseudo-saliency-driven gaze

approaches such as [43], [2] which do not use saliency maps or visual stimulus as input control. Rather,

gaze is controlled by explicitly targeting the transforms of objects within the scene. These approaches

create reasonably plausible procedural gaze animations using simple selection rules. However, there

are some notable limitations. One such limitation is scaling; as a scene becomes increasingly complex

the computational costs of such gaze models too will increase. For the purposes of modelling complex

visual-cognitive processes, they are also limited because of the non-visual stimulus-driven approaches.
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CHAPTER 3

PARAMETRIC SALIENCY MAPS

In order to use saliency maps in a simulation, a fast and effective method is needed to generate saliency

maps in real-time for large numbers of agents. Using popular/state-of-the-art models to this end is

unfeasible for multiple reasons. The first and largest problem is speed; models like SALICON or

DeepGazeII are simply too computationally expensive to be used in a real-time simulation. Second,

many models are inherently black box solutions making it difficult to understand and interpret some

the results produced. This coupled with the fact that virtually all models were not designed for use

with synthetic data, which could lead to even more instability when used in simulations.

3.1 Parametric Saliency Maps (PSM)

Saliency is an interesting and effective way to represent pre-attentive processing of the visual field.

It encapsulates how one may perceive stimuli in the world and their relative importance. The most

common way this tends to be represented is in the form of a saliency map, which is a 2D, grayscale

image highlighting the saliency of stimuli within an original view (image). Models which take as input

a real image and output a saliency map are known as saliency models. Many such models have arisen,

primarily with the intent to replicate a probability distribution for all possible fixations in an image.
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There has been much success in this area, but one might be justified in asking how these models might

be utilized. Seeing as the goal is to replicate human saliency, the obvious and perhaps underlooked

approach is to use saliency models when designing virtual human agents. This work intends to bring

the concepts and models from the field of computer vision and integrate them for the purposes of

simulation.

There are many excellent saliency models in existence today such as Huang et al.’s SALICON

[18], Kümmerer et al.’s DeepGaze II [32], or Pan et al.’s Salgan [45], to name a few. While these are

effective for what they do, bringing them to a virtual setting presents many challenges. To begin with,

it is difficult to expect identical performance when transitioning from real images (which these models

were designed for) over to synthetic images generated in a rendering engine. Having better visual

fidelity in the rendering may assist with this however is not always desired or practical. Additionally,

these models are designed to work with particular kinds of data and scenes which were part of train-

ing. As such there simply may not be enough flexibility to accommodate the infinite possibilities for

designing a virtual scene. Finally; and this is the largest issue, they are slow and computationally

demanding to run. In some cases, processing a single image may take between 1 to 10 seconds running

on modest hardware. For any practical use; especially simulation and games, this is not feasible. It

is too slow and resource-intensive to be used in real-time for multiple virtual agents simultaneously.

A suggestion could be to use simpler models such as the famous IKN [20], and indeed this has been

done [46]. However, these simpler rule-based models come with questions of biological plausibility and

realism when compared to the previously mentioned models. Indeed, comparing results it is clear to

see the difference in the kinds of saliency maps which are output. Also, while faster, this may still

be too expensive when scaled to large simulations. Perhaps the largest issue, noted by Peters [46], is

that with either approach there is no ability to model and apply changes in attention, such as target

suppression or target focus.

The solution to all of the above issues and challenges is to devise a pseudo-saliency approach

which can output saliency maps reasonably congruent with what would be expected from state-of-

the-art models. The model should also be parameterized to allow for simple adjustments to be made

for the purposes of attention, memory or behavioural changes. The method described in this chapter;

dubbed Parametric Saliency Maps (PSM), outlines the saliency parameters, how they are combined,

and how this can be simply implemented in simulation using GPU programming in a 3D engine.
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3.1.1 Model

There are 7 parameters which make up the parametric model proposed in this work. While there are

many more factors which affect pre-attention and attention, this subset was chosen from psychology

literature as well as from other pseudo-saliency models [43, 2], as an acceptable representation while

not being overly complex. The following describes the saliency factors chosen.

• Interestingness - Interestingness is saliency which is intrinsic to a given entity, similar to the at-

tractiveness factor from [2]. For example, a uniformed officer would be more interesting (salient)

than the average pedestrian and thus have higher interestingness. Let S⃗I = {SObj , Shuman},

where each element of of S⃗I are separated interestingness terms for objects and humans respec-

tively. The set of weights w⃗I = {wobj , whuman} gives individual weights for each class of entity.

The saliency contribution is then given by w⃗I · S⃗I . This concept can be expanded to include

more classes of entities.

• Speed - This factor is simply calculated as the speed of an object within the simulated world.

Faster entities are assigned higher saliency values. Ideally, this would be calculated relative to the

observer, however, in practice is unnecessary given the slower speeds at which humans typically

move. The saliency term and weight are given by wvSv.

• Rotation - Similar to speed, this factor is based on the angular speed of an entity. One can

imagine that a person swinging their arms might draw attention more than someone standing

still. The saliency term and weight respectively are given by wRSR.

• Orientation - This factor is observer-dependent, and measures the orientation of an entity with

respect to the viewing camera’s forward vector. Entities which are facing towards the observer

have higher saliency. This primarily applies to humans, but can also apply to things such as

signs, vehicles etc. The saliency term and weight are wFSF .

• Depth - Refers to the distance of an entity from the observer. Values are normalized over some

maximum range, where closer objects are more salient than further away. The saliency term is

given by wDSD.

• Semantic Masking - Humans are much more likely to give attention to certain aspects of an

entity, such as the head or face of other humans. This factor takes into account the modulatory

effects of such attention and assigns saliency on a sub-mesh level. Terms are given by wMSM .

• Attention - Attention is a top-down effect which modulates the saliency of areas within the

human visual field. This factor; given by wASA is implemented as a multiplicative term.
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The final saliency value is determined by a weighted combination shown in equation 3.1.1.

Bottom-up features are implemented as a weighted sum, including the set of interestingness parameters

which are given as a dot product of values and weights vectors. Top-down attentional factors of

attention and semantic masking are modulatory in nature, and as such they are multiplicative. All

weights for additive features range from [0,∞) ∈ R, whereas multiplicative weights are restricted to

[ 1S , 1] ∈ R where S is the saliency value being multiplied. The reason for this is that multiplicative

weights affect overall saliency. The lower bound of 1
S cancels all effects of the factor. An overall weight

W is given to control the total saliency, allowed to be any non-negative value.

S = W (w⃗I · S⃗I + wvSv + wRSR + wFSF )(wMSM )(wASA) (3.1.1)

Weight w⃗I wv wR wF wD wM wA

Bounds [0,∞) ∈ R2 [0,∞) ∈ R [0,∞) ∈ R [0,∞) ∈ R [0,∞) ∈ R [ 1
SM

, 1) ∈ R [ 1
SA

, 1) ∈ R

Table 3.1.1: Bounds for all parametric weights

3.1.2 Implementation

When implemented as a GPU program within a game or simulation engine, this method/model is

able to generate saliency maps at high speeds for many agents at once and is very computationally

inexpensive. Consider the structure of the graphics pipeline shown in Figure.3.1.1. Materials are often

instanced along with individual objects within a rendering loop. For each object, the material passes

information to a GPU program. This information typically consists of mesh data, UV data material

attributes, as well as other data needed for rendering such as lighting information. In this case, all

that is needed is the mesh, attributes and UV data. A GPU program or shader consists typically of

two components: A vertex shader, and a fragment shader. The mesh data is passed along to the vertex

shader, which tells the program where on screen to render, which then processes the information and

passes it along to the fragment shader.

The fragment shader can access UV data and attributes to determine what colour to draw

pixels to the screen. It is in the fragment shader that the bulk of the implementation resides. The

material attributes should contain values for all object-dependent saliency factors described in the

Model section. For every frame of the simulation, the object’s velocity, rotational velocity, forward

vector, and semantic UV mask are set in its material. All of these values should be easily readable from

a game object’s transform and rigid body data. The remaining values; orientation, depth, semantic

masking and attention are calculated within the GPU program itself. Orientation is calculated by
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Figure 3.1.1: Diagram showing the flow of data from object materials to a GPU program, known as a
shader

determining the amount that the object’s forward vector F⃗ aligns with the camera (observer) forward

vector z⃗. The dot-product F⃗ · z⃗ (for both normalized vectors) returns a value between −1 and 1,

indicating the degree of alignment. There are a few options when deciding how to use this result. One

such choice is a binary calculation,

SF =


1 if F⃗ · z⃗ < 0

0 if F⃗ · z⃗ ≥ 0

(3.1.2)

This is functional, however, is equally strong as long as the object is even slightly facing the

camera. Of course, F⃗ · z⃗ is equivalent to cos θ, where θ is the relative angle between both vectors, thus

an approach which preserves the relative ”strength” of the object’s orientation is,

SF =
1

2

(
1− F⃗ · z⃗

)
⇒ 1

2
(1− cos θ) (3.1.3)

This gives a similarly bounded SF ∈ [0, 1], where SF = 1 when F⃗ = −z⃗, and SF = 0 when

F⃗ = z⃗. One can go a step further and narrow the profile of the orientation saliency function by squaring

Equation 3.1.3. This has the same properties but makes it such that there is a sharper drop-off of

saliency as the object faces away from the camera. Figure 3.1.3 illustrates this.

SF =

(
1

2

(
1− F⃗ · z⃗

))2

(3.1.4)

To calculate depth, the Z-distance can be extracted from each vertex of the object mesh. The

key idea of depth saliency is that objects further away should be less salient than closer objects. So,

using the depth value d, the depth saliency is calculated by,
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SD =

(
1− d

dmax

)2

(3.1.5)

where dmax is the distance at which saliency drops to zero. Again, the function is squared

to emphasize objects that are particularly close. An appropriate value for dmax is 10m. Semantic

masking requires providing a UV mask, indicating which areas of a mesh are to be highlighted. This

kind of masking is a common technique in games and film to apply effects on a particular area of an

object. As such, most game and rendering engines allow for supplying a UV mask to a GPU program.

Multiplying the saliency value by the mask will modify the values of the texture specified, and leave

the rest untouched. In the implementation of PSM used for this work, semantic masking was used to

highlight the heads of humans. Similarly, attention is also multiplicative but affects the saliency of the

entire frame. Visual attention modulation is represented using 2D attention textures from [30]. The

depth of a pixel is read from the camera as well as the horizontal and vertical angle between the pixel

(in viewport space) from the viewer. These are then projected onto the XZ and YZ planes. These

are finally converted to UV coordinates and sampled from the appropriate visual attention texture.

at that location. To approximate horizontal and vertical depth, the final modulatory value is given as

the average of the texture in the XZ and YZ planes.

SA =
1

2
(A(x, z) +A(y, z)) (3.1.6)

These visual attention textures modulate based on the horizontal (or vertical) position of

stimuli, but also their depth. By changing textures, one can easily model different types of visual

attention such as distraction, thus enhancing or suppressing stimuli based on an attentive state. Figure

3.1.2 shows how textures for Normative and three different types of distraction are represented.

3.2 Parameter Optimization and Validation

The purpose of creating a parametric model for generating saliency maps is to allow for the authoring of

a wide range of possible visual attention facets. The parameters described in PSM were chosen to allow

for such authoring while simultaneously bounding the range of possible solutions to be psychologically

plausible. While these factors (Speed, Rotational speed, Depth, Interestingness, Orientation, Semantic

Masking and Attention) were chosen from saliency literature, it is valuable to justify these choices

as well as outline methods to determine optimal parameters. Through numerical optimization of
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Figure 3.1.2: Visual attention textures for various attentive/distracted states. Each state is encoded in
a colour channel (RGBA) representing the strength of attention within an agents visual field. Figure
used with permission from [30].

Figure 3.1.3: Top-down illustration of how the orientation of forward vector F⃗ in the x-z plane affects
the dot-product with the camera’s z⃗ direction
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Figure 3.1.4: Per frame, material attributes are read and set in the objects material

parameters, it can be shown that the PSM model is able to generate output highly congruent with

state-of-the-art models.

3.2.1 Covariance Matrix Adaptation Evolution Strategy (CMA-ES)

Covariance matrix adaptation evolution strategy [16] is a numerical optimization strategy widely used

in science and engineering applications. The strategies it employs are useful for non-convex opti-

mization problems. It works by generating solutions and evaluating them against an error function.

From the set of generated solutions, a subset of solutions is then selected to be starting points for

the next round of optimization based on their relative error. It can be thought of as an evolutionary

algorithm which incrementally improves upon previous generations of solutions. It is a relatively fast

and competitive technique for converging to optimized values, as well as able to handle poor objective

conditions and noisy data. The algorithm runs until it can no longer improve or after a user-defined

fixed number of iterations.

Given some set of parameters W , and an objective function fD(W ) for dataset D the output

of the CMA-ES algorithm is given by:

W ∗ = arg min
W

fD(W ) (3.2.1)

Where W ∗ is the most optimal set of weights which minimizes the objective fD(W ) on set

D.
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Figure 3.2.1: Decomposition of synthetic dataset example. Top (left to right): RGB input, depth
map, attention map, head interestingness map, body interestingness map, object interestingness map.
Bottom (left to right): orientation map, velocity map, face mask map, combined PSM, combined PSM
output with Gaussian blur, SALICON output

3.2.2 Dataset Generation

In this task, the objective is to generate saliency maps which are similar in structure to those of an

established saliency model. For this work, the chosen model to optimize to is SALICON [18]. SALICON

is a ‘black box’ solution in that it is a deep learning model, so to approximate it requires comparing

outputs from the same input and updating iteratively. To this end, a synthetic dataset was generated

to compare results from PSM to SALICON. Define dataset D = (x1, y1), ...(xn, yn) such that each pair

(xi, yi) are the outputs from PSM and SALICON respectively, where each x is a decomposition of all

saliency factors into their own 2D maps. Each data pair is generated by considering a single frame

in an urban simulation. The normal RGB camera output from the perspective of an agent is used

as input for SALICON. From this same frame, a PSM map is extracted as its decomposed elements

where each xi = SI ∗wI +Sv ∗wv + .... The result is two co-registered saliency map outputs, but with

the ability to adjust the relative weights for each saliency factor in the xi values.

3.2.3 Optimization Process and Details

For some loss function, given by L(x, y) where x is the model output, and y is the corresponding

ground truth, the goal is to minimize the global error over dataset D with regards to this loss. This is

the standard formulation of optimization found in machine learning tasks. Often the choice of metric

directly impacts the performance of the resulting model once optimized. The effects may be seen in

average metric values, as well as in properties of the distribution such as variance. For this task, three

choices of loss function were experimented with:
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1. Kullback-Liebler Divergence (KL) Loss

LKL(x, y) = KL(x, y) (3.2.2)

2. Similarity Score (SIM) Loss

LSIM (x, y) = 1− SIM(x, y) (3.2.3)

3. Weighted KL-SIM Loss

LKL−SIM (x, y) = α · LKL(x, y) + β · LSIM (x, y) (3.2.4)

Kullbach-Liebler divergence is formulated such that smaller values correspond to more agree-

ment, with 0 meaning both distributions are identical. Similarity score on the other hand is a similarity

measure, with 1 corresponding to x and y being identical, and 0 being no overlap. As a result, to

be a usable loss function it needs to be inverted, shown in Equation 3.2.3. This is doable because

similarity score is a strictly bounded metric, between [0, 1]. This is in contrast to Kullbach-Liebler

divergence, which is only lower bounded as [0,∞). As a result, a naive combined loss function would

likely bias heavily towards the minimization of Kullbach-Liebler divergence over similarity score. The

solution (shown in Equation 3.2.4) is a weighted sum of both loss functions for pairs (x, y), with affine

coefficients α and β. For the experiments done in this work, α and β were chosen to be 0.6 and 0.4

respectively.

1. Average (AVG)

AV GD(W ) =
1

|D|

|D|∑
i=1

L(yi, xi(W )) (3.2.5)

2. Root Mean Squared (RMS)

RMSD(W ) =

√√√√ 1

|D|

|D|∑
i=1

L(yi, xi(W ))2 (3.2.6)

3. Stochastic Root Mean Squared (SRMS)

SRMSD′∼Dn(W ) =

√√√√ 1

|D′|

|D′|∑
i=1

L(yi, xi(W ))2 (3.2.7)
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The choice of objective function also plays a vital role in achieving an acceptable result when

optimizing over a dataset. Let’s let xi ← xi(W ), where xi(W ) is the output of PSM for the ith set of

saliency factors with weights W . Three types of objective function were formulated and experimented

with (where objective fD(W ) is the objective f , on datasetD according to weightsW ): AVG (Equation

3.2.5), RMS (Equation 3.2.6), SRMS (Equation 3.2.7).

Arguably the simplest objective function is to calculate the average loss over an entire dataset.

This however has many disadvantages and is not likely to give the best result. The reason for this is

that all error values are considered equally. In contrast, a root mean squared objective is more greatly

swayed by larger values in the loss function. The effect this should have is that minimization will

focus on improving the worst or highest values across the dataset, however, will also be more skewed

by outliers. In this case, that is actually a desirable effect seeing as the goal is to achieve acceptable

congruence between all ground truth and generated data. To put it another way, it is preferable to

achieve a decent lower bound on performance rather than very high performance for some examples,

especially considering the limited degrees of freedom in the PSM model, it is likely impossible for most

samples to achieve perfect or near-perfect congruency. This approach too has some trade-offs, however.

For one thing, calculating over the entire dataset after every update is expensive for any reasonably

sized set. Second, it may be difficult for the optimization to first minimize over the entire set at once,

and thus very little ’movement’ will occur in the sense that it may be unclear which direction (in

the space of weights W ) to go. Once again, borrowing from machine learning techniques, stochastic

descent is often used to improve optimization speeds without sacrificing much if any in performance

quality. Instead of calculating error over the entire dataset, a random subset D′ ∼ Dn; with batch

size n, is sampled. The batch size is gradually increased throughout optimization until eventually the

entire set is being sampled again. The overall effect this approach has is to give the optimizer a ‘kick’

in the early stages to get it going, and then gradually include larger samples so that results stabilize.

This approach is significantly faster at converging, at the cost of some accuracy.
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Looking at some example outputs from PSM and SALICON, one issue that may arise is that

PSM values are all hard-edged and discrete. A natural remedy to make the comparison more valid

is to first normalize both results, and then apply a Gaussian blur to the PSM model output. Again,

this technique is common in deep learning saliency literature where ground truth data generated from

real human fixations is often blurred when comparing to the output of saliency models. As a part of

this, the Gaussian kernel size k is included in the optimization parameters as it is non-obvious what

an appropriate kernel size would be and this parameter can greatly affect results. The final set of

parameters being optimized is then:

W = {wd, wF , wM , wv, wR, wobj , whead, wbody, wA, k} (3.2.8)

3.2.4 Experiments and Results

CMA-ES was run for all combinations of objective and loss functions over the synthetic dataset.

Multiple attempts were run and the best performing results were recorded, according to similarity

score and Kullbach-Liebler divergence metrics. In total, 9 resulting optimized models were compared;

labelled by their objective function and loss function: Average w/ Similarity Score Loss, Average w/

Kullback-Liebler Divergence loss, Average w/ KL-SIM loss, Root Mean Squared w/ Similarity score

loss, Root Mean Squared w/ Kullback-Liebler Divergence loss, Root Mean Squared w/ KL-SIM loss,

Stochastic Root Mean Squared w/ Similarity score loss, Stochastic Root Mean Squared w/ Kullbach-

Liebler Divergence loss, Stochastic Root Mean Squared w/ KL-SIM loss. Each training attempt ran

until CMA-ES termination conditions were met (∆ error less than σ = 1× 10−9, or the max iterations

exceeded 1000 (in practice, training attempts rarely exceeded 500 iterations). Upon termination, the

result of the optimization is a set of parameters W which can be used to generate an evaluation set

Y ′.

Loss Objective Mean KL Mean SIM Best KL Best SIM

KL AVG 1.04 ± 0.67 0.57 ± 0.10 0.21 0.76
SIM AVG 1.48 ± 0.78 0.59 ± 0.08 0.37 0.77

KL-SIM AVG 1.05 ± 0.64 0.56 ± 0.10 0.22 0.78
KL RMS 0.84 ± 0.47 0.61 ± 0.06 0.28 0.74
SIM RMS 1.03 ± 0.60 0.64 ± 0.06 0.24 0.77

KL-SIM RMS 0.91 ± 0.65 0.63 ± 0.07 0.22 0.79
KL SRMS 1.35 ± 0.75 0.61 ± 0.07 0.26 0.76
SIM SRMS 1.07 ± 0.65 0.56 ± 0.06 0.42 0.67

KL-SIM SRMS 0.96 ± 0.75 0.62 ± 0.07 0.23 0.76

Table 3.2.1: Resulting scores from optimized models obtained using each training objective + loss
combination. For interpretation, KL < 1 and SIM > 0.6 are considered good.
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Loss Objective wI wbody whead wD wM wS wO wA k
KL AVG 0.75 0.95 30.03 0.00 3.61 1.10 1.23 0.53 27
SIM AVG 449.10 176.42 259.92 0.77 34.67 282.38 1.08 12.71 37

KL-SIM AVG 7.29 0.02 26.06 0.03 24.31 30.88 42.31 0.02 31
KL RMS 3.33 0.41 9.55 0.01 4.29 0.02 21.70 0.09 25
SIM RMS 4.14 2.95 0.26 1.35 1.13 2.06 0.51 0.25 37

KL-SIM RMS 9.40 4.11 9.15 1.17 5.05 14.42 13.81 0.05 25
KL SRMS 0.47 1.94 1.09 0.01 0.16 0.10 0.82 0.49 81
SIM SRMS 1.39 0.70 1.07 0.53 0.02 0.87 2.58 0.27 5

KL-SIM SRMS 0.30 0.17 0.65 0.07 0.12 0.55 0.73 0.95 23

Table 3.2.2: Resulting PSM weights from optimization

(a) (b)

(c) (d)

Figure 3.2.2: Mean scores for SIM (a), (b) and KL (c), (d), grouped by loss (left) and by objective
function (right)

Table 3.2.1 displays the average metric scores for Kullback-Liebler Divergence (KL) and sim-

ilarity score (SIM), as well as the best scores for each metric for each optimized model. This data

is plotted in Figure 3.2.2. Comparing the results yields interesting findings in both the optimization

parameters and the datasets themselves. Purely based on average performance, the KL-RMS model

boasts the smallest mean KL score. However, the mean values for SIM score appear to be more uni-

form across all models. This, obviously is not enough information to gleam useful insights into the

success of optimization, and decide on the best performing set of parameters. Looking at the score

distributions for both KL and SIM shown in Figures 3.2.3, 3.2.4, 3.2.5, 3.2.6 (plots for all models can

be found in Appendix I), there are clear differences in the shape of the distributions. Ideally, the SIM
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score distributions should skew towards higher values, and KL score distributions should skew towards

lower values. With this in mind, the KL-SIM-RMS and KL-SIM-SRMS models have much more points

which have more mass in the desired regions.

(a) (b)

Figure 3.2.3: Distributions of metric scores for model for unoptimized default parameters, (a) SIM
Score (b) Kullbach-Liebler Score

(a) (b)

Figure 3.2.4: Distributions of metric scores for model optimized with KL-SIM loss and AVG objective,
(a) SIM Score (b) Kullbach-Liebler Score

(a) (b)

Figure 3.2.5: Distributions of metric scores for model optimized with KL-SIM loss and RMS objective,
(a) SIM Score (b) Kullbach-Liebler Score
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(a) (b)

Figure 3.2.6: Distributions of metric scores for model optimized with KL-SIM loss and SRMS objective,
(a) SIM Score (b) Kullbach-Liebler Score

With this information, it can be concluded that optimization attempts succeeded. However,

more information is required to decide if the resulting models actually do an acceptable job of ap-

proximating SALICON. Over the entire set of PSM/SALICON image pairs, comparisons can be done

between all like-pairs and unlike-pairs with the KL and SIM metrics. Using a simple cut-off predictor,

the comparisons can be plotted. Figure 3.2.8 shows the result of plotting all pairs which achieve a KL

score under 1.00 and SIM score over 0.60. There are two expectations to be had with these plots. First,

if the metrics do adequately measure similarity then very few pairs should meet the prior thresh-hold.

Second, if the models are optimized then there should be a clear structure to the plots, with distinct

diagonals representing true positives, i.e. pairs which are predicted to be the same and actually are.

Observing the plots, it can be seen that in the baseline optimized model virtually no pairs are measured

to be the same, demonstrating the first expectation to be true. In the case of optimized models, there

is clear structure in the predictions with very clear diagonals. Interestingly, the occurrence of false

positives has also increased with optimization suggesting that the overall structure of optimized PSM

saliency maps more closely match SALICON. Additionally, many false positives seem to be generated

from particular examples from either the PSM or SALICON sets, as indicated by the appearance of

horizontal or vertical lines in the plot. Comparing prediction rates across all optimized models shown

in Figure 3.2.7, it can be seen that false positives in general are relatively low but do tend to scale

with increased true positive rates. The best true positive rate comes from the KL-SIM-RMS model at

approximately 60% accuracy. The KL-RMS model performs about 10% worse but boasts significantly

lower false positives. That being said, as the overall false positive rates are all under 1%, it can be said

that these differences are negligible. Considering the limited degrees of freedom in the formulation of

PSM and the (at times) unpredictability of deep saliency models, improving past random is impressive.

Ultimately the end result of optimization should achieve reasonable separability of like-pairs versus

unlike-pairs. Looking at the plots in Figure 3.2.9 this is clearly true. In the case of the KL-SIM-RMS
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(a) (b)

Figure 3.2.7: Plots of true positive (green) and false positive (red) predictions using a KL ≤ 1.00 and
SIM ≥ 0.60 predictor. Values are presented as (a) rate, (b) total.

model, there is considerable separation, especially compared to the un-optimized baseline. Intrigu-

ingly, even the un-optimized PSM output does achieve some degree of separation as the overall mass is

skewed more towards the lower-right region of the KL-SIM space. This speaks to the effectiveness of

the chosen saliency parameters that even un-optimized there is some inherent similarity in structure

as opposed to random.

Runtime was also compared with SALICON and DeepGazeII, by measuring the time needed

to generate 256 × 256 pixel images. On average, PSM saliency maps were output in 16.67 × 10−3

seconds, while the average processing time for SALICON was 24.09 seconds and 15.90 seconds for

DeepGazeII. All experiments were run in Unity 3D on an i7-7700HQ CPU, GTX 1060 GPU machine

with 16GBs of memory. Predictably, PSM is orders of magnitude faster due to being a simple GPU

program
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(a)

(b)

(c)

Figure 3.2.8: Prediction charts for (a) baseline, (b) KL-SIM-RMS, and (c) KL-SIM-SRMS models. All
212 SALICON and PSM images are compared (2122 comparisons) with both SIM and KL scores. A
simple predictor evaluates a pair to be the same if it has a KL score ≤ 1.00 and SIM score ≥ 0.60.
Points which are succesful are plotted, with true-positives lying along the diagonal.
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(a)

(b)

Figure 3.2.9: Scatter plots of all 212 PSM/SALICON pairs compared, with like-pairs represented in
orange, unlike pairs are blue, in the (a) unoptimized case, (b) optimized PSM model from KL-SIM-
RMS. In the optimized case, the thick dashed line represents an optimal separating hyperplane found
with a support vector machine (SVM) algorithm. The thin dotted lines are placed at KL = 1 and SIM
= 0.6.
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3.2.5 Conclusions

Parametric Saliency Maps are an effective way to approximate the outputs of machine learning trained

saliency models. It was shown that the weights of the saliency parameters can be optimized to ap-

proximate state-of-the-art models in saliency to a high degree of similarity despite consisting of only

9 degrees of freedom. This may also be a lens with which to analyze existing saliency models based

on deep networks. Perhaps this offers some explainability to the features and factors the networks are

selecting for when generating saliency maps. Since all saliency factors in PSM are derived from the

psychological literature on attention, and deep learning models are trained on real human data, this

yields credit that these deep learning models are in fact learning to reflect real ground truth human

cognitive processes.
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CHAPTER 4

SALIENCY DRIVEN GAZE CONTROL

Ultimately, the purpose of generating real-time pseudo-saliency maps is to use them to drive systems

in a virtual agent. Modelling and simulating human gaze is a complicated endeavour. There are

numerous approaches and methods for estimating how a human agent may observe the world. The

majority of approaches aim to recreate plausible animated humans. These methods can be very

effective, often taking advantage of scene information from the simulation to calculate believable gaze

patterns. However, if the goal is to replicate gaze from first principles, i.e. replicating the biological

and psychological mechanisms behind human gaze, then it is paramount to adhere as much as possible

to a principle of ‘sensory honesty’ as noted by Peters [46]. To put it a different way, devise methods

to drive gaze without using any information or data that a real human agent would not have. The

work presented here attempts to work within this constraint by relying primarily on visual input and

internal attention modelling to drive gaze. Specifically, the focus is on utilizing saliency maps as input

representing pre-attentive processing of visual stimulus by the human psycho-visual system. There

are many factors and complications to consider when presenting a model of human gaze. As such this

work constructs a framework for authoring a variety of gaze behaviours driven entirely by saliency

map information.

Figure 4.0.1 outlines the Saliency Driven Gaze Control (SDGC) framework. The following
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Figure 4.0.1: High-level conceptual diagram of a full SDGC approach. For every time t, a saliency
map corresponding to the current agent view is generated. This is passed to an SDGC module which
processes the saliency map and generates an updated gaze orientation represented by (θ, ϕ). Updates
to an agent’s internal attention model are output, as well as a function of an inhibition of return (IOR)
mechanism.

sections propose implementations for SDGC modules which process saliency data and then produce

an update for the gaze orientation of the viewing agent. Additionally, updates to the agent’s internal

attention are applied in the form of inhibition of return (IOR) updates.

4.1 Spline Surfaces as Height Fields

Implicit curves have a long history of use within the field of computer graphics and animation. These

curves often referred to as splines allow for infinite resolution and simple approximation of much more

complex shapes by stitching together polynomial functions bound by a set of control points. Many

such spline paradigms exist, such as Hermite splines, Catmull-Rom splines (named for famous Pixar

co-founder Edwin Catmull and Raphael Rom), Bezier splines, B-splines and many more. Splines are

often used in interpolating problems because they are predictable and smooth. They avoid the issue

of using higher-degree polynomials to express a series of control points (otherwise known as Runge’s

Phenomenon) which tend to cause unwanted oscillations. This type of method works in any number

of dimensions, able to create curves, surfaces and even volumes. This section will focus on the use

of B-splines for generating 3D surfaces representing height maps, and the challenges associated with

them. Specifically, the following questions are addressed: how are B-splines defined? How is a surface

generated? How do control points affect the properties of the spline? The final result will be a spline

surface which approximates a function z(x, y).
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A B-Spline of order p, with control points {P0, ...Pn} can be defined by the function,

S⃗(u) =

n∑
i=0

Ni,p(u)P⃗i = ⟨x(u),y(u)⟩ (4.1.1)

Where Ni,p(u) are basis functions used to control blending between points, based on para-

metric value u. These functions are defined recursively by the following set of expressions,

Ni,0 =

 1 if ui ≤ u < ui+1

0 else
(4.1.2)

Ni,p(u) =
u− ui

ui+p − ui
Ni,p−1(u) +

ui+p+1 − u

ui+p+1 − ui+1
Ni+1,p−1(u) (4.1.3)

For a set of n+1 control points, there are an equivalent number of basis functions with degree

p. The values ui are drawn from the knot vector ui ∈ U⃗ . The knot vector controls where and how

control points affect the resulting curve. For a knot vector to be valid, ui <= ui+1 for all i values in

U⃗ . A knot vector is said to be uniform if there is equal spacing between all adjacent values in U⃗ , for

example, {0, 1, 2, 3, 4, 5}. A knot vector is said to be standard if there are p + 1 repeating knots on

either end and equal spacing otherwise. For example, {0, 0, 0, 0, 0.25, 0.5, 0.75, 1, 1, 1, 1} is the standard

knot vector for a degree 3 spline, with 7 control points. Standard knot vectors have a useful property

that the resulting spline starts and ends exactly on the first and last control points respectively.

An implicit surface can then be created via a tensor product of two B-Spline curves for n×m

control points which takes two parametric values u, v. With control points in 3D space, the resulting

function M⃗(u, v) returns a 3D point value for each (u, v).

M⃗(u, v) =

n∑
i=0

m∑
j=0

Ni,p(u)Nj,p(v)P⃗i,j = ⟨x(u, v),y(u, v), z(u, v)⟩ (4.1.4)

Since the dimensions are independent, another representation is as a vector of 3 one dimen-

sional spline functions, x(u, v),y(u, v), z(u, v). If one wishes to use the surface as a height field, this

must also be able to be formulated in such a way that z(u, v) = z(x,y). Consider the more simple

case of a B-spline curve constructed from 2D points shown in Figure 4.1.1. Suppose one wished to find

the gradient (or derivative in this case) of y with respect to x. This can be expressed as:
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Figure 4.1.1: Cubic B-spline with 5 control points using a standard knot vector 0,0,0,0,0.5,1,1,1,1

dy(u)

dx
=

dy

du

du

dx
(4.1.5)

Naturally, if looking for an analytical solution then expressions for dy
du and du

dx need to be

found. However, the problem is that B-spline basis functions are not easily invertible. (From [50])

The first order derivative of a B-Spline can be calculated as:

d

du
S(u) =

n∑
i=0

d

du
Ni,p(u)Pi

d

du
Ni,p(u) = N

′

i,p(u) =
p

ui+p − ui
Ni,p−1(u)−

p

ui+p+1 − ui+1
Ni+1,p−1(u)

(4.1.6)

The wonderful thing about this expression is that the derivative of the basis function is itself

another basis function. What is still missing however is an expression for du
dx . While clearly dx

du is

virtually identical to dy
du , this expression is not invertible. In fact, there is no analytical solution to

invert a B-spline basis function. The only way this function is solvable if and only if x(u) = u, thus

du
dx = dx

du = 1. It would appear now that the solution to this conundrum is to formulate the spline such

that x(u) = u (and y(v) = v in the case of a surface).
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Figure 4.1.2: Generated spline height field

A height field is typically represented in the form of a scalar-valued function z(x, y), where x

and y are independent parameters for example, z(x, y) = x2 + y2. Similarly, B-splines can be used to

construct a surface using two independent parametric values u and v; shown in Equation 4.1.4. The

x and y values of the control points must be strictly increasing and linear to be a valid singly-valued

function. The gradient of a B-spline surface can be calculated as the tensor product of the surface

M(u, v) with the gradient operator with respect to u and v.

∇⊗M(u, v) = [
∂

∂u
M(u, v),

∂

∂v
M(u, v)]

∂

∂u
M(u, v) =

n∑
i=0

m∑
j=0

N
′

i,p(u)Nj,p(v)Pi,j

∂

∂v
M(u, v) =

n∑
i=0

m∑
j=0

Ni,p(u)N
′

j,p(v)Pi,j

(4.1.7)

∇z(u, v) = (∂M∂u , ∂M
∂v ) is a vector which represents the direction of steepest ascent of z in the

u-v plane. Let the matrix of control points with dimensions n×m be given by (zi,j) ∼ P.
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Figure 4.2.1: Examples of generated saliency maps from the perspective of an agent walking through
a simulated urban crowd, using PSM weights specified in Section 3.2.

P =


(z0,0) (z1,0) . . .

...
. . .

(z0,m) (zn,m)

 (4.1.8)

This works because the 3D spline is a combination of two independent splines in the u and

v dimensions. The final formulation is a spline surface where z(u, v) = z(x, y). The result allows

for a simple, fast and analytic gradient to be calculated at any point in the spline surface; given by

∇⃗z = ( ∂x∂u ,
∂y
∂v ), since it is now treated as a height field z(x, y).

4.2 Particle Gaze Model

When conceptualizing how a saliency map should influence gaze behaviour, the natural assumption

is that gaze is attracted towards objects or areas of high saliency, seeing as a saliency map describes

the probability of fixations for any given point in the visual field. In this way, the problem could be

modelled as a physical system, where a “particle” is attracted towards areas of high saliency, much like

how a charged particle moves within an electric field from areas of high electric potential to low electric

potential. A saliency map can represent a potential field, where a gaze “particle” moves according to

Newtonian equations of motion. Such a simulation is quite simple and easily tuned to result in various

behaviours. Consider the center of an agent’s visual field, corresponding to a point in the 3D viewing

sphere around an agent (or agent’s head). In this case, moving the point around the sphere results

in changing where the agent is currently looking. By treating this point as a particle and applying

’forces’ to it, a mode of gaze can be approximated.
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Figure 4.2.2: High-level diagram of particle model. A saliency map is generated from the current
view. It is then interpreted as a continuous potential field. The gradient at the center of this field is
measured as used to update the gaze of the agent.

Let x⃗ represent the position of a particle, moving in a potential field V (x⃗). The differential

equation describing the particle’s movement is given as,

¨⃗x = −∇⃗V (x⃗) (4.2.1)

This equation describes a particle which will accelerate towards regions of lower potential

energy. It is useful to additionally include a damping term in the equation, for the purposes of

imposing a speed limit and controlling the dynamics of the system. The equation of motion is then,

¨⃗x = −∇⃗V (x⃗)− kd · ˙⃗x (4.2.2)

where kd is the damping coefficient. The result is that the particle will minimize its potential

and settle into potential wells, similar to that of a gradient descent algorithm. Consider an agent’s

gaze, which lies on a unit sphere around an agent’s head, described by position G⃗ = (θ, ϕ). Shown in

Figure 4.2.3, converting the 2D point x⃗ in viewport coordinates to a 3D point X⃗ = (x, y, z) in world

coordinates, a vector can be drawn from the camera origin to X⃗. The gaze orientation G = (θ, ϕ) is

updated by values (∆θ,∆ϕ):

∆ϕ ≃ ∆x

∆θ ≃ ∆y

G⃗⇒ G⃗+ (∆θ,∆ϕ)

(4.2.3)
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Figure 4.2.3: Projection of point positions x⃗ to x⃗′ in viewport space to a change in orientation (∆ϕ,∆θ)

For sufficiently small steps, the simplification can be used that the Cartesian ∆x,∆y coor-

dinate updates are equivalent to their spherical counterparts (small angle approximation). ∇⃗V is the

force applied to the gaze particle based on what the agent is currently seeing, S, and λ is the step size.

The algorithm can be written out using Euler integration,

G̈t+1 = −∇⃗V − kdĠt

Ġt+1 ⇒ Ġt + λG̈t+1

Gt+1 ⇒ Gt + λĠt+1

(4.2.4)

Additionally, a noise term A · zt can be included; where zt ∈ [−1, 1]2 with amplitude A,

in the final position update which gives added flexibility to model more complex gaze movement

characteristics. The final update is then,

Gt+1 ⇒ Gt + λĠt+1 +A · zt (4.2.5)

An important consideration is then how to construct the potential field. By treating a saliency

map as a potential, where high saliency areas are potential wells in the field, then following the gradient

will draw the particle into these salient regions. Some possible issues arise concerning the computation

of this potential from an agent’s saliency map. Looking at examples in Figure 4.2.1, one problem is that

in most saliency maps there are large regions of little to no saliency. This presents a problem because

there would be no gradient in these regions. Yet one more consideration is that highly salient stimuli

should draw gaze towards it regardless of where it is in the visual field. Calculating the potential field
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Figure 4.2.4: Max-pooling vs. Avg-pooling, sampling down a 4× 4 image to 2× 2

from an n × n image could be computationally very costly, especially scaled to scenarios with many

agents. The solution to both of these problems is to use a parametric surface to model the potential

by sampling from the image. Cubic B-Splines have useful properties which make them very efficient

for this task. Using a cubic B-spline height field, we can then sample from the image to derive the

z-coordinates (height) of each point. Assuming an appropriately chosen number of control points, a

cubic B-spline height field will have a non-zero gradient in almost all regions of space, on top of being

very fast to compute.

Drawing from computer vision, two appropriate methods for pooling values from a saliency

map into control points are the max-pool and average-pool algorithms. As shown in figure 4.2.4, for

a given window of size n×m, an image can be down-scaled by taking the maximum value within the

window (max-pool) or averaging all the values (avg-pool). The result of this operation gives a smaller

set of values based on the number of windows. This method can be used to assign heights to control

points on our surface by pooling values from the saliency map. In this case, control points are set to the

negative value from pooling to create a well in the potential. One consideration is that for a B-spline

height field, control points are not equidistant in the u-v plane parametric plane. The equivalent x-y

positions can be found at the Greville Abscissae, which is discussed in more detail in Appendix II.

The resulting positions show the non-linear spacing that affects the control point influence regions.

Pooling kernel sizes should not be equally sized as we want the influence of points to correspond with

the surface’s control net. The scheme shown in figure 4.2.5 is how kernel sizes are chosen in accordance

with virtual control point locations. The scheme is such that each edge of the kernel is halfway between

adjacent points for the x and y directions.
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Figure 4.2.5: Illustrating the pooling windows for a set of control points. Each window corresponds to
the control point within it
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At each time t the control points of a B-Surface are set, giving the potential field. Since the

gaze particle is always at the center of the visual field, The potential is sampled at parametric coordi-

nates (0.5, 0.5). ∇⃗V is then the gradient of the surface at that point, which is given by equation. 4.1.7.

Of course, one could numerically solve for the gradient, however, this is computationally expensive.

A useful property of a parametric surface is that it is continuous everywhere. It allows there to be

gradient flow in nearly all locations of the surface, given appropriately chosen dimensions for the sur-

face. Too few points and there is not enough locality to the effects of the saliency map on the field.

Too many however and the surface will lose the property of having points influence most of the entire

field. One such option for increasing the granularity of the control points is to include some localized

area of effect when setting control point depths. A neighbour weighting effect can be achieved by

adding a weighted influence of surrounding points on each given point. Again this must be modulated

accordingly otherwise loss in locality will occur.

4.2.1 Emulating Gaze Movements

There are properties of the particle model which lend themselves well to controlling head movements,

as well as smooth-pursuit eye movements. First, is the naturally smooth motion which arises towards

targets of high interest. Second, for a small number of control points; recommended 7 for a degree 3

spline surface, this method has the natural tendency to align with general areas of high interest at low

resolution. This often means looking at the ”center of mass” of areas with high saliency targets as

opposed to specific individual elements if there are many within view. If there are sparse, spaced-out

objects of interest the gaze will instead align with the individual elements. Both these behaviours arise

without explicit programming. Setting the points in the control surface to a higher resolution will

yield more spacial acuity, and thus the gaze will fall on more narrow targets. Changing the step size λ

will determine how fast the gaze will move towards targets, as well as how strongly those targets will

be tracked. Smooth pursuit eye movements can be elicited by having a high resolution in the control

surface; recommended 11 for a degree 3 spline surface, and a larger λfixation value. It is difficult to

recommend any particular value for λfixation because this will be scaled with how the spline surface is

defined, how steep peaks are, as well as how fast objects move across the field of view which is limited

by the frame rate of a given simulation. The length of smooth pursuits is something contextual.

For a typical ”search” behaviour, the length of fixations τfixation should average 150 − 300 ms. For

saccadic movements, a larger λsearch value will give faster rapid target acquisition. To emulate micro-

saccades we can perturb the final position using a noise term A · zt, where the amplitude corresponds

to less than 0.1◦ of visual angle. This will depend on camera projection parameters, but a small
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angle approximation A ≃ 0.1◦ is acceptable. Additionally, to improve accuracy and avoid oscillations,

multiple steps can be taken per simulation time step. In the scope of this work, we do not describe

how to switch between saccades and smooth pursuits. This is largely because smooth pursuits are

typically intentional actions and need to be specified by the author of the behaviour.

4.2.2 control

Algorithm 1 Particle Gaze Model

STATE ← search
x⃗← (0.5, 0.5) ▷ Center of viewport
˙⃗x← (0, 0)
while true do

V ← SetPotential(St)
¨⃗x = −∇⃗V (x⃗)− kd · ˙⃗x
if STATE == search then

λ← λsearch

if FixationDetected() then
STATE ← fixation

end if
else if STATE == fixation then

λ← λfixation

if fixationtime > τfixation then
STATE ← search

end if
end if
˙⃗x← ˙⃗x+ λ · ¨⃗x
x⃗← x⃗+ λ · ˙⃗x

end while

4.3 Probabilistic Gaze Model

In this section, another method is introduced for saliency-driven gaze control, based largely on prior

works in fixation prediction for static images. A saliency map can be thought of as a probability

distribution for likely gaze targets. With this interpretation, fixation targets can be sampled from

this distribution. For a probability distribution St, a random point x ∼ St is drawn. Based on the

projection parameters of the virtual camera, this point in the viewing image can be converted to

an orientation (see Figure 4.2.3). The agent’s view can then be rotated accordingly to match this

orientation.

Given a point x St in viewport coordinates, a line can be drawn from the camera center

through this point in world space. This vector represents an orientation G′. The current camera

orientation G can then be interpolated to this new orientation over the desired time. The speed of the
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rotation is then determined by the interpolation time.

Control is divided into two primary states: search and fixation. In the search state, a point

is sampled from the entire field of view. The view is then oriented to this target over ∆ tsaccade. The

angular speed of the saccade is the amplitude (angular) divided by ∆tsaccade. Once this target is picked

the state transitions to fixation control. Over a total time τfixation saliency outside a small foveated

region of radius Rfocus is suppressed. Within this fixation, new points are drawn from the foveated

region of interest as targets for micro-fixations. The point is then interpolated to over ∆tµ saccade. This

point is looked at for time τµ fixation, at which point a new target is selected. This repeats over the

entire fixation length. Once the fixation has concluded, the state returns to search. Each parameter

can be set statically or dynamically depending on desired behaviours.

4.3.1 Emulating Gaze Movements

This method of control is designed to allow modelling of target point selection saccade and micro-

saccade eye movements. Depending on the level of detail desired, keeping ∆ tsaccade and ∆ tµsaccade

constant will achieve linear eye velocities expected for angular distances less than 20◦, which typically

reach up to 300◦/s. However, for most applications, it suffices to have a very small or zero travel time

(i.e. instantaneous). Changing the τfixation parameter will affect how much searching is done in the

visual field. Veering from typical reported values of around 100−200ms will result in either rapid eye-

darting for smaller values, or more focused eye movements in the case of larger values. Tightening or

increasing the size of the focus region Rfocus will either restrict the space of micro-saccade movements

(thus decreasing their amplitude) or allow for more outside stimuli to draw micro-saccades respectively.

Depending on the desired behaviour either can be appropriate. For example, a character reading a

book would have very infrequent saccades (large or infinite τfixation), frequent micro-saccades (small

τµfixation, and a small radius of focus Rfocus. Similarly to the particle method, inhibition of return is

implemented as a decay in object saliency.
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Algorithm 2 Probabilistic Gaze Model

Def: LookAt(point, time)
STATE ← search
G← (0.5, 0.5) ▷ Center of viewport
while true do

if STATE == search then
x← SamplePoint(St)
LookAt(x,∆ tsaccade)
STATE ← fixation ▷ Wait until reached target

else if STATE == fixation then
SW ← St.window(Rfocus)
x← SamplePoint(SW )
if fixationT ime > τfixation then

STATE ← search
else

LookAt(x,∆ tµ saccade)
Wait(τµ fixation) ▷ Hold for length of µ-fixation

end if
end if

end while

Figure 4.3.1: Screen capture from agent simulation. An agent is viewing two pedestrians walking
toward them. On the right is the saliency map of the current view as well as generated possible
fixation points overlayed. In this implementation, only the head of agents is animated.
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CHAPTER 5

CONCLUSION

Saliency models are seeing more and more use in trying to approximate how humans view and perceive

stimuli. Accompanying these models are techniques and tools which use these models to analyze

and predict human gaze behaviours. Such models have seen marked improvements in recent years,

however, these concepts struggle to integrate themselves into the domain of human agent simulation.

The primary reason for this is that most visual models are prohibitively computationally expensive to

be used in any real-time application such as video games or crowd simulations.

The objective of this thesis was to explore if a simple model of saliency can output reasonable

approximations of state-of-the-art saliency models in the form of saliency maps. It presents a model

for parametric saliency maps, a method for generating pseudo-saliency maps from the perspective of

a virtual agent as a weighted combination of 7 saliency factors. The saliency parameters were chosen

based on extensive research of real-world human visual attention studies, as well as factors used in

virtual saliency models. Additionally, reviewing the literature on human visual attention outlined the

importance of differentiating top-down attentional factors from bottom-up stimuli. These differences

significantly impacted the design of the model, namely how saliency factors are combined between

additive features and modulatory features. The model is highly adaptable, weights can be changed to

cover a wide range of plausible representations of visual attention, for the scope of minimally interacting
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casual pedestrians.

The intent generating realistic saliency maps for virtual humans is to use them to inform and

drive behaviour. To this end, this thesis also proposes two methods for low-level saliency-driven gaze

control. The particle model is a novel approach which interprets the 2D saliency map information as a

potential field (in the physics sense), in which gaze can be controlled via physics simulation by having

forces applied to a virtual particle to attract it towards salient stimuli in view. The probabilistic

model interprets saliency maps as probability densities for fixations and samples potential fixation

points according to a simple rule set. This model is inspired by existing fixation prediction models for

static 2D images and adapts concepts for dynamic 3D scenes.

To validate the plausibility of the parametric saliency maps, as well as demonstrate their

adaptability an experiment was conducted to optimize the weights of the model in order to approximate

a state-of-the-art saliency model. For a fixed set of randomized snapshots from an urban simulation,

each element consisted of a generated parametric saliency map and a corresponding ‘real’ saliency

map both representing the same image. The parametric weights for each saliency factor were opti-

mized using covariance matrix adaptation evolutionary strategy. The optimization was implemented

according to saliency comparison metrics. The end result showed that to a reasonable degree, the

parametric saliency maps model is able to approximate the outputs from a more complicated saliency

model, despite having significantly fewer degrees of freedom. Additionally, the analysis found that

even unoptimized outputs demonstrated a degree of similarity. This suggests that there are inherent

structural similarities in the outputs of parametric saliency maps and ‘real’ maps generated from a

saliency model, and speaks to the validity of the chosen saliency factors.

Future work may include further exploration into optimizing parametric saliency maps to

approximate other models of saliency, as well as explore different or expanded sets of parameters.

Furthermore, extensions could be made in the form of high-level control which ingrates saliency map

generation with saliency-driven gaze control, which autonomously adjusts a virtual agent’s attention

based on goals, distractions etc and subsequently informs the gaze control module. Experimentation on

the proposed saliency-driven gaze control models can be done to determine optimal control parameter

values for desired behaviours, as well as quantitative evaluation of results.
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CHAPTER 6

APPENDICES

6.1 Appendix I: Supplemental Figures

(a) (b)

Figure 6.1.1: Distributions of metric scores for model optimized with SIM loss and AVG objective, (a)
SIM Score (b) Kullbach-Liebler Score
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(a) (b)

Figure 6.1.2: Distributions of metric scores for model optimized with KL loss and AVG objective, (a)
SIM Score (b) Kullbach-Liebler Score

(a) (b)

Figure 6.1.3: Distributions of metric scores for model optimized with SIM loss and RMS objective, (a)
SIM Score (b) Kullbach-Liebler Score

(a) (b)

Figure 6.1.4: Distributions of metric scores for model optimized with KL loss and RMS objective, (a)
SIM Score (b) Kullbach-Liebler Score
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Figure 6.1.7: Prediction plot for dataset generated from default parameters (all weights set to 1). As
a baseline, it is expected that very few true positives should emerge, denoted by blue (+) points along
the diagonal.

(a) (b)

Figure 6.1.5: Distributions of metric scores for model optimized with KL loss and SRMS objective,
(a) SIM Score (b) Kullbach-Liebler Score

(a) (b)

Figure 6.1.6: Distributions of metric scores for model optimized with KL loss and SRMS objective,
(a) SIM Score (b) Kullbach-Liebler Score
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(a)

(b)

(c)

Figure 6.1.8: Prediction plots for varying models (a) KL, (b) SIM, (c) KL-SIM; optimized with a AVG
objective. Blue (+) points along the diagonal are true positives. Orange (x) points are false positive.
For each image pair, they are said to be the same if the Kullbach-Liebler divergence is ≤ 1.00 and the
Similarity score is ≥ 0.6
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(a)

(b)

(c)

Figure 6.1.9: Prediction plots for varying models (a) KL, (b) SIM, (c) KL-SIM; optimized with a RMS
objective. Blue (+) points along the diagonal are true positives. Orange (x) points are false positive.
For each image pair, they are said to be the same if the Kullbach-Liebler divergence is ≤ 1.00 and the
Similarity score is ≥ 0.6
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(a)

(b)

(c)

Figure 6.1.10: Prediction plots for varying models (a) KL, (b) SIM, (c) KL-SIM; optimized with a
stochastic RMS objective. Blue (+) points along the diagonal are true positives. Orange (x) points
are false positive. For each image pair, they are said to be the same if the Kullbach-Liebler divergence
is ≤ 1.00 and the Similarity score is ≥ 0.6
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Figure 6.2.1: y derivatives of the spline curve (black) with respect to parametric value u versus x. dy
du

is analytical, while dy
dx is computed numerically

6.2 Appendix II: Spline Linearization

Consider the gradient of the curve shown in Figure 6.2.1. Both functions have roots at the same

positions at the same values for x as well as u meaning that both functions will always have the same

sign. Even the shapes of the functions are very similar but, importantly: they are still different valued

functions.

Using only 1 dimensional control points, and substituting parametric values for other dimen-

sions yields a function like y(x) or height-field z(x,y). But they are inherently still just one dimensional

splines. Suppose one wished to define a spline with 2D or 3D control points which still represented

y(x) or z(x,y)? How can this be achieved for a spline with a standard knot vector, with n+ 1 control

points xi, (i = 0, 1..., n) of degree p? Lets consider a degree 3 B-spline in 2 dimensions from Equation

4.1.1. The standard knot vector will have repeating knots at the beginning and end such that the

spline begins and ends on the first and last points. let ki ∈ K⃗ be the standard knot vector for n + 1

points and degree p,
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ui =


0 if 0 ≤ i ≤ p

1 if n+ 1 ≤ i

i−p
n−c else

(6.2.1)

Since ki ∈ [0, 1], the parametric domain is defined from u ∈ [0, 1]. The goal is to find some

arrangement of control points xi ∈ X such that x(u) = u. Since the spline begins and ends at x0

and xn, then those points should be at 0 and 1 respectively. Also, xi+1 ≥ xi ∀i must be true clearly.

Now we can begin searching for candidate functions to generate positions. Since the goal is to achieve

x(t) = t, then x′(t) = 1. It can be seen that for x′(0) = 1 to be true, this depends on only the first

and second points in the spline (and the symmetric case is true for x′(1) = 1).

x′(t) = x0N
′
0,3(0) + x1N

′
1,3(0) + x2N

′
2,3(0) + ... (6.2.2)

A property of B-spline basis functions from a standard knot vector is that at the start and

end of the parametric space, only the first two and last two (respectively) basis functions are non-zero,

can be seen in Fig. Thus equation 6.2.2 can be simplified to

x′(t) = x0N
′
0,3(0) + x1N

′
1,3(0)

= 0 ·N ′
0,3(0) + x1N

′
1,3(0)

= x1N
′
1,3(0) = 1

x1 =
1

N ′
1,3(0)

N ′
1,3 =

3

u4
N1,2(0)−

3

2u4
N2,2(0)

since at u = 0, N1,2(0) must be 1, then all other basis Ni,2(0) must be 0 (see [56])

=⇒ x1 =
u4

3
:= λ

(6.2.3)

By symmetry, xn−1 = 1−λ. The intuition here is that since for a standard knot vector there

are p+1 repeated knots at the front and end, the parametric space is stretched unevenly redNOTE:

include figure on x(t) with equispaced points. Now by setting the remaining points to be equally
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spaced this should result in the desired outcome. A good candidate for positions is to take the values

at the center of the knot vector,

xi = ui+c−1 = ui+2 for 2 ≤ i ≤ n− 2 (6.2.4)

Giving a final function for generating points,

xi =


λ if i = 1

1− λ if i = N − 1

ui+2 else

(6.2.5)

To prove this, lets first consider the simplest case for a degree 3 2D B-spline with 4 control

points. From equation 6.2.5, X = 0, 1/3, 2/3, 1

x′(t) =

3∑
i=0

Ni,3(t)xi

=
1

3
N ′

1,3 +
2

3
N ′

2,3 +N ′
3,3

=
1

3
(3N1,2 − 3N2,2) +

2

3
(3N2,2 − 3N3,2) + (3N3,2 − 0)

= N1,2 +N2,2 +N3,2 = 1

(6.2.6)

A property of b-spline basis functions is that
m∑
i=0

Ni,c = 1, or in other words - the sum of all

basis functions of one layer in the recursive pyramid is an affine combination (Partition of Unity) [56].

Now lets consider the more general case of a cubic B-spline with n+ 1 points.
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Figure 6.2.2: Recursive pyramid for B-Spline basis functions. The sum of all non-zero valued basis
functions in a layer in the pyramid is an affine combination. A basis function is non-zero for at most
p+1 intervals. This can be seen by drawing a triangle from a basis function to the bottom. E.g., N1,3

is only non-zero on [u1, u5]

x′ (u) =

n∑
i=0

N ′
i,3 (u) · xi

= N ′
0,3 · x0 +N ′

1,3 · x1 ... + N ′
n,3 · xn

from 6.2.5, substitute values for xi. (define x0 = 0 and xn = 1)

= λN ′
1,3 + u4N

′
2,3 + ...unN

′
n−2,3 + (1− λ)N ′

n−1,3 +N ′
n,3·

it can be shown from 6.2.1 that the sequence u4, u5, ...un−2 can be written u4, 2u4, 3u4...

= λN ′
1,3 + u4N

′
2,3 + 2u4N

′3, 3 + ...+ (1− λ)N ′
n−1,3 +N ′

n,3

(6.2.7)

Substituting the definition of the derivative from Equation 4.1.6, the terms can be enumerated

in conveniently terms of u4 coefficients,

N ′
1,3 =

3

u4 − u1
N1,2 −

3

u5 − u2
N2,2 →

3

u4 − 0
N1,2 −

3

2u4 − 0
N2,2

N ′
2,3 =

3

u5 − u2
N2,2 −

3

u6 − u3
N3,2 →

3

2u4
N2,2 −

3

3u4 − 0
N3,2

N ′
3,3 =

3

u6 − u3
N3,2 −

3

u7 − u4
N4,2 →

1

u4
N3,2 −

1

u4
N4,2

(6.2.8)
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Figure 6.2.3: Transformation from equidistant control points to Greville Abscissae for a degree 3 b-
spline with 7 control points

For derivative functions with 3 ≤ i ≤ n− 3 the form will always be 1
u4
Ni,2 − 1

u4
Ni+1,2. This

will be used to cancel out terms when the above is substituted into Equation 6.2.7

= λ
3

u4
N1,2 − λ

3

2u4
N2,2 + u4[

3

2u4
N2,2 −

1

u4
N3,2] + u4[

1

u4
N3,2 −

1

u4
N4,2] + ...

= λ
3

u4
N1,2 − λ

3

2u4
N2,2 +

3

2
N2,2 −N3,2 + 2N3,2 − 2N4,2 + 3N4,2 − 4N5,2 + 5B5,2 − ...

= λ
3

u4
N1,2 − λ

3

2u4
N2,2 +

3

2
N2,2 +N3,2 +N4, 2 +N5, 2 + ...

substitute definition of λ from 6.2.3

= N1,2 +N2,2 +N3,2 + ...+Nn+1,2 = 1

(6.2.9)

From the properties of B-spline basis functions, the summation of all functions in a layer is

always affine. Thus, it is proven for this choice of control point spacing in x, that x′(u) = 1, the spline

is now linearized such that dy
dx = dy

du . What is interesting to note is that this approach does not work for

quadratic B-splines. If one would attempt it, they would quickly realize that not only does it require

solving for multiple magic numbers, but also the amount of numbers needed changes with the number

of control points. The transformed x-coordinates in this form are known as the Greville Abscissae. A

closed form solution for all Greville Abscissae for a spline of order p is given as an average of knot

values,

ξi =
1

p− 1

p−1∑
k=1

ui+k (6.2.10)
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When asked about the applications of his discoveries, Heinrich Hertz replied,

“Nothing, I guess.”

His work conclusively proved the existence of electromagnetic waves; radio waves specifically, a dis-

covery which has fundamentally altered and shaped our modern lives. This is not meant to draw a

comparison of this work with the world altering discovery of radio, but to touch on the foundations

of what it means to be a scientist. As scientists, we study and explore the world not because we

always believe our work will change our lives - but rather because we do not know. In many cases, the

discovery is the point for the sake of itself. To contribute knowledge to the sum total of humanity is

the highest honor.
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