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This paper studies the dynamics of tether transportation system by the nodal
position finite element method in the framework of arbitrary Lagrangian-Eulerian
description. Material coordinate is introduced as state variable that is decoupled with
the position coordinate. The movement of climbers is represented by moving nodes
associated with the material coordinates. It is integrated into the finite element method
by variable-length tether together with a process of dividing and merging elements.
The dynamic behavior of tether transportation system with multiple climbers is
studied. The results show that the elastic-flexible tether model is able to capture the
high frequency oscillation of the tether transportation system. The oscillation could
have adverse effect on the safe operation of the tether transportation system, especially

in causing the fatigue failure of tether, and must be considered.
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TETHER Transportation System(TTS) is an attractive alternative to the classical space elevator
due to its ability for long-range mass transfer between two satellites at low cost [1]. TTS generally
consists of a main satellite, a subsatellite, and one or multiple climbers that move along the tether
for orbital transfer of payloads [2]. Due to its floating nature, TTS is prone to libration instability
as the result of the Coriolis forces acting on the moving climbers.

Past decades have witnessed many studies of the TTS. Cohen and Misra [3] studied the
dynamics of TTS with one climber based on the assumptions of rigid tether and two-piece
dumbbell model. Since then, the influences of TTS parameters, such as, initial libration angles,
mass, velocity of moving climber, and tether length, on the dynamic characteristics of TTS have
been studied extensively by the two-piece dumbbell model [4, 5]. Cohen and Misra further
expended the two-piece dumbbell model by considering the elasticity of tether to investigate the
influence of longitudinal and transverse oscillations of tether on the libration of TTS [6]. However,
the coupling mechanism of the climbers with the tether was glossily simplified by simply varying
the lengths of two tether segments connected to the climber. Williams [7] replaced the two-piece
dumbbell model by a lumped mass-viscoelastic-spring model. Two approaches were developed to
treat the dynamics of the climber: dynamic and kinematic approaches. The dynamic approach
modelled the climber as an independent lumped mass subjected to tether tensions, friction force
between the tether and the climber, and the propelling force of the climber. The concept is clear
and simple, but the computational load is high. The kinematic approach describes the climber
motion by varying the lengths of tethers connecting to the climber, which is an extension of the
work of Cohen and Misra [6]. Numerical simulation shows two approaches yield very similar
results fora TTS with only one climber. Recently, Sun et al. [8] studied the dynamics of a TTS
with one climber by the absolute nodal coordinate formulation. The dynamics of the climber is

independently established and the coupling between the tether and the climber is achieved by



projecting the climber’s velocity onto the tether with the Lagrange multiplier method.

In addition to one climber scenario, TTS with multiple climbers was also investigated. The
concept of the multiple climbers with proper phase shift was first proposed to alleviate the libration
of TTS in payload transfer [3]. Then, a multibody dynamic model is developed to investigate the
effect of transient motion of multiple climbers on the libration of tether [2]. Furthermore, the
simultaneous operation of a descendingand an ascending climber is proposed to cancel the Coriolis
forces acting on the tether induced by climbers [9], leading to significant reduction of tether
libration. Although effective, there are still aspects of TTS with multiple climbers not fully
investigated. For example, the center of mass (CM) of the TTS may shift during the transfer of
payloads [4]; the coupling of longitudinal and transverse oscillations of flexible tether with moving
climbers are not fully understood [3, 5]; the constraint equations that couples the motions of the
tetherand the climber are oversimplified [7, 8]; the out-of-plane motion is generally neglected [10],
and the tether model is built at a rotational frame by implying the orbital plane being fixed spatially
[7-9], just to name a few. Thus, a model of high fidelity and easy implementation is highly desired,
which inevitably involves the modeling of tethers and tethered satellites with full dynamics.

Many modeling methods have been proposed to study the dynamic behavior of tethered
spacecraft systems, such as, the lumped mass method [7, 9, 11, 12], finite difference method [13],
Kane’s method [10], modal method [6], rigid element method [14-17], absolute nodal coordinate
finite element method [8], and nodal position finite element method [18-23]. Among them, the
nodal position finite element method (NPFEM) is appealing due to its flexibility and capability in
handling complex tether properties and boundary conditions of a TTS, and ease of implementation
with existing finite element method. Moreover, the integration of moving climbers along the tether
into the tether dynamics is technically challenging. Currently, there are two types of methods: the

uncoupled and coupled methods. The uncoupled method is simple and straightforward. It ignores



the dynamic coupling between the tether and climber [9, 11]. Instead, the climber is replaced by a
force vector moving along the tether at a given climbing velocity. The coupled method is divided
into two categories in terms of the coupling techniques. The first is the sequential coupling, where
the dynamics of the climber and tether are modeled separately and a constraint equation is
introduced to couple the spatial position and climbing velocity of climber with the tether by the
Lagrangian multiplier method [8]. However, it needs to determine the position of climber along
the tether in the process. Moreover, the position of climber is projected to the undeformed state of
tether for simplicity, which may be inaccurate if the tetheris bent significantly [8]. The second is
the true coupling, where the dynamics of climber and tether are fully modeled and solved
simultaneously. To achieve this, a variable-length element model is introduced [7]. The movement
of climber is represented by changing the lengths of two elements connecting to the climber with
one being increasing and the other being decreasing. This approach is superior to the sequential
coupling approach because it can describe not only the climber movement along the tether but also
the variable length problems, such as, the tether deployment and retrieval of a TTS. Therefore, the
fully coupled approach is adopted in the current work.

Two approaches exist in the variable-length element method. One is to divide the tether into
constant numbers of elements, and the lengths of elements vary at the same rate. The conservation
of mass and energy due to the length variation is presented [24]. Accordingly, the degree-of-
freedomof thenumerical model doesnot change, and the complex process of dividing and merging
elements is avoided. However, it is only suitable for the tether deployment or retrieval problem
without climbers moving along the tether [11, 16, 24-27]. The other approach uses two types of
elements: the constant-length and the variable-length elements [7, 28]. The elements connected to
the climbers are the variable-length elements and the rest elements are constant-length elements.

Thus, it requires the continuity constraint at the interface between the variable and constant length



elements [29]. While it does provide flexibility in modeling climbers moving along the tether, the
degree-of-freedomof numerical model varies due to the dividing and merging elements. However,
existing method has three limitations [7]. First, the conservation of mass and energy due to the
length variation is not clarified. Second, a search algorithm is needed to determine the element
where the climber locates, which may fail if the tether bends significantly. Third, the method
cannot be extended to the case of multiple climbers. In the current study, these three limitations
are eliminated by the NPFEM together with the Arbitrary Lagrangian-Eulerian (ALE) description.
To ensure the conservation of mass and energy in the presence of the length variation, a method
with rigorous description of the variable-length element has been proposed by the ALE description
[30, 31]. The ALE description introduces a concept of material points that do not associate with
finite element nodes. As a result, the element nodes may have variable material coordinates that
allow the finite element changes its position within the domain [30, 32]. This is advantageous
because the continuity condition of the climber passing across tether element nodes can be easily
enforced, which allows the dynamics of climber being easily integrated with the tether dynamics.

In the current work, an innovative approach is proposed to ensure the conservation of mass and
energy of TTS with multiple climbers by the NPFEM in the ALE description (NPFEM-ALE),
where the material coordinate is included as the state variable. The moving nodes represent the
climbers, and the movement of climbers is accomplished by changing the lengths of variable-
length elements connecting to the moving nodes. The material coordinates of the moving nodes
follow the pre-defined trajectories of climbers. Thus, no search of the entire system is needed to
determine the position of the climber. As the lengths of variable-length elements change with the
moving climbers, new elements are either created or merged to avoid the lengths of variable-length
elements being too long or too short. The newly proposed approach is verified by the solution of

aTTS with one climber based on the classical two-piece dumbbell model in two different scenarios.



Once verified, it is used to analyze the dynamic behaviors of TTS with multiple climbers.

II. Arbitrary Lagrangian-Eulerian Formulation of Tether Transportation System

A. Coordinate Systems

Consider the TTS shown in Fig. 1. It consists of a main satellite, a sub satellite, an elastic and
flexible tether connecting the two satellites, and multiple climbers moving along the tether. The
TTS is subject to a central gravity and is orbiting in a circular orbit. The tether is discretized into
n 2-noded straight elements with three translational degrees of freedom at each node. It should be
pointed out only the axial tensile deformation of tether is considered in the current work. If the
axial deformation is less than negative anywhere along the tether, the tether will be slack and the
tension is assumed zero at that location. Let the number of nodes start from node 1 (main satellite)
to node n+1 (sub satellite). The satellites and climbers are modeled as lumped masses with their
attitude dynamics ignored. The motion of the TTS is described by three sets of coordinate systems:
the global inertial frame of the Earth (OXYZ), the local frame of element (otbn) and the orbital
frame (O "XoYoZo). The origin of the global inertial coordinate system is located at the Earth center.
The X-axis points to the direction of vernal equinox, the Z-axis aligns with the Earth rotation axis
and points to the North, and the Y-axis completes a right-hand coordinate system. The local
coordinate system of element is defined at the element level with the origin o located at the i-th
node. The t-axis is aligned with the element and pointing from i-th node to (i+/)-th node, the n-
axis is perpendicular to the tz-axis and the average velocity of two nodal velocities, and the b-axis
completes a right-hand coordinate system. The orbital coordinate system is used to describe the

libration motion of the TTS, and it will be defined later.
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Fi:g. 1. Schematic of TTS system with multiple climbers.
B. Nodal Position Finite Element in Arbitrary Lagrangian-Eulerian Description
Consider the k-t tether element. The position of an arbitrary point inside the element can be
expressed by a linear interpolation with nodal coordinates,
X=N, X 1
where X, =(X.Y.Z, . X,...Y 02, )T is the vector of element nodal coordinates and N« is

the shape function matrix [19, 21],
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where I, . isthe 3x3 identity matrix and & € [—1,1] denotes the dimensionless parameter.

Next, define a material coordinate p of an arbitrary point inside the k-th element as,

P=SEp )+ g (1) —1sés (3)

where p, (t) and P, (l‘ ) are the time varying material coordinates associated with the nodal

points k£ and k+1. Then, ¢ can be expressed by the material coordinates [31],
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Therefore, Eq. (1) can be rewritten in term of material and position coordinates, as
X=N,[p.p.(t). 0. (1)] X, (5)
The associated velocity and acceleration of this point can be derived as,
X=N,X,  + 51;1;5,( X, =N,X,, (6)
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where N, =| N, =X =X

ko ko a’kj is the extended shape function matrix,
p, Py

T . .
X, =<XT,k,pk,pk+1) is the extended vector of nodal coordinate, X,, and X,, are the

extended vectors of velocity and acceleration respectively, and a,, is the additional term
associated with rate of material coordinates at both ends of the k-t element [31].

Based on the D’Alembert’s principle, the sum of the virtual work done by the inertial and

applied forces on the virtual displacements of TTS should be zero at an arbitrary moment, that is,

W, +OW,, =W, =0 )

where oW,,, oW,

wx»and OW, . are the virtual work done by external, gravity, and inertial forces:

5W;,k = —J. 58T0'Akdp :—J.[:{M Ak53Tde = _5X€7:k e,k (10)

Pr+
5Wg,k = J5Xer,kfg,kAkdp :ka §Xj:kfg,kAkdp = 5XeT,k ok (11)



Pi+1

oW, = J‘ngkpkAkXdp = j 5XeT,kpkAkXdp= 5Xer,k (Me,kXe,k + Qp,k) (12)

P
where p and 4 are the material density and cross-section area of element respectively, 0X is the

virtual displacement where the symbol 0 represents the variational operator, the subscript k&
denotes the k-th element, ¢ and ¢ are the vectors of stress and strain respectively, and f, gk 1S

the vector of gravity per unit length.
Substituting Egs. (10)-(12) into Eq. (9) yields the dynamic equations of the k-th element in

the global inertial coordinate system [18],

M, X, =0,+0,-0,, (13)

— 1
M,, = %J‘_l pkAkNeT,kNe,kd‘f (14)

a T
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— 1
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where E is the elastic modulus of tether, M, is the extended mass matrix of element, Q,, and

0, are the vectors of the elastic and gravitational forces respectively, and @, , is theadditional

force caused by the mass flow of the material points, which is associated with variation of the
material coordinate of A-th element.

It should be noted that there are two major differences between the newly proposed NPFEM-

ALE and the existing NPFEM [18]. First, the extended mass matrix M, , of k-th element is no

longer a constant matrix as it is in the NPFEM. The rank of M, is six while its dimension is 8



x 8, which indicates that the normal solver does not work because it inverses the mass matrix [19,

21]. The rank deficient matrix can be decomposed into six parts as listed in Appendix A. Second,
there is an additional inertial term @, , generated by the length variation of element. It can be

decomposed into five parts, and their detailed expressions are shown in Appendix B.

The elastic force is assumed the axial deformation of tether obeys the Green strain, such that,

2 T
ON ON
g:l(x'TX'_l):l (—2 J Xik( “*"j ( “”‘JXa’k—l (18)
2 21\ P —Du o og

!
where ( ) denotes the first order derivative with respect to &.

Substituting Eq. (18) into (15) yields the elastic force vector Q,, :(Qelak,Qj,k,Q:’k )T. The

detailed expressions of these components are shown in Appendix C.
Finally, the dynamic equations of the motion of TTS can be obtained by assembling Eq. (13)

with the standard assembly procedure in the finite element method [18, 19],
MCXG :Qe +Qg_Qp (19)
where M, is the extended and rank deficient mass matrix of TTS, X . 1s theacceleration vector

of extended nodal position of tether, Q,, Qg, and Qp are the vectors of elastic, gravitational,

and time-varying material coordinate induced forces. It should be noted the internal damping of
the tether is not considered dueto the lack of experimental datain space. Nonetheless, the damping
effect generally suppresses the disturbance to the TTS. Thus, the neglect of damping will not affect
the validation of current investigation. Finally, the material coordinate of tether increases
monotonically from the first node (main satellite) to the (n+1)-t2 node (sub satellite).

C. Coupling of climbers with tether motion

The coupling of climber with tether motion is achieved by enforcing a constraint kinematically

10



between the tether and the climber. Assume a moving node is assigned to the position of the
climber, in which the material coordinateis allowed to move along the tetherto represent a climber.
The two elements connecting with this moving node are defined as the variable-length elements,
one increases while the other decreases. Therefore, the changing rate of material coordinate of the
moving node represents the velocity of climber. Accordingly, a constraint equation can be

introduced to represent the motion of the climber along the tether. For the TTS with ¢2>1

climbers, the constraint equations of these climbers are defined as,
C(Pt)=P=Piaeia =0 (J=12....q) or C/(p,2)=0 (20)
where D, jiea denotes the pre-defined or desired position of the j-th climber.
Except for the moving node, the rest nodes are normal nodes with zero velocity of their material

coordinates. The corresponding constraint equations of these nodes (n +1—q) are defined as,

G, (pt)=p,=0 (j=L2..n+1-q) or C,(p,t)=0 (21)

Combining Eqgs. (19)-( 21) together yields the dynamic equations of the motion of TTS,

MeXﬁ(%] A+(a€2j 4=0.+0,-0,

ox, ox,
C(pt)=0 (22)
C, (p,t) =0

where 4,,, denote the vectors of Lagrange multipliers with subscripts 1 and 2 representing the

corresponding constraint equations.
D. Merging and dividing elements
As shown in Fig. 2, the lengths of variable-length elements change when the moving node moves.

The variable-length element will be divided if its length is too long, or merged with the adjacent

11



constant-length element to form a new variable-length element if its length is too short. Four

parameters are defined to control the merging and/or dividing process: the standard length Ls, the
upper bound length Luax, the low bound length L, and the acceptance tolerance 0, , respectively.

There are two general rules to determine the values of Lmax and Lmin. First, the lengths of variable-
length elements cannot be too short or too long, which means the values should be close to the
standard length Ls. Second, the constraint condition L . +L__>2L should be satisfied. The
purpose for this condition is to avoid the process of merging and dividing elements happening
simultaneously, which may lead to an abrupt oscillation in solution.

1. Merging elements

If the length of the variable-length element is smaller than the lower bound length Lyuin, it will be
merged with the adjacent constant-length element. For example, as shown in Fig. 2(a), the (k+2)-
th nodeis a moving node that represents the climber moving in the arrow direction. Ifthe following

equation is satisfied,

Ly = Pria = Pro < Lo (23)

the (k+2)-th node is ready to be merged with (k+1)-th node. The actual merge occurs once the

condition ||Ar|| <9, is satisfied, where Ar is the normal distance from (k+1)-#1 node to the line

connecting the k-th and (k+2)-th nodes. &, =0.01 m is thetolerance to avoid the oscillation caused

by the merge of node. Then the nodes and elements are renumbered after (k+1)-th node is removed.

12
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Fig. 2. (a) Merging element. (b) Dividing element.
2. Dividing elements
The variable-length element will be divided if the element’s length exceeds the upper bound length
Lmax. For example, as shown win Fig. 2(b), the (k+1)-th node is a moving node that represents the

climber moving in the arrow direction. If the following condition is satistfied,

Ly = Piia = Pt 2 Lo (24)
the (k+1)-th element will be divided into two new elements by inserting a new node between the
(k+1)-th and (k+2)-th nodes. The position, velocity, and acceleration of the newly inserted node is
obtained via interpolation. Then, the nodes and elements after the (k+1)-#2 node are renumbered.

Due to its connection with the moving node, the new (k+1)-th element is a variable-length element

with thelength L, , — L . The new (k+2)-th element is a constant-length element with the standard

length L, . The property of this element, either constant-length or variable-length, is depending

on whether the original (k+2)-th node is a normal or moving node in case of multiple climbers.

E. Libration motion of TTS

The libration motion of the TTS is normally described in the orbital coordinate system [1-5], as
shown in Fig. 3. The origin O’ of the coordinate system is located at the center of mass (CM) of

the TTS with the Z,-axis pointing to the origin of the global inertial coordinate system. The Xo-
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axis is lying in the orbital plane of TTS system and perpendicular to the Z,-axis. The Yo-axis
completes a right-hand system. The transformation matrix from the orbital frame to the global
inertial frame is the same as Ref. [21]. Different from the two-piece dumbbell model [4, 5], there
are n sets of libration (pith and roll) angles if the tether is discretized into n elements. To keep
consistence with the definition of libration angles of the two-piece dumbbell model, a series of
virtual libration angels are defined by straight lines connecting the main satellite, the climbers, and
the sub satellite, see the dotted lines in Fig. 1. Taking the case of three climber as an example,
there are four dotted lines. The libration angles of those fourlines are described in the orbital frame

with the origin located at the CM of discretized model of TTS. The calculations of the in-plane

angles ¢, (i =1,.. .,4) and out-of-plane angles /3 (i =1,.. .,4) are the same as in Refs [21, 33].

o, = tan ™' (RXO,i/RZn J)’

(25)
B =tan™ I:_RY,,,i/(RZO,i cosa, + R, ;sin 0‘5)]

T
where R, = (RX o Ry R, J.) is the vector of a dotted line expressed in the orbital coordinate

system with the subscript i (1 U 4) representing the sequence of these four lines.

III. Results and Discussion
In the current work, the backward formulation is employed together with the Newton-Raphson
iteration method to solve the dynamic equations of the motion of TTS [27, 30]. The maximum
iteration numbers and error tolerance of each iteration step are set as 10 and 10-!!, respectively.
The physical properties of the tether are listed in Table. 1, and other parameters will be given later.

Table 1 Physical properties of tether.

Parameters Values
Material density of tether (kg/m?) 1440
Elastic modulus of the tether (10°N/m?) 72
Cross-section area (m?) 2.0x10°
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A. Validation of the proposed approach
The proposed approach is validated by comparing the dynamic responses against to those in the
Refs. [4, 5], in which the TTS contains only one climber. For the sake of comparison, the tether is
discretized into two variable-length elements so that the definition of libration angles of current
approach is the same as those in the Refs. [4, 5]. Moreover, the degrees-of-freedom of the TTS
model is constant as the climber moves along the tether.

First, the total mass of the subsatellite m;, the climber m., and the tether m;. is assumed negligible
compared with the mass of the main satellite mm. Thus, the CM of the TTS resides approximately

at the main satellite in the transfer period of climber. The main satellite is orbiting in a circular

7(0)=6,600 km

orbit. The initial conditions and physical parameters in [17] are used here:

w(0)=1.177x10" rad/s  e,(0)=,(0)=(0)=c(0)=0 ; _10m m,=1000 kg

m, =1000 k¢ 1o climber is assumed to move at a constant velocCity P yeiea = 14.99 m/s. Both

L(0)=090L

upward and downward movements of the climber are analyzed, where

1,(0)=0.10L 1(0)=0.10L

for the upward movement, and ,(0)=0.90L for the downward

movement. The transfer time is 5,336s. The comparisons of the libration motion and trajectory of
the climber are shown in Figs. 3-6. Since the definition ofthe orbital coordinate system is different,
the results from Ref. [17] are transformed into the current orbital coordinate system. Figs. 3 and 4
show the comparisons of the climber in the upward transfer, while Figs. 5 and 6 show the
comparisons of the climber in the downward transfer. It is observed that both the libration angles
and trajectory of the climber are in very good agreement with the results of two-piece dumbbell

model in Ref. [17]. In addition, as shown in Figs. 3 and 5, the in-plane motion of TSS is the
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dominant mode, which the out-of-plane motion is small and negligible. Thus, the out-of-plane

motion is not shown in the rest cases.
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Moreover, the climber’s movement generates transverse wave propagation along the tether. The
transverse wave propagation speed along the tetheris 7 = \/T/_,u , where T is the tether tension
and u is the linear density of tether. In the design stage, an operation condition of the climber is
that the velocity of climber should be much smaller than the wave propagation speed p<V,
where p is the velocity of climber. Taking the upward transfer as an example. Figure 7 shows

the geometrical configuration of deformed tether in the first 11s. Figure 8 shows the wave
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propagation from the bottom (the climber position) to the top (the main satellite). It is noted from
Table 2 that the climber’s speed is much smaller than the wave propagation speed. This is good

because the wave propagation will not interference with the motion of climber.
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Fig. 7 Deformed tether in orbital frame in upward transfer (the first 11s in 1s interval).
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Table 2. Tether tension and corresponding wave propagation speed along the tether.
Time (s) | Tension in element connected to climber (N) [ Wave propagation speed (m/s)
1 277.86 310.61
2 297.63 321.47
3 299.42 322.44
4 293.95 319.48
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5 284.20 314.14
6 280.78 312.24
7 284.15 314.11
8 285.95 315.10
9 282.52 313.20
10 278.60 311.02
11 279.30 311.42

In the second validation case, the masses of the climber, the subsatellite, and the tether are no
longer negligible compared with the mass of main satellite. The movement of the climber will

change the CM position of the TTS system. The initial conditions and physical parameters in [5]

r(0)=6600km  y(0)=1.178x10" rad/s o (0)=a,(0)=6,(0)=d,(0)=0

are used:

L=10km "y =M, =1000 kg’ m, =100 kg’ and V:Im/s. Only the upward movement is

considered here due to the similarity exists between the upward and downward movement for this
TTS. The climber starts at 100 m from the sub satellite and travels upward 9800 m along the tether.
The comparisons of libration angles of the TTS and the trajectory of the climber are shown in Figs.
9-10. It can be seen that both the libration angles and trajectory agree well in general with the
results of two-piece dumbbell model of [5]. However, there is noticeable differences in climber’s
trajectory and libration angles, see Figs. 9-10. The reason that causes the differences is the
significant difference in the variation of the orbital radius of CM, see Fig. 9(a). In the current
model, the CM of the TTS system is increased only by 460m as the result of upward transfer, which
is the same as the simple calculation based on energy balance. Our results are also very similar to
the results of Kojima et al. [17] in a similar case. The CM variation in Ref. [5] is about 30km, see
Fig. 9(a). Fora TTS with a 10km long tether, this implies the entire TTS is moving up and down
in the upward transfer by 30km. This is unlikely because the variation of orbital potential energy
is much greater than the energy input to the TTS by moving the climber upwards. To explore the

influence of the orbital radius change of CM, we conducted a case study with a constant orbital
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radius » = 6,600km in Egs. (16) and (17) of Ref. [5]. The comparison is added to Fig. 9. As
expected, the difference between the proposed approach and the model in Ref. [5] with a constraint
ris very small. It justifies the use of Ref. [5] for validation.

In conclusion, these cases validate that the proposed method.
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g 3
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Fig. 10. Climber Trajectory with respective to CM in orbital frame in upward transfer.

B. Effectof the tether discretization scheme
In this section, the effect of the tether discretization scheme on the dynamic response of TTS with

one climber is investigated. The tether was discretized into two, four, 10 elements and 20 elements,

21



respectively. For the number of elements greater than two, the merging and dividing elements

occurs as the climber across the element boundary. Accordingly, the degree-of-freedomofthe TTS

model varies. The parameters of the dividing and merging elements are given as: L =3000 m,
L =1000 mand L, =500 m for the 4-element, the 10-element and 20-element discretization

schemes respectively, L _=1.65L, L =049L and &, =10~ m. Unless noted otherwise,

m

the following parameters of the TTS are used in this section: the circular orbital radius of CM is
6600 km, m,=m =1000 kg, m, =100 kg, L=10km, and V, =1 m/s. The climber starts at
0.01 L from the sub satellite and stops at 0.99L from the main satellite, which means the material

coordinate of the climber changes from 100 m to 9,900 m. A converging index is defined to show

the convergence of the solution of climber’s position vs the element numbers,

V=) (- ) +(z-2.)
R = : 100%
oz, .

where j and k represent the different successive discretization schemes.

The analysis results are shown in Figs. 11-13. It can be easily observed that the general trends
of the libration angles of the TTS are similar for discretization by different element numbers, see
Figs. 11-12. However, it is noted that the tether transverse oscillation motion becomes obvious
with more tether elements. Therefore, it indicates that more elements should be used to capture the
high frequency transverse oscillation of tether. The same phenomenon is found in the variation of
tether geometrical configuration, see Fig. 13. Furthermore, the analysis also reveals that the
constant velocity profile of climber is not realistic and is responsive partially for the high frequency
transverse oscillation.

The influence of finite element discretization on the solution accuracy is shown in Table 3. It is

noted the difference in solutions between two successive finite element discretization schemes
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decreases as the element number increases. For instance, the difference between the 10-element
and 20-element discretization R10,201s around 0.2%, which is negligible. Moreover, as the tether is
discretized into more elements, the computational loads increases significantly. Therefore, the 10-
element discretization is used in the following analysis.

Next, a more realistic start-stop velocity profile of the climber, instead of constant velocity, is
considered to investigate the dynamic response of the TTS. The motion profile of the climber
contains an acceleration phase, a constant velocity cruise phase, and a deceleration phase, as shown
in Eq. (26). The non-dimensional parameter 7 defines the time duration of acceleration to the time

of cruise Refs. [3, 8]. In the current work, the acceleration and deceleration phases are equal:

1 Le‘] : [1 I/cr J Vcr
———Lsin| —7 ¢ |+t 1<t

pr r L, 2

a
pj,desired: I/crt_ELeq tagtstb (26)
1L, 1—
— ‘qsm( =< (t—tb)j+ ”t+—TLeq 1, <t<t,
T r L,

where L, and V, are the equivalent moving distance and cruise velocity, respectively.

p=2r. t,=tL, V., t,=L,[V., and t,=(1+7)L, [V, .

First, the effect of the magnitude of cruise velocity on the dynamic response of TTS is
investigated. The parameter a is set as 0.2, and three cases are conducted with the cruise velocity
being 1 m/s, 2 m/s, and 4 m/s, respectively. The results are shown in Figs. 14 - 15. Figure 14 shows
the libration angles of TTS system, where the x-axis represents the variation of material coordinate.
The oscillation amplitude of the libration angles increases as the magnitude of cruise velocity
increases. The same phenomenon can be observed from the trajectories of two satellites and the

climber, seen Fig. 15.
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Table 3. Convergence of position solution of climber vs different discretization schemes

Time (s) R4 (%) R4.10 (%) R10.20 (%)
100 2.71 0.51 0.18
2000 7.78 0.90 0.03
4000 2.93 0.96 0.20
6000 1.12 0.69 0.21
8000 9.18 0.29 0.12
9500 2.87 0.54 0.23
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Then, the effect of parameter a on the dynamic response of TTS system is investigated. The
cruise velocity Ve is set as 4 m/s. Four cases are conducted with a being 0.1, 0.3, 0.6, and 0.9,
respectively. Asshow in Fig. 16, the totaltime of the transient motion varies due to different values
of a. To observe the residual libration of the climber upon climber arrest, the simulation time is
extended by 1,000 s. The results are shown in Fig. 17. It shows the a significantly affects the

libration angles. The increase of a represents the decrease of the applied Coriolis force induced by
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the climber motion. Furthermore, the residual libration motion is observed and the amplitude of

residual libration decreases as the time a increases. The results indicate that gradual acceleration

and deceleration is helpful for the suppression of libration angles of the climber.

Velocity of Climber (m/s)

Velocity of Climber (m/s)

5.0

(b)

Time (s)

7=0.1
=03
7=0.6
=09
4900 9800

Climber moving distance (m)

7=0.1

-7 ety =03

T =06

=09

T T
2000 000 6000

Fig. 16. Velocity profiles of climber with different values of z.

a, (rad)

—O0—a=01-°0—-a=03 2—a=06—v—a=09

0.20

0.00 -

0.05

-0.20 1 -
020 0.00 e

2000

-0.40 T T
0 2000

T
4000
Time (m)

6000

-0.05 T
0 2000

(b)

Time (m)

6000

Fig. 17. Libration angles: (a) Libration angle a;. (b) Libration angle a...

C. The dynamic behavior of TTS with multiple climbers

Multiple climbers with proper phase shift have been proposed to suppress the libration of TTS
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downtozero [2, 3]. For simplicity, each climber is assumed to be the same (same mass = 33.333kg)
and to move with the same velocity profile in Eq. (26). Each one is launched with a delay of 100
s. The parameter a is 0.2, the cruise velocity Ve is 4 m/s and the equivalent moving length Leg is
9,867 m. As shown in Fig. 18, both the upward and downward transfers of climbers are analyzed.
The results are shown in Figs. 19-21.

The time history of libration angles is shown in Fig. 19. Itis easily seen that the libration angles
experience a high frequency oscillation as the climbers approaching to the end. This is because the
climbers are too closer to each other at the end, and the shorter the tether between the climbers the
higher the oscillation frequency. Figure 20 shows the variation of the main and sub satellite
positions in the orbital frame. It can be found that both satellites move in the Z-axis of the orbital
frame, seen in Fig. 20(a) and (c). The reason for this phenomenon is that the CM of the TTS
changes as the climber moves up/down, and the origin of the orbital frame is at the CM position.
For example, both the main and sub satellites move up for the upward transfer motion by 459m
and 467m, respectively. These two values are a slightly different from analytical solutions of
463m, which is calculated based on the rigid vertical tether model. The difference is caused by the
swing libration motion of the TTS and the bending of tether; see Fig. 20(b) and (d) and Fig. 21,
which is ignored in the analytical solution.

In conclusion, the proposed method reveals the high frequency oscillation of TTS in the orbital
transfer, which is not available by the rigid tether model. The oscillation could affect adversely the

safe operation of TTS, especially causing the fatigue failure of tether, and must be considered.
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IV. Conclusions
A high-fidelity model of the tether transportation system is proposed by the nodal position finite
element in the arbitrary Lagrangian-Eulerian description. A material coordinate is introduced as
the state variable that is not associated with the finite element mesh. Two types of element are
defined, the variable-length and constant-length elements, and the nodes where the climbers
located are defined as the moving nodes associated with the material coordinates. The proposed
method reveals that the orbital transfer by the climber will induce high frequency transfer
oscillation of tether, which is not discovered by the existing rigid tether approach. The oscillation

could lead to the fatigue failure of tether and must be considered.
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Appendix

A. The extended mass matrix M, , can be written as,
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Me,k: Mlg M, M,
M1T2 Msz M.,

where the sub matrix M|, 1s the same as Refs. [18, 19], the others are defined as follows,
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B. The detailed expressions of the additionalterm @,, due to the mass flow are obtained as,
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C. The detailed expressions of elastic force Q,, (Qe 02,00, )T are as,
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where €, is the average value of strain in the k-th element.

. . . . T
The detailed expressions of the gravitational force term Q_, = (Q;’k,Q;,(,Q;k) are,
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