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Abstract

Lossy data compression is a particular type of informational encoding utilizing ap-

proximations in order to efficiently tradeoff accuracy in favour of smaller file sizes.

The transmission and storage of images is a typical example of this in the modern

digital world. However the reconstructed images often suffer from degradation and

display observable visual artifacts. Convolutional Neural Networks have garnered much

attention in all corners of Computer Vision, including the tasks of image compression

and artifact reduction. We study how lossy compression can be extended to higher

dimensional images with varying viewpoints, known as light fields. Domain Random-

ization is explored in detail, and used to generate the largest light field dataset we are

aware of, to be used as training data. We formulate the task of compression under

the frameworks of neural networks and calculate a quantization tensor for the 4-D

Discrete Cosine Transform coefficients of the light fields. In order to accurately train

the network, a high degree approximation to the rounding operation is introduced.

In addition, we present a multi-resolution convolutional-based light field enhancer,

producing average gains of 0.854 db in Peak Signal-to-Noise Ratio, and 0.0338 in

Structural Similarity Index Measure over the base model, across a wide range of

bitrates.
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Chapter 1

Introduction

1.1 Motivation

In the oncoming years, digital content is expected to drastically change. Technological

breakthroughs are happening on a daily basis, with the world’s biggest corporations

like Meta (formerly known as Facebook) gearing up towards release of entire virtual

worlds [1, 2]. With the current state of the world, the increase in remote work has only

sped up the desire for newer and more immersive means of communication and media

consumption. For true immersion, we will need to break free of the static viewport

imposed by current media forms, and allow users a full 6 degrees of freedom in terms

of head position and stereoscopic view direction, as typically offered in headsets. The

light field is one such representation, capable of encoding the light information of an

entire scene. This new technology however, comes with it’s own set of challenges in

terms of content capture, storage, transfer and computational complexity. A central

issue (not limited to just light fields) is the large amount of data needed to represent
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1.2 OVERVIEW

these life-like media formats. With Moore’s Law approaching its limits, we can no

longer simply rely on more powerful hardware to overcome the computational problems.

New compression methods and standards will surely need to be developed to tackle

these issues.

Furthermore, as the technology is still in its infancy there is not much light field

data publicly available for research purposes. With the sheer lack of such datasets,

much of the current attempts fail to generalize due to inadequate performance metrics

on inconclusive sample sizes, often of highly correlated data [3]. Larger datasets will

be needed for such compression codecs, both for the aid in the development stage as

well as the validation of these proposals. A large, diverse, unified dataset will allow

for the streamlining of comparisons of models in the research community, similar to

the standards already in place for images and videos in the Computer Vision (CV)

community.

1.2 Overview

There has been a great deal of progress in the field of CV in the last decade with the

emergence of deep learning and Convolutional Neural Networks (CNNs). Combining

local spatial information in patches of images, as well as temporal information in

videos, with the high capacity of deep neural networks to approximate non-linear

relations was the basis of much of the literature. Utilizing these same ideas, while

extending them across angular dimensions appears to be a promising direction for

the size reduction problems mentioned. In modern Artificial Intelligence (AI) and

deep learning, models are trained to encode feature detectors for specific patterns

2



1.2 OVERVIEW

and anomalies. These detectors can strategically be used as filters to favour certain

patterns over others, as well as to enhance or rebuild particular regions of a given

signal.

As most Machine Learning (ML) methods require large datasets (especially neural

networks) to learn on, a new dataset is needed. Current capture instruments are

designed for the enterprise level, making data collection an expensive endeavour (more

on this in Section 2.2). Instead, the idea of Domain Randomization (DR) can be

applied to attain such data. Using DR, a diverse dataset can be generated quickly

and cost effectively, across a variety of domains, useful for generalization purposes.

Such methods have shown promising results, when mixed with real data, or in the

absence of it, for the training of CNN models. This will be discussed more thoroughly

in Chapter 3.

In this dissertation, we provide evidence for the effective use of data synthesized

using DR for the task of image classification in the real world domain. These find-

ings inspire the generation of the LIAM-LF-Dataset; a synthetic light field dataset

made of 20,000 samples, including depth and segmentation maps. We introduce a

continuous and differentiable function to approximate the integer rounding operation,

useful for the training of neural networks. Using the LIAM-LF-Dataset and the

rounding approximation, we are able to compute a light field quantization tensor,

optimized for reconstruction quality. The quantization tensor along with the addition

of a quantization factor is used in the proposed compression method, to present an

efficient variable bitrate codec for light fields. We also propose a method to achieve

a target bitrate, through the approximation of the associated quantization factor.

Lastly, we develop a neural enhancer capable of reducing compression artifacts formed

3



1.3 OUTLINE OF REPORT

by the quantization step in the pipeline, and show that our method is capable of

reconstructing the compressed light fields with minimal effects on perceptual quality,

even at compression ratio exceeding 100:1.

1.3 Outline of report

This dissertation is structured as to progressively take the reader through the key

concepts and relevant literature associated with each topic, with an emphasis on a

neural based method for the lossy compression of light fields. The reader is encouraged

to skip ahead directly to Section 4.5 for details on the pipeline and evaluation of the

model.

Chapter 2 will briefly outline the history and formulation of light fields. It will

also introduce the concept of DR, as well as other relevant topics and metrics from

informational theory and image processing. Chapter 3 is an extensive study of DR

and it’s application to image classification. We cover an extensive literary review, and

present numerous studies to gauge the viability of DR. Next, we extend the strategy

into the generation of a light field dataset in Chapter 4, and compare it to other

publicly available datasets. This chapter also explores standard lossy and lossless

compression methods, and any relevant extensions to deep learning and light fields.

We then present a detailed outline of our proposed compression technique, discuss

challenges in the training process, and provide statistical and perceptual results. We

summarized our findings in Chapter 5, and discuss further avenues worth exploring.

4



Chapter 2

Background

2.1 Plenoptic Function and the Light Field

The most general form of the plenoptic function describes the light profile in space,

direction, time and wavelength [4]. Adelson and Bergen model this as the 7-dimensional

function

P = P (x, y, z, θ, ϕ, λ, t) (2.1)

where and x, y, z are the spatial positions of interest, θ and ϕ give the polar and

azimuthal angles for the direction of light, λ is a specific wavelength and t is the time.

Obtaining such a function is not possible in practice, as it could model the entire

universe from the beginning of time. It is however, a good theoretical starting point.

By fixing a specific moment in time, and simplifying our wavelength profile down to

a monochromatic model, the plenoptic function can be reduced to the more commonly

used 5-dimensional version

5



2.1 PLENOPTIC FUNCTION AND THE LIGHT FIELD

Figure 2.1: In the absence of occlusion, a ray’s radiance is constant, and therefore the top
rays observed from both vantage points as shown above, are the same.

P = P (x, y, z, θ, ϕ) (2.2)

Given some closed, reasonably spaced volume, such a function would be able

to generate any possible view point, in any direction, hereby analogous to a 3-D

photograph. Moreover, since the radiance along a ray remains constant along it’s

trajectory if it is not blocked, we can further reduce the function to 4-dimensions.

This is illustrated in Figures 2.1 and 2.2. The coordinates associated with each ray

can be projected to a plane, and parameterized by only 2 spatial variables, along with

the 2 angular variables, producing what is commonly referred to as the light field

L = L(x, y, θ, ϕ) (2.3)

Coined by Gershun in a paper by the very name [5], the concept did not gain much

popularity in digital rendering until 1996, when two independent groups presented the

6



2.1 PLENOPTIC FUNCTION AND THE LIGHT FIELD

Figure 2.2: Redundancies in the radiance of light can be condensed down along any given
ray, such that spatial dimensions can be represented by a projection on a 2-dimensional plane.
Illustrated above is the same concept from 2-dimensions projected onto a line (1-dimension).

ideas, interestingly at the same conference. Levoy and Hanrahan and Gortler et al.

outlined how a light field can efficiently be captured, parameterized and rendered [6,

7]. Gortler et al. referred to this function as the Lumigraph, while other such as Moon

and Spencer termed it the photic field [8] in their works. The term light field has been

the one most commonly used today, but the ideas are all fundamentally the same.

While the current formulation of the light field we have defined above can be

envisioned as spherical rays along a plane, we are not limited to a flat surface in

this matter. Another possible parameterization can be given by two points on the

surface of a sphere. This is a less common setup, but may be useful in camera setups

for captures, due to the uniform sampling [9]. The more practical and commonly

seen form in research is the two plane parameterization referred to as a light slab [6].

We refer to the two as the uv and st planes. All rays can be represented by a line

7



2.1 PLENOPTIC FUNCTION AND THE LIGHT FIELD

Figure 2.3: A light slab formulation consisting of 2 planes, where rays of light are parame-
terized by coordinates (u, v, s, t).

connecting points (u, v) on the uv plane to points (s, t) in the st plane. See Figure

2.3. The radiance L is now given by

L(u, v, s, t) (2.4)

where u, v, s, t are all coordinates on the planes, usually normalized to lie between

0 and 1. By convention, the uv plane represents the angular dimensions (camera

plane), while the st plane represents the spatial dimensions (focal plane) of the light

field. This is helpful for light field captures as we will see in Section 2.2, where the

two planes will represent the cameras’ position in space and their Field of View (FoV)

respectively.

If we were to fix points (u∗, v∗) on the angular plane, the resulting field L(u∗, v∗, s, t)

would generate a regular image as we are use to seeing from digital cameras. We will

refer to these as perspective views, or Sub Aperture Images (SAIs). Alterna-

tively, if we fixed points (s∗, t∗), then L(u, v, s∗, t∗) would represent what any given

pixel (s∗, t∗) in an image array would look like from different viewing positions. These

8



2.1 PLENOPTIC FUNCTION AND THE LIGHT FIELD

(a) uv plane (b) st plane

Figure 2.4: Visualization of light field across both planes. (a) Perspective views across a
5x5 viewpoint sectional. (b) Reflectance views across a 15x15 pixel image block. Light fields
are taken from Lego Knights as part of Stanford dataset [10].

resemble reflectance maps and so we shall refer to them as reflectance views, or

microlens images going forward. Sampling the light field L(u, v, s, t) at equidistant

spaces, we can think of the above two as slices in tensor. There is one further family of

slices, which are important for the geometry of a light field. Fixing (u∗, s∗) and varying

(v, t), we can construct an Epipolar Plane (EPP). EPPs display the relationship

between angular and spatial dimensions. In this fashion, the slice (in the discrete case)

would represent a column of pixels in an image (spatial), and how it changes when

the view point is raised vertically (angular). See Figure 2.5a. This creates a parallax

effect, which can be used to extract depth information from the scene. Visually, the

slope of a given pixel across the EPP is meaningful, as it is directly proportional to

depth of that particular pixel in the scene. An EPP can also be sliced across (u, s)

keeping (v∗, t∗) fixed, as shown in Figure 2.5b.

9



2.1 PLENOPTIC FUNCTION AND THE LIGHT FIELD

(a) Examples of vertical EPPs generated by looking at a fixed column of a light
field image, while sliding the view point vertically.

(b) Examples of horizontal EPPs generated by looking at a fixed row of a light field
image, while sliding the view point horizontally.

Figure 2.5: A visual representation of EPPs being slices along a light field tensor volume.
Light field data taken from the Stanford dataset [10].

10



2.2 CAMERAS AND DIGITAL RENDERING

2.2 Cameras and Digital Rendering

While the theoretical model for the light field is well formulated, capturing such a

function has its challenges and limitations. All light field cameras are based on discrete

sampling of the light field, and no devices to date, have been proposed to measure the

field in a continuous fashion. Such imaging based solutions take up physical space,

and therefore limit the angular and spatial resolutions of the capture. This often leads

to a tradeoff between the two, which will depend on the task at hand.

Light field capture was first proposed by Lippmann in 1908 using the idea he termed

integral photography [11]. Using an array of lenses which he called an Elemental

Image Array (EIA), different viewpoints of a scene could be captured on photographic

plates. Adelson and Wang expanded on the idea in the digital age, using a Microlens

Array (MLA) inspired by Lippmann’s EIA also sometimes referred to as a lenslet. [12].

The camera places a MLA at the typical focal plane behind the main camera lens,

with the image sensor just underneath it, as can be seen in Figure 2.6. The sensor

will produce an image similar to those seen in Figure 2.4b, typically with some degree

of vignetting due to the round shape of the lens. The sensor will impose a restriction

on the overall resolution of the entire light field, but the actual spatial resolution will

be given by the number of microlenses in the array. In order to capture a light field at

an angular resolution of M ×M and a spatial resolution of N ×N , and sensor with a

resolution of MN ×MN is required.

Though the image in Figure 2.6 displays a grid-like structure of the associated

lenses in the MLA, this is not the only way to position them. More commonly seen is

a MLA with lenses assembled in a honeycomb pattern, for optimal packing in a cross

11



2.2 CAMERAS AND DIGITAL RENDERING

Figure 2.6: Typical architecture of a standard lenslet-based light field camera. Colour is
shown to depict where each subaperture ray lands on the camera sensor. By rendering only
the pixels off the image captured where a specific colour meets the sensor, a novel perspective
view can be generated.

sectional area. These give rise to microlens images in a hexagonal pattern, similar to

what can best be described as insect vision. The sampling of the u and v coordinates

will be different, but the overall idea is the same.

These types of cameras fall under the class known as Standard Plenoptic Cameras

(SPCs). Ng et al. described such a SPC in 2005 [13], which he would later miniaturized

and turn into the first consumer ready light field camera called the Lytro. Perwass

and Wietzke proposed a design for a SPC with far greater precision in 2012 [14]. They

would go on to develop the Raytrix light field cameras, targeted at the industrial and

scientific sectors.

Far more intricate designs have been proposed for lenslet-based cameras, in order

to optimize for spatial resolution capture. By sliding the MLA off the main lens focal

plane, angular resolution can strategically be sacrificed in favour of spatial resolution.

These are usually classified as Focused Plenoptic Cameras (FPCs), as outlined by
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Georgiev and Lumsdaine [15]. FPCs are often far more expensive to produce, and are

yet to be commercialized.

Aside from lenslet-based cameras, one obvious method of capturing light fields

based on the 2 plane representation, is to use a grid of separate cameras, known as a

Camera Array (CA). Such an apparatus was discussed and built by Wilburn et al.

[16, 17, 18], and was used to capture the images in Figures 2.4 and 2.5. Each camera

lies on a point in the uv plane, and its sensor captures the st plane, representing

a slice of the 4 dimensional light field. CAs are much more practical and common

in research. With high definition cameras being readily available, CAs allow for

maximum spatial resolution, at the cost of angular resolution, among all plenoptic

cameras. CAs also need not be positioned using the 2 plane parameterization. Aligning

cameras strategically in a spherical shape produces light field approximation with a

360 degree FoV. In theory, any view within the sphere can be synthesized using this

structure. This is particularly useful for creating immersive virtual reality experiences.

Examples of such cameras include the Jaunt One, the Lytro Immerge, the Insta360

Titan, Facebook’s Manifold and Google’s custom built panoramic system [19].

One final method of capturing a light field, is by translating a single camera in

space, as long as the scene is static. Typically, the camera is mounted onto a gantry

which sweeps out a plane of perspective views [6, 20], but other methods are also

viable [21, 22].

Using the L(u, v, s, t) representation of our light field, we can render views along

the uv plane. Specifically, the discrete points which we sampled initially during capture

time are already known. Views in between these points, need to be interpolated.

However, this is not a trivial task. Nearest neighbour, bilinear and bicubic based
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(a) Example of a novel view with a narrow setup
in 2D.

(b) Example of a novel view with a wider setup
in 2D.

Figure 2.7: Information from the light field can be used to reconstruct any view point in
the shaded region. (a) shows a narrow initial capture FoV, with a novel view behind the uv
plane. Rays for this viewpoint can be taken directly from subsequent views along the view
path. (b) shows a wider FoV, with a viewpoint in front of the uv plane. In order to render
this view, each ray needs to be traced back onto the uv plane.

methods all produce ghosting and blurring artifacts due to the averaging out of

different views. Geometric methods [23] as well as methods from signal processing [24],

optimization [25] and deep learning [26, 27] have been developed for the interpolation

of smooth and visually pleasing results, often referred to as angular interpolation

or super-resolution. The 4-D light field representation does not however limit view

rendering from just the uv plane. Novel views can be synthesized off the camera plane,

in a region related to the FoV of the initial cameras used in capture. This region can

be seen in Figure 2.7. These new viewpoints can be rendered by tracing each ray to

the uv plane, which in turn can be interpolated up to the desired density using the

angular super-resolution methods mentioned.
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2.3 Domain Randomization

ML algorithms, particularly neural networks often require large datasets in order to

converge to meaningful solutions. In supervised learning, these datasets also require

accurate labelling, at times down to the pixel level such as in CNNs. Acquiring such

large data samples is a time consuming challenge and can be very expensive. Labelling

it can be even more daunting or at times impossible, namely when accuracy is of

utmost importance. To combat a lack of data, researchers often have to rely on data

synthesis. However, synthetic data can inherently carry large bias and discrepancies

to real data. In order to "bridge this gap", Tobin et al. proposed the idea of DR.

By randomizing many visual parameters in their simulations, such as textures and

lighting, Tobin et al. were able to generate data which they successfully used to train

a model capable of robotic control in the real world. Implementing the randomization

process led the network to seeing the world as just another variation, concentrating

only on the structure and geometry of the scene needed for the task.

Synthetically rendered images have a few advantages over real ones. Firstly, any

labelling associated with the render comes for free and with pixel perfect accuracy. For

example, object segmentation, depth maps and bounding boxes can all be generated

at render time along with the images. Second, they are extremely cost effective to

produce, as the scene only needs to be designed once, and each subsequent sample

can be renderer for free. This allows for arbitrary large dataset acquisition. Lastly,

depending on the level of realism required, they are on average much quicker to

produce, than capturing photos in the real world. Together with the labelling time,

this task can be more cumbersome for just one real image than for the entire synthetic
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set combined. High quality photorealistic renderings can take up to an hour on modern

Graphics Processing Units (GPUs), but more typical images can be generated on the

order of milliseconds. Graphics software such as Blender and Maya, are capable of

creating images indistinguishable from photographs, making use of modern ray tracing

and light transport algorithms. On the other hand, game engines such as Unity and

the Unreal Engine provide the perfect flexibility for procedural scene generation while

being optimized for quick and efficient rendering.

2.4 Compression and Entropy

The process of reducing digital file sizes can be split into two categories. Lossless

compression aims to take advantage of any redundancies in the data such that no

information is lost. Such a compression will always lead to perfect reconstruction after

the encoded signal is decompressed. In order to achieve maximal compression, all

redundancy must be removed reducing the encoding to it’s most compact form. This

limit is usually measured by the Shannon Entropy [29] as

H(X) = −
N∑
i=1

P (xi)logP (xi) (2.5)

where X is a signal constructed of N symbols xi, and their respective probabilities are

given by P (xi). The Shannon Entropy can be used as a measure of the compressability

of a signal, or conversely the amount of redundancy in it.

Lossy compression on the other hand, goes a step further by removing unnecessary

information in order to achieve a balance between quality and compression size.
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This process will often vary based on the task at hand. For example, a lossy image

compression may choose to toss away high frequency parts of the signal which may lie

outside the perceptual range of humans. Such a method is the basis of modern image

codecs such as JPEG [30].

The JPEG codec consists of a few different steps. First, the Red-Green-Blue (RGB)

image is converted to the Luma-Blue-Red (YCbCr) color space. In the YCbCr color

space, the image is factorized into its luma and chromatic components. The human

eye is more sensitive to the luma of an image, than it is to the chroma [31]. JPEG

takes advantage of this phenomena by subsampling the chroma components, reducing

the overall size of the image. The next step in the pipeline is to convert patches of

each channel into the frequency domain in 2 dimensions using the Discrete Cosine

Transform (DCT) [32] given by

ci,j =
N∑
s=1

N∑
t=1

xs,t cos

[
π(i− 1)

N

(
s− 1

2

)]
cos

[
π(j − 1)

N

(
t− 1

2

)]
(2.6)

where ci,j is the coefficient of a 2 dimensional cosine signal with periods i and j, xi,j

is the pixel in position i, j of the patch, and N is the patch size. In the frequency

domain, each patch is divided by some value in a predefined lookup table based on a

desired quality level, and the final values are quantized to the nearest integer. This

process removes most high frequencies from the patch, leaving mostly 0 entries. The

patch can then be strategically encoded, using run-length encoding. While this step

is lossless, it is worth mentioning that the quantization discards information, and

therefore the entire framework is lossy. The decoder reverses these steps, constructing

an image with very low perceptual difference to the initial.
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Since lossy compression introduces a degree of freedom in terms of quality, there

is no meaningful limit and compression metrics are usually reported empirically at

different qualities. The JPEG standard typically produces compression rates of 5:1

for its highest quality, while up to 120:1 for lower levels [33].

2.5 Evaluation Metrics

Media compression and image reconstruction task often require quantitative measures

in order to evaluate the proposed methods and compare them to other contenders.

Lossy compression in particular, being a tradeoff between size reduction and maintained

quality, requires metrics for both.

2.5.1 Similarity Metrics

The most commonly used measures for image similarity are the Mean Square Error

(MSE) and Peak Signal-to-Noise Ratio (PSNR) [34]. Given an n×m target image I

with c colour channels, with b bits per colour channel, and an approximation image R

we have

MSE =
1

nmc

n∑
i=1

m∑
j=1

c∑
k=1

[I(i, j, k)−R(i, j, k)]2 (2.7)

and

PSNR = 20log10

(
2b − 1√
MSE

)
(2.8)

with low MSE and high PSNR scores indicative of better quality approximations. Note
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that since the PSNR is only a function of the MSE, there is a monotonic relationship

between the two, with the PSNR scaled more closely to align with human perceptional

measures.

Both of these metrics rely on the absolute error between images, which often

contrasts qualitative measures in human experiments. Instead the Structual Similarity

Index Measure (SSIM) relies on structural information in a local neighbourhood of

an image, producing much more accurate results [35]. The SSIM is calculated on the

luma of an image made of M windows as

SSIM =
1

M

M∑
j=1

(2µI(j)µR(j) + c1)(2σI(j),R(j) + c2)

(µ2
I(j)

+ µ2
R(j) + c1)(σ2

I(j)
+ σ2

R(j) + c2)
(2.9)

where

c1 = (k1L)
2

c2 = (k2L)
2

k1 = 0.01

k2 = 0.03

L = 2b − 1

and µI(j) , µR(j) , σ2
I(j)

, σ2
R(j) and σI(j),R(j) are the mean, variance and covariance of window

j in the target and reconstructed images I and R. Larger values of the SSIM are

better, with a score of 1 indicating the images are identical. The Multiscale Structual

Similarity Index Measure (MS-SSIM) builds on this idea, by applying the process
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across different resolutions of the image, in essence pooling structural information

across a variety of scales in the image [36]. Typically, the MS-SSIM produces the most

robust results in practice.

Another method of measuring perceptional similarity is through the use of a

specifically trained network. Namely, by training a deep CNN against labels of

similarity scores attained from human experimentation, a visual perception model can

be approximated. One popular such measure is the Learned Perceptual Image Patch

Similarity (LPIPS) [37]. Values closer to 0 indicate imperceptible differences, while

larger values reflect greater disparities.

2.5.2 Compression Metrics

In order to compare different compression algorithms, it is useful to utilize a stan-

dardized metric to measure the overall reduction in a file’s size. The most intuitive

such metric is the relative size reduction of the file after compression, known as the

compression ratio. The compression ratio is often also expressed as a percentage

change. It measures the amount of information that has been removed from the

compression, relative to its initial size. More commonly used in image compression is

the bits per pixel (bpp). Unlike the compression ratio, the bpp is an absolute measure

as it is standardized per pixel. In this way, compression of images at different scales

can be fairly compared. The bpp is calculated as the total size of the image in bits,

divided by the total number of pixels.

The compression associated with the above metrics can be raised arbitrarily high

for lossy methods at the cost of quality. In lossless compression however, this is not
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the case. A lossless compression must reconstructs the initial signal perfectly, and

so imposes a constraint on the compression variable. The minimum bpp that can be

achieve in a lossless compression has been shown by Shannon [29] to be the entropy as

shown in Eq. 2.5. Methods for such compression do exist, but are not general enough

to be suitable for all problems.
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Chapter 3

Domain Randomization for Neural

Network Classification

In order to develop a useful light field dataset, we first test the validity of DR, and

how effective it is. In this chapter, we test how well DR bridges the reality gap to

different domains, and which parameters of the process are most important, when

training a neural network with the task of image classification.

3.1 Introduction

Recent advances in convolutional based neural networks have opened the door for

automation in a wide variety of visual tasks, including classification, segmentation,

object tracking, viewpoint estimation and view synthesis. Where once the challenge

was to develop a strong model for each of these tasks, today the challenge has jumped

to the acquisition of large and diverse datasets to train the models. Zero-shot and

22



3.1 INTRODUCTION

few-shot learning has been making progress in tackling the data size requirement, but

solutions there are still very case dependant. They also still have problems with black

swan events [38].

The cost of gathering a large amount of data can be very expensive, both in terms

of money and time. Pixel level segmentation on an image, for example, can take hours

to properly label on a complex enough scene. Instead, the task can be offloaded to a

computer, not only in synthesizing the visual data, but also in annotating it [39, 40,

41, 42, 43]. In this fashion, large datasets can be produced relatively quick and cheap,

and any labelling comes not only free, but at beyond human-level accuracy.

The use of synthetic data however introduces what is known as the reality gap

[28], which as the name suggests, is the inability for it to fully generalize to the real

world data, for numerous reasons including textures, lighting and domain distributions.

Achieving photorealism in the synthetic data, comes at the price of computational

resources and render time [44]. Ray tracing engines can produce images indistinguish-

able to the untrained eye from a real photo, but may take dozens of hours to render a

single image. Instead, realtime renderers like those used by popular game engines are

usually used due to their ability to produce large datasets quickly.

In an attempt to narrow the reality gap, DR is introduced to simulate a sufficiently

large amount of variations such that real world data is viewed as simply another

domain variation [28, 45]. This can include randomization of view angles, textures,

shapes, shaders, camera effects, scaling and many other parameters.

DR has successfully shown to aid in the training of networks for object detection,

image segmentation, spatial positioning and depth estimation. For our purposes, we

will aim to study it’s effectivity specifically to image classification. We further perform
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a collection of univariate tests in order to 1) examine which parameters are most

significant to the process, and 2) gauge the resulting model’s ability to generalized to

new domains.

3.2 Related Work

To address the reality gap, DR techniques have been explored, including most notably

the work of Tobin et al. [28], where they synthesized images of basic geometric objects

on a table, in an attempt to estimate their spacial coordinates, such that a robotic

arm could pick them up. Their accuracy varied depending on domain parameters,

achieving errors as low as 1.5 cm on average in terms of object location, showing

promise for synthetic data training. Notably, they found that the number of images

and the number of unique textures used in the images were the most prominent

parameters to model accuracy. Camera positioning and occlusion also had meaningful

contributions, while the addition of random noise in images did not.

In another work, Tobin et al. [45] discussed the use of the DR, to the objects

themselves, again in the aim of robotic grasping. This time, they procedurally

generated millions of object meshes, leading to shapes not typically seen in the

physical world, with the goal of the model generalizing specifically to the motion

of the grasp. When bridged with real world objects, their results show the robot is

able to grasp the subject with an 80% accuracy. Again, the number of objects was a

contributing factor to the overall accuracy.

Loquercio et al. [46] used DR to bridge the gap between the artificial world and

the real one, in the task of autonomous drone flight. In their work, they synthesized

24



3.2 RELATED WORK

arbitrary race courses for the drone to learn to fly in, and then tested their controller

in arbitrary track configurations in the real world. They achieved near perfect course

completion scores for many variations including max speed constraints up to 10m/s,

and lap totals less than 3. Other results are also substantially higher than other

baselines they compared to. Parameters tuned include scene textures, gate shapes,

and lighting conditions, with all 3 providing improved results. Similarly, Shafaei,

Little, and Schmidt [40], and Atapour-Abarghouei and Breckon [41] showed that depth

estimation in general can be well approximated using neural networks trained entirely

on synthetic images. They do note however, that having pixel-perfect annotations

lead to problems when generalized to a real world domain.

Tremblay et al. [39] outlined a variety of different parameters associated with the

DR process in the problem of object detection, with results indicating more parameters

give rise to better accuracy, even if only marginally. Furthermore, they noted that

freezing the weights of the feature extractor part of the network resulted in worse

results, which contrast results obtained by Hinterstoisser et al. [47]. Peng et al. [48]

also highlighted this notion, by lowering their learning rate, as to further allow the

feature extractor itself to generalize to higher level features, which may only be present

in the synthetic data. Their results indicated that viewpoint variation of the objects

is far less important in terms of model accuracy than one might suspect, while the

model is most sensitive to the amount of unique instances of objects per class.

Another common computer visual task is the problem of viewpoint estimation.

Movshovitz-Attias, Kanade, and Sheikh [44] explored this using carefully constructed

synthetic images, leading to results nearly as good as real images.

A natural place to utilize synthetic images is in the problem of human pose
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estimation. Rigging of joints is an expensive and cumbersome tasks, and generating

large datasets for this are nearly impossible. Chen et al. [49] show that training with

synthetic images for the task, outperformed training on real images.

Pepik et al. [50] highlighted how CNN accuracy doesn’t necessarily transfer across

different domains, providing evidence that the networks are not invariant to domain

changes. They concluded that training them with mixed data spread across many

domains increases generalized performance, similar to the findings of Peng et al. [51].

Improvements to regular DR have been shown when the sampling methods and

parameter distributions are carefully adjusted as show by Mozian et al. [52] and Mehta

et al. [53]. Prakash et al. [54] were able to apply such methods successfully in the

2D bounding box problem. The team at OpenAI managed to train a robotic hand

to solve a Rubik’s Cube by generating progressively more difficult environments in

what they called Automatic Domain Randomization (ADR), effectively updating their

sampling during training [55].

The common findings between most previous research into synthetic data appears

to be that it is best used as a supplementary part of the data gathering process, as

oppose to entirely relying on it to train a model from scratch. Generally, a mixture

of real world data, spread across a broad range of domains, in unison with computer

generated imagery tends to produce the best results [56].

Literature in DR for image classification is lacking. We aim to address this

shortcomings, and apply similar analysis to its application in terms of accuracy to

real world data, as well as its transferability to other domains. We also explore the

effects of different DR parameters in Section 3.4.2.
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3.3 Methods/Experimental

To generate our images we make use of the popular game engine Unity. We make this

choice as we aim to produce a large amount of visual data at a reasonable tradeoff

relative to the rendering time required. A game engine in particular is great versus

photo-rendering software since it can produce many frames per second, at the cost of

photorealism. Since one of the central inspirations to using synthetic data is the fact

we can generate lots of data quickly, it does not make sense to spend hours rendering

each image to cinematic quality, as this may be even more costly than gathering the

real image data by hand.

DR aims to produce data samples spanning as much of the image space as possible.

The samples need not follow any distribution observed in the real-world, thus possibly

producing many extreme outliers. Consider, for example, how an autonomous car

might react when it comes across a car accident on the road, having been trained only

on data of clean law-abiding agents. It is evident how valuable such outliers would

be at train time. In the case of our classifier, we aim to train our model to detect

precisely what features identify each class, regardless of how feasible each sample is.

For our analysis, we begin by importing 3D generated models of cats and dogs

from the Unity Asset Store. We proceed to build a random scene with one of these

models rendered each frame. First a plane is created, on top of which a model of one

of our classes is placed. Our models come rigged with a variety of different animations,

and so we randomly sample a frame from a random animation for each subject. This

gives us a variety of different poses, sampling across what we can think of as a posture

manifold across the image space. Similarly, any other simulation parameter can be
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Figure 3.1: Examples of synthetic data generated using DR of cats and dogs. Materials,
breeds, skyboxes, camera, lighting, pose and obstructors are randomized across images.

interpreted as distinct manifolds, allowing for sampling across samples that should be

invariant in terms of classification. Such sampling should encourage our network to

generalize better to the specific features that define each class, as oppose to other latent

features. Next, we place our camera at a random position in the upper hemisphere

of the plane, keeping a reasonable maximum distance to the subject. The camera is

rotated towards the subject with slight perturbations to simulate random locations

on the rendered image. Lighting of the scene is randomized in terms of intensity and

direction, and a variety of skyboxes were used to generate a random sky. Random 3D

volumes are spawned near the subject, at random scales, locations and orientations.

We limit the amount of occlusion these volumes can have in a frame as to avoid

producing any samples where the entire subject is hidden. Lastly, all objects in the

rendered viewpoint are given a random texture. For our data generations, we used 74

different materials including rocks, woods, metals and even unrealistic textures such as

sprinkles. We refer to all of these augmentations as the parameters of the synthesizer.

Other augmentations such as brightness and saturation adjustments, noise addition

and image deformation are excluded from the setup, as they are often implemented at

train time.
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The entire scene described above is generated every frame and a 256x256 snapshot

is save in JPEG format. Examples can be seen in Figure 3.1 Our current setup runs

around 20 frames per second, making the image synthesis very efficient, as it allows

us to generate 1000 images in less than a minute.

When we refer to randomization in our simulation, we consider a uniform distribu-

tion for our subsampling. For example, any location of the camera is equally likely to

be chosen, and so we inherently achieve a flat distribution which may not be present

in a real world training set. Photographers tend to capture images in canonical views

and so this may produce a very bias sample with many head-on and profile views,

and not much in between. By using a uniform distribution, we encourage the network

to learn the general structure of each class, as oppose to possibly overtraining it to

a specific viewpoint, and failing to generalize to cases where a novel viewpoint is

encountered. We apply this across all simulated parameters.

3.4 Results

Under the conditions that synthetic data is cheaper and easier to obtain than authentic

real world data, we turn our focus to the quality. More precisely we want to study the

effect of synthetic data on the overall accuracy of a convolutional classifier. In order

to have a fair comparison, we will keep the number of training samples the same. We

will also use the same real world test data for both.

We use the Kaggle Dogs and Cats Dataset [57] for the real images. We gather

10,000 train images and 2,500 test images for dogs and cats each, for a standard 80-20

split. We also proceed to generate 10,000 synthetic images of each category as well
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Figure 3.2: Test accuracy of the model using real training data vs synthetic training data
over 10 epochs.

using the methods outlined in Section 3.3. In order to keep network architecture

choices from effecting our results, we will proceed with a basic pre-trained 16 layer

VGG-16 model and stack one extra 128-neuron dense layer on the end of it before

making a final classification. This way all feature extraction is done by a standard

visual feature extractor and the test is not biased particularly to the task at hand.

Standard data augmentation techniques are applied on images at train time, including

random cropping, zooming, horizontal flipping, and slight rotation and brightness

adjustments. Training the network on a single NVIDIA Tesla K80, with a learning

rate of 0.001 over 10 epochs, produces the results in Figure 3.2. Since we have a large

set of training data, our model converges quickly. We can notice that the real model

achieves a state-of-the-art accuracy of near 97.5% while the synthetically trained

model underperforms at 86%.
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3.4.1 Network Architecture

Since the inspiration behind DR relies on the idea of model generalization across

different domains, it may be of interest to see how the model accuracy will be effected

by implementing dropout into the network (0.3 dropout rate), and unfreezing the

weights of the VGG-16 block of the network as mentioned in [39] to allow for full

model finetuning. Results of optimal accuracy through 10 epochs of training for each

can be seen in Figure 3.3. Dropout seems not to have any noticeable effects on the

accuracy of the model, while unfreezing the VGG-16 weights seems to have reduced

accuracy substantially, in line with results from [47] and [48] suggesting that only

the final layer should be finetuned in practice. This could likely be explained by the

fact that the VGG network is very large and has taken tons of computational power

to train, whereas we only terminate training after 10 epochs. This can be explored

further, but will likely require large amounts of resources.

3.4.2 Domain Randomization Parameters

It would be valuable to know which parameters in our DR are most important in

the quality of the data, and to what degree. To study this, we train the same model

above on a variety of different synthetic training datasets. Each set varies only in the

inclusion/exclusion of a DR parameter, while keeping all others present as the control

case in Section 3.4.1. This way we can gauge the importance of each parameter in its

overall quality contributions to the model accuracy.

We generate 7 new datasets, each omitting obstructors, textures, lighting, and sky

boxes, keep subjects in default position as oppose to randomizing their pose, and omit
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Figure 3.3: Accuracy of the real and synthetically trained models using dropout, no dropout,
and allowing for the VGG weights to be trainable (unfreezing).

breed variations, as well as making unrealistic subjects by applying random textures

to them (eg. wooden dogs). Results are summarized in Figure 3.4. The skies and the

textures to the surrounding seem not to have significant effects on model accuracy.

Texturizing the subjects intuitively should generalize better to different domain, but

in the case of real world subjects, it seems to actually lower accuracy a bit. The

largest significance was caused by the variety of different breeds. Initially we had 10

cat and 28 dog models. Limiting to just 1 of each reduced our accuracy by nearly

16%. What this shows is that the breed variation is the most important factor in

learning differentiating features. This could also suggest that increasing the amount

of breeds could increase model accuracy to levels near the real model. A surprising

result however, was the fact that removing obstructors and keeping the subjects in

their default upright poses increased model accuracy nearly 3%. This indicates that
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Figure 3.4: Optimal accuracy of models trained using different synthetic datasets. "Synth"
represents the control model trained on DR techniques outlined in Section 3.3 using dropout.
The others represent datasets were a certain parameter was omitted in the data generation
processes such as lighting or textures. We also go a step further and texturize the cats and
dogs in what is labelled as the "texture subject" bar.
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Figure 3.5: First 4 real and synthetic images in each category, and their subsequent analysis
as to what each model is looking at to classify each image (real model on the left, synthetic on
the right). Second row shows the GradCAM explainer while the third row utilizes Occlusion
Sensitivity (OS), when testing for the cat class.

some poses could actually be hiding important features needed to classify each object.

The obstructors on the other hand could be blocking parts of the subject or causing

unnecessary shadows on the subject, hiding important classification information. This

could also indicate that our real test data has a highly condensed distribution in terms

of subjects being displayed very clearly in full, and generally being photographed

staying still as oppose to being caught mid-action in a certain motion.

3.4.3 Heatmaps

Being mostly a black-box, neural network based methods are still susceptible to

overfitting and other unforeseeable errors. For this fact, interpreting our model is

another facet worth exploring before we can conclude anything concrete about its

accuracy. For this, we apply two state-of-the-art heatmap based techniques to some

images from both domains, and inspect which regions of the image our networks value

most with respect to their final classification. Some non-handpicked examples can

be seen in Figure 3.5. First we apply GradCAM [58], to our images, and specify the

cat category as our target class. For the most part, our network tends to focus on
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the facial features, including ears and eyes mostly to determine its prediction, in line

with what we expect. Notice in Figure 3.5 how each model tends to mistake dominant

features in images outside its domain. We explore this further in Section 3.4.4. The

last row shows a heatmap of the output produced using the OS method [59]. The

results here seem to be more global, with a slight tendency to value a single eye of the

subject.

3.4.4 Domain Transfer Accuracy

One property that a domain randomized dataset may provide over a real one is an

inherent ability to generalize to other domains. Since the real dataset is obtained

from a real world distribution and real world conditions, it is not surprising that it

outperforms the synthetic set. However, it is of interest to see how such models will

perform across domains it has not seen before. In this section, we test the best models

we built thus far on a new small test set that consists of cartoon styled images of dogs

and cats (see Figure 3.6). In theory, if our models are truly learning the correct set of

features that separate cats from dogs, this task should produce results similar to the

initial test set accuracy. Results from this test can be found in Figure 3.7.

Contrary to our hypothesis, the synthetically trained model actually performs

significantly worse on this new "Toon" domain vs the real model, by nearly 20%.

However, what is interesting is despite the real model’s ability to transfer reasonable to

the animated domain, it generalized very poorly when tested on the synthetic domain.

This suggests that domain generalization is domain specific. A model may transfer

well to another domain, while being inadequate on another. In the case of measuring
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Figure 3.6: Example of cat and dog images shown to our models across different domains.
First row is of real world domain images. The second row shows a computer generated
3D domain similar to video games. Third row is a new animated based domain unseen to
both models during training. Cartoon images are intellectual property of Warner Bros., Fox
Broadcasting Company, Hanna-Barbara Productions and Walt Disney Productions.
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Figure 3.7: Optimal accuracy of the real and synthetic model across a variety of different
domains.

out-of-domain accuracy, our synthetic model actually outperformed the real model on

average, suggesting that DR does in fact help with generalization.

3.4.5 Increasing Categories

So far, we have only looked at classification accuracy across 2 categories, namely cats

and dogs. It would also be of interest to see how our synthetically trained models

perform as the number of categories increases. We combine the GRAZ-02 Dataset

[60], with the MaviIntelligence Bike Dataset [61] and the StanfordAI Cars Dataset

[62] for real world images of cars and bikes, and also incorporate 24 bike and 16 car

3D Computer Aided Design (CAD) models into our data generation process. We

limit our studies to 4 categories, namely the cats, dogs, cars and bikes categories, as
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Figure 3.8: Accuracy of the model trained on synthetic data as the number of categories in
the classification varies. The 2 category model trained between cat and dogs, the 3 category
introduced bikes and the 4 category added the cars class.

gathering 3D models for data generation purposes is a challenge in its own.

Our combined dataset now contains thousands of images of each class, where we

again utilize a 80-20 train-test split. Results can be found in Figure 3.8. Overall

classification accuracy seemed to remain consistent moving up to 3 and 4 categories.

Alternatively, an Accuracy Above Random Guess (AAR) is calculated by

AAR = Accuracy − 1

n
(3.1)

where n is the number of categories. Looking at this measure which more accurately

accounts for increases in labels, our networks’ performance rose with each subsequent

category added. One might expect for the overall accuracy to begin to drop as the
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categories increase, while the AAR remains constant. However, this is not what we

see, suggesting that models trained on synthetic data get better as the number of

classes increases.

3.5 Conclusion

Using DR and the Unity Game Engine, we simulate a variety of parameters including

breeds, lighting, textures and occluders to generate a vast range of cat and dog images.

With this synthetic dataset, we were able to train a classifier to identify photos of real

world dogs and cats at an accuracy level of 85.26%. We were further able to increase

the accuracy of the model (surprisingly) to 88.26% by actually limiting the posing

randomization of the subjects. This was likely due to producing a distribution that

was more similar to that of the real world test dataset. It was also found that the

most important parameter to randomize is (unsurprisingly) the amount of breeds for

each category.

Visual heatmaps suggest that our network is in fact looking at reasonable sections

of the image to determine model predictions. Given that our model is trained on

synthetic images, it generalized to out-of-training domain better than the model

trained only on real world data, scoring an accuracy of 72.6% on a mixture of real

and animation images.

Lastly, the synthetically generated data was able to maintain high accuracy when

the number of categories for the classifier was increased.

Overall our results are in line with the current literature in other visual based tasks

when it comes to the use of synthetic data in training neural networks. The findings
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suggest that despite not being able to outperform models trained on real images, the

computer generated data can achieve comparable results with the added benefit of

being easier and cheaper to attain and scale. Furthermore, as Schraml [56] mentioned,

synthetic data should be used in unison with real data, as oppose to a replacement.

Since our initial goal was to compare the effectiveness directly of synthetic images

vs real ones, we did not spend much time redesigning the network architecture itself,

but focused specifically on finetuning the weights and dropout probabilities. It is

possible that the reality gap can be further reduced, given some adjustments to the

model itself. Optimal network structure for the generalization of synthetic data to the

real world domain, would be an interesting topic worth exploring.

Nevertheless, DR shows promise with regards to data acquisition for a variety of

task, and appears to be a viable solution for the light field compression model in the

following chapter. We revisit DR specifically in that context, in Section 4.4.
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Chapter 4

Convolutional Neural Networks for

Lossy Light Field Compression

4.1 Introduction

Current hardware and bandwidth limits make light fields difficult to store, transmit and

render due to their inherently large file sizes. Even with perfect lossless compression, the

data requirements are still orders of magnitude too big. A lossy light field compression

algorithm is needed, that is capable of achieving practical bitrates with minimal

perceptual loss in quality, while also being fast in terms of encoding and decoding. In

what follows, we outline current academic literature related to the compression of light

fields. We then generate a large light field dataset based on the ideas of Chapter 3,

made of 20,000 samples, each consisting of 81 SAIs. A shallow convolutional network

is used to approximate a quantization tensor used in the compression of the light fields.

A second deep convolutional network is trained to further enhanced the compressed

41



4.2 RELATED WORK

light field reconstruction post-quantization in Section 4.5 using the synthesized dataset.

Lastly, we compare the model compression rate and distortion to the state-of-the-art

codecs currently available.

4.2 Related Work

4.2.1 Standard Compression Methods

Light field compression literature is still in its relative infancy. Light field and plenoptic

media standards have been proposed such as those by the JPEG group, but there is still

no generally accepted format. The JPEG Pleno framework introduces 2 independent

modes, namely the Prediction Mode, and the Transform Mode [63]. The Prediction

Mode is based on geometrical image warping, but requires knowledge of the depth

of a scene. Alternatively, the Transform Mode extends the idea of the DCT to 4

dimensions, followed by a combination of optimized decision trees and arithmetic

encoding to compress the file. Such a framework produces promising results, but

require a high angular view density. Furthermore, compression and decompression

speed and hardware requirements are not mentioned.

Standard JPEG compression can be applied independently to each SAI, but fails

to take advantage of angular redundancies between views and serves only as a baseline.

Methods used in video codecs such as High Efficiency Video Coding (HEVC) have

been proposed, that aim to fix this by arranging adjacent light field views in a

pseudo-sequence, and treating them as frames in a video [64, 65, 66, 67, 68].

Santos et al. [69] present a detailed analysis of how different colour transformations
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effect the overall size reduction when lossless compression is applied to light fields.

Their results unanimously suggest that the Reversible Colour Transforms (RCT) allow

for the most compact representation, regardless of compression algorithm used, and

go on to introduce their own Minimum Rate Predictor (MRP) model. A MRP is

based on assigning bits in proportion to an associated estimator’s prediction error. In

another study, they further improve their MRP model by utilizing information across

both microlens views and SAIs [70], minimizing local redundancy. Stepanov et al. [71]

propose a learning-based lossless compression, in which they synthesize views and use

them as a proxy for the probabilities in an adaptive arithmetic encoding.

When perfect data retention can be sacrificed for significant size reduction, a few

reasonable attempts have shown promise. Chen, Hou, and Chau [72] were able to

reduce bitrates close to 50% while maintaining reasonably high PSNR values, by

carefully encoding disparity information with some optimized key views of the light

field. Another method by Tabus, Helin, and Astola [73] used the depth information,

along with a set of reference views to reconstruct the other dependant views. Zhang

et al. [74] proposed an alternative method encoding the view maps of points on

the associated point cloud. They represented each point by a combination of B-

Spline wavelets, and further compress each of the wavelet coefficients spatially. Their

results achieve PSNR values near 30 dB depending on compression parameters, with

computational times varying between 5 and 24 seconds. Similar to the DCT and

wavelet formulations, dictionary based methods attempt to create a basis optimized

for light field patches. Marwah et al. [75] refers to these as light field atoms; essential

building blocks of natural light. In their work, they construct a large dictionary of

atoms, capable of sparsely encoding reflectance views. The concept is taken a step
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further by Miandji, Hajisharif, and Unger [76], who extend the light field atoms across

spatial and angular dimensions. Jiang et al. [77] attempt to calculate the homographies

which best align the light field views, achieving a more compact formulation for a

desired bitrate.

4.2.2 Learning Based Compression Methods

When it comes to learning based methods, most methods utilize some form of view

synthesis, achieving compression by storing only a small subset of SAIs, and recon-

structing the lost ones. Zhao et al. [78] and Zhao et al. [79] make use of CNNs

to recreate the entire light field using a sparse set of views. Bakir et al. [80] uses

HEVC to encode 16 such views, in a similar study, achieving bitrate gains of 30% over

standard video codecs. Computation times were not outlined. Gupta et al. [81] go

one step further and rely only on a neural network made of 2 separate branches. The

first branch uses a fully connected autoencoder, producing optimal angular results,

while the other stacked 4D CNN layers leading to improved spatial results. The two

branches were combined, achieving PSNR scores between 26-32 dB, whilst attaining

a compression ratio of 16:1, but coming at the cost of computation time, logging

processing times on the order of minutes.

Singh and Rameshan [82] structure their networks as many different branches

of Compressive Autoencoders (CAEs), one for each row of SAIs, presenting results

comparable to HEVC while being able to adjust the rate to distortion tradeoff as

desired. Unfortunately, most of their calculation take minutes to hours to compress

on a standard Central Processing Unit (CPU). Similar CAE networks have been
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proposed [83].

Finally, Generative Adversarial Networks (GANs) have also been used to synthesize

views from a small set of key views [84, 85]. GANs use a set of networks, trained

in unison. The generator network attempts to produce a view as indistinguishable

from the real as possible, while the discriminator network attempts to distinguish real

from fake. When the two networks can be trained as to successfully converge, results

are often very visually pleasing [86]. Wang et al. [87] combines such an architecture

with a Spatial Transformer Network (STN) in an attempt to approximate an affine

transformation between adjacent light field views, such that only a subset of them are

needed during compression.

4.2.3 Other Related Work

The idea of view rendering and novel view synthesis is at the heart of the light

field framework. One idea that has been very popular in recent literature and CV

conferences is the Neural Radiance Field (NeRF) [88]. A NeRF is a neural network

capable of approximating a scene by a continuous volumetric function, including

lighting directions. For any given location in space, NeRFs are able to accurately

predict the light that would be emitted at said point. In order to achieve high frequency

detail in the renderings, the authors introduced the concept of positional encodings

[89], by increasing the dimensionality of the spatial and angular dimensions. Much

research has gone into improving NeRFs with regards to higher quality, increased

convergence times, faster rendering and extensions to more difficult scenes [90, 91, 92,

93, 94, 95, 96]. Unfortunately, NeRFs are implicit representations of a scene, meaning

45



4.2.3 Other Related Work 4.2 RELATED WORK

a new model has to be trained for any given scene. Nevertheless, the representation

does encode a light field, and is analogous to a compression method as long as the

network size is smaller than the initial light field file.

An alternative form of light field compression can be achieved using image super-

resolution. Spatial super-resolution allows for the storing of fewer pixels per SAI, and

upsampling during decoding. Fan et al. [97] and Yuan, Cao, and Su [98] demonstrate

this using a mixture of CNNs, achieving reasonable qualitative and perceptual metrics

on the reconstructions. By arranging SAIs horizontally and vertically, Wang et al.

[99] improves these results, using a bidirectional recurrent CNN, treating the images

as temporal sequences. Super-resolution can be further extended to the angular

dimensions, allowing for more sparse encodings in both overall pixel density, and total

number of views [26, 100].

If we omit the angular information in a light field, much of the literature on image

compression using deep learning can be applied directly to each SAIs. Alexandre et al.

[101] use a convolutional CAE, with a quantizer and importance map blocks, capable

of assigning bit counts per pixel as it deems optimal. In order to backpropagate

thought the quantization layer, they use a smooth gradient approximation to the floor

function which they call soft-quantization. Alternatively, Theis et al. [102] use the

derivative of a simple identify function for the gradient of the quantization. Li et al.

[103] employ this same trick to resolve their non-differentiable binarizer, while also

utilizing an importance map to gauge pixel bitrate. Uniform additive noise has also

been used as a proxy for the back propagation of the quantization step [104]. Lim

et al. [105] explain how batch normalization layers in residual CNNs remove useful

range information, and demonstrate how removing them increases quality, while also
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reducing network size substantially.

If SAIs are treated independently, Dong et al. [106] propose a simple CNN for the

super-resolution of images which they notably term Super-Resolution Convolutional

Neural Network (SRCNN). The SRCNN is comprised of 3 CNN layers, strategically

stacked such that they function as a feature extractor, non-linear mapping of said

features, and a reconstuctor. They later go on to increase the speed of the network

by a factor of 40, by adding a shrinkage layer after the feature detector, and work

in low-resolution space until the final reconstruction [107]. In a similar attempt,

the authors apply the network structure to the task of compression artifact removal,

altering parts of the image instead of upscaling it [108]. Cavigelli, Hager, and Benini

[109] are able to improve on these results by increasing the number of hidden layers,

while also implementing metrics at multiple scales to their loss function. Ledig et al.

[110] restructure the super-resolution task in the framework of GANs. By pairing a

deep generator network made of 16 residual convolutional blocks, with a discriminator

capable of identifying true high resolution images from generator ones, the coupled

network is capable of creating images nearly indistinguishable from real ones.

4.3 Current Datasets

There are far less open source datasets available for light fields, than for more main-

stream media forms such as images and videos. The Stanford Light Field Archive

is the most well known, with the datasets often showing up in research papers [10].

The Stanford datasets consist of a mixture of different image resolutions. This can

sometimes lead to issues, particularly in ML, as the images may need to be stretched
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for a uniform aspect ratio throughout. This can lead to scaling issues along a dimen-

sion, for example in depth estimation where disparities will vary image to image. The

Stanford Archives are divided into two groups. The Old Archives have light fields

with relatively low spatial resolutions, whereas the New Archives only provide 13 light

fields, but consist of 289 viewpoints each.

Another commonly used dataset in recent literature is the Flowers Dataset [3]. It

is the largest light field dataset to date, made up of over 3300 light fields of flowers,

taken with a Lytro Illum camera. At nearly 170GB, it is evident how problematic

the large filesizes of light fields are. As the images are all of flowers, there is large

correlation in terms of color distribution, visual features, and pixel depth between

samples, which could cause overfitting and issues in generalization to other domains,

when used as training data. Similarly, Lytro also offers some publicly available data

captured on their cameras [111]. They share 25 high quality light fields, all in 1:1 image

ratios, with a variety of viewpoints at close baselines, but require some formatting

and preprocessing to access the data. Furthermore, with the company closing down,

the associated file format is no longer generally supported.

MIT have their own achieve [112], with applications to other commonly cited

papers [75]. This is a small dataset made up entirely of synthetically generated light

fields, lacking complex textures.

The HCI Light Field Dataset as collected by groups from Heidelberg University

and the University of Konstanz [113] is the most commonly used dataset for depth

based solutions and depth estimation. The dataset consists of 24 light fields, each

made up of 81 viewpoints. All the image slices are of equal size and aspect ratios.

This is ideal for an input layer of a neural network, as the size would have to be
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Dataset Size Type Angular Resolution
Stanford New Archive 13 Real 17x17
Stanford Old Archive 6 Synthetic 32x32
Flowers Dataset 3343 Real 14x14
MIT Archive 5 Synthetic 5x5
HCI 4D Dataset 24 Synthetic 9x9
Lytro Archive 25 Real 10x10
LFSD [114] 100 Real 10x10
LCAV-31 [115] 31 Real 10x10
DDFF-12 [116] 720 Synthetic 9x9
Graz Dataset [117] 900 Synthetic 11x11
MPI Archive [118] 14 Mixed 101x1
V-SENSE [119] 11 Real 14x14

Table 4.1: Overview of all publicly available light field datasets.

fixed, while the aspect ratio assures our images would not suffer from any resizing

artifacts. Furthermore, the data already comes segmented into a test/train split ideal

for research purposes, and the true disparity maps are also provided if we choose

to utilize them in the future. Each light field is made up of 9 × 9 densely packed

viewpoints, each of 512× 512 pixels along 3 color channels, in standard PNG format.

The HCI Light Field Dataset is the inspiration for our dataset in Section 4.4, and will

be used for testing purposes in Section 4.6.

Exact size and details for all publicly available light field datasets can be found in

Table 4.1.

Despite all of the data sources outlined, the largest dataset consists of just 3300

light fields, and severely lacks scene diversity. As we aim to train a compressive neural

network model, we will require far more data than is collectively available. In order to

attain such a large data bank, we proceed to generate synthetic light fields using DR

as detailed in the following section.

49



4.4 DATA GENERATION

4.4 Data Generation

With a shortcoming in available data for the training of our ML model, we are forced

to create our own. In order to produce a general model capable of compressing any

light field, data diversity is a top priority in terms of lighting, textures, geometries,

subjects, focal depths and camera baselines. Capturing such scenes by the thousands is

a daunting task. Furthermore, commercial light field cameras are difficult to come by,

while industrial cameras are expensive and require high levels of expertise to operate.

Instead, we proceed to create a synthetic dataset, largely using the methods and

findings presented in Chapter 3 [120], while adopting the formats used in the HCI

4D Dataset [113]. We opt to use the Unity Game Engine, since the game engine is

optimized to render scenes in a fraction of a second as oppose to Blender which can

take minutes. We trade off the photorealism of Blender’s ray tracing features for the

speed improvements of Unity, due to the large amount of images we aim to produce.

We use the Classic Furniture Pack 1 house model from the Unity Asset Store as our

backdrop for an environment, and iteratively spawn a light field camera at a random

location, facing a random direction, inside the house. The house is made up of a

collection of rooms featuring a variety of different characteristics, such as reflective

surfaces, spot and point light sources, windows allowing external directional light, and

a host of highly detailed typical home objects. We then load a random amount of

the 200 available object models from the Garage Props Pack 2 in the camera’s FoV

to serve as occluders. We use this pack as we found the objects to contain a large
1https://assetstore.unity.com/packages/3d/props/interior/classic-furniture-pack

-54611
2https://assetstore.unity.com/packages/3d/props/tools-stuff-props-pack-151878
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Figure 4.1: Examples of objects used as occluders for each scene. Objects not to scale.

variety of shapes, sizes, albedos, specularities, and diffuse and normal surface maps.

Examples of some occluders can be seen in Figure 4.1. We further randomize the

position, and angular rotation of each occluder, and slightly perturb their size between

each capture.

Next, the color and textures of all objects that lie in the viewing frustum are

randomized using a collection of materials from Nobiax/Yughues 3, such as wood,

copper, fur and fabrics, which can all be seen in Figure 4.2. The textures all include

normal and reflectance maps, capable of producing non-Lambertian surface reflectance.

To further iterate the light scattering, we alter the direction and intensity of the

directional light in the scene, and the position and intensities of the point lights

and area lights. Light color was indirectly perturbed via the diffusive properties

of the environment surroundings. Reflection probes were also used in the scene to

give mirrors and glass-like surfaces global reflectance, but were omitted from any
3https://assetstore.unity.com/publishers/4986
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Parameter Randomization Range Unit
Camera Position X (0, 1)†

Camera Position Y (0, 1)†

Camera Position Z (0, 1)†

Camera Rotation (Yaw) [−180, 180) ◦

Camera Rotation (Pitch) [−40, 40] ◦

Camera Focal Length [40, 120] mm
Focus Distance [0.8, 2] m

Baseline [2, 10] mm
Color (Hue) [0, 1]

Color (Saturation) [0, 1]
Color (Value) [0, 1]

Textures 148
Texture Tiling Scale [35, 65] %

Light Direction (Polar) [120, 180] ◦

Light Direction (Azimuth) [0, 360) ◦

Light Intensity [0, 100] %
Number of Occluders [1, 10]

Occluder Position (Distance)‡ (0, 1] m
Occluder Position (Polar)‡ [0, 22.5) ◦

Occluder Position (Azimuth)‡ [0, 360) ◦

Occluder Rotation (Yaw)‡ [−180, 180) ◦

Occluder Rotation (Pitch)‡ [−90, 90) ◦

Occluder Rotation (Roll)‡ [−180, 180) ◦

Table 4.2: Parameter ranges used in the Domain Randomization.
† relative to environment bounds.
‡ relative to camera reference frame with optical axis indicating positive z-axis.

further alterations in the DR process. A full list of DR variable parameters, and their

respective ranges is provided in Table 4.2.

A light field CA is built by aligning 9 rows and 9 columns of cameras in a grid, while

keeping the optical axis of each parallel to one another, as was done by Honauer et al.

Each camera is placed a baseline b horizontally and vertically from other adjacent

cameras, which is allowed to vary from sample to sample and can be found in a

supplementary params.txt file attached to each generated light field. However, the
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Figure 4.2: Examples of textures applied to scene objects.
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sensor size of each camera is kept constant at 35 × 35 mm, producing a SAI of 512

× 512 pixels. With 81 SAIs, any larger resolutions would cause issues later on when

attempting to train due to the memory constraints of GPUs. In order to align the

view of each camera, we use a lens shift technique, typically produced using a tilt shift

lens in real cameras. The lens shift is equivalent to sliding the sensor underneath the

lens. Since our cameras do not take up any physical space in the game engine and

are not visible, small baselines and large lens shifts don’t suffer from the challenges

that would be present in the real world. Similar to Honauer et al., our cameras are

not rotated. A visual representation taken of the lens shift can be seen in Figure 4.3.

It should be noted that though we randomize the focus distance and focal length

each capture, all cameras in the array share these values. Using the lens shift, all

the cameras are adjusted such that their viewports are aligned in the image plane,

determined by the focus distance, with their optical axes perpendicular to the plane.

Each camera’s near and far clipping planes are set at .01 and 20 meters respectively.

We limit the DR to the physical characteristics of the environment and camera only.

No post processing variability was applied to the camera renders, such as noise and

gamma correction adjustments, which may be present under real imaging conditions.

Blurring, vignetting and lens distortions effects are also not generally invertible, and

careful attention must be paid as to correctly align the effects across SAIs. Furthermore,

these effects take valuable time in the rendering step, causing substantial slowdowns.

More often, this is implemented as a pre-processing step in the standard ML flow

(as opposed to being baked in directly into the data), along transformations such as

rotations, reflections, projections and cropping. A small amount of ambient occlusion

is applied, which is technically applied as a post processing effect in game engines
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Figure 4.3: Lens shift of cameras in a light field CA, taken from the Supplementary Material
of Honauer et al. [113]. Each camera is shifted such that the same cross sectional area on the
image plane is in frame. The cameras are not rotated and their optical axes remain parallel.
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due to the difficulty of approximating the true global scattering of light, but it is

kept constant throughout. The addition of the ambient occlusion displayed negligible

effects on rendering times.

Aside from the SAIs, the central camera of the CA captures a depth map and

an object level segmentation maps. The depth map encodes the distance to the first

collision a ray in a given pixel comes into contact with. This map is used in depth

estimation and depth based image warping methods, and is also included in the HCI

4D Dataset. The segmentation map is a sparse image which assigns a unique color to

each object visible in the viewport. This provides useful boundary information which

when combined with the depth map can be strategically exploited for a variety of CV

tasks.

The game engine is capable of generating a light field capture once every 5 seconds,

including the time to save to disk. In between each capture, all DR parameters

listed in 4.2 are randomized using a uniform sampling across the stated parameter

ranges. Each new light field sample is made up of 81 independent view renderings,

one from each camera, the depth and segmentation maps from the central view and

the associated params.txt file for the CA parameters. The data synthesis was ran for

28 hours, generating 20,000 light field samples across a collection of diverse domains.

The entire dataset takes up over 700 GB, with an average size of 35.8 MB per light

field, which we refer to as the LIAM-LF-Dataset going forward. Examples of the

generated images can be seen in Figure 4.4 and Appendix B.1.

Using a cloud storage provider, the data is uploaded using a direct Ethernet

connection for further processing. Even with a direct connection and access to

industrial level internet speeds, it takes over a day to upload the entire dataset, due
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Figure 4.4: Examples of the central SAI of 3 synthetically generated light fields using DR.
The associated segmentation and depth maps are also displayed.
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Figure 4.5: Compression and decompression branches of the proposed pipeline.

to its large size. Typical broadband limitations would cause wait times, orders of

magnitude larger, making the necessity for file compression evident.

4.5 Compression Pipeline

Typically, a complete compression schema is comprised of a collection of smaller

compartments, each making use of redundancies at different levels in order to optimally

encode a signal. Our encoding scheme is a direct extension of the JPEG process to

higher dimensions. Namely, we employ a standard chromatic subsampling technique,

followed by a 4-Dimensional DCT of the light field. A quantizer is applied to the

coefficients followed by an entropy encoder block at the end. The decoder slightly

differs with the addition of the enhancement step. The encoding process is reversed

for decoding the signal, with a convolutional enhancer applied to sharpen the images

and remove any compression artifacts, before the final upsampling as shown in Figure

4.5.
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4.5.1 Chroma Subsampling

Taking advantage of the human eye’s greater sensitivity to luminance than chrominance,

we begin by downsampling the red and blue chroma components. We first transform

the initial gamma corrected SAIs from the RGB color space to the YCbCr color space.

The transformation4 is given by


Y

Cb

Cr

 =


0

128

128

+


0.299 0.587 0.114

−0.168736 −0.331264 0.5

0.5 0.418688 −0.08312



R

G

B

 (4.1)

and reversed by


R

G

B

 =


1 0 1.402

1 −0.34436 −0.714136

1 1.772 0




Y

Cb − 128

Cr − 128

 (4.2)

where Y represents the luma and Cb and Cr are the blue and red chroma components

respectively. The subsampling in this color space is commonly expressed as a ratio

of the form N :a:b for a given patch made of 2 rows of pixels. N is the horizontal

sampling of the luma, used for reference relative to the other 2 channels and is almost

always set to 4. This can be thought of as the width of a patch in pixels. The a value

represents the number of chromatic samples in the first row of N pixels, while b is a

flag set to 0 if the second row of the patch carries down the same values from the top

row, or a if it is sampled independently. The overall compression factor is calculated

as
4https://www.w3.org/Graphics/JPEG/jfif3.pdf
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Compression Factor =
N + a+ b

12
(4.3)

with the 4:4:4 ratio representing no subsampling and therefore no compression, while

the 4:1:0 provides maximal subsampling with a compression factor of 5
12

or a reduction

of 58.3%.

Similar to JPEG and HEVC, we employ a chroma subsampling ratio of 4:2:0 in

our pipeline, instantly cutting down our file size in half. Our results presented herein

are based on the 4:2:0 standard, though alternative bitrates can be achieved utilizing

the less aggressive subsampling schemes. For the sake of our pipeline, our variable

bitrate will be entirely controlled by a quantization factor that we study further in

Section 4.6.1.

It is important to note, that upsampling the chroma back is not a lossless process.

The subsampling operation tosses away information that cannot be retrieved directly.

Furthermore, while the color transformation across color spaces is invertible, there

may be intermediate rounding errors introduced in the calculations which may lead to

slight variations in the reconstructed images. These effects however are not on the

order of being perceptually noticeable, and will be tolerable for our model.

4.5.2 4D DCT

In order to exploit maximal redundancies in our light field, we will work with the

signal in the frequency domain. In this fashion, high frequencies are often just noise

from the spatial domain, and can be toned down or entirely discarded similar to a

typical low pass filter in signal processing. Moreover, patches in the light field are
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Figure 4.6: Examples of commonly used chroma subsampling ratios.

highly correlated and so we expect a handful of frequencies to be greatly representative

of the entire area. Numerically, we can represent our discretized light field as the

5-dimensional tensor

Lu,v,s,t,c u, v = 1 . . .M, s, t = 1 . . . N, c = 1 . . . 3 (4.4)

where u and v are the angular indices, s and t are the spatial indices and c is the

indexed luma and chroma channels. The M ×M × N × N × 3 light field tensor is

subsampled as outlined in Section 4.5.1, and split it into 2 separate tensors; a luma

tensor

Ll
u,v,s,t,c u, v = 1 . . .M, s, t = 1 . . . N, c = 1 (4.5)
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and a chroma tensor

Lc
u,v,s,t,c u, v = 1 . . .M, s, t = 1 . . . N/2, c = 1 . . . 2 (4.6)

of size M ×M ×N ×N × 1 and M ×M × N
2
× N

2
× 2 respectively. In this form, each

tensor is partitioned into blocks T of size B1 ×B2 ×B3 ×B4, and the DCT is applied

across the u, v, s and t dimensions on each block using the 4-D DCT Type-II5 given by

ci,j,k,l =

B1∑
u=1

B2∑
v=1

B3∑
s=1

B4∑
t=1

Tu,v,s,t cos

[
π(i− 1)

B1

(
u− 1

2

)]
cos

[
π(j − 1)

B2

(
v − 1

2

)]
cos

[
π(k − 1)

B3

(
s− 1

2

)]
cos

[
π(l − 1)

B4

(
t− 1

2

)]
(4.7)

with B3, B4 = 8, where Tu,v,s,t is the pixel value of a block at entry u, v, s, t, and ci,j,k,l

is the associated DCT coefficient. The calculation are applied independently for each

channel in the chroma scenario. The B1 and B2 terms are chosen to have spatial

width and height of 8 pixels analogous to the patch sizes in JPEG encoding, while

B3 and B4 will depend on the angular resolution of the data available. The block

dimensions should be chosen as to be an integer factor of the tensor’s dimension so we

assume N is a multiple of 8. Each block is now represented by 64B1B2 coefficients.

The DCT coefficients can be inverted back and patched into the original discretized

light field tensors using the 4-D Inverse Discrete Cosine Transform (IDCT) Type-II5

5As the multidimensional DCT is simply the composition of one-dimensional DCTs, we extend
the formulation to four dimensions directly from Rao and Yip [32]
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Tu,v,s,t =

B1∑
i=1

B2∑
j=1

B3∑
k=1

B4∑
l=1

ci,j,k,l cos

[
π(i− 1)

B1

(
u− 1

2

)]
cos

[
π(j − 1)

B2

(
v − 1

2

)]
cos

[
π(k − 1)

B3

(
s− 1

2

)]
cos

[
π(l − 1)

B4

(
t− 1

2

)]
(4.8)

4.5.3 Quantizer as a Convolutional Network

While transforming the light field into the frequency domain may lead to reductions

in size depending on the distribution of the coefficients, this generally will not lead to

large enough compression ratios. To make full use of the representation, we proceed to

1) remove any coefficients which have negligible effect on the image quality in a given

batch, and 2) pack the coefficient as tightly as possible as to minimize the entropy

of the data. To achieve this, a quantization tensor (similar to a quantization table)

will be used to scale down (or scale up) each DCT coefficient, followed by the actual

quantization operation which will round each entry to the nearest integer. In order

to represent each coefficient with n bits, the quantization in effect normalizes the

spectrum to the integer range [0, 2n − 1].

Generating a useful quantization tensor however largely depends on the charac-

teristics of the light field data. We proceed to structure the task of building the

quantization tensor, by transforming the quantization processes into a neural network,

and training it on the LIAM-LF-Dataset in order to attain each entry.

The operations in each step of a typical quantization, as shown in Figure 4.7,

can be represented with well behaved functions, aside from the rounding step. We

transform the procedure into the paradigm of a neural network in Figure 4.8. The

63



4.5.3 Quantizer as a Convolutional Network 4.5 COMPRESSION PIPELINE

Figure 4.7: A typical quantization process converts an image to it’s DCT coefficients,
normalizes the values using a quantization table and rounds the values. The encoding is
imperfectly reconstructed by reversing the normalization and domain transform.

Figure 4.8: The quantization can be expressed as a quotient between the DCT coefficients of
the light field L and the parameters of the quantization tensor Q, followed by an approximation
to the round operations. By reversing the steps post quantization, the difference between
the reconstructed light field L∗ and L can be minimized, in order to solve for the optimal
entries of Q.
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DCT and IDCT can be described by a set of linear equations as given by 4.7 and 4.8,

having smooth derivatives with respect to the input variables. This operation block

can be trivially inserted into and backpropagated through, a neural network. The

normalization steps, shown as ×○ and ÷○ in Figure 4.8, are analogous to a single filter

convolutional layer with kernel sizes of 1 in all dimensions and no bias term, adjusted

such that the DCT coefficients are stacked in the typical channels dimension.

The rounding operations is not an invertible function, and hence information is lost

in this step. Furthermore, the rounding function f(x) =
⌊
x+ 1

2

⌋
, is not differentiable

and therefore gradients cannot be calculated during backpropagation. Instead, consider

the function

s(x) = x−
⌊
x+

1

2

⌋
(4.9)

The function s(x) is a shifted saw-tooth wave function commonly used in electrical

engineering and signal processing, and can be decomposed into the Fourier series6

s(x) =
1

π

∞∑
n=1

(−1)n+1

n
sin(2nπx) (4.10)

which is still discontinuous at x = n+ 1
2
, n ∈ Z. Instead we can approximate s(x), by

s(x) ≈ s∗(x) =
1

π

∞∑
n=1

(τ)n+1

n
sin(2nπx) (4.11)

where s∗(x) → s(x) as τ → −1, and is continuous and differentiable everywhere for

−1 < τ < 0. Using the Taylor expansion of the natural logarithm, we can get a closed
6https://mathworld.wolfram.com/FourierSeriesSawtoothWave.html
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Figure 4.9: Effect of different τ values on g(x).

form for Equation 4.11 arbitrarily close to τ = −1, given by

s∗(x) =
τ

π
tan−1

(
τ sin(2πx)

1− τ cos(2πx)

)
(4.12)

By rearranging, Equation 4.9, we approximate the rounding function f(x) by

g(x) = x− τ

π
tan−1

(
τ sin(2πx)

1− τ cos(2πx)

)
(4.13)

where τ is a parameter that controls the tightness of the approximation, with values

closer to −1 providing tighter fits. One can see how this parameter effects the slope

of the function around integers values in Figure 4.9. Furthermore, the derivative of

g(x) is given by

g′(x) = 1− 2τ 2(cos(2πx)(1− τ cos(2πx))− τ sin2(2πx))

τ 2 sin2(2πx) + (1− τ cos(2πx))2
(4.14)

which is well defined everywhere. For full derivations of the closed form of s ∗ (x) and

66



4.5.3 Quantizer as a Convolutional Network 4.5 COMPRESSION PIPELINE

the derivative of g(x), see Appendix C. A τ value of −0.95 was chosen empirically such

that g′(x) > 0,∀x, while containing max(g′(x)) as to allow the network to properly

converge. The idea here is to approximate the optimal values of Q (learnable weights)

for f(x), by training the network using g(x).

To train the network, we must incorporate a bitrate penalty into our loss function,

otherwise minimizing only the distortion will lead to arbitrary small entries of Q, as

to neutralize the effect of the quantization. We measure the distortion between the

real and reconstructed light fields using the MSE and employ an L1 regularizer on

the encoded signal. Since the probability distribution of the encoding (as measured

by the frequency of each bit value) and hence its informational entropy, are discrete

functions, they are non-differentiable with respect to their arguments, and so we can’t

incorporate it directly in our minimization. To circumvent this limitation, we enforce

the L1 regularization on the encoding, which encourages sparsity [121] and therefore

should lead to low entropy. Our loss function L can be written as

L(L,w) = MSE(L,Dw(Ew(L)))︸ ︷︷ ︸
distortion

+λ ∥Ew(L)∥1︸ ︷︷ ︸
bitrate

(4.15)

where Ew and Dw are the encoder and decoder parts of the network, w are the weights,

and λ is a coefficient controlling the desired tradeoff between the distortion and bitrate.

The weights of the network are the entries of Q, and so the network is an optimization

of the problem

Q = ŵ = argmin
w

1

n

(
n∑

i=1

L(L(i), w)

)
(4.16)
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over a dataset of n light field samples L(i).

Typically, compression algorithms allow for a variable bitrate, based on the task

at hand. Adjusting λ is one such way to control the desired bitrate, with large values

giving higher weight to the bitrate term in Equation 4.15, while lower values prioritize

the distortion. However, training a new model for each bitrate, and storing each

associated quantization tensor becomes problematic. Instead, we impose a quality

factor q associated with Q, such that quantization at quality q is calculated as

L∗
q = IDCT

(⌊
DCT (L)

qQ
+

1

2

⌋
qQ

)
(4.17)

where a value of q = 1 will give the initial bitrate associated with the trained λ value.

Values of q between 0 and 1 produce higher perceptual quality reconstructions, while

those above 1 will produce better bitrates. We explore this relation with greater detail

in Section 4.6.1.

4.5.4 Entropy Encoding

Redundancy in the encoding Ew can further be exploited. As we mentioned above,

the L1 regularization penalty should lead to a large proportion of the entries to be

zero. This information can be tightly compressed losslessly, using entropy encoding

techniques such as a Huffman encoding, or an arithmetic encoder. These techniques

are capable of achieving compression rates near the theoretical limits defined by the

Shannon entropy. The details of these methods will not be further described here, and

we will report bpp values directly using Equation 2.5 under a logarithmic base 2, for

theoretical purposes.
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4.5.5 Enhancer Network Structure

Thus far, the compression process has largely mirrored that of a standard JPEG

pipeline, extended to higher dimensions. To make full use of the power of modern deep

learning and CNNs in particular, we propose a multi-resolution convolutional-based

network which we call a Convolutional Neural Enhancer (CNE). Typical reconstructed

images tend to display a number of common compression artifacts such as ringing,

staircasing and blocking. Furthermore, loss of higher frequency details is often seen

causing focal parts of the image to appear blurred. We outline the architecture and

details of our CNE in what follows, and present our results in Section 4.6.2.

In the YCbCr color space, the majority of details and edges are controlled through

the luma channel. Furthermore, perceptual metrics such as SSIM are highly dependant

on the luminance of an image. As Dong et al. [106] and their results show, we only

apply the luminance component of the light field through the CNE.

The CNE consists of convolutional blocks used to extract features at numerous

different resolutions. Each convolutional block consists of a pair of 3D convolutional

layers with Rectified Linear Unit (ReLU) activations. In order to effectively apply

the convolution across the spatial dimensions, the angular dimensions u and v are

initially collapsed together. The convolutions use a narrow kernel in order to encourage

feature detection in a small neighbourhood of a given pixel at each resolution. In

order to downsample intermediate representations, we employ a 3D maxpooling layer

which approximately downsamples the resolution of the features in half. This causes

subsequent layers to explore features at wider peripherals. The number of filters used

in the convolutional blocks iteratively doubles, after each downsampling. After the
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fifth block, the process is reversed, using a 3D transpose convolutional layer in order

to upsample the low resolution features back up. A skip connection joins the output

from the transposed layer with the input of the corresponding maxpooling layer at

each resolution, as can been seen in Figure 4.10. The skip connections help guide the

network in the early stages of training, encouraging the low resolutions to focus more

on global features while the higher resolutions forward the local features directly to

the end. Instead of a typical residual skip connection, we stack the tensors across the

filters dimension as indicated by the |○ operator, such that subsequent blocks can

independently make use of higher and lower level features as needed. A convolution is

applied at the end to convert the features back into a single channel tensor. Finally,

the compressed light field is added back to the output of the final convolutional block

as indicated by the +○ operator, making the entire network a deep residual block.

The network identifies the compression artifacts, and produces a residual such that

when added to the initial compressed light field tensor, inverts the visual distortions.

We notably exclude the use of any normalization layers in our network. The

normalization layers produce a substantial increase on the memory requirements of

the network. This is not only a disadvantage at inference time, but also a hurdle

during training due to hardware memory limits, which we discuss in Section 4.6.2.

Furthermore, normalization layers remove the range flexibility of the images which

is not trivially reversed without the incorporation of more intricate designs in the

network. Our claim is supported by the findings of Lim et al. [105].

The CNE’s job is to produce the best quality image, namely by the reduction of

any artifacts present. As there are no bitrate restrictions, the loss function L is simply
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Figure 4.10: The network architecture resembles a deep residual block, made up of a
sequence of convolutional blocks at different resolutions. Concatenations are done across the
filters dimension, while the addition is performed element-wise.
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L(L,L∗, w) = MSE(L,Nw(L
∗)) (4.18)

where L and L∗ are the clean and noisy light fields respectively, Nw is the output of

the neural enhancer, and w are the network’s weights.

4.6 Experimentation

4.6.1 Neural Quantizer

Training

Utilizing the architecture described in Section 4.5.3, we proceed to train 2 separate

models; one for the luma channel and one for the chroma channels. We present results

that show a substantial increase in quality for a given bitrate vs standard image

compression techniques on a handful of evaluation metrics. Furthermore, we provide a

precise function for the selection of the quality parameter q, dependant on the desired

bitrate.

Using the LIAM-LF-Dataset, we first preprocess each SAI by first converting the

image into the YCbCr color space, and split it along the channels. As we outlined

in Section 4.5.1, the chromatic channels are subsampled using a 4:2:0 sampling ratio,

effectively reducing the resolution of the blue and red chrominance channels in half.

We construct a 9× 9× 512× 512× 1 tensor to represent the luma of a given light field

sample, and feed it into our network. The 20,000 sample dataset is split into 16,000

train and 4,000 validation light fields, following a standard 80-20 heuristic.

We set B1, B2 = 9, as to span the entire angular resolution of the light fields,
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giving us a quantization tensor of size 9× 9× 8× 8× 1.

As each light field sample is equivalent to 81 standard images, we are limited on the

size of each batch, due to memory constraints on the GPU. We proceed to train the

network with a batch size of 1, and λ = 10−4 which we found empirically to produce

a good tradeoff between the rate and distortion terms. The model is trained for 2

epochs, with an initial learning rate of 10−2, and decreased to 10−3 halfway through.

Surprisingly, the model converges rather quick, with stagnation in the loss after only

4,000 iterations. We note that both the Adam and RMSProp optimizers displayed

similar results. The training time for the whole process was 26 hours on a NVIDIA

Tesla T4.

The training was repeated independently for the chroma, with 2 slight differences.

First, since the chroma was subsampled, the tensor’s spatial dimensions are adjusted to

256× 256. Second, since the same quantization tensor will be used for both chromatic

channels, we randomly sample just one of the 2 channels each iteration at train time.

Quality vs Bitrate

The quality parameter q does not correlate linearly to a perceptual metric during

quantization. Furthermore, the degree of compression is often limited by bandwidth

constraints. Therefore, it is useful to study how varying q effects the overall bitrate of

a compressed sample. To do this, we evaluate the model on the validation set, across

a multitude of q values. The results are summarized in Figure 4.11. The average

bitrate appears to be modelled by a smooth decaying function. Assuming a general

exponential function of the form
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Figure 4.11: Bitrates for a given quality q, as measured on the validation set. The blue
region represents the average +/- 1.96 standard deviations, while the green and yellow
indicate the best and worst compression samples.

b(q) = αe−βqγ (4.19)

we approximate a relation between two. Using the Generalized Reduced Gradient

(GRG) [122] non-linear programming solver, we find the values

α = 16.158

β = 2.47

γ = 0.346

minimize the MSE. The function b(q) gives us the average bits used per pixel for a
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given quality factor q for our 4-D Quantizer. However, as we mentioned previously,

typically we want the inverse relation. Inverting the function, we get

q(b) =

(
ln(b)− 2.782

−2.47

)2.89

(4.20)

where q(b) is the best estimate for the quality factor in the compression, for a desired

bitrate b. Depending on the task at hand, Equation 4.20 provides a reasonable

approximation for the value of q required. However, it is to be noted that this relation

is based on average bitrate, and may vary greatly sample to sample. Nevertheless, it

is a useful heuristic, and becomes more accurate as the number of samples increases.

Alternatively, one can use a more conservative approximation using the worst case

estimates as shown by the maximal curve in Figure 4.11, leading to the alternative set

of parameters

αmax = 13.037

βmax = 1.50

γmax = .453

for a more stringent limit on the bitrate needed.

Results

We proceed to compare the model against other modern image compression algorithms.

For evaluation purposes, we test the model on the HCI 4D Test Dataset. Since our

model is trained entirely on the LIAM-LF-Dataset, this has the added advantage of
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evaluating the quality of the DR used to generate our synthetic dataset. For each

scene we calculate the PSNR, SSIM, MS-SSIM and LPIPS associated with each SAI

after conversion back to the RGB color space, and present the averages across the

entire light field in Figures 4.12, 4.13, 4.14 and 4.15. As the results show, our 4D

Quantizer outperforms the other methods substantially in all metrics. Notably, our

quantizer produces much more stable similarity and perceptual metrics across varying

bitrates. Our method only underperforms the JPEG2000 standard for the Origami

scene in terms of PSNR, for large bitrates. However, for bitrates below 0.4 bpp, our

method remains optimal. Despite the model being trained to only minimize the MSE,

all perceptual measures are largely improved.
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Figure 4.12: Comparison of PSNR, SSIM, MS-SSIM and LPIPS scores on the Bedroom
scene from the HCI 4D Test Dataset. For the JPEG and JPEG2000 methods, each SAI is
compressed individually and scores are averaged out across the entire light field.
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Figure 4.13: Comparison of PSNR, SSIM, MS-SSIM and LPIPS scores on the Bicycle
scene from the HCI 4D Test Dataset.
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Figure 4.14: Comparison of PSNR, SSIM, MS-SSIM and LPIPS scores on the Herbs scene
from the HCI 4D Test Dataset.
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Figure 4.15: Comparison of PSNR, SSIM, MS-SSIM and LPIPS scores on the Origami
scene from the HCI 4D Test Dataset.

Interestingly, the results of the 4D Quantizer at low bitrates are comparable

to those of JPEG and JPEG2000 at bitrates 5-10 times higher. The diminishing

degradation of our model at bitrates below 0.2 bpp is particularly noteworthy, as

this is likely the realistic range needed in practice to share and stream light fields.

Furthermore, the DR produces large enough variability for the model to bridge the

gap between domains. This is evident by the high evaluation metrics on data from a

distribution the model has never seen before. We will explore these ultra compressed

bitrates further in Section 4.6.2.
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4.6.2 Enhancer

Training

As our CNE is paired particularly to the 4D Quantizer presented in the previous

section, we need to preprocess our dataset accordingly. The CNE itself sits on top of

the quantizer, and can be interpreted as a separate block. We strip the luma channel

of the reconstructed light field L∗, and feed it into our network. As L∗ depends

on the quality factor q, naturally a separate model needs to be trained for each q.

However, we find that the model remains resilient across all levels, when trained on

a single, moderately aggressive quantization. Practically this is desirable as only a

single model is required for decompression. We find that training the network on lower

quality factors fails to generate significant enough artifacts for generalizing to higher

compression factors. Conversely, training on an overly aggressive q causes severe

blurring when transferred to lightly compressed samples. While all values greater than

0 are meaningful depending on the target required, we find setting q = 3 to generally

produce a fine balance between artifact prioritization and compression generalization.

Our findings are in line with the results presented by Cavigelli, Hager, and Benini

[109].

The large memory required to build the network, along with the time consumption

of building each light field and transforming it to the frequency domain and back,

makes training the model challenging. In particular, the network becomes too large to

store on the GPU, when the entire light field is passed. To deal with this, we slice

each light field into hyperblocks of size 9× 9× 128× 128× 1, and train the network

in batches of 3. We train the network for 4 epochs using the same train-validation
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split from Section 4.6.1 using the Adam optimizer. The associated learning rate was

initially set to 10−2 and lowered to 10−3, 10−4 and 10−5 at the end of each epoch,

respectively, in order to encourage finer optimization of the network weights. Training

took 4 days on a NVIDIA Tesla T4.

Results

We build on the results from the previous section, by incorporating the combination

of the 4D Quantizer with the CNE. Detailed results are presented in Table 4.3, across

the HCI 4D Test Dataset, at a variety of different bitrates. We generate the full light

fields iteratively, one hyperblock at a time. All metrics were calculated in the RGB

color space, after upsampling in the chroma channels. Values were interpolated where

needed to align with specific bitrates.

The Bedroom, Bicycle and Herbs scene all display a similar pattern, where our

quantization tensor leads to optimal results across PSNR, SSIM and MS-SSIM metrics

for higher bitrates, until an inflection point when the CNE overtakes it. This point is

likely related to the quality factor chosen during training of the CNE. By lowering

the q chosen at train time, we can reach this inflection point at higher bitrates. This

unfortunately, comes at the cost of less significant improvements at lower bitrates.

For bitrates greater than 0.40 bpp, JPEG2000 produces best PSNR results on the

Origami scene. Our models, again outperform the standard compression algorithms

at rates below that.

In terms of SSIM and MS-SSIM, our models produce substantially higher perceptual

scores across the board, with the CNE again performing best at ultra high levels

of compression. Surprisingly, the LPIPS measure suggests that the addition of the
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4.6.2 Enhancer 4.6 EXPERIMENTATION

CNE actually leads to less favourable results. The LPIPS score is calculated based

on a CNN trained on real images, and perhaps it is able to identify and penalize

irregularities generated from our enhancer. Alternatively, it may have been trained

on images which may have undergone Fourier based compression, leading to a bias

towards the very artifacts we aim to reduce. For a visual comparison, we include a

SAI from the Origami light field using all the compression methods, at approximately

the same bitrate, and a closeup of the edge of the bowl in Figures 4.16 and 4.17.

Notice, particularly at the lowest rates, the slight ringing artifacts on the lip of the

bowl, and the blocking present throughout. Our CNE reduces these artifacts greatly,

at the expense of a slight drop in image sharpness.
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JPEG JPEG2000 Ours Ours+CNE

bpp = 0.80

bpp = 0.60

bpp = 0.40

bpp = 0.20

Figure 4.16: Visual comparison of the top left SAI of the Origami light field from the HCI
4D Dataset. Bitrate values reported are accurate to within 0.005 bits.
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JPEG JPEG2000 Ours Ours+CNE

bpp = 0.80

bpp = 0.60

bpp = 0.40

bpp = 0.20

Figure 4.17: Visual comparison of an enlarged region from the Origami scene. While the
JPEG quality quickly degrades, and the JPEG2000 appears to blur the image, our quantizer
is capable of maintaining fine details even at low bitrate. Our enhancer further removes
ringing and blocking artifacts as seen on the lip of the bowl. Bitrate values reported are
accurate to within 0.005 bits.
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We further analyze the quality differences between our models, particularly at the

lower bitrates, on the LIAM-LF-Dataset. Figure 4.18 shows the average metrics across

the validation fold of the synthetic light fields. On average, the CNE improves perfor-

mance for all rates, across all metrics, including LPIPS. These results contradict our

earlier findings on the HCI 4D Dataset, indicating an existence of a slight domain gap

between the two sets. All four metrics were on average lower than their corresponding

scores on the HCI 4D Dataset. This is likely due to overly packed, heavily textured

scenes in the LIAM-LF-Dataset. Our results are therefore likely to underestimate the

reconstruction quality of natural captures, and require further analysis on a real-world

dataset for better estimates in practice. Further examples of our CNE can be seen in

Appendix D.
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4.7 CONCLUSION

Figure 4.18: Comparison of average PSNR, SSIM, MS-SSIM and LPIPS scores at low
bitrate on the LIAM-LF-Dataset.

4.7 Conclusion

Light field datasets will continue to grow as the technology increases in popularity.

Until such large datasets exists, we are limited to the use of synthetic samples. We
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4.7 CONCLUSION

have generated the largest light field dataset known to date, and have shown it can

effectively be used for learning based methods. Furthermore, we have shown evidence

that the DR process is successful in the generalization to other domains.

By extending the idea of the JPEG compression standard to higher dimensions,

and formalizing it as a neural network, we are able to generate a light field specific

quantization table, which we refer to as a quantization tensor. In order to back-

propagate through the network, we propose a new approximation to the rounding

function given by Equation 4.13, which gives more accurate results at test time than

the practices discussed in the current literature.

By incorporating a quality factor parameter to the quantization tensor, we are

able to adjust the strength of the compression. For a desired bitrate, we proposed

Equation 4.20 for the estimation of the quality factor required.

To further enhance the quality of our quantizer at a given bitrate, we propose our

CNE network. The network was trained on aggressively compressed samples from

our dataset, using the quantization tensor. By constructing the network to detect

features at a variety of resolutions, it is able to enhance pixel-level imperfections

such as noise, as well as global artifacts such as blocking. The addition of the CNE

improves PSNR scores on average by 0.854 dB, SSIM and MS-SSIM by 0.0338 and

0.0151, and decreases LPIPS by 0.0259 as measured on our dataset across a range of

bitrates. Visual comparisons further support the findings, with noticable reduction in

common compression artifacts. Similar results were attained when tested on the HCI

4D Dataset.

We conclude that our CNE is a viable tool in the compression of light field data,

and outperform modern image compression techniques. It is capable of near perfect
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4.7 CONCLUSION

reconstructions at high bitrates, while also producing optimal results at arbitrary

small bitrates.
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Chapter 5

Conclusion

5.1 Findings

Immersive experiences will likely be the next frontier in digital media, amplifying the

need for efficient compression and storage methods. Light fields in particular display

large statistical redundancies, due to the similarities of views that can be exploited

for substantial reductions in file size.

The combination of ML and CNNs in particular, provide the perfect tool for the

task, given a sufficient and diverse enough dataset from which to learn from. As no

large light field datasets exist, we explored the use of DR and it’s ability to bridge the

domain gap; an attempt to create enough variability in the data such that "the real

world may appear to the model as just another variation" as Tobin et al. [28] describes

it.

We tested the idea in the task of image classification. Our study indicated that

the technique was capable of transferring well to a variety of different domains.
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5.1 FINDINGS

Furthermore, the results suggested that the primary factor related to classification

accuracy was the variety of class subjects. Visual explanation models produced

heatmaps which validated the classifier was prioritizing the relevant regions of each

images.

Extending the use of DR, we simulated 20,000 light fields with angular resolutions

of 9 × 9. A large range of parameters were randomized, namely lighting, diffusion

maps, textures, occluders and camera positions. Using the dataset, we trained a

neural network to calculate the entries of a 4-dimensional quantization tensor Q for

the associated DCT coefficients, which minimized the reconstructed distortion while

inducing sparsity in the encoding. We were able to extrapolate the quantization tensor

to higher (and lower) compression ratios by scaling it using a quality factor parameter

q. Our quantizer was able to produce higher quality encodings at lower bitrates than

the leading image compression algorithms. Unlike JPEG, we were able to formalize a

method for the selection of the quality factor parameter given a target bitrate.

We built on our quantizer, by adding a CNE with the goal of reducing compression

artifacts and noise in our reconstructed light fields. As we theorized, the convolutional-

based model was capable of detecting blocking and ringing artifacts, and successfully

degraded them. Similarity and perceptual metrics showed improvements in image

quality across the board, on multiple datasets. Visual inspection reinforced these

findings. Furthermore, the high performance on the HCI 4D Dataset further provided

evidence that the DR technique was an effective strategy when data is scarce.
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5.2 Future Work

Equation 4.15 defines the objective function on which our model is optimized on.

The λ parameter here governs the tradeoff we assign between distortion and bitrate

terms. We finetuned this parameter to a value of 10−4, as it appeared to balance

the two terms in the early stages of training and encouraged convergence. Similar

to the practice of adjusting the learning rate when stuck in a local minima, it may

be beneficial to iteratively increment λ at train time, encouraging similar distortion

results at lower bitrates. Furthermore, the quantization tensor Q is sub-optimal for

q ̸= 1, for a given λ. This means that while we can adjust q for more aggressive

compression, there exists another quantization tensor Q∗ with q = 1 that is optimal

based on the tradeoff determined by λ. However, as mentioned before, this requires

the generation and storage of separate quantization tensors for each bitrate, making it

practically infeasible. Nevertheless, further experimentation with λ adjustments are

worth exploring.

Another parameter we fixed was the quality factor q of the compressed data, when

training our CNE. We made this choice with the intention for our model to generalize

to a large range of different compression levels. However, over a consistently narrow

range of bitrates, a new CNE can be trained that emphasizes compression artifacts

present specifically at those scales. The marginal gains across a set of CNEs trained

on other quality factors would be of interest.

Lastly, Equation 4.20 can be further improved, based on the target domain. The

relationship between q and b is likely different for natural images, so a more accurate

estimate can be determined, once a large enough dataset exist.
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Dataset

B.1 LIAM Light Field Dataset
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B.1 LIAM LIGHT FIELD DATASET

Figure B.1: Example 1. A uv array of st images.
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B.1 LIAM LIGHT FIELD DATASET

Figure B.2: Example 2. A uv array of st images.
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B.1 LIAM LIGHT FIELD DATASET

Figure B.3: Example 3. A uv array of st images.
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B.1 LIAM LIGHT FIELD DATASET

Figure B.4: Example 4. A st array of uv images. An enlarged view is shown for the region
outlined in red on the bottom.
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B.1 LIAM LIGHT FIELD DATASET

Figure B.5: Example 5. A st array of uv images. An enlarged view is shown for the region
outlined in red on the bottom.
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B.1 LIAM LIGHT FIELD DATASET

Figure B.6: Example 6. A st array of uv images. An enlarged view is shown for the region
outlined in red on the bottom.
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Appendix C

Derivations

C.1 Quantization Approximation Function

The closed form of the series

s∗(x) =
1

π

∞∑
n=1

τn+1

n
sin(2nπx)

can be attained as follows:
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C.1 QUANTIZATION APPROXIMATION FUNCTION

s∗(x) =
1

π

∞∑
n=1

(τ)n+1

n
sin(2nπx)

=
1

π

∞∑
n=1

τnτ

n
sin(2nπx)

=
τ

π

∞∑
n=1

τn

n
sin(2nπx)

=
τ

n

∞∑
n=1

τn Im(e2πnix)

n

=
τ

n
Im

(
∞∑
n=1

τne2πnix

n

)

=
τ

n
Im

(
∞∑
n=1

(τe2πix)
n

n

)

= −τ

n
Im
(
log(1− τe2πix)

)
by Taylor series of log

= −τ

n
Im (log(1− τ cos(2πx)− iτ sin(2πx)))

=
τ

n
tan−1

(
τ sin(2πx)

1− τ cos(2πx)

)

since

Im (log(x+ iy)) = Im
(
log(reiθ)

)
= Im

(
log(r) + log(eiθ)

)
= Im (log(r) + iθ)

= θ

= tan−1
(y
x

)
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C.2 DERIVATIVE OF ROUNDING FUNCTION

C.2 Derivative of Rounding Function

The derivative of

g(x) = x− τ

π
tan−1

(
τ sin(2πx)

1− τ cos(2πx)

)
is

g′(x) =
d

dx

(
x− τ

π
tan−1

(
τ sin(2πx)

1− τ cos(2πx)

))

=
d

dx
(x)− d

dx

(
τ

π
tan−1

(
τ sin(2πx)

1− τ cos(2πx)

))

= 1− τ

π

 1(
τ sin(2πx)

1−τ cos(2πx)

)2
+ 1

· d

dx

(
τ sin(2πx)

1− τ cos(2πx)

)

= 1− τ 2

π

 1(
τ sin(2πx)

1−τ cos(2πx)

)2
+ 1

 · d

dx

(
sin(2πx)

1− τ cos(2πx)

)

= 1− τ 2

π

 1(
τ sin(2πx)

1−τ cos(2πx)

)2
+ 1


·
(
2π cos(2πx)(1− τ cos(2πx))− (2πτ sin2(2πx))

(1− τ cos(2πx))2

)

= 1− 2τ 2(cos(2πx)(1− τ cos(2πx))− τ sin2(2πx))

τ 2 sin2(2πx) + (1− τ cos(2πx))2
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Appendix D

Compressed Examples

D.1 Examples of 4D Quantizer and Neural Enhancer
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D.1 EXAMPLES OF 4D QUANTIZER AND NEURAL ENHANCER

4D Quantizer 4D Quantizer + CNE True

bpp = 0.277

Figure D.1: Example of a scene compressed with our models at a typical bitrate.

126



D.1 EXAMPLES OF 4D QUANTIZER AND NEURAL ENHANCER

4D Quantizer 4D Quantizer + CNE True

bpp = 0.221

Figure D.2: Example of a scene compressed with our models at a low bitrate.
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D.1 EXAMPLES OF 4D QUANTIZER AND NEURAL ENHANCER

4D Quantizer 4D Quantizer + CNE True

bpp = 0.195

Figure D.3: Example of a scene compressed with our models at a very low bitrate.
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D.1 EXAMPLES OF 4D QUANTIZER AND NEURAL ENHANCER

4D Quantizer 4D Quantizer + CNE True

bpp = 0.280

Figure D.4: Example of a scene compressed with our models at a typical bitrate.
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D.1 EXAMPLES OF 4D QUANTIZER AND NEURAL ENHANCER

4D Quantizer 4D Quantizer + CNE True

bpp = 0.231

Figure D.5: Example of a scene compressed with our models at a low bitrate.
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D.1 EXAMPLES OF 4D QUANTIZER AND NEURAL ENHANCER

4D Quantizer 4D Quantizer + CNE True

bpp = 0.207

Figure D.6: Example of a scene compressed with our models at a very low bitrate.
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D.1 EXAMPLES OF 4D QUANTIZER AND NEURAL ENHANCER

4D Quantizer 4D Quantizer + CNE True

bpp = 0.547

Figure D.7: Example of a scene compressed with our models at a typical bitrate.
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D.1 EXAMPLES OF 4D QUANTIZER AND NEURAL ENHANCER

4D Quantizer 4D Quantizer + CNE True

bpp = 0.464

Figure D.8: Example of a scene compressed with our models at a low bitrate.
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D.1 EXAMPLES OF 4D QUANTIZER AND NEURAL ENHANCER

4D Quantizer 4D Quantizer + CNE True

bpp = 0.422

Figure D.9: Example of a scene compressed with our models at a very low bitrate.
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