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ABSTRACT 

This thesis presents the design, development, and characterization of a novel neural recording 

channel architecture with (a) quantization resolution that is adaptive to the input signal's level of 

activity, (b) fully-dynamic power consumption that is linearly proportional to the recording 

resolution, and (c) immunity to DC offset and drifts as well as artifacts at the input. Our results 

demonstrate the proposed design's capability in conducting neural recording with near lossless 

input-adaptive data compression, leading to a significant reduction in the energy required for both 

recording and data transmission, hence allowing for a potential high scaling of the number of 

recording channels integrated on a single implanted microchip without the need to increase the 

power budget. 

The proposed design adopts a neural ADC with a novel integrating-summing feedback DAC 

that removes the need for area-intensive multi-bit capacitive/resistive DACs reported in state of 

the art, leading to a substantial reduction in the required silicon area for each channel, and more 

importantly, very promising design scalability with CMOS technology nodes. The proposed neural 

recording channel architecture is capable of removing input DC offsets and drifts as well as all 

other low-frequency undesired interferences such as motion/stimulation artifacts. The proposed 

channel with the implemented compression technique is implemented in a standard 130nm CMOS 

technology with overall power consumption of 7.6uW and active area of 92×92µm for the 

implemented digital-backend. 
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Chapter 1  

Introduction and Motivation 
 

 

 

1.1 Motivation and objectives 

Neurological disorders affect more than one billion people worldwide today, and the number is 

expected to increase with the world’s aging population [1]. Accurate detection and effective 

control of these disorders require continuous monitoring of brain neuronal activities with high 

spatial and temporal resolution. Over the past decade, thanks to the advancements in the fields of 

neurotechnology and microelectronics, various implantable and wearable brain machine interfaces 

(BMI) have been developed to monitor, diagnose, and control different neurological disorders [2-

9,47-50].  
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Figure 1.1 Comparison between temporal resolution vs. spatial resolution and coverage of several brain monitoring 

techniques [10] 

In Figure 1.1, various methods for brain activity monitoring is shown. Each of them come at its 

own advantage and disadvantages. Methods such as magnetoencephalography (MEG), positron 

emission tomography (PET), magnetic resonance imaging (MRI), while are noninvasive, are not 

suitable for ambulatory applications due to either of size constraints, portability, power 

requirements, and poor temporal resolution [10]. Highly-invasive methods such as intracranial 

EEG (iEEG) using penetrating microelectrodes offer not only high spatial resolution, which is 

necessary for capturing time-sensitive neurological events (e.g., epilepsy seizures [51]), but also 

high temporal resolution (i.e., update rate). However, this type of monitoring can cause substantial 

damage to the brain tissues, thus is only used in severe conditions when all other options are 

exhausted. On the other hand, less-invasive electrophysiological recording methods such as scalp 

(or surface) electroencephalography (EEG) [52][53], and electro-corticography (ECoG) allow for 

monitoring with high temporal resolution. Depending on the application and the required spatial 
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resolution and spatial coverage, one of these technologies are used for long-term monitoring of the 

patient's neural activity [10].  

 Implantable BMIs 

Timely and accurate detection of neurological events often requires long term (i.e., months to 

years) monitoring of brain activity from a widespread network of neurons on the brain. For these 

situations, a feasible solution is to develop wireless cm-scale BMI devices implanted under the 

scalp (to be minimally obtrusive for the patient) and connected to an ECoG electrode array with 

as many recording sites as needed to yield the desired spatial resolution and coverage. Regardless 

of using a battery or a wireless powering link, the energy budget of these devices is highly 

constrained either due to physical size limitations for the battery, or the safety limitations for power 

consumption and power transfer density [54]. For power transfer, the upper limit on the magnetic 

field intensity is set by the regulations and guidelines on the specific absorption rate (SAR) [11]. 

Based on these guidelines, the total heat density created by the magnetic field anywhere in the 

body cannot exceed the rate of 1.6W/Kg [11]. Additionally, heat dissipation within an implantable 

BMI resulting in one-degree Celsius temperature increase is deemed unsafe for the cortex tissue. 

This corresponds to an overall system power density of 15-80mW/cm2 [12], depending on the heat 

conductivity of the encapsulation materials. 

Figure 1.2 depicts the top-level block diagram of a typical fully wireless implantable BMI and 

how it could be interfaced with the brain. As shown, a neural recording system consists of an array 

of recording channels (typically, 64 or more) as well as blocks for signal processing, wireless data 

transmission and power telemetry [55]. Each recording channel consists of a mixed-signal front 

end, which is responsible for low-noise amplification, and digitization of the sensed neural data.  
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Figure 1.2 Top-level block diagram of a typical wireless BMI and its envisioned interfacing with the brain cortex. 

1.1.2 Power constraints for channel count scaling 

As mentioned, to improve spatial resolution and coverage, and consequently the accuracy of 

neurological events detection, it is desired to have as many recording channels as possible. 

However, besides directly increasing the required power for recording, channel count scaling also 

increases the throughput required for the wireless data transmitter (Tx) to communicate the 

recorded data outside of the body. From power budgeting perspective, the increase in the required 

transmission data-rate is particularly undesirable because wireless data transmission is typically 

responsible for 70-to-90% of the total power consumption of implantable BMIs [13][7][3][8]. 

Table 1.1 lists some of the implantable neural interface integrated circuits (ICs) and the share of 

the total power consumption allocated to data Tx. 

 

 

 

 

N 



5 
 

Table 1.1 Power breakdown of implantable BMIs illustrating the Tx's significant share of the total power 
consumption 

Ref. JSSC’17 
[13] 

JSSC’14 
[7] 

JSSC’15 
[8] 

JSSC’16 
[3] 

TBCAS’16 
[14] 

Tech. 130nm 180nm 180nm 130nm 180nm 
Power/Channel 
(µW) 

0.63 57.67 1.62 9.1 3.2 

No. of 
Recording 
Channels 

64 8 16 64 16 

Total Power 
Consumption 
(Including TX) 
(mW) 

1.07 2.8 0.25 2.17 0.25 

% of TX 
Power 
Consumption 

~96% ~83% ~89% ~73% ~79% 

 

This motivates for investigating system and circuit techniques to improve energy efficiency of data 

Tx. Various architectures and time- and frequency-domain modulation schemes have been investigated 

over the past decade, and energy efficiencies in the range of a few to pJ/bit have been reported, as listed 

in Table 1.2. It should be noted that less efficient works (i.e., higher pJ/bit) are often yield a better 

transmission range and fidelity for the same bit error rate. Regardless, the data Tx remains the major 

power consumer in implantable BMIs and a significant bottleneck for channel count scaling [56]. As 

such, in parallel with efforts focusing on improving energy efficiency, it is critical to investigate 

approaches/methods for reducing the amount of data that needs to be transmitted (i.e., the required Tx 

throughput) without losing recording quality or detection accuracy [57]. 
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Table 1.2 Tx power consumption of implantable BMIs in various works 

Ref. TCAS-II’21 
[16] 

JSSC’15 
[17] 

JSSC’14 
[18] 

JSSC’14 
[19] 

VLSI’17 
[20] 

Process 180nm 180nm 180nm 90nm 180nm 
TX 
Modulation 

OOK/FSK OOK OOK/FSK OOK OOK 

Data Rate 
(Mbps) 

10 5 5 5 10 

Energy/Bit 
(pJ/bit) 

7 19.6 38 172 171 

  

1.2   Data Compression 

1.2.1 Introduction and trade-offs 
 

As will be discussed in the remaining of this chapter, there are several ways to reduce/compress 

the size of data. However, while the ultimate goal is to achieve the highest compression ratio (CR), 

this must not come at the cost of losing valuable data.  

For some applications it is possible to significantly reduce the required Tx's throughput by only 

transmitting the outcome of on-chip signal processing instead of the raw recorded data. In the 

extreme case, the entire signal processing could be done on-chip so that only the result (e.g., a one 

bit signal showing a classification output) needs to be transmitted. While this has the potential to 

reduce the data size by orders of magnitude and practically solves the problem, as discussed in 

[40], for many cases it is desired to transmit the raw (i.e., unprocessed) data (e.g., when processing 

algorithm is too computationally expensive to be done on-chip, or for physician's future review), 

demanding the data compression technique not to be specific to an application.  
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Figure 1.3 Simplified block diagram of different generic and application-specific 

methods used for data reduction in implantable BMI devices. 

Figure 1.3 shows some of the most popular approaches used for data acquisition in neural 

recording devices, and where each of them stands on the spectrum of achieved compression ratio 

vs. generality of the approach. Basically, one end of the spectrum is to send the raw data, without 

performing any form of compression, while the other end is to perform extensive data processing 

on the acquired data and transmit only specific features of the data, which makes it the least 

generic. Techniques such as compressive sensing or adaptive compression (e.g. adaptive sampling) 

stand somewhere in the middle of this spectrum. As will be discussed, among the two, compressive 

sensing achieves a higher CR but is less generic compared to adaptive compression techniques. 

Besides CR, data loss, and generality of the technique, reconstruction accuracy in the receiver, and 

the required on-chip computational power for conducting the compression are critical parameters 

that must be considered when choosing data compression method.  
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1.2.2  Information sparsity 

 

 

Figure 1.4 EEG signal sparsity in wavelet domain [15] 

In many applications, data sparsity is the key characteristic that is widely leveraged of in many 

compression techniques. A data is said to be sparse in a certain domain (i.e. time, frequency) when 

most of the signal’s magnitudes in that domain, are either zero, or insignificant. As an example, 

Figure 1.4 shows an EEG data is sparse in Gabor basis, as it contains very few non-zero values; or 

a sine wave is said to be sparse in frequency domain, as it only has one non-zero component in 

that domain.  

Sparsity in bio-signals can be defined in an another way as well. A bio-signal is information 

sparse meaning, in time-domain, biologically meaningful events (e.g., epileptic seizures in an 

iEEG recording) are inherently unpredictable and happen infrequently. 

1.2.3  Compressive sensing 

Compressive sensing (CS) is a compression technique used widely in applications such as 

image processing, radar, video coding and many more [23] [24] [25]. This method can be 

considered more on the generic side of the spectrum, since it can be performed on any signal that 

have sparsity in at least one domain. A key advantage of this technique is that it allows for power-

friendly implementation as in this method, compression is done in the time domain, regardless of 

the domain of sparsity. 
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Figure 1.5 Block diagram of  a typical CS tranmitter and reciver   

In this method, unlike conventional data acquisition methods, in which data is acquired and 

transmitted at a rate at least two times the highest frequency component of the signal (the Nyquist-

Shannon rate), data is compressed and reduced proportional to the amount of information it carries 

in its domain of sparsity [26], promising significantly lower amount of data needs to be transmitted 

for lossless signal reconstruction [26] [27].  

CS is conducted by projecting the Nyquist rate sampled data X, which holds X ×  samples, to 

its compressed version Y × , which will have M samples, where M<<N. The projection is done 

through multiplication of  X ×  by a  “measurement matrix” φ × , resulting in a compressed 

version of X ×  called Y × . 

Implementation of the encoding circuit can be done in either digital or analog domain (Figure 

1.5), using a set of mixers and integrators, which despite seemingly complicated computational 

procedure of the method, makes the technique power friendly for on-chip implementation. Works 

done in [29], [30] have implemented the technique in the digital domain, whereas, works done in 

[26], [28], [31] offer an analog based compressed sensing. Generally, for wireless sensor 

application, it is shown that digital based compressive sensing implementation achieves better 

power efficiency [27]. 

In this technique, data reconstruction procedure consists of a set of complex power hungry 

computations. However, for implantable BMIs, receiver is outside of the body and has far less 



10 
 

constraints in terms of computational power and energy budget [26], so this might be a less critical 

disadvantage. 

The key drawback of CS is that conducting any non-trivial signal processing on compressively-

sensed signal is infeasible before it is decompressed (i.e., decoded) in the receiver. In many 

implantable devices developed for diagnostic and closed-loop responsive treatment, it is critical 

for the BMI to conduct signal processing on chip (e.g., to minimize the processing delay) 

[2][13][32][38]. However, the compressed signal is far too modified to perform any signal 

processing on it.  

1.2.4 Adaptive sampling 

Adaptive sampling is another popular method of compression which relies on the sparsity of 

events occurrence in bio signals. As shown Figure 1.6, during periods "A", a significant event 

happens, whereas during periods "B", signal is almost idle and holds no neurologically-relevant 

information. Considering the high likelihood of sparsity in bio-signals, adaptive sampling suggests 

adjusting the sampling rate in real time and according to the signal's level of activity. This allows 

for sampling with Nyquist rate during periods with high level of activity and with a sub-Nyquist 

rate for the rest of time. Considering the overwhelming dominance of the "idle" periods compared 

to the high-activity periods, this results in a significant reduction in the acquired data volume, and 

consequently, the required throughput for wireless Tx. The word adapativeness comes from the 

fact that, each BMI's recording channel continuously adjusts its sampling rate according to signal’s 

level of activity, therefore, making the power consumption, also adaptive to the events occurrence. 
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Figure 1.6  EEG signal with events periods marked as A and idle periods as B 

An important challenge in adaptive sampling is accurate identification of high-activity periods. 

Thresholding is one the methods in which the incoming signal’s amplitude is compared to a set of 

pre-set thresholds to evaluate the magnitude of deviation from the signal's baseline and adjust the 

sampling rate accordingly, as illustrated in Figure 1.7. This method's performance is highly 

sensitive to proper selection of threshold values. A too-small threshold value could lead to 

identifying the majority of the recording as "high activity", hence achieving little to no data 

compression, while a too-large threshold could result in missing important neurological events. 

The relatively-high chance of missing all or part of a neurological event is in fact one of the 

major drawbacks of adaptive sampling. This is due to the fact that sampling rate is set according 

to the N previous samples. Therefore, for any event that follows a long period of idleness, there is 

a high chance that part or all of it is missed due to the latency in adjusting sampling rate. Figure 

1.8 illustrates this drawback graphically. As shown, while events with long period are almost fully 

captured, the shorter events are completely missed, making the method unreliable for applications 

where missing even one event could lead to severe consequences. 
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Figure 1.7  Concept of adaptive sampling  

 

Figure 1.8 An example of missing short high-activity periods in adaptive sampling 

1.3  Adaptive resolution 

The mentioned problem with adaptive sampling motivates us to look for another compression 

technique which can eliminate the risk of information loss, while still being able to leverage from 

signal’s information sparsity, i.e., adaptively adjust the data rate according to the amount of vital 

information signal holds. The technique that is proposed here, is adaptive resolution compression. 

In this technique unlike adaptive sampling, sampling rate is always kept at Nyquist rate, and 

alternatively only the resolution of the sampled data varies. This way, while the bit rate is reduced, 

there will be no risk of losing either short or long-period events. Figure 1.9 depicts the difference  
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Figure 1.9 Conceptual difference between adaptive sampling and adaptive resolution techniques 

between the concept of adaptive sampling, which was explained in section 1.2.4, and adaptive 

resolution discussed here. As shown, the main difference here is that the feedback signal which is 

the result of event detection, is fed to ADC's quantizer rather than the sampler, resulting in 

changing the quantization resolution and keeping the sampling rate at Nyquist. While the 

difference between the two methods looks minor and simple, implementing an adaptive resolution 

scheme introduces several challenges and complications in terms of designing a compatible front-

end, efficient design of a variable data converter, a loss-less event detection unit, and a low-latency 

resolution adaptation controller. It should be mentioned although the focus of this work is on neural 

signals, however, this compression technique is applicable for any sort of signal containing some 

sort of information sparsity or event sparsity in time-domain. As an example, many types of events 

in bio-signals other than neural signals such as; ECG, EMG, etc., show this type of sparsity and 

therefore the technique generality is not only applicable to various type of neural events but also 

it is expandable to other types of bio-signals. 

It should be mentioned that in addition to power saving through reducing total number of 

transmitted data, the constraint on bandwidth through this compression will be relaxed as well. To 

elaborate, because of reduction in overall number of data for a fixed duration compare to when the 
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technique is not used, data can be transmitted at a lower bit rate and therefore reducing the required 

bandwidth for transmission. 

1.4  Thesis Organization  

Chapter 2 will focus on the system-level implementation of the adaptive resolution compression 

technique, and includes system-level simulation results illustrating the proposed idea's efficacy in 

improving the recording system's energy efficiency. Chapter 3 will discuss the detailed 

implementation of the digital backend modules responsible for high-activity event detection, signal 

baseline calculation, and responsive resolution adjustment. These modules are integrated on a 

silicon IC and fabricated. The physical layout and experimental setup for this IC are also presented 

in this chapter. Chapter 4 will discuss the design procedure, detailed transistor-level 

implementation, and system- and circuit-level verification of a novel mixed-signal fully-dynamic-

power neural ADC developed as the recording front-end module for the presented system. 

 

 

 

 

 

 

 

 

 

 

 



15 
 

 

 

 

 

Chapter 2  

System-Level Implementation  
 

 

 

 

 

 

As discussed in chapter 1, the main focus of this work is to improve the energy efficiency of 

the implantable device by adapting its recording accuracy to the input signal's level of activity, 

without any meaningful loss of data. In this chapter, in order to understand the principles of the 

proposed idea, first, a few key definitions will be explained, and then the working principles of the 

mixed-signal front-end and the digital backend of the proposed architecture will be presented. In 

the end, the MATLAB simulation results and the potential efficacy of the proposed technique will 

be discussed. 
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(a) 

  

(b)  

Figure 2.1 An example of (a) high-activity event (b) noise interferences that unwantedly are detected as a high-

activity event[39] 

2.1 Background Theory 

2.1.1 Events in Neural Recording 

In this work, an event (or interchangeably a “high-activity event”) is defined as when the time-

domain amplitude of the neural signal experiences a considerable (i.e., above a predefined 

threshold) deviation from the "baseline", which is the average signal level during idle (i.e., no 

event) periods, Figure 2.1 (a). While these "high-activity" episodes could be due to many reasons 

such as background noise, interference, motion artifacts, stimulation artifacts, etc., their 
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appearance could also be associate with neurologically-relevant events such as an epileptic seizure, 

as shown in Figure 2.1 (b). If the threshold for identifying a period of the signal as a "high-activity 

event" is set low enough, it could be claimed with high certainty that the idle periods do not contain 

any critical information about neurologically-significant episodes, hence, capturing them with low 

accuracy will not result in any loss of critical information. Considering the information sparsity of 

neural signals in the time domain (in terms of the occurrence rate of "high-activity events"), this 

allows for a significant reduction in the required power for data acquisition as well as the required 

throughput for data transmission. Of course, the success in both keeping the data integrity and 

power/resource reduction heavily depends on how well the event thresholds are set. We will 

discuss the strategy and mechanism for threshold selection in due course. 

 

2.1.2 Neural ADCs  
 

The main tasks of the circuits designed for recording brain's neural activity are low-noise signal 

amplification and quantization. Once a neural signal is amplified and digitized, various types of 

signal processing could be performed on it. This is why conventional neural recording channels 

consist of a low noise amplifier and an ADC, as shown in Figure 2.2 (a). Despite the early success 

of this conventional approach, it was shown not to be suitable for massive integration (i.e., 

hundreds or thousands of recording channels on one chip) mainly due to the required silicon area 

for its implementation [13].  

To overcome the power scalability issues, various types of ADC are proposed for neural 

recording such as nonlinear, predictive or level-crossing ADCs. In [44] a nonlinear ADC 

introduced in which through an interior anti-log ADC, non-uniform quantization is achieved to 

reduce the amount of bit rate transmission. In [45], a predictive scheme is used to implement the 



18 
 

predictive ADC. In this ADC by predicting the incoming signal through the previous samples, 

incoming sample digital conversion in the SAR ADC is switched and done for a sub-range instead 

of digital full-scale range. This way, unlike previous ADC which reduces the power consumption 

through the reduction of data rate, the ADC power itself is scaled by burning lower power for when 

conversion is done in sub-range. In [46] another popular type of ADC called level-crossing ADC 

is used, in which output is generated each time signal passes a pre-set level along with the timing 

duration between two consecutive samples. The sampling in this type of ADC is done in a non-

uniform way and its power consumption depends on the rate of signal’s variations. 

Another type of ADC which has become popular in recent years for neural recording channels 

is neural ADCs or direct ADC architectures. In this type of neural recording front-ends (shown in 

Figure 2.2(b)), unlike conventional ones, both processes of signal amplification and digitization 

are performed in a single oversampling ADC stage. It has been shown that by avoiding the analog 

low-noise amplifiers and relying on the mixed-signal architecture of these ADCs, high-precision 

neural recording could be performed without the need for bulky non-scalable passive components 

(e.g., input capacitors used for AC coupling) [32]. Additionally, these oversampling ADCs are 

capable of achieving very high resolutions (e.g., >14 bits), at a reasonable power budget, 

particularly for applications that have a low input frequency bandwidth (i.e, a few kHz) such as 

neural signals. This allows for achieving a very high dynamic range for the recording circuit, which 

is a critical requirement if simultaneous recording and stimulation is to be conducted [33][58]. 

Most importantly for the purpose of this work, the power consumption of direct ADC architectures 

is fully dynamic, unlike the case for conventional architectures where the majority of the recording 

channel's power consumption was due to the static power of the low noise amplifier. This means  
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Figure 2.2 (a) conventional and (b) direct-ADC recording front-end concepts. 

that if the ADC's precision, hence its power consumption, is made adaptive to the input signal's 

level of activity, the power saving benefit is  

applicable to the entire recording channel, and not just a small portion of it (as in conventional 

architectures). 

2.1.3 Adaptive Resolution vs. Adaptive Sampling 

Prior to discussing implementation, it is important to clearly distinguish between the widely 

known concept of adaptive sampling and the proposed concept of adaptive resolution.  

As shown in Figure 2.3(a), in adaptive sampling, the controller adjusts the system's, sampling 

rate to capture the input signal with at least two different sampling frequencies of 𝑓  and 𝑓 , 

with 𝑓  being a super-Nyquist frequency.  If the controller recognizes that the input signal holds 

vital information, system will switch from 𝑓  to 𝑓 , and since 𝑓  is set to at least the 

Nyquist-rate ( 𝑓 ≥ 𝑓 =  2𝑓 ), all the information within the signal is captured. If 

the controller doesn’t detect an upcoming important event, the system’s frequency is switched 

back to 𝑓 , which is set at a sub-Nyquist-rate ( 𝑓 <  2f ), and therefore, signal is not  
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Figure 2.3 Comparison between adaptive sampling and adaptive resolution techniques 

fully captured. This data loss is acceptable since the input signal during idle periods is not carrying 

valuable information.  

As shown in Figure 2.3(a), the transmitter also sends data packages according to the two 

sampling rates. Therefore, for the idle periods, which are expected to be the majority of the neural 

recordings, the transmission rate, hence the transmitter's power consumption is reduced according 

to the sampling rate reduction. As discussed in Chapter 1, since transmitters are the most power 

consuming block of the implantable device, this power saving is significant and could enable the 

integration of many more recording channels on the chip for the same power budget. However, as 

it was mentioned in previous chapter, this method is not the best compression technique candidate 

for situations where there are short-period high-activity events, as system could completely miss 

that type of activity due to sub-Nyquist sampling, which could have dire consequences for devices 

with diagnostic applications.  
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The aforementioned problem, motivated the proposed technique called adaptive resolution. In 

this technique, instead of varying the sampling rate, quantization resolution adapts to the input 

signal's level of activity. Figure 2.3(b) depicts a high-level implementation of this idea using an 

oversampling ADC, which are particularly advantageous for implementation of a variable-rate 

data converter because they require the same low-resolution quantizer (e.g., in most cases a single-

bit quantizer such as a voltage comparator) irrespective of their targeted resolution. Indeed, the 

quantization resolution in these ADCs are set by the oversampling ratio (OSR) and the order of 

the loop filter. As such, by changing the clock frequency of the modulator, and without changing 

the quantizer, the quantization resolution could be varied dynamically. As such, the resolution 

variability comes at almost no extra power or area cost and no component overdesign.  

In contrast, for Nyquist-rate ADCs (e.g., a SAR ADC), the quantizer architecture and its 

components specifications, particularly those with static power consumption, (e.g., settling time 

of an OpAmp used for successive approximation) are set by the highest targeted resolution and 

reducing the resolution will not result in a proportionate power reduction. This comes at the cost 

of extensive area and power overdesign, since for most of the time the recording system operates 

in low resolution mode, due to the sparsity of high-activity events in neural signals. 

In addition to the aforementioned problem, in Nyquist-rate ADCs, the resynchronization and 

reconstruction of the sampled data with different resolutions is a complex task in the receiver, 

whereas in oversampling ADCs, all that needs to be done is to sync the decimator with the variable 

OSR, as will be described later. 

In Figure 2.3(b), the incoming data (V ) is either sampled with a high oversampling frequency 

(𝑓 ) or a low oversampling frequency (𝑓 ). In an oversampling ADC, there is a direct 

relationship between OSR and oversampling frequency (  𝑓 = 2𝑓 , 𝑓 = 𝑂𝑆𝑅 ×
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 𝑓  ). Also, there is a logarithmic relationship between the oversampling frequency and 

SQNR as shown in (2.1) 

                                     𝑆𝑄𝑁𝑅  =  3.01 × 𝐾 × (2𝐿 + 1) − 9.36𝐿 − 2.76,                                   (2.1) 

Where  

𝑂𝑆𝑅 = 2  and L = Order of modulator 

Therefore, by modifying the OSR, different sampling resolutions can be achieved. As shown in 

the figure, prior to being fed to the wireless transmitter, the output of the modulator is passed 

through a decimation filter resulting in the removal of high-frequency out-of-band noise and 

reducing the data rate to the Nyquist-rate. In this way, regardless of the resolution, unlike adaptive 

sampling, data packages are sent at Nyquist-rate (𝑓 ), and only size of each package is 

modified. Here, since data is oversampled with 2 different resolutions, there are some 

consideration that should be taken into account in designing the decimation filter, which will be 

discussed in the next section.  

It should be noted that while we described both adaptive sampling and adaptive resolution 

concepts with only two levels (for the sake of simplicity), both techniques could be implemented 

in a more sophisticated way where multiple levels of sampling rate or resolution are employed. 

Adopting the proposed strategy can significantly reduce the required transmitter's throughput, 

hence, the wireless transmitter power consumption. Applying this method to each recording 

channel, can further reduce the system’s overall power consumption, while assuring all 

neurologically-relevant events are captured. 
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2.2 Functional Implementation 

Implementation of the proposed technique is divided into two parts, the digital back-end, and 

the mixed-signal front-end. Each will be explained separately in the following sections. 

2.2.1 Digital Back-End 

Figure 2.4 depicts the top-level block diagram of the proposed adaptive-resolution neural ADC 

and the detailed block diagram of the digital backend units, which are the decimation filter (i.e., 

the N-bit Up/Down Counter + Down Sampler) and the adaptive controller. As shown, the 

controller receives the ADC's output as the input and decides for one of the two clock frequencies 

( i.e. 𝑓  and 𝑓  in Figure 2.3 (b)) to be selected as the output.  

The controller itself consists of an activity detection unit for identifying high-activity events in 

the neural signal, a Clock Selector unit for adjusting the oversampling frequency based on the 

input signal's level of activity, and a Baseline Calculator unit for tracking the DC level of the input 

signal and calibrating the activity detection accordingly. In the following section, these units are 

explained in detail. 
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Figure 2.4 Internal block diagram of the digital backend blocks of the proposed adaptive-resolution neural ADC. 

2.2.1.a Decimation Filter 

As discussed previously, in order to reconstruct signal’s quantized amplitude at Nyquist 

frequency, the modulator’s output bitstream needs to get averaged and down sampled (i.e., 

decimated). In the frequency domain, the combination of these two steps is similar to applying a 

low-pass filter with a cut-off frequency at the signal’s bandwidth (f ). In the presented system, 

the decimation is implemented by (a) using an N-bit up/down (U/D) counter, which its output 

value increases/decreases based on the modulator's bitstream (i.e., increases with a 1, and decreases 

with a 0), and (b) reading out the counter output every OSR clock cycles. This is equivalent to 

applying a moving average filter to a series of one-bit numbers ( modulator’s output bitstream 

which has a bandwidth of f = OSR × 2f ), and having an output for every OSR input value.  
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Given that for each resolution there is a specific OSR value to be able to decimate different 

resolutions, the U/D counter should be designed for the highest aimed resolution (refer to figure 

2.6(b), in which N is the highest resolution bit count). For lower resolutions, along with 

oversampling frequency, counter’s counting step size also should be adjusted, meaning that if for 

high resolution, counter increase or decrease its output value by 1 bit, for low resolution case, 

counter needs to increase/decrease the value by 2 , where M is the lower resolution bit count ( 

refer to Figure 2.3 (b)). 

 A  down sampler reads the output of the counter at the corresponding OSR rate ( OSR  for low 

oversampling rate or OSR  for high oversampling rate), as shown in Figure 2.3(b). In addition, 

signal’s baseline in analog domain (i.e. 0V) is the middle value of counter in digital domain, i.e., 

for an 8-bit counter, digitized signal’s baseline is 128(i.e., 8'b10000000). This way negative 

voltage values in analog domain will be translated into 0-127 range (i.e., 8'b00000000 to 

8'b01111111) of counter’s range, and for positive values, from 129 to 255 (i.e., 8'b10000001 to 

8'b11111111). Figure 2.5, depicts the explained mechanism more clearly.  
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Figure 2.5 Output of the N-bit U/D counter; counter is designed for the high resolution; the lower resolution is 

achieved by increasing the UP/DOWN counting step size. 

2.2.1.b Baseline Calculation 

A baseline calculator unit is also designed and included in the system that continuously 

calculates the DC level of the input signal and adjusts the signal fed to the activity detection unit 

to have a relatively constant DC level. The baseline is calculated as, 

                                                          𝐷𝐶 =  
× ×

                                               (2.2)            

where C represented the output of the N-bit U/D counter, 𝐷𝐶  is the previously calculated DC 

value, and W is an adjustable coefficient that decides how much weight we assign to the current 

DC value compared to the new data point (i.e., C) in calculating the new DC value. It should be 

mentioned that the baseline calculation is done every "A" cycles, where A is also adjustable by the 

user depending on the variability of the input signal.  

The obtained 𝐷𝐶  is then subtracted from the counter’s output, to maintain a relatively 

constant DC level for the signal fed to the activity detector. This unit is crucial as the down sampled 
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signal is compared to a set of fixed threshold levels. By adjusting the signal's baseline before 

feeding it to the activity detector, we effectively turn the fixed thresholds into dynamic threshold 

values that adjust themselves according to the signal's DC level.  

2.2.1.c Activity Detection 

As mentioned in section 2.1, the high-activity events detection is done using dynamic 

thresholding. Also, as discussed, accurate selection of the threshold values is critical in striking a 

better trade-off between minimizing data loss (i.e., no event loss) and maximizing the energy 

efficiency (i.e., maximum data compression). As shown in n Figure 2.4, the decimated data is 

continuously fed to the activity detection unit and is compared to the pre-set threshold levels by 

user. In order to prevent unnecessary clock adjustment due to noise/interference that might look 

like a high-activity event, the system employs a set of hysteresis band, along with the threshold 

levels, which are customizable by the user. 

The output of activity detection unit, which essentially is a one-bit command signal, is send to 

the timing control unit. The clock selector unit generates the oversampling frequencies ( 𝑓 , or 

𝑓  ) used in the system, and according to the result of the activity, chooses which clock 

frequency is sent to mixed-signal front-end. 

2.2.2 Mixed-Signal Front-End 
 

The mixed-signal recording front-end of the proposed system is a neural ADC, which as 

mentioned earlier, is built based on principles of oversampling ADCs. By implementing the 

recording front-end as a neural ADC, besides the inherent benefits of neural ADCs, (e.g., high DR, 

area and power efficiency, etc.), we leverage the fact that the entire front-end (i.e., amplification 

and digitization) is implemented in a single block with a fully dynamic power consumption. 
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Therefore, the proposed adaptive variation of oversampling clock frequency will result in adapting 

the power consumption of the entire recording front-end, and not just the quantizer.  

To put this into perspective, with a conventional recording front-end architecture (i.e., amplifier 

+ ADC), the amplifier has a static power consumption and any adaptivity in the ADC's sampling 

rate or resolution could only save part of the ADC's power, which is typically 10-20% of the total 

front-end power. While each recording front-end has a very small power consumption, recent 

works report close to 100 copies of these circuits integrated in an IC and the research community's 

target is to integrate hundreds to thousands of recording channel in each IC in the future. Taking 

that into account, a front-end architecture with fully-dynamic power that is adaptive to the input 

neural activity seems to become increasingly important in enabling potential scalability of future 

implantable neural interface microsystems.  

The proposed front-end architecture is aimed to achieve a maximum 8-bit recording resolution, 

while being able to handle large (e.g., 50mV) DC offsets and artifacts at the input. Figure 2.6, 

depicts the proposed ADC’s block diagram, which is a combination of a - and a  modulators. 

Compared to a conventional ΔΣ modulator, an integrator is added in parallel with the feedback 

path.  Therefore, the quantized output is first integrated before being fed back to the subtractor at 

the input. Due to the inherent low-pass behavior of the integrator in the feedback, its output (𝑤) is 

expected to contain the DC and low-frequency content of the quantized signal. When 𝑤 is 

subtracted from the input (u[n]), the input's DC is blocked and its low-frequency content is 

attenuated, effectively resulting in a high-pass transfer function for the overall system, which 

allows for high-frequency content such as the difference between two consecutive input samples  



29 
 

 

Figure 2.6 system-level diagram of the proposed Δ-ΔΣ front-end architecture 

 (hence, the additional Δ) to pass. Also, as shown, given that any DC at the input of an integrator 

results in its output saturation, the negative feedback structure ensures that the DC at the input of 

both integrators is always maintained at zero. 

 

Figure 2.7 Block diagram of the proposed Δ-ΔΣADC 

More important than the DC removal, the addition of the feedback integrator results in further 

shaping the in-band quantization noise by another order. Figure 2.7 shows the z-domain block 
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diagram of the presented ADC. Based on this block diagram, the signal transfer function (STF) 

and the noise transfer function (NTF) of the presented ADC can be written as,  

                                           𝑆𝑇𝐹(𝑧) =  
( )

( )
=

    
= (1 − 𝑧 )                         (2.3) 

                                      𝑁𝑇𝐹(𝑧) =  
( )

( )
=

( )  ( )  
= (1 − 𝑧 )                   (2.4) 

 

The NTF equation shows the second-order filtering of the quantization noise, while the STF 

shows the Δ modulation and that the signal is differentiated (i.e., (1 − 𝑧 )), hence its DC is 

removed. 

To efficiently implement the proposed design, the proportional and the integrative feedback 

paths can be combined into a single path using the algorithm described below. The result of the 

summation of the two feedback paths in Figure 2.6 for a random output v[n] is shown in Figure 

2.8. As annotated in the figure, v[n] represents the quantizer output, w represents the integration 

of v (increases by one for v=1 and decreases by 1 for v=0), and 𝑤 represents the sum of the two 

(i.e., v+w).  
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Figure 2.8 w results for random output bit sequence ( for w calculation bit 0 is equivalent to -1) 

The changes follow the pattern shown in table 2.1. Based on the output’s two consecutive bits  

(v[n] and v[n-1]) there are four different possibilities on how the value of 𝑤 changes. For instance, 

the sequence of “00”, decrease the value of 𝑤 by 1 step size ( -1), and the sequence of “01” increase 

𝑤 by 3 step size (+3). By using this algorithm, the two paths can be merged into as a single path. 

Table 4.1 ∆w for the four possible outcomes based on v[n] and its previous value v[n-1] 

 

Since the feedback signal is subtracted from the analog input, the digital step size variations 

must be converted to analog as well. This means a reference voltage step size should be chosen, 

and the step size variations (in this case ±1 or ±3) are applied based on that. The process of 

choosing the reference step size depends on three parameters: the maximum input signal amplitude 

(𝐴 ), the maximum input signal frequency (𝑓 ), and the oversampling frequency (𝑓 ). In 

order to make sure that the input signal is tightly tracked by the feedback path, the step size should 

be selected based on the slope of the input signal (which depends on both 𝐴  and 𝑓 ) in a way 

that the difference between u and 𝑤 is neither too large (low quantization resolution), or too small 

(slope overload). 
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Based on this, the relation between reference step size and the three mentioned parameters can 

be obtained as following 

                                    𝑆𝑖𝑔𝑛𝑠𝑙 𝑠 𝑆𝑙𝑜𝑝𝑒  =  𝐴𝐼𝑁sin (2𝜋𝑓𝐼𝑁𝑡)
𝑡=0

= −2𝜋𝐴𝐼𝑁𝑓𝐼𝑁                          (2.5) 

                   |−2𝜋𝐴 𝑓 | <
    

 →  
   

<   𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑠𝑡𝑒𝑝 𝑠𝑖𝑧𝑒           (2.6)  

Expression (2.5) is the maximum slope of a sine wave. In order for the integrating step sizes to 

follow input signal closely and to prevent slope overload, integrated step size value for each 

sampling duration ( ) should be bigger than the maximum slope of signal. This way the lower 

bound for the reference step size is defined (2.6). The upper bound for the reference step size value 

is also set in a way that it is close to target resolution LSB value. Through result of test simulations, 

to obtain desired SNR from the modulator, the upper bound value shouldn’t be more than 1.5 times 

of the lower bound value. 

2.3 MATLAB Simulation Results 

The described system was implemented in MATLAB and its efficacy in improving the system's 

energy efficiency was investigated. In this section, first the MATLAB-based functional 

implementation of the proposed mixed-signal front is described and simulation results showing its 

second-order noise-shaping behavior are presented. Next, the functional implementation of the 

presented adaptive resolution scheme is presented and its effectiveness in improving energy 

efficiency through loss less data compression is demonstrated using recordings from the CHB-

MIT scalp EEG database as test signals [35]. 
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In this system, we picked the two target resolutions to be 8-bit for high resolution recording and 

4-bit for low resolution. As discussed previously, these are arbitrary values and the proposed 

adaptive resolution scheme could be used with more levels of resolution, each set to an arbitrary 

number.  The SQNR of  a generic -ADC with order L was shown in (2.1). In addition, the 

general SQNR for any type of ADC with N-bit resolution is: 

                                                       𝑆𝑄𝑁𝑅  =  6.02𝑁 + 1.76                                                          (2.7) 

Using (2.1), and (2.7), and considering an L=2, the oversampling frequencies 𝑓 , and  𝑓  

required for the target resolutions are obtained as 

 

                                                                             

  

Considering that the maximum input signal’s frequency (𝑓 ) is 500Hz, both 𝑓 , and  𝑓  

can be calculated with respect to the obtained OSRs. 

                                               𝑓 = 𝑂𝑆𝑅 × 2 × 𝑓  =  32𝑘𝐻z                                             (2.10)      

                                                𝑓 = 𝑂𝑆𝑅 × 2 × 𝑓  =  8𝑘𝐻z                                               (2.11)              

Figure 2.9 depicts the frequency response of the proposed mixed-signal front-end that is tested 

with the calculated oversampling frequencies (input signal at 60Hz). The figure on the left shows 

the result for the case when the system is operating with high resolution. i.e. 8-bit mode, and the 

figure on the right shows the case that the system operates in the low resolution mode, i.e. 4-bit. 

As shown, the system shows a 2nd order noise shaping, where noise is pushed to the out-of-band  

(2.5) 
8-bit Resolution 

4-bit Resolution 

Target Resolutions 

SQNR=50                            
(2.6) 

(2.6) 
SQNR=25                 

(2.5) 

𝑂𝑆𝑅  = 32       (2.8) 

𝑂𝑆𝑅  = 8        (2.9) 
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Figure 2.9 Frequency response of the proposed mixed signal front-end in MATLAB, for 4-bit and 8-bit resolution 

from left to right  

frequencies by a slope of 40dB/decade. Also, the calculated SQNR, for each resolution, 

corresponds to the calculated SQNR in (2.8) and (2.9). 

The result of MATLAB simulations of the mixed-signal front-end and digital back-end is 

shown in Figure 2.10. The blue signal is the raw EEG fed to the system, and the green signal is the 

output of the presented ADC, sampled with two different resolutions. As shown, when signal’s 

amplitude is higher than a certain threshold level, green waveform closely tracks the original due 

to the employed high resolution. In contrast, when amplitude is lower than threshold, green 

waveform coarsely follows the signal due to the lower clock frequency utilized by the modulator. 

In addition, the red waveform depicts the baseline calculator result which is updated regularly. 

From the plot, it can be seen DC value is around 0V, meaning ADC’s output is also kept around 

the baseline. 
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Figure 2.10 EEG signal (top), the reconstructed output with adaptive resolutions (middle), and the automatically 

calculated baseline (bottom). 

In order to determine the efficiency of the method, a set of EEG recordings from CHB-MIT 

database, each containing a seizure event, are fed to the system. We expect not to miss any of the 

seizure events as they all are counted as high-activity events, hence, must be recorded with high 

resolution.  

Figure 2.11 depicts the result of digitization (middle) of 10 minutes raw EEG signal (top), 

with two different resolutions (bottom). In the bottom plot, “0” corresponds to time periods signal 

was sampled in low resolution, and “1” corresponds to when it was sampled in high resolution. 

The seizure episodes are marked on the plots. When the signal is in low activity region, meaning 

it’s lower than threshold level, it is sampled with low resolution, whereas, when the signal is out 

of this region, it is sampled with high resolution  
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Figure 2.11 An example of system’s response to an EEG signal with seizure 

Table 2.2 presents the total value of “1” s and “0” s as well as the percentage of their occurrence 

during seizures and non-seizure periods of the signal in Figure 2.11. As shown, the test signal was 

sampled with high resolution (8-bit resolution) for only 20% of the total time, and for the rest, the 

system operated in low-resolution mode. In addition, for more than half of the time high resolution 

sampling occurred during the seizure. Also for more than 90% of the total low resolution sampling 

durations, signal had no seizure. This shows the proposed model behaves as expected, i.e., 

system’s sampling resolution is adaptive to events occurrence. 

Table 2.2 Statistical summary of the simulation results presented in Figure 2.11. 

 

 

 

 

 

Total % in high resolution 
sampling mode = 20% 

Total % in low resolution 
sampling mode = 80% 

% in 
Seizure 

% in 
 Non-Seizure 

% in 
Seizure 

% in  
Non-Seizure 

53% 47% 6% 94% 
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Figure 2.12 An example of the proposed system’s response to an EEG signal containing a seizure episode. 

Figure 2.12 shows system’s output for another EEG test signal containing another seizure. 

Similar to the previous result, it can be seen in Table 2.3, more than half of the high resolution 

mode is happening within the seizure region, and in total for more than 70% of the total time the 

system is operating in low resolution mode. 

Table 2.3 Statistical summary of the simulation results presented in Figure 2.12. 

 

 

 

 

It should be pointed out that the dynamic thresholding technique does not imply seizure 

detection is an inherent feature of the system. Due to patient-to-patient variations as well as 

temporal variations, seizure detection is a complicated task often requiring complex data-driven 

algorithms [59][60]. In the presented system, the suggested technique is capable of determining 

high-activity events that could be an artifact, noise, interference, or a seizure, and adjusting 

Total % in high resolution 
sampling mode = 26% 

Total % in low resolution 
sampling mode = 74% 

% in 
Seizure 

% in 
 Non-Seizure 

% in 
Seizure 

% in  
Non-Seizure 

84% 16% 40% 60% 
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resolution of the system accordingly. Seizures are only selected as a show case for neurologically-

relevant events. 

Lastly, in order to evaluate the power efficiency of this technique, the system was tested for a 

total of 16 EEG epochs, each containing high activity seizures. To obtain a power efficiency factor 

for the saved power in wireless transmission, power consumption was calculated for two scenarios 

of with and without the proposed adaptive resolution.    

By calculating the total power consumed for each scenario, it can be seen that power 

consumption in the transmitter will be nearly halved in the second scenario. The overall power 

efficiency factor for the tested epochs was calculated as,            

                                   𝜂 =
     

     
=

×

. ×
 = 1.74               (2.12) 

This is equivalent to an average 43% energy reduction. It must be pointed out that this number 

could be even higher by (a) reducing the "low resolution" number of bits to 3 or 2, (b) by using 

more than two levels of resolution, (c) by adjusting the threshold values to make them less sensitive 

to high-activity episodes.  
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Chapter 3  

Digital Back-End On-Chip Implementation 
 

 

 

 

 

 

In the previous chapter, a behavioural system-level implementation of the proposed adaptive-

resolution recording channel was described. In this chapter, we will discuss the hardware 

implementation of the digital back-end, the physical implementation of the design in a standard 

CMOS sub-micron process, and the developed testbench and measurement setup for the fabricated 

chip. The digital blocks in this system were first implemented in register transfer level (RTL) using 

Verilog hardware description language (HDL). Next, using Synopsys Design Compiler [36], they  
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Figure 3.1 Top-level block diagram of the proposed recording channel and the detailed implementation of the digital 

blocks. 

were synthesized and optimized for gate-level implementation, and then were implemented and 

verified in layout-level using Cadence Innovus, NC-Verilog tools, and eventually entire design 

was physically verified and signed-off using Cadence Virtuoso tools. In the following sections, 

the implementation of each of these blocks is described and their simulation results are shown. 

3.1 Block-level Implementation  

Figure 3.1 depicts the top-level block diagram of in the proposed recording channel as well as 

the mixed-signal front-end (i.e., the modulator shown in yellow) and the digital back-end (blocks 

shown in blue). Except for the  modulator, all other blocks in this figure are fully digital and 

are implemented using TSMC 130nm standard CMOS digital cells and with the aid of the kit-

associated CAD tools. 
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3.1.1 Decimation filter 

Figure 3.2 shows the internal block diagram of the decimation filter, which is implemented 

using an 8-bit U/D counter that its output is down sampled to Nyquist-rate frequency ( 𝑓  ). The 

output of the  modulator which is a 1-bit digital signal is fed to the counter to set the direction 

of counting (up or down). Also the step size of the counter is set by one of the two control signals 

selected according to the modulator's clock frequency.  

As discussed in chapter 2, in order to reconstruct the input signal through the feedback path of 

the mixed-signal modulator, an appropriate voltage step size needs to be chosen (the details of the 

mixed signal front-end implementation is discussed in the next chapter). The voltage step size is 

chosen according to the desired signal-to-noise ratio (SNR). To reconstruct the signal with two 

different resolutions in the decimator, the counter’s counting step size needs to be set proportional 

to the voltage step size to achieve correct resolutions. 

 As an example, for 8 and 4-bit resolutions, if the voltage reference sizes are chosen as 20µV 

and 80 µV, the “HIGH RES. COUNTING STEP SIZE” and “LOW RES. COUNTING STEP 

SIZE” values in Figure 3.2, need to be set as 8’b00000001 and 8’b00000100, respectively. This 

means that for the high resolution, that is 8-bit, counter changes its value by the smaller step size, 

and for the low resolution, counter’s step size is 4 times larger ( 
 µ

µ
 = 4 ). Later during wireless 

data transmission, for high resolution sampled data, all 8 bits are sent, and for the low resolution 

case, only 6 bits are needed to be sent as the two LSBs' value never change. In addition, since the 

low-resolution mode has 4 bits of accuracy in this example, only 4 bits of the remaining 6 bits  
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Figure 3.2 Internal block diagram of variable-rate of decimation filter  

contain meaningful information, and the two MSBs do not change when operating in low-

resolution mode, hence, they will not be transmitted either.  

The reduction in the number of bits, as explained in previous chapter, will result in saving power 

during transmission. It should also be noted that by setting a flag at the beginning of the 

resolution’s change, the receiver will recognize whether the packages are 4-bit or 8-bit 

information. An automatically adjustable DC value is another input of the decimation filter in 

Figure 3.2. This input which comes from the baseline calculator unit, is constantly subtracted from 

the counter’s value to always set the reconstructed amplitude at a relatively-fixed DC level. 

3.1.2 Activity detection unit 
 

Figure 3.3 shows the operation principle of the activity detection unit and the generated outputs 

of this unit based on signal’s activity. The blue waveform represents the incoming digitized data 

from the output of the decimator. To determine the level of the activity of the signal, a set of 

thresholds are defined. The threshold levels as well as the size of hysteresis band are designed to 

be adjustable. The outcome of the thresholding process is "CLOCK SELECTOR". If signal's  
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Figure 3.3 Threshold levels and “CLOCK SLECTOR” flag value versus signal magnitude variations. 

magnitude becomes higher than the highest threshold level (i.e. “HIGH THRESHOLD LEVEL”) 

or lower than the lowest threshold level (i.e. “LOW THRESHOLD LEVEL”), signal is determined 

to have high activity, and therefore the “CLOCK SELECTOR” flag will be set to 1 which will 

change the system’s clock frequency to the high oversampling rate (𝑓 ), resulting in high-

resolution quantization. Similarly, if the signal’s amplitude falls between “MID-HIGH 

THRESHOLD LEVEL” and “MID-LOW THRESHOLD LEVEL” threshold levels, signal is 

determined to have low activity, resulting in “CLOCK SELECTOR” to be 0, and consequently, 

operating with 𝑓  that leads to low-resolution quantization. The hysteresis bands which are the 

green areas in Figure 3.3, are meant to prevent unwanted oversampling frequency changes for 

when the signal has very-short-time jumps in its amplitude which don’t really indicate activity 

change. When signal is in the hysteresis band regions, the “CLOCK SELECTOR” flag will be 

maintaining its value.  

Figure 3.4 shows the internal block diagram of the activity detection unit. The main inputs of 

this unit are the two threshold levels and the hysteresis band value, all adjustable by the user. 
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Figure 3.4(a) shows through subtraction/addition, the mid threshold levels are created from the 

two threshold levels and the hysteresis band value. In order to determine signal’s amplitude (i.e. 

“DECIMATOR OUTPUT”) with respect to the threshold levels, 2 main flags called 

“SUB_HIGH_BAND[9]” and “FLAG_HIGH_BAND” are introduced. Flag 

“SUB_HIGH_BAND[9]” is the sign bit of subtraction’s result of set threshold level (second input 

of subtractor, which is either set to “HIGH THRESHOLD LEVEL” or “MID-HIGH 

THRESHOLD LEVEL” through the multiplexer) and signal’s amplitude. Flag “FLAG_ 

HIGH_BAND” indicates where signal stands with respect to the set threshold level. If signal’s 

amplitude is lower than the set threshold level, this flag is 0 and if higher, it is 1. Figure 3.5 and 

Figure 3.4(b) depicts how this flag is set. 

 Figure 3.5, depicts how the blue arrow, which indicates the signal position, changes these two 

flags. As shown, if the set threshold level (indicated in red) is the 

“HIGH_THRESHOLD_LEVEL”, and the signal instantaneous magnitude is below this level, 

flags will become as “SUB_ HIGH_BAND[9]” =1, and “FLAG_HIGH_BAND”=0. Once signal 

goes above the “HIGH_THRESHOLD_LEVEL”, the two flags will change to 

“SUB_HIGH_BAND[9]” =0, and “FLAG_HIGH_BAND”=1, and consequently, the new set 

threshold level becomes the “MID-HIGH_THRESHOLD_LEVEL”.  

The two flags and the set threshold level will remain the same until the signal’s magnitude 

reduces to lower than this level, when the set threshold level is updated again to 

“HIGH_THRESHOLD_LEVEL” and flag “SUB_HIGH_BAND[9]” is changed to 1, and flag 

“FLAG_HIGH_BAND” to 0.  
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Figure 3.4 Simplified RTL implementation of the activity detection unit: (a) Setting mid-range threshold levels and 
signal position with respect to the high/low thresholds (b) determining the new value of flag “FLAG_LOW_BAND” 

and “FLAG_HIGH_BAND” (c) determining “CLOCK SELECTOR” value. 

All the above logic is simultaneously done on the signal instantaneous magnitude and the low 

threshold levels. The result of both flags “FLAG_HIGH_BAND” and “FLAG_LOW_BAND” is 

used to evaluate the signal’s position with respect to different regions indicated in Figure 3.3, and 

to set the “CLOCK SELECTOR” flag accordingly as shown in Figure 3.4(c).  



46 
 

 

Figure 3.5 Flags behavior for the activity detection unit with respect to threshold levels, figure only depicts for high 

threshold levels, same behavior for low threshold levels 
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Figure 3.6 Internal block diagram of the baseline calculator unit 

 

3.1.3 Baseline calculator unit 
 

Figure 3.6 shows the internal block diagram of the baseline calculator unit. As discussed in 

Chapter 2, the real-time moving DC value of the time-domain signal amplitude is calculated over 

a programmable period and is subtracted from the signal 's instantaneous magnitude before being 

fed to the activity detector. This will allow for detecting the actual short-time high-activity events 

independent of the signal's slowly-varying DC level. As shown in Figure 3.6, the decimator's 

output (i.e., the down-sampled counter's output) is the input of the baseline calculator unit, which 

is sampled every N Nyquist cycles. This sample is used to update the baseline value that is stored 

in a register using a weighted averaging process described below. “Absolute DC value” is the value 

of baseline before it is subtracted from 128 in order to create “DC Value” with respect to 

decimator’s original baseline. 

The value of N should be set in a way that the period between each amplitude reading for updating 

the DC value is neither too long nor too short. If the reading period is much shorter than the 

duration of a typical high activity period, there will be a chance that the large amplitude of the  
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high-activity event is mistaken as a change in the signal's DC level, even resulting in missing an 

event due to the raised DC level. Also if the duration between each calculation time is too long, it 

will take too long for the DC level to be updated, potentially resulting in either missing some of 

the events or detecting an entirely idle period as a high-activity period because of their high DC 

value, simply because the DC level change is captured too late.  

In addition to optimizing the reading period, incorporating the sampled data into previously-

calculated DC value is also of critical importance. To update the DC value based on a new sample, 

the current DC value, which is the result of all samples from the beginning of the recording until 

this moment, should have a much higher weight than the new sample. A small weight means that 

the DC could change dramatically every time a new sample is taken, especially if the samples falls 

exactly on a signal peak or trough. A very large weight will have the same effect as a very large  

N, i.e., results in a very slow DC change that could lead to the above-mentioned mis-detections. 

In this work, we used a 7-to-1 weighting based on our simulation results on pre-recorded offline 

EEG data. As shown in Figure 3.6, the value of N is programmable and can be adjusted post-

fabrication. 
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Figure 3.7 Logic of clock generator & selector unit 

3.1.4 Clock generator and selector unit 

Figure 3.7 shows the clock generator and selector unit. Using the output of the 8-bit counter, 

eight frequencies are available, which are binary divisions of the reference clock frequency (𝑓 ) 

that is adjustable by the user. As the highest required oversampling clock frequency is 64kHz, the 

reference clock frequency fed to the system was set to128kHz. The output of counter is fed to three 

multiplexer, which by the 3-bit select signals, i.e. “SEL_CLK_HIGH”, “SEL_CLK_LOW”, and 

“SEL_CLK_NYQ” from off-chip, clock frequencies 𝑓  , 𝑓 , and 𝑓   are set respectively. 

Also as shown, the “CLOCK SELECTOR” flag, , controlled by the activity detection output, 

selects the system’s oversampling frequency between two signals 𝑓  , and 𝑓 . 
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Figure 3.8 Overall block diagram of system 

3.2 Overall Back-end Integration and Implementation  

Figure 3.8 shows the overall block diagram of the implemented system. Table 3.1, shows 

system’s input values (e.g. threshold levels, hysteresis band, clock frequencies) for a test example. 

The system’s performance was validated using both gate-level and layout-level netlist. The 

following simulation results are obtained from layout-level netlist using Cadence NC-Verilog 

tools. 
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Table 3.1 Digital back-end input values 

INPUTS VALUES 

SEL_CLK_NYQ 4'b0110 

SEL_CLK_HIGH 4'b0001 

SEL_CLK_LOW 4'b0011 

HYSTERESIS BAND VALUE   5'b001000 

MID-HIGH THRESHOLD LEVEL 

VALUE   

8'b10001010 

MID-LOW THRESHOLD LEVEL 

VALUE   

8'b01110110 

HIGH RES. COUNTING STEP SIZE 8'b00000001 

LOW RES. COUNTING STEP SIZE 8'b00000111 

DC COUNTER VALUE 8'b00010011 

 

In this test, system’s input clock frequency, 𝑓  (Figure 3.8) is set at 128kHz , and by 

appropriately setting the clock selector flags (as shown in Table 3.1), 𝑓  is set to 1kHz, 𝑓 at 

32kHz and 𝑓 at 8kHz. Figure 3.9 is the simulation result for the clock generator block. 

Waveform 𝑓  which is the reference clock is set at 128kHz. Waveform 𝑓  is the nyquist sampling 

rate and is 1kHz. The “CLOCK SELECTOR” flag which comes from the activity detection unit 

selects the oversampling frequency. When this flag is 1, high oversampling frequency , 𝑓 (set 

at 32kHz) is the selected oversampling frequency of system , and when the flag is 0, low sampling 

frequency is 𝑓 (set at 8kHz). 
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Figure 3.9 Simulation results for clock generator unit 

 

(a) 

   

(b) 

Figure 3.10  Simulation results for activity detection and decimation filter unit 

 

Figure 3.11 Simulation results for baseline calculator unit 

 

 

  
MID-HIGH_THRESHOLD_VALUE_[7:0] 

MID-LOW_THRESHOLD_VALUE_[7:0] 

 
MID-LOW_THRESHOLD_VALUE_[7:0] 

MID-HIGH_THRESHOLD_VALUE_[7:0] 
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Figure 3.10 shows the simulation result of decimation filter and activity detection unit. It can 

be seen that the modulator’s 1-bit output (waveform Modulator’s_output) is read at its 

corresponding oversampling frequency ( 𝑓 or  𝑓 ). As explained in section 3.1.1, 

decimator’s counter’s value changes according to the low or high resolution step sizes. When 

system is in the low resolution mode (“CLOCK_SELECTOR”=0), it can be seen in Figure 3.10(a) 

and (b), counter’s output (waveform Decimator_counter’s_output) changes by 7 step sizes (as set 

in “LOW RES. COUNTING STEP SIZE”), and when in the high resolution mode, counter changes 

by 1 step size (as set in “HIGH RES. COUNTING STEP SIZE”). Counter’s output is then down 

sampled and its value is read at 𝑓  frequency (waveform Decimator’s_output). Decimator’s output 

is compared to the threshold levels. Since 138 and 118 are mid-high and mid-low threshold level 

values (for the scale of 0-255 with 128 being the baseline) and 8 is the value of hysteresis band, 

high and low threshold levels will be 146 and 110 respectively. It can be seen when decimator’s 

output is 133, oversampling frequency is set low (i.e., choosing 𝑓 ). Once decimator’s output 

becomes 97, oversampling frequency is changed to high (i.e., choosing 𝑓 ), since signal goes 

to the high activity region.  

Figure 3.11, depicts the result of simulation for baseline calculator unit. The DC value is 

calculated every 19 samples (as set in “DC COUNTER VALUE”). Once DC value is calculated, 

it is subtracted from the counter's output. In the figure, it is shown that the calculated DC value is 

-4 (i.e., 2's complement 8'b11111100), therefore, the counter’s output is shifted up by 4 before 

being fed to the activity detection unit (decimator’s output is 100 and then in the next nyquist clock 

edge, its value has changed by 5 (105), which 1 is for modulator’s bitstream and 4 for calculated 

DC value). 
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It should be noted that all the input values, (e.g. threshold levels, hysteresis band, DC counter, 

etc.) are set according to the target signal, and desired performance. For the case of this simulation 

by examining EEG data for various patients, it was seen through MATLAB simulations, the set 

input values give the desired results.   

3.3 Physical Layout 

The physical layout of the proposed digital back-end was implemented and optimized in 

Cadence Innovus tools, and chip sign-off process was done using Cadence Virtuoso.  

In table 3.2, digital back-end’s performance summary and specifications are provided. It should 

be pointed out that some of the blocks (e.g., counter for clock generation) are shared between 

channels and the listed total power consumption (i.e., 1.91 𝜇 W) decreases as the number of 

channels are increased. 

Table 3.2 Digital back-end’s specifications 

Spec.  

Tech. TSMC 130nm, 8 metal layers 

Supply 1.2V 

Max Acceptable Freq. 128kHz 

Total Power Consumption 1.91𝜇𝑊 @ 128kHz 

Net active Area of All Cells 92 × 92𝜇𝑚 

Total Number Of Combinational Cells 446 

Total Number Of Sequential Cells 110 
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3.3.1  Power overhead of Digital Back-end 

To look into the power overhead added to the design through the addition of the digital back-

end, power consumption in a typical implantable BMI without the implemented technique is 

calculated and through the efficiency factor obtained in chapter 2, the power overhead of the 

additional blocks compare to overall power saving is shown. 

A typical implantable BMI has 64 channels, with a maximum10kHz signal bandwidth, and an 

8-bit resolution. with a transmitter with power consumption of 1nJ/bit [43]: 

                                     2 × 10kHz × 64 × 8bits = 10Mbps                                                  (3.1) 

                                               × 10Mbps = 10mW                                                              (3.2) 

By using the proposed technique (for the case of 8-bit 4-bit resolution) 10mW will reduce by 

43%, meaning 5.7mW power is consumed by addition of less than 2µW×64=0.128mW ( if the 

digital back-end is added to each channel individually) which is considerably lower than the total 

power saved. Knowing that future direction of this field is towards integrating hundreds/thousands 

of channels on a single chip, the power benefits of this proposed scheme become increasingly more 

significant. 
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3.4 Chip Fabrication and Measurement Setup 

 

 

 

 

 

 

 

Figure 3.12 Chip’s layout and the micrograph 

Figure 3.12 shows chip’s shows the full-chip physical layout as well as fabricated micrograph. 

Figure 3.13 depicts the lab set up for chip measurement. The detail annotation and explanation of 

the measurement set up and PCB are discussed in appendix.A.3.  

 

3mm 

3mm 

3mm 

3mm 
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Figure 3.13 Lab set up for chip’s measurement test  
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Chapter 4  

Mixed-Signal Front-End Implementation 
 

 

 

In this chapter, block-level and transistor-level implementation of the proposed mixed-signal 

front-end will be presented. The transistor-level implementation and the time- and frequency-

domain verifications are done in Cadence Virtuoso tool using TSMC 130nm technology kit. Figure 

4.1 shows the top-level block diagram of the proposed recording channel that consists of a mixed-

signal neural ADC connected to the digital backend blocks that control the operation of the ADC 

to make its resolution adaptive to the input signal's level of activity. The implementation of the 

digital blocks was discussed in Chapter 3. In this chapter, we will discuss the detailed 

implementation and test results of the mixed-signal front-end circuit. As discussed in chapter 2, 

the front-end is expected to have an equivalent performance of a 2nd order  modulator, i.e. 

providing 40dB/dec noise shaping. In addition, the digital-to-analog converter (DAC) in the ADC's  
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Figure 4.1 Top level block diagram of the presented recording channel. 

feedback path of the modulator must be designed such that it can generate an output that closely 

follows the input signal's low-frequency dynamics, hence removes DC offset and drifts at the input. 

Table 4.1 shows the required design specification of the neural recording front-end. 

 

 

 

 

MIXED-SIGNAL 
FRONT-END 

DECIMATION FILTER 

ADAPTIVE RESOLUTION CONTROL 
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Table 4.1 Specifications of the neural front-end 

Spec. Target 

𝐃𝐑(dB) >50 

Input Range (V) 10µ-1m 

Bandwidth (Hz) 500 

Input DC drift 

Cancellation (V) 
>50m 

IRN(𝑽𝒓𝒎𝒔 (𝟏 𝟓𝟎𝟎𝑯𝒛)) <~5µ 

Input Impedance (Ω) >100M 

Power and Area Min. possible 

value 

 

In the following sections, the design procedure and the performance characterization of each of 

these blocks will be discussed. 

4.1 Digital-to-analog converter (DAC)  

In chapter 2, the principles of the 2nd order  modulator and its system-level behavior was 

discussed. Figure 4.2(a) shows the architecture of a discrete-time (DT) 2nd order  modulator , in 

which the input u(t) is applied to the second summing node and one of the inputs of the first 

summing node is made equal to 0. As discussed in Chapter2, this configuration results in a high-

pass shaping of the STF, which leads to removing unwanted DC offsets/drifts. It was also shown 

that by varying the feedback DAC's step size according to the modulator output bitstream, the  
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Figure 4.2 (a) Discrete time (DT) and (b) continuous-time (CT) 2nd order ΔΣ modulator block diagram with input 
arrangements that result in second-order noise shaping and first-order signal shaping (i.e., Δ modulation). Proposed 

mixed-signal front-end architecture 
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DAC effectively integrates the output bitstream and adds the result to the output bitstream itself 

(i.e., has the equivalent functionality of all blocks inside the dashed box of Figure 4.2(a)).  

In this design, the modulator is implemented in continuous-time(CT) domain, meaning that the 

input signal is sampled after being passed through the loop filter (Figure 4.2(b)). This is mainly to  

take advantage of the inherent anti-aliasing of CT modulators. In terms of the block diagram, the 

main difference between a standard discrete-time (DT) modulator and its CT counterpart is the 

DACs with the pulse shape P(t) (the pulse shape function P(t) could be various depending the 

application) that are introduced in the feedback paths of the CT modulator. The addition of the 

DACs makes the impulse response of the CT and DT modulator’s loop filter different, which 

ultimately causes difference in system’s behavior for the same order DT and CT. In order to 

maintain the same system behavior, the loop filter of both systems must become the same. Because 

of this, a “k” coefficient for each DAC is introduced, and by choosing proper values for these 

coefficients, CT and DT modulators show similar behavior [34]. In addition, with this structure, 

stability issues introduced in oversampling ADCs are avoided since stability concerns for this type 

of ADC are more of a concern for orders and quantization levels above two. 

The annotations on Figure 4.2 (b) shows how each set of blocks are implemented using actual 

electronic circuit blocks. Figure 4.2 (c) shows how these blocks are connected together to form the 

proposed modulator with a single-ended input. Figure 4.2 (d) shows the fully-differential version 

of the proposed design. The design consists of a differential-difference transconductance amplifier 

(DDTA) connected to a capacitor (𝐶 ) to form a gm-c integrator stage, followed by a voltage 

comparator that acts as the 1-bit quantizer, and a variable-step integrating-summing DAC in the 

feedback path that is supposed to add the output bitstream with its integration and feed the result 

to one of the DDTA's inputs. 
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Figure 4.3 Internal architecture of the variable-step integrating-summing DAC 

Figure 4.3, shows the internal block diagram of the above-mentioned integrating-summing 

DAC. The modulator's output, which is a stream of 1s and 0s (v[n]) is fed into a voltage level 

selector unit. In this unit depending on the sequence of the last two bits (as discussed in detail in 

chapter 2) one of the two voltage step sizes (voltage level =1× step size, or voltage level =3× step 

size) is chosen. Depending on the step size, a rising voltage step with a magnitude of (20mV or 

60mV) will be created by the voltage level selector, which is shown as  𝑉  in the Figure.  

When S1 is closed and S2 is open, 𝐶  and 𝐶  will be in series with each other, therefore, they 

form a capacitive voltage divider that results in changing the node voltage of 𝑢(t) by ×

 𝑉 . This change could be an increase or a decrease, depending on the direction of the step 

voltage being positive or negative, respectively. By choosing 𝐶  to be much smaller than 𝐶 , the 

step size voltage could be made arbitrarily small. In this work, for the resolution of 8-bit we 

targeted a step size of 20µV, hence chose 𝐶 =10fF and 𝐶 =10pF.  
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The above-described circuit only works for one cycle. Once the  𝑉  is reset to zero to be 

ready for the next positive/negative step, 𝑢(t) 's voltage changes accordingly with the same  

ratio, unless S1 is open (hence, the reason for having S1). This way, reseting  𝑉  will not affect 

𝑢(t)'s voltage. However, since the left plate of 𝐶  is floating, any change in 𝑉  due to reseting 

will be copied on the left plate of 𝐶 . This is because 𝐶 's current (𝐶 ) is zero, thus 𝑑𝑉 is zero, 

hence the voltage across 𝐶  must remain constant. This is a serious issue because when we want 

to close S1 in the next cycle, the two ends of the switch have different voltages, hence will result 

in a significant charge to be pulled/pushed to the 𝐶 , hence changing the 𝑢(t)'s voltage and 

ruining the entire process. 

To prevent this, we need to make sure that the 𝑢(t)'s voltage is copied onto the 𝐶 's left plate, 

right before S1 is closed. As such, the OTA-based voltage buffer and S2 are added to the circuit 

to perform the voltage copying. 

Finally, the bottom plate of the 𝐶  is connected to the same  𝑉  as the third terminal of the 

differential difference transconductance amplifier shown in Figure 4.2(d). This will ensure that the 

low-frequency (i.e., DC offset or drift) difference between the 3rd and 4th inputs of the differential 

difference stage is equal to that of the 1st and 2nd inputs (that are connected to the electrodes), 

which will be removed by the differential-difference structure. 

To minimize the switches (S1 and S2) non-idealities (e.g., charge injection), the size of 

transmission gates is minimized. Also, in designing the OTA of this circuit, to have the voltage of 

the positive and negative inputs as close as possible (less than 5µV difference is accepted in this 

design, considering the targeted resolution), the voltage gain was set to >60dB. Additionally, the 

unity gain bandwidth (UGBW) of the open-loop amplifier should be high enough so that when  
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Figure 4.4 Telescopic OTA used in the DAC circuit 

used in buffer configuration, the OTA's output is settled before S2 is turned off ( less than half of 

the highest oversampling period, i.e., 
×

).  

Figure 4.4, shows the OTA circuit used in the DAC. Table 4.1 shows each transistor’s size and 

bias current in the circuit. 
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Figure 4.5  Frequency response of the designed OTA. 

 

Table 4.2 Size and bias points of the DAC’s OTA 

MOSFET NO. W/L 𝐈𝐁𝐈𝐀𝐒 (A) 
M1 1.13 µ /1.1µ 1.6µ 
M2 330n/230n 800n 
M3 330n/230n 800n 
M4 810n/1.13µ 800n 
M5 420n/2.3µ 800n 
M6 420n/2.3µ 800n 
M7 455n/9.13 µ 800n 
M8 455n/9.13 µ 800n 
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Figure 4.5 depicts the frequency response of the OTA. DC gain is 62 dB, UGBW is 318kHz 

(>2 × 𝑓 =128kHz) and power consumption is 1.9µW. At settling time, the OTA has a 

difference less than 5 µV between its two input nodes, making the design compatible with the 

mentioned requirements.  

4.2 Integrator circuit (𝐺 -C stage) 

The input integrator in this design is a 𝐺 -C stage, i.e., a voltage-to-current converting OTA 

followed by an integrating capacitor. The main requirement for the 𝐺 -C stage is to ensure that it 

performs like an ideal integrator for the signal bandwidth of interest. This means that the 3-dB 

bandwidth (which is 0Hz in ideal integrators) should be small enough for system to be able to 

integrate and hold OSR number of samples (for 1/𝑓  duration) to eliminate the accumulated 

error during this time.  

In chapter 2, based on the SQNR equation, it was calculated that OSR=32 for input signal with 

𝑓 =500Hz is sufficient to achieve 8-bit resolution.. However, in a non-ideal system, 

quantization noise is not the only noise added to the system (e.g., thermal and flicker noise of 

passive and active components), therefore to achieve the targeted resolution, a higher OSR is 

adopted to further reduce the quantization noise so that the targeted resolution can still be achieved 

after considering the other noise sources. The highest OSR in this design was chosen to be 64, thus 

the highest sampling rate of the system is equal to 64kHz ( 64 × 2 × 500𝐻𝑧 = 64𝑘𝐻𝑧). Based on 

these values, the 3-dB bandwidth for the system is calculated as,  

                                                      𝐵𝑊 < = = 1𝑘𝐻𝑧                                           (4.1) 
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Figure 4.6 Detailed schematic of the G -C circuit 

which is sufficient for recording bio-signals such as EEG, ECoG (Electrocorticogram) and iEEG 

signals with maximum frequency of a few hundred Hertz. 

Figure 4.6 depicts the architecture of the  𝐺  stage, which is implemented as a current mirror 

amplifier with a differential difference configuration.  In this configuration the difference between 

the two input pairs 𝑉 − 𝑉  and 𝑉 − 𝑉  is amplified, hence it lowers the possibility of 

OTA being in its nonlinear region.  
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In order to choose the bias currents and sizes of the transistors, equations (4.2) to (4.4) which 

give an estimation for the total value of IRN power, output impedance, and 𝐵𝑊  of the OTA, 

respectively, should be taken into consideration.  

                            𝑉 ≈ 8𝐾𝑇𝛾(
, , ,

+ ,

, , ,
+ ,

, , ,
+ ,

, , ,
)                                (4.2) 

                                                          𝑅 ≈                                                           (4.3) 

                                                          𝐵𝑊 ≈
( )

                                                       (4.4) 

In this design, the targeted integrated IRN for the  𝐺 -C stage is aimed at <5µ𝑉 . This is to 

ensure that the total noise from the recording circuits is equal or less than the noise that already 

exists at the recording site (i.e., the background noise [37]), In addition to the input-referred noise, 

other design targets were a 3-dB bandwidth of 1kHz, and simultaneous maximization of input 

impedance and minimization of power consumption and area.  

Using the g /id design approach, bias points were chosen in a way that: 1) input stage’s 

transconductance efficiency is maximized, while the gm of the other stages were reduced to 

minimize their effect on the input-referred thermal noise; 2) output stage’s transistors’ lengths (L) 

were increased to maximize the value of output impedance; and 3) input stage L were increased to 

reduce the effect of flicker noise , 4) input transistor were DC-coupled to the electrodes to both 

maximize the input impedance (i.e., gate impedance) and CMRR, and minimize the required area 

(no need for bulky decoupling capacitors [61]).  

The DC-coupled inputs also allow for adding chopping switches at the input (for flicker noise 

and offset removal) without the concern for input impedance reduction due to input decoupling 

capacitors [62]. To complete the integrator, a capacitor (𝐶  in Figure 4.6) was connected to the 
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differential output of the Gm stage. The capacitor value was chosen 500fF, resulting in a bandwidth 

of 20Hz. Table 4.2 shows the circuit’s transistors bias currents and sizings. 

Table 4.3 Size and bias points of G  stage amplifier 

MOSFET NO. W/L 𝐈𝐁𝐈𝐀𝐒 (A) 

M1 1.9µ /10µ 500n 

M2 1.9µ /10µ 500n 

M3 3.3µ /20µ 250n 

M4 3.3µ /20µ 250n 

M5 3.3µ /20µ 250n 

M6 3.3µ /20µ 250n 

M7 11µ /20µ 500n 

M8 11µ /20µ 500n 

M9 11µ /20µ 500n 

M10 11µ /20µ 500n 

M11 11µ /20µ 500n 

M12 11µ /20µ 500n 

M13 2.6µ /20µ 500n 

M14 2.6µ /20µ 500n 

M15 557n /20µ 500n 

M16 557n /20µ 500n 
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Figure 4.7 Detailed schematic of the (CMFB) circuit that is shown as; A  in the G -C circuit. 

 

Table 4.4 Size and bias points of the CF amplifier 

MOSFET NO. W/L 𝐈𝐁𝐈𝐀𝐒(A) 

M1 11.5 µ /10 µ 500n 

M2 11.5 µ /10 µ 500n 

M3 5.41 µ /10 µ 250n 

M4 5.41 µ /10 µ 250n 

M5 5.41 µ /10 µ 250n 

M6 5.41 µ /10 µ 250n 

M7 393n /15µ 500n 

M8 393n /15 µ 500n 
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Figure 4.8 Frequency response of the designed G -C stage. 

To ensure proper DC biasing at the differential outputs of the Gm stage, as shown in Figure 4.6, 

a common-mode feedback (CMFB) circuit was used. The CMFB circuit senses the DC at the 

output nodes and applies feedback to the gates of M15 and M16. It's detailed transistor-level 

schematic is presented in Figure 4.7. In addition, to stabilize the integrator, two 2pF compensation 

capacitors were used in the CMFB circuit. Table 4.3 shows CMFB circuit transistors bias currents 

and sizings. 

Figure 4.8, shows the frequency response of the integrator. It has a DC gain of 83dB, with a 3-db 

Bandwidth of 20Hz, and a phase margin of 40 degrees. 
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Figure 4.9 Power spectral density of the IRN of the designed G − C stage. 

Figure 4.9, depicts the power spectral density of the IRN of the 𝐺 − 𝐶 stage. Corner frequency 

is around 32kHz, with noise floor of 161
√

. The integrated IRN over the band of interest (1-

500Hz) is 4.8µV, and the total power consumption is 3.6 µW. Table 4.4 shows the performance 

parameters of the designed 𝐺 − 𝐶 stage. 

Table 4.5 performance parameter of the G − C stage 

Spec.  

𝑽𝑫𝑫(V) 1.2 

Power(W) 3.6µ 

𝑹𝑶𝑼𝑻 (Ω) 10G 

𝒁𝑰𝑵𝑪𝑶𝑴
(Ω) ( ~0 Hz) 135G 

𝒁𝑰𝑵𝑫𝑰𝑭𝑭
(Ω) ( ~0 Hz) 216G 

CMRR(dB) >200 

IRN(𝑽𝒓𝒎𝒔 (𝟏 𝟓𝟎𝟎𝑯𝒛)) 4.8µ 

Bandwidth (Hz) 500 
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Figure 4.10 Transistor-level schematic of the StrongArm voltage comparator used in the proposed mixed-signal 

front-end. 

4.3 Voltage comparator 

StrongArm configuration was chosen to implement the 1-bit voltage comparator, shown in 

Figure 4.10. Our simulation results show a hysteresis band < 7µV, and conversion speed higher 

than 64kHz, which is higher than the modulator's highest targeted oversampling frequency. The 

average power consumption of the comparator is 16nW when clocked at max required speed of 

64kHz.  
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Figure 4.11 Block diagram of the  modulator 

4.4 Simulation results 

Figure 4.11, depicts the overall block diagram of the presented modulator. Circuit-level 

simulation and verification were done using Cadence ViVA and MATLAB tool. In order to test 

the system, a sine wave (amplitude: 1mV, Frequency: 500Hz) with dynamics similar to a typical 

iEEG signal was fed to system as one of the inputs (𝑉 , with 𝑉  = 𝑉 =  ), and the delayed 

estimated replica was observed to be successfully reconstructed by the modulator at the output of 

the summing-integrating feedback DAC (𝑉 ). 

Figure 4.12 shows the high-frequency output bitstream (i.e., the comparator's output; in this 

simulation due to the non-ideal effects introduced by the comparator in the 2nd order CT delta 

sigma modulator, which is the unwanted delayed introduced in the modulator with respect to DAC, 

the system-level simulation was conducted with an ideal comparator) as well as the input signal 

connected to the positive input and the reconstructed signal at the output of the feedback DAC.   
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Figure 4.12 V  delayed version of the input (V ) made from the Modulator’s output using the proposed DAC 

Figure 4.13 shows the zoomed version of these signals. It can be seen that how the step sizes 

are integrated to follow the input signal. As discussed earlier, it is expected if the bits are a 

sequence of [0,1] or [1,0], the step sizes should be 3 times higher than the reference step size, and 

when the bit sequence is [0,0] or [1,1] original reference step size should be applied. In Figure 

4.13, it is shown that the step size is slightly higher than 3 times, (around 4 times). This is due to 

the fact that as mentioned earlier, in order to have the same result for DT and CT modulator, loop 

filter of both should have similar impulse response and that is done by adjusting “k” coefficients. 

Result of our simulations showed for a CT delta sigma, in order to have similar SNR results to DT 

counterpart, step sizes should increase around 4 times. This is equivalent of setting the correct 

coefficients for DAC functions, in order to have similar loop filters.  
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Figure 4.13 Step size integration according to modulators output bit stream sequence 

Figure 4.14 depicts the system’s input DC drift cancelation through the proposed DAC 

architecture. As it shown, differential input signal (𝑉 -𝑉 ) with 50mV DC offset is closely 

followed by the differential feedback signal (𝑉 - 𝑉 ) after around 40ms delay.  
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Figure 4.14 Input DC drift cancelation through the proposed DAC architecture 

To verify the system’s resolution, FFT of the modulator’s output bitstream was taken for the 

two cases with target resolution of 4 bits and 8 bit. As mentioned earlier in this chapter, to take the 

effect of other noise sources into consideration, OSR was doubled; e.g., in theory for the target 

resolution of 8-bit resolution, OSR was calculated 32, however, for the nonideal system, OSR was 

increased to 64. Figures 4.14 and 4.15 show the FFT results for 4-bit and 8-bit resolution, 

respectively. The test was done by feeding a sine wave with frequency of ~500Hz and 𝑉  of 

2mV (similar to the maximum of an iEEG signal’s) to the modulator. For the 4-bit resolution, 

OSR=16 and 𝑓 =16kHz, and for the 8-bit resolution, OSR=64 and 𝑓 =64kHz were selected. It 

can be seen in the FFT results that the SNR is obtained accordingly. As it was also previously 

mentioned, due to nonidealties of the feedback DAC, the integrated step sizes are not completely 

equal, therefore, the results include a small unwanted DC coefficient. The effect of this unwanted 

drift is eliminated by the digital back-end circuit using the baseline calculator unit (refer to chapter 

3).  

V -V  V -V  
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Figure 4.15 FFT of the modulator’s output for OSR=16 (4-bit resolution) 

 

Figure 4.16 FFT of the modulator’s output for OSR=64 (8-bit resolution) 

Table 4.6 depicts the circuit-level result of the implemented circuit. The overall power 

consumption of the mixed-signal front-end is 5.6µW and overall input referred noise is 5.9(µV ) 
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and maximum input dc drift is around ±50mV which are close to the target performance in table 

4.1. The result is also compared to several other similar works. 

Table 4.6 Performance comparison with the state of the art.   

Ref. VLSI’17 

[40] 

JSSC’18 

[41] 

JSSC’17 

[42] 

This work 

Process 180nm 65nm 40nm 130nm 

𝑽𝑫𝑫(V) 1 0.8 1.2 1.2 

Power/Channel(W) 8µ 0.8 7µ 5.6µ 

𝒁𝑰𝑵𝑫𝑰𝑭𝑭
(Ω) ( ~0 Hz) 30M NR ∞ 216G 

CMRR(dB) NR 81 66 >200 

Peak Input 100mV >200mV ±50mV ±50mV 

IRN (𝑽𝒓𝒎𝒔) 1.6µ 1.6µ 5.2µ 5.9µ 

Bandwidth (Hz) DC-500 DC-500 1-200 1-500 

* Results from this work are from Cadence simulations. Results from [40-42] are measurement results. 
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Chapter 5  

Conclusions and Future Directions 
 

 

 

 

 

 

5.1 Conclusion 

This thesis presented the design, implementation, and characterization of a novel mixed-signal 

neural recording channel architecture for implantable BMIs that is capable of conducting input-

activity-adaptive data compression, leading to significant energy efficiency improvement for 

implantable BMIs. Motivated by the growing demand for an ever-increasing number of neural 

recording channels, data compression for low power implantable sensing devices has been a 

popular research topic in recent years. We reviewed both lossless and lossy data compression 

techniques in this work and discussed their advantages and disadvantages in terms of compression 

factor, being generic vs application-specific, computation resource requirements, and data loss. It 

was shown how input-adaptive techniques offer a generic loss-less solution with a reasonable 

compression ratio and computational resource requirements. It was also shown how the benefits 

of such adaptive techniques could be fully leveraged when they are applied to fully-dynamic 

mixed-signal direct-ADC front-end architectures instead of conventional architectures.  
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Accordingly, a novel mixed-signal oversampling direct-ADC architecture with input-adaptive 

quantization resolution was proposed. First, the design and MATLAB-based functional 

implementation was discussed. It was shown theoretically how through adaptive resolution 

compression technique, the power consumption for transmission can be significantly reduced. 

Additionally, it was shown that by leveraging an oversampling - within the architecture, it is 

possible to (a) remove the unwanted DC offsets and drifts at the input, which makes the front-end 

circuit needless of large DC coupling capacitors, take advantage of 2nd order noise shaping, which 

allows for significant reduction in the oversampling frequency , hence the overall dynamic power.  

The MATLAB simulation results on a set of prerecorded human patients EEG recordings 

consisting of seizure episodes, showed that the proposed approach, at its simplest most-basic form 

of 2-level resolution, can achieve transmission power reduction by 43%, without losing any of the 

neurologically-relevant events. Significantly higher power reductions could be achieved through 

multiple-level resolution adjustment as well as more aggressive bit reduction, of course, at the cost 

of either a higher computational complexity, slight data loss, or higher power consumption. 

Both the mixed-signal front-end and the digital backend modules of the proposed architecture 

were designed using Cadence and Synopsys CAD tools and a standard 130nm CMOS technology 

kit. The performance of the digital backend, responsible for input activity level evaluation and 

responsive control of the front-end module, was verified using post-layout simulations. It was 

shown that how system can detect the incoming signal’s high activity intervals using a set of 

threshold bands, and also how it adjusts the front-end’s oversampling clock frequency accordingly. 

The power consumption of the implemented back-end was measured to be 1.91µW and its total 

active area of 92×92µm.  
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For the mixed-signal front-end, a novel architecture for the system’s DAC was proposed in 

which one of the summing stages and integrator were merged and by adding appropriate voltage 

steps, the delayed version of the incoming signal was constructed with high precision. The results 

of simulation in VIVA and MATLAB showed that proposed front-end is capable of achieving both 

targeted quantization resolutions through simple clock frequency adjustment that is controlled by 

the activity evaluation unit in the digital backend module. 

5.2  Statement on contributions 

The proposed adaptive resolution algorithm development, its behavioral and system level 

implementation in MATLAB as well as HDL implementation are done by the thesis author. 

The digital chip implementation from Verilog coding to physical layout and steps related to 

chip sign off are performed by the author. 

The proposed novel neural ADC architecture as well as the proposed energy-efficient DAC 

built into it are contributions of the author.  

All circuit designs, implementations, verifications and tests presented in this thesis are done 

by the author.  

5.3  Future work 

The proposed design shows a great potential for the low power implantable brain devices. 

However, the current state of the work has room for more improvement in order to be fully 

implemented and possibly commercialized in future. In the following sections some of the major 

improvements and also problems regarding the proposed design that can be investigated are 

discussed.  
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5.3.1  Improvement of the non-ideal effects on the front-end 

As discussed in chapter 4, the proposed design is a CT 2nd order modulator. CT  modulators, 

especially one with orders higher than one, introduce many non-idealities to the modulators 

performance. In this work, it was seen that due to the effect of delay between DAC and comparator, 

the performance of the modulator was degraded, and the results when using an ideal comparator 

in the circuit, were closer to the expected ones. A short-term objective is to trim the comparator 

stage performance in order to get the desired results for the system and physical implementation 

of the front-end. 

In addition, due to adaptive nature of the system, the working clock frequency of system is 

continuously changing. When the rate of the frequency change significantly increases, there is a 

possibility of introduced nonlinearities in system’s performance especially in the decimation filter 

in which the counting value will be changing with a high rate and so this could introduce unwanted 

effects in the reconstructed signal. One of the main focuses of the future works of this system is to 

further analyze and examine the system for extreme situation and the effect of nonlinearities seen 

in system due to that.  

5.3.2   Improvement on the signal transient recovery 

In the proposed design, it was shown that any kind of drift (unwanted DC on the neural signal) 

can be recovered with the proposed modulator. In general, it is desired to recover these drifts as 

fast as possible. In this current design, the recovery speed is heavily related to the size of the step 

that is chosen. The higher the step sizes, the faster the drift is canceled. In this design, it was shown 

that the reference step sizes are set based on a relation between the neural signal’s amplitude, 

oversampling rate and nyquist frequency; in other words, the desired resolution is the determining 
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factor in choosing the step sizes. In order to overcome the drift, system can introduce a mechanism 

by which it significantly increases the step size temporary until the undesired drift is canceled. 

This mechanism need a predication unit that predicts an upcoming drift. This a unit that can notably 

improve the transient recovery speed of unwanted drifts on the signal. 

5.3.3   Low power transmitter and data packaging 

In this system, it was seen that the power is changed adaptively according to the signal’s 

activity. This mechanism can be used to implement a custom integrated RF transmitters so that the 

transmitters power is also adaptively changed according to system’s sampling rate. Proper data 

packaging techniques can be introduced to make data transmission with different resolution as 

efficient as possible. 

5.3.4  Multi-channel implementation 

Besides the above-mentioned features and many other features that could be added to the 

proposed architecture, a clear next step to show the efficacy of this design in a more realistic setting 

is to develop an IC that houses many (e.g., >100) of these channels as well as a wireless data 

transmitter to demonstrate its energy efficiency using in-vitro or in-vivo experiments. 
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Appendix A  
 

A.1. MATLAB code of the described system 

close all 

%%%start of initialization 

% read data 

v_in1=data_array(486400:640000); 

v_in = v_in1; 

%up sampling data 

up_sample_factor=125; 

v_in = upsampler (v_in , up_sample_factor); 

vin_size_vec = size(v_in); 

vin_size = vin_size_vec (1,1); 

v_amp = zeros (size(v_in)); 

v_out = zeros (size(v_in)); 

h_count= zeros (size(v_in)); 

%adc feedback step sizes 

del_h=20; 



87 
 

del_l=80; 

del=0; 

%reconstruction in decimator 

del_res_h=20; 

del_res_l=20; 

del_res=0; 

integrator=0; 

integrator_out=0; 

s=vin_size; 

out_bitstream=zeros(1, s); 

outDAC=zeros(1, s); 

FB_out=zeros(1, s); 

FB_out_out=zeros(1, s); 

reg=[0 0]; 

j=0; 

down_sample_counter = 0 ; 

up_sample_counter=0;10 
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DC_offset = 0 ; 

DC_offset_record = zeros (size(v_in)); 

threshold_1 = 5; 

threshold_2 = 10; 

mid=0; 

index=1; 

time_step_size = 0; 

Decimator_counter_integrator=zeros (size(v_in)); 

Decimator_counter_integrator(index)=0; 

Quantizer_out = 0; 

l=0; 

h=0; 

%%%End of initialization 

 

%%%system (front-end and back-end) 

while index<vin_size 

      %ADC comparator output  
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      comp_out=(v_in(index)- FB_out_out(index-time_step_size));  

      %Integrator in the forward path 

      integrator=integrator_out+comp_out; 

      %If the integrator in forward path exceeds 1.2v, it goes to saturation area      

      if(integrator>=1200000) 

      integrator_out=1200000; 

      elseif (integrator<=-1200000) 

      integrator_out=-1200000; 

      else 

      integrator_out=integrator;  

      end 

       %Quantization 

       if(integrator_out>=0) 

          out_bitstream(index)=1; 

          Quantizer_out = 1; 

       else  

          out_bitstream(index)=0;  
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          Quantizer_out = -1 ; 

       end 

       %Two consecutive bits is stored 

       reg(2)=reg(1); 

       reg(1)=out_bitstream(index); 

      %Integrator output based on two consecutive bits 

      if( reg(2) ==0 && reg(1)==0) 

          FB_out(index)=FB_out(index-time_step_size)-del; 

      elseif ( reg(2) ==0 && reg(1)==1) 

          FB_out(index)=FB_out(index-time_step_size)+3*del;     

      elseif ( reg(2) ==1 && reg(1)==0) 

          FB_out(index)=FB_out(index-time_step_size)-3*del;     

      elseif ( reg(2) ==1 && reg(1)==1) 

          FB_out(index)=FB_out(index-time_step_size)+del;     

      end         

      %Feedback output saturation model 

      if(FB_out(index)>=1200000) 
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      FB_out_out(index)=1200000; 

      elseif (FB_out(index)<=-1200000) 

      FB_out_out(index)=-1200000; 

      else 

      FB_out_out(index)=FB_out(index);  

      end 

    for i = 1:1:1000 

    FB_out_out (index+i) = FB_out_out (index) ; 

    end 

        for i = 1:1:1000 

    FB_out (index+i) = FB_out (index) ; 

    end 

        if(time_step_size==1) 

         Decimator_counter_integrator(index) =  Decimator_counter_integrator (index-

time_step_size) + Quantizer_out ; 

         del_res=del_res_h; 

        end 

        if(time_step_size==4) 
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         Decimator_counter_integrator(index) =  Decimator_counter_integrator (index-

time_step_size) + 4*Quantizer_out ; 

         del_res=del_res_l; 

         end 

    for i = 1:1:1000 

     Decimator_counter_integrator(index+i)=  Decimator_counter_integrator(index) ; 

    end 

    if ( up_sample_counter>=31) 

        v_amp(index)=Decimator_counter_integrator(index); 

        v_out(index)=abs(del_res)*Decimator_counter_integrator(index); 

        for n = 1:1:10000 

          v_amp (index+n) = v_amp(index) ; 

          v_out(index+n)=v_out(index); 

        end 

        up_sample_counter=0; 

        down_sample_counter=down_sample_counter+1;  

    end 

%Baseline calculator 
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    if ( down_sample_counter==19) 

        DC_offset = (7*DC_offset + Decimator_counter_integrator(index))/8; 

        down_sample_counter=0; 

        Decimator_counter_integrator(index)=Decimator_counter_integrator(index)-  DC_offset ; 

            for i = 1:1:125 

            Decimator_counter_integrator(index+i)=  Decimator_counter_integrator(index) ; 

           end 

          for n = 1:1:(10000*up_sample_factor) 

           DC_offset_record (index+n) = DC_offset ; 

          end 

    end 

    %Thershold levels 

    activity_threshold_high=threshold_2; 

    activity_threshold_midhigh=threshold_1; 

    activity_threshold_midlow=-1*threshold_1; 

    activity_threshold_low=-1*threshold_2; 

    %sampling freq. adjustment  
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    if ((v_amp(index) > activity_threshold_high ||  v_amp(index) <= activity_threshold_low )  ) 

    time_step_size = 1; 

    end 

    if ((v_amp(index) < activity_threshold_midhigh &&   v_amp(index) > 

activity_threshold_midlow ) ) 

        time_step_size = 4; 

    end    

    if (( v_amp(index) > activity_threshold_midhigh &&    v_amp(index) < 

activity_threshold_high) || (   v_amp(index) < activity_threshold_midlow &&    v_amp(index) 

>= activity_threshold_low)) 

        mid=mid+1; 

    end  

    %stepsize adjustmnet 

    if(time_step_size==1) 

        del=del_h; 

        h=h+1; 

        h_count(index)=1; 

    end 
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   if(time_step_size==4) 

        del=del_l; 

        l=l+1; 

        h_count(index)=0; 

    end 

            for i = 1:1:4 

             h_count(index+i)= h_count(index); 

           end 

    %sampling  

    index = index + time_step_size ; 

    up_sample_counter=up_sample_counter+time_step_size; 

end 

%%%upsampler function used in initialization 

function v_temp = upsampler (vin , over_sampling_factor ) 

[P,Q] = rat(over_sampling_factor); 

v_temp = resample(vin,P,Q); 

end 
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A.2. Verilog code for FPGA board to generate inputs for chip measurement. 

module CHIP_TB ( input wire clk_in, clk_chip_in, reset_in, 

                     output reg ud_out, clk_out, reset_out, 

                               output reg  [7:0]Th_l, Th_h, 

                              output reg  [4:0] band, 

                              output reg  [2:0] sel_low, sel_high, sel_nq, 

                   output wire led_test_l, led_test_h, led_test_b); 

 

   reg  ram [0:1023]; 

   reg [9:0] vector_counter_num; 

   reg [8:0] clk_counter_num, reset_counter; 

%reading test vectors  

initial 

begin 

$readmemb("C:/Users/KPS/Desktop/verilog_test/ICYKMS1_CHIP_TB/ICYKMS1_CHIP_TB/b

itstream.txt", ram); 

end 

always @ (posedge clk_in) 
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     begin 

 if( reset_in==0) 

 begin 

 clk_out<=1'b0; 

 clk_counter_num<=9'b0; 

 reset_counter<=9'b0; 

 reset_out<=1'b0; 

 end 

 else 

 begin   

 if ( clk_counter_num == 9'b110000110 ) 

 begin 

 clk_out<=~clk_out; 

 clk_counter_num <=9'b0; 

 end 

 else 

 begin 
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             clk_out<=clk_out; 

 clk_counter_num<= clk_counter_num + 1'b1;   

 end     

 if ( reset_counter == 9'b111111110 && reset_out==1'b0 ) 

 begin 

 reset_out<=1'b1; 

 end 

 else 

 begin 

 reset_counter<= reset_counter+ 1'b1;   

 end     

          end 

end 

   

always @ (posedge clk_out) 

  begin 

   if ( reset_out == 0) 
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   begin 

        Th_l=8'b01110000; 

         Th_h=8'b10010000; 

         band=5'b01110; 

         sel_low=3'b001; 

         sel_high=3'b000; 

         sel_nq=3'b101; 

        end 

      end 

 always @ (posedge clk_chip_in) 

     begin 

   if ( reset_out == 0) 

   begin 

   vector_counter_num <=10'b0; 

    ud_out <=0; 

    end 

    else 
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               begin 

  if (vector_counter_num == 10'b1111111111) 

 begin 

 ud_out<=0;  

 vector_counter_num <=10'b0; 

 end 

 else 

 begin 

 ud_out <= ram [ vector_counter_num ]; 

             vector_counter_num <= vector_counter_num + 1'b1;  

 end      

 end      

    end 

  assign  led_test_l = (Th_l == 8'b01110000 ) ? 1'b1 : 1'b0; 

  assign  led_test_h = (Th_h == 8'b10010000 )  ? 1'b1 : 1'b0; 

  assign  led_test_b = (band == 5'b01110 ) ? 1'b1 : 1'b0; 

endmodule 
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A.3. Description of the measurement setup  

The chip’s core and pads are powered by 1.2V and 3.3V voltage respectively. An HDL test 

bench was written in Verilog (show in A.2) and was implemented using FPGA de-10 nano board. 

Test vectors, i.e., threshold level’s, hysteresis bands, bitstream, reset signal, and reference clock 

were generated using the FPGA and were fed to the chip. In addition, the bitstream test vector was 

generated from the result of EEG fed to the MATLAB. The bitstream test vector is saved in a 

memory array on board. Through a feedback mechanism, the chip will produce the oversampling 

frequency based on the inputs and feed it back to the FPGA board, and then memory array is read 

at the rate of oversampling frequency and is fed back to the chip. In addition, in order be able to 

transfer data between FPGA and Chip, ADG3300 bidirectional level shifter to convert 1.2V and 

3.3V voltage levels to each other. was used. All signals are measured using MD03022 200MHz 

Mixed Domain Oscilloscope with digital 16-bit bus probes. Figure A.3.1 shows the overall 

measurement set up. 
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