
METHODS FOR VOLTAGE MONITORING, ANALYSIS AND

IMPROVEMENT IN ACTIVE DISTRIBUTION NETWORKS

Jingyuan Liu

A Dissertation Submitted to the Faculty of Graduate Studies in Partial Fulfillment

of the Requirements for the Degree of

Doctor of Philosophy

Graduate Program in Electrical Engineering and Computer Science

York University

Toronto, Ontario

April 2022

© Jingyuan Liu 2022



Abstract

Power Distribution Networks (DNs) deliver electricity from the transmission systems to the

consumers. The proliferation of diverse load components and distributed generators in active DNs

is drastically changing the power demand and supply patterns in the DN, which in turn has led

to significant stress and uncertainty on the voltage profiles of the DNs. Nevertheless, the com-

munication and computation capabilities of the modern DNs have enabled cyber-enabled power

components such as DG (Distributed Generator) devices to make intelligent decisions through

information exchanges [1]. As such, in this dissertation we leverage on this novel capability to

present algorithms for voltage monitoring, analysis and improvement that allow the system oper-

ator to assess the voltage profile of the DN and to take preventative actions for enhancing voltage

profiles and preventing undervoltage/overvoltage incidents. In the subsequent chapters, we present

performance guarantees and simulation studies on the proposed algorithms, and compare the algo-

rithms introduced in this dissertation with the state-of-the-art.
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Chapter 1

Introduction

The rapid proliferation of diverse Distributed Energy Resources (DERs) such as privately-owned

photovoltaic generation systems can lead to significant uncertainty in the load/generation profile

in the DN. According to the equations that govern the power flow in the DN (e.g. Kirchhoff’s

law), uncertainties in load/generation can lead to variations in DN bus voltages. As such, the

highly varying voltage profile in active DNs caused by the integration of DERs poses pressing new

challenges to the safe operation of the power networks [2]. Examples of these challenges include

reverse power flow into the transmission system and increased power loss in the DNs. To address

this issue, various proposals (e.g. [3, 4, 5, 6, 7, 8]) have formed a framework for voltage regulation

based on the enhanced monitoring and actuation capabilities of cyber-enabled smart devices. This

framework is formed by three components: DN monitoring, voltage analysis and voltage profile

improvement. The relationship between these components and the DN is illustrated in Fig. 1.1.

The monitoring component inspects the voltage data gathered from smart devices such as

micro-Phasor Measurement Units (PMUs) [3] and smart meters. Research areas associated with

the monitoring component include 1) Measurement data integration, which studies efficient in-

tegration of measurement data gathered from heterogeneous data sources [6];2) Decentralized or

distributed monitoring, which aims to increase the scalability and resiliency of monitoring archi-

tecture by removing the need for centralized decision makers [7]; 3) Measurement error correction,

1



Figure 1.1: Voltage Regulation Framework.

which strives to mitigate the measurement errors incurred by various measurement devices such as

smart meters and PMUs [8].

After the voltage data from various devices are gathered and inspected, the voltage analysis

component studies the characteristics of voltage variables under diverse load/generation conditions

in the DN. Some examples of proposals associated with the analysis component belong to the

following categories: 1) Probabilistic Load Flow (PLF), which evaluates the characteristics of

voltage variables under uncertainties in load and generation [9] and 2) Voltage estimation, which

estimates DN voltage profiles from noisy and/or low quality measurement data [10].

When the characteristics of the voltage state variables have been analyzed, the improvement

component coordinates smart actuators in the DN (e.g. automatic switches [11] and smart inverters

[2]) to reduce the impact of adverse conditions and improve the voltage profile of the smart DNs.

The hierarchical control architecture commonly employed in modern power systems [12] gener-

ally organizes voltage improvement techniques in a three-level structure. Improvement techniques

belonging to the primary level are based on local measurements and keep the terminal voltages of

the controllable resources (e.g. generators) around a set of set points. Improvement techniques

belonging to the secondary level aim to maintain the stability of DN under different generation

and loading situations and they operate through changing the set point values of controllable re-

sources. Improvement techniques belonging to the tertiary level leverage forecast data to optimize

the voltage profile of the DN. Research areas associated with the improvement component include
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1) Topology reconfiguration, which recovers from DN outages caused by voltage collapse or im-

proves the DN voltage profile by changing the underlying topology of the DN; 2) Reactive power

control, which regulates bus voltages by controlling the injection of reactive power from smart ac-

tuators; and 3) Current flow control, which regulates bus voltages by controlling current injection

from smart actuators.

Figure 1.2: Diagram of Contributions.

In this thesis, four main contributions to the voltage regulation framework are presented and

these contributions are listed in Fig. 1.2. For the monitoring component, a decentralized grid

condition monitoring algorithm based on consensus averaging is introduced. For the analysis com-

ponent, a kernel design method for Gaussian Process (GP) based PLF calculation is proposed.

For the improvement component, a decentralized DN topology reconfiguration algorithm based

on game-theoretical constructs and a reconfiguration algorithm that finds the globally optimal DN

topology through convex optimization constructs are presented.

1.1 Overview of Smart Devices

In this section, the capabilities of the cyber-enabled smart devices for voltage enhancement are

reviewed. Then, a feasibility study on the methods introduced in this thesis is presented.

The smart devices can be generally divided into two categories: 1) Smart meters that are ca-

pable of data gathering and transmission, and 2) Smart actuators that mitigate voltage anomalies.
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Currently, the data transmission capabilities of the smart meters are supported by both wireless and

wired communication systems. In general, wireless systems such as WiMax, 3G, 4G and 5G are

more scalable and less expensive than their wired counterparts (e.g. optical fiber and power line

communication) [13, 14]. However, they are also more susceptible to interference and congestion

[15]. While there are proposals for expanding the functionality of wireless systems by combin-

ing them with wired technologies [16], the disadvantages associated with wireless systems remain

major issues of concern.

Due to the various limiting factors (i.e. topology, base voltage) present in the DNs, different

types of smart actuators have been developed. These devices can be cataloged into two categories

based on their method for voltage regulation. The first type of devices such as synchronous con-

densers and Static Var Compensators (SVCs) presented in reference [17] regulates voltage by in-

jecting/absorbing reactive power. While these devices are ideal for higher voltage networks where

the lines are mostly reactive, their effectiveness is reduced for lower voltage DNs with resistive

lines. The second type of devices regulates voltage by controlling the current flow. As such, they

are effective for both resistive and reactive DNs. Examples of devices in this category include

smart inverters and Load Type Changers (LTPs). Smart inverters are capable of controlling both

real and reactive power flow from power sources into the DN. However, the lack of regulation for

private owned inverter-based DGs has also lead to operation challenges for power grids in Ger-

many, Hawaii, and California [2]. As LTPs regulate voltage by adjusting transformer windings

[17], their effectiveness for anomaly mitigation depends heavily on the location of the transformer

relative to the anomalies. Moreover, switching operations conducted at the LTPs can lead to wear

and tear over time and this also compromise the effectiveness of these devices [18].

In the current framework for information flow in the DN, data transmission to the central con-

troller is often delegated to wireless technologies. Therefore, decentralized configuration for mon-

itoring and improvement would further expand the functionality of wireless technologies by reduc-

ing congestion and dependencies on the central agent. While topology reconfiguration is mostly

used for post-fault service restoration [11], its ability for voltage control through real power reg-
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ulation has also attracted an increasing number of proposals. Cases where reconfiguration based

voltage improvement can be particularly useful include mostly resistive DNs that satisfy the fol-

lowing conditions: 1) The utilities do not have control of the majority of the inverters, and 2) The

standalone capacities of LTPs are insufficient.

1.2 Literature Survey

In this section, a detailed overview on the existing work in the areas of grid condition monitoring,

probabilistic power flow and DN topology reconfiguration is provided.

1.2.1 Grid Condition Monitoring

Existing literature in the area of DN condition monitoring can be divided into two major categories.

Works belonging to the first category treat cyber-enabled agents as independent nodes capable of

reaching their own opinions on system states, and utilize data exchanges between agents to achieve

consensus of opinions. Examples of proposals in this category include reference [19] where ev-

ery bus in the DN calculates its own voltage sensitivity indices using information obtained from

neighbouring buses, [20] where a distributed voltage monitoring technique based on synchrophasor

measurements is introduced, reference [21] where decentralized voltage monitoring is performed

via a distributed computing architecture and reference [22] where distributed control technique is

employed for voltage monitoring. These proposals have shown that for specific applications such

as DG dispatch and demand response, decomposition based approaches can be used to achieve

consensus among agents. On the other hand, proposals belonging to the second category treat

cyber-enabled agents as intermediaries that are only capable of gathering local information and

passing it on to a central controller for information processing and decision making. Examples of

proposals in this category include reference [23] where stochastic assessment of voltage indices

is performed with integer optimization methods, reference [24] where matrix factorization is em-

ployed to analyze measurement data gathered from high renewable penetrated DNs, reference [25]
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where analysis of bus voltages is performed via disagreement-based deep learning techniques, ref-

erence [26] which calculate the voltage indices from DN parameters, reference [27] where field

tests of a decentralized DN monitoring technique are conducted in real world practical systems.

1.2.2 Probabilistic Load Flow

PLF is a technique for power flow evaluation that can be used to predict bus voltages under variable

loading and generation conditions [9]. Proposals in PLF can be classified into four main categories

depending on the theoretical constructs utilized to implement them.

Proposals belonging to the first category utilize Monte Carlo Simulation (MCS) based tech-

niques to evaluate the statistical properties of power flow. The MCS technique utilizes repeated

sampling to study the properties of power flow and the samples analyzed by the MCS can come

from sensor measurements in practical DN systems or accurate models of power systems. Exam-

ples of MCS based PLF techniques include reference [28] where the data-centric technique of GP

modelling is utilized to construct a surrogate model of the power system, reference [29] where

the system model is obtained from deep learning, reference [30] where an efficient sampling tech-

nique based on Latin hypercube sampling is employed, reference [31] where an adaptive sampling

method based on importance sampling and reinforcement learning is introduced, reference [32]

where a DN modelling technique incorporating theoretical constructs from Bayesian networks is

employed, reference [33] where the modelling technique of response surface is utilized to approxi-

mate the characteristics of power systems, reference [34] where an importance sampling technique

based on the cross-entropy method is employed in conjunction with the MCS, reference [35] where

a technique for accelerating deterministic power flow calculations via Graphical Processing Units

(GPUs) is introduced, reference [36] which accelerates power flow calculations with parallel com-

putation techniques based on OpenCL and reference [37] where a stochastic sampling method

is deployed for generating of random samples. These proposals do not require any simplifying

assumptions. However, these are associated with high computational overheads.

The second category is composed of PLF studies conducted via analytical methods that cal-
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culate the stochastic properties of the DN from relaxed models of power flow relation and dis-

tributions of DN variables. Examples of PLF proposals in this category include reference [38]

which employs probabilistic load integration techniques, reference [39] which approximates the

power flow relation with the technique of multidimensional holomorphic embedding, reference

[40] where the distribution of voltage variables are inferred with linearized power flow relations

and mixed Gaussian load modeling, reference [41] where a distributed and privacy-preserving

PLF technique based on Gaussian mixture modelling is proposed, reference [42] where a joint

raw-moments based analytical method is employed and reference [43] which resolves the variable

interdepencies in the power flow relation with affine arithmetic. These algorithms often use nu-

merous mathematical approximations and assumptions about the electrical system (e.g. linear load

flow relations, uncorrelated uncertainty sources) to allow for tractable computations, which can

lead to mistakes in practical systems according to reference [44].

The third class uses surrogate-based techniques to build statistically similar analytical mod-

els for capturing PLF relations. Examples of proposals in this category include reference [45]

where an analytical technique based on approximate Bayesian computations is employed, refer-

ence [46] which employs partial least square technique and polynomial chaos expansion, reference

[47] where a fast method for calculating cumulants based on impulse-mixed probability density

integration is proposed, reference [48] where a generalized polynomial chaos algorithm is utilized,

reference [49] where a PLF method based on adaptive kernel density estimator is introduced, ref-

erence [50] where a decision tree based method is utilized to model the effect of fallout events on

power flow properties and reference [51] where cumulant tensors of voltage variables are calcu-

lated with quadratic power flow models. Although these methods use fewer training data points,

they also make simplifying assumptions about the system model and are dependent on in-built

heuristics that require extensive parameter turning.

The final class of proposals are distinguished by the quantity of prior information about the DN

(e.g. line impedance and DN topology) required for forming the PLF models. As such, references

such as [29, 45, 52, 37] are classified as parameter-dependent since they incorporate extensive
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knowledge of DN parameters in their construction of proposed algorithms. On the other hand, ref-

erences such as [28, 50, 53] are classified as parameter-independent as they do not rely on internal

information pertaining to the DN. Most parameter-independent proposals are however associated

with various limitations caused by restrictions on training datasets and load types accommodated

by the DN.

1.2.3 Topology Reconfiguration

DN topology reconfiguration problem is generally formulated as a NP-hard mixed integer combi-

natorial problem with non-linear and non-convex constraints [54]. Currently, work on DN recon-

figuration can be divided into three main categories.

Works belonging to the first category guide the search process for the optimal DN configu-

ration with a meta-heuristic technique that evolves a population of candidate solutions towards

a better solution. Proposals in this category are generally not problem-specific. Meta-heuristic

techniques employed in existing works include genetic algorithms [55, 56, 57] that evolve the can-

didate solutions with biologically inspired operators (e.g. crossover and mutation), particle swarm

algorithms which guide the solution to the best known topology with regard to given criteria [58],

harmonic search algorithms that iteratively replace the worst candidate [59], ant colony optimiza-

tion algorithms that search for the best candidate through probabilistic analysis [60], memetic

algorithms that use local search procedures to reduce the possibility of premature convergence

[62], data-centric approaches which use deep learning techniques to reduce the number of can-

didate solutions [63, 64] and techniques that adopt Bayesian learning-based evolution algorithms

[65]. As meta-heuristic techniques are capable of obtaining good solutions without making ex-

tensive assumptions about the underlying problem, they are often used to solve problems with

highly nonconvex constraints. However, techniques of this kind often require significant amount

of computation resources and are unable to provide performance guarantees on convergence speed

or optimality.

The second class of existing literature utilizes convex relaxations methods to transform the
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highly non-convex reconfiguration problem into problems that can be resolved with convex opti-

mization techniques. Examples of proposals in this category include reference [66] where the cur-

rent flow relation in the DN is linearized, reference [67] where the reconfiguration problem is first

relaxed into a Mixed Integer Linear Programming (MILP) problem then resolved with a branch-

and-cut algorithm, reference [54] where the reconfiguration problem is linearized into a Quadratic

Constrained Programming (QCP) problem, references [54, 70] where the reconfiguration problem

is solved as a Mixed Integer Second Order Cone Programming (MISOCP) problem, reference [71]

where chordal relaxation techniques are employed to transform the reconfiguration problem into a

Mixed Integer Semi-Definite Programming (MISDP) problem, reference [72] where a branch-and-

bound algorithm is proposed to tackle the Quadratic Constrained Quadratic Programming (QCQP)

reconfiguration problem, reference [73] where a conditionally exact relaxation technique is em-

ployed to resolve the reconfiguration problem, reference [74] where a relaxation technique based

on Benders algorithm is utilized, reference [75] where a two-stage robust optimization model is

introduced for the reconfiguration problems with uncertain loads, reference [76] where a MIS-

OCP formulation of the DN reconfiguration problem is derived for the partial restoration scenario,

reference [77] where an energy management scheme based on reconfiguration is performed on a

linearized power flow model and reference [78] where a reconfiguration technique for reducing

violations of voltage constraints is introduced. While convex relaxation based algorithms are ca-

pable of obtaining the globally optimal outcomes for relaxed problem formulations in a tractable

manner, the relaxation process often leads to the exclusion of important physical attributes of the

DN (e.g. ignoring reactive power and treating the DN as a single phase system).

Proposals belonging to the third category apply graph-theoretic methods for tractable compu-

tation. By offloading part of the computational and communication tasks to Energy Processing

Units (EPUs) equipped agents in the DN that can act in parallel, graph theoretic algorithms solve

the reconfiguration problem in a decentralized manner. Examples of algorithms in this category

include branch exchange algorithm introduced in reference [4], hierarchical DN decomposition

algorithm presented in reference [5], Open Shortest Path First (OSPF) algorithm proposed in ref-
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erence [79], and best-first tree search algorithm introduced in reference [80]. However, methods

belonging to this category often require highly granular parameter tuning specific to each system

under consideration.

1.3 Contributions of This Thesis

Name of Publication Conference/Journal Acceptance Date
Distributed Assimilation of Grid Conditions
and Load Integration via Social Learning [81]

IEEE GlobalSIP 2018 Aug. 2018

Decentralized Topology Reconfiguration in
Multiphase Distribution Networks [83]

IEEE TSIPN Feb. 2019

Adaptive Topology Reconfiguration in Smart
Distribution Networks [84]

IEEE TSIPN Oct. 2021

Kernel Structure Design for Data-Driven Prob-
abilistic Load Flow Studies [82]

IEEE TSG Mar. 2022

Table 1.1: List of Publications

Thus far, one conference paper and three journal articles based on this thesis’s contribution

in the area of voltage monitoring, analysis and improvement have been composed. These papers

are presented in Table 1.1. The acronym IEEE stands for Institute of Electrical and Electronics

Engineers. Compared to the monitoring state-of-the-art presented in Subsection 1.2.1, the work

in [81] has made two major contributions: 1) It introduced a set of voltage monitoring metrics

that can be updated in a decentralized manner through consensus averaging, and 2) It presented

both theoretical and simulated studies on the convergence performance of the proposed metrics.

Then, the work in [83] improves upon the existing works in 1.2.3 in the following aspects: 1)

It introduced a reconfiguration algorithm that allows each smart agent in the DN to evaluate the

global impact of its decisions with iterative information exchanges, and 2) It presented a game-

theoretic formulation that leads to guarantees on algorithm convergence. Next, the work in [84]

further improves upon [83] by presenting a reconfiguration algorithm based on convex relaxation

techniques that guarantee convergence to global optimality. The published work in [82] then im-

proves the state-of-the-art in PLF enumerated in Section 1.2.2 in the following two aspects: 1) It
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presented a data-driven PLF method that can produce an accurate analysis of the distribution of

voltage variables without prior knowledge of internal parameter of the DN (e.g. line admittances

and DN topology), and 2) It introduced a game-theoretic technique for automatic model selection

and parameter tuning for the proposed PLF method. All articles listed here have me as the first

author and my advisor Dr. Srikantha as the corresponding author. The simulation results presented

in this thesis are obtained from the MATPOWER simulation toolbox presented in reference [85]

and the OpenDSS simulation toolbox introduced in reference [86].

1.4 Thesis Outline

The remainder of this thesis is organized as follows. In Chapter 2, the DN power flow models

used in this thesis are introduced and their underlying assumptions are elaborated on. Chapters 3-6

provide a detailed overview of the grid condition monitoring, PLF and topology reconfiguration

algorithms that constitute the main contributions of this thesis. In Chapter 7, the thesis is concluded

by summarizing the contributions of my Ph.D. thesis and present possible directions for future

work.
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Chapter 2

Background on Smart Distribution

Networks

To highlight the benefits of the proposed methods, this proposal focuses on cyber-enabled low-

voltage active DNs with mostly resistive lines and uncertainties in its bus power injections. In this

chapter, an overview of the system settings, assumptions, and notations for the DN studied is first

presented. Next, the models for power flow relations in resistive multiphase DNs adopted by the

various proposals is formulated. Then, a discussion on the methods used for modelling bus power

injections in multiphase DNs is presented.

2.1 DN Settings and Assumptions

While DNs generally have meshed structures, they are commonly operated as radial networks

where buses are connected by active lines (i.e. lines capable of sustaining current and power

flows) [67]. In this proposal, the neighboring buses are defined as buses connected by a single

active line. The assumptions listed below follow from the inherent properties of cyber-enabled

low-voltage active DNs, the requirements for voltage regulation and the current state-of-the-art.

1. All buses in the DN possess the abilities to monitor local data, to communicate with neigh-
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bors in the network, to perform basic computations, and to actuate local cyber-enabled com-

ponents;

2. The acceptable range of voltage magnitudes for every non-feeder bus in the DN is assumed

to be 1.0 ± 0.05 p.u;

3. Transient effects have no impact on system operations;

4. All loads in the DN are constant power loads;

5. The power injection/absorption at each bus is constant over five-second intervals;

6. Buses in the DN are capable of hosting distributed energy resources (e.g. generators, loads

and storages).

Assumption 1 is supported by the current communication technologies and standards presented

in reference [15]. Assumption 2 stems from the voltage constraints typically adopted by DN op-

erators, which is more conservative than the actual tolerance margin prior to equipment failures in

DNs (i.e. 1.0 ± 0.1 p.u.) [87]. The next assumption is supported by references such as [88, 89],

which present recent advances that are capable of mitigating transient effects during normal op-

eration of the DNs. Assumption 4 emphasizes the importance of voltage regulation by maximiz-

ing the negative incremental resistance phenomenon associated with constant-power loads [69].

Moreover, constant-power loads are becoming increasingly common in modern DNs as indicated

by reference [69]. As long forecast horizons are typically associated with greater error margins

[90], the shorter time interval indicated in Assumption 5 greatly reduces forecast errors. Finally,

Assumption 6 is in line with the definitions of active DNs laid out in reference [91].

2.2 Notations

First, the DN notations and variables utilized in this proposal are introduced with a table of nomen-

clature presented at the beginning of this proposal. Then, these notations are illustrated in the
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following radial network diagram. For the DN topology reconfiguration algorithms presented in

this proposal, these notations refer to the current topology of the DN unless otherwise mentioned.

Moreover, the labeling of iteration number is omitted to simplify notations unless otherwise spec-

ified.

Figure 2.1: Illustration of Notations in a Radial Network.

The notations are illustrated in the radial DN presented in Fig. 2.1, where the feeder bus

is denoted as f . While bus attributes S r and Vr are illustrated for a single bus, these exist for

all buses b ∈ B. Similarly, line attributes zgm, S gm and Igm apply to all lines (g,m) ∈ E. To

facilitate representation, the multiphase lines in the figure above are represented by single edges.

For the topology presented in Fig. 2.1, the set of buses composing the subtree rooted at bus g

is represented by Bg = {g, t, l, r}. The sets of the potential parent buses and the child buses of g

are denoted by Pg = {m} and Kg = {t, l} respectively. The set of lines (i.e. path) from bus r to

bus g is Er,m = {(r, l), (l, g), (g,m)}, and the set of terminal buses for Er,m is Br,m = {r, l, g,m}. Bus

m is the lowest common ancestor Ar,x for buses r and x. If (r, l) ∈ E, then the relation between

the related phase sets is Φr = Φrl ⊆ Φl. The set of phases associated with bus r, bus l and

line (r, l) are represented by Φr = {a, b}, Φl = {a, b, c} and Φrl = {a, b}, respectively. Moreover,

superscripts are used to denote the projection of system states of the DN to specific phases in a set,

where the projection of a state onto an undefined phase for the state is defined as 0. For example,
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the projection of Vr = {Va
r ,V

b
r } onto Φl is VΦl

r = {Va
r , v

b
r , 0} and the projection of Vl onto Φr is

VΦr
l = {Va

l ,V
b
l , 0}. The fixed and switchable lines in Fig. 2.1 are illustrated by solid black lines

and dotted red lines respectively. As such, the sets of fixed and switchable lines in this DN are

E f = {(r, i), (t, g), (r, i), (g,m), (y,m), (m, f ), (o, f )} and Es = {(i, g), (i, y), (x, y), (x, o)} respectively.

The activated DN is composed of the switchable lines activated by the controller as well as the

fixed lines. Moreover, the cycles in the DN topology is denoted by φ and Φ is the set containing all

cycles in the DN. The only cycle in the DN in Fig. 2.1 is φ = {(i, g), (g,m), (i, y), (y,m)}. To perform

topology reconfiguration in the DN, the notion of reconfigurable buses is introduced where every

reconfigurable bus is located at the downstream (i.e. farther away from the feeder bus) end of a

switchable line. While non-reconfigurable buses can only have one potential parent, reconfigurable

buses can have multiple potential parents. When a reconfigurable bus switch from one potential

parent to another, the switchable line between it and the previous parent is deactivated. Moreover,

the line between it and the next parent becomes activated. For the network presented in Fig. 2.1,

the set of reconfigurable buses is R = {l, x}. What is more, the sets of potential parents associated

with these buses are Pl = {g, y} and Px = {y, o}, respectively. In Fig. 2.1, the reconfigurable buses

and their parents are colored in yellow and green, respectively. When l switches from g to y, the

line (l, g) is deactivated and the line (l, y) is activated.

2.3 Models for DN Power Flow Relations

In this section, the various models for representing power flow relations in a multiphase radial DN

are introduced. The models presented here are based on different underlying assumptions on the

DN. The first model presented is based on two assumptions: 1) The construction of the DN is

nearly balanced; and 2) The power losses along power delivering lines have minor impact on bus

voltages. The second model presented adopts the nearly balanced assumption and the assumption

that the products of line powers from different phases are negligible. Moreover, the third model

makes no assumption on the construction of the multiphase DN. While the first two models are

15



primarily used by proposals in DN optimization and control such as references [92, 93], the third

model is commonly adopted by existing work on PLF such as references [94, 51].

The first model presented in this section calculates the power flow relations in a nearly balanced

multiphase DN with minor line power losses. It is adopted by the proposal on voltage monitoring

(i.e. reference [81]) and the proposal on topology reconfiguration based voltage improvement (i.e.

reference [83]). For any line (r, l) on a multiphase DN, Ohm’s law can be described as follows:

VΦrl
l = Vr − zrlIrl (2.1)

By multiplying Eq. 2.1 with its own Hermitian transpose, the following voltage drop relation

for multiphase DN is obtained:

V̂
Φrl
l = V̂r − (Srlzrl

H + zrlS
H
rl ) + zrlÎrlzrl

H (2.2)

Furthermore, the power balance relations at bus r can be formulated using the aforementioned

artificial variables defined for multiphase DNs:

∑
q:(q,r)∈E

D(Sqr − zqrÎqr) + S r =
∑

l:(r,l)∈E

D(Srl)Φr (2.3)

where D represents the diagonal elements of a matrix in vector form. To linearize the voltage

drop and power balance relations, the assumption that the impact of line losses on the voltage

profile of DN is negligible is made. While the resistive lines of low-voltage DNs are not lossless,

reference [68] shows that the bus voltage deviation induced by power losses is within 0.0016 p.u.

for various resistive DNs (i.e. IEEE-13 bus and IEEE-34 bus systems). As this deviation is minor

in comparison to the aforementioned acceptable range of voltage magnitudes, this assumption is

validated. The adoption of this assumption allows for the removal of power loss related terms

zrlÎrlzrl
H in Eq. 2.2 and zqrÎ in Eq. 2.3. Next, the assumption that bus voltages across the phases

are nearly balanced for multiphase DNs is made, which implies the following relation introduced

in reference [68] is satisfied for any r ∈ B where Φr = {a, b, c}:
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Va
r ≈ Vb

r ej2π/3; Vb
r ≈ Vc

r ej2π/3; Vc
r ≈ Va

r ej2π/3 (2.4)

Comparing to balanced DN models where the phases are decoupled, this nearly balanced

model approximates the coupling between phases in the following manner: If the terms α and

υ are defined as α = e−j2π/3 and υ = [1, α, α2]T , then the power flow across (r, l) ∈ E can be

represented by the following:

Srl = VΦrl
r IH

rl ∈ range(υΦrl) (2.5)

Suppose that Λrl is a vector whose elements represent the diagonal components of Srl. Accord-

ing to Eq. 2.5, the off-diagonal entries of Srl can be approximated by Λrl as follows:

Srl = γΦrlDiag(Λrl) where γ =


1 α2 α

α 1 α2

α2 α 1

 (2.6)

where the Diag operator creates a diagonal matrix whose diagonal elements are Λrl. The power

flow relations model for multiphase DNs based on the aforementioned two assumptions was intro-

duced in reference [68] as the Linearized Power Flow (LPF) model. The full formulation for the

LPF model is presented as follows:

17



∑
m:(m,r)∈E

ΛΦr
mr + S r =Λrl r ∈ B\ f (2.7)

Srl = γΦrlDiag(Λrl) = Prl + jQrl (r, l) ∈ E (2.8)

(Pφ
rl)

2 + (Qφ
rl)

2 ≤ S
2
rl φ ∈ Φrl, (r, l) ∈ E (2.9)

V̂r − V̂
Φrl
l = zrlS

H
rl + Srlzrl

H (r, l) ∈ E (2.10)

S r = Pr + jQr r ∈ B (2.11)

p
r
≤ Pφ

r ≤ pr, q
r
≤ Qφ

r ≤ qr φ ∈ Φr, r ∈ B (2.12)

vr ≤ V̂
φ
r ≤ vr φ ∈ Φr, r ∈ B (2.13)

Eq. 2.7 and Eq. 2.8 maintain the power balance across the DN. Eq. 2.9 represents the apparent

flow limit of each phase φ in Φrl, and Eq. 2.10 describes the relationship between voltage drop and

power flow. The constraints on bus loads and voltage magnitudes for each phase are provided in

Eq. 2.12 and 2.13, where the V̂φ
r terms in Eq. 2.13 refers to the square of the voltage magnitude

of bus r at phase φ (i.e. D(V̂r)[φ]).

Through comprehensive accuracy analyses performed on practical resistive multiphase DNs

with unbalanced loadings (e.g. IEEE 13-bus and IEEE-34 bus DNs), reference [68] demonstrated

that the LPF model is capable of providing conservative estimations of the voltage values for the

type of DNs this proposal focuses on. For example, the maximum difference between the actual bus

voltage values for the test DNs and their LPF approximations is 0.0016 p.u., which is far smaller

than the 0.05 p.u. voltage tolerance stated in Section 2.1. This conservative approximation for

voltage values allows for the adoption of the LPF model as the basis for the proposals in references

[81, 83].

The second model presented in this section is introduced by reference [95]. This model im-
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proves upon the LPF model by accounting for the impact of line losses on the voltage profile

of DN. Moreover, it considers the non-linear interdependencies between the voltage, current and

power variables in the DN. It is adopted by the second proposal on topology reconfiguration based

voltage improvement (i.e. reference [84]). In this thesis, this model is referred to as the Nonlinear

Power Flow model (NPF). To derive the NPF model, it is first observed that the voltage change

associated with each phase in any line in the DN can be obtained through grouping the terms in

Eq. 2.2. For instance, the voltage drop relation for phase a in the three phase line (r, l) ∈ E can be

described as follows:

Va
r = Va

l − zaa
rl

Pa
rl − jQa

rl

(Va
l )H − zab

rl

Pb
rl − jQb

rl

(Vb
l )H

− zac
rl

Pc
rl − jQc

rl

(Vc
l )H (2.14)

where zaa
rl , zab

rl and zac
rl are the first-row elements of the impedance matrix zrl (i.e. [1, 0, 0]zrl =

[zaa
rl , z

ab
rl , z

ac
rl ]). Then, multiplying both sides of Eq. 2.14 with their respective conjugate counterparts

leads to the following:

|Va
r |

2 =|Va
l |

2 + |zaa
rl |

2 (Pa
rl)

2 + (Qa
rl)

2

|Va
l |

2 + |zab
rl |

2 (Pb
rl)

2 + (Qb
rl)

2

|Vb
l |

2
+ |zac

rl |
2 (Pc

rl)
2 + (Qc

rl)
2

|Vc
l |

2 + 2Re
(
− (zaa

rl )H(Pa
rl + jQa

rl)

− Va
l (zab

rl )H Pb
rl + jQb

rl

Vb
l

− Va
l (zac

rl )H Pc
rl + jQc

rl

Vc
l

+ zaa
rl (zab

rl )H (Pa
rl − jQa

rl)(P
b
rl + jQb

rl)

(Va
l )HVb

l

)

+ zaa
rl (zac

rl )H (Pa
rl − jQa

rl)(P
c
rl + jQc

rl)
(Va

l )HVc
l

+ zab
rl (zac

rl )H (Pb
rl − jQb

rl)(P
c
rl + jQc

rl)

(Vb
l )HVc

l

)
(2.15)

Next, the nearly balanced assumption stated in Eq. 2.4 is evoked to reduce couplings between

different phases. Moreover, the product of line powers associated with different phases is assumed

to be negligible. Based on these two assumptions, the voltage drop relation stated above can be

transformed to the following system of equations:
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la
rl =((Pa

rl)
2 + (Qa

rl)
2)/(V̂a

l ) (2.16)

V̂a
r =V̂a

l + |zaa
rl |

2la
rl + |zab

rl |
2lb

rl + |zac
rl |

2lc
rl − 2

[
raa

rl Pa
rl + xaa

rl Qaa
rl

+ (−rab
rl /2 +

√
3xab

rl )Pb
rl + (−

√
3rab

rl /2 + xab
rl /2)Qb

rl

+ (−rac
rl /2 +

√
3xac

rl )Pc
rl + (

√
3rac

rl /2 + xac
rl /2)Qc

rl
]

(2.17)

where V̂a
r is the aforementioned artificial voltage variable and the artificial current variable la

rl =

|Ia
rl|

2 represents the squared current magnitude associated with phase a of the line (r, l). Moreover,

rrl and xrl are the real and reactive components of the line impedance zrl (i.e. zrl = rrl + jxrl).

Repeating this procedure for the other phases leads to the following load flow relation in multiphase

DNs:

∀r ∈ B :

V̂
Φrl
l − V̂r = 2(rrlPrl + xrlQrl) + zrllrl, ∀l ∈ Pr (2.18)

V̂r � lrl = (Prl)�2 + (Qrl)�2,∀l ∈ Pr (2.19)

Pr =
∑
l∈Pr

(Prl − rrllrl) −
∑
m∈Kr

Pmr (2.20)

Qr =
∑
l∈Pr

(Qrl − xrllrl) −
∑
m∈Kr

Qrl (2.21)

where:
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Γ =


1 e− j2π/3 e j2π/3

e j2π/3 1 e− j2π/3

e− j2π/3 e j2π/3 1


rrl = Re{Γ � rrl} − Im{Γxrl}

xrl = Re{Γ � xrl} − Im{Γrrl}

zrl = |zrl|
�2

where � denotes the element-wise product of two matrices and the superscript �2 denotes the

element wise square of a matrix. Moreover, lrl = [la
rl, l

b
rl, l

c
rl]

T is the vector of squared current

magnitudes at the DL (r, l). Eq. 2.18 denotes the voltage change along the line (r, l). Then,

the constraint Eq. 2.19 denotes the relation between the current, voltage and power magnitudes

associated with the line (r, l). Next, Eqs. 2.20 and 2.21 are the real and reactive power balance

relations across (r, l) respectively.

The third model presented in this section places no restriction on the characteristics of the DN

and the power entities that connect to it. It is adopted by the proposal on voltage analysis with PLF

(i.e. reference [82]). This model can be summarized with the following power balance equations:

S r = Pr + jQr = Vr

n∑
j=r

z−1
mrV

H
m , ∀ r ∈ B (2.22)

where n is the number of buses in the DN (i.e. |B| = n). As can be observed from Eq. 2.22, this

model describes the load flow relation in multiphase DN without making any assumption on the

balance condition of the DNs or power losses along power-delivering lines.
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2.4 Modeling of Power Injection

In this section, the models for the power injection at each bus are elaborated on. The bus injection

considered in this proposal consists of three elements: 1) Non-EV consumer demand; 2) demand

from EVs; and 3) Injection from Photovoltaics (PV) units.

For the works on voltage monitoring and improvement (i.e. references [81, 83, 84]), these

three elements are modelled as deterministic injections into the bus loads. This is consistent with

the approaches commonly undertaken by the state-of-the-art in monitoring and improvement (e.g.

references [54, 70, 71]). In the work on voltage analysis (i.e. reference [82]), the load and gen-

eration profiles of these elements are modelled as probabilistic distributions. This is consistent

with existing proposals on PLF such as references [28, 40, 53]. From references [96] and [97],

the loads and generations associated with these power entities can be modelled via normal distri-

butions. This approach is widely adopted by existing proposals such as references [98, 99, 100].

As these power injection elements are prevalent in densely populated urban/suburban residential

areas, the decision to model their impact as normal distributions is supported by the Central Limit

Theorem [101]. This approach is also adopted by this proposal and the specific parameters of the

normal distributions utilized to model the various power uncertainties in the DN are presented in

Chapter 4. For each phase of the buses under consideration, the mean values for the distribution is

expressed as a percentage of the original demands.
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Chapter 3

Decentralized Grid Monitoring

Existing literature in decentralized voltage monitoring and regulation such as reference [21] depend

on purely local metrics such as battery capacity and state of charge to monitor the voltage profile

of resistive DNs. In this section, a set of metrics introduced in reference [81] that allows each bus

to measure the impact of their local voltage disturbances (e.g. those caused by Electric Vehicle

(EV) charging) on the voltage profile of the DN is presented. Then, both theoretical and empirical

studies on how these metrics can assist inverter regulation for maintaining the voltage profile are

conducted. Some equations and figures presented in this section are included in the published work

in reference [81]©2018 IEEE.

3.1 DN Settings and Problem Formulation

To design the voltage evaluation metrics, the network model is first constructed by separating the

buses r ∈ B of the DN into a set of clusters U. Each cluster is rooted at a Generator (GEN)-bus

with utility-regulated DG components, and the other buses in the cluster, termed Alternative Load

Elements (ALE)-buses, have the ability to integrate ALE components such as EVs to their own

loads. The ALE components are small scale load devices operated by the consumers and are not

controlled by the utility. Whereas utility-regulated DG components serve to maintain the voltage

profile of the DN, the ALE components introduce uncertainties to the power injection/absorption
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at different buses which can cause fluctuations in DN voltages. Furthermore, the set of neighboring

buses of r is denoted asNr, and the set of neighboring buses of r that resides in the same cluster as

r as N̂r. The ALE demand located on bus r is denoted as Ar, and the aggregate demand of ALEs

located in u is defined asAu. Moreover, the total ALE demand for the entire DN is defined asA.

Figure 3.1: Illustration of Clusters in a Radial Network.

These notations are illustrated in Fig. 3.1. In this figure, the DN was partitioned into two

clusters u1, u2 ∈ U, where u1 = {q,w, o, p} and u2 = {a, b, c}. The GEN-buses q and a are marked

in green, and the ALE-buses are marked in blue. For bus q, Nq = {a,w, o}, and N̂q = {w, o}. The

Aggregate demand of ALEs in u1 is Au1 = Aw +Ap = 0.5 p.u, and the aggregate demand of the

network is A = Au1 +Au2 = 0.8 p.u. From these parameters, each bus agent r then computes the

first metric for ALE impact measurement, which is termed the local opinion on ALE impact Or.

The formulation for this metric is Or = |u| A
Au

∆(V̂l − V̂r), where u is the host cluster of r and l is

the parent of r. This metric serves to capture important information on the distribution of ALEs

across the DN and their impact on the voltage profile of the DN. To measure the impact of ALE

integration on the voltage profiles at cluster level, the opinion of cluster u on ALE impact Ou is

defined as the average of the local opinions of all buses r residing in cluster u. Similarly, the global

impact of ALE integration is measured by defining the global opinion Og as the average opinion of

all r ∈ B.
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3.2 Design of the Monitoring Algorithm

For decentralized computation of Ou and Og, the following consensus averaging method based

on the opinion propagation model introduced in reference [102] is proposed: Every r ∈ B first

initializes its cluster perception variable Ou
r and global perception variable Og

r with its opinion Or.

At each iteration t, every r exchanges its cluster perception variable with buses in N̂r and global

perception variable with buses inNr. Then, r updates Ou
r with the average of the cluster perception

variables of m ∈ N̂r and itself, and Og
r with the average of the global perception variables of

l ∈ Nr and itself. This process is repeated until Ou
r and Og

r for all r ∈ B converge to Ou and Og,

respectively. This consensus averaging method is summarized in Alg. 1:

Alg. 1: Proposed Decentralized Monitoring Algorithm
Initialization:

• Or → O
u
r , Or → O

g
r for every r ∈ B.

Algorithm:

1. Every r broadcasts Ou
r to buses residing in N̂r and Og

r to buses in Nr.

2. Calculate Ôu
r = (Ou

r +
∑

m∈N̂r
Ou

m)/(|N̂r| + 1) and Ôg
r = (Og

r +
∑

l∈Nr
O

g
l )/(|Nr| + 1).

3. If Ôu
r = Ou

r and Ôg
r = O

g
r , terminate the iterative update process. Otherwise, let

Ôu
r → O

u
r and Ôg

r → O
g
r then return to the first step.

The general form of opinion evolution for this iterative updating process can be represented by:

O(t) = TO(t − 1) (3.1)

where O is the vector of opinions of buses participating in the information exchange. Also, each

component Trl of the belief updating matrix T is defined as Trl = Arl/(nr + 1), where A is the

adjacency matrix of the cluster or the DN and nr is the number of buses in N̂r orNr (depending on

whether Ou or Og is being computed).

From the convergence analysis performed in reference [102], the proposed consensus averaging
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method is guaranteed to converge to a consensus. Moreover, the upper bound on the iteration

number C for achieving consensus is represented by Eq. 3.2:

C ≤
⌈

log( 1
ε
)

log( 1
|λ2(T )| )

⌉
(3.2)

where ε is the residual and the second largest eigenvalue of T is denoted by λ2(T ). This bound

guarantees near real-time (i.e.< 10 seconds) convergence behavior for Ou and Og for a number

of practical DNs. For example, the upper bound on the number of iterations necessary for Og to

converge for the IEEE 33-bus DN is 579 iterations when the residual is 10−5. As the proposed mon-

itoring algorithm is based on the assumption that each bus in the DN can only communicate with

its neighbors in the network, wired communication technologies (e.g. power line communication)

are adopted. From reference [103], the communication delay associated with each information ex-

change process for wired communication is within 5 milliseconds. Therefore, buses in the 33-bus

DN can form a consensus on Og within 3 seconds with the proposed consensus averaging method,

and consensuses on each Ou can be formed in even less time.

3.3 Simulation Results

Based on the aforementioned impact assessment metrics, the following algorithm for reducing the

impact of ALE integration on the voltage profile of the DN is proposed: Before an ALE-bus r

integrates an ALE component, it first requests the GEN-bus gu at the root of its host cluster u to

supplement the power requested by the ALE. If gu approves of the request, then the new ALE

will only affect the voltage values of buses within the subtree Bu and the opinions of other buses

within the cluster u. Next, buses in the cluster u form the post ALE integration opinion consensus

Ou′ through iterative information exchange using the aforementioned consensus averaging method

and the power flow model introduced in Section 2.3. As individual ALE loads tend to be much

smaller than typical bus loads, the assumption that the inclusion of individual ALE has a negligible

impact on the global opinion consensus Og is made. Hence, if Ou′ is much higher than Og, then

26



0.625 1.25 1.875 2.5 3.125 3.75 4.375 5
0.01

0.015

0.02

0.025

0.03

0.035
Voltage Drop Quotient

UDM

CDM

OD

(a) Reduction quotient©2018 IEEE.

0.625 1.25 1.875 2.5 3.125 3.75 4.375 5
0.86

0.87

0.88

0.89

0.9

0.91

0.92
Minimum DN Voltage

UDM

CDM

OD

(b) |Vmin|©2018 IEEE

Figure 3.2: Simulations for Grid Condition Monitoring and ALE Integration

the integration of the new ALE would disproportionately impact the voltage values of buses within

u. Therefore, the algorithm instructs r to reject the ALE if Ou′ − Og is higher than a threshold τ

obtained through simulation results.

The performance of the proposed grid condition monitoring metric and its application on ALE

integration is evaluated on the 12.66kV IEEE 33-bus DN, for which parameters were detailed in

reference [4]. The test DN is partitioned into four clusters where each cluster hosts a randomly

selected percentage of ALE loads as indicated in Table. 3.1.

Cluster Name ALE Percentage
Cluster 1 10%
Cluster 2 22%
Cluster 3 50%
Cluster 4 18%

Table 3.1: Cluster ALE Loads in the 33-bus DN©2018 IEEE.

The clusters and the GEN-buses are illustrated in Fig. 3.3 where different clusters are indicated

by dashed lines of different colours and GEN-buses are illustrated in orange. The numbers in Fig.

3.3 denote the buses in the DN. The proposed method, which was termed Opinion Dynamics (OD),

was compared with the Unconstrained Direct Method (UDM) where ALE integration requests are

never turned down, and the Constrained Direct Method (CDM), where ALE integration requests

are only turned down when it would lead to bus voltage constraint violations. Furthermore, the
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Figure 3.3: Illustration of Clusters in the 33-bus DN.

voltage reduction quotient V is introduced to represent the impact of ALE integration on the

voltage profile. The formulation forV is expressed as follows:

V =
1
A

∑
b∈B

∆(|Vb|
2) (3.3)

where ∆(|Vb|
2) represents the change in bus voltage magnitude due to ALE integration. Moreover,

the value of τ for this simulation is selected as 2 ∗ 10−4. In Fig. 3.2a, the proposed monitoring and

integration technique can successfully mitigate the voltage reduction effects caused by unregulated

integration of ALEs. Also, the proposed method consistently leads to smaller voltage reduction

across the network than the CDM. Moreover, Fig. 3.2b shows that the proposed method is more

effective at safeguarding the minimum bus voltage of the DN than CDM in scenarios with high

ALE penetration. As such, Figs 3.2a and 3.2b demonstrate the detrimental effects of unregulated

ALE integration on the voltage profile of the DN and illustrate the effectiveness of the proposed

algorithm in mitigating these effects.
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3.4 Chapter Summary

This chapter presents a decentralized algorithm for grid condition monitoring. Next, it proves

through theoretical constructs associated with social learning that the monitoring algorithm allows

for near real-time monitoring of grid conditions for practical DNs. Then, it introduces a technique

that allows cyber-enabled smart buses to collaboratively reduce the impact of ALE penetration on

the DN based on the monitoring algorithm. Impact of the integration method on the DN voltage

profile at various rates of ALE penetration have been demonstrated with simulations conducted on

the practical IEEE 33-bus DN.
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Chapter 4

Data-Driven PLF for Voltage Analysis

From the literature review conducted in Chapter 1.2.2, current proposals in data-driven PLF such

as reference [29] generally require both arduous tuning process for their machine learning models

and extensive knowledge pertaining to the internal parameters of the DN (e.g. line impedances

and DN topology). Moreover, no existing proposal in data-driven PLF offers guarantees on the

performance of their machine learning algorithms. In this section, the assumptions as well as

the network and load models adopted by this work are first detailed. Then, a brief summary for

the machine learning techniques utilized in this work is presented. Next, a GP emulator-based

data-driven method for PLF is proposed. This PLF method automates the model selection and

parameter tuning processes and requires no internal parameter of the DN. Then, the theoretical

performance guarantees for the proposed method are introduced. Both the proposed method and

the guarantees on its performance are first established in reference [82]. The equations, tables and

figures presented in this section are included in the published work in reference [82]©2022 IEEE.

4.1 DN Settings and Problem Formulation

In this proposal, no simplifying assumptions regarding the physical attributes of the DN (e.g. num-

ber of phases and availability of line parameters) is made. As such, this proposal provides an ac-

curate analysis of the bus voltage behaviours associated with practical multiphase DNs. The only
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assumptions made in this work are pertaining to the availability of the training/testing datasets and

the settings for the GP emulator. Owing to the extensive application of Advanced Metering Infras-

tructure (AMI) and Supervisory Control And Data Acquisition (SCADA) technologies in modern

smart DNs [104], this proposal adopts the assumption that the datasets of net power injections, bus

voltage magnitudes and voltage phase angles at each bus in the DN are readily available. Next,

the input feature vector for the GP emulator is set to be a composite vector that includes the net

power injections associated with every bus in the DN. The net power injection at a bus is defined

as the overall power generation from distributed sources (e.g. rooftop PV panels) residing at that

bus subtracted by the overall demand at that bus. Then, the output from the GP emulator is set to

be a single DN state entity for simplifying the notations adopted in this work. The extension of

the output of GP emulator to multiple state entities can be easily done without loss of generality as

demonstrated in reference [82].

The datasets utilized by the proposed PLF technique can come from either data repositories

maintained by utility companies or from DN simulation toolboxes such as MATPOWER and

OpenDSS. In this proposal, the latter method is adopted to generate the training and testing datasets

from the IEEE 33-bus, 37-bus and 123-bus DNs. Specifically, the datasets associated with the bal-

anced DNs (i.e. the IEEE 33-bus DN) are generated from MATPOWER and the datasets associated

with the unbalanced DNs (i.e. the IEEE 37-bus and 123-bus DNs) are generated from OpenDSS.

These two simulation toolboxes generate the DN datasets from the following power balance rela-

tions:

S r = Vr

n∑
j=r

z−1
mrV

H
m , ∀ r ∈ B (4.1)

The system parameters used for generating the datasets (e.g. impedance matrices) are obtained

from reference [131] for all DNs studied. Next, the load and generation models that govern the net

power injection at each bus are detailed. As mentioned in Section 2.4, the bus injection considered

in this proposal is the summary of three components: non-EV consumer demands, demand from

EVs and injection from photovoltaic DGs. Here, the cumulative consumer loads are modelled
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as a normal distribution whose means and standard deviations are selected to be 125% and 5%

of the original loads respectively. These values aim to capture the diversity in power demands.

Moreover, the chosen variance values are also used by the state-of-the-art in PLF methods such as

reference [28]. Next, the net injection from the EVs is modelled as a normal distribution whose

means and standard deviations are set to be 75% and 5% of the original loads respectively. The

penetration rate of EVs considered in this proposal is significantly higher than those considered

by the existing literature (e.g. the penetration rates adopted in references [105] and [106] are 10%

and 20% respectively). This allows for the consideration of greater variability in power demands.

Furthermore, existing proposals studying the impact of EVs in DNs such as reference [98] have

also selected the standard deviation to 5%. Then, the power injection from PVs is modelled as a

normal distribution whose means and standard deviations are set as 100% and 20% of the original

demands respectively. The means selected allow the power generated by the PVs to supply all of

the original demands in the DN on average. The standard deviations selected for the PV generation

have also been adopted in reference [100].

4.2 Brief Overview of GP Emulator

The machine learning technique of GP emulator is adopted in this work to construct surrogate

models of practical DNs. Here, the input feature vector x into the GP emulator is an stochastic

vector that includes the real and reactive net bus power injections associated with all phases in

the DN. As such, the realization of x at any instance i is denoted by xi and the dimension of this

realization is denoted by di (i.e. xi ∈ Rdi). As the set of phases for bus r ∈ B is denoted by Φr

and x accounts for both real and reactive power injections, di =
∑|B|

r=1 2|Φr|. The training dataset for

the emulator is denoted by the matrix X and each row of X is a realization of the emulator input x

that contains a snapshot of the DN net bus power injections at a specific time instance. The size

of this training set is denoted by nX (i.e. X ∈ RnX×di). Next, the system output corresponding to

the input realization xi is denoted by f (xi) and the collection of system outputs corresponding to
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X is represented as f (X) = [ f (x1), ..., f (xnX )]. As the technique of GP emulator is adopted by this

proposal, the predictive distribution of input x is a GP whose realization is denoted by g(x). The

predictive posterior distribution p(g(x)| f (X), X, µ(.), k(., .)) is then defined as the following:

p(g(x)| f (X), X, µ(.), k(., .)) = N(m(x),Σ(x)) (4.2)

m(x) = µ(x) + k(x, X)k(X, X)−1( f (X) − µ(X))

Σ(x) = k(x, x) − k(x, X)k(X, X)−1k(X, x)

where

µ(X) =


µ(x1)
...

µ(xnX )

 , k(X, X) =


k(x1, x1) . . . k(x1, xnX )

...
. . .

...

k(xnX , x1) . . . k(xnX , xnX )



k(x, X) = [k(x, x1), ..., k(x, xnX )], k(X, x) =


k(x1, x)

...

k(xnX , x)


In Eq. 4.2, µ and k denote the prior mean and covariance functions for the GP respectively. The

µ and k functions represent the prior knowledge of DN power flow relations available to the data

engineer. Next, the predictive posterior distribution p(g(x)| f (X), X, µ(.), k(., .)) is the distribution

of g(x) for a GP emulator trained on (X, f (X)) that has prior mean and covariance functions µ

and k. Moreover, The predictive posterior mean m(x) serves as an approximation for f (.) and

the predictive posterior covariance Σ(x) represents the precision of such an approximation. Since

no prior information of the DN is assumed to be available to the data engineer, this work sets

the GP prior mean function µ to 0 for all DNs studied. From reference [107], GP emulators

with zero prior mean are capable of accurate prediction of physical system behaviours after the

training process. Moreover, the accuracy of predictions for zero mean GP emulators are highly
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reliant on the engineer’s selection of prior covariance functions. The prior covariance k is typically

represented by a kernel function whose associated set of hyper-parameters θ are inferred during

the training process. An example of the kernel function is the Squared-Exponential (SE) kernel

defined as k(x, x′) = σ2
f exp(− ||x−x′ ||2

2l2 ) where ||.|| denotes the L2 norm. The set of hyper-parameters

associated with this kernel is θ = {σ f , l} where σ f and l represent the signal variance and length-

scale for the kernel respectively. The SE kernel is adopted by the state-of-the-art in GP emulator

based PLF in reference [28]. Other examples of kernel functions for GP emulators are included in

Table 4.1:

Kernel Name Kernel Function Formulation

Rational Quadratic σ2
(
1 + ||x−x′ ||2

2α`2

)−α
Periodic σ2 exp

(
−

2 sin2(π||x−x′ ||/p)
`2

)
Linear σ2

b + σ2
v(x − c)(x′ − c)

Table 4.1: Examples of GP Emulator Kernels©2022 IEEE

The hyper-parameters for GP kernels are typically trained with the Maximum Likelihood Es-

timation (MLE) method [28]. The MLE aims to maximize the marginal likelihood function over

the training dataset through the optimization of hyper-parameters. The expression for the marginal

likelihood function associated with a zero-mean GP emulator GP(0, k(., .)) trained on the dataset

(X, f (X)) can be expressed as the following equation:

L(k(., .)|X, f (X)) = p( f (X)|X, k(., .)) (4.3)

= N( f (X)|0, k(X, X))

= (2π)−
nX
2 × [det(k(X, X))]−

1
2

exp{−
1
2

f (X)T k(X, X)−1 f (X)}

where the determinant of a matrix is denoted by det(.). According to Eq. 4.3, the marginal likeli-
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hood L for an GP emulator with input matrix X and kernel k(., .) is the conditional probability for

the emulator output to be equal to the system output f (X). As such, higher L values corresponds to

higher accuracy for the prediction by the GP emulator. From reference [108], the likelihood L is a

balanced metric that is widely adopted for the computation of kernel hyper-parameters. Moreover,

L is associated with an intuitive interpretation where the component [det(k(X, X))]−
1
2 of L controls

the representative capacity of the emulator and the component exp{−1
2 f (X)T k(X, X)−1 f (X)} eval-

uates the emulator’s fit with data. As such, MLE based training of kernel hyper-parameters leads

to balanced kernels capable of representing complicated relations such as those existing in PLF

studies.

To capture the complex relations between the various elements of the input feature vector and

the system output, simple kernels such as those presented in Table 4.1 are combined in order to

construct additive kernels via summations and products. The simple kernels used for constructing

the additive kernels are referred to as base kernels. In the studies conducted in this work, SE kernels

with one dimensional inputs are adopted as the base kernels. While the base kernels can capture

the relationship between individual elements of the input vector, they have difficulty extrapolating

to the entire input space as only local interactions are accounted for. As such, the mth order additive

kernel kaddm(x, x′) is defined as follows:

kaddm(x, x′) = σ2
m

∑
C ∈C m

di

[Πr∈C kr(xr, x′r)] (4.4)

where x and x′ are the two inputs of kaddm and both of them are vectors with dimension di. More-

over, C m
di

is the set for all possible m digit combinations of integers in the range of 1 to di and

kr(xr, x′r) is the base kernel. As such, kaddm is the summary of all combinations of mth order prod-

ucts from the base kernels. When m = 0, the kernel kadd0 is set to be an SE kernel. Additive kernels

of different orders are then combined together to form the final kernel k:

k(x, x′) =
∑
sm∈S

smkaddm(x, x′) (4.5)
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where sm ∈ {0, 1} and the additive kernel kaddm is included in the final kernel if and only if sm = 1.

If sm = 1 for every 1 ≤ m ≤ di, the resulting final kernel will be an intricate entity that is capable

of modelling the highly complex interdependences in the training dataset. However, this kernel is

also prone to over-fitting and does not generalize well to new datasets. On the other hand, setting

sm = 0 for every m will result in the standard SE kernel that does not extrapolate well. As such, the

values selected for sm decide the structure of the final kernel and plays a critical role in determining

the performance of the GP emulator.

4.3 Proposed Kernel Design Methodology

To decide the optimal values of sm and the hyper-parameters associated with the final kernel, the

kernel design problem is formulated and this problem is a bi-level optimization problem. The

Order Set (OS) S is first defined as the collection of sm for every 1 ≤ m ≤ di. The input dimension

di is generally a large number and this is especially true for large scale DNs. As such, a limit o

is placed on the order number m to limit the complexity of kernel and curb overfitting. Hence,

every order set S now contains o elements (i.e. S = {s1, ..., so}). As S is composed of information

on which additive kernel is incorporated in the final kernel k, it represents the structure of k.The

final kernel whose structure is represented by the OS S is denoted by kAKS (., .|S , θS ). The kernel

design problem is then formulated as the composition of two subproblems: 1) The upper level

subproblem Pku which calculates the optimal OS S using the dataset (Xu, f (Xu)); and 2) The lower

level subproblem PKl which trains the hyper-parameters associated with the specific OS S over

the dataset (Xl, f (Xl)). This formulation adheres to the structure of bi-level optimization problems

laid out in reference [109]. The upper level problem Pku searches for the optimal OS S whose

elements are binary numbers (i.e. C1) on the dataset (Xu, f (Xu)) using the set of optimal hyper-

parameters obtained in Θ(S ) (i.e. C2). Then, the lower level problem Pl computes the hyper-

parameters for a specific OS S over the data set (Xl, f (Xl)). As there exists no overlapping elements

between (Xu, f (Xu)) and (Xl, f (Xl)), the issue of over-fitting can be avoided. Since the objective
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is to maximize the likelihood of observing the outputs f (Xu) given the input Xu, the OS S and

the set of hyper-parameters θS associated with S , the objective functions for both subproblems are

selected to be the negative marginal log likelihood function.

PKu : min
S ,θS

F(S , θS ) = −L(kAKS (., .|S , θS )|Xu, f (Xu))

s.t. sm ∈ {0, 1} ∀ 1 ≤ m ≤ o, S = {s1, . . . , so} [C1]

θS ∈ Θ(S ) [C2]

PKl : min
θS

G(S , θS ) = −L(kAK(., .|S , θS )|Xl, f (Xl))

The kernel design problem is a NP-hard bi-level problem that is difficult to solve directly. As

such, an iterative algorithm for overcoming these obstacles is introduced. To construct the frame-

work for the proposed iterative algorithm, the hyper-parameters computed in PKl is substituted by

the equivalent mapping θS = v(S , Xl, f (Xl)). This allows for the reformulation of the bi-level kernel

design problem as the optimization problem PK:

PK : min
S

F(S ) = −L(kAKS (., .|S , v(S , Xl, f (Xl)))|Xu, f (Xu))

s.t. sm ∈ {0, 1} ∀ 1 ≤ m ≤ o, S = {s1, . . . , so} (4.6)

To iteratively solve the reformulated problemPK , the current OS examined S c is first initialized

with a random set of binary numbers. Next, the local neighbourhood of S c is defined as the set that

contains all OSs that differ from S c by an element and denote it by Ŝc
o. Then, at every iteration an

OS in Ŝc
o is randomly examined and S c is replaced with the OS examined if it is associated with

a lower cost (i.e. F) than S c. This iterative examination and replacement procedure is continued

until no OSs in Ŝc
o is associated with a lower cost than S c. The proposed algorithm for kernel
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design is summarized in Alg. 2:

Alg. 2: Proposed Kernel Design Algorithm
Initialization:

• Initialize S c with an OS whose elements are randomly selected from {0, 1}.

• Denote the set of OS examined by Vc and initialize it with the empty set ∅.

Algorithm:

1. Randomly select S from Ŝc
o \ Vc for evaluation.

2. If F(S ) >= F(S c), replace Vc with Vc ∪ S . Otherwise, replace S c with S and set Vc

as ∅.

3. If Vc = Ŝc
o, then terminate the iterative update process. Otherwise, return to the first

step.

4.4 Theoretical Performance Guarantees

Next, a two-fold study of the theoretical performance of the proposed PLF method is conducted.

First, the performance guarantees for the kernel design algorithm presented in Alg. 2 are estab-

lished. Then, a study on the approximation capabilities for the GP emulator utilized in the proposed

PLF method is presented. To establish the performance guarantees for Alg. 2, a game-theoretic

formulation GK(P,L,C) of this algorithm is presented. Here, P is the set of players participating

in the game. The sets of strategies available to the players are included in L. Moreover, the cost

functions for these strategies are included in C. In the formulation for GK , every element of S c

is represented by a player in P and the strategies available to each player is {0, 1}. Furthermore,

the cost functions for all players as well as the global cost function for GK are set to be the cost

function F of PK . In this setup, at every iteration a player m ∈ P in GK is randomly selected. This

player then makes the decision regarding whether to change its current strategy according to the
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cost function laid out in C. This iterative revision process is terminated when no player in GK is

capable of making further changes. Next, the set of strategies for any player m ∈ P and the set of

strategies adopted by other players are denoted by Lm ∈ L and L−m respectively. For the player m

contemplating a switch from strategy a ∈ Lm to strategy b ∈ Lm, the change in its local cost Cm ∈ C

incurred by this switch is identical to the change in global cost C due to this switch:

Cm(a, L−m) −Cm(b, L−m) = C(a, L−m) −C(b, L−m), m ∈ P (4.7)

As such, GK is an exact potential game according to reference [119]. From the properties

of exact potential game, any stationary point of GK is a Nash Equilibrium and its corresponding

solution in Alg. 2 is a local optimum for PK . Since strategy changes in GK only happens when it

results in the reduction of the global cost C, the global cost C decreases at every iteration. What

is more, the number of strategies available to each player in GK is finite. Therefore, according to

the definition of exact potential games presented in reference [119] GK will always converge to

a stationary point in finite time. Thus, Alg. 2 will always converge to a local optimum of PK .

The convergence result produced by Alg. 2 is denoted by S ∗ and the kernel associated with this

result by kAKS ∗ . Hence, the zero-mean GP utilized by the proposed PLF method and its predictive

mean are GP(0, kAKS ∗ (., .)) and mAKS ∗ (.) respectively. The supremum norm defined on the set of

real numbers R is then denoted by ||.||∞. From reference [110], the posterior mean mAKS ∗ (.) is an

arbitrary close approximation of the system output f (.) if the supremum norm of their differences

(i.e. ||mAKS ∗ (.) − f (.)||
∞

) tends to 0 as the number of samples in the training set (X, f (X)) goes to

infinity. Leveraging theoretical constructs associated with the Representer Theorem detailed in

reference [111], it can be established that the posterior mean mAKS ∗ (.) can be an arbitrarily close

approximation of f (.) if the kernel kAKS ∗ can be expressed as a function the squared difference

between its two inputs.

To prove the emulator posterior mean mAKS ∗ (.) can approximate the system output f (.) arbi-

trarily closely under practical conditions, functions obtained by substituting any x ∈ Rdi into the

second input of the kernel function kAKS ∗ (., .) are first designated as kAKS ∗ (., .) partially evaluated
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at x and denoted as kAKS ∗ (., x). As the kernel function kAKS ∗ (., .) maps Rdi × Rdi to R, the partially

evaluated function kAKS ∗ (., x) maps Rdi to R. Next, the set of all functions that can be represented

as a weighted sum of kAKS ∗ (., x) where x ∈ X are designated as KX. Similarly, the set containing

all functions that can be written as a weighted sum of infinitely many additive kernels where each

additive kernel kAKS ∗ (., .) is partially evaluated at a different input obtained from sampling Rdi is

denoted by lim
nX→∞
KX. That is:

KX =

nX∑
i

αikAKS ∗ (., x
i), xi ∈ X, αi ∈ R}

lim
nX→∞

KX = lim
nX→∞

nX∑
i

αikAKS ∗ (., x
i), xi ∈ X, αi ∈ R}

The non-negative and the positive real number sets are denoted as R≥0 and R>0 respectively.

Next, the mathematical concepts and terms (e.g. Borel measure) utilized in this proof are elabo-

rated on. According to reference [112], the sigma-algebra A defined for the set X is a family of

subsets of X such that the unions, the intersections and the complements of elements of A are in

A. Moreover, X itself is also included inA. That is:

• If M ∈ A, then X \ M ∈ A.

• If M,N ∈ A, then M ∪ N ∈ A.

• If M,N ∈ A, then M ∩ N ∈ A.

• X ∈ A.

Next, a Borel measure µ̂ defined on the set X is a function mapping the Borel sigma-algebra of

X to R≥0, whereas the Borel sigma-algebra for X is defined as the intersection of all sigma-algebras

containing the open subsets of X. Furthermore, a subset U of the n-dimensional real space Rn is

an open set if for every point x in U there exists a real value ε ∈ R>0 such that any y ∈ Rn is in U

if and only if ||x − y|| < ε. Moreover, a closed set is a the set whose complements is an open set.
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What is more, an open neighborhood Ox associated with a point x in X is an open subset of X such

that there exist V ∈ X satisfying V ∈ Ox, x ∈ V . Finally, the support of a measure µ̂ defined on the

set X is defined as the largest closed subset of X where the measure for every open neighborhood

at every point in the subset is positive.

Thus, if the additive kernel kAKS ∗ (., .) can be rewritten as an equivalent function hAKS ∗ (t) where

t = ||x − x′||2, then according to reference [110] there exists a Borel measure µ̂AKS ∗ (σ) defined

on R≥0 (i.e. σ ∈ R≥0) such that for all t ∈ R≥0, hAKS ∗ (t) can be reformulated into the following

Lebesgue integral:

hAKS ∗ (t) =

∫
R≥0

e−tσdµ̂AKS ∗ (σ)

From reference [110], for every non-constant function hAKS ∗ (t) the support of the sigma-algebra

µ̂AKS ∗ (σ) shall be contained inR>0. According to Theorem 17 presented in the same reference, if the

support of µ̂AKS ∗ (σ) is a subset of R>0 and do = 1 then there must be a q∗ ∈ lim
nX→∞

that approximates

f (.) arbitrarily closely. As such, there must exist such q∗(.) providing kAKS ∗ (., .) is not constant. For

the dataset (X, f (X)), the statement that || f (xi) − q∗(xi)||2 ≤ ε
2i for every ε ∈ R>0 without loss of

generality is valid as q∗(.) approximates f (.) arbitrarily closely. Therefore, the summation of all

|| f (xi) − q∗(xi)||2 when nX → ∞ is upper bounded by every ε ∈ R>0:

lim
nX→∞

nX∑
i=1

|| f (xi) − q∗(xi)||2 ≤ lim
nX→∞

nX∑
i=1

ε

2i = ε

According to the Representer Theorem detailed in reference [111], the predictive posterior

mean mAKS ∗ (.) associated with the zero-mean GP GP(0, kAKS ∗ (., .)) trained on (X, f (X)) satisfies

mAKS ∗ (.) ∈ K
X and is the only solution to the following problem:

min
q∈KX

nX∑
i=1

|| f (xi) − q(xi)||2

From the previous derivations, there exists q∗(.) ∈ lim
nX→∞

such that
∑nX

i=1 || f (xi) − q∗(xi)||2 is finite.
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Thus, as nX → ∞ the posterior mean mAKS ∗ (.) trained on (X, f (X)) satisfies mAKS ∗ (.) ∈ lim
nX→∞

and is

the unique solution to the problem:

min
q∈ lim

nX→∞
KX

lim
nX→∞

nX∑
i=1

|| f (xi) − q(xi)||2

Since mAKS ∗ (.) is the sole solution to the above problem, the following can be derived:

lim
nX→∞

nX∑
i=1

|| f (xi) − mAKS ∗ (xi)||2 ≤ lim
nX→∞

nX∑
i=1

|| f (xi) − q∗(xi)||2 ≤ ε

For every ε ∈ R>0. From the above relation, it can be concluded that every x ∈ Rdi , ε ∈ R>0

satisfies || f (x) − mAKS ∗ (x)||2 ≤ ε. As such, the posterior mean mAKS ∗ (.) produced by Alg. 2 is

capable of approximating f (.) arbitrarily closely.

4.5 Simulations on Practical Networks

To assess the performance of the proposal on PLF, simulation studies conducted on three test

systems based on practical IEEE benchmark DNs have been conducted. These test systems are:

1) Bus 15 for the Balanced 12.66 kV IEEE 33-bus DN; 2) Bus 21, Phase C for the Unbalanced

4.8 kV IEEE 37-bus DN; and 3) Bus 87, Phase B for the Unbalanced 4.16 kV IEEE 123-bus DN.

These test systems are denoted as 33-15, 37-21-C and 123-87-B respectively. The specifications

of these benchmark DNs can be found in reference [131]. In the simulations presented here, the

kernels are designed to emulate the voltage magnitude of a bus at a phase. Moreover, the bus-phase

combinations for each test system are selected at random. Comparative analysis with the state-of-

the-art in data-driven PLF methods introduced in reference [28] is also included. To generate the

datasets utilized for training and validating the proposed PLF method, the emulator input x is set

to contain the net power injections at each phase of every bus in the DN under consideration.

As the net injections are stochastic in nature, the input features X in the dataset are generated

through sampling the bus net power injections detailed in Section 2.4. The outputs in the dataset
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which are bus voltage magnitudes are then generated through power system simulation toolboxes

MATPOWER and OpenDSS [85, 86]. The total number of datapoints for the training dataset

(X, f (X)) and the testing dataset (Xt, f (Xt)) are set to be 400 and 100 respectively. These sizes

are comparable to those adopted by the state-of-the-art in PLF such as reference [113] and the

80/20 split of training/testing datasets adheres to the dataset partitioning principles proposed by

[114]. For the proposed method, the training dataset is first equally partitioned into (Xl, f (Xl)) and

(Xu, f (Xu)). Then, the kernel with structure obtained from Alg. 2 is trained on the training dataset

(X, f (X)). The hyper-parameters of GP kernels are trained with the GPflow library [115]. Next,

the maximum kernel order o is set to 8. As such, the number of unique kernel structures available

is 28. This choice of maximum order serves to limit overfitting with commonly associated with

overly complex models [114]. Furthermore, the iteration number of the proposed design method

is defined as the number of times a kernel is evaluated.

For evaluating the performance of the proposed method, three different metric is then intro-

duced. The first metric is the likelihood difference factor D which measures the difference between

the likelihood values of kernels obtained from the training set and the optimal kernel for the testing

set. The second metric is the Root Mean Squared Error (RMSE) R which evaluates the emulator

output’s fit with data. The third metric is the Kullback-Leibler Divergence (KLD) DKL which pro-

vides a quantitative evaluation of the difference between two random variables. The formulation

for the difference factor D is presented as follows:

D =
log(L(k(., .)|XE, f (XE))) − log(L(kω(., .)|XE, f (XE)))
log(L(kα(., .)|XE, f (XE))) − log(L(kω(., .)|XE, f (XE)))

(4.8)

where k is the kernel evaluated by this metric and (XE, f (XE)) is the dataset this metric is evaluated

on. The first term log(L(k(., .)|XE, f (XE))) in the numerator of this metric is the log likelihood value

for the kernel k. Moreover, the second terms in both the numerator and the denominator are iden-

tical to each other and both of them are log(L(kω(., .)|XE, f (XE))). This term is the log likelihood
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value for the GP kernel kω whose structure results in the worst performance (i.e. least likelihood

value) for (XE, f (XE)). Furthermore, the first term log(L(kα(., .)|XE, f (XE))) in the denominator of

D is the log likelihood value for the GP kernel kα whose structure results in the best performance

(i.e. highest likelihood value) for (XE, f (XE)). The kernel structures for kω and kα are obtained

from iterative examination of the performance associated with all possible kernel structures. As

such, the metric D provides normalized insights into the performance of k with respect to the ker-

nels associated with the best and worst structures. From the formulation provided in Eq. 4.8, the

values for D ranges from 0 to 1. If the performance of k evaluated on (XE, f (XE)) is close to that

associated with the optimal kernel, then the value of D is close to 1. On the other hand, if the

performance of k is close to the worst kernel then D will be close to 0. Next, the formulation for

the metric R is presented as follows:

R =

√
(||m(XE) − f (XE)||)2

nX
E

(4.9)

where m(.) is the predictive mean whose expression is detailed in Eq. 4.2, (XE, f (XE)) denotes

the dataset this metric is evaluated on, and nX
E denotes the size (i.e. the number of samples )

of (XE, f (XE)). The numerator term ||m(XE) − f (XE)||)2 then measures the distance between m(.)

and the system output f (.) the emulator is designed to emulate. Next, the expression for DKL is

presented as follows:

DKL(π1||π2) =

∫ ∞

−∞

π1(r)log(
π1(r)
π2(r)

)dr (4.10)

where the distributions of the two random variables to be evaluated are denoted by π1 and π2

respectively. According to reference [116], DKL(π1||π2) can also be interpreted as a measure of the

information loss when π1 is approximated by π2.

To study the convergence characteristics of Alg. 2, the impact of the initial kernel structure on
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DN System µ(It) σ(It) Dataset µ(D0) µ(DIt)

(Xl, f (Xl)) 0.823 0.908

33-15 21.6 9.89 (Xu, f (Xu)) 0.864 0.932

(Xt, f (Xt)) 0.843 0.900

(Xl, f (Xl)) 0.384 0.493

37-21-C 16.6 4.765 (Xu, f (Xu)) 0.352 0.500

(Xt, f (Xt)) 0.371 0.503

(Xl, f (Xl)) 0.685 0.977

123-87-B 13.3 2.5407 (Xu, f (Xu)) 0.683 0.975

(Xt, f (Xt)) 0.656 0.934

Table 4.2: Impact of Initial Kernel Structure on Convergence Properties of Alg. 2©2022 IEEE.

convergence is first evaluated. The evolution characteristics of D for the three DNs at every itera-

tion are then studied. In Table 4.2, the effect of different initial kernel structures on the convergence

characteristics of Alg. 2 is presented. For each of the three test systems examined, 10 different

initial kernel structures whose maximum kernel order o = 8 are randomly generated. Then, Alg.

2 is carried out for each initial structure generated. The number of iterations required for Alg.

2 to achieve convergence is denoted by It. In Table 4.2, the average and the standard deviation

values of the iteration numbers for the 10 runs associated with every test system are denoted by

µ(It) and σ(It) respectively. Moreover, the average values of D for the initial kernel structures

and the kernel structures produced by Alg. 2 are denoted by µ(D0) and µ(DIt) respectively. From

Table. 4.2, the average iteration number required for convergence (i.e. µ(It)) varies for different

test systems. Nevertheless, all µ(It) values presented are much smaller than the number of kernel

structures that need to be examined for computing the optimal kernel structure via the brute force

approach. Moreover, for all systems studied the standard deviations for convergence iterations are

smaller than half of the averages for convergence iterations. As such, the convergence of Alg. 2

is consistently fast for all test systems and the convergence iterations for different starting kernel

configurations do not depart considerably from the average convergence iteration. Furthermore,
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(a) System 33-15©2022 IEEE. (b) System 37-21-C©2022 IEEE.

(c) System 123-87-B©2022 IEEE.

Figure 4.1: Convergence Study for Alg. 2.

for all test systems examined the µ(D0) values associated with different datasets are similar and the

µ(DIt) values for different datasets are also close to each other. What is more, for all test systems

and datasets examined µ(DIt) are notably higher than µ(D0). Thus, the proposed kernel design

algorithm in Alg. 2 generally results in notable improvements in kernel performance regardless

of the initial structure selected. As the performance of Alg. 2 does not degrade for systems with

high dimensional input vectors, the proposed design algorithm can be easily scaled to large scale

systems.

Next, Figs 4.1a-4.1c charts the evolution of the D values at every iteration of Alg. 2 for all

test systems. Here, the D values associated with the kernels trained on (X, f (X)) and (Xl, f (Xl))

are represented by D and DXl respectively. For the simulations presented in these figures, the
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initial kernel structures used by Alg. 2 are represented by zero vector OS. In these figures, it

can be observed that the DXl values evaluated on (Xu, f (Xu)) monotonously increase for all test

systems. Moreover, the D values associated with the same test system stay the same at specific

iterations while changing in other iterations. This behaviour is expected as Alg. 2 only allows

change in kernel structure when the change leads to smaller cost for PK . Since there exists no

significant divergence among the evolution trends of the D values calculated on different datasets,

the improvements in kernel performances enabled by Alg. 2 generalize well to different datasets

belonging to the same test system.

To assess the performance of the proposed method on the training dataset (X, f (X)) and testing

dataset (Xt, f (Xt)), the R values for the three test cases considered is evaluated. These values are

recorded in Table 4.3. As shown by these results, the R values associated with the training and

testing datasets are close to each other for all the test systems considered. As such, the kernels

produced by the proposed method generalize well to out-of-sample datapoints. What is more, the

R values associated with all test cases are in the order of 10−3 p.u. Therefore, the predictive means

produced by the emulator are close to their respective system outputs.

DN System Dataset R (p.u)

33-15 (X, f (X)) 0.00212

(Xt, f (Xt)) 0.00322

37-21-C (X, f (X)) 0.00089

(Xt, f (Xt)) 0.00071

123-87-B (X, f (X)) 0.00031

(Xt, f (Xt)) 0.00049

Table 4.3: R Values for the Proposed Method©2022 IEEE.

Next, the performance of the proposed method is compared against those of the state-of-the-

art in data-driven PLF introduced in reference [28] and the traditional MCS based PLF method

commonly adopted as a benchmark in proposals such as reference [50]. First, the D values asso-

ciated with the proposed PLF method and the method introduced in reference [28] are compared
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against those associated with the optimal solution for PK for the testing datasets associated with

all buses in the IEEE 33-bus DN. Then, the distributions of the output random variables obtained

from the proposed method and the SE based state-of-the-art are evaluated against those obtained

from the benchmark MCS based method for PLF. Finally, a comparison between the computational

performance of the proposed PLF method and that of the MCS method is presented.

Figure 4.2: Comparative Study for IEEE-33 DN©2022 IEEE.

The D values for the testing datasets associated with all buses in the IEEE-33 DN are plotted

in Fig. 4.2 for the three PLF methods considered. This figure refers to the proposed method, the

method introduced in reference [28] and the method associated with the optimal kernel for PK as

Proposed, SE Emulator and PK Optimal respectively. As can be observed from Fig. 4.2, the PLF

method associated with the optimal solution for PK leads to D values that are notably lower than 1

for multiple buses in the DN. This phenomenon can be attributed to the overfitting of the optimal

kernel on the dataset (Xu, f (Xu)). What is more, the PLF method presented in reference [28] also

leads to D values that are significant lower than 1 for multiple buses and this can be attributed to the

inability of the SE kernel to extrapolate well [108]. On the other hand, the proposed PLF method

leads to D values that are close to 1 for all buses in the DN. As such, it can be observed from Fig.

4.2 that the proposed algorithm results in near optimal performance for the testing dataset and this
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is a notable improvement over the state-of-the-art.

Figure 4.3: Comparison of Distributions for 123-87-B System©2022 IEEE.

In Fig. 4.3, the histograms and Probability Distribution Functions (PDFs) associated with

the output variables obtained from the proposed PLF method are plotted against those obtained

from the SE Emulator based proposal and the benchmark MCS method for the 123-87-B test

system. The distributions presented in this figure are plotted over voltage magnitudes ranging

from 0.85 p.u to 1 p.u to facilitate presentation. Moreover, a sample size of 10000 is adopted

by all proposals for generating the distributions presented. From Fig. 4.3, it can be observed

that the distributions generated by the proposed technique result in a closer approximation of the

benchmark results than the SE Emulator based method. To provide a quantitative assessment of

the proposed method’s ability for approximating benchmark results, the KLDs for the distribution

obtained from the proposed method and the SE Emulator based technique are then listed in Table

4.4. These KLD values are evaluated against the benchmark distributions. From Table 4.4, it can

be observed that the distributions obtained from the proposed method are associated with lower

KLD values (i.e. better approximations) than the SE based method for all test cases examined. As

such, it can be concluded the proposed method results in better approximations of the benchmark

distribution than the SE based method.
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DN System PLF Methods DKL

33-15 Proposed 0.00863

SE Emulator 0.1037

37-21-C Proposed 0.00596

SE Emulator 0.00629

123-87-B Proposed 0.0083

SE Emulator 0.00981

Table 4.4: Comparison of KLD©2022 IEEE.

In Table 4.5, the average time required for simulating over 600 inputs for both the proposed PLF

method and the benchmark MCS method are presented for all three test systems examined. From

these results, it can be observed that this proposal requires lesser time for each simulation than

the benchmark MCS method. This is expected as the computational complexities of the proposed

method and the MCS method are O(n) and O(n2) respectively. From Eq. 4.3, the computational

complexity of the proposed PLF method is determined by the complexities of the kernel produced

by Alg. 2 and the inferencing process of the GP emulator. As can be observed from Eqs. 4.4 and

4.5, the kernel utilized by the proposed method is calculated from all base kernels. Moreover, the

number of base kernels is the same as the number of features. As the number of features is linear in

terms of the number of buses in the system, the computational complexity of the kernel adopted by

the proposed PLF method can be expressed as O(n) where n is the number of buses in the system.

Then, according to reference [117], the complexity of each simulation with a GP emulator is linear

with regard to the size of the training dataset. As the size of the training dataset is a constant, the

complexity of the proposed PLF method is also O(n). Furthermore, the computational complexity

of the MCS method for each simulation is the complexity for evaluating the load flow relations

which is O(n2) according to reference [118].
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DN System PLF Methods Simulation Time
(s)

33-15 Proposed 0.0007

MCS 0.0029

37-21-C Proposed 0.0007

MCS 0.0025

123-87-B Proposed 0.0021

MCS 0.0060

Table 4.5: Comparison Between Simulation Time©2022 IEEE.

4.6 Chapter Summary

This chapter presents a kernel design algorithm for efficient approximation of underlying DN

power flow relations captured by the training datasets. In this chapter, it is demonstrated via both

theoretical and practical studies that the proposed design algorithm converges to the local optimum

of the kernel design problem. Moreover, the kernel resulting from the design algorithm is shown

to efficiently approximate the underlying distributions of voltage random variables. Comparative

studies that demonstrates the advantage of the proposed algorithm over the state-of-the-art are also

included.
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Chapter 5

Reconfiguration for Voltage Profile

Improvement

Current work in decentralized topology reconfiguration for resistive DNs such as reference [5]

generally employ hierarchical structures that require extensive and system-specific tuning process.

Moreover, no existing work in decentralized reconfiguration offers guarantees on algorithm per-

formance or convergence. In this section, a decentralized DN reconfiguration method for voltage

improvement that does not depend on highly granular tuning processes is first presented. Then,

the general guarantees on the performance of the proposed method is introduced. Next, sufficient

conditions for the optimal convergence of the proposed method are presented. Both the proposed

method and the study on its convergence are first established in reference [83]. The equations,

tables and figures presented in this section are included in the published work in reference [83].

Two different scenarios for topology reconfiguration are considered by this work. These two

scenarios are designated as the switching and the branch exchange scenarios respectively. Both

scenarios require the topology of the activated DN to maintain the radial structure (i.e. connected

and acyclic). Under the switching scenario, only the power lines connecting reconfigurable buses

and their potential parents are equipped with switches. Under the branch exchange scenario, all

power lines in the DN are equipped with switches. As such, the branch exchange scenario can be
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regarded as a special case of switching scenario where all buses in the DN are reconfigurable buses.

Thus, this work first develops the reconfiguration algorithm for the switching case then simulate it

on both switching and branch exchange cases.

5.1 Problem Formulation

To develop a topology reconfiguration technique for voltage profile improvement under the switch-

ing scenario, the following formulation for the reconfiguration problem was considered:

PTR−rec :

min
T (R,P)

F(T ) :=
∑
r∈B

∑
φ∈Φr

(V̂φ
f − V̂

φ
r ) s.t.

∑
m:(m,r)∈E

ΛΦr
mr + S r =Λrl r ∈ B\ f (5.1)

Srl = γΦrlDiag(Λrl) = prl + jqrl (r, l) ∈ E (5.2)

(pφrl)
2 + (qφrl)

2 ≤ s2
rl φ ∈ Φrl, (r, l) ∈ E (5.3)

V̂r − V̂
Φrl
l = zrlS

H
rl + Srlzrl

H (r, l) ∈ E (5.4)

S r = pr + jqr r ∈ B (5.5)

p
r
≤ pφr ≤ pr, q

r
≤ qφr ≤ qr φ ∈ Φr, r ∈ B (5.6)

vr ≤ V̂φ
r ≤ vr φ ∈ Φr, r ∈ B (5.7)

The objective function F(T ) of PTR−rec represents the sum of voltage square magnitude drop

of every phase in all buses in DN with respect to the feeder bus f . This formulation is inspired

by the voltage profile optimization and voltage regulation criterion in existing works such as [5]

and [55]. Furthermore, the problem was defined on the aforementioned LPF model. The LPF

model is adopted here as it linearized the reconfiguration problem and allows for decentralized

DN optimization on nearly balanced multiphase DNs. The challenges associated with resolving
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PTR−rec are two-fold. First, the reconfiguration problem is highly nonlinear as the topology variable

T is discrete. Second, the highly coupled nature of the power and voltage constraints in Eqs. 5.2,

5.3 and 5.4 hampers the implementation of decentralized optimization techniques.

5.2 Decentralized DN Topology Reconfiguration

To formulate a decentralized reconfiguration strategy for the PTR−rec problem, it is first inferred

from Eqs. 5.2 and 5.4 that the voltage magnitude drop from the feeder bus f to any of its descendent

h can be expressed as:

V̂ f − V̂h = −
∑

(m,r)∈Eh, f

2Re(zH
mrCm) (5.8)

where Re(.) denotes the real component and Cm =
∑

p∈Bm
S p. From Eq. 5.8, it can be observed

that the change in voltage drop from f to h caused by reconfiguration action at bus i only depends

on the cumulative load Ci and the impedances associated with the power delivering lines shared

by Eh, f and Ei, f . From these observations, it can be concluded that the reconfiguration decision by

i ∈ R only affects the voltage magnitudes of buses inBA ji ,ki
. Moreover, all h ∈ BA ji ,ki

whose voltages

are affected by reconfiguration can be separated into three cases based on impact of reconfiguration

on their voltage profiles: Case 1 encompasses all h ∈ Bi; Case 2 includes all h < Bi located in the

subtree rooted at the immediate descendant of A ji,ki that also belongs to the set B ji,A ji ,ki
; and Case

3 includes all h < Bi located in the subtree rooted at the immediate descendant of A ji,ki that also

belongs to the set Bki,A ji ,ki
. The three cases are illustrated in Fig. 5.1.

For any h in Case 1, its voltage drop change
∑
φ∈Φh

∆(V̂φ
f − V̂

φ
h) caused by the reconfiguration

action can be decomposed into three components: 1) Difference between the original voltage terms

of the old parent ji and new parent ki of bus i before the switching action (i.e.
∑
φ∈Φh

(V̂′φji − V̂
′φ
ki

)

). 2) Voltage change due to the difference in impedance between line (i, ki) and line (i, ji) (i.e.

−
∑
φ∈Φh

[(ziki
H − zi ji

H)Ci + CH
i (ziki − zi ji)]

φ), and 3) Voltage change due to the addition of Ci to

the power flow of lines in Eki,A ji .ki
(i.e. −

∑
(r,l)∈Eki ,A jiki

∑
φ∈Φh

(zrl
HCi + CH

i zrl)φ). Combining these
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Figure 5.1: Illustration of the Three Cases.

components together leads to the following expression for voltage drop change for every r ∈ Bi:

∑
φ∈Φh

∆(V̂φ
f − V̂

φ
h) =

∑
φ∈Φh

{
(V̂′φji − V̂

′φ
ki

) − [(ziki
H − zi ji

H)Ci + CH
i (ziki − zi ji)]

φ−
∑

(r,l)∈EkiA jiki

(zrl
HCi + CH

i zrl)φ
}

(5.9)

where V̂′ji and V̂′ki
refer to the voltage terms at ji and ki before the switching action, respectively.

For voltage change of buses in Cases 2 and 3, it is noted that the reconfiguration action decreases

the power flow in lines belonging to EA ji ,h,A ji ,ki
by Ci and increases the power flow in lines belonging

to EAki ,h,A ji ,ki
by the same amount. Therefore, the voltage change

∑
φ∈Φh

∆(V̂φ
f − V̂

φ
h) for h in Case 2

can be expressed by
∑

(r,l)∈EA jih
A jiki

∑
φ∈Φh

(zrl
HCi + CH

i zrl)φ, and the voltage change for h in Case 3 is

−
∑

(r,l)∈EAkih
A jiki

∑
φ∈Φh

(zrl
HCi + CH

i zrl)φ.

From the above relations, the effect of the switching operation on the voltage magnitude drop

for every h ∈ BA ji ,ki
can be derived. This allows for the presentation of the following formulation

for the cost change f ji,ki incurred by the switching action at i ∈ R:
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f jiki = F(T ji) − F(T ki) =
∑
φ∈Φ f

{
(V̂′ki

− V̂′ji + ((ziki
H − zi ji

H)Ci + CH
i (ziki − zi ji)))

φ|B
φ
i | (5.10)

+
∑

(r,l)∈E jiA jiki

((zrl
HCi + CH

i zrl)φ(|B
′φ
r | − |B

φ
i |))−

∑
(r,l)∈EkiA jiki

((zrl
HCi + CH

i zrl)φ(|B
′φ
r | + |B

φ
i |))

}

where |B
′φ
r | is the number of buses in subtree Br that have phase φ prior to the switch, and |Bφi | is

the number of buses with phase φ in Br post switching. For the formulation of the decentralized

algorithm, every bus r in the DN is allowed to monitor the cardinality of its own subtree Br, the

minimal bus voltage V̂rmin of buses in Br and the impedances of the lines directly connected to

it. Additionally, every i ∈ R is allowed to monitor the voltage values of its current and potential

parents and the power flow in its directly connected lines. From Eq. 5.10, this arrangement allows

every i ∈ R to calculate the global cost change f jiki through iteratively accessing the local data of

buses in B ji,A ji ,ki
and Bki,A ji ,ki

.

For maintaining the topology constraint associated with the reconfiguration problem, the notion

of fundamental cycles is introduced for every reconfigurable bus i ∈ R. The fundamental cycle

Oi, ji,ki associated with the switching action from ji ∈ Pi to ki ∈ Pi is defined as the cycle formed

by the lines connecting i to ji and ki as well as the lines in E ji,A ji ,ki
and Eki,A ji ,ki

(i.e. Oi, ji,ki =

{E ji,A ji ,ki
∪Eki,A ji ,ki

∪(i, ji)∪(i, ki)}). To maintain the radial topology of the activated DN, the activated

DN must be connected. Moreover, either (i, ji) or (i, ki) must be deactivated. Since the initial

topology for the activated DN are radial and switching action does not change the number of

lines in the activated DN, the activated DN is connected for the switching scenario so long as

(i, ji) < Eki,A ji ,ki
and (i, ki) < E ji,A ji ,ki

.

In reference [83], a reconfiguration algorithm is introduced that allows every i ∈ R to switch

from ji to ki when the two following conditions are satisfied: 1) The switching leads to a reduction

in global cost. (i.e. f jiki > 0); And 2) The switching action does not incur any constraint violations.

The costs are calculated using data gathered by buses residing in B ji,A jiki
and Bki,A jiki

. Furthermore,

the voltage and topology constraints are maintained through calculating the changes to the minimal
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bus voltages and monitoring the statuses of fundamental cycles respectively. These switching

decisions are made at random exponentially distributed time intervals determined by the parameter

λ, which prevents two buses from switching at the same time. The algorithm is terminated when

no more switching can take place. The proposed reconfiguration algorithm is presented in Alg. 3.

Alg. 3: Proposed Decentralized Topology Reconfiguration Algorithm
Initialization:

• Every reconfigurable bus i ∈ R randomly selects a strategy revision time ti based on
the exponential distribution defined by the parameter λ.

Algorithm:

1. Each bus b ∈ B monitors |V̂bmin | and |Bφ
b | ∀ φ ∈ Φ f with iterative information propa-

gation from leaf to root.

2. At time ti, the reconfigurable bus i randomly selects a switching strategy ki from Pi.

3. Bus i transmits signal containing Ci, |Bi| and initial cost f jiki = 0 along E jiA jiki
and

EkiA jiki
. This signal also checks the fundamental cycle Oi, ji,ki for violations of radial

constraints.

4. When signal arrives at bus r residing in the paths E jiA jiki
or EkiA jiki

, this bus computes
the change of cost from strategy ki and adds it to f jiki . Change in power flow in lines
in E jiA jiki

and EkiA jiki
is also computed to check for power flow constraint violations.

5. When the cost signals converge at bus A jiki , the bus combines these to compute
the cost f jiki and sends this to node i. This bus also check for voltage constraint
violations for buses in Cases 1-3 with V̂rmin .

6. If any constraint is violated or f jiki ≤ 0, then i aborts the switch. Otherwise the
switching operation is carried out.

7. After the decision, bus i updates ti by randomly selecting another time interval.

8. If the termination condition is met (i.e. f jiki ≤ 0 ∀ ki ∈ Pi), then bus i terminates the
strategy revision process. Otherwise, return to the first step.
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5.3 Theoretical Performance Guarantees

To analyze the convergence characteristics of Alg. 3, a game-theoretic formulation G(N ,S,V)

of the algorithm is first introduced. This formulation starts by defining the potential of this game

F as the objective function F of the reconfiguration problem. Then, the set of rational players

N is defined as the set of buses capable of performing reconfiguration (i.e. N = R). The set of

strategies S i ∈ S available to the player i ∈ N is defined as the set of parents Pi for reconfigurable

bus i. The cost function Vi ∈ V for player i ∈ N is defined as the change in F induced by the

reconfiguration at bus i. Furthermore, the strategy currently selected by player i is denoted as

si ∈ S i and the collection of strategies selected by all players other than i is denoted as s−i ∈ S −i.

From the decision-making process presented in Alg. 3, the following relation between player cost

Vi and the potential F is satisfied for all i ∈ N , any two x, y ∈ S i and any s−i ∈ S −i:

Vi(x, s−i) − Vi(y, s−i) = F (x, s−i) − F (y, s−i) (5.11)

Since the proposed game G(N ,S,V) satisfies Eq. 5.11 and has a finite set of players N , it is

classified as an exact potential game according to reference [119]. Next, a study on the trajectory

of the game potential F due to the iterative switching process detailed in Alg. 3 is presented. In the

proposed algorithm, each i ∈ R only switches from ji to ki when the switching action reduces the

objective function (i.e. f jiki = F(T ji) − F(T ki) > 0). Therefore, every strategy revision performed

by each player i ∈ R reduces the potential F of the proposed game. If the sequence of strategy

revisions that results in the reduction of the system potential is defined as the improvement path,

then from reference [119] every improvement path ζ for the exact potential game G is finite as

bothN and S are discrete and finite. Furthermore, by the end of all improvement paths no player i

will be able to reduce Vi further by switching. As the pure-strategy Nash Equilibrium condition is

defined as the state where no further improvement to the cost can be attained by any player, every

ζ converges to a pure strategy Nash Equilibrium in finite time. Hence, Alg. 3 always converges to

a local optimum of the reconfiguration problem PTR−rec in finite time.
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Furthermore, in this proposal the condition of discrete concavity presented in reference [120] is

utilized to derive conditions in the DN that guarantee optimality for the proposed algorithm. First,

the statuses for all reconfigurable buses i ∈ R are represented by the status vectors x ∈ R|R|. If bus

i ∈ R is connected to its original parent, then its corresponding element xi in the status set x is 1,

otherwise xi is 0. Hence, each status vector corresponds to an unique DN topology configuration.

The set of status vectors is denoted as X. If the first norm is denoted as ||.||, then for any x, y ∈ X,

||x − y|| = 1 if the topologies represented by x and y differ by the status of a single reconfigurable

bus. Next, the utility value corresponding to any status vector x ∈ X is defined as U(x) = −F(T ),

where T is the DN topology corresponding to x. Based on these definitions, the definition of the

discrete concavity condition for the reconfiguration problem can be expressed as the following:

max U(z)
x,y,z∈X:||x−z||=||y−z||=1

=


> min(U(x),U(y)), if U(x) , U(y)

≥ U(x) = U(y), otherwise
(5.12)

From this expression, it can be concluded that the reconfiguration problem is discretely concave

if for any x, y, z ∈ X that satisfy ||x− y|| = 2, ||x− z|| = 1 and ||y− z|| = 1, the smaller value between

U(x) and U(y) is lower than the highest U(z). Since local optima for discretely concave problems

are globally optimal according to reference [120], the proposed algorithm always lead to globally

optimum solutions for DN reconfiguration problems that satisfy the discrete concavity condition.

5.4 Simulation Results

To evaluate the performance of the proposed algorithm, comparative analyses between it and the

FNSGA introduced in [55] are made for both the switching and the branch exchange scenarios.

For the switching scenario, both reconfiguration algorithms are tested on the following five radial

DNs: 1) The 12.66kV IEEE 33-bus radial DN introduced in reference [4], which has five remote

controlled switches and is denoted by the name 33-5; 2) The 12.66kV IEEE 69-bus radial DN in-

troduced in reference [121], which has five remote controlled switches and is denoted by the name
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69-5; 3) A modified 69-bus DN created by randomly adding two remotely controllable switches

to the 69-5. This new DN is denoted by the name 69-7; 4) Another modified 69-bus DN created

by randomly adding three remotely controllable switches to 69-7. This new DN is denoted by the

name 69-10; 5) A 13.8kV DN with 136 buses and 21 remotely controllable switches that is based

in Brazil [122], which is denoted by the name 136-21. Among these five test DNs, the 33-5, 69-5

and 69-7 test DNs are discretely concave for the switching scenario, whereas the 69-10 and 136-21

test DNs are not. For the branch exchange scenario, both algorithms are simulated on the 33-5

and 69-5 test DNs as well as two test DNs created by modifying 33-5. These two test DNs are

designed as 33-3 and 33-7 and they are created by randomly removing and adding two tie switches

to the 33-5 test DN respectively. To measure the convergence rate of both algorithms, the itera-

tion number It is defined as the number of times the state of DN is evaluated before convergence

is achieved. Furthermore, both algorithms are simulated over 200 randomly generated initial DN

topology configurations to reduce the impact of initial topology configuration on the quality of the

solution. For evaluating the effectiveness of both algorithms, the term of improvement factor I is

introduced. This term is defined as follows:

Ik =
F(T ) − F(Tk)

F(T ) − F(Topt)
(5.13)

where T refers to the initial DN topology, Tk refers to the DN topology at iteration k resulting

from the algorithm under evaluation, and Topt refers to the topology corresponding to the optimal

outcome for PTR−rec. The figures displayed in this chapter adopt the confidence interval of 95%.

The performances for both the proposed reconfiguration algorithm and the Fast Non-denominated

Sorted Genetic Algorithm (FNSGA) under the switching scenario are presented in Fig. 5.2. The

FNSGA introduced in reference [55] is a genetic algorithm that solves the reconfiguration problem

by calculating the load flow values for a limited number of candidate topologies. From reference

[55], the FNSGA can solve non-linear optimization problems in short computation time. In Fig.

5.2a, the proposed algorithm can be observed to consistently obtain the globally optimal configu-

ration for the discretely concave 33-5, 69-5 and 69-7 test DNs, and nearly optimal configuration
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Figure 5.2: Simulations for the Switching Case.

for the 69-10 and 136-21 test DNs. This demonstrates the improvement of the proposed algo-

rithm over FNSGA, which performance is heavily affected by the initial network configuration for

all test cases other than the 69-5 test DN. The average iteration number It for both the proposed

algorithm and the FNSGA algorithm are presented in Fig. 5.2b, which showcases the rapid conver-

gence property for the proposed algorithm. Finally, the improvement factor evolution for both the

proposed algorithm and FNSGA for the 33-5 test DN is shown in Fig. 5.2c. Unlike FNSGA, the

proposed algorithm is capable of rapidly converging to the optimal solution without any oscillatory

behavior as indicated by this figure.

Next, the performance for the proposed algorithm and FNSGA under the branch exchange

scenario is displayed in Fig. 5.3. As all buses in the DN have the ability to perform switching

actions under the branch exchange scenario, the condition of discrete concavity is less likely to
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Figure 5.3: Simulations for the Branch Exchange Case.

hold for this particular scenario. As evidenced from Fig. 5.3a, the solutions obtained from the

proposed algorithm deviates slightly from the optimal solution for all test DNs studied while the

solutions obtained from FNSGA diverge significantly from the optimal solution. Moreover, the

performances for both the proposed algorithm and FNSGA deteriorates as the size of the DN and

the number of switchable lines in the DN increase. In Fig. 5.3b, it can be further observed that the

proposed algorithm is associated with a lower It than the FNSGA for all test DNs examined and

this result is similar to the switching scenario results displayed in Fig. 5.2b. As illustrated in Fig.

5.3c, the proposed algorithm exhibits swift convergence to near-optimal solution while FNSGA is

associated with heavy oscillatory behaviour.
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5.5 Chapter Summary

This chapter introduces a decentralized algorithm that allows intelligent buses in the DN to improve

the DN voltage profile through the reconfiguration of topologies. As the proposed algorithm is

both decentralized and converges in real time, it can significantly improves the DN’s resilience

against voltage fluctuations. The algorithm is based on a iterative information exchange process

that allows for effective coordination between cyber-enabled smart buses in the DN. This exchange

process is designed by leveraging theoretical constructs associated with potential games as well as

discrete concavity along with the attributes of DN topologies. The performance of the proposed

reconfiguration algorithm is demonstrated via simulations conducted on the practical IEEE 33-bus,

69-bus and the Brazilian 136-bus DNs.
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Chapter 6

Optimal Reconfiguration with Convex

Relaxation

While the reconfiguration method introduced in the previous section can lead to locally optimal

results and even global optimality under certain practical conditions, it does not account for the

complex non-linear interdependencies inherent in the power flow relation and provides no guaran-

tees of global optimality. In this chapter, a formulation of the reconfiguration problem based on

the NPF model elaborated in Chapter 2 is first presented. Then, a decentralized reconfiguration

method for voltage improvement is proposed that resolves the electrical interdependencies with a

convex relaxation technique based on ADMM. Next, the theoretical foundations for the proposed

method are introduced and proof for the globally optimal convergence of the proposed method is

presented. The performance guarantees for the proposed method is first established in reference

[84]. Also, the reconfiguration algorithm presented in this section is developed for the switching

scenario. The equations, tables and figures presented in this section are included in the published

work in reference [84]©2021 IEEE.
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6.1 Problem Formulation

To account for the electrical interdependencies in the DN, the reconfiguration problem PTR−rec

presented in the previous section is first formulated using the NPF model detailed in Section 2.3.

The objective function F of the reformulated problem PTR−re f serves to improve the voltage profile

of the DN. Then, Eqs. 6.1-6.7 of the reformulated problem represent the multiphase NPF model

introduced in Sec. 2.3 and maintain the electrical attributes as well as safe operating margins of

the DN. Next, Eqs.6.8-6.14 address the impact of topology reconfiguration on the attributes of the

DN. The reformulated reconfiguration problem PTR−re f is presented as follows:

PTR−re f : min
V̂,β,l,P,Q

F(V̂, β, l, P,Q)

s.t. ∀i ∈ B :

vi ≤ V̂φ
i ≤ vi φ ∈ Φi (6.1)

0 ≤ lφi j ≤ l
2

∀ j ∈ Pi,∀φ ∈ Φi j (6.2)

V̂
Φi j

j − V̂i j = 2(ri jPi j + xi jQi j) + zi jli j ∀ j ∈ Pi (6.3)

V̂i j � li j = (Pi j)�2 + (Qi j)�2 ∀ j ∈ Pi (6.4)

V̂i = V̂ip ∀(i, p) ∈ E f (6.5)

Pi =
∑
j∈Pi

(Pi j − ri jli j) −
∑
m∈Ki

Pmi (6.6)

Qi =
∑
j∈Pi

(Qi j − xi jli j) −
∑
m∈Ki

Qi j (6.7)

∀r ∈ R :

0 ≤ βrg ≤ 1 ∀(r, g) ∈ Er
s (6.8)

βrg(βrg − 1) ≥ 0 ∀(r, g) ∈ Er
s (6.9)
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∑
(u,v)∈ψ

βuv ≤ |ψ| − 1 ∀ψ ∈ Ψ (6.10)

∑
(u,v)∈Es

βuv = |B| − 1 − |E f | (6.11)

(βrg − 1)v2
r ≤ V̂

φ
rg − V̂

φ
r ≤ (1 − βrg)v2

r ∀(r, g) ∈ Er
s,∀φ ∈ Φrg (6.12)

− βrgv2
g ≤ V̂

φ
g − V̂

φ
rg ≤ βrgv2

g ∀(r, g) ∈ Er
s,∀φ ∈ Φrg (6.13)

0 ≤ lφrg ≤ βrgl
2

∀(r, g) ∈ Er
s∀φ ∈ Φrg (6.14)

Eq. 6.1 serves to maintain the voltage magnitude constraint at every bus in the DN. Moreover,

Eq. 6.2 maintains the line current constraints at every line in the DN. As such, Eqs. 6.1 and 6.2

serve to maintain the electrical integrity of the DN. The linear constraint in Eq. 6.3 denotes the

voltage drop along every (i, j) ∈ E. The non-linear and non-convex interdependencies between

the current, voltage and power pertaining to every line in the DN is represented by Eq. 6.4. The

equality constraint in Eq. 6.5 enforces the consistency of bus voltage magnitudes associated with

fixed lines. Eqs. 6.6 and 6.7 are the real and reactive power balance relations at every bus i.

The continuous constraints in Eqs. 6.8 and 6.9 force the switching variable βr,g associated with

every switchable line (r, g) ∈ Er
s to take values in the intersection between the intervals [0, 1]

and (−∞, 0] ∪ [0,∞). As such, the value of every β is restricted to be either 0 or 1. Since Eq.

6.8 is a linear constraint, it is convex in terms of βr,g. However, the quadratic constraint 6.9 is

non-convex in terms of βr,g. Eq. 6.10 prevents activated lines from forming cycles by forcing at

least one switchable line in every cycle ψ in the DN to be deactivated. Eq. 6.11 constraints the

number of activated lines in the DN to |B| − 1. As such, Eqs. 6.10 and 6.11 maintain the radial

structure of the activated DN. To provide an illustrative example of how the radial topology is

maintained by these two constraints, the DN presented in Fig. 5.1 is considered. In this example,

the total number of buses |B| = 9, the number of switchable line |Es| = 2 and the number of

fixed line |E f | = 7. From Eq. 6.11, the maximum number of active switchable line in this DN is
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|B|− |E f |−1 = 1. When Eq. 6.11 is violated during the operation of the DN, either both switchable

lines are active (which violates the acyclic condition) or both switchable lines are inactive (which

violates the connected condition). From Eq. 6.10, the number of active lines residing in the only

cycle ψ = {(i, ji), (i, ki), ( ji, A ji,ki), (ki, A ji,ki)} in the DN shall be no greater than |ψ| − 1 = 3. Since

at least one switchable line in every cycle must be deactivated, this constraint serves to enforce the

acyclic condition. Eqs. 6.12 and 6.13 then connect the line status variable βrg associated with every

switchable line (r, g) ∈ Es to the line voltage magnitude variable V̂rg by setting V̂rg to V̂r in case

βrg = 1 and to V̂g in case βrg = 0. Next, Eq. 6.14 sets the current across all deactivated switchable

lines in the DN to 0. From the formulation of PTR−re f , the reformulated reconfiguration problem is

a QCQP Problem that is associated with two sources of non-convexities: 1) The constraint in Eq.

6.4 which is related to voltage, current and power magnitudes; and 2) The constraint in Eq. 6.9

which is related to the status variables of switchable lines.

6.2 Formulation of Reconfiguration Algorithm

To resolve the non-convexities present in the reformulated reconfiguration problem, a strategic

decomposition technique is first applied. This technique serves to decompose PTR−re f into a set

of QCQP sub-problems where each sub-problem only contains variables associated with a specific

bus. Then, every non-convex sub-problem is further decomposed into QCQP-1 problems (i.e.

QCQP problems where each problem only has a single non-convex quadratic constraint) using the

principle of additive separability. Next, the exact convex relaxations for these non-convex QCQP-

1 problems are derived using a convex relaxation technique based on Schur’s complement and S-

procedure. These sub-problems are then solved to obtain the solution to PTR−re f using theoretical

constructs from the Alternating Direction Method of Multipliers (ADMM). While references [123]

and [124] have applied the ADMM decomposition technique on DN optimization problems, this

proposal differs from them in two major aspects: 1) This proposal is the first work to apply ADMM

decomposition techniques to the mixed-integer topology reconfiguration problems; and 2) This
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proposal introduced a novel technique for exact convex relaxation of QCQP problems with multiple

non-convex constraints (QCQP-n).

To decompose PTR−re f for each bus i ∈ B in the DN, couplings amongst state variables associ-

ated with different buses need to be removed. An example of the couplings can be found in Eqs. 6.3

and 6.6 where the line current variable li j is used in computations for both V̂ j and Pi. Therefore,

li j must be present in the computations at both i and j. To eliminate the couplings, the set of state

variables associated with every bus is first expanded through the inclusion of perspective variables.

With this expansion, the set of state variables maintained by every i ∈ B can be divided into two

subsets: 1) The set of native variables xi which contains all state variables at i itself and those at

the lines connecting i to its parent buses in Pi; and 2) The set of perspective variables yi which

includes local estimations of the non-local native variables in the constraints bus i is subjected to.

The accuracy of such estimation is represented by the consensus residual, which is defined as the

2-norm of the differences between the native and perspective variables (i.e. r = ||x − y||) . The

variable sets xi and yi associated with every i ∈ B are included in Eqs. 6.15 and 6.16 respectively:

xi ={V̂ x
i , V̂

x
i j, β

x
ig, lx

i j, Px
i j, Qx

i j, | j ∈ Pi, (i, g) ∈ Ei
s } (6.15)

yi ={V̂y
i,i, V̂

y
j,i, V̂y

i j,i, β
y
ig,i, l

y
i j,i, P

y
i j,i,Q

y
i j,i, P

y
mi,i,Q

y
mi,i (6.16)

| j ∈ Pi,m ∈ Di, (i, g) ∈ Es}

The variables in xi and yi have the superscripts x and y respectively. Moreover, the subscript

for every variable in yi is formed by two components where the first component represents the bus

or line whose variable is being estimated and the second component denotes the bus performing

the estimation. For instance, the perspective variable V̂y
j,i is the estimation of the voltage variable

at the bus j by the bus i. The sets of local and perspective variables for the reconfigurable bus i ∈ R

are illustrated in Fig. 6.1 for the DN topology presented in Fig. 5.1.

For every i ∈ B, all sets of local variables satisfying the non-convex constraints in PTR−re f
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Figure 6.1: Illustration of Local and Perspective Variables©2021 IEEE.

that is associated with i are first denoted as Xi where xi take values from Xi (i.e. xi ∈ Xi). Then,

all sets of perspective variables satisfying all convex constraints associated with i are denoted as

Yi, where yi take values from Yi (i.e. yi ∈ Yi). Next, PTR−re f is reformulated into an equivalent

optimization problem PTR−re f−e defined on all Xi and Yi through the establishment of consensus

constraints between local variables and their corresponding estimations in perspective variables:

PTR−re f−e : min
xi∈Xi,yi∈Yi∀i∈B

∑
i∈B

Fi(xi)

s.t. V̂y
i,i = V̂ x

i , V̂y
j,i = V̂ x

j , V̂y
i j,i = V̂ x

i j, Py
i j,i = Px

i j, Qy
i j,i = Qx

i j,

Py
i j, j = Px

i j, Qy
i j, j = Qx

i j, ly
i j,i = lx

i j, ∀ i ∈ B, ∀ j ∈ Pi

βy
rg,r = βx

rg, ∀ (r, g) ∈ Es

The technique of ADMM is then utilized to decompose the topological reconfiguration problem

PTR−re f−e into sub-problems solvable by each bus. With the ADMM technique, every bus i in

the DN solves its associated sub-problem in a iterative manner with information gathered from a

limited number of buses in the DN and these buses are designated as the peer buses of i. First, the

augmented Lagrangian LTR−re f−e
ρ (x, y, v) for PTR−re f−e is constructed as follows:
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LTR−re f−e
ρ (x, y, v) =

∑
i∈B

Fi(xi) + vT
i (Ax − By) +

ρ

2
||Ax − By||22 (6.17)

where the consensus constraints in PTR−re f−e are represented by the notion of Ax − By = 0. More-

over, ρ > 0 is a parameter used for penalizing consensus constraint violations and v is a vector

formed by the dual variables associated with the consensus constraints. The ADMM-based itera-

tive update process of the variables in PTR−re f−e can then be expressed as:

xk+1 = argmin
x∈X

LTR−re f−e
ρ (x, yk, vk) (6.18)

yk+1 = argmin
y∈Y

LTR−re f−e
ρ (xk+1, y, vk) (6.19)

vk+1 = vk + ρ(Axk+1 − Byk+1) (6.20)

where variables with the superscripts k and k + 1 on the right side of Eqs. 6.18-6.20 represent

constants computed in the previous iteration and the current iteration respectively. The problems

in 6.18-6.20 are solved in a iterative manner until the residual of consensus (i.e. ||Ax − By||22) falls

below a pre-determined threshold value ε ≈ 0. As such, Ax− By reduces to 0 and LTR−re f−e
ρ (x, y, v)

reduces to PTR−re f−e when the iterative update process is concluded. To enable distributed compu-

tation of the reconfiguration problem, the problems in Eqs. 6.18-6.20 are then decomposed into

sub-problems solvable by each bus i ∈ B through the reformulation of augmented Lagrangians.

Terms in LTR−re f−e
ρ (x, yk, vk) with variables included in xi are grouped together to form the x-layer

update problem for bus i. Similarly, terms in LTR−re f−e
ρ (xk+1, y, vk) with variables included in yi are

grouped together to form the y-layer update problem for bus i. Moreover, the dual variables vi as-

sociated with bus i are updated via a gradient update technique. The three update layers associated

with bus i are presented in the following:
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xk+1
i = argmin

xi∈Xi

LTR−re f−e
ρ (x, yk, vk) (6.21)

yk+1
i = argmin

yi∈Yi

LTR−re f−e
ρ (xk+1, y, vk) (6.22)

vk+1
i = vk

i + ρ(Axk+1 − Byk+1) (6.23)

For the iterative update process associated with the distributed problems presented in Eqs. 6.21-

6.23, at every iteration k ≥ 1 each bus i first exchanges its associated dual variables vk
i computed

in the previous iteration (i.e. k − 1) with its peer buses in the DN. This procedure is then repeated

for xi after the x-layer update process in Eq. 6.21 and yi after the y-layer update process in Eq.

6.22. The update process continues until the consensus residual ||Ax − By||22 drops below the pre-

determined threshold ε. The y-layer update is convex since the convex augmented Lagrangian

L
TR−re f−e
ρ (x, yk, vk) is minimized over the convex set of Yi. However, the x-layer update is non-

convex as Xi is a non-convex set.

To resolve the non-convexities present in the x-layer update process, a convex relaxation tech-

nique for the non-convex QCQP-n problem Pi
x associated with every i ∈ B is derived where n > 1

represents the number of non-convex constraints. The variables in xi are further partitioned into

the local voltage variable V̂x
i , the switching variable at neighbouring switchable lines βx

ig and the

variables associated with neighbouring lines xi j = {V̂x
i j, l

x
i j, P

x
i j,Q

x
i j}. Applying this to Pi

x leads to:

Pi
x : min

xi
[V̂ xT

i (Qvi)V̂ x
i + uT

viV̂
x
i ] +

∑
(i,g)∈Ei

s

[βx
ig(Qig)βx

ig + uigβ
x
ig] +

∑
j∈Pi

[xT
i j(Qi j)xi j + uT

i jxi j]

s.t. (βx
ig)2 − βx

ig ≥ 0 ∀(i, g) ∈ Ei
s

xT
i jGi jxi j + wT

i jxi j ≥ 0 ∀ j ∈ Pi
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where

Qvi =
ρI|Φi |

2
(|Di| + 1) uvi = vV

i,i − ρVy
i,i +

∑
m∈Di

(vV
i,m − ρVy

i,m)

Qig =
ρ|R|

2
uig = vβig,i − ρβ

y
ig,i +

∑
u∈(R\i)

(vβig,u − ρβ
y
ig,u)

Qi j =
1
2



ρI|Φi j | 0 0 0

0 ρI|Φi j | 0 0

0 0 2ρI|Φi j | 0

0 0 0 2ρI|Φi j |


ui j =



vV
i j,i − ρV̂y

i j,i

(I1,|Φi j |Ri j)T + vl
i j,i − ρly

i j,i

(vP
i j, j + vP

i j,i) − ρ(Py
i j, j + Py

i j,i)

(vQ
i j, j + vQ

i j,i) − ρ(Qy
i j, j + Qy

i j,i)


vV

i,i and vV
i,m denote the dual variables associated with the voltage consensus constraints. More-

over, I|Φ| is the |Φ| by |Φ| dimension identity matrix. Leveraging the relations established in Eqs.

6.5, 6.12 and 6.13, the quadratic constraints associated with different lines (i.e. Eq. 6.4) are decou-

pled in this formulation of Pi
x. As such, the QCQP-n Pi

x is an additively separable problem since it

can be decomposed into the following sub-problems with no shared variables or constraints [125]:

Pvi
x : min

V x
i

V̂ xT
i (Qvi)V̂ x

i + uT
viV̂

x
i

Pig
x : min

βx
ig

βx
ig(Qig)βx

ig + uigβ
x
ig

s.t. − (βx
ig)2 + βx

ig ≤ 0

Pi j
x : min

xi j
xT

i j(Qi j)xi j + uT
i jxi j

s.t. − xT
i jGi jxi j − wT

i jxi j ≤ 0

As the sub-problems Pvi
x , Pig

x and Pi j
x have no shared variables, the optimal solution for Pi

x

can be expressed as the combination of the optimal solutions of the sub-problems. While Pvi
x is a

convex problem whose optimal solution can be readily obtained with any convex solver, both Pig
x
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and Pi j
x are non-convex QCQP-1 problems. Next, the exact convex relaxations are presented for

these non-convex sub-problems. The expressions for the respective optimal solutions βx∗
ig and x∗i j

for these two QCQP-1 problems are first derived. These solutions are obtained in terms of their

respective optimized Lagrangian multipliers λ∗ig and λ∗i j by setting the gradients of their associated

Lagrangians to 0 (i.e. the first-order optimality condition):

βig
x∗ = −

1
2

(Qig − λ
∗
ig)−1(uig + λ∗ig) (6.24)

x∗i j = −
1
2

(Qi j − λ
∗
i jGi j)−1(ui j − λ

∗
i jwi j) (6.25)

Then, the concave dual problem Dig
x of Pig

x and the dual problem Di j
x of Pi j

x are converted into

their respective equivalent Semi-Definite Programming (SDP) problemsSig
x andSi j

x with the Shur’s

complement method presented in reference [126].

Sig
x : max

λig,γig
γig

s.t.λig ≥ 0 Qig − λig
1
2 (uig + λig)

1
2 (uig + λig) −γig

 � 0

Si j
x : max

λi j,γi j
γi j

s.t.λi j ≥ 0 Qi j − λi jGi j
1
2 (ui j − λi jwi j)

1
2 (ui j − λi jwi j) −γi j

 � 0

As both Sig
x and Si j

x are concave problems, their respective optimal solutions λ∗ig and λ∗i j can

be readily obtained. Next, these solutions are substituted into Eqs. 6.24 and 6.25 to compute

βig
x∗ and x∗i j. To establish the optimality of these values, the theoretical constructs of S-procedure
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established in reference [127] are leveraged. For the strictly feasible QCQP-1 problem P defined

as follows,

P : min
x

xT A0x + bT
0 x + c0

s.t. xT A1x + bT
1 x + c1 <= 0

if there exists a λ ≥ 0 and a lower bound γ for the cost function such that the parameters of P

satisfy the following:

 A0
1
2b0

1
2bT

0 c0 − γ

 + λ

 A1
1
2b1

1
2bT

1 c1

 � 0

then the optimal values associated with P and its dual problem are identical (i.e. zero duality

gap) regardless of the convexity of the constraint or the cost function of P. Since both x-layer

and y-layer updates can now be computed with convex optimization methods, the proposed recon-

figuration method can be expressed as a iterative refinement process which is presented in Alg.

4.

6.3 Theoretical Performance Guarantees

To derive the convergence guarantees of Alg. 4, it is first noted that distributed ADMM based

iterative optimization process always converges to the globally optimal solution when the sub-

problems are all convex [128]. In Alg. 4, the formulation of the non-convex problem PTR−re f is de-

composed into QCQP sub-problems where every sub-problem is either convex or contains a single

non-convex constraint. As such, to prove the convergence and optimality of Alg. 4 the following

two conditions must be established: 1) Any QCQP-1 problem with a single non-convex constraint

has zero duality gap and therefore can be resolved exactly with convex relaxation method based

on Schur’s complement; and 2) The convex relaxation technique adopted for solving non-convex
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Alg. 4: Convex Reconfiguration for Voltage Improvement
Initialization:

• For every i ∈ B, set xi ← x0
i , yi ← y0

i , vi ← 0 and the residual εk+1
i ← ∞. Gi is the set of

all neighbours of i.

Algorithm:

1. At iteration k, every i ∈ B first performs its x update:

For i ∈ B, xk+1
i ← {V̂ x,k+1

i , βk+1
ig , xk+1

i j , } where:

V̂k+1
i : Solved from Pvi

x directly.

xx,k+1
i j : Solved from substituting λi j in Eq. 6.24, where λi j is obtained by solving Si j

x ;

βk+1
ig : Solved from substituting λig in Eq. 6.25, where λig is obtained by solving Sig

x ;

2. Every i ∈ B exchanges its updated x variables with j ∈ Gi.

3. Every i ∈ B performs its y update based on Eq. 6.22.

4. Every i ∈ B exchanges its updated y variables with j ∈ Gi.

5. Consensus dual variable v is updated for i ∈ B using Eq. 6.23.

6. These are broadcast to j ∈ Gi and the residual for iteration k is updated: εk+1
i ← ||Axk+1

i −

Byk+1
i ||

7. If εk+1
i ≤ ε, then the iterative update process is terminated. Otherwise, k ← k + 1 and

return to the first step.
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QCQP-1 problems preserves the convergence properties of the standard iterative computations en-

tailed in ADMM. In this section, the specific conditions under which the convergence and the

optimality guarantees hold true are established.

To prove the duality gap of any strictly feasible non-convex QCQP-1 problem P is zero, it is

first noted that the concave dual problem of P can be transformed into an equivalent SDP problem

S by leveraging a technique based on Schur’s complement. According to the technique presented

in reference [129], the general formulation for the SDP equivalent S of the concave dual of the

QCQP-1 problem P can be expressed as:

S : max
λ,γ

γ

s.t. λ ≥ 0 A0
1
2b0

1
2bT

0 c0 − γ

 + λ

 A1
1
2b1

1
2bT

1 c1

 � 0

If the maximum objective function γ∗ of the SDP problem S is a lower bound for the cost

function xT A0x + bT
0 x + c0 of the non-convex problem P and there exists a x∗ in the feasibility

region of P such that x∗T A0x∗ + bT
0 x∗ + c0 = γ∗, then the optimal cost for P can be obtained by

solving S. Next, it is noted from theoretical constructs pertaining to the S-procedure presented in

reference [127] that one and only one of the following statements can be true:

1. ∃λ ≥ 0,

 A0
1
2b0

1
2bT

0 c0 − γ

 + λ

 A1
1
2b1

1
2bT

1 c1

 � 0.

2. ∃x, xT A1x + bT
1 x + c1 ≤ 0, xT A0x + bT

0 x + c0 − γ < 0.

Since the feasibility sets of S and P are defined by statement 1 and xT A1x + bT
1 x + c1 ≤ 0

respectively, it can be concluded that all γ residing in the feasibility set of S can serve as lower

bound to the cost function of P. Then, the existence of x∗ is proved through contradiction. Assume
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there exists no such x∗ satisfying x∗T A0x∗ + bT
0 x∗ + c0 = γ∗. Leveraging equivalence relations

presented in reference [127], S can be rewritten as the quadratic problem S1:

S1 : max
λ,γ

γ

∃ λ ≥ 0

xT A0x + bT
0 x + c0 + λ(xT A1x + bT

1 x + c1) ≥ γ, ∀x

From the formulations of S and P, λ ≥ 0 and xT A1x + bT
1 x + c1 ≤ 0 is valid for all x. As such,

the optimal γ∗ for S and S1 can be obtained from γ∗ = min
x

xT A0x + bT
0 x + c0 and this proves the

existence of x∗. Therefore, the optimal solution of P can be obtained by solving S.

To derive the convergence characteristics of Alg. 4, the notations are simplified by overloading

the variables and terms in the DN. For every vector m, the expression m ≥ 0 represents that every

element of m is a non-negative real number and m < 0 if every element in m is a negative real

number. In Alg. 4, the primal variable x for the x-layer update process is obtained from the

corresponding dual variable λ (i.e. (6.24) and (6.25)) and denote the transformation process from

the dual to the primal variable is denoted as x = z(λ). Next, the values of the objective function at

iteration k (i.e. F( f (λk))) and the optimal value of the objective function (i.e. in f {F( f (λ))|A f (λ) −

By = 0}) are denoted by pk and p∗ respectively. The consensus residual at iteration k is represented

by rk (i.e. rk = A f (λk) − Byk). Hence, the reconfiguration problem PTR−re f−e is reformulated as the

following:

PRS : min
λ≥0,y∈Y

F(z(λ))

s.t. Az(λ) − By = 0

The augmented Lagrangian LRS
ρ (z(λ), y, v) associated with PRS and the ADMM-based iterative
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update process for solving PRS can be expressed as:

LRS
ρ (z(λ), y, v) = F(z(λ)) + vT (Az(λ) − By) +

ρ

2
||Az(λ) − By||22

and

λk+1 = argmin
λ≥0

LRS
ρ (z(λ), yk, vk)

yk+1 = argmin
y∈Y

LRS
ρ (z(λk+1), y, vk)

vk+1 = vk + ρ(Az(λk+1) − Byk+1)

respectively. From reference [126], the iterative update process utilized in Alg. 4 is guaranteed to

converge when the following conditions are satisfied:

1. Residual Convergence: The consensus residual rk tends to 0 when k tends to∞.

2. Objective Convergence: The objective function F(z(λ)) tends to p∗ as k tends to∞.

3. Dual Variable Convergence: vk tends to v∗ as k tends to∞ where v∗ is a dual optimal point.

For brevity, the Lagrangian LRS
ρ (z(λ), yk, vk) is denoted as Lk

ρ(z(λ)) for the rest of this study.

Unless otherwise specified, the convexity and differentiability of the various functions discussed

in this study are referred to with respect to λ. To prove the convergence of Alg. 4, the first thing is

to demonstrate that the three convergence conditions are satisfied when the following assumptions

hold:

A1 : Lk
ρ(z(λ)) is convex and non-decreasing with regard to z(λ).

A2 : F(z(λ)) is differentiable with regard to z(λ).

A3 : z(λ) is convex, differentiable and ∂ f
∂λ
, 0.
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Then, practical conditions in the topological reconfiguration problem where the assumptions

in A1-A3 are valid are presented.

From reference [129], the composition function Lk
ρ(z(λ)) is convex providing it satisfies two

conditions:

B1 : z(λ) is a convex function.

B2 : Lk
ρ(z(λ)) is convex with respect to z(λ).

When the conditions A1-A3 are satisfied, conditions B1-B2 are satisfied and the function

Lk
ρ(z(λ)) is differentiable. Since Lk

ρ(z(λ)) is: 1) Closed; 2) Proper; 3) Convex; and 4) Differen-

tiable, the optimal value of λk+1 can be obtained from the following:

0 =
∂

∂λ
Lk
ρ(z(λ)) = [

∂F(z(λ))
∂z(λ)

+ AT vk + ρAT (Az(λ) − Byk)]
∂z(λ)
∂λ

As ∂ f
∂λ
, 0 and vk+1 = vk + ρrk+1, the above expression can be reformulated as:

0 =
∂F(z(λ))
∂z(λ)

+ AT (vk+1 + ρB(yk+1 − yk))

Since λk+1 must satisfy the relation presented above, λk+1 minimizes the term F(z(λ)) + (vk+1 +

ρB(yk+1−yk)AT z(λ). Similarly, yk+1 minimizes the term −(vk+1)T By. Let (λ∗, y∗, v∗) be a saddle point

for LRS
0 (i.e. LRS

0 (λ∗, y∗, v∗) ≤ LRS
0 (λk+1, yk+1, v∗)) where LRS

0 denotes the standard Lagrangian for

P. Then the following inequalities must be valid:

F(z(λk+1)) + (vk+1 + ρB(yk+1 − yk))AT z(λk+1) ≤

F(z(λ∗)) + (vk+1 + ρB(yk+1 − yk))AT z(λ∗) (6.26)

g(yk+1) − (vk+1)T Byk+1 ≤ g(y∗) − (vk+1)T By∗ (6.27)

Summarizing Eqs. 6.26 and 6.27 as well as rearranging the terms leads to:
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pk+1 − p∗ ≤ −(vk+1)T rk+1 + ρ(B(yk+1 − yk))T (−rk+1 − B(yk+1 − y∗)) (6.28)

As Az(λ∗)− By∗ = 0 and pk+1 = F(z(λk+1)) + g(yk+1) respectively, the following equation holds:

p∗ ≤ pk+1 + v∗rk+1 (6.29)

Summarizing Eqs. 6.28 and 6.29 leads to:

2(vk+1 − v∗)T rk+1 + 2ρ(B(yk+1 − yk))T rk+1+

2ρ(B(yk+1 − yk))T (B(yk+1 − y∗)) ≤ 0 (6.30)

Define Hk = 1
ρ
||vk − v∗||22 + ρ||B(yk − y∗)||22. Then, substituting vk+1 = vk + ρrk+1, vk+1 − vk =

(vk+1 − v∗)− (vk − v∗) and yk+1 − yk = (yk+1 − yk)− (yk − y∗) into the expression of Hk −Hk+1 leads to:

Hk − Hk+1 ≥ ρ||rk+1 + B(yk+1 − yk)||22 (6.31)

As yk+1 minimizes −(vk+1)T By and vk+1 − vk is equal to ρrk+1, the following inequality is estab-

lished:

2ρ(rk+1)T (B(yk+1 − yk)) ≥ 0 (6.32)

Substituting Eq. 6.32 into Eq. 6.31 then yields the following result:

Hk+1 ≤ Hk − ρ||rk+1||22 − ρ||B(yk+1 − yk)|| (6.33)

As 0 ≤ Hk < ∞ for all k, iterating Eq. 6.33 produces the following inequality:

ρ

∞∑
k=0

(ρ||rk+1||22 + ρ||B(yk+1 − yk)||) ≤ H0 (6.34)
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This inequality proves both residual convergence and dual variable convergence as it is

valid if and only if rk and B(yk+1 − yk) tend to 0 when k → tends to∞. Moreover, substituting these

results into Eqs. 6.28 and 6.29 leads to pk+1 − p∗ = 0 as k tends to ∞ which indicates objective

convergence.

For the condition A1 to hold, the term Lk
ρ( f (λ)) must be convex and non-decreasing with

respect to f (λ). The convexity condition is satisfied if F( f (λ)) is convex with respect to f (λ).

Moreover, the non-decreasing condition is satisfied if the following is true:

∂F( f (λ))
∂ f (λ)

+ AT vk + ρAT (A f (λ) − Byk) ≥ 0, ∀ f (λ) (6.35)

This inequality is valid when ∂F( f (λ))
∂ f (λ) +AT vk > 0 and the value of ρ is sufficiently small. Since the

objective function F( f (λ)) of the reconfiguration problem PTR is linear with respect to f (λ), it is

differentiable with respect to f (λ) and therefore the condition A2 is satisfied. Then, the conditions

under which A3 is valid are derived. Denote Eqs. 6.24 and 6.25 as f a
ig(λig) and f b

i j(λi j) respectively.

f (λ) is f a
ig(λig) for every (i, g) ∈ Es and f b

i j(λi j) for every (i, j) ∈ E. From the formulation of f a
ig(λig),

it can be concluded that it is convex and differentiable providing Qig, uig and λig for every (i, g) ∈ Es

satisfy either one of the following two conditions:

C1 : Qig + uig > 0 and λig − Qig > 0.

C2 : Qig + uig < 0 and λig − Qig < 0.

Moreover, it can be concluded that f a
ig(λig) ≥ 0 is a necessary but not sufficient condition for

the convexity of f a
ig(λig). Furthermore, the derivative of f a

ig(λig) is nonzero providing Qig + uig , 0

is satisfied. Next, since the single constraint in Pi j
x represents the line power constraint in Eq. 2.19,

wi j is a zero vector and Gi j is composed of the following components:
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Gi j =



0 I|Φi j | 0 0

0 0 0 0

0 0 I|Φi j | 0

0 0 0 I|Φi j |


As such, f b

i j(λi j) expands to be:



− 1
ρ
I|Φi j | −

2λi j

ρ2 I|Φi j | −
2λ2

i j

ρ2(ρ−λi j)
I|Φi j | 0

0 − 1
ρ
I|Φi j | −

λi j

ρ(ρ−λi j)
I|Φi j | 0

0 0 − 1
2(ρ−λi j)

I|Φi j | 0

0 0 0 − 1
2(ρ−λi j)

I|Φi j |


ui j

According to reference [130], a vector-valued function is convex providing the second deriva-

tives of all elements of the function output vector are positive. As such, f b
i j(λi j) is both convex and

differentiable if either one of the following two conditions are satisfied for all (i, j) ∈ E:

D1 : λi j − ρ > 0 and ui j > 0.

D2 : λi j − ρ < 0 and ui j < 0.

6.4 Simulations on Practical DNs

To verify the convergence and optimality characteristics of Alg. 4, practical simulations are con-

ducted on realistic DN settings and present comparative studies with the state-of-the-art in topology

reconfiguration. Since the majority of bus loads residing in the 76 bus DN are either single-phase

or two-phase loads, this DN is a highly unbalanced system. The simulations presented here are

conducted on a 100 MW, 4.16 KV 76-bus DN which is based on the IEEE 123-bus feeder [131].

The radial topology of the 76-bus DN is illustrated in Fig. 6.2 where the fixed and the switchable

lines are expressed as solid black lines and dotted red lines respectively. From Fig. 6.2, the 76-

bus DN contains 5 switchable lines which are denoted as |E|s = {l73, l74, l75, l76, l77}. As such, the
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Figure 6.2: Topology of the 76-Bus DN©2021 IEEE.

Figure 6.3: Impact of Initial Topology©2021 IEEE.

activation/deactivation of the switchable lines in the 76-bus DN can lead to 25 = 32 different DN

topologies. For clarity and brevity of representation, the topology of the 76-bus DN is denoted

in terms of the statuses of its switchable lines. For instance, the DN topology where only l73, l75

and l76 are active is referred to as 10110. Moreover, the upper and lower bounds for bus voltage

magnitudes in this DN are set to 0.95 p.u. and 1.05 p.u. respectively. The parameters ρ and ε are

set to 103 and 1 × 10−3 respectively for the 76-bus DN.
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In Figs. 6.4a-6.4e and 6.3, the convergence characteristics of Alg. 4 are investigated for the

76-bus DN. In these figures, It is the iteration number defined for Alg. 4 which refers to the number

of times the system state variables are computed at every bus in the DN. Figs. 6.4a-6.4e present

the evolution of the y-layer switching variables (i.e. βy) associated with the switchable lines in the

DN when the Initial Topology (IT) 01011 is adopted. From these figures, it can be observed that

the switching variables alternate between 0 and 1 during the convergence of Alg. 4 and the radial

constraints presented in Eqs. 6.8 and 6.9 are always satisfied. Moreover, the topology produced

by Alg. 4 is 11010 which is the optimal topology for the reconfiguration problem ascertained via

the brute force approach. As such, it can be concluded that Alg. 4 examines a number of radial

topologies before converging to the optimal topology. Fig. 6.3 demonstrates the effects of different

ITs on the convergence of the proposed algorithm by tracking the evolution of consensus residual

(i.e. ||Ax − By||22). It can be observed from this figure that Alg. 4 converges for all ITs examined.

Moreover, Alg. 4 leads to the optimal topology 11010 for all ITs examined. From the theoretical

constructs established in the previous section, Alg. 4 is capable of convergence to the globally opti-

mal topology regardless of IT. Hence, the theoretical performance guarantees of Alg. 4 are verified

by the simulations. Furthermore, Fig. 6.3 demonstrates that Alg. 4 converges to an equilibrium

within 1000 iterations for randomly selected ITs. To infer the overall computing time for Alg. 4, it

is first noted that Alg. 4 requests every bus in the DN to sequentially perform the x-layer, y-layer

and z-layer updates as well as information exchanges with its peers. From Eqs. 6.18 -6.20, the x-

layer and y-layer updates solve two QCQP-1 problems while the v-layer update computes a simple

mathematical relation. According to reference [132], the update process associated with each layer

can be completed within a fraction of a millisecond with the computational capabilities available

in standard distributed intelligent devices. From reference [133], the information exchange process

can be completed within 100 milliseconds as typical delays in wireless communication processes

ranges from 8 ms to 30 ms. As such, each iteration will be completed within 0.3 seconds and the

computing time for Alg. 4 is within 1000 ∗ 0.3s/60s = 5min for the 76-bus DN.
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(a) Variable Evolution for Line 73. (b) Variable Evolution for Line 74.

(c) Variable Evolution for Line 75. (d) Variable Evolution for Line 76.

(e) Variable Evolution for Line 77.

Figure 6.4: Convergence Study for Alg. 4 under IT 01011.
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6.5 Comparative Analysis

Alg. 4 [67, 75] [70] [71] [76, 77] [54, 78] [5], [55]

Optimization
Method

QCQP MISOCP,
MILP

SOCP MISDP MISOCP,
MINLP

QCQP,
SOCP

Meta-
Heuristic

Constraint
Relaxations

Nearly
balanced
voltage,
zero
power
product

No
DER
in DN,
Bal-
anced
DN

One re-
dundant
switch,
Balanced
DN

Rank-1
con-
straint

Bus
voltage
1 p.u,
Bal-
anced
DN

No
Power
Loss,
Bal-
anced
DN

None

Optimality
Conditions

Strong
Duality
Gap

Strong
Duality
Gap

Strong
Duality
Gap

Strong
Duality
Gap

Strong
Duality
Gap

Strong
Duality
Gap

N/A

Computational
Complexity

O(|B|)) O(|B|3) O(|B|3) O(|B|3) O(|B|3) O(|B|3) O(|B|3)

Table 6.1: Comparison with Existing Work©2021 IEEE.

Next, a three-fold comparative study between Alg. 4 and the existing proposals is presented.

First, the differences and similarities between Alg. 4 and some state-of-the-art reconfiguration

methods discussed in Section. 1.2.3 are presented in Table 6.1. Then, the performance of Alg.

4 is compared with the FNSGA algorithm introduced in reference [55] through simulations con-

ducted on practical distribution systems. Finally, Alg. 4 is compared with the decentralized re-

configuration technique of Alg. 3 and give a brief summary on their respective advantages and

disadvantages.

Table 6.1 compares four aspects of reconfiguration algorithms: 1) The optimization technique

adopted (e.g. QCQP, Second Order Cone Programming (SOCP), etc.); 2) Assumptions on the

physical networks (e.g. balanced DN, etc.); 3) Convergence and optimality guarantees (e.g. strong

duality gap); and 4) Computational complexity. The methods presented in this table can be clas-

sified into two categories depending on the optimization techniques they employ. The proposals

belonging to the first category (e.g. Alg. 4, [54, 67, 75] and [78]) relax the constraints associated

with practical networks to transform the reconfiguration problem into tractable formulations (e.g.

86



MINLP, MISOCP) that can be exactly solved through convex relaxation. However, these relax-

ations can also lead to suboptimal or even infeasible solutions for practical DNs especially when

the solutions obtained are close to stable operating limits. For instance, the methods proposed in

references [67] and [75] may lead to violations of radial constraints for DNs with DERs. Also, the

solution produced by the reconfiguration technique introduced in [71] is feasible only if it satisfies

three non-convex rank-1 constraints that needs to be checked separately from the convex formu-

lation. Moreover, most proposals in DN reconfiguration (e.g. references [76] and [78]) are based

on the assumption that the network is a perfectly balanced system where bus voltage magnitudes

at with different phases are identical. The NPF model utilized in this chapter is based on the as-

sumptions that the voltage values are nearly balanced and the power product between phases are

negligible. As such, the NPF model presents a more accurate description of the load flow relation

in practical DNs than the NPF model adopted in the previous chapter. From the actual sensor

measurements presented in reference [68], the error produced by these assumptions is negligible

for practical DNs. Comparing with the convex state-of-the-art, this proposal is more tractable as

it always leads to feasible radial topology configurations and performs well for both balanced and

unbalanced networks. Reconfiguration methods in the second category (e.g. [5] and [55]) adopt

meta-heuristic techniques that preserves the DN constraints and produces near-optimal solutions.

However, their convergence to optimality is not guaranteed.

In Table. 6.1, the computational complexity of an algorithm refers to the asymptotic conver-

gence performance of the optimization technique adopted by that algorithm. Alg. 4 employs the

technique of ADMM to establish consensus amongst the solutions of the |B| sub-problems com-

puted by each bus in parallel. According to reference [134], ADMM based computation techniques

for DNs that include up to 2065 buses achieve linear convergence in terms of the total number of

sub-problems (i.e. number of buses). In Alg. 4, the complexity associated with solving each

quadratic sub-problem depends on the total number of optimization variables present in the sub-

problem. Since the number of variables is much smaller than the total number of buses in the DN,

the computational complexity associated with solving each sub-problem is constant (i.e. O(1)).

87



(a) 33 bus system. (b) 76 bus system.

Figure 6.5: Comparative study with FNSGA©2021 IEEE.

Therefore, Alg. 4 entails an overall computational complexity of O(|B|). This result is further

validated by simulation studies conducted on the 33-bus and 76 bus test systems. Alg. 4 converges

within 575 and 1000 iterations for the 33-bus and 76 bus test systems respectively. As such, the

computational complexity of Alg. 4 increases linearly with regard to the number of buses in the

DN. Proposals based on centralized convex optimization techniques such as those in references

[75] [70] and [78] are associated with the computation complexity of O(|B|3) since these methods

rely on convex solvers such as SeDuMi that are typically associated with cubic convergence in

terms of the total number of optimization variables in the problem [135]. What is more, Meta-

heuristic methods such as reference [55] approach the reconfiguration problem by iteratively gen-

erating sets of candidate solutions and choosing the best candidate from each set. From reference

[136], the complexity associated with computing each candidate solution is O(|B|3). Therefore, the

complexity associated with algorithms in this category is O(|B|3).

Next, Alg. 4 is applied to minimize the power loss along each line in the DN and compare

its performance with the FNSGA through simulations conducted on the 33 bus and 76 bus test

systems. Fig. 6.5a illustrates the power losses at each line in the 33-bus DN for the topologies

obtained from Alg. 4 and FNSGA. For this case, both algorithms converge to the optimal topology

of the reconfiguration problem. As such, both algorithms result in the same power losses for each

DN line. It can be observed from this figure that although the FNSGA algorithm does not guarantee

convergence to the global optima, it can result in the optimal solution in certain networks like the
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33-bus DN. Our algorithm has also resulted in the optimal topology configuration as expected.

Then, Fig. 6.5b illustrates the power loss at each line in the 76-bus system for both algorithms. For

this test system, Alg. 4 results in the optimal topology configuration which is associated with a

cumulative power loss of 0.0616 MW whereas FNSGA converges to a near-optimal solution with

a cumulative power loss of 0.0642 MW. This result serves to illustrate the efficacy of the optimal

reconfiguration algorithm as Alg. 4 results in the optimal solution whereas the FNSGA algorithm

results in a sub-optimal solution for the same DN setting.

Then, a brief comparison between Alg. 4 and the decentralized reconfiguration algorithm in

Alg. 3 is presented. Comparing with Alg. 3, Alg. 4 is associated with superior theoretical

performance bounds as Alg. 4 is guaranteed to converge to the global optima of the reconfiguration

problem whereas Alg. 3 only guarantees convergence to local optima. On the other hand, Alg. 3 is

typically associated with superior convergence rate. From Fig. 5.2b, Alg. 3 converges within 4 and

5 iterations for the IEEE 33-bus and 69-bus test systems respectively. This is significantly lower

than those associated with Alg. 3 for similarly sized systems (i.e. 575 iterations for the 33-bus test

system and 1000 iterations for the 76-bus test system).

6.6 Chapter Summary

This chapter proposes a topology reconfiguration algorithm that accounts for the non-linear in-

terdependencies in practical DNs so that the operation constraints of the DN can be maintained.

For tractable solution of the reconfiguration problem, the original problem is decomposed into

QCQP-1 subproblems that can be exactly resolved with convex relaxation techniques based on

additive separability, Schur’s complement and S-procedure. The convergence characteristics of

the proposed algorithm have been demonstrated via simulations conducted on both balanced and

unbalanced practical DNs as well as comparative studies with the state-of-the-art.
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Chapter 7

Conclusions and Future Work

7.1 Dissertation Summary

This dissertation has introduced several regulation algorithms for addressing key challenges to the

voltage profiles of DNs that are caused by the rapid proliferation of DERs. The proven models

elaborated in Chapter 2 allow for tractable formulations of regulation algorithms while capturing

the interdependencies in multiphase radial DNs. Utilizing the AMI and SCADA technologies

prevalent in modern smart DNs as well as the cyber-enabled smart devices detailed in Chapter

1, these algorithms enhance the voltage profile of DN through voltage monitoring, analysis and

improvement.

In Chapter 3, a distributed monitoring technique of voltage profile in the DN is proposed.

Leveraging the cyber-physical nature of the grid, the monitoring technique equips smart compo-

nents in the DN with the ability to monitor the changing voltage profiles in a collaborative and

adaptive manner. In this technique, theoretical constructs associated with social learning are em-

ployed to design the iterative information exchange process between neighboring buses in the DN.

This exchange process allows the buses in the DN to reach a consensus regarding the voltage pro-

file in real-time. Then, this consensus information is used by smart power entities in the DN to

make local integration decisions of ALEs that heed physical grid constraints. Thus, the distributed
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architecture employed by this technique reduces the heavy computation overhead commonly asso-

ciated with large-scale coordination and data processing by offloading them to cyber-enabled smart

buses. The performance of this technique is verified via both theoretical studies and simulations

conducted on the IEEE 33-bus practical DN. This technique is published in reference [81] as a

conference paper.

In Chapter 4, a technique for data-driven PLF is presented where the technique makes no as-

sumption on the power flow relations and requires no knowledge of specific parameters of the

DN such as impedance and topology. This is accomplished through modelling the power flow

relations in the DN with GP emulators, whose performance depends heavily on the structure of

the kernels they adopt. An ideal kernel for the emulator results in greater efficiency during the

training and inferencing stages and prevents issues such as over-fitting to the training dataset. In

this technique, the design process for the emulator kernel is first formulated as a bi-level optimiza-

tion problem which is NP-hard as it includes both discrete variables and non-convex constraints.

Then, this problem is resolved with a best response strategy refinement process based on theo-

retical constructs from potential games. The convergence guarantees of this iterative algorithm

are established via potential game theoretic constructs. Moreover, the approximating properties of

the GP emulator are proved using the universal approximation theorem and the representer theo-

rem. Simulations showcasing the performance of the proposed emulator are then conducted on the

practical IEEE 33-bus, 37-bus and 123-bus DNs. This technique is published in reference [82] as

a journal paper.

In Chapter 5, a distributed DN topology reconfiguration technique for voltage profile improve-

ment is presented. Leveraging the communication capacities of the modern smart grid, the pro-

posed reconfiguration technique equips the DN with the capability to accommodate highly fluctu-

ating power entities such as EVs and DGs through effective coordination among intelligent buses.

In this technique, individual buses in the DN infer the state of the system through communica-

tions with their neighbours and make local actuation decisions based on this information. The

convergence guarantees and the optimality conditions of this algorithm are derived from theoreti-
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cal constructs associated with potential games and discrete concavity. From the simulation results

conducted on practical DNs in Chapter 5, this reconfiguration technique can adapt to the variations

in voltage profile caused by load fluctuations in real-time and balance the loads across the feeder.

This technique is published in reference [83] as a journal paper.

In Chapter 6, a topology reconfiguration algorithm based on convex relaxation techniques is

introduced. Leveraging theoretical constructs from ADMM, Schur’s complement and additive sep-

arability, the proposed technique proactively mitigates the inefficiencies in the power grid through

a distributed scheme where each bus in the DN iteratively solves a subproblem of the topology

reconfiguration problem. Utilizing decomposition methods based on ADMM and additive sep-

arability, the proposed technique decomposes the reconfiguration problem into subproblems that

can be resolved with information available to each bus. Moreover, the non-convexities present in

these subproblems are resolved through the application of relaxation techniques based on Schur’s

complement. The convergence and performance guarantees for the proposed algorithm are also

established. Furthermore, the convergence properties of the algorithm are illustrated with simula-

tion studies conducted on practical DNs. This technique is published in reference [84] as a journal

paper.

7.2 Future Work

Here, the future directions for the research topics presented in this dissertation are expanded upon.

For the monitoring algorithm presented in Chapter 3, a direction of future research is to explore

how cyber vulnerabilities in a small subset of buses in the DN can be exploited to spread faulty

information to the entire DN. From the results established in Chapter 3, local variables at any bus

can be propagated to the rest of the DN through iterative information exchanges with its neigh-

bours. As such, one possible method for adversary to propagate faulty information from a subset

of buses to the rest of DN would be through the hijacking of the iterative information exchanges

instrumental to distributed voltage improvement algorithms such as those presented in Chapters 5
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and 6. Another direction of future research is to design the threshold value for ALE integration

(i.e. τ) with machine learning techniques. One possible way to accomplish that is to model the

relationship between the threshold value and the cumulative capacity of ALE in the DN with the

GP emulator adopted in Chapter 4. For the PLF technique presented in Chapter 4, one direction

is to extend the kernel design technique introduced in this work to data-driven methods based

on neural networks. Similar to the GP emulator, the performance of neural networks is heavily

affected by a number of hyper-parameters such as the number of layers used and the type of activa-

tion function adopted. As such, the proposed kernel design method can be extended to tuning the

hyper-parameters of neural networks. For the reconfiguration technique introduced in Chapter 5,

a direction of future research is considering DN topology planning for guaranteeing discrete con-

cavity for the reconfiguration problem. As the algorithm in Chapter 5 leads to the global optimal

solution for the reconfiguration problem when the discrete concavity condition is satisfied, such

research direction can lead to better optimality guarantees for the algorithm. For the reconfigura-

tion technique proposed in Chapter 6, a direction of future research is to extend the exact convex

relaxation technique for QCQP-n problems derived for this work to other non-convex problems

in power system optimization such as the optimal power flow problem and the service restoration

problem. Another direction would be to extend the QCQP-n relaxation technique to non-convex

and non-quadratic constraints. Another direction for extending the reconfiguration techniques is

to combine them with the PLF method introduced in Chapter 4 to study their performances under

probabilistic power injections. The majority of existing proposals in reconfiguration such as ref-

erences [55, 56, 57] only consider deterministic power injections. As such, reconfiguration under

probabilistic power injection would be a notable improvement over the state-of-the-art.
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Appendix A

Network Parameters for DNs

This appendix presents the bus and line parameters for the DNs studied in this dissertation. These

DNs are the balanced IEEE 33-bus DN, the balanced IEEE 69-bus DN, the balanced Brazilian

136-bus DN, the unbalanced 37-bus DN and the unbalanced 123-bus DN. The IEEE 33-bus, 69-

bus, 37-bus and 123-bus DNs are detailed in reference [131] and the Brazilian 136-bus DN is

introduced in reference [122]. For the balanced IEEE 33-bus and 69-bus as well as the Brazilian

136-bus networks, the bus parameters presents are the real and reactive loads at each bus. Also,

the line parameters presented are the resistance and reactance at each power-delivering line in the

DN. For the unbalanced IEEE 37-bus and 123-bus networks, the bus parameters are the real and

reactive loads for each phase associated with every bus in the DN. Moreover, the line parameters

are the length and line type of each line as well as the resistance and reactance matrices associated

with each line type.
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Bus Index Real Load
(kW)

Reactive
Load
(kVar)

Bus Real Load
(kW)

Reactive
Load
(kVar)

1 0 0 18 90 40
2 100 60 19 90 40
3 90 40 20 90 40
4 120 80 21 90 40
5 60 30 22 90 40
6 60 20 23 90 50
7 200 100 24 420 200
8 200 100 25 420 200
9 60 20 26 60 25
10 60 20 27 60 25
11 45 30 28 60 20
12 60 35 29 120 70
13 60 35 30 200 600
14 120 80 31 150 70
15 60 10 32 210 100
16 60 20 33 60 40
17 60 20

Table A.1: Bus Parameters for the IEEE 33-Bus DN.
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Line Resistance
(Ohm)

Reactance
(Ohm)

Line Resistance
(Ohm)

Reactance
(Ohm)

(2,1) 0.0922 0.047 (21,20) 0.4095 0.4784
(3,2) 0.493 0.2511 (22,21) 0.7089 0.9373
(4,3) 0.366 0.1864 (23,3) 0.4512 0.3083
(5,4) 0.3811 0.1941 (24,23) 0.898 0.7091
(6,5) 0.819 0.707 (25,24) 0.896 0.7011
(7,6) 0.1872 0.6188 (26,6) 0.203 0.1034
(8,7) 0.7114 0.2351 (27,26) 0.2842 0.1447
(9,8) 1.03 0.74 (28,27) 1.059 0.9337
(10,9) 1.044 0.74 (29,28) 0.8042 0.7006
(11,10) 0.1966 0.065 (30,29) 0.5075 0.2585
(12,11) 0.3744 0.1238 (31,30) 0.9744 0.963
(13,12) 1.468 1.155 (32,31) 0.3105 0.3619
(14,13) 0.5416 0.7129 (33,32) 0.341 0.5302
(15,14) 0.591 0.526 (8,21) 2 2
(16,15) 0.7463 0.545 (15,9) 2 2
(17,16) 1.289 1.721 (22,12) 2 2
(18,17) 0.732 0.574 (33,18) 0.5 0.5
(19,2) 0.164 0.1565 (29,25) 0.5 0.5
(20,19) 1.5042 1.3554

Table A.2: Line Parameters for the IEEE 33-Bus DN.
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Bus Index Real Load
(kW)

Reactive
Load
(kVar)

Bus Real Load
(kW)

Reactive
Load
(kVar)

1 0 0 36 26 18.6
2 0 0 37 26 18.6
3 0 0 38 0 0
4 0 0 39 24 17
5 0 0 40 24 17
6 2.6 2.2 41 1.2 1
7 40.4 30 42 0 0
8 75 54 43 6 4.3
9 30 22 44 0 0
10 28 19 45 39.2 26.3
11 145 104 46 39.2 26.3
12 145 104 47 0 0
13 8 5.5 48 79 56.4
14 8 5.5 49 384.7 274.5
15 0 0 50 384.7 274.5
16 45.5 30 51 40.5 28.3
17 60 35 52 3.6 2.7
18 60 35 53 4.3 3.5
19 0 0 54 26.4 19
20 1 0.6 55 24 17.2
21 114 81 56 0 0
22 5.3 3.5 57 0 0
23 0 0 58 0 0
24 28 20 59 100 72
25 0 0 60 0 0
26 14 10 61 1244 888
27 14 10 62 32 23
28 26 18.6 63 0 0
29 26 18.6 64 227 162
30 0 0 65 59 42
31 0 0 66 18 13
32 0 0 67 18 13
33 14 10 68 28 20
34 19.5 14 69 28 20
35 6 4

Table A.3: Bus Parameters for the IEEE 69-Bus DN.
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Line Resistance
(Ohm)

Reactance
(Ohm)

Line Resistance
(Ohm)

Reactance
(Ohm)

(2,1) 0.0005 0.0012 (39,38) 0.0304 0.0355
(3,2) 0.0005 0.0012 (40,39) 0.0018 0.0021
(4,3) 0.0015 0.0036 (41,40) 0.7283 0.8509
(5,4) 0.0251 0.0294 (42,41) 0.31 0.3623
(6,5) 0.366 0.1864 (43,42) 0.041 0.0478
(7,6) 0.381 0.1941 (44,43) 0.0092 0.0116
(8,7) 0.0922 0.047 (45,44) 0.1089 0.1373
(9,8) 0.0493 0.0251 (46,45) 0.0009 0.0012
(10,9) 0.819 0.2707 (47,4) 0.0034 0.0084
(11,10) 0.1872 0.0619 (48,47) 0.0851 0.2083
(12,11) 0.7114 0.2351 (49,48) 0.2898 0.7091
(13,12) 1.03 0.34 (50,49) 0.0822 0.2011
(14,13) 1.044 0.34 (51,8) 0.0928 0.0473
(15,14) 1.058 0.3496 (52,51) 0.3319 0.114
(16,15) 0.1966 0.065 (53,9) 0.174 0.0886
(17,16) 0.3744 0.1238 (54,53) 0.203 0.1034
(18,17) 0.0047 0.0016 (55,54) 0.2842 0.1447
(19,18) 0.3276 0.1083 (56,55) 0.2813 0.1433
(20,19) 0.2106 0.069 (57,56) 1.59 0.5337
(21,20) 0.3416 0.1129 (58,57) 0.7837 0.263
(22,21) 0.014 0.0046 (59,58) 0.3042 0.1006
(23,22) 0.1591 0.0526 (60,59) 0.3861 0.1172
(24,23) 0.3463 0.1145 (61,60) 0.5075 0.2585
(25,24) 0.7488 0.2475 (62,61) 0.0974 0.0496
(26,25) 0.3089 0.1021 (63,62) 0.145 0.0738
(27,26) 0.1732 0.0572 (64,63) 0.7105 0.3619
(28,3) 0.0044 0.0108 (65,64) 1.041 0.5302
(29,28) 0.064 0.1565 (66,11) 0.2012 0.0611
(30,29) 0.3978 0.1315 (67,66) 0.0047 0.0014
(31,30) 0.0702 0.0232 (68,12) 0.7394 0.2444
(32,31) 0.351 0.116 (69,68) 0.0047 0.0016
(33,32) 0.839 0.2816 (59,50) 2 2
(34,33) 1.708 0.5646 (21,13) 2 2
(35,34) 1.474 0.4873 (65,27) 2 2
(36,3) 0.0044 0.0108 (44,11) 0.5 0.5
(37,36) 0.064 0.1565 (16,46) 0.5 0.5
(38,37) 0.1053 0.123

Table A.4: Line Parameters for the IEEE 69-Bus DN.
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Bus Index Real Load
(kW)

Reactive
Load
(kVar)

Bus Real Load
(kW)

Reactive
Load
(kVar)

1 0 0 35 396.735 193.96
2 0 0 36 0 0
3 47.78 19.01 37 181.152 88.56
4 42.55 16.93 38 242.172 118.395
5 87.02 34.62 39 75.32 36.82
6 311.31 123.855 40 0 0
7 148.869 59.23 41 1.25 0.53
8 238.672 94.96 42 6.27 2.66
9 62.3 24.79 43 0 0
10 124.598 49.57 44 117.88 49.97
11 140.175 55.77 45 62.67 26.57
12 116.813 46.47 46 172.285 73.03
13 249.203 99.15 47 458.556 194.388
14 291.447 115.952 48 262.962 111.473
15 303.72 120.835 49 235.761 99.94
16 215.396 85.7 50 0 0
17 198.586 79.01 51 109.215 46.3
18 0 0 52 0 0
19 0 0 53 72.81 30.87
20 0 0 54 258.473 109.57
21 30.13 14.73 55 69.17 29.32
22 230.972 112.92 56 21.84 9.26
23 60.26 29.46 57 0 0
24 230.972 112.92 58 20.53 8.7
25 120.507 58.92 59 150.548 63.82
26 0 0 60 220.687 93.55
27 56.98 27.86 61 92.38 39.16
28 364.665 178.281 62 0 0
29 0 0 63 226.693 96.1
30 124.647 60.94 64 0 0
31 56.98 27.86 65 294.016 116.974
32 0 0 66 83.02 33.03
33 85.47 41.79 67 83.02 33.03
34 0 0 68 103.77 41.29

Table A.5: Bus Parameters for the Brazilian 136-Bus DN (1).
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Bus Index Real Load
(kW)

Reactive
Load
(kVar)

Bus Real Load
(kW)

Reactive
Load
(kVar)

69 176.408 70.18 103 9.07 3.84
70 83.02 33.03 104 2.09 0.89
71 217.917 86.7 105 16.735 7.09
72 23.29 9.27 106 1506.522 638.634
73 5.08 2.02 107 313.023 132.694
74 72.64 28.9 108 79.83 33.84
75 405.99 161.523 109 51.32 21.76
76 0 0 110 0 0
77 100.182 42.47 111 202.435 85.82
78 142.523 60.42 112 60.82 25.78
79 96.04 40.71 113 45.62 19.34
80 300.454 127.366 114 0 0
81 141.238 59.87 115 157.07 66.58
82 279.847 118.631 116 0 0
83 87.31 37.01 117 250.148 106.041
84 243.849 103.371 118 0 0
85 247.75 105.025 119 69.81 29.59
86 0 0 120 32.07 13.6
87 89.88 38.1 121 61.08 25.89
88 1137.28 482.108 122 0 0
89 458.339 194.296 123 94.62 46.26
90 385.197 163.29 124 49.86 24.38
91 0 0 125 123.164 60.21
92 79.61 33.75 126 78.35 38.3
93 87.31 37.01 127 145.475 71.12
94 0 0 128 21.37 10.45
95 74 31.37 129 74.79 36.56
96 232.05 98.37 130 227.926 111.431
97 141.819 60.12 131 35.61 17.41
98 0 0 132 249.295 121.877
99 76.45 32.41 133 316.722 154.842
100 0 0 134 333.817 163.199
101 51.32 21.76 135 249.295 121.877
102 59.87 25.38 136 0 0

Table A.6: Bus Parameters for the Brazilian 136-Bus DN (2).
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Line Resistance
(Ohm)

Reactance
(Ohm)

Line Resistance
(Ohm)

Reactance
(Ohm)

(2,1) 0.33205 0.76653 (41,40) 0.11819 0.27283
(3,2) 0.00188 0.00433 (42,41) 2.96288 1.01628
(4,3) 0.22324 0.51535 (43,41) 0.00188 0.00433
(5,4) 0.09943 0.22953 (44,43) 0.06941 0.16024
(6,5) 0.15571 0.35945 (45,44) 0.81502 0.42872
(7,6) 0.16321 0.37677 (46,44) 0.06378 0.14724
(8,7) 0.11444 0.26417 (47,46) 0.13132 0.30315
(9,7) 0.05675 0.05666 (48,47) 0.06191 0.14291
(10,9) 0.52124 0.27418 (49,48) 0.11444 0.26417
(11,9) 0.10877 0.1086 (50,49) 0.28374 0.28331
(12,11) 0.39803 0.20937 (51,50) 0.28374 0.28331
(13,11) 0.91744 0.31469 (52,49) 0.04502 0.10394
(14,11) 0.11823 0.11805 (53,52) 0.02626 0.06063
(15,14) 0.50228 0.26421 (54,53) 0.06003 0.13858
(16,14) 0.05675 0.05666 (55,54) 0.03002 0.06929
(17,16) 0.29379 0.15454 (56,55) 0.02064 0.04764
(18,1) 0.33205 0.76653 (57,53) 0.10881 0.25118
(19,18) 0.00188 0.00433 (58,57) 0.25588 0.1346
(20,19) 0.22324 0.51535 (59,58) 0.41699 0.21934
(21,20) 0.10881 0.25118 (60,59) 0.50228 0.26421
(22,21) 0.71078 0.37388 (61,60) 0.3317 0.17448
(23,21) 0.18197 0.42008 (62,61) 0.20849 0.10967
(24,23) 0.30326 0.15952 (63,48) 0.13882 0.32047
(25,23) 0.02439 0.0563 (64,1) 0.0075 0.01732
(26,25) 0.04502 0.10394 (65,64) 0.27014 0.62362
(27,26) 0.01876 0.04331 (66,65) 0.3827 0.88346
(28,27) 0.11823 0.11805 (67,66) 0.33018 0.7622
(29,28) 0.02365 0.02361 (68,67) 0.3283 0.75787
(30,29) 0.18954 0.0997 (69,68) 0.17072 0.39409
(31,30) 0.39803 0.20937 (70,69) 0.55914 0.29412
(32,29) 0.05675 0.05666 (71,69) 0.05816 0.13425
(33,32) 0.09477 0.04985 (72,71) 0.7013 0.3689
(34,33) 0.41699 0.21934 (73,72) 1.02352 0.53839
(35,34) 0.11372 0.05982 (74,71) 0.06754 0.15591
(36,32) 0.07566 0.07555 (75,74) 1.32352 0.45397
(37,36) 0.3696 0.19442 (76,1) 0.01126 0.02598
(38,37) 0.26536 0.13958 (77,76) 0.72976 1.68464
(39,36) 0.05675 0.05666 (78,77) 0.22512 0.51968
(40,1) 0.33205 0.76653 (79,78) 0.20824 0.48071

Table A.7: Line Parameters for the Brazilian 136-Bus DN (1).
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Line Resistance
(Ohm)

Reactance
(Ohm)

Line Resistance
(Ohm)

Reactance
(Ohm)

(80,79) 0.0469 0.10827 (119,105) 0.32267 0.74488
(81,80) 0.6195 0.61857 (120,119) 0.14633 0.33779
(82,81) 0.34049 0.33998 (121,120) 0.12382 0.28583
(83,82) 0.56862 0.29911 (122,1) 0.01126 0.02598
(84,82) 0.10877 0.1086 (123,122) 0.6491 1.49842
(85,84) 0.56862 0.29911 (124,123) 0.04502 0.10394
(86,1) 0.01126 0.02598 (125,124) 0.5264 0.18056
(87,86) 0.41835 0.96575 (126,124) 0.02064 0.04764
(88,87) 0.10499 0.13641 (127,126) 0.53071 0.27917
(89,87) 0.43898 1.01338 (128,126) 0.09755 0.2252
(90,89) 0.0752 0.02579 (129,128) 0.11819 0.27283
(91,90) 0.07692 0.17756 (130,128) 0.13882 0.32047
(92,91) 0.33205 0.76653 (131,130) 0.04315 0.09961
(93,92) 0.08442 0.19488 (132,131) 0.09192 0.2122
(94,93) 0.1332 0.30748 (133,132) 0.16134 0.37244
(95,94) 0.2932 0.29276 (134,133) 0.37832 0.37775
(96,95) 0.21753 0.21721 (135,134) 0.39724 0.39664
(97,96) 0.26482 0.26443 (136,135) 0.2932 0.29276
(98,94) 0.10318 0.23819 (74,8) 0.13132 0.30315
(99,98) 0.13507 0.31181 (25,10) 0.26536 0.13958
(100,1) 0.00938 0.02165 (84,16) 0.14187 0.14166
(101,100) 0.16884 0.38976 (136,39) 0.08512 0.08499
(102,101) 0.11819 0.27283 (52,26) 0.04502 0.10394
(103,102) 2.28608 0.78414 (97,51) 0.14187 0.14166
(104,102) 0.45587 1.05236 (99,56) 0.14187 0.14166
(105,104) 0.696 1.60669 (121,63) 0.0394 0.09094
(106,105) 0.45774 1.05669 (80,67) 0.12944 0.29882
(107,106) 0.20298 0.26373 (132,80) 0.01688 0.03898
(108,107) 0.21348 0.27737 (136,85) 0.3317 0.17448
(109,108) 0.54967 0.28914 (105,92) 0.14187 0.14166
(110,109) 0.54019 0.28415 (130,91) 0.07692 0.17756
(111,108) 0.0455 0.05911 (104,91) 0.07692 0.17756
(112,111) 0.47385 0.24926 (105,93) 0.07692 0.17756
(113,112) 0.86241 0.45364 (133,93) 0.07692 0.17756
(114,113) 0.56862 0.29911 (121,97) 0.26482 0.26443
(115,109) 0.77711 0.40878 (48,111) 0.49696 0.64567
(116,115) 1.08038 0.5683 (77,127) 0.17059 0.08973
(117,110) 1.09933 0.57827 (78,129) 0.05253 0.12126
(118,117) 0.47385 0.24926 (99,136) 0.2932 0.29276

Table A.8: Line Parameters for the Brazilian 136-Bus DN (2).
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Bus Index Real A
(kW)

Reactive
A (kVar)

Real B
(kW)

Reactive
B (kVar)

Real C
(kW)

Reactive
C (kVar)

701 140 70 140 70 350 175
712 0 0 0 0 85 40
713 0 0 0 0 85 40
714 17 8 21 10 0 0
718 85 40 0 0 0 0
720 0 0 0 0 85 40
722 0 0 140 70 21 10
724 0 0 42 21 0 0
725 0 0 42 21 0 0
727 0 0 0 0 42 21
728 42 21 42 21 42 21
729 42 21 0 0 0 0
730 0 0 0 0 85 40
731 0 0 85 40 0 0
732 0 0 0 0 42 21
733 85 40 0 0 0 0
734 0 0 0 0 42 21
735 0 0 0 0 85 40
736 0 0 42 21 0 0
737 140 70 0 0 0 0
738 126 62 0 0 0 0
740 0 0 0 0 85 40
741 0 0 0 0 42 21
742 8 4 85 40 0 0
744 42 21 0 0 0 0

Table A.9: Bus Parameters for the IEEE 37-Bus DN.
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Line Length
(mile)

Line Type Line Length
(mile)

Line Type

(702,701) 0.1818144 722 (736,710) 0.2424192 724
(705,702) 0.075756 724 (741,711) 0.075756 723
(713,702) 0.0681804 723 (740,711) 0.037878 724
(703,702) 0.2499948 722 (704,713) 0.0984828 723
(727,703) 0.0454536 724 (718,714) 0.0984828 724
(730,703) 0.113634 723 (707,720) 0.1742388 724
(714,704) 0.0151512 724 (706,720) 0.113634 723
(720,704) 0.151512 723 (744,727) 0.0530292 723
(742,705) 0.0606048 724 (709,730) 0.037878 723
(712,705) 0.0454536 724 (734,733) 0.1060584 723
(725,706) 0.0530292 724 (737,734) 0.1212096 723
(724,707) 0.1439364 724 (710,734) 0.0984828 724
(722,707) 0.0227268 724 (738,737) 0.075756 723
(733,708) 0.0606048 723 (711,738) 0.075756 723
(732,708) 0.0606048 724 (728,744) 0.037878 724
(731,709) 0.113634 723 (729,744) 0.0530292 724
(708,709) 0.0606048 723 (701,799) 0.3503715 721
(735,710) 0.037878 724

Table A.10: Line Parameters for the IEEE 37-Bus DN

Line Type Resistance Matrix (Ohm/mile) Reactance Matrix (Ohm/mile)

721

0.2926 0.0673 0.0337
0.2646 0.0673

0.2926


0.1973 −0.0368 −0.0417

0.19 −0.0368
0.1973


722

0.4751 0.1629 0.1234
0.4488 0.1629

0.4751


0.2973 −0.0326 −0.0607

0.2678 −0.0326
0.2973


723

1.2936 0.4871 0.4585
1.3022 0.4871

1.2936


0.6713 0.2111 0.1521

0.6326 0.2111
0.6713


724

2.0952 0.5204 0.4926
2.1068 0.5204

2.0952


0.7758 0.2738 0.2123

0.7398 0.2738
0.7758


Table A.11: Line Types for the IEEE 37-Bus DN.
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Bus Index Real A
(kW)

Reactive
A (kVar)

Real B
(kW)

Reactive
B (kVar)

Real C
(kW)

Reactive
C (kVar)

1 40 20 0 0 0 0
2 0 0 20 10 0 0
4 0 0 0 0 40 20
5 0 0 0 0 20 10
6 0 0 0 0 40 20
7 20 10 0 0 0 0
9 40 20 0 0 0 0
10 20 10 0 0 0 0
11 40 20 0 0 0 0
12 0 0 20 10 0 0
16 0 0 0 0 40 20
17 0 0 0 0 20 10
19 40 20 0 0 0 0
20 40 20 0 0 0 0
22 0 0 40 20 0 0
24 0 0 0 0 40 20
28 40 20 0 0 0 0
29 40 20 0 0 0 0
30 0 0 0 0 40 20
31 0 0 0 0 20 10
32 0 0 0 0 20 10
33 40 20 0 0 0 0
34 0 0 0 0 40 20
35 40 20 0 0 0 0
37 40 20 0 0 0 0
38 0 0 20 10 0 0
39 0 0 20 10 0 0
41 0 0 0 0 20 10
42 20 10 0 0 0 0
43 0 0 40 20 0 0

Table A.12: Bus Parameters for the IEEE 123-Bus DN (1).
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Bus Index Real A
(kW)

Reactive
A (kVar)

Real B
(kW)

Reactive
B (kVar)

Real C
(kW)

Reactive
C (kVar)

45 20 10 0 0 0 0
46 20 10 0 0 0 0
47 35 25 35 25 35 25
48 70 50 70 50 70 50
49 35 25 70 50 35 20
50 0 0 0 0 40 20
51 20 10 0 0 0 0
52 40 20 0 0 0 0
53 40 20 0 0 0 0
55 20 10 0 0 0 0
56 0 0 20 10 0 0
58 0 0 20 10 0 0
59 0 0 20 10 0 0
60 20 10 0 0 0 0
62 0 0 0 0 40 20
63 40 20 0 0 0 0
64 0 0 75 35 0 0
65 35 25 35 25 70 50
66 0 0 0 0 75 35
68 20 10 0 0 0 0
69 40 20 0 0 0 0
70 20 10 0 0 0 0
71 40 20 0 0 0 0
73 0 0 0 0 40 20
74 0 0 0 0 40 20
75 0 0 0 0 40 20
76 105 80 70 50 70 50
77 0 0 40 20 0 0
79 40 20 0 0 0 0
80 0 0 40 20 0 0
82 40 20 0 0 0 0
83 0 0 0 0 20 10
84 0 0 0 0 20 10

Table A.13: Bus Parameters for the IEEE 123-Bus DN (2).
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Bus Index Real A
(kW)

Reactive
A (kVar)

Real B
(kW)

Reactive
B (kVar)

Real C
(kW)

Reactive
C (kVar)

85 0 0 0 0 40 20
86 0 0 20 10 0 0
87 0 0 40 20 0 0
88 40 20 0 0 0 0
90 0 0 40 20 0 0
92 0 0 0 0 40 20
94 40 20 0 0 0 0
95 0 0 20 10 0 0
96 0 0 20 10 0 0
98 40 20 0 0 0 0
99 0 0 40 20 0 0
100 0 0 0 0 40 20
102 0 0 0 0 20 10
103 0 0 0 0 40 20
104 0 0 0 0 40 20
106 0 0 40 20 0 0
107 0 0 40 20 0 0
109 40 20 0 0 0 0
111 20 10 0 0 0 0
112 20 10 0 0 0 0
113 40 20 0 0 0 0
114 20 10 0 0 0 0

Table A.14: Bus Parameters for the IEEE 123-Bus DN (3).
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Line Length
(mile)

Line Type Line Length
(mile)

Line Type

(2,1) 0.03314325 10 (250,30) 0.037878 2
(3,1) 0.0473475 11 (32,31) 0.056817 11
(7,1) 0.056817 1 (15,34) 0.018939 11
(4,3) 0.037878 11 (36,35) 0.1231035 8
(5,3) 0.06155175 11 (40,35) 0.0473475 1
(6,5) 0.0473475 11 (37,36) 0.056817 9
(8,7) 0.037878 1 (38,36) 0.0473475 10
(12,8) 0.04261275 10 (39,38) 0.06155175 10
(9,8) 0.04261275 9 (41,40) 0.06155175 11
(13,8) 0.056817 1 (42,40) 0.0473475 1
(14,9) 0.08049075 9 (43,42) 0.094695 10
(34,13) 0.0284085 11 (44,42) 0.037878 1
(18,13) 0.15624675 2 (45,44) 0.037878 9
(11,14) 0.0473475 9 (47,44) 0.0473475 1
(10,14) 0.0473475 9 (46,45) 0.056817 9
(16,15) 0.07102125 11 (48,47) 0.0284085 4
(17,15) 0.0662865 11 (49,47) 0.0473475 4
(19,18) 0.0473475 9 (50,49) 0.0473475 4
(21,18) 0.056817 2 (51,50) 0.0473475 4
(20,19) 0.06155175 9 (151,51) 0.094695 4
(22,21) 0.09942975 10 (53,52) 0.037878 1
(23,21) 0.0473475 2 (54,53) 0.02367375 1
(24,23) 0.1041645 11 (55,54) 0.05208225 1
(25,23) 0.05208225 2 (57,54) 0.0662865 3
(26,25) 0.0662865 7 (56,55) 0.05208225 1
(28,25) 0.037878 2 (58,57) 0.0473475 10
(27,26) 0.05208225 7 (60,57) 0.1420425 3
(31,26) 0.04261275 11 (59,58) 0.0473475 10
(33,27) 0.094695 9 (61,60) 0.1041645 5
(29,28) 0.056817 2 (62,60) 0.0473475 12
(30,29) 0.0662865 2

Table A.15: Line Parameters for the IEEE 123-Bus DN (1).
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Line Length
(mile)

Line Type Line Length
(mile)

Line Type

(63,62) 0.03314325 12 (92,91) 0.056817 11
(64,63) 0.0662865 12 (93,91) 0.04261275 6
(65,64) 0.08049075 12 (94,93) 0.05208225 9
(66,65) 0.06155175 12 (95,93) 0.056817 6
(68,67) 0.037878 9 (96,95) 0.037878 10
(72,67) 0.05208225 3 (98,97) 0.05208225 3
(97,67) 0.0473475 3 (99,98) 0.1041645 3
(69,68) 0.05208225 9 (100,99) 0.056817 3
(70,69) 0.06155175 9 (450,100) 0.151512 3
(71,70) 0.05208225 9 (102,101) 0.04261275 11
(73,72) 0.05208225 11 (105,101) 0.05208225 3
(76,72) 0.037878 3 (103,102) 0.06155175 11
(74,73) 0.0662865 11 (104,103) 0.132573 11
(75,74) 0.075756 11 (106,105) 0.04261275 10
(77,76) 0.075756 6 (108,105) 0.06155175 3
(86,76) 0.132573 3 (107,106) 0.10889925 10
(78,77) 0.018939 6 (109,108) 0.0852255 9
(79,78) 0.04261275 6 (300,108) 0.18939 3
(80,78) 0.08996025 6 (110,109) 0.056817 9
(81,80) 0.08996025 6 (111,110) 0.10889925 9
(82,81) 0.0473475 6 (112,110) 0.02367375 9
(84,81) 0.12783825 11 (113,112) 0.09942975 9
(83,82) 0.0473475 6 (114,113) 0.06155175 9
(85,84) 0.08996025 11 (35,135) 0.07102125 4
(87,86) 0.0852255 6 (1,149) 0.075756 1
(88,87) 0.03314325 9 (52,152) 0.075756 1
(89,87) 0.05208225 6 (67,160) 0.0662865 6
(90,89) 0.04261275 10 (101,197) 0.0473475 3
(91,89) 0.04261275 6

Table A.16: Line Parameters for the IEEE 123-Bus DN (2)
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Line Type Resistance Matrix (Ohm/mile) Reactance Matrix (Ohm/mile)

1

0.4576 0.1560 0.1535
0.4666 0.1580

0.4615


1.0780 0.5017 0.3849

1.0482 0.4236
1.0651


2

0.4666 0.1580 0.1560
0.4615 0.1535

0.4576


1.0482 0.4236 0.5017

1.0651 0.3849
1.0780


3

0.4615 0.1535 0.1580
0.4576 0.1560

0.4666


1.0651 0.3849 0.4236

1.0780 0.5017
1.0482


4

0.4615 0.1580 0.1535
0.4666 0.1560

0.4576


1.0651 0.4236 0.3849

1.0482 0.5017
1.0780


5

0.4666 0.1560 0.1580
0.4576 0.1535

0.4615


1.0482 0.5017 0.4236

1.0780 0.3849
1.0651


6

0.4576 0.1535 0.1560
0.4615 0.1580

0.4666


1.0780 0.3849 0.5017

1.0651 0.4236
1.0482


7

0.4576 0 0.1535
0 0

0.4615


1.0780 0 0.3849

0 0
1.0651


8

0.4576 0.1535 0
0.4615 0

0


1.0780 0.3849 0

1.0651 0
0


9

1.3292 0 0
0 0

0


1.3475 0 0

0 0
0


10

0 0 0
1.3292 0

0


0 0 0

1.3475 0
0


11

0 0 0
0 0

1.3292


0 0 0

0 0
1.3475


12

1.5209 0.5198 0.4924
1.5329 0.5198

1.5209


0.7521 0.2775 0.2157

0.7162 0.2775
0.7521


Table A.17: Line Types for the IEEE 123-Bus DN.
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