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Abstract

The Internet of Things (IoT) is a system of inter-connected computing devices, objects and

mechanical and digital machines, and the communications between these devices/objects

and other Internet-enabled systems. Scalable, reliable, and energy-efficient IoT connectivity

will bring huge benefits to the society, especially in transportation, connected self-driving

vehicles, healthcare, education, smart cities, and smart industries.

Multi-tier heterogeneous cellular networks have been a key technology in the development

and implementation of the IoT. In this dissertation, we study heterogeneous cellular networks

that are composed of two tiers: Tier 1 consists of macro base stations (MBSs) with higher

transmission power and lower deployment density. Tier 2 consists of small base stations

(SBSs) with lower transmission power and higher density deployment. SBSs are also termed

aggregators in the context of several IoT applications that involve heavy data traffic in the

uplink direction from devices to the core network.

The objective of this dissertation is to model and analyze the performance of large-scale

heterogeneous two-tier IoT cellular networks, and offer design insights to maximize their

performance. Using stochastic geometry, we develop realistic yet tractable models to study

the performance of such networks. In particular, we propose solutions to the following

research problems:

• We propose a novel analytical model to estimate the mean uplink device data rate

utility function under both spectrum allocation schemes, full spectrum reuse (FSR)

and orthogonal spectrum partition (OSP), for uplink two-hop IoT networks. The

model takes into account the aggregator spatial density, aggregator association bias and

spectrum partition ratio across the MBS tier and the aggregator tier, and device and

aggregator power control fractionals (PCFs). We develop constraint gradient ascent

optimization algorithms to obtain the optimal aggregator association bias (for the

FSR scheme) and the optimal joint spectrum partition ratio and optimal aggregator

association bias (for the OSP scheme).
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• We study the performance of two-tier IoT cellular networks in which one tier operates

in the traditional sub-6GHz spectrum and the other, in the millimeter wave (mm-

wave) spectrum. In particular, we characterize the meta distributions of the downlink

signal-to-interference ratio (sub-6GHz spectrum), the signal-to-noise ratio (mm-wave

spectrum) and the data rate of a typical device in such a hybrid spectrum network.

We characterize the conditional success probability (CSP) and its bth moment for (1)

a typical device when it associates with a sub-6GHz MBS (direct transmission), (2)

a typical device when it associates with a mm-wave SBS (access transmission), and

(3) the tagged SBS when it associates with a sub-6GHz MBS (backhaul transmission).

Finally, we characterize the meta distributions of the SIR/SNR and data rate of a

typical device by substituting the cumulative moment of the CSP of a user device into

the Gil-Pelaez inversion theorem.

• We propose to split the control plane (C-plane) and user plane (U-plane) as a po-

tential solution to harvest densification gain in heterogeneous two-tier networks while

minimizing the handover rate and network control overhead. We develop a tractable

mobility-aware model for a two-tier downlink cellular network with high density small

cells and a C-plane/U-plane split architecture. The developed model is then used to

quantify the effect of mobility on the foreseen densification gain with and without

C-plane/U-plane splitting.
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Chapter 1

INTRODUCTION

1.1 Introduction

The Internet of Things (IoT) is defined as the ever-growing network of smart physical objects

and devices that are capable of sensing and acting on their environment, and the commu-

nications between these devices and other Internet-enabled systems. The IoT is growing so

fast such that every object or device eventually needs a connection to the Internet. The

IoT enables smart devices to be more actively involved in people’s everyday life, industry,

business, healthcare, and transportation.

IoT networks will connect washing machines, smoke detectors, fridges, farm animal sen-

sors, fleets of cars, fitness bands, thermostats, smart watches, sleep monitors, garbage bins

and street lights with sensors for monitoring traffic, air pollution, noise and parking. Hence,

it will result in a more intelligent connected society and that creates smart cities.

Everyone, from consumers to large corporate companies, is embracing the changes brought

by the revolutionary IoT. It has changed the world in more ways than we could imagine

until a few years ago. Already the numbers are staggering: billions of sensors connected

with billions of devices are redefining almost everything in our daily life. It is estimated that

around 75 billion devices will be interconnected by 2025 [1].
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Due to the ever increasing number of devices and thus network traffic demands, several

trends have emerged in future cellular networks such as network densification, heteroge-

neous multi-tier networks, and the use of the millimeter-wave spectrum to complement the

traditional sub-6GHz spectrum.

State-of-the-art 5G networks are expected to achieve thousandfold capacity improvements

with at least hundredfold increases in data rates and one order of magnitude delay reduction

[2]. Network densification, via deployment of small base stations (SBSs), is among the key

solutions to achieve this ambitious performance goal in 5G cellular networks [2]. Network

densification via deployments of SBSs is preferred over deployments of macro base stations

(MBSs) due to lower cost and faster deployment. It is expected that cellular network opera-

tors will significantly densify their networks by deploying SBSs to meet the 5G performance

requirements.

A multi-tier heterogeneous cellular network comprises a tier of conventional MBSs, over-

laid with a diverse set of lower-power base stations (BSs) such as picocells, small bases

stations (SBSs), femtocells, and relay BSs [3]. Multi-tier heterogeneous cellular networks

are expected to be a key deployment method of 5G cellular networks to increase network

capacity and end user throughput [4] as well as to provide expanded indoor and cell edge

coverage. The tiers of BSs are ordered based on transmission power of BSs with tier 1 con-

sisting of MBSs which have the highest transmitted power. In general, due to differences in

deployment, they also will have different path loss exponents and spatial densities (e.g., the

number of BSs per square kilometre).

Figure 1.1 shows an example of a two-tier network. Tier 1 consists of MBSs with higher

transmission power (in the downlink direction) and lower deployment density. Tier 2 consists

of small bases stations (SBSs) with lower transmission power (in the downlink and uplink

directions) and high density deployment. In order to provide relief to the MBS tier, which

is and will continue to be the main bottleneck, the SBSs should be designed to have a bias

towards connecting more users to itself [3], since they typically carry lighter loads than MBSs

due to their smaller coverage areas.
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Figure 1.1: Large-scale heterogenous two-tier IoT networks.

A heterogeneous network uses a mixture of MBSs tier and low power BSs tier such as pic-

ocells, femtocells, and relays. The BSs in each tier communicate with devices with different

transmitted power and are deployed with different densities. These networks with multiple

tiers will improve spatial reuse and coverage in order to achieve higher data rates, while

retaining seamless connectivity and mobility. Another source of heterogeneity is the coex-

istence of multiple spectrum; for example, the MBSs operate on the traditional sub-6GHz

spectrum, while the SBSs communicate with user devices on the millimeter-wave spectrum.

As the sub-6GHz spectrum is running out of bandwidth to support a huge number of de-

vices, operators of the upcoming 5G networks will tap into the millimeter-wave (mm-wave)

spectrum. The mm-wave spectrum has wider bandwidths that can meet higher traffic de-

mands and support data rates into the order of gigabits per second [5]. Millimeter wave

(mm-wave) communication is one of the a key enabling technologies for future next gener-

ation wireless communications due to its abundant spectrum resources, which can lead to

data rates of multiple of gigabits per second [6, 2]. Millimeter wave brings a positive effect

on the network performance, which is the mitigation of the overall interference [4].

Since the mm-wave transmissions are highly susceptible to blockages and penetration

losses, mm-wave spectrum and sub-6GHz spectrum will coexist in 5G networks [7, 8]. How-
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ever, mm-wave communication has unique features such as directivity, sensitivity to block-

ages, and higher path losses. Therefore, mm-wave communications have fundamental differ-

ences compared with the current sub-6GHz communications [4].

Due to these differences, the unique features of mm-wave communications are required

to be thoroughly considered in the design of network architectures and protocols in order to

fully exploit the potentials benefits of mm-wave communications.

The overarching goal of the research in this dissertation is to model and analyze the per-

formance of large-scale heterogeneous two-tier IoT networks with new design, technologies,

and algorithms. Following are the motivations behind our research and the contributions of

the dissertation.

1.2 Motivations and Contributions of the Dissertation

Large-scale heterogeneous cellular networks is very important and will be deployed widely in

a near future to implement and support the IoT. The focus of the thesis is to use tools from

stochastic geometry to model and analyze the performance of heterogeneous IoT cellular

networks.

1.2.1 Motivations

We have identified gaps in existing research in several areas such as data rate analysis for

uplink two-hop networks, the meta distributions of the SIR/SNR and data rate in coexist-

ing sub-6GHz and mm-wave cellular networks, and the effect of mobility on the foreseen

densification gain with a C-plane/U-plane split architecture.
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Data Rate Utility Analysis for Uplink Two-Hop Internet-of-Things Networks

Existing works on performance modeling and analysis of IoT networks have focused on

estimating the coverages and data rates of different transmission schemes for multi-hop uplink

communications in M2M networks [9,10,11]. Recently, works on performance modeling and

analysis of two-hops IoT networks have appeared in [12,13,14,15,16]. Among these [12] and

[13] address the problem of scheduling in uplink two-phase cellular-based massive machine

type communication (mMTC) networks. Kim et al. [14] study the optimal settings of the

network parameters in terms of the number of aggregators and packet-bundle size. Rigazzi

et al. [15] investigate trade-off between the packets latency and the transmission power.

Rao et al. [16] study the performance of different device-aggregator association schemes.

Research on resource allocation and energy efficiency of two-hop IoT networks has recently

appeared [17,18,19,20,21,22]. An energy-efficiency cluster head selection scheme and resource

allocation to perform device grouping were proposed in [17, 18, 19, 20, 21] to maximize the

network life. However, the problem of determining the mean uplink data rate utility over

two consecutive hops in the uplink direction (i.e., from devices to aggregators to MBSs) has

not been addressed in the literature.

Having identified this gap in the literature, we develop a novel analytical model to estimate

the mean data rate utility function (DRUF) in the uplink direction of a two-hop IoT network

to ensure rate fairness among devices (i.e., by maximizing the log of the uplink DRUF) and to

improve device data rates. To the best of our knowledge, our work is the first that proposes

an analytical model to estimate the log of the uplink DRUF of a two-hop IoT network. This

estimate is critical in the design and deployment of IoT networks in order to improve the

data rate of IoT links and to ensure rate fairness among devices.
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The Meta Distributions of the SIR/SNR and Data Rate in Coexisting Sub-6GHz

and Millimeter-wave Internet of Things Cellular Networks

A variety of research works study the coverage analysis of mm-wave only cellular networks

[23, 24, 25, 26]. For instance, Di Renzo et al. [23] propose a general mathematical model to

analyze multi-tier mm-wave cellular networks. Bai et al. [24] derive the coverage and rate

performance of mm-wave cellular networks. Turgut and Gursoy [25] investigate heteroge-

neous downlink mm-wave cellular networks consisting of K tiers of randomly located BSs

where each tier operates in a mm-wave frequency band. Deng et al. [26] derive the success

probability at the typical receiver in mm-wave device-to-device (D2D) networks.

Some recent studies analyze the success probability of coexisting µwave and mm-wave

cellular networks. A hybrid cellular network is considered by Singh et al. [27] to estimate the

uplink and downlink coverage and rate distribution of self-backhauled mm-wave networks.

Elshaer et al. [28] develop an analytical model to characterize decoupled uplink and downlink

cell association strategies. Singh et al. [27] and Elshaer et al. [28] model the fading power

as Rayleigh fading to enable better tractability.

To the best of our knowledge, our work is the first to characterize the meta distributions

of SIR/SNR and data rate for coexisting µwave and mm-wave IoT networks. Different from

previous research in [25, 29, 28, 30, 26, 24, 28], we propose a stochastic geometry framework

that focuses on modeling and analyze the meta distributions of the downlink SIR/SNR

and data rate of a typical device in a coexisting µwave and mm-wave cellular IoT networks

taking in consideration (i) coexistence of two different network tiers with completely different

channel propagation, interference, and fading models, (ii) dual-hop transmissions enabled

by two different spectrums, one in each network tier, and (iii) Nakagami-m fading model

with shape parameter m for LOS mm-wave channels. Nakagami-m fading is a generic and

versatile distribution that includes Rayleigh distribution (typically used for non-LOS fading)

as its special case when m = 1 and can well approximate the Rician fading distribution for

1 ≤ m ≤ ∞ (typically used for LOS fading).
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Mobility-Aware Modeling and Analysis of Dense Cellular Networks with C-

plane/U-plane Split Architecture

The past five years have witnessed a plethora of stochastic geometry based models that

tackles different aspects in cellular networking [31,32,3,33,34,35,36,37,38,39,40]. However,

the majority of these models do not account for mobility and focus on the performance of

stationary devices. For instance, coverage probability and rate performance are characterized

for single-antenna downlink connections in [31, 32, 3], for single-antenna uplink connections

in [34], and for downlink connections with multiple antennas in [35,36]. Stochastic geometry

also helps characterizing the performance of CP/UP split architecture in cellular networks.

For instance, the effect of vertical offloading and BS sleeping on the energy efficiency for

the CU/UP split architecture is studied by Zhang et al. [39]. In [40], the throughput

of the CU/UP split architecture is studied. However, none of the aforementioned studies

incorporates the effect of mobility and handover into the analysis.

Surprisingly, few models can be found in the literature that exploit stochastic geometry

to characterize mobility in cellular networks. The handover rate in cellular networks is first

characterized by Lin et al. [41], in which expressions for the handover rate are derived for

random waypoint mobility model in a single-tier cellular network. The handover rate for

multi-tier cellular networks is characterized by Bao and Liang [42] for arbitrary mobility

model. However, neither [41] nor [42] investigates the effects of handover on important

performance metrics such as coverage, rate, or delay. The handover effects on coverage and

rate are investigated by Sadr and Adve [43] for random way point mobility model. Note that

the handover cost factor in [43] is considered as a network parameter that reflects the SINR

degradation during handovers. Zhang et al. [44] investigate the effect of delay-reliability

tradeoff in dense cellular networks for static and high mobility devices under a time slotted

transmission scheme. However, the results in [44] may be misleading because the model only

captures the positive impact of mobility and overlooks the performance degradation that

may occur due to handover signaling and delay.
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Different from the existing literature, our proposed mobility-aware paradigm captures the

handover effect on the devices throughput in the conventional and CP/UP network archi-

tectures. Different from [43], the handover cost is not assumed and is rigorously derived

from the system model. Also, different from [44] and [45], the developed model accounts

for the handover effect and is not tailored to a specific mobility model. Furthermore, the

developed model accounts for signaling overhead, flexible device association scheme via as-

sociation biasing, the availability of X2 interface between BSs, and almost blank subframes

(ABS) coordination between MBSs and SBSs.

Having identified gaps in existing research, we propose solutions in order to address them.

In particular, our contributions in this dissertation are as follows

1.2.2 Detailed Contributions

Data Rate Utility Analysis for Uplink Two-Hop Internet-of-Things Networks:

High interference is a critical factor in large-scale IoT networks due to dense deployments

and a huge number of devices such as sensors, actuators and machinery which are deployed

in the manufacturing and supply chain industry for monitoring products, data aggregation

and analysis, asset management, maintenance planning, and plant control and optimiza-

tion. High interference in the uplink direction would reduce the uplink data rate. Therefore,

minimizing interference and improving the data rate are critical factors to study for IoT

networks. Therefore, we study the fundamental problem of spectrum allocation and de-

vice association in uplink two-hop IoT networks under two schemes of spectrum resource

allocation: a) orthogonal spectrum partition (OSP) and b) full spectrum reuse (FSR).

We propose a model to estimate the mean uplink data rate utility that takes into account

different key network parameters, namely, power control fraction (PCF) and spatial density

of aggregators. In the proposed model, we propose a framework for maximizing the mean

uplink data rate utility using stochastic geometry and based on the uplink device coverage

probability. The uplink device coverage probability is a function of the aggregator bias for
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device association and spectrum partition ratio across the macro base station (MBS) tier and

the aggregator-tier. We use constraint gradient ascent optimization to obtain the optimal

aggregator association bias (for the FSR scheme) and the optimal joint spectrum partition

ratio and aggregator association bias (for the OSP scheme). We confirm the accuracy of the

developed constraint gradient ascent optimization algorithms using simulations.

Using the proposed model, we study the impact of device and aggregator PCFs and the

spatial density of aggregators on the mean uplink data rate utility function, and obtain

network design insights such as the optimal aggregator association bias and spectrum parti-

tion ratio. Simulation results show that the proposed optimized OSP and FSR schemes, by

reducing interference, outperform other benchmark schemes such as the minimum-distance

based association scheme and the maximum-SIR based association scheme in terms of uplink

mean per-device data rate distribution.

The Meta Distributions of the SIR/SNR and Data Rate in Coexisting Sub-6GHz

and Millimeter-wave Internet of Things Cellular Networks:

The meta distribution is a unified performance metric that captures important network

performance measures such as the coverage (or success) probability and the mean local

delay as its special cases. We characterize the meta distribution of the downlink signal-

to-interference-ratio (SIR)/signal-to-noise-ratio (SNR) and data rate of a typical device in

a coexisting sub-6GHz and millimeter wave (mm-wave) cellular network using tools from

stochastic geometry. Macro base stations (MBSs) transmit on sub-6GHz channels (which

we term “microwave” channels for short), whereas small base stations (SBSs) communicate

with devices on mm-wave channels with Nakagami-m fading. The SBSs are connected to

MBSs via a microwave (µwave) wireless backhaul. A typical device associates itself with

either a MBS or a SBS, depending on the biased received signal power criterion.

We first characterize the association probabilities of a typical device to a µwave MBS, a

line-of-sight (LOS) mm-wave SBS and a non-LOS (NLOS) mm-wave SBS. Then we charac-
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terize the conditional success probability (CSP) and its bth moment for (a) a typical device

when it associates with a µwave MBS (direct transmission), (b) a typical device when it asso-

ciates with a mm-wave SBS (access transmission), and (c) the tagged SBS when it associates

with a µwave MBS (backhaul transmission). Finally, we characterize the meta distribution

by substituting the cumulative moment of the CSP of a device into the Gil-Pelaez inversion

theorem. We provide closed-form approximations of the meta distribution using the Beta

distribution. We then characterize special cases such as the mean local delay, variance of the

CSP, and success probability of a typical device. Following similar steps, we characterize the

meta distribution of the downlink SIR of a typical device in a µwave-only network where ac-

cess and backhaul transmissions are conducted on orthogonal µwave (sub-6GHz) frequency

channels and mm-wave-only IoT networks where access and backhaul transmissions are con-

ducted on orthogonal mm-wave frequency channels. We present numerical results which are

corroborated by Monte-Carlo simulations, and provide valuable insights into the mean local

delay, variance of CSP, and success probability of a typical device.

Mobility-Aware Modeling and Analysis of Dense Cellular Networks with C-

plane/U-plane Split Architecture:

Mobility has a big impact on per-device throughput in high dense cellular environments.

The unrelenting increase in the population of mobile devices and their traffic demands drive

cellular network operators to densify their network infrastructure. Network densification

shrinks the footprint of base stations (BSs) and reduces the number of devices associated

with each BS, leading to an improved spatial frequency reuse and spectral efficiency, and

thus, higher network capacity.

However, the densification gain come at the expense of higher handover rates and net-

work control overhead. Hence, devices mobility can diminish or even nullifies the foreseen

densification gain. In this context, splitting the control plane (C-plane) and user plane (U-

plane) is proposed as a potential solution to harvest densification gain with reduced cost in

terms of handover rate and network control overhead. Therefore, we use stochastic geometry
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to develop a tractable mobility-aware model for a two-tier downlink cellular network with

ultra-dense small cells and C-plane/U-plane split architecture. The developed model is then

used to quantify the effect of mobility on the foreseen densification gain with and without

C-plane/U-plane split.

To this end, we shed light on the handover problem in dense cellular environments, show

scenarios where the network fails to support certain mobility profiles, obtain network design

insights, and show effect of the handover delay problem in dense cellular environments and

show the potential delay mitigation via the CP/UP split architecture.

1.3 Organization of the Dissertation

The remainder of the thesis is organized as follows. We provide a review of background

and related work in Chapter 2. In Chapter 3, we present analytical model and simulation

results that characterize the data rate utility for uplink two-hop IoT networks. In Chapter

4, we develop a systematic framework to characterize the meta distributions of the downlink

SIR/SNR and data rate of a typical device in an IoT cellular network with coexisting sub-

6GHz and millimeter-wave spectrums. In Chapter 5, we propose a novel mobility-aware

analytical model of the C-plane/U-plane split radio access network architecture with flexible

device association for future highly dense heterogeneous cellular networks. We conclude the

thesis, and outline future research directions in Chapter 6.
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Chapter 2

Literature Review

This chapter begins with an overview of background about key performance indicators (KPIs)

used in stochastic geometry to characterize the performance of wireless communications

networks and stochastic point processes used to represent different network deployments.

Then we survey existing related works on performance modeling and analysis of large-scale

IoT networks.

2.1 Background

Wireless communication engineers used to model 1G, 2G, and 3G cellular networks by mod-

eling base stations according to a hexagonal grid and mobile users are distributed determin-

istically or distributed uniformly as Poisson point processes (PPPs) [46, 47, 48, 49]. These

types of models were widely used to analyse and design old cellular networks, but they are

extremely idealized and not tractable. Therefore, complex extensive simulations are used to

calculate key performance metrics such as coverage probability for a specified target rate or

average data rate.

The research on the fourth generation of wireless mobile communications (4G) [50, 51]

aimed to provide such a large-scale IoT connectivity. However, the urgent necessity to serve
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high volumes of human-generated communication traffic, e.g. web browsing, IoT connectiv-

ity was excluded from the major design objectives of 4G wireless networks [52]. The first

attempts for creating IoT connectivity were made during the transition period from 3G to

4G by companies outside the 3rd Generation Partnership Project (3GPP). Those early IoT

solutions operated over the unlicensed spectrum, e.g., SigFox, before the public introduc-

tion of 4G networks [52]. Enabling large-scale IoT connectivity became a crucial subject

in industry and academia after the successful and widespread deployment of 4G networks.

The research on large scale IoT was embedded in most big projects aimed at shaping 5G

networks, e.g., METIS I and II [53].

Recently, 4G cellular networks suffers from the scarcity of the available licensed and un-

licensed radio spectrum. These reasons lead to 1) deployment of lower power BSs such as

micro BSs, pico BSs, femto BSs, aggregators, phantom BSs, and relays, distributed antennas

underlaid, 2) needs for new tools to design, model, and analyse the new cellular networks

with the random deployment nodes’ locations. Therefore, modern heterogenous cellular net-

work topologies are more suitably represented by random deployments than by deterministic

deployments, especially those that involve deployments of several types of low power BSs.

Using stochastic geometry to model, analyze, and design cellular networks with random

deployments has gained much popularity in industry and academia recently due its tractabil-

ity [54]. Point processes are used to model the locations and channel access of base stations

and mobile users. Stochastic geometry is a very suitable tool to model, design, and analyze

this kind of random deployments [54]. The main idea is to use random spatial models, i.e.,

point processes to represent locations of base stations based on probability distributions in-

stead of fixed locations assumed in commonly used deterministic models such as grid-based

models [55, 54, 56, 57, 58, 59, 60, 61].

Future cellular networks 5G and beyond (6G) are characterized by randomly deployed

and heterogeneous deployments with high densities of base stations. Therefore, base sta-

tions and mobile users locations are modeled using stochastic point processes, which allow

the application of powerful tools of stochastic geometry to network performance analysis.
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Stochastic geometry is a powerful mathematical tool that captures the irregular deployment

of heterogenous cellular networks with several types of low power BSs. It provides spatial

averages (i.e., averages taken over a large number of nodes at different locations or over many

network configurations) of important performance metrics such as interference, signal to in-

terference plus noise ratio (SINR), outage probability, and average data rate. In other words,

stochastic geometry is used to study the average behavior over many spatial realizations of

a cellular network where its BSs in each tier are located according to some probability dis-

tribution. Stochastic geometry uses point process or random point pattern to statistically

describe patterns produced by points in the n-dimensional space [55,54,56,57,58,59,60,61].

2.1.1 Key Performance Indicators

Wireless communications engineers have used the following performance metrics for cellular

network operations:

• Coverage probability: the probability that the SINR at the mobile users greater than

a predefined threshold value T which defines correct signal reception. The coverage

probability Pc is a function of SINR, which is defined as Pc = P (SINR > T ). The

outage probability Pout is defined as Pout = 1− Pc.

• Spectral efficiency: the average rate at which data can be sent over a given chan-

nel bandwidth. The spectral efficiency is a function of the SINR as follows: R =

log2 (1 + SINR).

• Mean local delay: the average amount of time required to successfully transmit a

packet. Specifically, the average time for retransmissions required to transmit a packet

from a transmitter to a receiver successfully. The delay can be inferred as 1
Pc
.

• Spectral frequency reuse efficiency: an indication of how many times the fre-

quency is being reuse over the spatial domain of the entire network.
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• Energy efficiency: the rate at which data can be delivered between a transmitter

and a receiver per power unit. Interference management helps to increase the energy

efficiency of the cellular network because it reduces interference without increasing

the power of the desired signal. When you have low interference this leads to higher

SINR, higher delivered average data rate, higher coverage probability using the same

transmitted power without any increase.

• Link reliability: The distribution of the conditional success probability of the trans-

mission link, conditioned on the locations of the wireless transmitters, i.e., what frac-

tion of devices can achieve x% transmission success probability?

The impact of the SINR parameter on the performance of cellular networks is very signif-

icant. This fact is demonstrated in the definitions of the most commonly used KPIs shown

above, as SINRs appear in most definition.

Signal to Interference Plus Noise Ratio (SINR) Model

In cellular networks, signals are modulated and transmitted from the transmitter to the

receiver as electromagnetic waves. In the three-dimensional space, the signal power (wave

energy) of these waves attenuates as a function of the distance between the transmitter and

the receiver based on the following power law:

Pr(y) = Pt(x)Ahxyr
−α (2.1)

where y ∈ Rd is the location of the receiver, Pr(y) is the received power, x ∈ Rd is the

location of the transmitter, Pt(x) is the transmitted power, A is a propagation constant,

hxy is a random variable that represents the random channel gain between the transmitter

located at x and the receiver located at y, r =‖ x−y ‖ where ‖ . ‖ is the Euclidean norm, and

α is the path loss exponent. The decay or attenuation of signals is modeled as the product

of a large-scale path gain component and a small-scale multi-path fading gain component

as shown in Eq. (2.1). For multi-path fading, we consider a fading channel (for example
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Rayleigh fading) model in the desired link, i.e, signal attenuation due to multi-path fading

is modeled using an independent Rayleigh distribution such that the channel power gain

hxy ∼ exp(1). For the large-scale path gain, the received power decays with r−α. It is worth

noting that Eq. (2.1) represents the unbounded path loss model because of the singularity1

at r = 0. This path loss model is often used in the literature because of its tractability. It is

only valid for calculating the received power in the case of the far-field region (large r) [62].

There is a more realistic model called bounded path loss model that removes the singularity

at the origin. The bounded path loss model is given by

Pr(y) =
Pt(x)Ahxy
rα + δ

(2.2)

where δ > 0 is added to avoid the singularity. We will assume the unbounded path-loss

model given by Eq. (2.1) due to its simplicity.

When a set of channels is active simultaneously, the interference from other channels is

considered as noise. Therefore, the signal-to-interference-plus-noise (SINR) metric is used to

measure the theoretical rate of information transfer, or the upper bound on channel capacity

in wireless networks. From the unbounded pass loss law described by Eq. (2.1), we can infer

that the desired signal can get drowned in noise if the interferer is closer to the receiver than

the transmitter, assuming that the transmitter and the interferer transmitting with equal

power level. Therefore, the relative distances between the transmitter and the receiver and

between the interferer BSs and the receiver are very important to determine the performance

of wireless networks due to distance dependent signal power decay and the shared nature of

wireless media. Therefore, the topology of the network has a big impact on the receiver‘s

SINR and, overall, on the network performance. The SINR of a receiver in a wireless network

1A singularity is in general a point at which a given mathematical object is not defined, or a point of

an exceptional set where it fails to be well-behaved in some particular way, such as differentiability. For

example, the function f(x) = 1
x
on the real line has a singularity at x = 0, where it seems to ”explode” to

±∞ and is not defined
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can be calculated as follows:

SINR(y) =

Desired signal
︷ ︸︸ ︷

Pt(x0)Ahx0y ‖ x0 − y ‖−α

W
︸︷︷︸

Noise

+
∑

x∈I
Pt(x)Ahxy ‖ x− y ‖−α

︸ ︷︷ ︸

Aggregation interference

(2.3)

where y is the location of the receiver, x0 is the location of the transmitter, I = {x1, x2, x3, ....}
is the group of interferers that transmit simultaneously using the same frequency as the

transmitter, and W is the noise power. The term
∑

x∈I Pt(x)Ahxy ‖ x − y ‖−α= Iagg is

the aggregate interference at the receiver due to the interferers that transmit simultaneously

using the same frequency band used by the transmitter. It is clear that the statistical char-

acteristics of Iagg depend on the statistics of each interferer‘s signal power, which depends

on the propagation effects, the location of the interferer, and user activities (traffic model)

as shown in Fig. 2.1. The distances between the receiver and the interferers play an im-

portant role in the modeling of the performance of wireless networks. Therefore, based on

the network model, wireless network characteristics such as the topology, available channels,

traffic model, association model, and medium access control (MAC) protocol determine the

statistic characteristics of the aggregate interference signal. The aggregate interference can

be considered as finite or infinite. Aggregate interference is considered finite when only the

interferers inside a certain area (such as a disk) are included and interferers outside the disk

are excluded. Aggregate interference is considered infinite when all interferes in the wireless

network are included in the analysis.

We consider two-tier networks where the first tier consists of macro BSs (MBSs) that

transmit with the same power level P1 and the second tier consists of small cell BSs (SBSs)

that transmit with the same power level P2 where P2 < P1. Therefore, a mobile users is

associated with the BS (tagged BS) that offers the highest received power to the mobile

user. Assume that a mobile user is associated with a MBS where the mobile user receives

the higher power from this MBS than from other MBSs or SBSs. The distance between the

mobile user and the tagged MBS is d. Assume that the MBS tier and the SBS tier have the
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Desired signal

Interference Signal

Figure 2.1: A snapshot of a network. A signal is transmitted from a transmitter to a receiver

(solid black dots). Interferers transmit on the same frequency of the transmitter and the

receiver simultaneously. Interferers (blue dots) cause interference to the receiver.

same path loss exponent α1 = α2 = α. Therefore, the nearest interfering MBS is located

at a distance dintMBS
> d and the nearest interfering SBS will be located at a distance

dintSBS
> d

(
P2

P1

) 1
α
. Similarly, if the mobile user is associated with a SBS, the mobile user

receives the highest power from this SBS. The distance between the user and the SBS is d.

The MBS tier and SBS tier have the same path loss exponent α1 = α2 = α. Therefore, the

nearest interfering SBS is located at a distance dintSBS
> d and the nearest interfering MBS

will be located at a distance dintSBS
> d

(
P1

P2

) 1
α

.

The wireless network topology and the instantaneous channel fluctuation gain have a big

impact on the SINR experienced by each receiver at a certain point of time. Therefore,

the SINR experienced by each receiver is a random variable that mainly depends on the

wireless network topology and it changes from one time instance to another [63]. Stochastic

geometry is a mathematical tool that averages over all network realizations seen from a

arbitrary node weighted by their probability of occurrence [64] and [61]. In other words,
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stochastic geometry provides spatial averages, i.e., averages taken over a large number of

BSs at different locations or over many network realizations, of the metric of interest (e.g.,

interference, SINR, coverage probability, outage probability, and achieved data rate)[56].

Shannon Limit

The SINR is also used to compute the Shannon limit of a wireless communication channel

in cellular systems. Let C denote the capacity of an additive white Gaussian noise (AWGN)

channel. The key factors that govern the performance of a wireless cellular network are

shown in the following equation:

R < C =M

(
W

N

)

log2 (1 + SINR) bits/sec, (2.4)

where W is the available BS spectrum bandwidth, N is the number of mobile users connected

to the BS or the load and N ≥ 1, and M is number of spatial streams between the BS and

its mobile users. The data rate R of a mobile user is upper bounded by the capacity of the

AWGN channel as shown in Equation (2.4). From Equation (2.4), we can show that in order

to increase the capacity of the cellular network, we have to consider three main factors:

1) increasing the number of BSs, 2) increasing the channel bandwidth, and 3) increasing

number of special streams (spatial multiplexing factor). The spectrum bandwidth W can

be increased by adding more spectrum such as the available unlicensed spectrum. The load

factor N can be reduced through cell splitting or shrinking the coverages of BSs by deploying

small cells and distributing mobile user traffic as evenly as possible among all the BSs [65].

We can increase the spatial multiplexing factor M by adding more antennas to BSs and

mobile devises via the multiple-input and multiple-output (MIMO) technology.

2.1.2 Stochastic Point Processes

Using stochastic geometry, a network is modeled as a point process (PP) that represents

and captures the network characteristics and properties by using a mathematical model to
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represent the location of the network BSs. A PP is selected to match the locations of the

BSs in the wireless network and to represent the medium access control characteristics of

the wireless network. The most commonly used PPs to model wireless networks are Poisson

point process (PPP), binomial point process (BPP), hard core point process (HCPP), and

Poisson cluster process (PCP).

Poisson Point Processes

A PP ψ = {xi; i = 1, 2, 3, 4, .......} ⊂ R
d is a PPP with intensity λ if 1) the number of points

N(B) falling inside any compact set B ⊂ Rd is a Poisson random variable with a mean λ‖B‖
where ‖.‖ is the Lebesgue measure in a two-dimension space and λ is the expected number

of points per unit area and, 2) the number of points in a disjoint sets is independent. Figure

2.2 shows an example of a PPP.
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Figure 2.2: A Poisson point process in a 25m x 25m region with intensity 0.15 points/m2.

The PPP is used to model a wireless network which consists of an infinite number of
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BSs that are independently and randomly located in a finite or infinite area. The PPP is

considered as the most important commonly used PP modeling wireless networks due to its

independence property [66,67,68,69,70] . The PPP is widely accepted and well defined and

understood as this has been confirmed by experimental data [54, 71] and theoretical proofs

[72]. For instance, PPP can model BSs in a large scale wireless network and also can model

mobile users in a wireless cellular networks. The PPP can capture the performance pa-

rameters for planned infrastructure based wireless networks that have coordinated spectrum

access such as long term evolution (LTE) and LTE-Advanced. In such wireless networks,

the PPP provides tight bounds for the performance parameters such as in the case of wire-

less network densification [54]. Network models based on the PPP are significantly more

tractable than those based on traditional grid models. Moreover, network models based on

the PPP are producing tightly close performance metrics such as probability of coverage and

average data rate as the real measurments from cellular networks deployment. The PPP is

the parent PP for different other point processes that have been used in the literature of

modeling wireless communication networks such as Poisson cluster process and hard core

point process (HCPP of type I and HCPP of type II).

Based on all above considerations, cellular network models based on PPP are currently

used to design and analysis wireless cellular network networks. Di Renzo et al. [73] develop

a comprehensive mathematical framework for the analysis of the average rate of multi–tier

heterogeneous cellular networks. The authors assume that BSs in multi–tier heterogeneous

cellular are distributed randomly as a PPP spatial distribution. The pioneer work done by

Andrews et al. [54] to characterize the coverage probability and the average rate of PPP-

based cellular networks as closed-form. In [74], the framework of [54] was extended to model

multi-tier heterogeneous wireless networks as the superposition of many PPPs. Dhillon

et al. [75] studied multi-tier heterogeneous cellular networks using a PPP-based network

model by assuming a cell association criterion based on the maximum SINR. Dhillon et

al. [76] incorporated a flexible notion of BS load characteristics in random spatial PPP

models for K-tier heterogeneous wireless networks by introducing a conditionally thinning
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approach, conditional on the connection of a typical mobile user to its serving BS. Novlan

et al. [77] studied the coverage probability and average rate in the cellular uplink. The

probability density function (pdf) of the aggregated interference and the outage probability

were characterized in [68] for PPP-based wireless networks with deterministic channel gains

and pass loss exponent α = 4. Mathar et al. [47] evaluated the cumulated instantaneous

interference power in a Rayleigh fading channel for an infinite number of interfering stations

when the positions of stations follow a one- or two-dimensional PPP. Weber et al. [78] studied

the effect of channels fading, channel inversion power control, and threshold based scheduling

on the transmission capacity. Weber et al. [79] developed a tractable framework for analyzing

the performance and capacity improvement by using successive interference cancellations in

wireless ad hoc networks which are modeled as PPP. Optimal capacity extension policies

for a two-tier cellular network are developed in [37]. Lin at al. [41] determined handover

rates due to random waypoint mobility in single-tier cellular networks. Bao and Liang [42]

extended the results in [41] to multi-tier networks and mobility of arbitrary trajectories. Sadr

and Adve, [43] calculated the handover rate in multi-tier cellular networks, and compared

the coverage performance of stationary and mobile users. Syu and Lee, [80] studied the

feasibility of device-to-device communications, while Lin et al. [81] propose an optimal

spectrum partitioning between cellular and device-to-device users. Bai et al. [24] offered

design insights for mmWave based cellular networks. Jindal et al. [82] applied fractional

power control as a general approach to pairwise power control in decentralized networks, i.e.,

ad hoc or spectrum sharing. They modeled the cellular network as PPP. Then, they derived

the transmission capacity using decentralized power control policy.

Binomial Point Processes

A binomial point process (BPP) is a random pattern produced by locating a fixed number of

points N(B) that are falling inside any compact set B ⊂ Rd with a finite Lebesgue measure

L(B) < ∞, where L(.) denotes the Lebesgue measure. The Lebesgue measure is a way of

assigning a measure to subsets of an n-dimensional Euclidean space such as length, area, and
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volume. Assume that ψ = {xi; i = 1, 2, 3, 4, .......} ⊂ B. If the number of points N(b) inside

a compact set b ⊆ B is a binomial random variable and the numbers of points falling inside

a disjoint set are related via a multinomial distribution [83], then ψ is considered a BPP.

The BPP is used to model a wireless network which consists of a finite number of BSs

and the wireless network area is finite [84, 83], For instance, placing a set of wireless sensor

nodes in a parking lot to count the number of vehicles in and out.

Poisson Cluster Processes

A PCP point process is a random pattern produced by random clusters. A PCP is formed

from a parent PPP ψ = {xi; i = 1, 2, 3, 4, .......} by exchanging each point xi ∈ ψ by a cluster

of points Hi, ∀xi ∈ ψ, where the points in Hi are independently and identically distributed

in a spatial domain.

The PCP is used to model a wireless network in which BSs are clustered according to

social behaviour or by the MAC protocol [85, 64]. For instance, mobile users are gathered

around a WiFi access point (AP). Figure 2.3(b) shows a PCP and its parent PPP.

Hard-core Point Processes

A HCPP is a random pattern produced by a repulsive point process where no two points

of that process are separated by a distance less than a predefined hard core distance δ ≥ 0.

A point process ψ = {xi; i = 1, 2, 3, 4, .......} ⊂ Rd is considered a HCPP if ‖ xi − xk ‖≥ δ,

∀xi, xk ∈ ψ, i 6= k.

The HCPP is used to model a wireless network in which BSs are separated by a minimum

distance due to MAC layer characteristics, physical geographical constraints, or network

planning. For instance, the Matern HCPP is used to model the spatial locations of BSs

in wireless networks that use the carrier sense multiple access (CSMA) MAC algorithm

[86, 87, 88, 89, 90].
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(a) A PPP in a 25m x 25m region with intensity 0.15 points/m2
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(b) A PCP in a 25m x 25m region generated from the parent PPP in (a). The parent

PPP points are denoted by the blue crosses “+” while the added cluster points are

denoted by the red dots.

Figure 2.3: Poisson cluster process
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(a) A PPP in a 25m x 25m region with intensity 0.15 points/m2
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(b) A Matern HCPP of type I in a 25m x 25m region corresponding to the parent PPP

in (a) and hard core distance δ = 2m.

Figure 2.4: Hard core point process
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There are two types of Matern HCPP, type I and type II. Both are based on a parent

PPP of with intensity λPPP . In a Matern HCPP of type I , all nodes with a neighbor within

the hard core distance δ are thinned (eliminated). However, in a Matern HCPP of type II,

each node has a random associated mark, i.e, t ∈ [0, 1] and a BS is thinned only if there is

another BS within distance δ with a smaller mark point (t = 0) [91]. Figure 2.4(b) shows a

Matern HCPP of type I with hard core distance δ = 2m and its parent PPP.

A comprehensive tutorial and more detailed information about different types of PP can

be found in [89].

2.2 Related Work

In this section, we review the relevant work in the literature on the design and perfor-

mance analysis of next generation heterogeneous cellular networks for the IoT networks

using stochastic geometry, divided into three main categories, i.e., uplink two-hop IoT net-

works, coexisting sub-6GHz and millimeter-wave IoT networks, and mobility modeling and

analysis of dense cellular networks with C-plane/U-plane split architecture.

2.2.1 Performance Modeling and Analysis of Uplink Two-Tier IoT

Networks

Existing works on performance modeling and analysis of large-scale IoT networks have con-

sidered machine-to-machine (M2M) communications. Malak et al. [9] develop models that

characterize the coverage and rate of M2M devices under different transmission schemes.

Malak et al. [10] extended the work in [9] to minimize the energy consumed through a joint

optimization of the number of multi-hop stages and the fraction of aggregators. Haenggi

and Puccinelli [11] investigate the effect of increasing the numbers of hops on the energy

consumption introduced by relays.

Research on performance modeling and analysis of two-hop IoT networks has appeared

26



recently, especially for uplink two-phase cellular-based massive machine type communica-

tion (mMTC) networks [12, 13, 14, 15, 16]. Guo et al. [12] study scheduling in uplink two-

phase cellular-based mMTC network, where devices transmit to aggregators (i.e., aggregation

phase) and the aggregated data is then relayed to base stations (i.e., relaying phase). Lopez

et al. [13] extend the resource scheduling schemes proposed in [12] to study the system

performance in terms of average success probability and average number of simultaneously

served machine type devices. Rao and Shorey [16] study different device-aggregator asso-

ciation schemes, namely, fixed, random, and greedy association. The authors show that

channel-aware resource scheduling (CRS) outperforms random resource scheduling (RRS) in

terms of SIR.

Delay performance of two-hop IoT networks has been studied recently [15], [92], and [93].

Rigazzi et al. [15] study the trade-off between packet latency and the transmission power

in the uplink direction of mMTC networks. Kim et al. [92] show that the use of aggregator

nodes can reduce the per-hop delay as well as the device energy consumption by reducing

the transmission distance from devices. Yang et al. [93] propose a stochastic geometry

model to assess and characterize buffer-aided tandem networks consisting of relay nodes and

multiple channels per hop. The authors observe lower latency requires an increase in the

transmission power. Kim et al. [92] investigate the delay performance of two-stage of IoT

uplink transmission with random access.

Resource allocation and energy efficiency of two-hop IoT networks have been recently

investigated [17,18,19,20,21,22,16]. Resource allocation to perform device grouping and an

energy-efficiency cluster head selection scheme was developed in [17, 18, 19, 20, 21] to maxi-

mize the network life. Wael and Rezki [22] study the reliability enhancement and resource

allocation of smart metering systems using the millimeter wave technology in two-phase up-

link networks with wireless gateways. Kim et al. [14] study the effect of packet bundling

at the aggregator, which reduces the overhead and resource waste in mMTC networks when

small packets are sent.

Despite previous research efforts, e.g., [92, 94, 9, 93, 10, 11, 12, 13, 14, 15, 16, 77, 22, 17, 18,
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19, 20, 21], to the best of our knowledge, there has been no previous work that focuses on

modeling and analysis of the mean DRUF of devices in the uplink direction of two-hop IoT

cellular networks. Our work in Chapter 3 is the first that mathematically models the log

utility of data rate over two consecutive links in the uplink direction (i.e., data from a device

to an aggregator to a MBS). Providing such a rigorous model which fills the gap in the

literature is the main contribution of this thesis. The result will allow network operators to

improve data rates of IoT links and ensure data fairness among devices.

2.2.2 Performance Modeling and Analysis of Coexisting Sub-6GHz

and Millimeter-wave IoT Cellular Networks

A variety of research works studied the coverage analysis of mm-wave only cellular networks

[23,24,25,26]. For instance, Di Renzo et al. [23] proposed a general mathematical model to

analyze multi-tier mm-wave cellular networks. Bai et al. [24] derived the coverage and rate

performance of mm-wave cellular networks. They used a distance dependent line-of-sight

(LOS) probability function where the locations of the LOS and non-LOS (NLOS) BSs are

modeled as two independent non-homogeneous Poisson point processes, to which different

path loss models are applied. The authors assume independent Nakagami fading for each link.

Different parameters of Nakagami fading are assumed for LOS and NLOS links. Turgut and

Gursoy [25] investigated heterogeneous downlink mm-wave cellular networks consisting of K

tiers of randomly located BSs where each tier operates in a mm-wave frequency band. They

derived coverage probability for the entire network using tools from stochastic geometry.

They used Nakagami fading to model small scale fading. Deng et al. [26] derived the

success probability at the typical receiver in mm-wave device-to-device (D2D) networks.

The authors modeled fading channel power as Nakagami fading and incorporated directional

beamforming.

Some recent studies analyzed the success probability of coexisting µwave and mm-wave

cellular networks. A hybrid cellular network was considered by Singh et al. [27] to estimate
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the uplink-downlink coverage and rate distribution of self-backhauled mm-wave networks.

Elshaer et al. [28] developed an analytical model to characterize decoupled uplink and

downlink cell association strategies. The authors showed the superiority of this technique

compared to the traditional coupled association in a network with traditional MBSs coexist-

ing with denser mm-wave SBSs. Singh et al. [27] and Elshaer et al. [28] modeled the fading

power as Rayleigh fading to enable better tractability.

Compared to traditional coverage analysis conducted in [25,29,28], Deng and Haenggi [30]

analyzed the meta distribution of the SIR in mm-wave only single-hop D2D networks using

the Poisson bipolar model and simplified Rayleigh fading channels for analytical tractability.

To the best of our knowledge, our work in Chapter 4 is the first to characterize the meta

distributions of SIR/SNR and data rate for coexisting µwave and mm-wave networks. Differ-

ent from previous research in [25,29,28,30], we develop a stochastic geometry framework that

takes in consideration (i) coexistence of two different network tiers with completely different

channel propagation, interference, and fading models, (ii) dual-hop transmissions enabled

by two different spectrums, one in each network tier, and (iii) Nakagami-m fading model

with shape parameter m for LOS mm-wave channels. Nakagami-m fading is a generic and

versatile distribution that includes Rayleigh distribution (typically used for non-LOS fading)

as its special case when m = 1 and can well approximate the Rician fading distribution for

1 ≤ m ≤ ∞ (typically used for LOS fading).

2.2.3 Mobility Modeling and Analysis of Dense Cellular Networks

with C-plane/U-plane Split Architecture

Since future heterogenous cellular networks and large-scale IoT networks exhibit random

topologies rather than idealized grids, stochastic geometry is widely accepted as a tool to

model cellular networks [63]. The past five years have witnessed a plethora of stochastic

geometry based models that tackles different aspects in cellular networking [63, 31, 32, 3, 33,

34, 35, 36, 37, 38, 39, 40]. However, the majority of these models do not account for mobility
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and focus on stationary users performance. For instance, coverage probability and rate

performance are characterized for single-antenna downlink connections in [31,32,3], for single-

antenna uplink connections in [33,34], and for downlink connections with multiple antennas

in [35, 36]. Stochastic geometry also helps characterizing the performance of CP/UP split

architecture in cellular networks. For instance, the energy efficiency gains provided by the

CP/UP split architecture are characterized by Zakrzewska et al. [38]. The effect of vertical

offloading and BS sleeping on the energy efficiency for CP/UP split architecture is studied

by Zhang et al. [39]. In our pervious work [40], the throughput of the CP/UP split cellular

architecture is studied. However, none of the aforementioned studies incorporates the effect

of mobility and handover into the analysis.

Surprisingly, few models can be found in the literature that exploit stochastic geometry to

characterize mobility in large-scale IoT networks and cellular networks. The handover rate in

cellular networks is first characterized by Lin et al. [41], in which expressions for the handover

rate are derived for random waypoint mobility model in a single-tier cellular network. The

handover rate for multi-tier cellular networks is characterized by Bao and Liang [42] for

arbitrary mobility model. However, neither [41] nor [42] investigates the effects of handover

on important performance metrics such as coverage, rate, or delay. The handover effects on

coverage and rate are investigated by Sadr and Adve [43] for random way point mobility

model. The authors derive the probability of handover and use the coverage probability for

stationary users multiplied by a handover cost factor to infer the coverage probability for

users experiencing handovers. Note that the handover cost factor in [43] is considered as a

network parameter that reflects the SINR degradation during handovers. Zhang et al. [44]

investigate the effect of delay-reliability tradeoff in dense cellular networks for static and

high mobility users under a time slotted transmission scheme. The authors show that high

mobility users outperform static users because mobile users experience uncorrelated SINRs

across different time slots. However, the results in [44] may be misleading because the model

only captures the positive impact of mobility and overlooks the performance degradation

that may occur due to handover signaling and delay. Finally, Ge et al. [45] develop a social-
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activity aware mobility model, denoted as the individual mobility model, to represent the

users clustering behavior in a two-tier cellular network. Assuming a single social community,

located at the origin, which is covered by densely deployed SBSs, the coverage probability

inside and outside the social community as well as the probabilities to arrive, depart, and

stay in the social community are derived. However, the analysis in [45] is only valid for

finite networks where the social community inhabits a non-negligible portion of the total

network and overlooks the effect of handovers. It is worth mentioning that, similar to [43],

the authors of [44] and [45] use the stationary SINR analysis to infer the coverage probability

of moving users.

Different from the existing literature, inChapter 5, we propose a mobility-aware paradigm

that captures the handover effect on the devices throughput in conventional and CP/UP net-

work architectures. Different from [43], the handover cost is not assumed and is rigorously

derived from the system model. Also, different from [44] and [45], the developed model ac-

counts for the handover effect and is not tailored to a specific mobility model. Furthermore,

the developed model accounts for signaling overhead, flexible device association scheme via

association biasing, the availability of X2 interface between BSs, and almost blank subframes

(ABS) coordination between MBSs and SBSs.
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Chapter 3

Data Rate Utility Analysis for Uplink

Two-Tier IoT Networks

3.1 Motivations and Contributions

The Internet of Things (IoT) and machine-to-machine (M2M) communications will revolu-

tionize the way we live our lives by all means. Aided by the ubiquitous wireless connectivity,

decreasing communication costs, and the proliferation of cloud platforms, the deployment of

IoT devices and services is accelerating [95,96,97,98]. Therefore, integrating IoT and M2M

communications in 5G cellular networks [99, 100, 101, 102, 40, 42, 103, 104] is a critical and

important research area that must be addressed and well understood.

In this chapter, we study two-hop IoT cellular networks composed of two tiers. Tier 1

consists of macro base stations (MBSs) with higher transmission power (in the downlink

direction) and lower deployment density. Tier 2 consists of aggregators with lower transmis-

sion power (in the downlink and uplink directions) and high density deployment. Fig. 3.1

shows an example of such a two-hop network. The aggrerators collect (aggregate) data from

the devices and forward the data to MBSs. Energy-constrained devices can save energy by

sending data to closer aggrerators (data aggregation) instead of transmitting to much farther
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Figure 3.1: Uplink two-hop IoT communication networks. The blue devices communicate

with the core network via two-hop communications. The black devices communicate with

the core network via one-hop communications.

MBSs [10, 17, 18, 19, 20, 21].

In a two-hop IoT network, if a device (sensor or actuator) is connected to an aggregator,

the device sends data to the core network via a two-hop connection: first to the aggregator,

which then forwards the data to the MBS1, which then forwards the data to the core network

as shown in Fig. 3.1. Note that aggregators are not directly connected to the core network:

an aggregator relays data from a device to a MBS, which then forwards the data to the core

network, hence two-hop communications between the device and the core network. In Fig.

3.1, the blue devices communicate with the core network via two-hop communications.

Following is the main reason for using aggregators and two-hop communications in our IoT

network architecture. There is usually a huge number of devices in IoT cellular networks.

Therefore it would not be scalable (or would be too expensive) to provide direct wireless

access between each device and a base station. Data aggregation has been proposed by

1We assume that MBSs are connected to the core network by separate high-capacity wired or wireless

links X2 whose capacity has no impact on our performance analysis.
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[105, 106, 107, 108] to deal with this massive connection problem. Using aggregators is a

scalable and inexpensive approach to provide gateways and indirect Internet access to a

huge number of IoT devices, and is widely accepted in the literature [12, 13, 14, 15, 16, 22].

Note that in the above IoT architecture, a device can connect directly to a MBS. In this

case, the device can communicate with the core network via one-hop communication because

the MBS is connected directly to the core network. This results in a hybrid network, in the

sense that communications between devices and the core network can be either one-hop or

two-hop, depending on whether a device is connected to a MBS (one-hop) or an aggregator

(two-hop).

The above hybrid IoT architecture is different from conventional two-tier cellular networks,

in which all MBSs in the upper tier and all small-cell base stations in the lower tier are

directly connected to the core network. Therefore, in a conventional two-tier network, all

communications between devices and the core network are via one-hop communications. The

above difference distinguishes our work in this chapter from existing works [109,31,3] which

focus on conventional two-tier networks using one-hop communications.

High density deployments of two-hop IoT networks face the serious challenge of mitigating

interference caused by a huge number of devices. Interference reduces uplink data rates of

devices, and as a result, negatively impacts their operational reliability. IoT devices need

guaranteed minimum data rates in order to perform their tasks effectively and reliability.

Thus our objective in this chapter is to improve the data rate of devices and to ensure the

rate fairness among devices.

Existing works on performance modeling and analysis of IoT networks have focused on

estimating the coverages and data rates of different transmission schemes for multi-hop uplink

communications in M2M networks [9,10,11]. Recently, works on performance modeling and

analysis of two-hops IoT networks have appeared in [12,13,14,15,16]. Among these [12] and

[13] address the problem of scheduling in uplink two-phase cellular-based massive machine

type communication (mMTC) networks. Kim et al. [14] study the optimal settings of the

network parameters in terms of the number of aggregators and packet-bundle size. Rigazzi
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et al. [15] investigate trade-off between the packets latency and the transmission power.

Rao et al. [16] study the performance of different device-aggregator association schemes.

Research on resource allocation and energy efficiency of two-hop IoT networks has recently

appeared [17,18,19,20,21,22]. An energy-efficiency cluster head selection scheme and resource

allocation to perform device grouping were proposed in [17, 18, 19, 20, 21] to maximize the

network life. However, the problem of determining the mean uplink data rate utility over

two consecutive hops in the uplink direction (i.e., from devices to aggregators to MBSs) has

not been addressed in the literature.

Having identified this gap in the literature, we develop a novel analytical model to estimate

the mean data rate utility function (DRUF) in the uplink direction of a two-hop IoT network

to ensure rate fairness among devices (i.e., by maximizing the log of the uplink DRUF) and to

improve device data rates. To the best of our knowledge, our work is the first that proposes

an analytical model to estimate the log of the uplink DRUF of a two-hop IoT network. This

estimate is critical in the design and deployment of IoT networks in order to improve the

data rate of IoT links and to ensure rate fairness among devices.

Following are the methodology and organization of our work in this chapter:

• In Section 3.3, we derive mathematical expressions for the uplink mean data rate utility

functions (DRUF), expressed in terms of log2(Mbps), in two-hop IoT networks under

both the FSR and OSP schemes.

• Since the DRUF expressions are not in closed form, optimal solutions in closed form

are not attainable for the optimal aggregator association bias (for the FSR scheme) or

the optimal joint spectrum partition ratio and aggregator association bias (for the OSP

scheme). Therefore, in Section 3.4, we use constraint gradient ascent optimization to

obtain the optimal aggregator association bias (for the FSR scheme) and the optimal

joint spectrum partition ratio and aggregator association bias (for the OSP scheme).

We confirm the accuracy of the developed constraint gradient ascent optimization

algorithms using simulations.

35



• Using the above obtained optimal values and the proposed model, in Section 3.5,

we validate the accuracy of the proposed analytical model. We then compare the

performance of the optimized OSP and FSR schemes with the benchmark maximum-

SIR based association scheme and minimum-distance association scheme in terms of

the device uplink data rate.

The above model and analysis provide us with valuable design insights. By optimizing

key network parameters, namely, the spectrum partition ratio and aggregator association

bias, we can mitigate interference and enhance the mean uplink per-device data rate for

both FSR and OSP spectrum allocation schemes. By determining the optimal aggregator

association bias (the joint optimal uplink spectrum partition ratio and aggregators associ-

ation bias) for two-hop IoT networks under the FSR (OSP) allocation scheme, we enhance

the performance of devices in terms of the CDF of the uplink device data rate (Mbps) for

different interference levels. Our proposed optimization method are expected to be used by

cellular network operators providing 5G and IoT technologies to mitigate high interference

in dense deployments of two-hop IoT networks, to improve the data rate and reliability of

devices, and to ensure the rate fairness among devices (i.e., by maximizing the log utility

function of data rate).

The remainder of the chapter is organized as follows. In Section 3.2, we describe the system

model and assumptions. In Section 3.3, we define the analytical model that characterizes the

device uplink mean DRUF for two-hop IoT networks under both the FSR and OSP schemes.

In Section 3.4, we obtain the optimal aggregator association bias (for the FSR scheme)

and the optimal joint spectrum partition ratio and optimal aggregator association bias (for

the OSP scheme) using constraint gradient ascent optimization algorithms. We validate

the accuracy of proposed analytical model and evaluate the optimized resource allocation

schemes in Section 3.5. Section 3.6 concludes the chapter.
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3.2 System Model and Assumptions

In this section, we describe the network model, assumptions, and important parameters,

namely, association criteria (Section 4.2.4), pathloss model, power control, and transmis-

sion model (Section 3.2.3), spectrum allocation (Section 3.2.4), and uplink SIR coverage

probability (Section 3.2.5).

3.2.1 Network Model

We consider a hybrid two-tier IoT network as illustrated in Fig. 3.1. We assume that devices

can connect directly to MBSs (one-hop communication) or indirectly via aggregators (two-

hop communication). As in [109, 31, 3, 110], the location of the MBSs and aggregators are

modeled as a two-dimensional homogenous Poisson point process (PPP) Φk = {yk,1,yk,2, ...}
of density λk, where yk,i is the location of the ith MBS (when k = 1) or the ith aggregator

(when k = 2). Let the MBS tier be tier 1 (k = 1) and the aggregators constitute tier

2 (k = 2). Let D denote the set of devices. The locations of devices in the network are

modeled as independent homogenous PPP ΦD = {x1,x2, ....} with density λD, where xi is

the location of the ith device. We assume that λD >> λ2 > λ1 as in [107]. Similar to [12],

[10], [111], and [112], we do not model random access in the network and assume that the

devices have been granted access to the network. We do not analyze the size of transmitted

data, as in [10], because it is out of the scope of this chapter. A list of the key mathematical

notations used in this chapter is given in Table 3.1.

A two-hop IoT network can be constructed from any configuration of the three PPPs Φ1,

Φ2, and ΦD, where each device of the PPP ΦD associates with either an aggregator from

PPP Φ2 or with a MBS from PPP Φ1 based on the maximum biased downlink received

signal power from either MBSs or aggregators.

A hybrid network of one-hop and two-hop uplink connections with MBSs is an effective

topology to increase data rate and reduce power consumption.
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Table 3.1: Mathematical notations used in Chapter 3

Notation Description

Φ1;Φ2;ΦD PPP of MBSs; aggregators; devices.

λ1;λ2;λD Densities of tier-1 MBSs;tier-2 aggregators; devices.

P1;P2 Downlink transmit power of MBS-tier; aggregator-tier.

PD;PA Uplink transmit power of devices; aggregator-tier.

ǫ1;ǫ2 Power control fraction for devices; aggregator-tier.

B1;B2 Association bias for MBS-tier;aggregator-tier.

η
Spectrum partition ratio between
MBS-tier and aggregator-tier.

α Path loss exponent.

RD,1;RD,2;R2,1

Data rate of Direct link;Indirect Link (1st hop);

Indirect Link (2nd hop).

A1;A2 Typical device association probability to tier-1;tier-2.

ζD,1;ζD,2;ζ2,1

Spectrum allocated to a device associated to tagged
MBS;a device associated to tagged aggregator;

to aggregator associated to tagged MBS.

h(x, y)
Rayleigh fading channel gain between

two locations x, y.

U Uplink mean data rate utility function.

τ1;τ2 Target SIR at MBSs;aggregators.

Θ(α, ǫ1); Θ(α, ǫ2)
1
2
Γ
[

1 + (1−ǫ1)α
2

]

; 1
2
Γ
[

1 + (1−ǫ2)α
2

]

G(α, ǫ1);G(α, ǫ2)
1

2(α−2)
Γ
[
α
2
(ǫ1 − 1) + 2

]
; 1
2(α−2)

Γ
[
α
2
(ǫ2 − 1) + 2

]

Q(α, ǫ1);Q(α, ǫ2) G(α, ǫ1)Θ(α, ǫ1);G(α, ǫ2)Θ(α, ǫ2)

α̈;β̈ Backtracking line search parameters

ν Gradient ascent stopping parameter

• One-hop connection: Devices associate with tier-1 MBSs directly using one-hop con-

nection based on the maximum downlink received power from MBSs and measured at

the devices. Let LD,1 denote the one-hop connection between a device and a MBS. Let

RD,1 denote the uplink data rate of the one-hop link for the scheduled device.

• Two-hop connection: Devices connect to a tier-2 aggregator based on the maximum
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biased received power from the aggregators and measured at the devices. Let LD,2

denote the first hop of the two-hop connection, from devices to aggregators. Then,

aggregators send their aggregated data to MBSs. Aggregators associate with MBSs

based on the maximum received power from MBSs and measured at the aggregators.

Let L2,1 denote the second hop of the two-hop connection, from devices to aggregators.

Note that the uplink traffic goes through two consecutive links LD,2 and L2,1. The link

with the minimum data rate becomes the bottleneck link and determines the end-to-

end throughput of the indirect uplink connection. We assume no buffering capability

at aggregators. Thus, the data rate for the scheduled device in the indirect uplink

connection is R = min(RD,2, R2,1).

3.2.2 Association Criteria

Device associations (downlink and uplink) are determined based on the maximum biased

downlink received power from aggregators or MBSs, which is measured at devices. A device

located at location x associates with a tier-1 MBS or a tier-2 aggregator if it provides the

maximum biased received power [3]:

PkBk(min
i

‖yk,i − x‖)−α ≥ PjBj(min
i′

‖yj,i
′ − x‖)−α, ∀j (3.1)

where ‖.‖ denotes the Euclidean distance, and B1 and B2 are the association bias for MBSs

and aggregators, respectively. The association bias B2 artificially encourages/discourages

devices to associate with the aggregator tier [3]. Note that we do not consider association

bias between aggregators and MBSs. Therefore, aggregator associations with MBSs are

determined based on the maximum downlink received power from MBSs, which is measured

at aggregators, i.e., B1 = 1. In the uplink direction, the association is the same as the

downlink, i.e., a device or aggregator associates with the same serving node (given by Eq.

(4.2)), which is termed tagged node (tagged aggregator or tagged macro base station). We

assume that both network tiers have the same path loss exponent α1 = α2 = α. For the sake

of clarity of exposition, we define P̂jk
∆
=

Pj

Pk
, B̂jk

∆
=

Bj

Bk
, λ̂jk

∆
=

λj

λk
.
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Let Ak denote the probability that a device associates itself with a MBS (when k = 1)

or with an aggregator (when k = 2). As derived in [113], the association probability of the

devices to tier k (k = 1, 2) is as follows:

Ak =
λk(PkBk)

2
α

∑2
j=1 λj(PjBj)

2
α

=

(
2∑

j=1

λ̂jk(P̂jkB̂jk)
2
α

)−1

. (3.2)

The probability density function (PDF) fdD,2
of the distance dD,2 between a typical device

and its tagged aggregator located at the origin (or the PDF fdD,1
of the distance dD,1 between

a typical device to its tagged MBS located at the origin) under the association criteria given

in [3] is as follows:

fdD,k
(r) =

2πrλk
Ak

exp

(

−πr2
2∑

j=1

λj(P̂jkB̂jk)
2
α

)

(a)
=

2πrλk
Ak

exp

(−πr2λk
Ak

)

, r ≥ 0, (3.3)

where (a) follows Eq. (3.2).

3.2.3 Pathloss Model, Power Control, and Transmission Model

A general power law path loss model is considered in which the signal power decays at rate

d−α with the distance d, where α is the path loss exponent (α > 2). Let h(x,y) denote

the channel gain (fast fading term) between two generic locations x, y ∈ R. The channel

gain h(x,y) ∼ exp(1) is independently exponentially distributed with unit mean (Rayleigh

fading with power normalization). We ignore shadowing2 in the analysis for tractability.

Every aggregator or MBS of the kth tier transmits with the same transmit power Pk in the

downlink. In the uplink direction, we assume that devices (ΦD) and tier-2 aggregators (Φ2)

use fractional power control [77] that partially compensates for path loss. Let a device be

located at x and associated with a tagged node (aggregator or MBS) at location y. The

2Note that more general fading/shadowing distributions can be taken into consideration as in [54], but it

comes at the expense of tractability and without much change to the results.
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received power at the tagged node is PD‖y−x‖(ǫ1−1)αh(x,y), where 0 ≤ ǫ1 ≤ 1 is the PCF for

devices. Let PA be the aggregator transmit power in the uplink direction before performing

fractional power control. Let an aggregator be located at x′ and associated with a MBS at

location y. Therefore, the received power at the serving MBS is PA‖y − x′‖(ǫ2−1)αh(x′,y).

3.2.4 Spectrum Allocation

We focus on uplink transmission analysis. We assume that uplink and downlink transmissions

in our model are separated via FDD or TDD and they are treated independently. As a

result, downlink interference and capacity have no influence on uplink analysis. There is no

spectrum sharing or dynamic spectrum partitioning between the uplink and downlink. Both

FSR and OSP are considered among tier 1 and tier 2. Let W , W1, and W2 denote the total

available spectrum bandwidth for the network, the spectrum allocated to MBSs, and the

spectrum allocated to aggregators, respectively.

There are two spectrum partitioning schemes available for two-tier cellular networks: full

spectrum reuse (FSR) and orthogonal spectrum partition (OSP). We consider both schemes

in our model. In the FSR scheme, all aggregators and all MBSs in the network share the

entire spectrum band, i.e., W1 = W2 = W . In the OSP scheme each tier is allocated a non-

overlapping frequency band, i.e., W1 = ηW and W2 = (1 − η)W , where η is the spectrum

partition ratio between tier 1 and tier 2 and W = W1 +W2.

We assume a fully loaded network, i.e., each aggregator and MBS has an active uplink

transmission from a scheduled device or aggregator for each time-frequency resource block.

We assume that the available spectrum at a node (MBS or aggregator) is shared equally

among the associated devices or aggregators. Similarly, all aggregators associated with a

MBS are assigned the same amount of bandwidth. This is can be achieved by using round

robin scheduling which results in such an equipartition of resources [94].
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3.2.5 Uplink SIR Coverage Probability

The uplink coverage probability is defined as the complementary cumulative distribution

function (CCDF) of SIR:

Ck = P[SIR > τk], (3.4)

where τk denotes the predefined threshold for correct signal reception at a tagged MBS

(k = 1) or tagged aggregator (k = 2). We assume that the network under consideration is

interference limited and the background noise is negligible. Following [114], in each resource

block we assume that devices and aggregators do not get positive data rate in the uplink

direction unless the SIR is higher than the predefined τk. We assume a fixed modulation and

coding scheme where the data rate is constant when the SIR is greater than τk. Therefore,

the average spectral efficiency (SE) measured in nats/sec/Hz for a randomly chosen device

or aggregator is as follows:

SEk = log(1 + τk)1(SIRk > τk), (3.5)

where 1(.) is the indicator function. The device or aggregator data rate is calculated by

summing the above spectral efficiencies across the spectrum ζk assigned to this device or

aggregator. The mean of device or aggregator uplink data rate is as follows:

Rk = ζkE(SEk) = ζkCk log(1 + τk). (3.6)

3.3 Proposed Analytical Model: Device Uplink Mean

Data Rate Utility Function

In this section, we characterize the uplink mean DRUF of a typical device. We use the law

of total probability for a typical device, which is connected to the core network via either

one-hop or two-hop communication. By calculating the uplink mean data rate of a typical

device and a typical aggregator, we obtain the mean performance of the entire network

under study. In this chapter, we adopt a notion of the coverage-rate-based proportionally

42



fair utility, defined as the logarithm of the user coverage rate. Using assumptions made in

Section 3.2.1, let U denote the mean DRUF which is given by the following equation:

U = A1UD,1
︸ ︷︷ ︸

One-hop data rate utility

+A2min (UD,2, U2,1)
︸ ︷︷ ︸

Two-hop data rate utility

,

U = A1UD,1 +A2EΦ1,Φ2,ΦD
[Eh [log[R]]] ,

U = A1UD,1 +A2EΦ1,Φ2,ΦD
[Eh [log[min(RD,2, R2,1)]]] . (3.7)

The proportionally fair utility (logarithm of the device coverage rate) captures a tradeoff

between opportunism and device fairness, by encouraging low rate users to improve their

rates while saturating the utility gain of high-rate users. We now compute the first term

(one-hop data rate utility) and the second term (two-hop data rate utility) of Eq. (3.7) in

Sections 3.3.1 and 3.3.2, respectively. In Section 3.3.3, we discuss the computation of the

sum of first and second terms of Eq. (3.7) to obtain U .

3.3.1 One-hop Connection Data Rate

In this section, we compute the first term of Eq. (3.7), which is the expected average

logarithm of the data rate of the devices that have one-hop connections to MBSs. The

DRUF UD,1 is given by:

UD,1 = E[log(RD,1)],

= E[log(ζD,1)] + E[log(CD,1)] + log[log(1 + τ1)], (3.8)

where ζD,k is the spectrum allocated to a device associated with a tagged MBS when k = 1

or a tagged aggregator when k = 2, and ζ2,1 is the spectrum allocated to an aggregator

associated with the tagged MBS. We now compute the first and the second terms of Eq.

(3.8), namely, the mean logarithm of allocated spectrum per device E[log(ζD,1)] and the

mean logarithm of uplink coverage probability for devices E[log(CD,1)].
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Mean Logarithm of Allocated Spectrum Per Device E[log(ζD,1)]

We assume that all devices associated with MBSs or aggregators are assigned an equal

amount of spectrum. Similarly, all aggregators associated with a MBS are assigned the

same amount of spectrum. This is achieved by round-robin scheduling. Let ND,1 denote

the average number of devices associated with a tagged MBS in tier 1 and sharing resources

with a typical device. Then ND,1 is given by the following Eq. [31]:

ND,1 = E[N̂D,1] =
1.28λDA1

λ1
+ 1, (3.9)

where N̂D,1 is the total load of devices at the tagged MBS. Therefore, the mean logarithm

of allocated spectrum per device based on the association criteria is as follows:

E[log(ζD,1)]
(a)

≤ log[E(ζD,1)] = log

(
W

ND,1

)

= log

(
Wλ1

1.28λDA1 + λ1

)

, (3.10)

where (a) follows from Jensen’s inequality [115] since log(.) is a monotonically increasing func-

tion and it is concave. We derived its upper bound log[E(ζD,1)] to approximate E[log(ζD,1)].

Our simulation results in Section 3.5.1 show that the upper bound is quite tight.

Mean Logarithm of Uplink Coverage Probability for Devices E[log(CD,k)]

Note that the derivation for E[log(CD,k)] in this section can be used for the calculations of

both the one-hop connection data rate when k = 1 and the two-hop connection date rate

when k = 2. We now compute E[log(CD,k)] for two spectrum allocation schemes: FSR and

OSP.

Full Spectrum Reuse Scheme

In the case of full spectrum reuse scheme, The mean logarithm of uplink coverage probability

for devices E[log(CD,k)] can be obtained as in the following lemma.
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Lemma 1. The mean logarithm of uplink coverage probability for devices E[log(CD,k)] is as

follows:

EΦ0
1,Φ

0
2,Φ

0
D,Ψ,dD,k,h[log(CD,k)] ≈ −8τkQ(α, ǫ1)

2∑

j=1

Aj(P̂jkB̂jk)
ǫ1− 2

α . (3.11)

Proof. See Appendix A.1. �

Orthogonal Spectrum Partition Scheme

Let IΨk
denote the total interference from the set of devices Φk

D scheduled by the kth tier

excluding the typical device. Then IΨk
is calculated as follows:

IΨk
=

∑

i:xj,i∈Φj
D\xk,0

PDR
ǫ1α
j,i D

−α
j,i h(xj,i, 0). (3.12)

Therefore, the SIRD,k of a typical device associated with the kth tier is

SIRD,k =
PDd

(ǫ1−1)α
D,k h(dD,k, 0)

IΨk

. (3.13)

Corollary 1. Therefore, the mean logarithm of the uplink coverage probability for devices in

the case of no inter-tier interference can be obtained in the same way as in the case of the

FSR scheme and is as follows:

EΦ0
1,Φ

0
2,Φ

0
D,Ψ,dD,k,h[log(CD,k)] = −8τkQ(α, ǫ1)Ak. (3.14)

Proof. See Appendix A.1. �

3.3.2 Two-hop Connection Data Rate

In this section, we compute the second term in Eq. (3.7), A2EΦ1,Φ2,ΦD
[Eh [log[min(RD,2, R2,1)]]],

which is the average expected data rate of devices that have two-hop connections to MBSs
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through aggregators (i.e., the expected average of data rate of the two-hop links).

EΦ1,Φ2,ΦD
[Eh[log{R}]]

=EΦ0
1,Φ

0
2,Φ

0
D,dD,2,d2,1 [Eh[log{min(RD,2, R2,1)}]] ,

=EΦ0
1,Φ

0
2,Φ

0
D,dD,2,d2,1

[

log

{

P (SIRD,2 > τ2)P (SIR2,1 > τ1)×

min [ζD,2 log(1 + τ2), ζ2,1 log(1 + τ1)]

}]

,

(a)
=EΦ0

1,Φ
0
2,Φ

0
D,dD,2,d2,1

[

log

{

P (SIRD,2 > τ2)

}

+ log

{

P (SIR2,1 > τ1)

}

+

log

{

min [ζD,2 log(1 + τ2), ζ2,1 log(1 + τ1)]

}]

,

=EΦ0
1,Φ

0
2,Φ

0
D,dD,2,d2,1

[

log

{

P (SIRD,2 > τ2)

}]

+ EΦ0
1,Φ

0
2,Φ

0
D,dD,2,d2,1

[

log

{

P (SIR2,1 > τ1)

}]

+

EΦ0
1,Φ

0
2,Φ

0
D,dD,2,d2,1

[

log

{

min [ζD,2 log(1 + τ2), ζ2,1 log(1 + τ1)]

}]

,

(b)

≤EΦ0
1,Φ

0
2,Φ

0
D,dD,2,d2,1

[

log

{

P (SIRD,2 > τ2)

}]

+ EΦ0
1,Φ

0
2,Φ

0
D,dD,2,d2,1

[

log

{

P (SIR2,1 > τ1)

}]

+

log

{

EΦ0
1,Φ

0
2,Φ

0
D,dD,2,d2,1 [min [ζD,2 log(1 + τ2), ζ2,1 log(1 + τ1)]]

}

,

(3.15)

where Φ0
1, Φ

0
2, Φ

0
D are Palm point processes forΦ1, Φ2, ΦD, respectively, and (a) follows from

breaking the dependency between SIRD,2 and SIR2,1 for tractability [12, 10] and the accu-

racy of this assumption is verified later in Section 3.5.1, (b) follows from Jensen’s inequality

[115] since log(.) is a monotonically increasing function and concave. We approximate the

following term: EΦ0
1,Φ

0
2,Φ

0
D,dD,2,d2,1

[

log

{

min [ζD,2 log(1 + τ2), ζ2,1 log(1 + τ1)]

}]

with its upper bound as follows: log

{

EΦ0
1,Φ

0
2,Φ

0
D,dD,2,d2,1 [min [ζD,2 log(1 + τ2), ζ2,1 log(1 + τ1)]]

}

.

Our simulation results in Section 3.5.1 show that the upper bound is quite tight.
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Mean Logarithm of the Coverage Probability in the Uplink Direction for Aggre-

gators E[log(C2,1)]

We compute E[log(C2,1)], i.e., the second term in Eq. (3.15), under the two spectrum

allocation schemes FSR and OSP.

Full Spectrum Reuse Scheme

The mean logarithm of the uplink coverage probability of a typical aggregator E[log(C2,1)]

can be obtained by the following lemma.

Lemma 2. The mean logarithm of the uplink coverage probability of a typical aggregator

E[log(C2,1)] in the case of FSR scheme is as follows:

EΦ0
1,Φ

0
2,Φ

0
D,Ψ,d2,1,h[log(C2,1)] ≈ −8τ1Q(α, ǫ2)−

8πPDτ1P
−1
A λ1 (πλ1)

(ǫ2−1)α
2

( A1

πλ1

)1+α
2
(ǫ1−1)

Θ(α, ǫ2)G(α, ǫ1). (3.16)

Proof. See Appendix A.2. �

Orthogonal Spectrum Partition Scheme

In a given allocated spectrum resource block, the total interference received at the tagged

MBS and generated by the set of aggregators ΦA scheduled in tier 1, excluding the typical

aggregator, is denoted by I2,1. Therefore, SIR2,1 is calculated as follows:

SIR2,1 =
PAd

(ǫ2−1)α
2,1 h(y′

2,0, 0)

I2,1
. (3.17)

Corollary 2. Therefore, the mean logarithm of the uplink coverage probability of an aggre-

gator can be derived as in the case of the FSR scheme without inter-tier interference and is

as follows:

EΦ0
1,Φ

0
2,Φ

0
D,Ψ,d2,1,h[log(C2,1)] ≈ −τ1P−1

A

(

2 (πλ1)
(ǫ2−1)α

2 Θ(α, ǫ2)
) (

4(πλ1)
α
2
(1−ǫ2)PAG(α, ǫ2)

)
,

≈ −8τ1Θ(α, ǫ2)G(α, ǫ2),

≈ −8τ1Q(α, ǫ2). (3.18)
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Proof. See Appendix A.2. �

Logarithm Mean of Minimum Data Rate Capacity of Two-Hop Connections

The logarithm mean of the minimum capacity of the two-hop data rate, i.e, the last term

in Eq. (3.15), log

{

EΦ0
1,Φ

0
2,Φ

0
D,dD,2,d2,1 [min [ζD,2 log(1 + τ2), ζ2,1 log(1 + τ1)]]

}

, is characterized

by the following lemma.

Lemma 3. The logarithm mean of the minimum capacity of the two-hop data rate is as

follows:

log
[

EΦ0
1,Φ

0
2,Φ

0
D,dD,2,d2,1 [min [ζD,2 log(1 + τ2), ζ2,1 log(1 + τ1)]]

]

= ϕ(v, n,ND,2,N2,1, ζD,2, ζ2,1, τ1, τ2),

(3.19)

where ϕ(v, n,ND,2,N2,1, ζD,2, ζ2,1, τ1, τ2)
∆
= log

[

∫∞
0

(
∑SX(v)

n=0 gX(n)
)(
∑SZ(v)

n=0 gZ(n)
)

dv

]

,

gX(n)
∆
= 3.53.5Γ(n+4.5)(λDA2/λ2)n

Γ(3.5)n!(3.5+λDA2/λ2)
(n+4.5) , gZ(n)

∆
= 3.53.5Γ(n+4.5)(λ2A1/λ1)n

Γ(3.5)n!(3.5+λ2A1/λ1)
(n+4.5) , and that

∑∞
n=0 gX(n) = 1

and
∑∞

n=0 gZ(n) = 1. Therefore, SX(v)
∆
=
⌊
W2 log(1+τ2)

v
− 1
⌋

and SZ(v)
∆
=
⌊
W1 log(1+τ1)

v
− 1
⌋

.

Proof. See Appendix A.3. �

3.3.3 Device Uplink Total Average Data Rate

In this section, we derive the total uplink mean DRUF of devices for both the FSR scheme

and OSP scheme as follows:

Full Spectrum Reuse

The uplink mean data rate utility is computed by the following lemma.

Lemma 4. In the case of FSR scheme, the uplink mean data rate utility is as follows.
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U = A1



log

(
Wλ1 log(1 + τ1)

1.28λDA1 + λ1

)

− 8τ1Q(α, ǫ1)

2∑

j=1

Aj(P̂jkB̂jk)
ǫ1− 2

α



−A28τ2Q(α, ǫ1)

2∑

j=1

Aj(P̂jkB̂jk)
ǫ1− 2

α

− A2τ1
PA

(

2 (πλ1)
(ǫ2−1)α

2 Θ(α, ǫ2)
)

×
(

4(πλ1)
α
2
(1−ǫ2)PAG(α, ǫ2) + 4πPD

( A1

πλ1

)1+α
2
(ǫ1−1)

λ1G(α, ǫ1)

)

+

A2ϕ(v, n,ND,2,N2,1, ζD,2, ζ2,1, τ1, τ2). (3.20)

Proof. See Appendix A.4. �

Orthogonal Spectrum Partition

The uplink mean data rate utility is computed by the following lemma.

Lemma 5. In the case of OSP scheme, the uplink mean data rate utility is as follows:

U = A1

(

log

(
W1λ1 log(1 + τ1)

1.28λDA1 + λ1

)

− 8τ1Q(α, ǫ1)A1

)

+

A2

(

− 8τ2Q(α, ǫ1)A2 − 8τ1Q(α, ǫ2) + ϕ(v, n,ND,2,N2,1, ζD,2, ζ2,1, τ1, τ2)

)

.

(3.21)

Proof. See Appendix A.5. �

Since the DRUF expressions, Eq. (3.20) and (3.21), are not in closed form, optimal

solutions in closed form are not attainable for the optimal aggregator association bias (for

the FSR scheme) or the optimal joint spectrum partition ratio and aggregator association

bias (for the OSP scheme). Therefore, in the following section, we use constraint gradient

ascent optimization algorithms to obtain the optimal aggregator association bias (for the

FSR scheme) and the optimal joint spectrum partition ratio and aggregator association bias

(for the OSP scheme).
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3.4 Computing the Optimal Aggregator Association

Biases and the Optimal Spectrum Partition Ratio

In this section, we develop constraint gradient ascent optimization algorithms to obtain the

optimal aggregator association bias (for the FSR scheme) and the optimal joint spectrum

partition ratio and aggregator association bias (for the OSP scheme) in Section 3.4.1. Then

we validate the accuracy of the optimal values in Section 3.4.2 using simulations.

3.4.1 Optimization Algorithms

The log utility of the uplink data rate function U (i.e., the objective function) for the FSR

and OSP schemes computed by Eq. (3.20) and (3.21), respectively, is complex. Part of Eq.

(3.20) and (3.21), the term ϕ(v, n,ND,2,N2,1, ζD,2, ζ2,1, τ1, τ2), is in non-closed form. [This

term is defined in Lemma A.3, Eq. (A.35)]. Therefore, an optimal solution in closed form

is not attainable for the optimal aggregator association bias (for the FSR scheme) or the

optimal joint spectrum partition ratio and optimal aggregator association bias (for the OSP

scheme).

Thus we resort to the constraint gradient ascent optimization method to find the afore-

mentioned optimal values, which generates local optimal solutions rapidly and accurately.

The constraint gradient ascent optimization method determines the local maximum, which

can also be considered as the global maximum for function U for the following reason.

In all our simulations described in Section 3.4.2, we have noticed that there is only one

single maximum point in each experiment; see the graphs in Fig. 3.2, 3.4 and 3.6. As a

result, the local maximum point given by the optimization algorithm in each graph can be

considered as the global maximum as shown in Fig. 3.2, 3.4 and 3.6. In this case, the

constraint gradient ascent optimization algorithm will generate global maximum solutions

[116]. We now discuss the optimization algorithms in detail.
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Algorithm 1 Constraint gradient ascent optimization algorithm for the OSP scheme

Input: Φ1,Φ2,ΦD, λ1, λ2, λD /*Locations and densities of MBSs, aggregators, and de-

vices, respectively*/

P1, P2, PD, PA, ǫ1, ǫ2, B1, α, τ1, τ2 /*Network configuration (see Section 3.5 for values)*/

Q(0) = [η(0) = 0.5;B
(0)
2 = 15] /*Gradient ascent optimization initial guess Q(0) ∈

dom U*/

∆η = 0.0001,∆B2 = 0.001 /*Finite difference parameters to calculate the Gra-

dient*/

ν = 10−3 /*Gradient ascent stopping parameter*/

/*The gradient ascent optimization algorithm for U which is given by Eq. (21).*/

1: while ‖∇U(Q(k))‖ > ν do

2: Q(0), k = 0

3: ∇U(η(k)) =
(

U(η(0) + ∆η
2
, B

(0)
2 )− U(η(0) − ∆η

2
, B

(0)
2 )
)

/∆η

/*Gradient in η direction*/

4: ∇U(B(k)
2 ) =

(

U(η(0), B
(0)
2 + ∆B2

2
)− U(η(0), B

(0)
2 − ∆B2

2
)
)

/∆B2

/*Gradient in B2 direction*/

5: ∇U(Q(k)) = [∇U(η(k));∇U(B(k)
2 )]

6: t(k) = [tη = 1; tB2 = 1],α̈ = [0.2; 0.2],β̈ = [0.5; 0.5] /*Initializing backtracking line

search algorithm*/

7: while U(Q(k) + t(k)∇U(Q(k))) > U(Q(k)) + α̈t(k)‖∇U(Q(k))‖2 do

8: t(k) = β̈t(k) /*Update step size using backtracking line search*/

9: end while

10: Q(k+1) = Q(k) + t(k)∇U(Q(k)) /*Update position of guess*/

11: k = k + 1

12: end while

Output: Q(k) = [B∗
2 ; η

∗] /*Optimal joint aggregator association bias and spectrum partition

ratio.*/
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Optimization Algorithm for the OSP Scheme

Algorithm 1 on the previous page summarizes the optimization method. At the beginning

of Algorithm 1, the network configuration parameters are initialized. (Their values are given

at the beginning of Section 3.4.2.) Then we define the gradient ascent optimization initial

guess Q(0) ∈ dom U . Since the function U is not in closed form, we use the finite difference

method with parameters ∆η = 0.0001 and ∆B2 = 0.001 to calculate the gradient in two

directions, η and B2, respectively, as shown in steps 3, 4, and 5 of Algorithm 1.

Note that we use the backtracking line search (BLS) algorithm with BLS control parame-

ters 0 < α̈ < 0.5 and 0 < β̈ < 1 to update the step size of the optimization [116] as shown in

steps 6 to 9 in Algorithm 1. The BLS algorithm starts with a unit step size and then reduces

it by the factor β̈ = [0.5; 0.5] until the stopping condition in step 7 is satisfied. We assume

that α̈ = [0.2; 0.2] which is the fraction of the increase in U predicted by linear extrapo-

lation that we will accept. Then, we update the guess position in step 10 in Algorithm 1.

We repeat steps 1 to 12 until the stopping condition in step 1, ‖∇U(Q(k))‖ > ν, is satisfied,

where ν = 10−3 is the gradient ascent stopping parameter.

Following is a discussion about the convergence of the developed constraint gradient ascent

optimization algorithm. Based on the recommendations made in the book [116] and on

multiple runs of the optimization algorithm for different values of β̈ and α̈, we find that the

optimization with β̈ = [0.5; 0.5] and α̈ = [0.2; 0.2] converges fairly quickly to the optimal

results after a small number of iterations (e.g., typically fewer than 14 iterations).

Optimization Algorithm for the FSR Scheme

The optimization algorithm for the FSR scheme is similar to Algorithm 1, but runs only in

one dimension (aggregator association bias B2). We do not present the FSR optimization

algorithm here to avoid repetition.

In the following sub-section, we validate the accuracy of the above optimization algorithms

using simulations.
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3.4.2 Validation of Optimal Values Obtained via the Developed

Optimization Algorithms

Unless otherwise stated, we use the following parameters in our simulations and analysis.

The transmission power of tier 1 and tier 2 in the downlink direction are P1 = 50 watts

and P2 = 5 watts, respectively. The transmission power of tier-2 aggregators in the uplink

direction before power control is PA = 5 watts. The uplink transmission power of devices

before power control is PD = 1 watt. The network size is 40km × 40km. The pathloss

exponent is set to α = 4. We assume that the density of MBSs is λ1 = 2 MBS/km2, and

the density of devices is λD = 70 devices/km2. The association bias for the MBS tier is

B1 = 1. The network uplink bandwidth is 10 MHz, which is divided into 1024 subcarriers.

We averaged the coverage probability over 20 time slots in each network configuration.

The Rayleigh fading channel gain is generated over both the frequency subcarrier and the

time slots. Devices and aggregators are scheduled in a round-robin fashion in the uplink

direction. A typical device or typical aggregator can be scheduled on multiple subcarriers.

Therefore, the coverage rate of either a device or an aggregator is proportional to the number

of subcarriers that offer non-zero rates. A device or aggregator can offer a zero rate in the

uplink direction if all of its subcarriers are below the SIR threshold. We assume that the

threshold for correct signal reception at MBSs and aggregators are τ1 = −4 dB and τ2 = −4

dB, respectively.

Validation of Optimal Device Association Bias for the FSR Scheme

We examine the mean data rate utility (log2(Mbps)) as a function of the aggregator bias

association B2 by varying device PCF ǫ1 and aggregator PCF ǫ2. We determine the optimal

aggregator association bias B∗
2 in order to achieve the maximum mean data rate utility

(log2(Mbps)) for the FSR scheme in the uplink direction.

Fig. 3.2 depicts the variation of the mean data rate utility (log2(Mbps)) as a function

of aggregator bias association B2 under the uplink FSR scheme for several values of device
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PCF ǫ1 and aggregator PCF ǫ2, namely, ǫ1 = ǫ2 = u, where u = {0, 0.1, 0.2, ..., 0.9, 1}.

In Fig. 3.2, we show the variation of the mean data rate utility for only four values of u

due to space limitation: ǫ1 = ǫ2 = u = {0.1, 0.5, 0.75, 1}. We use these graphs to determine

the optimal aggregator association bias B∗
2 in order to achieve the maximum mean data

rate utility for the uplink FSR scheme. For example, when ǫ1 = ǫ2 = 0.1 (Fig. 3.2(a)), the

maximum mean data rate utility −9.0159 (log2(Mbps)) is achieved when B∗
2 = 8.5. Similarly,

the maximum mean data rate and the corresponding optimal B∗
2 for the other cases are listed

in Table 3.2.

We can observe from Fig. 3.2 and Table 3.2 that the mean data rate utility (log2(Mbps))

for the uplink FSR scheme increases then decreases with increasing PCFs for both devices

and aggregators.

Table 3.2: Maximum mean data rate utility and corresponding optimal B∗
2 .

PCFs (ǫ1 = ǫ2) U (Max. Utility) Optimal B∗
2

0.1 -9.0159 8.5

0.5 -2.4335 2.5

0.75 -2.2 2.5

1 -2.2626 2

Table 3.3: Maximum data rate utility and its joint optimal η∗ and B∗
2 when λ1 = 2.

Aggregator density U (Max. Utility) Optimal η∗ Optimal B∗
2

λ2 = λ1 -3.7957 0.6 1

λ2 = 2λ1 -3.3088 0.4 4

λ2 = 4λ1 -2.4679 0.4 28

λ2 = 8λ1 -1.7310 0.3 30

We use the graphs in Fig. 3.2 to determine the optimal aggregator association bias B∗
2 in

order to achieve the maximum mean data rate utility for the uplink FSR scheme.
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Figure 3.2: Mean data rate utility (log2(Mbps)) as a function of aggregator association bias

B2 when B1 = 1, λD = 70 devices/km2, λ1 = 2 MBS/km2, and λ2 = 4λ1.
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Fig. 3.3 illustrates the optimal uplink aggregator association bias B∗
2 as a function of

device and aggregator PCFs ǫ1 = ǫ2 = {0, 0.1, 0.2, ..., 0.9, 1}. The graph shows that by

increasing device and aggregator PCFs ǫ1 and ǫ2, the optimal aggregator association bias B∗
2

increases until it reaches 8.5 dB at ǫ1 = ǫ2 = 0.1. It then decreases gradually until it reaches

2 dB at ǫ1 = ǫ2 = 1. This result can be intuitively explained as follows. Due to the long

distances between the devices and their tagged MBSs in tier 1, low PCFs (i.e, ǫ1 = ǫ2 = 0)

force these devices to transmit at lower power, causing less interference to devices associated

with tier 2, hence a lower value of B∗
2 = 7.5 dB. However, when the PCFs increase, this forces

these devices to transmit at higher power, which causes higher interference. Therefore, a

subset of these devices, especially strong interferers, must be offloaded to tier 2. This leads

to an increase in the optimal aggregator association bias B∗
2 . The maximum B∗

2 = 8.5 dB is

achieved when ǫ1 = ǫ2 = 0.1. When most of the strong interferers have been offloaded to tier

2, as PCFs ǫ1 and ǫ2 increase, the optimal aggregator association bias B∗
2 then decreases due

to the increased interference caused by the devices that were offloaded to tier 2. This leads

to a decrease in the optimal aggregator association bias B∗
2 as the PCFs ǫ1 and ǫ2 increase.

B∗
2 is reduced to 2 dB when ǫ1 = ǫ2 = 1.

The optimal values we obtained from the FSR optimization algorithm closely match the

results in Fig. 3.3.

Validation of the Optimal Joint Bias and Spectrum Partition Ratio for the OSP

Scheme

We examine the mean data rate utility (log2(Mbps)) as a function of the spectrum partition

ratio η and aggregator association bias B2 by varying the following parameters: a) aggregator

density λ2, where λ2 = Tλ1 and T ranges from 1 to 65 (Fig. 3.5); b) device and aggregator

PCFs ǫ1 and ǫ2, respectively, where ǫ1 = ǫ2 = {0, 0.1, . . . 0.9, 1} (Fig. 3.7).

Varying Aggregator Density λ2

Fig. 3.4 depicts the mean data rate utility (log2(Mbps)) as a function of the spectrum
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Figure 3.3: Optimal aggregator association bias B∗
2 vs. device and aggregator PCFs ǫ1 = ǫ2

when B1 = 1, λD = 70 devices/km2, λ1 = 2 MBS/km2, and λ2 = 4λ1.

partition ratio η and the aggregator association bias B2 for four different aggregator densities,

λ2 = Tλ1 and T = {1, 2, 4, 8}. We use these graphs to determine the optimal joint spectrum

partition ratio η∗ and aggregators association bias B∗
2 for achieving the maximum mean

data rate utility. When λ2 = λ1, as shown in Fig. 3.4(a), the maximum mean data rate

utility −3.7957 (log2(Mbps)) is achieved at joint optimal η∗ = 0.6 and B∗
2 = 1. Similarly,

the maximum mean data rate and the corresponding joint optimal η∗ and B∗
2 values for the

other cases are listed in Table 3.3. In general, the mean data rate utility increases as the

density of aggregators increases.

We use the graphs in Fig. 3.4 to determine the optimal joint spectrum partition ratio η∗

and aggregators association bias B∗
2 for achieving the maximum mean data rate utility.

Fig. 3.5 illustrates the optimal spectrum partition ratio η∗ and aggregator association bias

B∗
2 as functions of the density ratio λ2/λ1. The graph shows that the optimal aggregator
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Figure 3.4: Mean data rate utility (log2(Mbps)) as a function of spectrum partition ratio

η and aggregator association bias B2 for different aggregators densities when B1 = 1, ǫ1 =

ǫ2 = 1, λD = 70 devices/km2, and λ1 = 2 MBS/km2.
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association bias B∗
2 increases rapidly as the density ratio increases from 1 to 9 (the blue curve

in Fig. 3.5), then stays constant at B∗
2 = 30 dB. Fig. 3.5 also shows that by adding more

aggregators to the network, the optimal spectrum partition ratio decreases until η∗ = 0.3 at

λ2 = 7λ1 and then increases until η∗ = 0.5 at λ2 = 32λ1. After that η∗ stays constant at

η∗ = 0.5.
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Figure 3.5: Optimal uplink spectrum partition ratio η∗ and aggregator association bias B∗
2 as

a function of density of aggregators (λ2/λ1) when B1 = 1, ǫ1 = ǫ2 = 1, λD = 70 devices/km2,

and λ1 = 2 MBS/km2.

Varying Device and Aggregator PCFs

We vary the device and aggregator PCFs ǫ1 and ǫ2, where ǫ1 = ǫ2 = {0, 0.1, . . . 0.9, 1}.
Fig. 3.6 illustrates the variation of the mean data rate utility (log2(Mbps)) as a function of

the aggregator association bias B2 and spectrum partition ratio η for four different devices

and agregators PCFs ǫ1 = ǫ2 = {0.1, 0.5, 0.75, 1}. These graphs allow us to determine the

optimal joint spectrum partition ratio η∗ and aggregators association bias B∗
2 for achieving
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the maximum mean data rate utility. When ǫ1 = ǫ2 = 0.1 (Fig. 3.6(a)), the maximum mean

data rate utility −5.5795 (log2(Mbps)) is achieved at the optimal joint η∗ = 0.6 and B∗
2 = 1.

Similarly, the maximum mean data rate and the corresponding joint optimal values η∗ and

B∗
2 for the other cases are listed in Table 3.4. The graphs show that the mean data rate

utility increases then decreases as ǫ1 and ǫ2 increase.

Table 3.4: Maximum mean data rate utility and its joint optimal η∗ and B∗
2 .

PCFs (ǫ1 = ǫ2) U (Max. Utility) Optimal η∗ Optimal B∗
2

0.1 -5.5795 0.6 1

0.5 -2.4679 0.3 27

0.75 -2.3266 0.3 30

1 -2.4679 0.4 28

The graphs in Fig. 3.6 allow us to determine the optimal joint spectrum partition ratio η∗

and aggregator association bias B∗
2 for achieving the maximum mean data rate utility. Fig.

3.7 illustrates the optimal joint spectrum partition ratio η∗ and aggregator association bias

B∗
2 as a function of device and agregator PCFs ǫ1 = ǫ2. The graphs show that by increasing

the device and aggregator PCFs ǫ1 = ǫ2, the optimal spectrum partition ratio (the orange

curve in Fig. 3.7) decreases until η∗ = 0.3 at ǫ1 = ǫ2 = 0.6. Then, it increases after that

until η∗ = 0.4 at ǫ1 = ǫ2 = 1. The optimal aggregator association bias (the blue curve in Fig.

3.7) corresponding to the optimal spectrum allocation first increases rapidly until B∗
2 = 30

dB at ǫ1 = ǫ2 = .75. It then decreases slowly until it reaches B∗
2 = 28 dB at ǫ1 = ǫ2 = 1.

The optimal values we obtained from the OSP optimization algorithm closely match the

results in Fig. 3.5 and 3.7.

3.5 Model Validation and Performance Analysis

In this section, we validate the accuracy of the developed analytical model for estimating

the uplink mean data rate utility under the FSR and OSP schemes (Section 3.5.1). Then,
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Figure 3.6: Mean data rate utility (log2(Mbps)) as a function of spectrum partition ratio

η and aggregator association bias B2 when B1 = 1, λD = 70 devices/km2, λ2 = 4λ1, and

λ1 = 2 per km2.
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Figure 3.7: Optimal aggregator association bias B∗
2 (dB) and optimal spectrum partition

ratio η∗ as a functions of ǫ1 = ǫ2 when B1 = 1, λD = 70 devices/km2, λ2 = 4λ1, and λ1 = 2

MBS/km2.

we compare the performance of the optimized OSP and FSR schemes with the benchmark

maximum- SIR based association scheme and the minimum-distance association scheme in

terms of the device uplink data rate (Section 3.5.2). The network parameters and assumptions

used in this section are the same as those described at the beginning of Section 3.4.2.

3.5.1 Model Validation

The proposed analytical model is validated using Monte Carlo simulation implemented in

MATLAB. We performed Monte Carlo simulations over 40, 000 network configurations with

different spatial topologies using three independent homogenous PPPs with densities λ1, λ2,

and λD in order to calculate the average DRUF. Fig. 3.8 illustrates the uplink mean data
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rate utility (expressed in log2(Mbps)) as a function of aggregators bias association B2 under

both FSR and OSP schemes, when η = 0.42, ǫ1 = ǫ2 = 1, λ2 = 4λ1 = 8 aggregators/km2.

The data points were obtained from the analytical model, Eq. (3.20) and Eq. (3.21),

and the Monte Carlo simulations. (Note that the uplink mean data rate utility (expressed

in log2(Mbps)) in this chapter has negative values. The exponential form can be used to

convert mean data rate utility to Mbps value. For example, a mean data rate utility value

of −9 is equivalent to 2−9 = 0.001953 Mbps.)

As can be seen in Fig. 3.8, the analytical results of the derived uplink mean DRUF under

both resource allocation schemes match the simulation results. This confirms the accuracy

of the analytical expressions derived above for our model. As observed from Fig. 3.8, as B2

increases, the DRUF of the FSR scheme decays much faster than that of the OSP scheme.

The reason is higher interference generated by devices offloaded from tier 1 to tier 2 in the

FSR scheme. Therefore, in this particular network configurations, it is recommended that

cellular operators use the FSR scheme when B2 < 16 and the OSP scheme for B2 ≥ 16.

3.5.2 Performance Evaluation of the Optimized Resource Alloca-

tion Schemes

From the results in Section 3.4.2, we obtain the optimal association bias B∗
2 = 2 dB (from

Fig. 3.2(d)), which gives us the optimized FSR scheme for ǫ1 = ǫ2 = 1. Similarly, from the

results in Section 3.4.2, we obtain the optimal joint spectrum partition ratio η∗ = 0.4 and

aggregator association bias B∗
2 = 28 (from Fig. 3.6(d)), which give us the optimized OSP

scheme for ǫ1 = ǫ2 = 1. In this section, we compare the performance of the optimized FSR

and OSP schemes with that of two benchmark schemes: (a) maximum-SIR based association

scheme (achieved when B1 = B2 = 1), and (b) minimum-distance based association scheme

(achieved when B1 = 1/P1 and B2 = 1/P2).

Fig. 3.9 illustrates the CDF of the uplink device data rate (Mbps) for the different associ-

ation schemes. The red curves show the results of the optimized FSR scheme, maximum-SIR
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Figure 3.8: Mean data rate utility (log2(Mbps)) as a function of aggregator association bias

B2 when B1 = 1, η = 0.42, ǫ1 = ǫ2 = 1,λD = 70 devices/km2, λ1 = 2 MBS/km2, and

λ2 = 4λ1.

based association scheme, and minimum-distance association scheme under the FSR spec-

trum allocation scheme. We observe that the optimized FSR scheme always outperforms

both benchmark schemes in terms of the CDF of the uplink device data rate for both cell-

edge and cell-center devices. This indicates that our proposed optimization method mitigates

interference and enhances the uplink mean per-device data rate. Fig. 3.9(a) and Fig. 3.9(b)

also show that such an optimization is crucial to cell-edge devices (see the lower left portion

of the figures when the CDF varies from 0.1 to 0.3). The optimization noticeably enhances

the data rate of those cell-edge devices that suffer from high interference in the cases of

ǫ1 = ǫ2 = 0.1 (Fig. 3.9(a)) and ǫ1 = ǫ2 = 0.5 (Fig. 3.9(b)).

The black curves in Fig. 3.9 illustrate the results of the optimized OSP scheme, maximum-
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Figure 3.9: CDF of uplink per-device data rate (Mbps) when λ2 = 4λ1, λD = 70 devices/km2,

λ2 = 4λ1, λ1 = 2 MBS/km2.
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SIR based association scheme, and minimum-distance association scheme under the OSP

scheme. The results show that the optimized OSP scheme always outperforms both bench-

mark schemes in terms of the CDF of the uplink device data rate for cell-center devices,

thanks to the proposed optimization method. Fig. 3.9(a) also shows that such an optimiza-

tion is very important to both cell-edge devices (when the CDF varies from 0.1 to 0.3) and

cell-center devices (when the CDF is greater than 0.3). The optimization noticeably improves

the data rate of the devices that suffer from high interference in the case of ǫ1 = ǫ2 = 0.1.

3.6 Chapter Summary

We present a novel analytical model to estimate the mean uplink device DRUF under both

the FSR and OSP spectrum allocation schemes using stochastic geometry. The model takes

into account the aggregator spatial density, aggregator association bias and spectrum par-

tition ratio across the MBS tier and the aggregator tier, and device and aggregator PCFs.

We developed constraint gradient ascent optimization algorithms to obtain the optimal ag-

gregator association bias (for the FSR scheme) and the optimal joint spectrum partition

ratio and optimal aggregator association bias (for the OSP scheme). Then, we confirm

the accuracy of the computed optimal values using simulations. We then use the proposed

model and obtained optimal values to quantify the performance gains offered by the pro-

posed optimized FSR and OSP schemes, in comparison with benchmark schemes such as

the minimum-distance based association scheme and the maximum-SIR based association

scheme.

The optimized FSR and OSP schemes always outperform the benchmark schemes in

terms of the CDF of the uplink device data rate. The optimized schemes reduce interference

from devices by controlling two critical network parameters: the aggregator association bias

and the spectrum partition ratio across the MBS tier and the aggregator tier. The former

parameter controls the offloading of devices from being served by MBSs to being served by

aggregators situated closer to their locations. The offloading allows devices to lower their
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transmission power, which reduces interference and thus improves the overall uplink data

rate. The latter parameter serves as a load balancing mechanism between the MBS tier and

the aggregator tier, which enhances the uplink data rate.
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Chapter 4

The Meta Distributions of the

SIR/SNR and Data Rate in Coexisting

Sub-6GHz and Millimeter-wave

Cellular Networks

4.1 Motivations and Contributions

Internet of things (IoT) networks are widely adopted across the globe to build smart cities

and connected societies. IoT cellular networks can be classified into four types [5]: 1) massive

IoT networks, which provide cellular connectivity to IoT devices with narrow-band IoT (NB-

IoT) or LTE-M technologies and support applications such as low-cost sensors, wearables and

trackers that infrequently send or receive messages; 2) broadband IoT networks, which use

mobile broadband connectivity for applications such as advanced wearables and aerial and

ground vehicles; 3) critical IoT networks, which require extremely low latencies and ultra-

high reliability such as smart grids, intelligent transportation systems, and health-care; and

4) industrial automation IoT networks. Our work in this chapter is most applicable and
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beneficial to broadband and industrial IoT networks, which can potentially be enabled by

the 5G technology [117, 118, 8].

As the sub-6GHz spectrum is running out of bandwidth to support a huge number of

devices in the IoT, operators of the upcoming 5G networks will tap into the millimeter-wave

(mm-wave) spectrum. The mm-wave spectrum has wider bandwidths that can meet higher

traffic demands and support data rates into the order of gigabits per second [5]. However,

mm-wave transmissions are highly susceptible to blockages and penetration losses; therefore

the mm-wave spectrum will complement and coexist with the sub-6GHz spectrum in 5G

networks [7, 8]. In this chapter, we term the sub-6GHz spectrum as microwave spectrum

for the sake of brevity, although different sources may define different frequency ranges as

microwaves.

We assume a two-tier network architecture as illustrated in Fig. 4.1. Tier 1 consists of

macro base stations (MBSs) and tier 2 is composed of small base stations (SBSs). A MBS

communicates with SBSs on backhaul links in the microwave spectrum. SBSs communicate

with devices on access links in the mm-wave spectrum. This scenario supports dual-hop

communications between MBSs and devices. Devices can also communicate with MBSs via

direct links in the microwave spectrum, as shown in Fig. 4.1.

Given the above hybrid spectrum network architecture, it is crucial to develop new the-

oretic frameworks to characterize the performance of such networks. Within this context,

we consider the use of meta distributions to study the performance of such hybrid spectrum

networks.

The meta distribution is first introduced by M. Haenggi [119] to provide a fine-grained

reliability and latency analysis of 5G wireless networks with ultra-reliable and low latency

communication requirements [120, 121]. Meta distribution is defined as the distribution

of the conditional success probability (CSP) of the transmission link (also termed as link

reliability), conditioned on the locations of the wireless transmitters. The meta distribution

provides answers to questions such as “What fraction of devices can achieve x% transmission

success probability?” whereas the conventional success probability answers questions such
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as “What fraction of devices experience transmission success?” [119]. In addition to the

standard coverage (or success) probability which is equivalent to the mean of CSP, the meta

distribution can capture important network performance measures such as the mean of the

local transmission delay, the variance of the local transmission delay (referred to as network

jitter), and the variance of the CSP which depicts the variation of the devices’ performance

from the mean coverage probability. Evidently, the standard coverage probability provides

limited information about the performance of a typical wireless network [122, 123, 124].

To illustrate the significance of the meta distribution, assume that 50% of the devices

achieve 10% reliability and the other 50% achieve 99% reliability. Then, the standard mean

coverage probability is 54.5%. On the other hand, if 100% of the devices achieve 54.5%

reliability, the standard mean coverage probability is also 54.5%. However, the two scenarios

are very different in terms of user experience. Meta distributions, on the other hand, can

distinguish the above two scenarios. Furthermore, cellular operators are typically interested

in the performance of the “5% device percentile”, which is the performance level that 95%

of the devices achieve. The meta distribution reveals this information, while the standard

coverage probability does not reveal any information about it.

In this chapter, we develop a novel stochastic geometry framework based on meta distri-

butions to estimate and analyze the communication latency and reliability of IoT devices in

a coexisting sub-6GHz and mm-wave IoT cellular network.

To the best of our knowledge, our work is the first to characterize the meta distributions

of SIR/SNR and data rate for coexisting µwave and mm-wave networks. Different from

previous research in [25,29,28,30], we develop a stochastic geometry framework that takes in

consideration (i) coexistence of two different network tiers with completely different channel

propagation, interference, and fading models, (ii) dual-hop transmissions enabled by two

different spectrums, one in each network tier, and (iii) Nakagami-m fading model with shape

parameter m for LOS mm-wave channels. Nakagami-m fading is a generic and versatile

distribution that includes Rayleigh distribution (typically used for non-LOS fading) as its

special case when m = 1 and can well approximate the Rician fading distribution for 1 ≤
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Figure 4.1: Coexisting sub-6GHz and mm-wave IoT cellular networks.

m ≤ ∞ (typically used for LOS fading).

We assume a hybrid spectrum network architecture described above and illustrated in

Fig. 1. Since microwave transmissions are interference limited and mm-wave transmission

are noise limited1, we study the meta distributions of the SIR and SNR in µwave and mm-

wave channels, respectively. We also characterize the meta distrubusiton of data rates. Our

contributions and methodology include the following:

• Different from existing works, we characterize the CSP (which is equivalent to reli-

ability) of a typical device and its bth moment when the device either associates to

(1) µwave MBS for direct transmission or (2) mm-wave SBS for dual-hop transmis-

sion (access and backhaul transmission). Using the novel moment expressions in the

two scenarios, we derive a novel expression for the cumulative moment Mb,T of the

considered hybrid spectrum IoT network.

1Given highly directional beams and high sensitivity to blockage, recent studies showed that mm-wave

networks can be considered as noise limited rather than interference limited [125, 27, 126].
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• Using the cumulative moment Mb,T, we characterize the exact and approximate meta

distributions of the data rate and downlink SIR/SNR of a typical device. Since the

expression of Mb,T relies on a Binomial expansion of power b, the results for the meta-

distribution requiring complex values of b are obtained by applying Newton’s Gener-

alized Binomial Theorem.

• We characterize important network performance metrics such as coverage probability,

mean local delay (which is equivalent to latency), and variance of the local delay

(network jitter), using the derived cumulative momentMb,T. For metrics with negative

values of b, we apply the binomial theorem for negative integers.

• To model the LOS nature of mm-wave, we consider the versatile Nakagami-m fading

channel model. To the best of our knowledge, the meta distribution for the Nakagami-

m fading channel has not been investigated yet.

• We demonstrate the application of this framework to other specialized network sce-

narios where (i) SBSs are connected to MBSs via a mm-wave wireless backhaul and

(ii) a network where all transmissions are conducted in µwave spectrum. Closed-form

results are provided for special cases and asymptotic scenarios.

We validate analytical results using Monte-Carlo simulations. Numerical results give

valuable insights related to the reliability, mean local delay, variance of CSP, and standard

success probability of a device. For example, the mean local delay increases with the in-

creasing density of SBSs in a µwave-only network; however, it stays constant in a hybrid

spectrum network. Moreover, the data rate reliability, i.e., the fraction of devices achieving a

required data rate, increases as the number of antenna elements increases. We also note that

as the number of antenna elements in a hybrid spectrum network increases, the reduction in

the variance of reliability is noticeable, which shows the importance of analyzing the higher

moments of the CSP using the meta distribution. These insights would help IoT cellular net-

work operators to find the most efficient operating antenna configurations for ultra-reliable

and low latency applications.

72



The remainder of the chapter is organized as follows. In Section 4.2, we describe the

system model and assumptions. In Section 4.3, we provide mathematical preliminaries of

the meta distribution. In Section 4.4, we characterize the association probabilities of a

typical device and formulate the meta distribution of the SIR/SNR of a device in the hybrid

spectrum IoT network. In Section 4.5, we characterize the CSP and its bth moment for

direct, access, and backhaul transmissions. Finally, we derive the exact and approximate

meta distributions of the SIR/SNR and data rate in a hybrid spectrum IoT network as well

as µwave-only IoT network in Section VI. Finally, Section 4.8 presents numerical results and

Section 4.9 concludes the chapter.

4.2 System Model and Assumptions

In this section, we describe the network deployment model (Section 4.2.1), antenna model

(Section 4.2.2), channel model (Section 4.2.3), device association criteria (Section 4.2.4), and

SNR/SIR models for access and backhaul transmissions (Section 4.2.5).

4.2.1 Network Deployment and Spectrum Allocation Model

We assume a two-tier IoT network architecture as shown in Fig. 4.1 in which the locations

of the MBSs and SBSs are modeled as a two-dimensional (2D) homogeneous Poisson point

process (PPP) Φk = {yk,1,yk,2, ...} of density λk, where yk,i is the location of ith MBS (when

k = 1) or the ith SBS (when k = 2). Let the MBS tier be tier 1 (k = 1) and the SBSs

constitute tier 2 (k = 2). Let D denotes the set of devices. The locations of devices in the

network are modeled as independent homogeneous PPP ΦD = {x1,x2, ....} with density λD,

where xi is the location of the ith device. We assume that λD ≫ λ2 > λ1 as in [40,127,101].

We consider a typical outdoor device which is located at the origin and is denoted by 0 and

its tagged BS is denoted by yk,0, i.e., tagged MBS (when k = 1) or tagged SBS (when k = 2).

All BSs in the kth tier transmit with the same transmit power Pk in the downlink. A list of
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the key mathematical notations is given in Table 4.1.

We assume that a portion ηW1 of the frequency band W1 is reserved for the access

transmission and the rest (1 − η)W1 is reserved for the backhaul transmission, where W1,

and W2 denote the total available µwave spectrum and mm-wave spectrum, respectively,

and 0 ≤ η ≤ 1. Determining the optimal spectrum allocation ratio η will be studied in our

future work.

Table 4.1: Mathematical notations in Chapter 4
Notation Description Notation Description

Φk;ΦD PPP of BSs of kth tier; PPP of devices λk;λD Density of BSs of kth tier; density of devices

Pk Transmit power of BSs in kth tier Bk Association bias for BSs of kth tier

α1, α2,L, α2,N

Path loss exponent of MBS tier;
LOS SBS; NLOS SBS Go

1 omnidirectional antenna gain of µwave MBSs

Gmax
2 ;Gmin

2 ;θa

Main lobe gain; side lobe gain; and
3 dB beamwidth for mm-wave SBS hl Gamma fading channel gain for mm-wave SBSs

g Rayleigh fading channel gain ml

Nakagami-m fading parameter where l ∈ {L,N}
denotes LOS and NLOS transmission links

pL;pN Mm-wave blockage LOS probability; NLOS probability θ Predefined SIR/SNR threshold

F̄Ps
(x) Meta distribution of SIR/SNR Ps(θ) Conditional success probability (CSP)

Mb(θ) The bth moment of Ps(θ) A2;A2,L;A2,N

Association Probability with µwave MBS;
LOS mm-wave SBS; NLOS mm-wave SBS

4.2.2 Antenna Model

We assume that all MBSs are equipped with omnidirectional antennas with gain denoted by

Go
1 dB. We consider SBSs and devices are equipped with directional antennas with sectorized

gain patterns as in [126, 23, 30] to approximate the actual antenna pattern. The sectorized

gain pattern is given by:

Ga(θ) =







Gmax
a if |θ| ≤ θa

2

Gmin
a otherwise

, (4.1)

where subscript a ∈ {2,D} denotes for SBSs and devices, respectively. Considering a
√
N ×

√
N uniform planar square antenna array with N elements, the antenna parameters of a

uniform planar square antenna array can be given as in [30], i.e., Gmax
a = N is the main

lobe antenna gain, Gmin
a = 1/ sin2

(
3π

2
√
N

)

is the side lobe antenna gain, θ ∈ [−π, π) is the
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angle of the boresight direction, and θa =
√
3√
N is the main lobe beam width. A perfect beam

alignment is assumed between a device and its serving SBS [28] [29]. The antenna beams

of the desired access links are assumed to be perfectly aligned, i.e., the direction of arrival

(DoA) between the transmitter and receiver is known a priori at the BS and the effective gain

on the intended access link can thus be denoted as Gmax
2 Gmax

D . This can be done by assuming

that the serving mm-wave SBS and device can adjust their antenna steering orientation using

the estimated angles of arrivals. The analysis of the alignment errors on the desired link is

beyond the scope of this work.

4.2.3 Channel Model

Path-Loss Model

The signal power decay is modeled as L(r) = rα, where L(r) is the path loss for a typical

receiver located at a distance r from the transmitter and α is the path loss exponent (PLE).

Let L1(r) = ‖r1,D‖α1 denotes the path loss of a typical device associated with the MBS

tier, where α1 is the PLE. Similarly, L2(r) = ‖r2,D‖α2,l denotes the path loss of a typical

device associated with the SBS tier where α2,l = α2,L is the PLE in the case of LOS and

α2,l = α2,N is the PLE in the case of NLOS. It has been shown that mm-wave LOS and

NLOS conditions have markedly different PLEs [128]. Also, we consider the near-field path

loss factor ζ = ( carrier wavelength
4π

)2 at 1 m [28], i.e., different path loss for different frequencies

at the reference distance.

Fading Model

For outdoor mm-wave channels, we consider a versatile Nakagami-m fading channel model

due to its analytical tractability and following the previous line of research studies [29, 25,

129, 130, 26]. Nakagami-m fading is a general and tractable model to characterize mm-wave

channels. Also, in several scenarios, Nakagami-m can approximate the Rician fading which

is commonly used to model the LOS transmissions but not tractable for meta distribution
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modeling [131, 132]. The fading parameter ml ∈ [1, 2, ...,∞) where l ∈ {L,N} denotes LOS

and NLOS transmission links, respectively, and the mean fading power is denoted by Ωl. The

fading channel power hl follows a gamma distribution given as fhl
(x) =

m
ml
l xml−1

Ω
ml
l Γ(ml)

exp(−mlx
Ωl

),

x > 0, where Γ(.) is the Gamma function, ml is the shape (or fading) parameter, and

ml

Ωl
is the scale parameter. That is, we consider hl ∼ Γ(mL, 1/mL) for the LOS links and

hl ∼ Γ(mN , 1/mN) for the NLOS links. Rayleigh fading is a special case of Nakagami-m for

mL = mN = 1. Due to the NLOS nature of µwave channels, we assume Rayleigh fading with

power normalization, i.e., the channel gain g(x,y) ∼ exp(1), is independently distributed

with the unit mean.

Blockage Model for Millimeter-wave Access Links

For mm-wave channels, LOS transmissions are vulnerable to significant penetration losses

[128]; thus LOS transmissions can be blocked with a certain probability. Following [29, 133,

129, 134], we consider the actual LOS region of a device as a fixed LOS ball referred to as

”equivalent LOS ball”. For the sake of mathematical tractability, we consider a distance

dependent blockage probability p(r) that a mm-wave link of length r observes, i.e., the LOS

probability pL(r) if the mm-wave desired link length is less than d and pN(r) otherwise. That

is, SBSs within a LOS ball of radius d are marked LOS with probability pL(r), while the

SBSs outside that LOS ball are marked as NLOS with probability pN(r). Note that we will

drop the notation (r) in both pL(r) and pN(r) from this point onwards and we will use only

pL and pN , respectively.

4.2.4 Association Mechanism

Each device associates with either a MBS or a SBS depending on the maximum biased

received power in the downlink. The association criterion at the typical device can be

written mathematically as follows:

PkBkGkζkLk(r)
−1 ≥ PjBjGjζjLmin,j(r)

−1, ∀j ∈ {1, 2}, j 6= k (4.2)
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where P(·), B(·), G(·), and ζ(·) denote the transmission power, biasing factor, effective antenna

gain, and near-field path loss at 1 m of the intended link, respectively, in the corresponding

tier (which is determined by the index in the subscript). Let Lmin,j(r)
−1 be the minimum

path loss of a typical device from a BS in the jth tier. When a device associates with a

mm-wave SBS in tier-2, i.e., k = 2, the antenna gain of the intended link is G2 = Gmax
2 Gmax

D ,

otherwise G1 = Go
1GD, where Go

1 is defined as the omnidirectional antenna gain of MBSs

and GD is the device antenna gain while operating in µwave spectrum. On the other hand,

the SBS associates with a MBS offering the maximum received power in the downlink.

4.2.5 SNR/SIR Models for Access and Backhaul Transmissions

The device associates to either a MBS for direct transmission or a SBS for dual-hop trans-

mission. The first link (backhaul link) transmissions occur on the µwave spectrum between

MBSs and SBSs and the second link (access link) transmissions take place in the mm-wave

spectrum between SBSs and devices. Let θ2 denotes the predefined SIR threshold for SBSs in

the backhaul link and θD denotes the predefined SIR/SNR threshold for devices. Throughout

this chapter, we use subscripts “1, 2”, “2,D”, “1,D”, “D”, “BH” to denote backhaul link,

access link, direct link, device, and backhaul, respectively.

Backhaul Transmission

The SIR of a typical SBS associated with a MBS can be modeled as:

SIR1,2 =
P1r

−α1
1,2 g(0,y1,0)

I1,2

, (4.3)

where I1,2 denotes the backhaul interference received at a SBS from MBSs that are sched-

uled to transmit on the same resource block excluding the tagged MBS. Then, I1,2 =

P1

∑

i:y1,i∈Φ1\{y1,0} ‖y1,i‖−α1g(0,y1,i).

77



Direct Transmission

The SIR of a typical device associated directly with a MBS is modeled as:

SIR1,D =
P1r

−α1
1,D g(0,y1,0)

I1,D
, (4.4)

where I1,D denotes the interference received at a typical device from MBSs excluding the

tagged MBS. Then I1,D can be calculated as: I1,D = P1

∑

i:y1,i∈Φ1\{y1,0} ‖y1,i‖−α1g(0,y1,i).

Access Transmission

The SNR of a typical device associated with a mm-wave SBS is modeled as:

SNR2,D =
P2G2ζ2‖r2,D‖−α2,lhl(0,y2,0)

σ2
2

, (4.5)

where ζ2 is the near-field path loss at 1 m for mm-wave channels, and σ2
2 is the variance

of the additive white Gaussian noise at the device receiver. Given highly directional beams

and high sensitivity to blockage, recent studies showed that mm-wave networks are typically

noise limited [125, 27, 126].

4.3 The Meta Distribution: Mathematical Preliminar-

ies

In this section, we define the meta distribution of the SIR of a typical device and highlight

exact and approximate methods to evaluate the meta distribution.

Definition 1 (Meta Distribution of the SIR and CSP). The meta distribution F̄Ps(x) is the

complementary cumulative distribution function (CCDF) of the CSP (or reliability) Ps(θ)

and given by [119]:

F̄Ps(x)
∆
= P(Ps(θ) > x), x ∈ [0, 1], (4.6)
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where, conditioned on the locations of the transmitters and that the desired transmitter is

active, the CSP Ps(θ) of a typical device [119] can be given as Ps(θ)
∆
= P(SIR > θ|Φ, tx)

where θ is the desired SIR.

Physically, the meta distribution provides the fraction of the active links whose CSP (or

reliability) is greater than the reliability threshold x. Given Mb(θ) denotes the b
th moment

of Ps(θ), i.e., Mb(θ)
∆
= E0(Ps(θ)

b), b ∈ C, the exact meta distribution can be given using the

Gil-Pelaez theorem [135] as [119]:

F̄Ps(x) =
1

2
+

1

π

∫ ∞

0

ℑ
(
e−jt log xMjt(θ)

)

t
dt, (4.7)

where ℑ(w) is imaginary part of w ∈ C andMjt(θ) denotes the imaginary moments of Ps(θ),

i.e., , j
∆
=

√
−1. Using moment matching techniques and taking β

∆
= (M1(θ)−M2(θ))(1−M1(θ))

M2(θ)−M1(θ)2
,

the meta distribution of the CSP can be approximated using the Beta distribution as follows:

F̄Ps(x) ≈ 1− Ix

(
βM1(θ)

1−M1(θ)
, β

)

, x ∈ [0, 1], (4.8)

where M1(θ) and M2(θ) are the first and the second moments, respectively; Ix(a, b) is the

regularized incomplete Beta function Ix(a, b)
∆
=

∫ x
0 ta−1(1−t)b−1dt

B(a,b)
and B(a, b) is the Beta func-

tion.

4.4 The Meta Distribution of the SIR/SNR in Hybrid

Spectrum Networks

To characterize the meta distribution of the SIR/SNR of a typical device that can associate

with either a µwave MBS with probability A1 or with a wireless backhauled mm-wave SBS

with probability A2, the methodology of analysis is listed as follows:

1. Derive the probability of a typical device associating with µwave MBSs A1, LOS mm-

wave SBSs A2,L, and NLOS mm-wave SBSs A2,N where A2 = A2,L + A2,N (Sec-

tion 4.4.1).
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2. Formulate the meta distribution of the SIR/SNR of a device in the hybrid network

(F̄ b
Ps,T

(x)) considering the direct link and dual-hop link with wireless backhaul trans-

mission (Section 4.4.2).

3. Formulate the CSP (Ps,T(θ)) and its bth moment (Mb,T) (Section 4.4.2).

4. Derive the CSP at backhaul link Ps,BH(θ2), CSP at access link Ps,2(θD), and CSP

at direct link Ps,1(θD). Derive the bth moments of CSPs, i.e., Mb,BH(θ2), Mb,2(θD),

and Mb,1(θD) for backhaul link, access link, and direct link transmissions, respectively

(Section 4.5).

5. Obtain the meta distributions of SIR/SNR and data rate in hybrid spectrum IoT

network using Gil-Pelaez inversion and the Beta approximation (Section 4.6).

4.4.1 Association Probabilities in Hybrid Spectrum Networks

In this subsection, we characterize the probabilities with which a typical device associates

with µwave MBSs (A1) or mm-wave SBSs (A2). The results are presented in the following.

Lemma 6 (The Probability of Associating with mm-wave SBSs). The probability of a typical

device to associate with a mm-wave SBS, using the association scheme in Eq. (4.2), can be

expressed as:

A2 = 1− 2πλ1

âα1

(
∫ dα2,L

0
H(l1)e

−πλ2pLl

2
α2,L
1 dl1 +

∫ dα2,N

dα2,L

H(l1)e
−πλ2pLd

2
dl1+

∫ ∞

d
α2,N

H(l1)e
−πλ2

[

(pL−pN )d2+pN l

2
α2,N
1

]

dl1

)

,

(4.9)

where â
∆
= P2B2G2ζ2

P1B1G1ζ1
and H(l1)

∆
=
(
l1
â

) 2
α1

−1
exp

(

−πλ1
(
l1
â

) 2
α1

)

. Subsequently, the probability

of a device to associate with a µwave MBS can be given as A1 = 1 − A2. The conditional
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association probability for a typical device to associate with SBS is as follows:

Ā2(l1) = 1− 2πλ1
âα1

(

H(l1)e
−πλ2pLl

2
α2,L
1 +H(l1)e

−πλ2pLd
2

+

H(l1)e
−πλ2

[

(pL−pN )d2+pN l

2
α2,N
1

]

)

, (4.10)

subsequently, Ā1(l1) = 1− Ā2(l1).

Proof. See Appendix B.1. �

A closed-form expression of A1 can be derived for a case of practical interest as follows.

Corollary 3. When α1 = 4, α2,L = 2, and α2,N = 4, then A1 can be given in closed-form

as follows:

A1 =

eC(Φ[
√
C +

√

πλ2pLd2]−Φ[
√
C])

√

pLλ2/â
+

e−d2πpLλ2(e−πλ1

√
d2/â − e−πλ1

√
d4/â)

πλ1/2â
+

ed
2π(pN−pL)λ2−C1

√
d4/â)

C1/2â
,

(4.11)

where Φ(·) is the error function, C =
πλ2

1

4âpLλ2
and C1 = π(λ1 +

√
âpNλ2) and A2 = 1−A1.

It can be seen from Corollary 1 that when the number of antenna elements N goes to

infinity, i.e., G2 → ∞, â→ ∞, then A1 can be simplified as A1 =
Φ[
√

πλ2pLd2]√
pLλ2/â

+ ed
2π(pN−pL)λ2

C1/2â
,

which shows that association probability to MBS will be very small. Similar insights can be

extracted for other parameters.

In order to derive the bth moment of CSP Ps,2(θD) on an access link when a device

associates with a SBS (the CSP will be discussed later in Lemma 9), we have to derive the

probability of a device to associate with LOS SBS A2,L and NLOS SBS A2,N which are

defined as follows.

Lemma 7 (The Probability of Associating with LOS and NLOS mm-wave SBSs). When a

typical device associates with the mm-wave SBS tier, this typical device has two possibilities
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to connect to (a) a LOS mm-wave SBS with association probability A2,L and (b) a NLOS

mm-wave SBS with association probability A2,N which are characterized, respectively, as

follows:

A2,L =

∫ d
α2,L

0
Ā2,L(l2,L)dl2,L, A2,N =

∫ ∞

d
α2,N

Ā2,N(l2,N )dl2,N , (4.12)

where Ā2,L(l2,L) and Ā2,N(l2,N) are the conditional probabilities with which a typical device

may associate to the LOS and NLOS mm-wave SBSs, respectively, and are defined as follows:

Ā2,L(l2,L)
∆
=
2πλ2pL
α2,L

l
2

α2,L
−1

2,L e

(

−πλ1(āl2,L)
2
α1 −πλ2pLl

2
α2,L
2,L

)

,

Ā2,N (l2,N )
∆
=
2πλ2pN
α2,N

l
2

α2,N
−1

2,N exp
(

−πλ1 (āl2,N )
2
α1 −

πλ2

[
pLd

2 + pN (l
2

α2,N

2,N − d2)
]
)

dl2,N ,

where ā
∆
= P1B1G1ζ1

P2B2G2ζ2
, Ā2(l2) = Ā2,L(l2,N) + Ā2,N(l2,N) and A2 = A2,L +A2,N .

Proof. See Appendix B.2. �

A case of interest is when the number of antenna elements at mm-wave SBSs increases

asymptotically. In such a case, the LOS and NLOS association probabilities can be simplified

as follows:

Corollary 4. When the number of antenna elements at mm-wave SBSs increases, i.e.,

N → ∞, α1 = 4, α2,L = 2, and α2,N = 4, then ā → 0. The association probabilities can be

given in closed-form as follows:

A2,L=1− e−πpLd
2λ2 ,

A2,N=e
d2π(−pL+pN )λ2(1− πpNd

2λ2 1F1[1; 2; πpNd
2λ2]),

where 1F1[a; b; z] is the Kummer Confluent Hypergeometric function.

An interesting insight from Corollary 2 can be seen when the intensity of SBSs λ2 → ∞
or d is large, the probability of association to LOS SBSs A2,L becomes almost 1. On the

other hand, when λ2 → 0 or d is small, 1F1[a; b; 0] = 1 thus A2,N becomes almost 1.
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4.4.2 Formulation of the Meta distribution, CSP and its bth Mo-

ment in the Hybrid Network

When a device associates with a mm-wave SBS, the overall CSP depends on the CSPs of

the SIR and SNR on both the backhaul link and the access link, respectively. On the other

hand, when a device associates to MBS the CSP depends on the SIR of the direct link. It

is thus necessary to formulate the relationship between the meta distribution, CSP, and its

bth moment in the considered hybrid network as follows.

Lemma 8 (Meta Distribution of a Typical Device in the Hybrid Network). The combined

meta distribution of the SIR/SNR in the hybrid spectrum IoT network can be characterized

as follows:

F̄Ps,T
(x) =

1

2
+

1

π

∫ ∞

0

ℑ
(
e−jt log xMjt,T(·)

)

t
dt, (4.13)

where Mjt,T(θ) can be characterized by deriving the bth moment of the Ps,T(·)2.

Mb,T(·) = Mb,Dual−Hop +Mb,Single−Hop,

(a)
= EΦ[Ā2(l2)P

b
s,Dual−Hop(θ2)] + EΦ[Ā1(l1)P

b
s,1(θD)],

(b)
= EΦ

[

Ā2(l2)(Ps,BH(θ2)Ps,2(θD))
b

]

+ EΦ

[

Ā1(l1)P
b
s,1(θD)

]

,

(c)
= EΦ

[

Ps,BH(θ2)
b

]

EΦ

[

Ā2(l2)Ps,2(θD)b
]

+ EΦ

[

Ā1(l1)P
b
s,1(θD)

]

,

(d)
= EΦ

[

Ps,BH(θ2)
b

]

EΦ

[

(Ā2,L(l2,L) + Ā2,N (l2,N ))Ps,2(θD)
b

]

+ EΦ

[

Ā1(l1)P
b
s,1(θD)

]

,

(e)
= Mb,BH(θ2)Mb,2(θD)

︸ ︷︷ ︸

Device Associated with SBS

+ Mb,1(θD)
︸ ︷︷ ︸

Device Associated with MBS

, (4.14)

where Mb,Dual−Hop is the bth moment of the SIR/SNR when a device associates to mm-wave

SBS for dual-hop transmission and Mb,Single−Hop is the bth moment of the SIR when a de-

vice associates to MBS for direct transmission. After reformulation, we define Mb,BH(θ2) as

the unconditional bth moment of the backhaul SIR, Mb,2(θD) as the unconditional bth mo-

ment of the SNR at access link when a device associates to mm-wave SBS, and Mb,1(θD)

2The bth moment of a random variable X is the expected value of random variable to the power b, i.e.,

E[Xb].
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as the unconditional bth moment of the SIR at direct link when a device associates to

µwave BS. Note that Ps,1(θD)
∆
= P(SIR1,D > θD|Φ1, tx) denotes the CSP of device over

the direct link, Ps,BH(θ2)
∆
= P(SIR1,2 > θ2|Φ1, tx) denotes the CSP at backhaul link, and

Ps,2(θD)
∆
= P(SNR2,D > θD|Φ2, tx) denotes the CSP for the access link transmission.

Proof. Step (a) follows from the fact that the bth moment of the SIR or SNR of a device

associated to tier i can be defined asM
(i)
b = E[ĀiMb|i] where Āi is the conditional association

probability to tier i and Mb|i = P b
s,i is the conditional bth moment of the SIR or SNR in tier

i. In our case, we have Ā2(l2) which is the conditional association probability to mm-wave

SBS where l2 ∈ {L,N} since a device can associate to either LOS or NLOS mm-wave SBS.

The step (b) follows from the fact that the CSP of the dual-hop transmission depends on the

CSP of access and backhaul link; therefore, we have a product of the access and backhaul

CSPs, i.e., Ps,BH(θ2)Ps,2(θD) that are independent random variables. There is no correlation

since µwave backhaul does not interfere with mm-wave transmissions. The step (c) follows

from the fact if X and Y are independent then E[(XY )b] = E[Xb]E[Y b]. Finally, the step

(d) follows from the definition of Ā2(l2) in Lemma 2 and the step (e) follows by applying

the definition of moments. �

In the next section, we derive the CSP of access, backhaul, and direct links along with

their respective bth moments, as needed in Lemma 4 to characterize the overall moment as

well as the meta distribution.

4.5 Characterization of the CSPs and Moments

In this section, we derive the CSPs Ps,BH(θ2), Ps,2(θD), Ps,1(θD) and the bth momentsMb,BH(θ2),

Mb,2(θD), and Mb,1(θD) for backhaul link, access link, and direct link, respectively.
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4.5.1 CSP and the bth Moment - Access Link

We condition on having a device at the origin which becomes a typical device. The CSP of

a typical device at the origin associating with the mm-wave SBS-tier (when k = 2) can be

described as follows:

Ps,2(θD) = pLPs,2,L(θD) + pNPs,2,N(θD). (4.15)

The CSP of the SNR of a device on the access link with LOS can be defined by substituting

SNR2,D defined in Eq. (4.5) into Definition 1 as follows:

Ps,2,L(θD) = P

(

hL(0,y2,0) >
θDr

α2,L

2,D σ2
2

P2G2
|Φ1,Φ2, tx

)

,

(a)
= 1−

γ
(

mL,
mL

ΩL
νL

)

Γ(mL)

(b)
=

Γ
(

mL,
mL

ΩL
νL

)

Γ(mL)
, (4.16)

where (a) follows from the definition of νL
∆
=

θDr
α2,L
2,D σ2

2

P2G2
and the fact that the channel gain

hL(0,y2,0) is a normalized gamma random variable and γ(., .) is the lower incomplete gamma

function and Γ(s) = γ(s, x) + Γ(s, x), where Γ(., .) is the upper incomplete gamma function.

Similarly, CSP of the SNR on the access link for NLOS case can be given as follows:

Ps,2,N(θD) =
Γ
(

mN ,
mN

ΩN
νN

)

Γ(mN)
, (4.17)

where νN
∆
=

θDr
α2,N
2,D σ2

2

P2G2
. As such, the bth moment of the CSP on the access link for the typical

device when it is served by the mm-wave SBS tier is given by the following:

Lemma 9. The bth moment of the SNR at an “access link” when a device associates with a

mm-wave SBS can be characterized in Eq. (4.18) as follows:

Mb,2(θD) =
b∑

k=0

(
b

k

)

(−1)k



pbL

mLk∑

k̈=0

(
mLk

k̈

)

(−1)k̈
∫ d

α2,L

0
e−ζLk̈ν̈Ll2,LĀ2,L(l2,L)+

pbN

mNk
∑

k̈=0

(
mNk

k̈

)

(−1)k̈
∫ ∞

dα2,N

e−ζN k̈ν̈N l2,NĀ2,N (l2,N )



 , (4.18)
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where Ā2,L(l2,L) and Ā2,N(l2,N) are given in Lemma 2, ζL
∆
= mL(mL!)

−1/mL, νL
∆
=

θDr
α2,L
2,D σ2

2

P2G2
,

ζN
∆
= mN(mN !)

−1/mN , and νN
∆
=

θDr
α2,N
2,D σ2

2

P2G2
, ν̈L

∆
= νL

rα2,L = νL
l2,L

=
θDσ2

2

P2G2
and ν̈N

∆
= νN

rα2,N = νN
l2,N

=

θDσ2
2

P2G2
.

Proof. See Appendix B.3. �

For α1 = 4, α2,L = 2, and α2,N = 4, we can getMb,2(θD) in closed-form using Corollary 1.

Also, for scenarios where N → ∞, α1 = 4, α2,L = 2, and α2,N = 4, then ā→ 0. Also, v̈L → 0

and v̈N → 0, we can get Mb,2(θD) in closed-form using Corollary 2.

4.5.2 CSP and bth Moment - Backhaul Link

For the backhaul link, we condition on having a SBS at the origin which becomes the typical

SBS. Using the expression of SIR1,2 in Eq. (4.3) the CSP of the backhaul link Ps,BH(θ2) can

be given as:

Ps,BH(θ2) = P

(

g(0,y1,0) >
θ2r

α1
1,2

P1
I1,2|Φ1,Φ2, tx

)

,

(a)
= E

[

exp(−θ2rα1
1,2

∑

i:y1,i∈Φ1\{y1,0}
‖y1,i‖−α1g(0,y1,i))

]

,

=
∏

y1,i∈Φ1\{y1,0}
E

[

exp
(
−θ2rα1

1,2‖y1,i‖−α1g(0,y1,i)
)
]

,

(b)
=

∏

y1,i∈Φ1\{y1,0}

1

1 + θ2

(
r1,2

‖y1,i‖

)α1
. (4.19)

where (a) follows from the Rayleigh fading channel gain g(0,y1,0) ∼ exp(1) and (b) is found

by taking the expectation with respect to g(0,y2,i). The bth moment of the CSP on the

backhaul link is given as:

Mb,BH(θ2) = E

[

Ps,BH(θ2)
b

]

,

= E

[
∏

y1,i∈Φ1\{y1,0}

1
(

1 + θ2

(
r1,2

‖y1,i‖

)α1
)b

]

,
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(a)
=

(

1 + 2

∫ 1

0

(

1− 1

(1 + θ2rα1)b

)

r−3dr

)−1

,

=
1

2F1(b,− 2
α1
; 1− 2

α1
;−θ2)

, (4.20)

where (a) follows from the probability generating functional (PGFL) of PPP, i.e., GR[f ]
∆
=

E
∏

x∈R f(x) =
1

1+2
∫ 1
0 (1−f(x))x−3dx

. [136, lemma 1] and 2F1(., .; .; .) represents Gauss‘ Hyper-

geometric function.

4.5.3 CSP and bth Moment - Direct Link

Using the expression of SIR1,D in Eq. (4.4), we calculate the CSP of the direct link Ps,1(θD)

as follows:

Ps,1(θD) = P

(

g(0,y1,0) >
θDr

α1
1,D

P1
I1,D|Φ1,Φ2, tx

)

,

(a)
= E

[

exp



−θDr
α1
1,D

∑

i:y1,i∈Φ1\{y1,0}
‖y1,i‖−α1g(0,y1,i)





]

,

=
∏

y1,i∈Φ1\{y1,0}
E

[

exp
(

−θDr
α1
1,D‖y1,i‖−α1g(0,y1,i)

) ]

,

(b)
=

∏

y1,i∈Φ1\{y1,0}

1

1 + θD
(

r1,D
‖y1,i‖

)α1
. (4.21)

where (a) follows from the channel gain g(0,y1,0) ∼ exp(1) and is independently exponen-

tially distributed with unit mean and (b) is obtained by taking the expectation with respect

to g(0,y1,i). While taking the association probabilities into consideration, the bth moment

of the CSP Ps,1(θD) of the typical device when it is served by a µwave MBS is characterized

in the following lemma.

Lemma 10 (The bth moment of the CSP (Ps,1(θD)) when a device associates with a MBS).

The bth moment of the CSP experienced by a device, when the device associates with a MBS,

can be characterized in Eq. (4.22) as follows:

Mb,1(θD) =
2πλ1

âα1

{
∫ d

α2,L

0

H(l1) exp

(

−πλ2pLl
2

α2,L

1

)

dl1 +

∫ d
α2,N

d
α2,L

H(l1) exp
(
−πλ2pLd

2
)
dl1+
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∫ ∞

d
α2,N

H(l1) exp

(

−πλ2[pLd
2 + pN

(

l
2

α2,N

1 − d2
))

dl1

}

× exp




−2λ1πl

2

α1

1

α1

∫ 1

0

[

1− 1

(1 + θDv)
b

]
1

v
2

α1
+1

dv



 ,

(4.22)

Proof. See Appendix B.4. �

Note that
∫ 1

0

[

1 − 1

(1+θDv)b

]

1

v
2
α1

+1
dv is independent of l1, thus where N → ∞ or α1 = 4,

α2,L = 2, and α2,N = 4, then we can get a closed-form for the three integral over l1 using

Corollary 1 and Corollary 2.

4.5.4 Combined bth Moment of the CSP in Hybrid Networks

After substituting the values of Mb,BH(θ2), Mb,2(θD), and Mb,1(θD) in Eq. (4.20), Eq. (4.18),

and Eq. (4.22), respectively into the total meta distribution for the entire network in Eq.

(4.14), we get the bth moment of the CSP at a typical device as shown in Eq. (4.23) as

follows:

Mb,T =

1

2F1(b,− 2
α1
; 1− 2

α1
;−θ2)

×
{ b∑

k=0

(
b

k

)

(−1)k



pbL

mLk∑

k̈=0

(
mLk

k̈

)

(−1)k̈
∫ d

α2,L

0
e−ζLk̈ν̈Ll2,LĀ2,L(l2,L)+

pbN

mNk∑

k̈=0

(
mNk

k̈

)

(−1)k̈
∫ ∞

d
α2,N

e−ζN k̈ν̈N l2,NĀ2,N (l2,N )





}

+Mb,1(θD), (4.23)

In the next section, we use the combined bth moment in (4.23) to compute the meta distri-

butions of SIR/SNR and data rate using Gil-Pelaez inversion and the Beta approximation.

4.6 Computing theMeta Distributions and Special Cases

In this section, we compute the meta distribution of SIR/SNR using Gil-Pelaez inversion

and beta approximation by applying the derived result of Mb,T. Special cases where b = 1

provides the standard coverage probability and b = −1 provides the mean local delay are

88



discussed. Further, we show how to evaluate the data rate meta distribution from the derived

framework.

4.6.1 Computing the Meta Distribution of the SIR/SNR

Technically, substituting b = jt in (4.23), we should obtain the imaginary moments Mjt,T.

However, since the expression of Mjt,T relies on a Binomial expansion of power b, the results

cannot be obtained directly through substitution. Therefore, we apply Newton’s generalized

binomial theorem given as follows.

Definition 2. Isaac Newton‘s generalized binomial theorem is to allow real exponents other

than non-negative integers, i.e., imaginary exponent r, as
(
r
k

)
= r(r−1)...(r−k+1)

k!
= (r)k

k!
, where

(.)k is the Pochhammer symbol, which stands here for a falling factorial.

Applying Definition 2 in step (e) of Appendix B.3, we then obtain the expression for

Mjt,T as shown in Eq. (4.24) as follows:

Mjt,T =

1

2F1(jt,− 2
α1

; 1− 2
α1
;−θ2)

×
{

pjtL

∞∑

k=0

(jt)k
k!

(−1)k
mLk∑

k̈=0

(
mLk

k̈

)

(−1)k̈
∫ d

α2,L

0
e−ζLk̈ν̈Ll2,LĀ2,L(l2,L)+

pjtN

∞∑

k=0

(jt)k
k!

(−1)k
mNk∑

k̈=0

(
mNk

k̈

)

(−1)k̈
∫ ∞

d
α2,N

e−ζN k̈ν̈N l2,NĀ2,N (l2,N )

}

+Mjt,1(θD),

(4.24)

The imaginary moments can be substituted in the Gil-Pelaez inversion theorem as in

Definition 1 to obtain F̄Ps,T. Furthermore, we follow [119, 123, 137] to approximate the

meta distribution by a Beta distribution by matching the first and second moments, which

are easily obtained from the general result in Eq. (4.23) by substituting b = 1 and b = 2 to

get M1,T and M2,T, respectively. Taking β
∆
=

(M1,T−M2,T)(1−M1,T)

M2,T−M2
1,T

, the meta distribution using

beta approximation can be given as follows:

F̄Ps,T
(x) ≈ 1− Ix

(
βM1,T

1−M1,T
, β

)

, (4.25)

where x ∈ [0, 1].
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4.6.2 The Mean and Variance of the Local Delay

The mean local delay is the mean number of transmission attempts, i.e., re-transmissions,

needed to successfully transmit a packet to the target receiver. The mean local delay M−1,T

which is the −1st moment of the CSP of a typical device should be calculated by substituting

b = −1 in Eq. (4.23). However, since the expression of Mb,T relies on a Binomial expansion

of power b, the results cannot be obtained directly through substitution. Therefore, we apply

the Binomial theorem for the negative integers as follows.

Definition 3. The Binomial theorem for a negative integer power n can be given [138] as

(x+ y)n =
∑∞

k=0(−1)k
(−n+k−1

k

)
yn−kxk,

Applying Definition 3 in step (e) of Appendix B.3, we then obtain the expression for

M−1,T in Eq. (4.26) as follows:

M−1,T =

1

2F1(−1,− 2
α1

; 1− 2
α1
;−θ2)

×
{

p−1
L

∞∑

k=0

mLk∑

k̈=0

(
mLk

k̈

)

(−1)k̈
∫ d

α2,L

0
e−ζLk̈ν̈Ll2,LĀ2,L(l2,L)+

p−1
N

∞∑

k=0

mNk
∑

k̈=0

(
mNk

k̈

)

(−1)k̈
∫ ∞

dα2,N

e−ζN k̈ν̈N l2,NĀ2,N (l2,N )dl2,N

}

+M−1,1(θD),

(4.26)

Remark: In order to better characterize the fluctuation of the local delay, the variance

of the local delay (also referred to as network jitter) can be given by NJ =M−2,T −M2
−1,T.

4.6.3 The Meta Distribution of the Data Rate in Hybrid Spectrum

Networks

Let T denotes the data rate (in bits per sec) of the typical device on a specific transmission

link which is a random variable and is defined as R = W log2(1 + SIR) using Shannon

capacity. Using the meta distribution of the SIR, the meta distribution of the data rate can

be derived to present the fraction of active devices in each realization of the point process
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that have a data rate R greater than T with probability at least x, i.e., devices data rate

reliability threshold. That is, first deriving the CSP of the data rate as follows:

P[R > T |Φ, tx] = P[W log2(1 + SIR) > T |Φ, tx],

= P[SIR > 2
T
W − 1|Φ, tx]. (4.27)

where Ps(2
T
W − 1)

∆
= P(SIR > 2

T
W − 1|Φ1, tx) denote the CSP of the device data rate over

single link. Finally, deriving the bth moment of the CSP of the data rate and applying

Gil-Pelaez inversion we can obtain the meta distribution of the data rate.

Corollary 5. Similar to the meta distribution of the SIR/SNR derived in Lemma 8 and

conditioned on the location of the point process, we derive the meta distribution of the data

rate in hybrid IoT cellular networks, using the moment Qb of the conditional data rate as

follows:

Qb(T ) = E[Ā2(l2)P
0

(

Ps,BH(2
TBH

(1−η)W1 − 1)Ps,2(2
T2
W2 − 1) > x

)

] + E[Ā1(l1)P
0(Ps,1(2

T1
ηW1 − 1) > x)],

= Mb,BH

(

2
TBH

(1−η)W1 − 1

)

Mb,2

(

2
T2
W2 − 1

)

+Mb,1

(

2
T1

ηW1 − 1

)

, (4.28)

where Ps,1(2
T1

ηW1 − 1)
∆
= P(SIR1,D > 2

T1
ηW1 − 1|Φ1, tx), Ps,BH(2

TBH
(1−η)W1 − 1)

∆
= P(SIR1,2 >

2
TBH

(1−η)W1 − 1|Φ1, tx), and Ps,2(2
T2
W2 − 1)

∆
= P(SNR2,D > 2

T2
W2 − 1|Φ2, tx) denote the CSP of the

device data rate on the direct, backhaul, and access link, respectively.

In the following section, we discuss the application of this framework to two scenarios (i)

µwave only network and (ii) mm-wave backhauls and microwave access links.

4.7 Extensions of The Model to Other Network Archi-

tectures

The framework discussed above can be flexibly applied to different network architectures.

In this section we discuss how to extend the framework to two other network architectures:
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1) both tiers operating in the sub-6GHz (microwave) spectrum as in traditional cellular net-

works; and 2) the two tiers operating in two millimeter-wave spectrums that are orthogonal

to each other. We provide only general directions of how to extend the earlier framework to

these two other network architectures.

4.7.1 The Meta Distribution of the SIR in Microwave-only Net-

works

We characterize the meta distribution of the downlink SIR attained at a typical device in a

µwave-only IoT network, i.e., the access and backhaul links of SBSs operate in the µwave

frequency. A device associates with either a serving MBS for direct transmissions (when

k = 1) or a SBS for dual-hop transmissions (when k = 2), depending on the biased received

signal power criterion. MBSs and SBSs are assumed to operate on orthogonal spectrums;

thus, there is no inter-tier interference. On the other hand, each SBS associates with a MBS

based on the maximum received power at the SBS. The association criterion for a typical

device can be described as follows [3]:

PkBk(min
i

‖yk,i − x‖)−αk ≥ PjBj(min
i′

‖yj,i
′ − x‖)−αj , ∀j (4.29)

where ‖.‖ denotes the Euclidean distance. A typical device associates with a serving node

(given by Eq. (4.29))), which is termed the tagged SBS. For the sake of clarity, we define

P̂jk
∆
=

Pj

Pk
, B̂jk

∆
=

Bj

Bk
, λ̂jk

∆
=

λj

λk
. As derived in [3], the conditional association probability for

the typical device connecting to the kth tier (conditional over the desired link distance rD,k)

is as follows:

P(n = k|rD,k) =
∏

j 6=k

e−πλj(P̂jkB̂jk)
2/αj r2, (4.30)

where n denotes the index of the tier associating with the typical device. We calculate the

CSP Ps,2′(θD) (when k = 2) of the access link operating in the µwave band as follows:

Ps,2′(θD) = P

(

g(0,y2,0) >
θDr

α2
2,D

P2
I2,D|Φ1,Φ2, tx

)

,
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(a)
= E

[

exp



−θDrα2
2,D

∑

i:y2,i∈Φ2\{y2,0}
‖y2,i‖−α2g(0,y2,i)





]

,

(b)
=

∏

y2,i∈Φ2\{y2,0}

1

1 + θD
(

r2,D
‖y2,i‖

)α2
. (4.31)

where (a) follows from the channel gain g(0,y2,0) ∼ exp(1) and is independently exponen-

tially distributed with unit mean and (b) is obtained by taking the expectation with respect

to g(0,y2,i).

Lemma 11. Using Eq. (4.21) and Eq. (4.31), we calculate a general expression for the bth

moment of the CSP on direct link Mb,k’ (when k = 2) and the bth moment of the CSP at

access link (when k = 1) as:

Mb,k’ =
1

∑

j 6=k

λ̂jk(P̂jkB̂jk)2/αj + 2F1(b,− 2
αk

; 1− 2
αk

;−θD)
. (4.32)

Proof. See Appendix B.5. �

Note that Lemma 11 is novel and different from [139] where we derive the bth moment of

CSP for orthogonal spectrum two tier IoT network while the work in [139] is done for shared

spectrum tiers.

Similarly, the moment of the CSP of a typical device with offloading biases is defined as

follows:

Mb,T = Mb,dual-hop
︸ ︷︷ ︸

Dual-hop transmission

+ Mb,1′(θD)
︸ ︷︷ ︸

Direct transmission

,

(a)
= Mb,BH(θ2)Mb,2′(θD) +Mb,1′(θD), (4.33)

whereMb,BH(θ2),Mb,2′(θD), andMb,1′(θD) are defined in Eq. (4.20), Eq. (4.32) (when k = 2),

and Eq. (4.32) (when k = 1), respectively. The step (a) follows from the similar approach

as taken in Lemma 4.

Mb,dual-hop = E

[

Ps,BH(θ2)
b ×

∏

j 6=k

e−πλj(P̂jkB̂jk)
2/αj r2Ps,2′(θD)

b

]
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(a)
= E

[

Ps,BH(θ2)
b

]

︸ ︷︷ ︸

Mb,BH(θ2)(Backhaul link )

E

[
∏

j 6=k

e−πλj(P̂jkB̂jk)
2/αj r2Ps,2′(θD)

b

]

︸ ︷︷ ︸

Mb,2(θD)(access link)

,

(b)
=

1

2F1(b,− 2
α1

; 1− 2
α1
;−θ2)

× 1

λ̂12(P̂12B̂12)2/α1 + 2F1(b,− 2
α2
; 1− 2

α2
;−θD)

, (4.34)

where (a) follows from the independence between the location of the MBSs and SBSs. In

step (b) we substitute Mb,BH(θ2) from Eq. (4.20) and Mb,2’(θD) into Eq. (4.32) when k = 2.

By substituting Eq. (4.34) and Eq. (4.32) (when k = 1) in Eq. (4.33), we get the bth moment

Mb,T. Finally, by substituting Mb,T in Eq. (4.33) into either Eq. (4.13) or Eq. (4.8), we get

the meta distribution of the SIR.

4.7.2 Other Network Architecture Scenarios

The proposed framework can be extended to a scenario where the backhaul and access

transmissions are conducted on orthogonal mm-wave spectrum. Note that Eq. (4.3) will be

changed similar to Eq. (4.5). Then, only the first term, Mb,BH(θ2) in the main Eq. (4.14) of

our model that characterizes the moment of the CSP in the backhaul will be re-defined as

Mb,BH(θ2) = E[P b
s,2(θ2)].

The framework can also be extended to a scenario where the backhaul transmissions are

conducted on the mm-wave spectrum and the access links of SBSs operate on µ-wave. In

this case, we will need to use the results in Section VII.A while redefining the termMb,BH(θ2)

as Mb,BH(θ2) = E[P b
s,2(θ2)] in (4.34).

4.8 Numerical Results and Discussions

We present the simulation parameters in Section 4.8.1. Then, we validate our numerical

results using Monte-Carlo simulations in Section 4.8.2. Also in Section 4.8.2, we use the de-

veloped analytical models to obtain insights related to the meta distribution of the SIR/SNR

of a typical device, mean and variance of the success probability, transmission delay, and the
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reliability of a typical device in the downlink direction.

4.8.1 Simulation Parameters

Unless otherwise stated, we use the following simulation parameters throughout our nu-

merical results. The transmission powers of MBSs and SBSs in the downlink are P1 = 50

Watts and P2 = 5 Watts, respectively. The size of the simulated network is 90km × 90km.

We assume that the density of MBSs is λ1 = 2 MBSs/km2 and the density of SBSs is

λ2 = 70 SBSs/km2. The offloading biases for the MBSs and the SBSs are B1 = B2 = 1,

respectively. The PLE for MBSs is set to α1 = 4 and for mm-wave SBSs, α2,L = 2 in the

case of LOS and α2,N = 4 in the case of NLOS. The network downlink bandwidth is 100

MHz for µwave MBSs and 1 GHz for mm-wave SBSs with channel frequency 28 GHz. The

LOS (NLOS) states are modeled by large (small) values of m, i.e., mL = 2 and mN = 1

[25]. SBSs number of antenna elements is N = 10. The receiver noise is calculated as [27]

σ2
2 = −174 dBm/Hz + 10 log10(W2) + 10 dB, where W2 = 1 GHz is bandwidth allocated to

the mm-wave SBSs. The antenna gains of MBSs are Go
1 = 0 dB and devices directional

antenna gain is Gmax
D = 10 dB.

4.8.2 Discussions

Association Probability

Fig. 4.2 illustrates the accuracy of association probabilities in a hybrid spectrum network,

derived in Lemma 6 and Lemma 7, as a function of λ2 by showing a comparison with

Monte-Carlo simulations. We notice from Fig. 4.2 that by increasing the density of the mm-

wave SBSs λ2, the probability of association with mm-wave LOS SBSs A2,L increases which

confirms the insights from Corollary 1 and Corollary 2. The reason is the increasing

number of SBSs per unit area within the LOS ball will favour the device association towards

LOS SBSs and reduces the chances of associating with NLOS SBSs. The addition of A1 +
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A2,L+A2,N = 1 is equal to unity for different densities of SBSs λ2. Note that the probability

of associating with µwave MBSs is minimal due to a higher path-loss exponent and NLOS

omnidirectional transmissions from MBSs.

The Meta Distribution of the SIR/SNR

In Fig. 4.3, we validate our analytical results for the meta distribution of the SIR/SNR of a

typical device in a hybrid spectrum IoT network through simulations. Fig. 4.3 also depicts

the probability of achieving reliability x, i.e., x% fraction of devices can achieve their quality

of service for θ ∈ {10, 1, 0.1} dB. From Fig. 4.3, we note that about 18% of the devices

(when θ = 10), 51% of devices (when θ = 1), and 96% of devices (when θ = 0.1) have

success probabilities equal to 0.3.
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Figure 4.2: Association probabilities as a function of λ2 for the hybrid spectrum IoT network

when λ1 = 2 MBSs/km2, B1 = B2 = 1, and d = 200m.
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Figure 4.3: The meta distribution vs. reliability threshold x for θ = θD = θ2 =10, 1, and

0.1 for the hybrid spectrum IoT network when B1 = B2 = 1, and d = 200m.

The Coverage and Variance as Functions of the SIR/SNR Threshold in Hybrid

Spectrum Networks

Fig. 4.4 illustrates the standard success probability M1,T and its variance M2,T −M2
1,T as

a function of target SIR/SNR threshold θ of devices in a hybrid spectrum IoT network.

As we can see in Fig. 4.4 that the simulation results match the analytical results, however

the slight gap is due to the Alzer’s inequality considered in Appendix B.3. This gap

will be zero when Nakagami fading turns into Rayleigh fading as shown in the next figure.

By examining Fig. 4.4, a numerical evaluation shows that the variance is maximized at

θ = −3 dB where the success is M1,T = 0.49. For moderate values of θ, there is a trade-off

between maximizing coverage or reducing variance because the variance first increases and

then decreases while the coverage probability is monotonically decreasing. For higher values

of θ, lower coverage probabilities have lower variance so its a low-reliability regime where

more devices’ performances are spread around low coverage probability. As such, the low

values of θ provides a higher reliability regime.

Fig. 4.5 illustrates the standard success probability M1,T and the variance as a function
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of θ with Rayleigh fading (i.e., mL = mN = 1). As we can see in Fig. 4.5 that the simulation

results closely match the analytical results. The reason is that the approximation of the

incomplete Gamma function (also referred to as Alzer’s inequality) becomes exact when mL

becomes equal to unity. Subsequently, this figure explains the reason for the gap between

the simulation and the analytical curves in Fig. 4.4.
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Figure 4.4: Coverage probability M1,T and variance M2,T −M2
1,T as a function of θ consid-

ering Nakagami-m fading when B1 = B2 = 1 and d = 200m.

The Coverage and Variance as Functions of the Number of Antenna Array Ele-

ments in Hybrid Spectrum Networks

Fig. 4.6 depicts the coverage probability and variance as a function of θ considering the

number of antenna array elements as N = 10, 20, and 30 to show the effect of higher

directional antenna gains. The general trends for the coverage probability and its variance

are found to be the same as in previous figures. The main observation is that although the

coverage enhancement is not significant with increasing antenna elements, the reduction in

the variance is noticeable which supports higher directional antenna gains and the importance

of analyzing the higher moments of the CSP.
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Figure 4.5: Coverage probability M1,T and variance M2,T −M2
1,T as a function of θ consid-

ering Rayleigh fading (i.e., mL = mN = 1, when B1 = B2 = 1 and d = 200m.

The Coverage and Variance as Functions of B2 in Microwave-only Networks

In Fig. 4.7, we study the effect of offloading devices from the MBS tier to the SBSs tier

in terms of the coverage probability (which is the mean reliability) and the variance of

the CSP (or reliability). By offloading devices from the MBS tier to the SBSs tier when

B2 = 30, the coverage probability M1,T suffers due to the dual-hop transmission effect in

wireless backhauled SBSs; however the variance of the results reduces which is a novel and

positive insight. Another observation is that the variance of the CSP in µwave-only IoT

network is high compared to the hybrid IoT network. This can be shown by comparing

points V1 = (1, 0.1) in Fig. 4.6 and V2 = (4, 0.19) in Fig. 4.7, for the case of B1 = B2 = 1.

We noticed that the variance has decreased from 0.19 to 0.1 when the SBS antenna array

size is increased to N = 20. This implies that the hybrid spectrum IoT network outperforms

the µwave-only IoT network due to the directional antenna gains.
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Figure 4.6: Coverage probability M1,T and variance M2,T −M2
1,T as a function of N for

hybrid spectrum IoT network when B1 = B2 = 1, and d = 200m.
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The Mean Local Delay

Fig. 4.8 depicts the mean local delay experienced by a typical device as a function of the

SBSs density λ2 in a hybrid spectrum IoT network. The mean local delay is the mean number

of transmission attempts to successfully transmit a packet. The mean local delay increases

by increasing λ2. After the SBS density reaches λ2 = 20 SBSs/km2, the mean local delay

stays constant at value 1.11. This result can be intuitively explained as follows. When the

mm-wave SBS density is low, the typical device has a higher probability to connect to a MBS,

i.e., the mean local delay of the network results from only one hop communication (from

the MBS to the device). However, when the λ2 increases, the typical device has a higher

probability to connect to a mm-wave SBS, i.e., the network local delay results from two hops

communication (from the MBS to the SBS then from the SBS to the device). Furthermore,

the beamforming high directional gain steerable antennas will push more devices to associate

with SBSs thus a higher network delay is observed. Fig. 4.9 shows that, all else being equal,

the mean local delay of the hybrid spectrum network is lower than that of the µwave-only

network.

Fig. 4.9 depicts the mean local delay for a µwave-only network as a function of λ2. When

λ2 increases the mean local delay of the total network increases again due to the increase in

interference which is not the case in the hybrid spectrum network. The network mean local

delay in the case of α1 = α2 = 3 is higher than that in the case of α1 = α2 = 4 due to higher

path loss degradation for higher PLEs.
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The Meta Distribution of the Achievable Data Rate in Hybrid Spectrum Net-

works

Fig. 4.10 depicts the meta distribution of the data rate in hybrid spectrum IoT networks as

a function of reliability x for different number of antenna elements N = 10, 20, 40, and 50

with rate threshold T = 1 Gbps. As shown in Fig. 4.10, the fraction of devices achieving

a required rate increases as the number of antennas elements increases. In other words,

increasing the number of antenna elements of SBSs has a positive effect on the achievable

rate and its meta distribution. This insight helps IoT cellular network operators to find the

most efficient operating antenna configuration to achieve certain reliability for certain IoT

applications.
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Figure 4.10: Meta distribution of the achievable data rate as a function of reliability x for

different number of antenna elements N with rate threshold T = 1 Gbps.
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The Meta Distribution of SIR in a Microwave-only Network

In Fig. 4.11, we validate our analysis by depicting the exact (Gil-Pelaez) meta distribution

in a µwave-only IoT network defined in Eq. (4.13), and the beta approximation for the meta

distribution defined in Eq. (4.8). Our simulation result provides an excellent match for a

wide range of θ values and this validates the correctness of our analytical model. Fig. 4.11

also serves as an illustration of the meta distribution of the SIR of a typical device in a

µwave-only IoT network. We note that about 23% of devices (when θ = 10), 72% of devices

(when θ = 1), and 98% of devices (when θ = 0.1) have reliability, i.e., success probability,

equal to 0.3.
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Figure 4.11: The meta distribution as a function of reliability x for θ = θD = θ2 =10, 1, and

0.1 for SBSs in a µwave-only IoT network when B1 = B2 = 1 and α1 = α2 = 4.
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4.9 Chapter Summary

This chapter characterizes the meta distributions of the SIR/SNR and data rate of a typical

device in a hybrid spectrum network and µwave-only network. The meta distribution is

evaluated first by formulating and then characterizing the moments of the CSP of a typical

device in the hybrid network. Important performance metrics such as the mean local delay,

coverage probability, network jitter, and variance of the CSP (or reliability) are studied.

Numerical results demonstrate the significance of evaluating the meta distribution. Eval-

uating the meta distribution requires a systematic evaluation of the generalized moment of

order b that helps in evaluating network metric such as coverage probability when b = 1,

mean local delay when b = −1, network jitter using b = −2 and b = −1, etc. Numerical

results provide valuable insights related to the reliability and latency of the hybrid spectrum

network, µwave-only network, and mm-wave only network. These insights will help cellu-

lar network operators to find the most efficient operating antenna configuration to achieve

required level of reliability for certain applications.
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Chapter 5

Mobility-Aware Modeling and

Analysis of Dense Cellular Networks

with C-plane/U-plane Split

Architecture

5.1 Motivations and Contributions

The fifth generation (5G) of cellular networks is challenged to enhance devices’ experience,

support new services, and satisfy the ever-increasing mobile users and devices population

and their traffic demands. Compared to the state-of-the-art 4G cellular systems, 5G net-

works are expected to achieve thousandfold capacity improvement with at least hundredfold

increase in the peak data rate and one order of magnitude delay reduction [2]. Researchers in

both academia and industry almost agree that network densification, via base station deploy-

ment, is among the key solutions to achieve this ambitious performance goal [2]. Therefore,

it is expected that cellular network operators will significantly densify their networks in-

frastructures to fulfill the 5G performance requirements. In this case, network densification
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via deployments of small base stations (SBSs) is preferred over deployments of macro base

stations (MBSs) due to lower cost and faster deployment.

Deploying more SBSs within the same geographical region reduces the footprint of each

BS, and thus, decreases the number of devices served by each BS. Reduced BS footprints

shorten device-to-serving-BS distances and improve the spatial frequency reuse. Therefore,

network densification is foreseen to improve spatial spectral efficiency and thus network

capacity. However, narrowing BS footprints leads to higher handover rates and control

overhead per unit area. The increased handover rate imposes a major challenge that may

negate the foreseen densification gain if conventional network operation is preserved. In

extreme cases, where high mobility exists in urban areas (e.g., monorails in city downtowns

or the Shinkansen network of high-speed railway in Tokyo), a densely deployed cellular

network may fail to support very fast moving users and devices or cars due to excessive

handover rates. Particularly, the network cannot support devices with a cell dwell time

that is comparable or less than the handover delay. Consequently, the undesirable effect

of narrowing the BSs footprints requires solutions that reduce handover rate and control

overhead in order to harvest the foreseen network densification gain.

Decoupling control plane (C-plane) and user plane (U-plane)1 for cellular networks, under

a cloud radio access network (C-RAN) umbrella, is proposed as a potential solution to reduce

handover rate and control burden [141]. Cellular network architecture with C-plane/U-

plane (CP/UP) split is also referred to as “Lean Carrier” for LTE [142]. Fig. 5.1 illustrates

cellular network architecture with CP/UP split. In this architecture, devices can receive

data packets from a nearby SBS while being controlled via a farther MBS. It is shown in

[142,141] that implementing the control plane at the macro cell level and the data plane at the

small cell level incurs less control overhead compared to the conventional architecture (i.e.,

1The data and control splitting in the CP/UP split architecture is implemented at the radio access network

level. This implementation is different from the network services and control splitting enabled by software

defined networking (SDN), which is implemented at the core network side. However, both implementations

are considered fundamental building blocks for 5G networks [140].
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Figure 5.1: Conventional vs. CP/UP split network architecture: There are three types

of links in the conventional network with three corresponding SINR values: SINR
(C)
1 for

macrocell devices, SINR
(C)
2 for non-biased devices, and SINR

(C)
B for biased devices. There

are five types of links in the CP/UP split network with five corresponding SINR values:

SINR
(s)
1 for macrocell devices, SINR

(s)
d2 for non-biased devices’ data, SINR

(s)
c2 for non-biased

devices’ control, SINR
(s)
dB for biased devices’ data and SINR

(s)
cB for biased devices’ control and

service distances.

both C-plane and U-plane are jointly served from each BS). The CP/UP split architecture

imposes less control overhead because the cell specific control signals/channels for SBSs,

which identify each SBS, are not broadcast.2 Consequently, the SBSs become transparent

to the devices and the MBSs take charge of managing the radio resource control (RRC)

2Examples of cell specific control signals/channels are primary/secondary synchronization signals

[PSS/SSS], cell-specific reference signals [CRS], master information blocks [MIB] and system information

blocks [SIB] (see [141, 142] for details).
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procedures between mobile devices and SBSs, such as session establishment and release. In

the CP/UP split network, the SBSs are referred to as phantom BSs because their identities

are hidden from the devices.3

In addition to reducing the control overhead, the CP/UP split architecture can also be

exploited to mitigate handover delays in dense cellular environments. Since the MBSs are

in charge of the control signaling for the phantom cells including SBS selection, the MBSs

can act as handover anchors and mange the handovers between underlying SBSs. In this

case, the core network is only informed about inter-MBSs handovers. Compared to the

conventional network architecture which informs the core network about MBSs and SBSs

handovers. Hence, the CP/UP split architecture can significantly reduce handover delay by

only reporting the less frequent inter-MBSs handovers, thanks to the larger coverage of macro

cells. It is ought to be mentioned that the relative performance between the conventional

and CP/UP split architectures highly depends on the availability of the direct X2 interfaces

between the BSs. This is because the X2 interface also enables core network transparent

handover procedure. However, the X2 interface does not provide signaling overhead reduction

as in the CP/UP split case.

In this chapter, we use stochastic geometry to develop a tractable mobility-aware model

that characterizes the performance of cellular networks with and without CP/UP split. In

particular, we model downlink transmission in two-tier cellular networks with flexible cell

association, in which the model takes into account the impact of the handover rate and

control overhead on devices throughput. Tractable expressions for per-device throughput in

terms of the BSs intensity, devices velocity, and handover delay are obtained to study the

effect of mobility on throughput in dense cellular environments, in which the performances

of conventional and CP/UP split architectures are compared. To this end, we shed light

on the handover delay problem in dense cellular environments and show the potential delay

mitigation via the CP/UP split architecture. The developed model is also used to quantify

the expected performance gain for the CP/UP split architecture, obtain design insights, and

3The abbreviation SBS in this chapter refers to both a small BS and a phantom BS.
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discuss the performance limits of the conventional and CP/UP split architectures. To the

best of our knowledge, this chapter is the first to develop a theoretical and tractable mobility-

aware modeling paradigm to study the handover problem in dense cellular environments and

evaluate the performance of the CP/UP split network architecture. Based on the developed

model, potential scenarios where CP/UP split is essential to support device mobility are

highlighted and the feasibility of CP/UP split is also discussed. This architecture has been

considered as a promising solution to increase the overall performance and quality of service

of 5G cellular networks [2].

The remainder of the chapter is organized as follows. In Section 5.2, we provide the system

model and assumptions. Section 5.3 presents the conventional and CP/UP split transmission

rate models. Section 5.4 characterizes the coverage probability and spectral efficiencies of

the conventional and CP/UP split architectures. Section 5.5 presents mobility analysis and

evaluate the handover costs incurred by mobile devices. We validate the proposed model

and discuss numerical results in Section 5.6. Finally, Section 3.6 summarizes and concludes

the chapter.

5.2 System Model and Assumptions

In this section, we describe the network and mobility models and assumptions.

5.2.1 Network Model

We consider a two-tier downlink cellular network with BSs in each tier modeled via an

independent two dimensional homogeneous Poisson point process (PPP) Φk of density λk,

where k ∈ {1, 2}. The macro cell tier and small cell (phantom cell) tier are denoted by k = 1

and k = 2, respectively. Devices are spatially distributed according to an independent PPP

Φu with density λ(u). All BSs in the kth tier are equipped with single antennas, transmit

with the same power Pk, and always have packets to transmit. We consider a general power
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law path loss model, with path loss exponent αk, for both desired and interference downlink

signal powers. Furthermore, signal attenuation due to multi-path fading is modeled using

an independent Rayleigh distribution such that the channel power gain Hx ∼ exp(1). A list

of the key mathematical notations used in this chapter is given in Table 5.1.

Due to the transmission power disparity between the two tiers, the BSs footprints are

represented by a weighted Poisson Voronoi diagram [143] as depicted in Fig. 5.2. To enable

flexible cell association and fine-grained control of BS loads, we follow the model in [3] and

introduce the bias factor B to artificially encourages/discourages devices to associate with

the small cell tier.

Let rk denote the distance between an arbitrary mobile device and the nearest BS in

the kth tier, then the biased association rule assigns a mobile device to the macro tier if

P1r
−α1
1 > P2Br

−α2
2 , and to a small (phantom) cell otherwise. Based on the aforementioned

association criterion and following the notation in [31], the complete set of devices is divided

into the following three non-overlapping sets:

u ∈







u1 if P1r
−α1
1 ≥ P2Br

−α2
2

u2 if P2r
−α2
2 > P1r

−α1
1

uB if P2r
−α2
2 ≤ P1r

−α1
1 < P2Br

−α2
2

(5.1)

where u1 denotes the set of macrocell devices, u2 denotes the set of non-biased small cell

devices, and uB is the set of biased small cell devices, where u1 ∪ u2 ∪ uB = Φu and

u1 ∩u2 ∩ uB = φ.

We consider two modes of operation, namely the conventional and CP/UP split, as shown

in Fig. 5.1. In the conventional network architecture, we assume that the control overhead

consumes µc of the data rate and that each device gets the control and data from the

same BS. We also assume universal frequency reuse scheme with almost blank sub-frames

(ABS) interference management between macro cells and biased small cells [31].4 That

4Universal frequency reuse is considered for the conventional network architecture because it always
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Table 5.1: Mathematical notations in Chapter 5
Notation Description

Φk;Φu PPP of BSs of kth tier; PPP of mobile devices.

λk;λ
(u) Density of BSs of kth tier; density of mobile devices.

Pk Transmit power of BSs of kth tier.

B Association bias for 2nd tier.

αk Path loss exponent of kth tier.

V Mobile device velocity.

HO
(c)
ij

Mean number of handovers per unit length from
tier i to j, for conventional network.

MHO(s)
Mean number of inter-anchor handovers per

unit length for CP/UP split network.

V HO(s)
Mean number of intra-anchor handovers per

unit length for CP/UP split network.

η
Fraction of time dedicated to serve biased mobile
devices with no interference from the macro tier.

µC

Control data overhead fraction in
overall network capacity.

θ Predefined threshold for correct signal reception.

D
(c)
HO Handover cost in conventional network.

D
(s)
HO Handover cost in CP/UP split network.

X ;Z
Probability of having X2 interface in conventional;

and CP/UP split architecture handovers.

d(c); d̃(c)
Delay per non X2 handover;delay

per X2 handover in conventional network.

d
(s)
m ; d̃

(s)
m

Inter-anchor handover delay without X2 interface;Inter-anchor
handover delay with X2 handover in CP/UP split network.

d
(s)
v Intra-anchor handover delay for CP/UP split network.

uj

Macro cell devices j = 1, small cell devices
j =2, biased small cell devices j = B .

γ Control signaling reduction factor

AT (c) Average per-device throughput in the conventional network.

AT (s) Average per-device throughput in CP/UP split network.

Aj Association probability of a typical device uj .

T (c)
j

BS throughput in each association
state category for conventional network.

T (s)
j

BS throughput in each association
state category for CP/UP split network.

SE (c) Spectral efficiency for conventional network.

SE (s) Spectral efficiency for CP/UP split network.

P12;P21 P12 =
P1

P2
; P21 =

1
P12

.

P̃12;P̃21 P̃12 =
P1

BP2
; P̃21 =

1
P̃12

.

ρ(a, b) ρ(a, b) = a +
√
b arctan (

√
b).

λ̃k λ̃k =
2πλk

αk−2
.

2F1(·, ·; ·; ·) The hypergeometric function.
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Figure 5.2: Two-tier weighted Possion Voronoi diagram representing a cellular network. The

green squares and the red circles represent macro BSs and small BSs, respectively. The

figure shows a device’s trajectory (highlighted in orange), intra-anchor handover bound-

aries (in blue) and inter-anchor handover boundaries (in dotted black) for the CP/UP split

architecture.

is, a fraction η of time is dedicated to serving biased mobile devices (i.e., uB) with no

interference from the macro tier (i.e., MBSs do not send or send with very low power during

the ABSs interval). In the CP/UP split network architecture, each small cell device (i.e.,

each device in u2 and uB) has double association in which the SBS transmit data only and

the control signaling overhead is communicated via the MBS. Note that the control overhead

for small cell devices in the CP/UP split case consumes µc/γ of the data rate, where γ ≥ 1

is offered control reduction factor [142, 141]. It is worth noting that the decoupled, but

simultaneous, data and control association of the CP/UP split architecture necessitates a

results in higher device throughput than dedicated spectrum access as shown in [40].
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dedicated spectrum assignment for each tier. To conduct a fair comparison, we assume both

the conventional and CP/UP split architectures have the same available spectrum of W ,

however, the CP/UP architecture split W into W1 and W2 = W −W1 for the macro and

small-cell tiers, respectively.

5.2.2 Device Mobility

We assume that each device moves with an arbitrary trajectory and velocity, in which a

handover occurs when a device crosses over a cell boundary. However, we assume that the

overall devices mobility model preserves the spatial uniformity of devices across the network.

We define a vertical handover as one made between two BSs in two different tiers, and a

horizontal handover as one made between two BSs in the same tier.

Fig. 5.2 shows the handover boundaries for the conventional and CP/UP split network

architectures. In the CP/UP split network architecture, the black dotted Voronoi tessellation

represents control handover boundaries and the blue weighted Voronoi tessellation represents

the data handover boundaries. In the conventional network architecture, the blue weighted

Voronoi tessellation represents both the data and control handover boundaries.

In the conventional network architecture, devices change their association (i.e., control

and data) upon each handover. All handovers are managed through mobility management

entity (MME) in the core network if direct X2 interface is not available between the serving

and target BSs. Otherwise, the handover signalling is performed via the X2 interface without

involving the core network, which highly reduces the handover delay. The handovers that

occurs in the conventional network architecture can be categorized into the following cases:

(1) vertical handover from a MBS to a SBS, (2) vertical handover from a SBS to a MBS, (3)

horizontal handover between two MBSs, and (4) horizontal handover between two SBSs. In

the conventional network architecture, the mean number of handovers, from tier i to tier j,

that occurs per unit length of a device trajectory is denoted by HO
(c)
ij , where i, j ∈ {1, 2}

and the superscript (c) denotes the conventional network architecture.
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In the CP/UP split network architecture, the MBSs function as mobility anchors for data

handovers within macro-to-macro Voronoi tessellation (black dotted tessellation in Fig. 5.2).

That is, the weighted Voronoi tessellation constructed w.r.t. all BSs in all tiers determines the

data plane association and the Voronoi tessellation constructed w.r.t. MBSs only determines

the control signaling and handover support association as shown in Fig. 5.2. Consequently,

only two types of handover occurs in the CP/UP split architecture, namely, (1) intra-anchor

handover, and (2) inter-anchor handover. An inter-anchor handover occurs when a device

crosses the boundary between two MBSs, and the handover is managed via the MME in

the core network when there is no X2 interface between the engaged MBSs. In contrast,

an intra-anchor handover is always transparent to the MME and is managed via the anchor

BS, which reduces the handover delay because the MME is not notified. In the CP/UP

split network architecture, we denote the mean number of inter-anchor and intra-anchor

handovers per unit length of the device trajectory as MHO(s) and V HO(s), respectively,

where the superscript (s) denotes the CP/UP split network. It is worth noting that s change

their control association without changing their data association when crossing over a macro-

boundary within the coverage of a SBS. This type of handover is treated as an inter-anchor

handover because the MME is informed.

For tractability, we assume that devices’ trajectories are long enough to go through all

three association states j ∈ 1, 2, B. We also use the spatially averaged signal-to-interference-

plus-noise-ratio (SINR) for stationary devices provided by a given tier to infer the average

SINR experienced by a mobile device during the journey through that tier. This assumption

is validated later in Section 5.6. In other words, we compute SINRj provided by tier j for

a randomly selected stationary device and assume that mobile devices will experience an

average SINRj during their trajectories in the jth tier.

It is worth noting that the average stationary SINR assumption is needed for model

tractability and was used in [43,45,44]. This assumption only ignores the spatial correlations

between the SINR values along each trajectory. However, averages over all trajectories and

all devices under all network realization are still captured by the analysis.
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5.3 Conventional and CP/UP Split Transmission Rate

Models

Using Shannon’s formula to define the ergodic rate, the average throughput delivered by

a MBS and SBS for non-biased and biased devices in the conventional architecture can be

expressed as follows:

T (c)
1 = (1− µC)(1− η)WE[ln(1 + SINR

(c)
1 )], (5.2)

T (c)
2 = (1− µC)(1− η)WE[ln(1 + SINR

(c)
2 )], (5.3)

T (c)
B = (1− µC)ηWE[ln(1 + SINR

(c)
B )]. (5.4)

Note that MBSs are active only for 1 − η fraction of the time due to the ABS interference

management. On the other hand, small BSs are active all the time in which 1 − η fraction

of the time is dedicated for non-biased devices u2 and η fraction of the time is dedicated for

biased devices uB.

The decoupled data and control associations and dedicated spectrum access eliminate the

inter-tier interference in the CP/UP split operation and changes the statistical nature of the

SINR in the CP/UP split network architecture when compared to the conventional network

architecture. In particular, in the CP/UP split network architecture as shown in Fig. 5.1, we

have five different SINRs to consider, namely, SINR
(s)
1 for macrocell devices, SINR

(s)
d2 for non-

biased devices’ data, SINR
(s)
c2 for non-biased devices’ control signaling, SINR

(s)
dB for biased

devices’ data and SINR
(s)
cB for biased devices’ control signaling. Let W1 be the spectrum

assigned to the macro tier and W2 =W −W1 be the spectrum assigned to the phantom cell

tier. In this case, the average throughput of a small (phantom) cell s is given by:

T (s)
2 = (1− η)W2E[ln(1 + SINR

(s)
d2 )], (5.5)

T (s)
B = ηW2E[ln(1 + SINR

(s)
dB)]. (5.6)

116



Although there is no cross-tier interference in the CP/UP split network architecture due

to spectrum splitting, time sharing still exists in (5.5) and (5.6) because the phantom BSs

dedicate a fraction η of time to serve biased devices. Note that the control overhead µc does

not appear in the above throughput expressions because all control overhead is offloaded to

the macro cells. The average throughput delivered to the macrocell devices, after reserving

the resources for phantom cell control signaling, is characterized via the following lemma:

Lemma 12. Consider a two-tier cellular network with the CP/UP split architecture, PPP

macro BSs with density λ1, PPP phantom BSs with density λ2, and a control reduction factor

γ. Then the average throughput delivered to the macrocell devices after resources for control

signaling for phantom cell devices have been reserved is expressed as:

T (s)
1 = (1− µC)R(s)

1

(

1− λ2µC

λ1γ

(

T (s)
2

Rc2

+
T (s)
B

RcB

))

, (5.7)

where R(s)
1 = W1E[ln(1+SINR

(s)
1 )] is the ergodic rate for macrocell devices, Rc2 = W1E[ln(1+

SINR
(s)
c2 )] is the average rate at which the control data is delivered to non-biased phantom

cell devices, RcB = W1E[ln(1 + SINR
(s)
cB)] is the average rate at which the control data is

delivered to biased phantom cell devices, and T (s)
2 and T (s)

B are the throughputs of non-biased

and biased phantom cell devices given in (5.5) and (5.6), respectively.

Proof. See Appendix C.1 �

It is worth mentioning that (5.7) implicitly assumes that the control overhead is always

a fraction µc of the available data rate and is only reduced by a factor of γ for phantom cell

devices. Eq. (5.7) also assumes that the device population is sufficiently dense so that each

phantom BS always has non-biased and biased small cell devices to serve.

A CP/UP split network is said to be feasible if the MBSs have sufficient bandwidth to

serve macrocell devices and to provide control signaling to phantom cell devices. From

Lemma 12, the feasibility of the CP/UP split architecture is given in the following corollary
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Corollary 6. The CP/UP split architecture is feasible if and only if

T (s)
2

Rc2
+

T (s)
B

RcB
≤ λ1γ

λ2µC
, (5.8)

or equivalently

(1− η)
E[ln(1 + SINR

(s)
d2 )]

E[ln(1 + SINR
(s)
c2 )]

+ η
E[ln(1 + SINR

(s)
dB)]

E[ln(1 + SINR
(s)
cB)]

≤ W1λ1γ

W2λ2µC

. (5.9)

According to Corollary 6, the feasibility of the CP/UP split architecture is mainly limited

by the average SINR experienced by the phantom cell devices in MBSs. Corollary 6 also

suggests possible factors that can be manipulated to ensure the feasibility of the CP/UP

split architecture are bandwidth assignment, relative BS densities, and/or control reduction

factors.

5.3.1 Per-device Mobility-aware Throughput Model

The above expressions give the expected throughput for a typical device without capturing

the main effects of network densifications. To have a realistic assessment to the densifica-

tion gains, both throughput gains and the handover effects should be incorporated into the

analysis. On one hand, network densification shrinks the BSs footprint, which reduces the

number of devices served by each BS and increases the share each device gets from his serving

BS’s throughput. On the other hand, network densification shrinks the BSs footprint, which

increases the handover rate and overhead. During handover execution, the device releases

the serving BS session and establishes a new session with the target BS. We assume that no

data is delivered during handover execution and only handover-related signaling is commu-

nicated to the device. To incorporate the handover delay into the throughput expressions,

we first compute the handover cost5 for the conventional and CP/UP split architectures,

which is the average duration consumed in handovers per unit time. Then we eliminate

5The handover cost is a dimensionless unit which is computed as delay
(

sec
handover

)
× velocity

(
meter
sec

)
×

handover rate
(
handovers

meter

)
.
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the handover duration from the throughput expressions (5.2)-(5.7). For the conventional

network architecture, the handover cost is expressed as:

D
(c)
HO =

(

(1−X ) d(c) + X d̃(c)
)

V
∑

i

∑

j

HO
(c)
ij , (5.10)

where d(c) and d̃(c) are the delays incurred by non X2 interface handover and X2 interface

handover, respectively. X is the probability that an X2 interface is available between the

serving and target BSs. In the CP/UP split network architecture, the delay incurred by

an inter-anchor handover is different from the delay incurred by an intra-anchor handover,

because the intra-anchor handover is always transparent to the core network.6 On the other

hand, all inter-anchor handovers are managed through the MME in the core network unless

an X2 interface is available. Therefore, the handover cost for the CP/UP split architecture

is given by:

D
(s)
HO = V

(

MHO(s)
(

(1−Z) d(s)m + Z d̃(s)m

)

+ V HO(s)d(s)v

)

, (5.11)

where d
(s)
m , d̃

(s)
m , and d

(s)
v are the delays incurred by an inter-anchor handover without X2

interface, an inter-anchor handover with X2 interface, and an intra-anchor handover, respec-

tively. Z is the probability that a direct X2 connectivity is available between the serving

and target MBSs.

Incorporating the handover delay in to the throughput analysis, assuming that each BS

uniformly distributes the resources across the devices it serves, and using the law of total

probability, the average per-device throughput along his trajectory for the conventional and

CP/UP split architectures are, respectively, expressed as:

6It is expected that removing the core network delay from a handover in the CP/UP split network (intra-

anchor handover) reduces the handover delay by 50% compared to a handover in the conventional network

[144].
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AT (c) =

(

A1T (c)
1

N1

+
A2T (c)

2

N2

+
ABT (c)

B

NB

)
(

1−min
(

1, D
(c)
HO

))

, (5.12)

AT (s) =

(

A1T (s)
1

N1

+
A2T (s)

2

N2

+
ABT (s)

B

NB

)
(

1−min
(

1, D
(s)
HO

))

, (5.13)

where Aj is the probability of being served by a BSs in j ∈ {1, 2, B} case and Nj is the

expected number of devices sharing the BS resources with the typical device in the j ∈
{1, 2, B} case. Note that Aj and Nj in (5.12) and (5.13) are independent from the network

architecture and are calculated according to the association rule (5.1). The effect of control

signaling offloaded to the MBSs in the CP/UP split is already captured by T (s)
j .

Eqs. (5.12) and (5.13) are the main performance metrics in this chapter, which are

the mobility aware per-device average throughput in the conventional and CP/UP split

architectures. It is worth re-emphasizing that (5.12) and (5.13) assume that the devices

have long trajectories, that each device passes through all association states during their

trajectories, and that the mobility model preserves the devices spatial uniformity across the

network. It is worth mentioning that when the average cell dwell time becomes less than the

handover delay, the handover costs in (5.10) and (5.11) are greater than unity. Consequently,

the network fails to support devices and the average throughputs in (5.12) and (5.13) are

nullified.

Exploiting the long trajectories and devices spatial uniformity, the association probabili-

ties and BS loads can be obtained by following [31] and [3], respectively. In particular, the

association probabilities A1, A2 and AB can be viewed as the percentages of the R2 domain

served by the MBSs, the unbiased SBS, and the biased SBS, respectively. Consequently, the

association probabilities are given by [31]:

A1 = 2πλ1

∫ ∞

0

r exp

(

−π
(

λ1r
2 + λ2P̃

2
α2
21 r

2α1
α2

))

dr, (5.14)

A2 = 2πλ2

∫ ∞

0

r exp

(

−π
(

λ2r
2 + λ1P

2
α1
12 r

2α2
α1

))

dr, (5.15)
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AB = 2πλ2

∫ ∞

0

r

{

exp

[

−π
(

λ1

(

P̃
2
α1
12 r

2α2
α1 + λ2r

2

))]

− exp

[

−π
(

λ1

(

P
2
α1
12 r

2α2
α1 + λ2r

2

))]}

dr, (5.16)

where P12 =
P1

P2
, P21 =

1
P12

, P̃12 =
P1

BP2
, and P̃21 =

1
P̃12

.

Since the device spatial uniformity is preserved, the average number of devices sharing

the resources with the typical device for each of the association cases is computed as follows

[31]:

Nj =
1.28λ(u)Aj

λJ(j)
+ 1,

where J(j) is a map from device set association index j ∈ {1, 2, B} to serving tier index

k ∈ {1, 2} as follows: J(1) = 1, J(2) = J(B) = 2. Therefore,

N1 = 1.28

(

2πλ(u)
∫ ∞

0

r exp

{

− π

[

λ1r
2 + λ2P̃

2
α2
21 r

2α1
α2

]}

dr

)

+ 1,

N2 = 1.28

(

2πλ(u)
∫ ∞

0

r exp

{

− π

[

λ1P
2
α1
12 r

2α2
α1 + λ2r

2

]}

dr

)

+ 1,

NB = 1.28

(

2πλ(u)
∫ ∞

0

r

[

exp

(

−π
(

λ1P
2
α1
12 r

2α2
α1 + λ2r

2

))

− exp

(

−π
(

λ1P̃
2
α1
12 r

2α2
α1 + λ2r

2

))]

dr

)

+ 1.

An important scenario of interest is the case of equal path-loss exponents (α1 = α2 =

4), which not only simplifies the analysis but also a practical value for outdoor cellular

communications in urban environments [63,31,32,3,33,34,35,36,37,38,39,40]. In this case,

the association probabilities and BS loads reduce to:

A1 =
λ1

λ1 + λ2
√

P̃21

,A2 =
λ2

λ1
√
P12 + λ2

,AB =
λ2

λ1
√

P̃12 + λ2
− λ2

λ1
√
P12 + λ2

, (5.17)
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and

N1 =
1.28λ(u)

λ1+λ2

√
P̃21

+ 1, N2 =
1.28λ(u)

λ1
√
P12+λ2

+ 1, NB = 1.28

(

λ(u)

λ1

√
P̃12+λ2

− λ(u)

λ1
√
P12+λ2

)

+ 1.

The missing components to calculate (5.12) and (5.13) are the spectral efficiencies (i.e.,

SE = E[ln(1+SINR)]) and handover cost (i.e., DHO), which are characterized in Section 5.4

and Section 5.5, respectively.

5.4 SINR and Spectral Efficiency Characterization

As mentioned earlier, for tractability, we use the spatially averaged spectral efficiency for

stationary devices to infer the average spectral efficiency for mobile devices. This assumption

is validated later in Section 5.6 and shown to give accurate approximation for the SINR

distribution.

To characterize the SINR, and hence the spectral efficiency, we first characterize the

service distance distribution. Then, we characterize the SINR and spectral efficiency for

both the conventional and CP/UP split network architectures.

5.4.1 Service Distances

As shown in Fig. 5.1, we need to characterize five service distances, namely R1, R2, RB, Rc2,

and RcB. The conventional service distances R1, R2, RB, which are for devices in u1, u2, and

uB respectively, are characterized in [31]. Conditioned on the association, the probability

density functions (PDFs) of the R1, R2, and RB are given by

fR1(r) =
2πλ1
A1

re
−π

(

λ1r2+λ2P̃
2
α2
21 r

2α1
α2

)

, r ≥ 0, (5.18)

fR2(r) =
2πλ2
A2

re
−π

(

λ2r2+λ1P
2
α1
12 r

2α2
α1

)

, r ≥ 0, (5.19)
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fRB
(r) =

−2πλ2
AB

r

[

e
−π

(

λ1P
2
α1
12 r

2α2
α1 +λ2r2

)

− e
−π

(

λ1P̃
2
α1
12 r

2α2
α1 +λ2r2

)

]

, r ≥ 0. (5.20)

As shown in Fig. 5.1, the association for u1, and the data association for u2 and uB in

the CP/UP split case have similar distribution to R1, R2, and RB given in (5.18), (5.19),

and (5.20), respectively. The distributions for control link distances of the CP/UP split

architecture are given by the following lemma

Lemma 13. Let Rc2 and RcB denote the distances from the MBS that provides the control

signaling to u2 and uB, respectively, in a cellular network with the CP/UP split architecture.

Then the distributions of Rc2 and RcB are given by

fRc2(r) =
2πλ1r

A2



e−πλ1r2 − e
−π

(

λ1r2+λ2P
2
α1
21 r

2α2
α1

)

 , r ≥ 0, (5.21)

fRcB
(r) =

2πλ1r

AB



e
−π

(

λ1r2+λ2P
2
α1
21 r

2α2
α1

)

− e
−π

(

λ1r2+λ2P̃
2
α1
21 r

2α2
α1

)

 , r ≥ 0. (5.22)

Proof. See Appendix C.2. �

5.4.2 Coverage Probability Analysis

The coverage probability is defined by the complementary cumulative distribution function

(CCDF) of the SINR (i.e, P[SINR > θ], where θ denotes the predefined threshold for correct

signal reception). Without loss of generality, the SINR analysis is performed for a test

mobile device located at the origin. According to Slivnyak’s theorem, all other devices have

statistical SINR properties equivalent to that of the test device located at the origin [60].

Therefore, the analysis holds for an arbitrary mobile device located at any other location.

For the sake of exposition, we define four types of interferences caused by the BSs in Φ1

and Φ2 with respect to the origin, which are

• the interference from all MBSs I1 =
∑

x∈Φ1

P1Hxx
−α1 .
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• the interference from all MBSs excluding the one nearest to the origin

Io
1 =

∑

x∈Φ1\xo

P1Hxx
−α1 .

• the interference from all SBSs I2 =
∑

x∈Φ2

P2Hxx
−α2 .

• the interference from all SBSs excluding the one nearest to the origin

Io
2 =

∑

x∈Φ2\xo

P2Hxx
−α2 .

The SINR at the test device’s location, the origin, can be defined as

SINR =
PBSHr

−α
0

Iagg + σ2
, (5.23)

where PBS is the serving BS transmit power, H is the random channel power gain, ro is the

distance between the test device and the serving BS, Iagg is the aggregate interference, and

σ2 is the noise power. The parameters in (5.23) to compute the SINR experienced by the

devices in uk, k ∈ {1, 2, B} for the conventional and CP/UP split architectures are given in

Table 5.2.

Table 5.2: SINR parameters

k
Conventional CP/UP split

SINR PBS ro Iagg SINR PBS ro Iagg

1 SINR
(c)
1 P1 R1 Io

1 + I2 SINR
(s)
1 P1 R1 Io

1

2 SINR
(c)
2 P2 R2 I1 + Io

2

SINR
(s)
d2 P2 R2 Io

2

SINR
(s)
c2 P1 Rc2 Io

1

B SINR
(c)
B P2 RB Io

2

SINR
(s)
dB P2 RB Io

2

SINR
(s)
cB P1 RcB Io

1

As shown in Table 5.2, in the conventional network architecture, the macro and non-

biased small cells devices experience inter-tier interference, which is due to the employed

universal frequency reuse scheme. In contrast, the dedicated spectrum accesses employed

by the CP/UP split architecture eliminates the inter-tier interference. Note that the biased
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devices do not experience inter-tier interference in the conventional network architecture

due to the ABS interference coordination employed by the MBSs. Table 5.2 also shows the

different SINR experienced by the data and control links in the CP/UP split architecture,

which is due to the employed decoupled data and control associations.

For a predefined threshold reception θ, the coverage probability C = P[SINR > θ] of all

devices are characterized by the following lemma.

Lemma 14. The SINR coverage for the conventional network is given by

C(c)
1 =

∫ ∞

0

exp

(

− λ̃1r
2θ 2F1

(

1, 1− 2

α1
; 2− 2

α1
;−θ

)

−

λ̃2
B
r2θP̃

2
α2
21 2F1

(

1, 1− 2

α2
; 2− 2

α2
;
−θ
B

))

fR1(r)dr, (5.24)

C(c)
2 =

∫ ∞

0

exp

(

−λ̃1r2θP
2
α1
12 2F1

(

1, 1− 2

α1
; 2− 2

α1
;−θ

)

−

λ̃2r
2θ 2F1

(

1, 1− 2

α2
; 2− 2

α2
;−θ

))

fR2(r)dr, (5.25)

C(c)
B =

∫ ∞

0

exp

(

−λ̃2r2θ 2F1

(

1, 1− 2

α2
; 2− 2

α2
;−θ

))

fRB
(r)dr. (5.26)

The SINR coverage for macrocell devices in the CP/UP split network architecture is given

by

C(s)
1 =

∫ ∞

0

exp

(

−λ̃1r2θ 2F1

(

1, 1− 2

α1
; 2− 2

α1
;−θ

))

fR1(r)dr. (5.27)

The SINR coverage for the data connections for non-biased phantom cell devices is given by

C(s)
d2 =

∫ ∞

0

exp

(

−λ̃2r2θ 2F1

(

1, 1− 2

α2
; 2− 2

α2
;−θ

))

fR2(r)dr, (5.28)

and the biased small cell devices C(s)
dB = C(c)

B given in (5.26). The SINR coverage probabilities

for the control links of the non-biased and biased phantom cell devices are given by

C(s)
c2 =

∫ ∞

0

exp

(

−λ̃1r2θ 2F1

(

1, 1− 2

α1

; 2− 2

α1

;−θ
))

fRc2(r)dr, (5.29)
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C(c)
cB =

∫ ∞

0

exp

(

−λ̃1r2θ 2F1

(

1, 1− 2

α1
; 2− 2

α1
;−θ

))

fRcB
(r)dr, (5.30)

where λ̃k = 2πλk

αk−2
, 2F1(·, ·; ·; ·) is the hypergeometric function, and fR1(r), fR2(r), fRB

(r),

fRc2(r), and fRcB
(r) are given in Section 5.4.1.

Proof. See Appendix C.3. �

For the special case of equal path-loss exponents α1 = α2 = 4, the coverage probabilities

reduce to the simple closed-form expressions shown below:

C(c)
1 =

λ1 + λ2
√

P̃21

λ1ρ(1, θ) + λ2
√

P̃21ρ(1,
θ
B
)
, (5.31)

C(c)
2 =

1

ρ(1, θ)
, (5.32)

C(s)
1 =

λ1 + λ2
√

P̃21

λ1ρ(1, θ) + λ2
√

P̃21

, (5.33)

C(s)
d2 =

λ2 + λ1
√
P12

λ2ρ(1, θ) + λ1
√
P12

, (5.34)

C(s)
c2 =

(

1 + λ1

λ2

√
P12

)(

1− 1

1+
λ2
λ1

√
P21ρ(1,θ)−1

)

ρ(1, θ)
, (5.35)

C(s)
dB = C(c)

B =
λ2
AB




λ1

(√
P12 −

√

P̃12

)

(

λ2ρ(1, θ) + λ1
√

P̃12

) (
λ2ρ(1, θ) + λ1

√
P12

)



 , (5.36)

C(s)
cB =

λ1
AB




λ2

(√

P̃21 −
√
P21

)

(
λ1ρ(1, θ) + λ2

√
P21

) (

λ1ρ(1, θ) + λ2
√

P̃21

)



 , (5.37)

where ρ(a, b) = a+
√
b arctan

(√
b
)

.
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5.4.3 Spectral Efficiency Analysis

The spectral efficiency is one of the main parameters to calculate the throughput of the

conventional and CP/UP split devices throughputs as shown in Section 5.3. The spectral

efficiency (SE = E[ln(1 + SINR)]) can be directly derived from the coverage probability as

follows:

SE = E[ln(1 + SINR)]
(a)
=

∫ ∞

0

P[ln(1 + SINR) > ζ]dζ

=

∫ ∞

0

P[SINR > (eζ − 1)]dζ

(b)
=

∫ ∞

0

P[SINR > t]

t+ 1
dt, (5.38)

where (a) follows because ln(1+SINR) is a strictly positive random variable, and (b) follows

by substituting variable t = eζ−1. For general path loss exponent, the spectral efficiencies for

macro-cell and small-cell devices in the shared spectrum access scheme in the conventional

network are given by (5.39) and (5.40), respectively. For the dedicated spectrum access

scheme in the CP/UP split RAN, the spectral efficiencies are given by:

SE (c)
1 =

∞∫

0

∞∫

0

exp

(

− λ̃1r
2t 2F1

(

1, 1− 2
α1

; 2− 2
α1

;−t
)

− λ̃2r
2tP

2

α2

21 B
2

α2
−1

2F1

(

1, 1− 2
α2

; 2− 2
α2

; −t
B

)
)

t+ 1
fR1

(r)drdt,

(5.39)

SE(c)
2 =

∞∫

0

∞∫

0

exp

(

−λ̃1r
2tP

2

α1

12 2F1

(

1, 1− 2
α1

; 2− 2
α1

;−t
)

− λ̃2r
2t 2F1

(

1, 1− 2
α2

; 2− 2
α2

;−t
))

t+ 1
fR2

(r)drdt.

(5.40)

SE (s)
1 =

∞∫

0

∞∫

0

exp
(

−λ̃1r2t 2F1

(

1, 1− 2
α1
; 2− 2

α1
;−t
))

t + 1
fR1(r)drdt, (5.41)

SE (s)
d2 =

∞∫

0

∞∫

0

exp
(

−λ̃2r2t 2F1

(

1, 1− 2
α2
; 2− 2

α2
;−t
))

t + 1
fR2(r)drdt, (5.42)
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SE (s)
c2 =

∞∫

0

∞∫

0

exp
(

−λ̃1r2t 2F1

(

1, 1− 2
α1
; 2− 2

α1
;−t
))

t + 1
fRc2(r)drdt, (5.43)

SE (c)
B = SE (s)

dB =

∞∫

0

∞∫

0

exp
(

−λ̃2r2t 2F1

(

1, 1− 2
α2
; 2− 2

α2
;−t
))

t + 1
fRB

(r)drdt, (5.44)

SE (s)
cB =

∞∫

0

∞∫

0

exp
(

−λ̃1r2t 2F1

(

1, 1− 2
α1
; 2− 2

α1
;−t
))

t + 1
fRcB

(r)drdt. (5.45)

As shown in equations (5.39)-(5.45), two fold integrals are required to obtain the spectral

efficiency for general path loss exponents, which is numerically complex to evaluate. For

the special case of path loss exponents α1 = α2 = 4, the spectral efficiency for all types of

devices can be evaluated via single integral as follows:

SE (c)
1 =

∫ ∞

0

1

t+ 1

λ1 + λ2

√

P̃21

λ1ρ(1, t) + λ2

√

P̃21ρ(1,
t
B
)
dt, (5.46)

SE (c)
2 =

∫ ∞

0

1

t+ 1

1

ρ(1, t)
dt, (5.47)

SE (c)
B = SE (s)

dB =

∫ ∞

0

1

t+ 1




(λ1

√

P̃12 + λ2)(λ1

√
P12 + λ2)

λ1

(√
P12 −

√

P̃12

)








λ1

(√
P12 −

√

P̃12

)

(λ2ρ(1, t) + λ1

√

P̃12)(λ2ρ(1, t) + λ1

√
P12)



 dt, (5.48)

SE (s)
1 =

∫ ∞

0

1

t+ 1

λ1 + λ2

√

P̃21

λ1ρ(1, t) + λ2

√

P̃21

dt, (5.49)

SE(s)
d2 =

∫ ∞

0

1

t+ 1

λ2 + λ1

√
P12

λ2ρ(1, t) + λ1

√
P12

dt, (5.50)

SE (s)
c2 =

∞∫

0

(

1 + λ1

λ2

√
P12

)(

1− 1

1+
λ2

λ1

√
P21ρ(1,t)−1

)

(t+ 1)ρ(1, t)
dt, (5.51)
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SE (s)
cB =

∫ ∞

0

1

t+ 1




(λ1

√

P̃12 + λ2)(λ1

√
P12 + λ2)

λ1

(√
P12 −

√

P̃12

)








λ2

(√

P̃21 −
√
P21

)

(
λ1ρ(

√
t, t) + λ2

√
P21

) (

λ1ρ(
√
t, t) + λ2

√

P̃21

)



 dt. (5.52)

5.5 Handover Analysis

In this section, we take into account the effect of mobility on the system performance. In

order to compute the average throughputs in Eq. (5.12) and (5.13), we need to compute the

handover cost for both the CP/UP split network and conventional network architectures.

The handover cost is a function of the handover rate per unit length of devices trajectories,

which is calculated in this section.

We assume that devices move according to an arbitrary mobility pattern with velocity V.
The handover rate is determined based on the model obtained by Bao and Liang [42], which

gives the handover rate per unit length for arbitrary trajectories in a PPP multi-tier network.

Hence, the handover rate is independent of the underlying mobility pattern. Following [42],

the tier-i-to-tier-j handover rate per unit length of an arbitrary trajectory is given by

HO
(c)
ij =

λiλjF(xij)

π
(
λi + λjx

2
ij

) 3
2

, (5.53)

where x12 =
(

P̃12

) 1
α

, x21 =
1

x12
, x11 = x22 = 1, and

F(x) =
1

x2

∫ π

0

√

(x2 + 1)− 2xcos(θ)dθ. (5.54)

From Eq. (5.10), the total handover cost per unit time in the conventional network is given

by:

D
(c)
HO =

(

d(c) (1− X ) + d̃(c)X
) V
π

2∑

i=1

2∑

j=1

λiλjF(xij)
(
λi + λjx

2
ij

) 3
2

. (5.55)

In the CP/UP split network, an inter-anchor handover takes place when crossing a MBS-

to-MBS cell boundary (see Fig. 5.2); thus the inter-anchor handover rate is equivalent to
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the handover rate in the single-tier MBS case with density λ1. Following [42], we calculate

the inter-anchor handover rate per unit length in the CP/UP split architecture network as

follows:

MHO(s) =
4
√
λ1
π

. (5.56)

As discussed earlier, intra-anchor handovers are defined as all types of handovers that do

not require changing the anchor BS. Hence, the intra-anchor handover rate per unit length

is given by:

V HO(s) =
2

π





2∑

i=1

2∑

j=1

λiλjF(xij)

2
(
λi + λjx

2
ij

) 3
2

− 2
√

λ1



 . (5.57)

From Eq. (5.11), the total handover cost per unit time in the CP/UP split network is

given by:

D
(s)
HO =

2Vd(s)v

π





2∑

i=1

2∑

j=1

λiλjF(xij)

2
(
λi + λjx2ij

) 3
2

− 2
√

λ1



+
(

(1− Z) d(s)m + Z d̃(s)m

)

V 4
√
λ1
π

=
V
π

(

d(s)v

2∑

i=1

2∑

j=1

λiλjF(xij)
(
λi + λjx2ij

) 3
2

+ 4
√

λ1

(

(1− Z) d(s)m + Z d̃(s)m − d(s)v

)
)

. (5.58)

Note that the inter-anchor handover delay is equal to the conventional handover delay (i.e.,

d
(s)
m = d(c) and d̃

(s)
m = d̃(c)) because the handover procedure is the same. Thus we can infer

from Eq. (5.55) and (5.58) that the handover cost depends on the relative values of d(c), d
(s)
v ,

λ2, and λ1. In fact, in an ultra dense small cell network with λ2 >> λ1, we can obtain a

bound on the maximum gain in terms of the handover cost that the CP/UP split architecture

can offer when X = Z = 0 as follows:

G = lim
λ2→∞

D
(c)
HO −D

(s)
HO

D
(c)
HO

= 1− d
(s)
v

d(c)
. (5.59)

Note that the core network is mainly wired and the core network elements may be located far

away from the network edge, and hence, core network signaling travels farther distances with
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lower speed7. Hence, the core network signaling may add significant delay to the handover

procedure. For instance, if d(c) = 5d
(s)
v , Eq. (5.59) shows that the CP/UP split architecture

can offer 80% reduction in the handover delay.

5.6 Model Validation and Numerical Results

In this section, we first validate our results via simulations using MATLAB. We then use

the developed analytical model to compare the performance of the conventional and CP/UP

split RAN architectures and obtain design insights.

Unless otherwise stated, we use the following parameters in our simulations and analysis.

The transmission powers are P1 = 50 Watt and P2 = 5 Watt. The bandwidth is W =

10 MHz. The ABS factor is η = 0.3. The percentage of control data in the available

time/frequency resources is µC = 0.3 based on 3GPP Release 11 [142]. The biasing factor

for the small BSs tier is B = 30. The available air interface bandwidth for macro cells

resource allocation is W1 = 2 MHz, and for small cells resource allocation is W2 = 8 MHz.

We assume that the density of MBSs is λ1 = 2 BS/km2 and the density of mobile devices is

λu = 50 devices/km2. The path loss exponent is α1 = α2 = 4.

5.6.1 Model Validation

In each simulation run, the network is realized in 90×90km2 via two independent homogenous

PPPs with densities λ1 and λ2. A test device is then generated at the origin and moves along

five consecutive straight trajectories, each with a random length (Rayleigh distributed with

parameter 1/
√
2πλ1) and random angle (uniformly distributed on [0, 2π]). The trajectories

are then partitioned with a 100-point resolution and the device’s association and SINR are

recorded at each point. The association type is determined based on Eq. (5.1). According

7Wave propagation within any medium is less than the speed of electromagnetic waves in the air, which

travels with the speed of light.
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to the association, the SINR value at each point of the test device trajectory is saved in one

of the eight cumulative vectors corresponding to the 8 link types listed in Fig. 5.1. Then,

the above process is repeated 1000 times. The empirical CCDF of the values recorded in the

eight cumulative vectors are then compared to the respective CCDF in Eq. (5.31) to (5.37).

Fig. 5.3 plots the SINR CCDF obtained from the analysis (for stationary devices) and the

simulation (for mobile devices). The figure shows that the analysis (for stationary devices)

closely captures the simulation result (for mobile devices), confirming the validity of the pro-

posed model for both stationary and mobile devices. While the simulation result (for mobile

devices) considers the spatial correlation between SINR values across devices’ trajectories,

the close match between the analysis and simulation result can be explained by the rapid

spatial decay of the spatial correlation between the interference signal and the distance [145].

Hence, we can deduce that averaging over all locations in all network configurations closely

captures the averaging over all trajectories in all network configurations. Fig. 5.3(a) shows

that the CP/UP split architecture offers higher coverage probability, for tier-1 and tier-2

devices data links, than the conventional RAN architecture due to the absence of cross-tier

interference. Fig. 5.3(b) shows that SINR coverage probability for the control signaling of

the biased SBS devices is better than that of the unbiased SBSs devices. This is because the

biased SBSs devices are closer on average to the MBSs than the unbiased SBSs devices.

5.6.2 Handover Rate and Throughput

Fig 4. illustrates the handover cost imposed by device mobility. In particular, Fig. 5.4(a)

shows the handover rates per unit length of an arbitrary trajectory as a function of the

density of SBS in the conventional and CP/UP split networks. The graph shows that small

cell densification linearly increases the total number of handovers in the conventional network

architecture. Looking into the explicit handover types, we notice that HO
(c)
11 (handovers

between MBSs) decreases as the density of small cells increases.
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Figure 5.3: Coverage probability as a function of the SINR threshold θ for stationary users

(analysis) and mobile users (simulation).
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The reason is that the boundaries of MBSs become more populated by SBSs when λ2

increases. Hence, a MBS-to-MBS handover is replaced by MBS-to-SBS followed by SBS-to-

MBS handover and possibly several SBS-to-SBS handovers inbetween. Also, HO
(c)
22 linearly

increases and HO
(c)
12 = HO

(c)
21 saturates. Hence, with high SBS densities, the handover rate

is dominated by HO
(c)
22 , which motivates the anchoring solution via CP/UP splitting to re-

duce the handover delay. As shown in the graph, in the CP/UP split network architecture,

the inter-anchor handover rate is kept constant due to the constant density of the MBSs.

However, the intra-anchor handover rate increases linearly with λ2. Fig. 5.4(b) depicts the

handover cost for the conventional architecture given in Eq. (5.10) and the handover cost for

the CP/UP split architecture given in Eq. (5.11) as functions of the mobile device velocity.

The graphs show a significant reduction in the handover delay provided by the CP/UP archi-

tecture, in which MBSs act as handover anchors that manage handovers between underlying

SBSs. Note that the handover cost reduction provided by the CP/UP splitting does not

necessarily lead to a throughput increase. The reason is that the handover cost reduction

is obtained at the expense of degraded SINR association for the control signalling, which

imposes a tradeoff between the conventional and CP/UP split that is discussed in Fig. 5.5.

It is worth noting that the infeasibility region shown in Fig. 5.4(b) occurs when the average

cell dwell time becomes shorter than the average handover delay, which may happen due

to high mobility and/or high BSs density. In this case, the handover costs given by Eq.

(5.10) and (5.11) are corrected to one in order to make the throughput become zero. That

is, the network fails to support mobile devices whose very high mobility speeds fall in the

infeasibility region.

The next set of simulation results show the effect of mobility, control signaling reduction

factor γ, the availability of X2 interface between BSs, and SBS density on the average

device throughput. Unless otherwise stated, we assume that d(c) = 0.7 seconds and that

d
(s)
v = d̃(c) = d̃

(s)
m = 0.5d(c) [144]. Fig. 5.5 shows the effect of the handover delay on the

average device throughput in the conventional and CP/UP split architectures for different

mobility profiles: (a) stationary V = 0 km/h, (b) low velocity V = 50 km/h (e.g., driving in
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(c) Medium speed V = 108 km/h.
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Figure 5.5: Average throughput with and without handover cost for mobile device with

different velocities for γ ∈ {1, 3, 5} and X = Z = 0.

136



the city), (c) medium velocity V = 108 km/h (e.g., traveling on highways or in monorails in

city downtowns), and (d) high velocity V = 360 km/h. (e.g., traveling on a high speed train

such as Shinkansen when passing through downtown Tokyo, Japan).

In the case of stationary devices, Fig. 5.5(a) shows that a high control reduction factor

γ is required for the CP/UP split architecture to achieve an equivalent average throughout

to the conventional network architecture. This result can be interpreted by the poor control

rate provided by MBSs to the unbiased phantom cell devices when compared to the rate

they get from the SBSs (cf. Fig. 5.3(b)). Hence, offloading the control signaling to the

MBSs requires a high control reduction factor to compensate for such rate loss. Note that

the per device rate for unbiased devices of the SBSs increases with λ2, and hence, offloading

control to the MBSs incurs higher rate loss. Consequently, the CP/UP split architecture is

not beneficial to networks with stationary devices unless a high control reduction factor can

be achieved.

For mobile devices, Figs. 5.5(b), 5.5(c) and 5.5(d) show that the CP/UP split architecture

is beneficial especially for high speeds and X = Z = 0; i.e., there is no X2 interface handovers

on both conventional and CP/UP split architectures. Note that we show the ideal case;

i.e, AT for stationary devices, to clearly visualize the effect of mobility on the average

throughput. Figs. 5.5(b) and 5.5(c) show that a control reduction factor of γ = 3 is sufficient

for the CP/UP split architecture to outperform the conventional network architecture when

devices move at low or medium speeds. When the mobility speed is high (Fig. 5.5(d)), the

CP/UP split network outperforms the conventional network even without control reduction

(i.e., γ = 1). More importantly, only the CP/UP split network can support devices moving

at such high speeds while the conventional network cannot.

It is important to note that Fig. 5.5 is plotted for d
(s)
v = 0.5d(c). The CP/UP split

architecture can offer even higher throughput gains if the intra-anchor delay is lowered.

Fig. 5.6 shows the additional gain that the CP/UP split network offers when d
(s)
v = 0.3d(c)

versus the case where d
(s)
v = 0.5d(c). The graph demonstrates the importance of lowering the

intra-anchor delay and minimizing the involvement of the core network during handovers.
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Therefore, the CP/UP split architecture can be used to increase the throughput of mobile

devices in dense small cell deployments by making the MBSs act as handover anchors instead

of involving the core network in handovers.

Fig. 5.7 shows the effect of the direct X2 interface availability between BSs on the average

throughput in the conventional and CP/UP splitting architectures. The figure shows that the

X2 interfaces have more prominent effect on the conventional network architecture because

it reduces the delay for all handover types. On the other hand, the X2 interference does not

have a noticeable effect on in CP/UP split architecture because it only reduces the inter-

anchor handover delay, which is considered a rare handover event. The figure also shows that

the relative performance gains between the conventional and CP/UP splitting architectures

highly depends on the X2 interface availability. Particularly, there are critical points at which

the conventional network with sufficient X2 interface deployment outperforms the CP/UP

split architecture in terms of average throughput. Such critical points are depicted in Fig.

5.7 at X = Z = 0.5, X = Z = 0.8, and X = Z = 0.95 for V = 50 km/h, V = 108 km/h.

and V = 360 km/h, respectively.

5.6.3 Feasibility of the CP/UP Split Architecture

To examine the feasibility of the CP/UP split architecture as stated in Corollary 6, we plot

Fig. 5.8, which shows the average throughputs for all types of devices as functions of the SBS

density, assuming V = 0, γ = 3, and B = 30. Note that we assume saturation conditions

such that newly added SBSs always have devices to serve. The graph shows the breaking

point (point A in Fig. 5.8) at which the MBSs fail to provide the control signaling required

by phantom cell devices. Point A is the point at which the inequality (5.8) is violated. Note

that the CP/UP split architecture can still be made feasible by allocating more spectrum to

the MBSs or enhancing the control reduction factor γ as shown in Corollary 6.
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d
(s)
v = 0.5d(c) and d

(s)
v = 0.3d(c) (V = 360 km/h, γ = 3, and X = Z = 0).

5.6.4 Design Insights

From the above numerical results, several design insights can be drawn for the CP/UP split

network architecture. First, the CP/UP architecture becomes more appealing for higher

mobility profiles when the availability of direct X2 interface between the BSs is low, in

which the control signaling reduction factor plays a key role in the throughput gains when

compared to the conventional architecture. The amount of delay reduction provided by the

intra-anchor handover also has a significant impact on the throughput gains provided by the

CP/UP split networks. For instance, Fig. 5.6 shows a 60% throughput improvement when

the intra-anchor handover delay d
(s)
v is reduced from 0.5d(c) (point C in Fig. 5.6) to 0.3d(c)

(point D in Fig. 5.6).

Cellular operators can solve the excess handover problem, which is coupled with network

densification, either by deploying more X2 interfaces between adjacent BSs or applying

CP/UP splitting. While the former reduces the handover delay only, the latter reduces both
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v = d̃(c) = d̃

(s)
m = 0.5d(c).

the handover delay as well as the signaling overhead. Note that at higher SBSs densities

and/or control reduction factors, the conventional network may not achieve the CP/UP split

throughput even with 100% X2 deployment. Consequently, the CP/UP split architecture is

more appealing in ultra dense environments with high mobility profiles.

Another noteworthy insight is that there is a tradeoff between traffic offloading via biasing

and control offloading via the CP/UP architecture on macrocell devices rate. As shown in

Fig. 5.8, there is a turning point for the average throughput of macro cell devices at λ2 = 22

(point B in Fig. 5.8). For the given network configuration, prior to point B, the positive

impact of offloading devices traffic to phantom cells (i.e., decreasing N1) dominates the

negative impact of offloading control signaling from the phantom cells to MBSs. Then, the

situation is reversed after point B and the negative impact of the control burden dominates

the positive impact of traffic offloading until the infeasibility point is reached (point A). Such
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tradeoff can be used to optimize the biasing factor such that the macrocell devices rate is

maximized.

5.7 Chapter Summary

We present a novel mobility-aware analytical paradigm for CP/UP split RAN network ar-

chitecture with flexible device association. We derive tractable mathematical expressions for

coverage probability and device throughput, which can be reduced to closed-form expressions

in special cases. The analysis takes into account the control signaling overhead, spectrum

allocation schemes, interference coordination via almost blank subframes, the availability of

X2 interface between BSs, and delay incurred by handovers. We then use the developed

model to quantify the performance gains offered by the CP/UP split RAN network archi-

tecture. In particular, we quantify the impacts of handover delay and mobility speed on

the device throughput. We also examine the effects of small cell density, control reduction
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factor, and core network delay on the device throughput.

The developed model shows that the handovers impose a fundamental limit on the perfor-

mance gain that can be obtained via densification. In moderate and high mobility profiles,

the CP/UP split network architecture offers a potential solution to reduce the control over-

load and mitigate the handover delay, and hence, improve the network densification gain in

networks with low availability of direct X2 interface between BSs. It is also crucial to know

the optimal small cell density for a specific network configuration in order to balance the

trade-off between the offloading of device data traffic away from MBSs and control signaling

towards MBSs in order to maximize the network throughput.
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Chapter 6

Conclusion and Future Research

Directions

6.1 Conclusion

Providing large-scale IoT networks with reliable, scalable, and reduced delay is the key

requirement for realizing a widely connected networked society. The objective of this dis-

sertation is to model and analyze the performance of large-scale heterogeneous two-tier IoT

cellular networks, and offer design insights to maximize their performance. Our research in

this dissertation contributes towards that goal. Following are summaries of our contributions.

6.1.1 Data Rate Utility Analysis for Uplink Two-Tier IoT Net-

works

Our first contribution is the design, implementation, and evaluation of a novel analytical

model to estimate the mean uplink device data rate utility function under both spectrum

allocation schemes, full spectrum reuse (FSR) and orthogonal spectrum partition (OSP),

for uplink two-hop IoT networks. The model takes into account the aggregator spatial den-
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sity, aggregator association bias and spectrum partition ratio across the MBS tier and the

aggregator tier, and device and aggregator power control fractionals (PCFs). We develop

constraint gradient ascent optimization algorithms to obtain the optimal aggregator associ-

ation bias (for the FSR scheme) and the optimal joint spectrum partition ratio and optimal

aggregator association bias (for the OSP scheme). Then, we confirm the accuracy of the

computed optimal values using simulations. We then use the propose model and obtain

optimal values to quantify the performance gains offered by the proposed optimized FSR

and OSP schemes, in comparison with benchmark schemes such as the minimum-distance

based association scheme and the maximum-SIR based association scheme.

The optimized FSR and OSP schemes always outperform the benchmark schemes in terms

of the cumulative distribution function (CDF) of the uplink device data rate. The optimized

schemes reduce interference from devices by controlling two critical network parameters: the

aggregator association bias and the spectrum partition ratio across the MBS tier and the

aggregator tier. The former parameter controls the offloading of devices from being served by

MBSs to being served by aggregators situated closer to their locations. The offloading allows

devices to lower their transmission power, which reduces interference and thus improves the

overall uplink data rate. The latter parameter serves as a load balancing mechanism between

the MBS tier and the aggregator tier, which enhances the uplink data rate.

6.1.2 The Meta Distributions of the SIR/SNR and Data Rate in

Coexisting Sub-6GHz and Millimeter-wave IoT Cellular Net-

works

Our second contribution is the characterization of the meta distributions of the SIR/SNR

and data rate of a typical device in a hybrid spectrum IoT network and µwave-only IoT net-

work. The meta distributions are evaluated first by formulating and then characterizing the

moments of the CSP of a typical device in the hybrid IoT network. Important performance

metrics such as the mean local delay, coverage probability, network jitter, and variance of
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the CSP (or reliability) are studied. Numerical results demonstrate the significance of the

meta distribution, which needs a systematic evaluation of the generalized moment of order b

that helps in evaluating network metrics such as coverage probability when b = 1, mean local

delay when b = −1, and network jitter using b = −2 and b = −1. Numerical results provide

valuable insights related to the reliability and latency of hybrid spectrum IoT networks and

µwave-only IoT networks. These insights help IoT cellular network operators to find the

most efficient operating antenna configurations to achieve specific reliability for specific IoT

applications.

6.1.3 Mobility-Aware Modeling and Analysis of Dense Cellular

Networks with C-plane/U-plane Split Architecture

The third contribution is the design, implementation, and evaluation of a novel tractable

mobility-aware model for a two-tier downlink cellular network with high-density deployments

of small cells and a C-plane/U-plane split architecture. We propose to split the control plane

(C-plane) and user plane (U- plane) as a potential solution to harvest densification gain in

heterogeneous two-tier networks while minimizing the handover rate and network control

overhead. We derive tractable mathematical expressions for coverage probability and device

throughput, which can be reduced to closed-form expressions in special cases. The analysis

takes into account the control signaling overhead, spectrum allocation schemes, interference

coordination via almost blank subframes, the availability of X2 interface between BSs, and

delay incurred by handovers. We then use the developed model to quantify the performance

gains offered by the CP/UP split RAN network architecture. In particular, we quantify

the impacts of the handover delay and mobility speed on the device throughput. We also

examine the effects of the small cell density, control reduction factor, and core network delay

on the device throughput.

The developed model shows that the handovers impose a fundamental limit on the perfor-

mance gain that can be obtained via densification. In moderate and high mobility profiles,
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the CP/UP split network architecture offers a potential solution to reduce the control over-

load and mitigate the handover delay, and hence, improve the network densification gain in

networks with low availability of direct X2 interface between BSs. It is also crucial to know

the optimal small cell density for a specific network configuration in order to balance the

trade-off between the offloading of device data traffic away from MBSs and the amount of

control signaling towards MBSs in order to maximize the network throughput.

6.2 Future Research Directions

In this thesis, we have addressed several key challenges for heterogenous cellular networks

in serving IoT communications. In order to successfully deploy IoT networks on a global

scale, several other aspects and research topics have to be investigated. We plan to study

the following open research problems:

1. Millimeter wave and massive multiple-input and multiple-output communication: 5G

networks are also likely to include massive multiple-input and multiple-output (MIMO)

and mm-wave technologies. Massive MIMO is expected to be incorporated in base

stations, where each BS is equipped with a very large number of service antennas

(e.g., hundreds or thousands) and utilizes these to communicate with single-antenna

devices [146]. The mm-wave spectrum brings extremely high frequency spectrum bands

which will be utilized for communication (i.e., 30 GHz to 300 GHz) [147] and it has

potentially broader applications in heterogeneous networks. The consideration of these

two technologies in conjunction with smart devices can be subjects of future work.

2. Consideration of other point processes: In this thesis, we used the Poisson point process

to model the IoT networks, since the independence assumption for the location results

in the analytical tractability. For other certain IoT networks, the node distribution is

not exactly spatially random. Instead it can be either clustered or more regular dis-

tributed [148]. For example, when devices are concentrated around SBS, the clustered
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point process is a better model [148]. Under the carrier sense multiple access type

MAC scheme, since there is a minimum distance imposed between the transmitters,

the hard-core process is more suitable [148]. Therefore, it is interesting to develop

models to investigate the performance of future IoT networks with such clustered or

regular point processes.

3. Device to device (D2D) in millimeter waves: Using millimeter waves for D2D com-

munications is an interesting topic to research. The short range nature of mm-wave

communication is very suitable for D2D communications. The narrow beams and

beamforming characterizing mm-wave would reduce the interference effect between

D2D and cellular communications. This interference reduction could result in net-

works where coordination between D2D and cellular communications is not necessary.

A study using stochastic geometry tool on the advantages and disadvantages of using

mm-wave for D2D communications would be valuable and intersting.
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Appendix A

Derivations and Proofs in Chapter 3

A.1 Proof of Lemma 1

We derive the mean logarithm of the uplink coverage probability E[log(CD,k)] of a typical

device located at xk,0 and measured at the tagged node. Let (k, 0) denote a tagged node

(aggregator or MBS) or a typical device. In order to compute CD,k, we have to compute

SIRD,k. We assume that the tagged node is located at the origin by redefining the coordi-

nates. Let dD,2 (dD,1) denote the distance between a typical device to its tagged aggregator

(MBS) in tier 2 (tier 1). Let Dj,i = ‖xj,i − 0‖ denote the distance between an interfering

device (located at xj,i) and the tagged node located at the origin (0,0). Let IΨ denote the

total interference from the set of devices Φj
D scheduled by the jth tier excluding the typical

device. Then IΨ is calculated as follows:

IΨ =

2∑

j=1

∑

i:xj,i∈Φj
D\xk,0

PDR
ǫ1α
j,i D

−α
j,i h(xj,i, 0). (A.1)

From Eq (1), given that a typical device is associated with the kth tier, the distance between

the interferer devices and their serving nodes Rj,i and the distance between interfering devices

and the tagged MBS Dj,i have the following inequality

Rj,i < (P̂jkB̂jk)
1
αDj,i, ∀(j, i) 6= (k, 0). (A.2)
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Therefore, the SIRD,k of a typical device associated with the kth tier is

SIRD,k =
PDd

(ǫ1−1)α
D,k h(dD,k, 0)

IΨ
. (A.3)

By averaging over the locations of the tagged aggregator (or MBS) and interfering devices,

the locations of aggregators and MBSs, and the interference channel, we obtain the mean

logarithm of the coverage probability as follows:

EΦ0
1,Φ

0
2,Φ

0
D,Ψ,dD,k,h[log(CD,k)] = EΦ0

1,Φ
0
2,Φ

0
D,Ψ,dD,k,h[log(P[SIRD,k > τk])],

= EΦ0
1,Φ

0
2,Φ

0
D,Ψ,dD,k,h[log(P[h(dD,k, 0) > τkP

−1
D d

(1−ǫ1)α
D,k IΨ])],

(a)
= EΦ0

1,Φ
0
2,Φ

0
D,Ψ,dD,k,h[log

(

exp[−τkP−1
D d

(1−ǫ1)α
D,k IΨ]

)

],

(b)≈ −τkP−1
D EdD,k

(

d
(1−ǫ1)α
D,k

)

EΦ0
1,Φ

0
2,Φ

0
D,Ψ,h (IΨ) , (A.4)

where (a) follows from h(dD,k, 0) ∼ exp(1) and (b) follows from ignoring the dependency

between the distance dD,k between the typical device and the tagged aggregator or MBS

and the uplink interference IΨ for analytical tractability of the system model with minimal

impact on the accuracy of the results [77]. This means that EΦ0
1,Φ

0
2,Φ

0
D,Ψ,dD,k,h

(

d
(1−ǫ1)α
D,k IΨ

)

≈

EdD,k

(

d
(1−ǫ1)α
D,k

)

EΦ0
1,Φ

0
2,Φ

0
D,Ψ,h (IΨ). Since the PDF of the distance dD,k between the typical

device and its tagged node (aggregator or MBS) is given in Eq. (3.3), the first expectation

in Eq. (A.4) can be evaluated as follows:

EdD,k

(

d
(1−ǫ1)α
D,k

)

=
2πλk
Ak

∫ ∞

0

r1+(1−ǫ1)αe

(

−πr2λk
Ak

)

dr

(a)
= 2

(
πλk
Ak

)(ǫ1−1)α
2
∫ ∞

0

t1+(1−ǫ1)αe−t2dt,

(b)
= 2

(
πλk
Ak

)(ǫ1−1)α
2

Θ(α, ǫ1), (A.5)

where (a) follows by making changes to variable as follows. Let t = r
√

πλk

Ak
; then dt =

√
πλk

Ak
dr, r = 0 → t = 0, r = ∞ → t = ∞ and (b) follows from using the defini-

tion of the Gamma function Γ(x) = 2
∫∞
0
t2x−1e−t2dt and the assumption that Θ(α, ǫ1)

∆
=

∫∞
0

t1+(1−ǫ1)αe−t2dt = 1
2Γ
[

1 + (1−ǫ1)α
2

]

. The uplink mean interference for a typical device is as
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follows:

EΦ0
1,Φ

0
2,Φ

0
D,Ψ,h (IΨ) = PD

2∑

j=1

E
Φ

j
D ,Φj




∑

i:xj,i∈Φj
D\xk,0

Rǫ1α
j,i D

−α
j,i



 ,

= PD

2∑

j=1

E
Φ

j
D ,Φj




∑

i:xj,i∈Φj
D

Rǫ1α
j,i D

−α
j,i 1(xj,i 6= xk,0)



 ,

(a)
= PD

2∑

j=1

2πλj

∫ ∞

0

ERj,i

{

Rǫ1α
j,i 1(xj,i 6= xk,0)

∣
∣
∣ Dj,i = x

}

x−αxdx,

(b)
= 2πPD

2∑

j=1

λj

∫ ∞

0

ERj,i

{

Rǫ1α
j,i 1

[
Rj,i < x(P̂jkB̂jk)

1
α

]}

x1−αdx, (A.6)

where (a) follows from Campbell’s theorem1 and that the density of Φj
D is the same as the

density of the tagged node Φj , (b) follows from the inequality in Eq. (A.2). It is worth

mentioning that, the integral at (a) starts from zero since the interfering device could be

located close to the tagged node.

The PDF of Rj,i follows the same distribution as fdD,k
as in Eq. (3.3) by changing the

index from k to j as follows:

fRj,i
(r) =

2πrλj
Aj

exp

(−πr2λj
Aj

)

, r ≥ 0. (A.7)

By substituting Eq. (A.7) into (A.6), we find that:

EΦ0
1,Φ

0
2,Φ

0
D,Ψ,h (IΨ) = 4π2PD

2∑

j=1

(

λ2j
Aj

∫ ∞

0

x1−α

∫ x(P̂jkB̂jk)
1
α

0

r1+ǫ1αe

(

−πr2λj
Aj

)

drdx

)

(a)
= 4πPD

2∑

j=1



λj

( Aj

πλj

) ǫ1α
2
∫ ∞

0

x1−α

∫ x(P̂jkB̂jk)
1
α

√

πλj
Aj

0

u1+ǫ1αe−u2

dudx



 ,

(b)
= 4πPD

( Ak

πλk

) ǫ1α
2

2∑

j=1



λj(P̂jkB̂jk)
ǫ1

∫ ∞

0

x1−α

∫ x

√

πλk
Ak

0

u1+ǫ1αe−u2

dudx



 ,

(c)
= 4πPD

( Ak

πλk

)1+α
2
(ǫ1−1) 2∑

j=1

(

λj(P̂jkB̂jk)
ǫ1

∫ ∞

0

v1−α

∫ v

0

u1+ǫ1αe−u2

dudv

)

,

1Campbell’s theorem is used to compute the expectation of a sum of a function of random variables over

a point process as an integral. It states that E[F ] = E

[
∑

Xi∈φ f(Xi)
]

=
∫

Rd λf(x)dx [149].
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(d)
= 4πPD

( Ak

πλk

)1+α
2
(ǫ1−1)

G(α, ǫ1)
2∑

j=1

(

λj(P̂jkB̂jk)
ǫ1
)

, (A.8)

where (a) follows from the changes of variables as follows. Let u = r
√

πλj

Aj
; then r =

0 → u = 0, r = x(P̂jkB̂jk)
1
α → u = x(P̂jkB̂jk)

1
α

√
πλj

Aj
, and (b) follows from Eq. (2) where

Âjk = λ̂jk(P̂jkB̂jk)
2
α can be represented as

Aj

λj
=

Ak

λk
(P̂jkB̂jk)

2/α. (A.9)

In Eq. (A.8), (c) follows from a change of variables v = x
√

πλk

Ak
, and (d) follows from the

definition of G(α, ǫ1) as follows:

G(α, ǫ1)
∆
=

∫ ∞

0

v1−α

∫ v

0

u1+ǫ1αe−u2

dudv,

(a)
=

∫ ∞

0

u1+ǫ1αe−u2

∫ ∞

u

v1−αdvdu =

∫∞
0
uα(ǫ1−1)+3e−u2

du

α− 2
,

(b)
=

Γ
[
α
2
(ǫ1 − 1) + 2

]

2(α− 2)
, (A.10)

where (a) follows from changing the order of integration and (b) follows from the Gamma

function definition Γ(x) = 2
∫∞
0
t2x−1e−t2dt. Note that in order to have a converge integral

for the uplink mean interference of a typical device, the parameter α
2
(ǫ1−1)+2 of the Gamma

function has to be positive. Thus, the device PCF ǫ1 must satisfy this condition as follows

ǫ1 >
α−4
α

and 0 ≤ ǫ1 ≤ 1: When ǫ1 ≤ α−4
α

, the uplink mean interference is unbounded, and

this may happen if the interfering devices are arbitrarily close to the tagged MBS.

By substituting Eq. (A.5) and Eq. (A.8) into Eq. (A.4), we get

EΦ0
1,Φ

0
2,Φ

0
D,Ψ,dD,k,h[log(CD,k)] ≈ −8τk

Ak

λk
Θ(α, ǫ1)G(α, ǫ1)

2∑

j=1

λj(P̂jkB̂jk)
ǫ1,

(a)
= −8τkQ(α, ǫ1)

2∑

j=1

Aj(P̂jkB̂jk)
ǫ1− 2

α , (A.11)

where (a) follows from Eq. (A.9) and by defining Q(α, ǫ1)
∆
= G(α, ǫ1)Θ(α, ǫ1). �
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A.2 Proof of Lemma 2

We derive the mean logarithm of the uplink coverage probability of a typical aggregator

located at y′
2,0. We assume that a typical aggregator is associated with its tagged MBS in

tier-1 which is located at y1,0 = 0. Let d2,1 = ‖y′
2,0 − y1,0‖ denote the distance between a

typical aggregator to its tagged MBS in tier-1. Let I2,1 denote the interference received at

the tagged MBS on a given allocated spectrum resource block from the set of aggregators

ΦA scheduled by tier-1 excluding the typical aggregator

I2,1 =
∑

i:y′
2,i∈ΦA\y′

2,0

PAR
′ǫ2α
2,i D

′−α
2,i h(y

′
2,i, 0). (A.12)

Let ID,1 denote the interference received at the tagged MBS of the typical aggregator in

a given allocated spectrum resource block from the set of devices Φ1
D scheduled by tier-1.

Then ID,1 is calculated as follows:

ID,1 =
∑

i:x1,i∈Φ1
D\x1,0

PDR
ǫ1α
1,i D

−α
1,i h(x1,i, 0), (A.13)

where D1,i = ‖x1,i − 0‖ is the distance between an interfering device (located at x1,i) and

the tagged MBS which is located at the origin (0, 0), and R1,i = ‖y1,i − x1,i‖ is the distance

between the interfering device located at x1,i and its serving MBS located at y1,i. Let IΨ′ =

I2,1 + ID,1 denote the total interference from the set of aggregators and devices scheduled by

tier-1 MBSs excluding the typical aggregator. Therefore, the SIR2,1 of a typical aggregator

associated with the tagged MBS in tier-1 can be calculated as follows:

SIR2,1 =
PAd

(ǫ2−1)α
2,1 h(y′

2,0, 0)

IΨ′

. (A.14)

The mean logarithm of the coverage probability as follows:

EΦ0
1,Φ

0
2,Φ

0
D,Ψ,d2,1,h[log(C2,1)] = EΦ0

1,Φ
0
2,Φ

0
D,Ψ,d2,1,h[log(P[SIR2,1 > τ1])],

= EΦ0
1,Φ

0
2,Φ

0
D,Ψ,d2,1,h[log(P[h(y

′
2,0, 0) > τ1P

−1
A d

(1−ǫ2)α
2,1 IΨ′])],

(a)
= EΦ0

1,Φ
0
2,Φ

0
D,Ψ,d2,1,h[log

(

exp[−τ1P−1
A d

(1−ǫ2)α
2,1 IΨ′]

)

],
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(b)≈ −τ1P−1
A Ed2,1

(

d
(1−ǫ2)α
2,1

)

EΦ0
1,Φ

0
2,Φ

0
D,Ψ,h (IΨ′) , (A.15)

where (a) follows from h(y′
2,0, 0) ∼ exp(1), and (b) follows from ignoring the dependency be-

tween the distance between the typical aggregator and the tagged MBS d2,1 and the uplink

interference IΨ′ for analytical tractability [77]. This means that EΦ
0

1
,Φ0

2
,Φ0

D
,Ψ,d2,1,h

(

d
(1−ǫ2)α
2,1 IΨ′

)

≈

Ed2,1

(

d
(1−ǫ2)α
2,1

)

EΦ
0

1
,Φ0

2
,Φ0

D
,Ψ,h (IΨ′).Since the PDF of the distance d2,1 between the typical aggre-

gator and its tagged MBS in tier-1 [54] is

fd2,1 = 2πλ1re
−λ1πr2, (A.16)

the first expectation in Eq. (A.15) can be evaluated as follows:

Ed2,1

(

d
(1−ǫ2)α
2,1

)

= 2πλ1

∫ ∞

0

r1+(1−ǫ2)αe−πr2λ1dr,

(a)
= 2 (πλ1)

(ǫ2−1)α
2

∫ ∞

0

t1+(1−ǫ2)αe−t2dt,

(b)
= 2 (πλ1)

(ǫ2−1)α
2 Θ(α, ǫ2), (A.17)

where (a) follows by making changes to variables as follows. Let t = r
√
πλ1 , then dt =

√
πλ1dr, r = 0 → t = 0, r = ∞ → t = ∞ and (b) follows from using the defini-

tion of the Gamma function Γ(x) = 2
∫∞
0
t2x−1e−t2dt and the assumption of Θ(α, ǫ2)

∆
=

∫∞
0
t1+(1−ǫ2)αe−t2dt = 1

2
Γ
[

1 + (1−ǫ2)α
2

]

.

The uplink mean interference for a typical aggregator is as follows:

EΦ0
1,Φ

0
2,Φ

0
D,Ψ,h (IΨ′) = EΦ0

1,Φ
0
2,Φ

0
D,Ψ,h (I2,1 + ID,1) = EΦ0

1,Φ
0
2,Φ

0
D,Ψ,h (I2,1) + EΦ0

1,Φ
0
2,Φ

0
D,Ψ,h (ID,1) .

(A.18)

The uplink mean interference received at the tagged MBS on a given allocated spectrum

resource block for a typical aggregator from other scheduled interfering aggregators is as

follows:

EΦ0
1,Φ

0
2,Φ

0
D,Ψ,h(I2,1) = PAEΦA,Φ0

1




∑

i:y′
2,i∈ΦA\y′

2,0

R′ǫ2α
2,i D

′−α
2,i




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= PAEΦA,Φ0
1




∑

i:y′
2,i∈ΦA

R′ǫ2α
2,i D

′−α
2,i 1(y

′
2,i 6= y′

2,0)



 ,

(a)
= 2πλ1PA

∫ ∞

0

ER2,i

{

Rǫ2α
2,i 1(y

′
2,i 6= y′

2,0)
∣
∣
∣ D′

2,i = y
}

y−αydy,

(b)
= 2πλ1PA

∫ ∞

0

ER2,i

{
Rǫ2α

2,i 1
[
R2,i < y

]}
y1−αdy, (A.19)

where (a) follows from Campbell’s theorem and that the density of ΦA is the same as the

density of the MBS Φ1, (b) follows from inequality in Eq. (A.2) which is modified for single-

tier case2. Note that, the integral at (a) starts from zero since the interfering aggregator

could be located close to the tagged MBS.

By substituting Eq. (A.16) into Eq. (A.19), we obtain:

EΦ0
1,Φ

0
2,Φ

0
D,Ψ,h(I2,1) = 4π2λ21PA

∫ ∞

0

y1−α

∫ y

0

rǫ2α+1e−λ1πr2drdy,

(a)
= 4(πλ1)

1− ǫ2α
2 PA

∫ ∞

0

y1−α

∫ y
√
πλ1

0

uǫ2α+1e−u2

dudy,

(b)
= 4(πλ1)

α
2
(1−ǫ2)PA

∫ ∞

0

v1−α

∫ v

0

uǫ2α+1e−u2

dudv,

(c)
= 4(πλ1)

α
2
(1−ǫ2)PAG(α, ǫ2), (A.20)

where (a) follows from making changes to variables as follows. Let u = r
√
πλ1, then r =

0 → u = 0, r = y → u = y
√
πλ1; (b) follows also by making changes to variables v = y

√
πλ1;

and (c) follows from a similar derivation as in Eq. (A.10).

Similar to the derivation in Eq. (A.8), the uplink mean interference received at the

tagged MBS on a given allocated spectrum resource block for a typical aggregator from

other scheduled interfering devices is as follows:

EΦ0
1,Φ

0
2,Φ

0
D,Ψ,h (ID,1) = 4πPD

( A1

πλ1

)1+α
2
(ǫ1−1)

λ1G(α, ǫ1). (A.21)

2The distance R2,i between an interfering aggregator and its serving MBS has to be smaller than the

distance D′
2,i between that interfering aggregator and the tagged MBS. If the opposite happens; i.e., R2,i >

D′
2,i, the tagged MBS will become the serving MBS for that interfering aggregator [149].
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By substituting Eq.(A.20) and Eq. (A.21) into Eq. (A.18), we find that:

EΦ0
1,Φ

0
2,Φ

0
D,Ψ,h (IΨ′) = 4(πλ1)

α
2
(1−ǫ2)PAG(α, ǫ2)+

4πPD

( A1

πλ1

)1+α
2
(ǫ1−1)

λ1G(α, ǫ1). (A.22)

By substituting Eq. (A.22) and Eq. (A.17) into Eq. (A.15), we obtain the mean logarithm

of the coverage probability as follows:

EΦ0
1,Φ

0
2,Φ

0
D,Ψ,d2,1,h[log(C2,1)] ≈ −τ1P−1

A

(

2 (πλ1)
(ǫ2−1)α

2 Θ(α, ǫ2)
)

×
(

4(πλ1)
α
2
(1−ǫ2)PAG(α, ǫ2) + 4πPD

( A1

πλ1

)1+α
2
(ǫ1−1)

λ1G(α, ǫ1)

)

,

≈ −8τ1Θ(α, ǫ2)G(α, ǫ2)− τ1P
−1
A

(

2 (πλ1)
(ǫ2−1)α

2 Θ(α, ǫ2)
)

4πPD

( A1

πλ1

)1+α
2
(ǫ1−1)

λ1G(α, ǫ1),

≈ −8τ1Q(α, ǫ2)− 8πPDτ1P
−1
A λ1 (πλ1)

(ǫ2−1)α
2

( A1

πλ1

)1+α
2
(ǫ1−1)

Θ(α, ǫ2)G(α, ǫ1). (A.23)

�

A.3 Proof of Lemma 3

Let ND,2 and N2,1 denote the random variables that represent the number of devices asso-

ciated with tagged aggregator and the number of aggregators associated with the tagged

MBS, respectively. Following [110], the probability mass function (PMF) of the number of

devices (including typical device) associated with the tagged aggregator is

P(ND,2 = n+ 1)
∆
=

3.53.5Γ(n+ 4.5)(λDA2/λ2)
n

Γ(3.5)n! (3.5 + λDA2/λ2)
(n+4.5)

, (A.24)

and the PMF of the number of aggregators (including the typical aggregator) associated

with the tagged MBS is

P(N2,1 = n+ 1)
∆
=

3.53.5Γ(n+ 4.5)(λ2A1/λ1)
n

Γ(3.5)n! (3.5 + λ2A1/λ1)
(n+4.5)

. (A.25)

Therefore, the spectrum allocated to a device associated with the tagged aggregator is ζD,2 =

W2

ND,2
and it is a random variable and a function of ND,2. Similarly, the spectrum allocated
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to an aggregator associated with the tagged MBS is ζ2,1 =
W1

N2,1
and it is a random variable

and a function of N2,1. Therefore, the range of random variable ND,2 is RND,2
= {1, 2, 3, ....}

and the range of ζD,2 is RζD,2
= {W2,

W2

2
, W2

3
, ....}. Thus, the range of ζD,2 are as follows:

PζD,2
(W2) = P(ζD,2 = W2) = P

(
W2

ND,2

= W2

)

= P (ND,2 = 1) ,

PζD,2

(
W2

2

)

= P

(

ζD,2 =
W2

2

)

= P

(
W2

ND,2
=
W2

2

)

= P (ND,2 = 2) ,

PζD,2

(
W2

3

)

= P

(

ζD,2 =
W2

3

)

= P

(
W2

ND,2
=
W2

3

)

= P (ND,2 = 3) , (A.26)

...

Therefore, the PMF of the random variable ζD,2 is as follows:

P

(

ζD,2 =
W2

n + 1

)

=
3.53.5Γ(n+ 4.5)(λDA2/λ2)

n

Γ(3.5)n! (3.5 + λDA2/λ2)
(n+4.5)

. (A.27)

Similarly, the PMF of the random variable ζ2,1 is as follows:

P

(

ζ2,1 =
W1

n + 1

)

=
3.53.5Γ(n+ 4.5)(λ2A1/λ1)

n

Γ(3.5)n! (3.5 + λ2A1/λ1)
(n+4.5)

. (A.28)

Let X
∆
= ζD,2 log(1 + τ2) and Z

∆
= ζ2,1 log(1 + τ1) are random variables and functions of

ζD,2 and ζ2,1, respectively. The range of ζD,2 is RζD,2
= {W2,

W2

2
, W2

3
, ....} and the range of

X is RX = {W2 log(1 + τ2),
W2

2
log(1 + τ2),

W2

3
log(1 + τ2), ....}. Thus, the range of X are as

follows:

PX (W2 log(1 + τ2)) = P (X = W2 log(1 + τ2)) = P(ζD,2 log(1 + τ2)

=W2 log(1 + τ2)) = P(ζD,2 =W2),

PX

(
W2

2
log(1 + τ2)

)

= P

(

X =
W2

2
log(1 + τ2)

)

=

P

(

ζD,2 log(1 + τ2) =
W2

2
log(1 + τ2)

)

= P

(

ζD,2 =
W2

2

)

,

PX

(
W2

3
log(1 + τ2)

)

= P

(

X =
W2

3
log(1 + τ2)

)

=

P

(

ζD,2 log(1 + τ2) =
W2

3
log(1 + τ2)

)

= P

(

ζD,2 =
W2

3

)

, (A.29)

156



...

Therefore, the PMF of the random variable X is as follows:

P

(

X =
W2 log(1 + τ2)

n+ 1

)

= P (ND,2 = n + 1)

=
3.53.5Γ(n+ 4.5)(λDA2/λ2)

n

Γ(3.5)n! (3.5 + λDA2/λ2)
(n+4.5)

. (A.30)

Similarly, the PMF of the random variable Z is as follows:

P

(

Z =
W1 log(1 + τ1)

n+ 1

)

= P (N2,1 = n+ 1)

=
3.53.5Γ(n+ 4.5)(λ2A1/λ1)

n

Γ(3.5)n! (3.5 + λ2A1/λ1)
(n+4.5)

. (A.31)

We assume that V
∆
= min [X,Z] and V is a random variable too. The CDF of random

variable V can be calculated as follows:

FV (v) = P(V ≤ v) = P(min [X,Z] ≤ v) = 1− P(min [X,Z] > v)

= 1− P(X > v, Z > v) = 1− (1− FX(v))(1− FZ(v)). (A.32)

The CDF of random variables X and Z are as follows:

FX(v) = P (X < v) =

∞∑

a∈RX ,a≤v

PX(a) =

=

∞∑

n:
W2 log(1+τ2)

n+1
≤v

3.53.5Γ(n+ 4.5)(λDA2/λ2)
n

Γ(3.5)n! (3.5 + λDA2/λ2)
(n+4.5)

=

∞∑

n+1≥W2 log(1+τ2)
v

3.53.5Γ(n+ 4.5)(λDA2/λ2)
n

Γ(3.5)n! (3.5 + λDA2/λ2)
(n+4.5)

, (A.33)

FZ(v) = P (Z < v) =
∞∑

b∈RZ ,b≤v

PZ(b) =

=
∞∑

n:
W1 log(1+τ1)

n+1
≤v

3.53.5Γ(n+ 4.5)(λ2A1/λ1)
n

Γ(3.5)n! (3.5 + λ2A1/λ1)
(n+4.5)

=
∞∑

n+1≥W1 log(1+τ1)
v

3.53.5Γ(n + 4.5)(λ2A1/λ1)
n

Γ(3.5)n! (3.5 + λ2A1/λ1)
(n+4.5)

. (A.34)
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Therefore, the logarithm mean of minimum data rate capacity of two-hop data rate is given

by

log
[

EΦ0
1,Φ

0
2,Φ

0
D,dD,2,d2,1 [min [ζD,2 log(1 + τ2), ζ2,1 log(1 + τ1)]]

]

= log
[

EΦ0
1,Φ

0
2Φ

0
D,dD,2,d2,1 [V ]

]

,

(a)
= log

[∫ ∞

0

(1− F (v))dv

]

,

= log

[∫ ∞

0

(1− [1− (1− FX(v))(1− FZ(v))])dv

]

,

= log

[∫ ∞

0

((1− FX(v))(1− FZ(v)))dv

]

,

= log

[
∫ ∞

0




1−

∞∑

n≥W2 log(1+τ2)
v

−1

3.53.5Γ(n+ 4.5)(λDA2/λ2)
n

Γ(3.5)n! (3.5 + λDA2/λ2)
(n+4.5)




×




1−

∞∑

n≥W1 log(1+τ1)
v

−1

3.53.5Γ(n+ 4.5)(λ2A1/λ1)
n

Γ(3.5)n! (3.5 + λ2A1/λ1)
(n+4.5)




 dv

]

,

(b)
= log

[
∫ ∞

0





SX(v)
∑

n=0

gX(n)









SZ(v)
∑

n=0

gZ(n)



 dv

]

∆
= ϕ(v, n,ND,2,N2,1, ζD,2, ζ2,1, τ1, τ2), (A.35)

where (a) follows from finding the mean of a random variable V in terms of its CDF us-

ing Fubini’s theorem which is as follows:E[V ] =
∫∞
0

(1 − F (v))dv −
∫ 0

−∞ F (v)dv and F (v) = 0

where v < 0, (b) follows from the definitions of gX(n)
∆
= 3.53.5Γ(n+4.5)(λDA2/λ2)n

Γ(3.5)n!(3.5+λDA2/λ2)
(n+4.5) , and gZ(n)

∆
=

3.53.5Γ(n+4.5)(λ2A1/λ1)n

Γ(3.5)n!(3.5+λ2A1/λ1)
(n+4.5) , and that

∑∞
n=0 gX(n) = 1 and

∑∞
n=0 gZ(n) = 1. Therefore, SX(v)

∆
=

⌊
W2 log(1+τ2)

v − 1
⌋

and SZ(v)
∆
=
⌊
W1 log(1+τ1)

v − 1
⌋

.We define ϕ(v, n,ND,2,N2,1, ζD,2, ζ2,1, τ1, τ2)
∆
=

log

[

∫∞
0

(
∑SX(v)

n=0 gX(n)
)(
∑SZ(v)

n=0 gZ(n)
)

dv

]

. �
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A.4 Proof of Lemma 4

In this section, we derive the total uplink mean DRUF of devices for the FSR scheme as

follows:

Full Spectrum Reuse

By combining Eq. (3.10) and Eq. (A.11), we get:

A1UD,1 = A1(E[log(ζD,1)] + E[log(CD,1)] + log[log(1 + τ1)]),

≈ A1

(

log

(
Wλ1

1.28λDA1 + λ1

)

− 8τ1Q(α, ǫ1)
2∑

j=1

Aj(P̂jkB̂jk)
ǫ1− 2

α + log[log(1 + τ1)]

)

,

≈A1



log

(
Wλ1 log(1 + τ1)

1.28λDA1 + λ1

)

− 8τ1Q(α, ǫ1)
2∑

j=1

Aj(P̂jkB̂jk)
ǫ1− 2

α



 . (A.36)

By combining Eq. (A.11), Eq. (A.23), and Eq. (A.35) we get:

A2min (UD,2, U2,1) = A2EΦ1,Φ2,ΦD
[Eh [log[min(RD,2, R2,1)]]] ,

=A2

(

EΦ0
1,Φ

0
2,Φ

0
D,dD,2,d2,1

[

log

{

P (SIRD,2 > τ2)

}]

+ EΦ0
1,Φ

0
2,Φ

0
D,dD,2,d2,1

[

log

{

P (SIR2,1 > τ1)

}]

+

log

{

EΦ0
1,Φ

0
2,Φ

0
D,dD,2,d2,1 [min[ζD,2 log(1+τ2),ζ2,1 log(1+τ1)]]

})

,

=A2

{

− 8τ2Q(α, ǫ1)

2∑

j=1

Aj(P̂jkB̂jk)
ǫ1− 2

α−

τ1P
−1
A

(

2 (πλ1)
(ǫ2−1)α

2 Θ(α, ǫ2)
)

×
(

4(πλ1)
α
2
(1−ǫ2)PAG(α, ǫ2) + 4πPD

(

A1
πλ1

)1+α
2 (ǫ1−1)

λ1G(α,ǫ1)

)

+ ϕ(v, n,ND,2,N2,1, ζD,2, ζ2,1, τ1, τ2)

}

. (A.37)

Then, by substituting Eq. (A.36) and Eq. (A.37) into Eq. (3.7), the uplink mean data rate

utility is as follows:

U =

A1

(

log

(
Wλ1 log(1 + τ1)

1.28λDA1 + λ1

)

− 8τ1Q(α,ǫ1)
∑2

j=1 Aj(P̂jkB̂jk)
ǫ1−

2
α

)

−A28τ2Q(α, ǫ1)

2∑

j=1

Aj(P̂jkB̂jk)
ǫ1− 2

α
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−A2τ1P
−1
A

(

2 (πλ1)
(ǫ2−1)α

2 Θ(α, ǫ2)
)

×
(

4(πλ1)
α
2
(1−ǫ2)PAG(α, ǫ2) + 4πPD

(

A1
πλ1

)1+α
2 (ǫ1−1)

λ1G(α,ǫ1)

)

+A2ϕ(v, n,ND,2,N2,1, ζD,2, ζ2,1, τ1, τ2). (A.38)

�

A.5 Proof of Lemma 5

In this section, we derive the total uplink mean DRUF of devices for the OSP scheme as

follows:

Orthogonal Spectrum Partition

By combining Eq. (3.10) and Eq. (3.14), we get:

A1UD,1 = A1(E[log(ζD,1)] + E[log(CD,1)] + log[log(1 + τ1)])

≈A1

(

log

(
W1λ1

1.28λDA1 + λ1

)

− 8τ1Q(α, ǫ1)A1 + log[log(1 + τ1)]

)

= A1

(

log

(
W1λ1 log(1 + τ1)

1.28λDA1 + λ1

)

− 8τ1Q(α, ǫ1)A1

)

, (A.39)

By combining Eq. (3.14), Eq. (3.18) and Eq. (A.35), we get:

A2min (UD,2, U2,1) = A2EΦ1,Φ2,ΦD
[Eh [log[min(RD,2, R2,1)]]]

= A2

(

EΦ0
1,Φ

0
2,Φ

0
D,dD,2,d2,1

[

log

{

P (SIRD,2 > τ2)

}]

+ EΦ0
1,Φ

0
2,Φ

0
D,dD,2,d2,1

[

log

{

P (SIR2,1 > τ1)

}]

+

log

{

EΦ0
1,Φ

0
2,Φ

0
D,dD,2,d2,1 [min [ζD,2 log(1 + τ2), ζ2,1 log(1 + τ1)]]

})

= A2

(

− 8τ2Q(α, ǫ1)A2 − 8τ1Q(α, ǫ2) + ϕ(v, n,ND,2,N2,1, ζD,2, ζ2,1, τ1, τ2)

)

(A.40)
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Then, by substituting Eq. (A.39) and Eq. (A.40) into Eq. (3.7), we get:

U = A1

(

log

(
W1λ1 log(1 + τ1)

1.28λDA1 + λ1

)

− 8τ1Q(α, ǫ1)A1

)

+A2×
(

− 8τ2Q(α, ǫ1)A2 − 8τ1Q(α, ǫ2) + ϕ(v, n,ND,2,N2,1, ζD,2, ζ2,1, τ1, τ2)

)

.

(A.41)

�
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Appendix B

Derivations and Proofs in Chapter 4

B.1 Proof of Lemma 6

The intensity measure of the path loss process for a mm-wave SBS is as follows [28]:

Λ2([0, x))
(a)
=

∫

R2

P(L2(r) < x)dr,

= 2πλ2

∫ ∞

0

P(rα2(r) < x)rdr,

(b)
= 2πλ2

(

pL

∫ d

0

r1(rα2,L < x)dr + pN

∫ ∞

d

r1(rα2,N < x)dr

)

,

= 2πλ2

(

pL

∫ d

0

r1(r < x
1

α2,L )dr + pN

∫ ∞

d

r1(r < x
1

α2,N )dr

)

,

= 2πλ2



pL

∫ min(d,x
1

α2,L )

0

rdr + pN

∫ x
1

α2,N

d

r1(x
1

α2,N > d)dr



 ,

= 2πλ2




pL

r2

2

∣
∣
∣
∣

min(d,x
1

α2,L )

0

+ pN
r2

2

∣
∣
∣
∣

x
1

α2,N

d




 ,

= πλ2

[

pL

(

d21(x
1

α2,L > d) + x
2

α2,L
1(d > x

1
α2,L )

)

+ pN

(

x
2

α2,N − d2
)

1(x > dα2,N )
]

,

= πλ2

[

pL

(

d21(x > dα2,L) + x
2

α2,L
1(x < dα2,L)

)

+ pN

(

x
2

α2,N − d2
)

1(x > dα2,N )
]

,
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(c)
= πλ2

[
pLx

2
α2,L

1(x < dα2,L) + pLd
2
1(dα2,L ≤ x < dα2,N ) + pLd

2 + pN

(

x
2

α2,N − d2
)

1(x > dα2,N )
]
,

(B.1)

where (a) follows from the definition of the intensity function for the point process of the

path loss N2 = {L2(r) = ‖r‖α2(r)}r∈Φ2 and (b) follows based on the fixed LOS ball blockage

model mentioned in Section 4.2.3 where α2(r) = α2,L when r ≤ d and α2(r) = α2,N when

r > d. In step (c), we rearrange the terms to get the final expression for the path loss process

intensity. Therefore, the CCDF of the path loss from a typical user device to the SBS can

be formulated as follows:

F̄2(x) = P(L2(r) > x) = exp(−Λ2([0, x))),

= exp

(

− πλ2

[
pLx

2

α2,L
1(x < dα2,L) + pLd

2
1(dα2,L ≤ x < dα2,N ) + pLd

2 + pN

(

x
2

α2,N − d2
)

1(x > dα2,N )
]
)

.

(B.2)

Similarly, the CCDF of the path loss from a typical user device to the MBS can be formulated

as follows:

F̄1(x) = exp(−πλ1x2/α1), (B.3)

and the corresponding PDF is as follows:

f̄1(x) =
2πλ1
α1

x
2
α1

−1
exp(−πλ1x

2
α1 ). (B.4)

Therefore, the association probability of a typical user device to MBS is as follows:

A1 = P(P1B1G1L1,min(d)
−1 > P2B2G2L2,min(d)

−1),

(a)
= P(L2,min > âL1,min(d)),

(b)
=

∫ ∞

0
F̄2(âl1)f̄1(l1)dl1

(c)
=

1

â

∫ ∞

0
F̄2(l)f̄1

(
l

â

)

dl,

=
1

â

∫ ∞

0

2πλ1

α1

(
l

â

) 2
α1

−1

exp

(

−πλ1

(
l

â

) 2
α1

){

exp

(

−πλ2PLl
2

α2,L

)

1(l < dα2,L)+

exp
(
−πλ2PLd

2
)
1(dα2,L ≤ l < dα2,N ) + exp

(

−πλ2

[

pld
2 + pN

(

l
2

α2,N − d2
)])

1(l > dα2,N )

}

dl,

(d)
=

2πλ1

âα1

{
∫ d

α2,L

0
H(l) exp

(

−πλ2pLl
2

α2,L

)

dl +

∫ d
α2,N

d
α2,L

H(l) exp
(
−πλ2pLd

2
)
dl+
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∫ ∞

d
α2,N

H(l) exp

(

−πλ2

[

pLd
2 + pN

(

l
2

α2,N

1 − d2
)])

dl

}

,

(B.5)

where (a) follows from the definition of â
∆
= P2B2G2

P1B1G1
and (b) follows from the fact that

P(X > Y ) =
∫∞
0

P(X > y)fY (y)dy, (c) follows from this change of variable l = âl1, and (d)

follows from the definition of H(l)
∆
=
(
l
â

) 2
α1

−1
exp

(

−πλ1
(
l
â

) 2
α1

)

. �

B.2 Proof of Lemma 7

The probability of a typical device to associate with mm-wave SBS can be defined as A2 =

A2,LOS + A2,NLOS. The intensity measures of the path loss process for LOS and NLOS

mm-wave SBSs are[25]:

Λ2,LOS([0, x)) = πλ2

[

pL

(

d21(x > dα2,L) + x
2

α2,L
1(x < dα2,L)

)]

, (B.6)

Λ2,NLOS([0, x)) = πλ2

[

pN

(

x
2

α2,N − d2
)

1(x > dα2,N )
]

. (B.7)

Therefore, Λ′
2,LOS([0, x)) and Λ′

2,NLOS([0, x)) are given as follows:

Λ′
2,LOS([0, x)) =

dΛ2,LOS([0, x))

dx
=

2πλ2pL
α2,L

x
2

α2,L
−1
1(x < dα2,L), (B.8)

Λ′
2,NLOS([0, x)) =

dΛ2,NLOS([0, x))

dx
=

2πλ2pN
α2,N

x
2

α2,N
−1
1(x > dα2,N ). (B.9)

The PDF of the path loss for a user device associated with LOS or NLOS mm-wave SBSs is

given as:

f2,Q =
−dF2,Q

dx
= Λ′

2,Q([0, x)) exp(−Λ2,Q([0, x))), (B.10)

where Q ∈ {LOS,NLOS}. Therefore, the probability of a user device to associate with LOS

or NLOS mm-wave SBSs is A2,Q, where Q, Q
′ ∈ {LOS,NLOS} and Q 6= Q′, can be derived

as follows:

A2,Q = P(P2B2G2L
−1
2,Q > P1B1G1L

−1
1 )P(L2,Q′ > L2,Q),
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(a)
= P(L1 > āL2,Q)P(L2,Q′ > L2,Q),

(b)
=

∫ ∞

0

F̄1(āl2,Q)f2,Q(l2,Q)e
−Λ2,Q′ ([0,l2,Q))dl2,Q,

=

∫ ∞

0

exp
(

−πλ1 (āl2,Q)
2
α1

)

Λ′
2,Q([0, l2,Q))e

−Λ2,Q([0,l2,Q))e−Λ2,Q′ ([0,l2,Q))dl2,Q,

(c)
=

∫ ∞

0

exp
(

−πλ1 (āl2,Q)
2
α1

)

Λ′
2,Q([0, l2,Q))e

−Λ2([0,l2,Q))dl2,Q, (B.11)

where (a) follows from the definition of ā
∆
= P1B1G1

P2B2G2
, (b) follows from the definition of f2,Q

in Eq. (B.10), and F̄1(x) in Eq. (B.3). The step in (c) follows from Λ2,Q([0, l2,Q)) +

Λ2,Q′([0, l2,Q)) = Λ2([0, l2,Q)). Using Eq. (B.11), we can derive the probability of association

to LOS and NLOS mm-wave SBS as follows:

A2,LOS =

∫ ∞

0
exp

(

−πλ1 (āl2,L)
2
α1

){2πλ2pL
α2,L

l
2

α2,L
−1

2,L 1(l2,L < dα2,L)

}

×

e

(

−πλ2

[
pLl

2
α2,L
2,L 1(l2,L<d

α2,L )+pLd
2
1(d

α2,L≤l2,L<d
α2,N )+pLd

2+pN

(

l

2
α2,N
2,L −d2

)

1(l2,L>d
α2,N )

]
)

dl2,L,

=
2πλ2pL
α2,L

∫ dα2,L

0
l

2
α2,L

−1

2,L exp

(

−πλ1 (āl2,L)
2
α1 − πλ2pLl

2
α2,L

2,L

)

dl2,L. (B.12)

Similarly, we use Eq. (B.11) to derive the association probability to NLOS mm-wave SBS

as follows:

A2,NLOS =

∫ ∞

0
exp

(

−πλ1 (āl2,N )
2
α1

){2πλ2pN
α2,N

l
2

α2,N
−1

2,N 1(l2,N > dα2,N )

}

×

e

(

−πλ2

[
pLl

2
α2,L
2,N 1(l2,N<d

α2,L )+pLd
2
1(d

α2,L≤l2,N<d
α2,N )+pLd

2+pN

(

l

2
α2,N
2,N −d2

)

1(l2,N>d
α2,N )

]
)

dl2,L,

=
2πλ2pN
α2,N

∫ ∞

d
α2,N

l
2

α2,N
−1

2,N exp

(

−πλ1 (āl2,N )
2
α1 − πλ2

[
pLd

2 + pN (l
2

α2,N

2,N − d2)
]
)

dl2,N . (B.13)

�

B.3 Proof of Lemma 9

The bth moment of the CSP of a typical device served by the mm-wave SBS can be derived as:

Mb,2(θD) = El

[

P(n = 2|L2,min = l2)
︸ ︷︷ ︸

Ā2(l2)

Ps,2(θD)
b

]

,
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= El

[

Ā2(l2) (pLPs,2,L(θD) + pNPs,2,N (θD))
b

]

,

(a)
= El

[

Ā2(l2)



pL
Γ
(

mL,
mL
ΩL

νL

)

Γ(mL)
+ pN

Γ
(

mN , mN
ΩN

νN

)

Γ(mN )





b ]

,

= El

[

(Ā2,L(l2,L) + Ā2,N (l2,N ))×



pL
Γ
(

mL,
mL
ΩL

νL

)

Γ(mL)
+ pN

Γ
(

mN , mN
ΩN

νN

)

Γ(mN )





b ]

,

(b)
= El

[

Ā2,L(l2,L)



pL
Γ
(

mL,
mL
ΩL

νL

)

Γ(mL)





b ]

+ El

[

Ā2,N(l2,N )



pN
Γ
(

mN , mN
ΩN

νN

)

Γ(mN )





b ]

,

(c)
= El

[

Ā2,L(l2,L) p
b
L



1−
γ
(

mL,
mL
ΩL

νL

)

Γ(mL)





b ]

+ El

[

Ā2,N (l2,N ) pbN



1−
γ
(

mN , mN
ΩN

νN

)

Γ(mN )





b ]

,

(d)
≈ El

[

Ā2,L(l2,L)p
b
L

(

1− [1− e−ζLνL ]mL

)b
]

+ El

[

Ā2,N (l2,N ) pbN

(

1− [1− e−ζNνN ]mN

)b
]

,

(e)
= El

[

Ā2,L(l2,L)p
b
L

b∑

k=0

(
b

k

)(

−[1− e−ζLνL ]mL

)k
]

+

El

[

Ā2,N (l2,N ) pbN

b∑

k=0

(
b

k

)(

−[1− e−ζNνN ]mN

)k
]

,

(f)
= El

[

Ā2,L(l2,L)p
b
L

b∑

k=0

mLk∑

k̈=0

(
b

k

)(
mLk

k̈

)

(−1)k̈+ke−ζLνLk̈

]

+

El

[

Ā2,N(l2,N )pbN

b∑

k=0

mNk∑

k̈=0

(
b

k

)(
mNk

k̈

)

(−1)k̈+ke−ζNνN k̈

]

,

where (a) follows from substituting the value of Ps,2,L(θD) and Ps,2,N(θD) from Eq. (4.16) and

Eq. (4.17), respectively, (b) follows from l2,L = r
α2,L

2,D and l2,N = r
α2,N

2,D and the considered blockage

model where pL = 1 when mm-wave intended link distance r2,D < d and pN = 1 when mm-wave

intended link distance r2,D > d, (c) follows from Γ(s) = γ(s, x) +Γ(s, x), (d) follows from the CDF

of Gamma random variable which can be tightly upper bounded by
γ
(

mL,
mL
ΩL

νL

)

Γ(mL)
< [1− e−ζLνL ]mL

[150], where ζL
∆
= mL(mL!)

−1/mL , νL
∆
=

θDr
α2,L
2,D σ2

2

P2G2
, ζN

∆
= mN (mN !)−1/mN , and νN

∆
=

θDr
α2,N
2,D σ2

2

P2G2

[29]. The steps in (e) and (f) are done by following the binomial expansion theorem. Finally, the

Lemma 4 follows from de-conditioning on l and using the definitions ν̈L
∆
= νL

r
α2,L
2,D

= νL
l2,L

=
θDσ2

2
P2G2

and

ν̈N
∆
= νN

r
α2,N
2,D

= νN
l2,N

=
θDσ2

2
P2G2

. �
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B.4 Proof of Lemma 10

The bth moment of the CSP of a typical device when associated to µwave MBS can be derived as

follows:

Mb,1(θD) = El1

[

P(n = 1|L1,min = l1)
︸ ︷︷ ︸

Ā1(l1)

Ps,1(θD)
b

]

,

(a)
= El1

[

Ā1(l1)
∏

y1,i∈Φ1\{y1,0}

1
(

1 + θD
(

r1,D
‖y1,i‖

)α1
)b

]

,

(b)
= El1

[

Ā1(l1) exp






∫ ∞

r
−2λ1π

[

1− 1
(

1 + θD
(
r
y

)α1
)b

]

ydy






]

,

(c)
= El1

[

Ā1(l1) exp






∫ ∞

l
1
α1
1

−2λ1π

[

1− 1
(

1 + θD
l1
yα1

)b

]

ydy




 ,

(d)
= El1

[

Ā1(l1) exp

(
∫ 1

0
−2λ1π

[

1− 1

(1 + θDv)
b

]

v−1 y
2

α1
dv

)]

,

(e)
= El1

[

Ā1(l1) exp




−2λ1πl

2
α1
1

α1

∫ 1

0

[

1− 1

(1 + θDv)
b

]
1

v
2
α1

+1
dv





]

,

where (a) follows from taking expectation over l1 = rα1 and considering the conditional

association probability for the typical device connecting to the MBSs tier given in Lemma (6)

and substituting the value of Ps,1(θD) from Eq. (4.21). In step (b) we apply PGFL of the

PPP [61, Chapter 4]. Step (c) follows from averaging over l1. In step (d), we use the change

of variable v = l1
yα1

, dy = −1
α1l1y−α1−1dv =

−1
α1
v−1ydv, when y = l

1
α1
1 → v = 1 and when y = ∞

→ v = 0 and we swap the integral limits and multiply by −1, (e) follows from y2 = l
2
α1
1 /v

2
α1

and doing some mathematical manipulations. �
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B.5 Proof of Lemma 11

While taking the association biases effect in consideration, the bth moment of the CSP

Ps,k(θD) of the typical device when it is served by the kth tier is given as follows:

Mb,k’(θD) = Erk,D

[

P(n = k|rk,D)Ps,k′(θD)
b

]

,

(a)
= Erk,D

[
∏

j 6=k

e−πλj(P̂jkB̂jk)
2/αj r2 ×

∏

yk,i∈Φk\{yk,0}

1
(

1 + θD
(

rk,D
‖yk,i‖

)αk
)b

]

,

(b)
= Erk,D

[
∏

j 6=k

e−πλj(P̂jkB̂jk)
2/αj r2 × exp






∫ ∞

rk,D

−2λkπ

[

1− 1
(

1 + θD
(

rk,D
y

)αk
)b

]

ydy






]

,

(c)
=

∫ ∞

0

2λkπre
−λkπr

2

e
− ∑

j 6=k
λj(P̂jkB̂jk)

2/αj πr2

× exp






∫ ∞

r

−2λkπ

[

1− 1
(

1 + θD
(

r
y

)αk
)b

]

ydy




dr,

(d)
=

∫ ∞

0

e−qe
−q

∑

j 6=k
λ̂jk(P̂jkB̂jk)

2/αj

× exp

(

−2q

∫ 1

0

[

1− 1

(1 + θDvαk)b

]

v−3dv

)

dq,

(e)
=

∫ ∞

0

e−qe
−q

∑

j 6=k
λ̂jk(P̂jkB̂jk)

2/αj

× exp

(

−q
∫ ∞

1

[

1− 1

(1 + θDu−αk/2)
b

]

du

)

dq,

(f)
=

∫ ∞

0

e−qe
−q

∑

j 6=k

λ̂jk(P̂jkB̂jk)
2/αj

× exp

(

−q
[

2F1(b,−
2

αk

; 1− 2

αk

;−θD)− 1

])

dq,

=
1

∑

j 6=k

λ̂jk(P̂jkB̂jk)2/αj + 2F1(b,− 2
αk
; 1− 2

αk
;−θD)

.

where (a) follows from considering the conditional association probability for the typical

device connecting to the kth tier given in Eq. (4.30). In step (b), we apply PGFL of

the PPP [61, Chapter 4]. Step (c) follows from averaging over rk,D, step (d) is by using

variable substitution q = πλkr
2 and v = r/y. In step (e), we perform variable substitution

v = u(P̂jkB̂jk)
−1/αj and step (f) follows from the fact that 2F1(b,− 2

α
; 1 − 2

α
;−θ) ≡ 1 +

∫∞
1
(1− 1

(1+θh−α/2)b
)dh. �
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Appendix C

Derivations and Proofs in Chapter 5

C.1 Proof of Lemma 12

The phantom cells dedicate η and (1−η) fraction of the time to serve biased and non-biased

users, respectively. Consider a time interval of t seconds. Then the numbers of data bits

sent by each phantom BS to non-biased and biased users are (1 − η)tRd2 bits and ηtRdB

bits, respectively. On average, there are λ2

λ1
phantom BSs per MBS, and hence, the MBS

should be able to convey control signaling amounts of λ2

λ1

µC(1−η)tRd2

γ
bits and λ2

λ1

µCηtRdB

γ
bits

to non-biased and biased users, respectively, during time interval t. However, the MBS

sends the control bits with the rates of Rc2 and RcB for non-biased and biased phantom

cell users, respectively. Hence, the amount of time required to send the control signaling by

the MBS is λ2

λ1

µC (1−η)tRd2

γRc2
seconds and λ2

λ1

µCηtRdB

γRcB
seconds for non-biased and biased phantom

cell users, respectively. Consequently, the remaining time for the MBS to serve macrocell

users is
(

t− λ2

λ1

µC(1−η)tRd2

γRc2
− λ2

λ1

µCηtRdB

γRcB

)

seconds. Hence, the average number of bits the MBS

conveys to macrocell users during time interval t isR(s)
1

(

t− λ2

λ1

µC(1−η)tRd2

γRc2
− λ2

λ1

µCηtRdB

γRcB

)

bits.

Dividing the above expression by t, we obtain the average rate at which data is delivered to

macrocell users as R(s)
1

(

1− λ2

λ1

µC(1−η)Rd2

γRc2
− λ2

λ1

µCηRdB

γRcB

)

. Then (5.7) is obtained by replacing

(1−η)Rd2 by T (s)
2 , replacing ηRdB by T (s)

B and multiplying the above expression by (1−µC).

�
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C.2 Proof of Lemma 13

From the independence of the PPPs of the macro and phantom BSs , the joint pdf of the

distances between a generic user and his nearest phantom BS and nearest MBS is given by

fr1,r2(x, y) = 4π2xyλ1λ2e
−π(λ1x2+λ2y2), x, y > 0. The control link distributions are given by

P {r1 < x|u2} =
P {r1 < x,u2}

P {u2}
=

P
{
r1 < x, P1r

−α1
1 < P2r

−α1
2

}

P
{
P1r

−α1
1 < P2r

−α1
2

}

=

P

{

r1 < x, r2 <
(

P2

P1

) 1
α2 r

α1
α2
1

}

A2

. (C.1)

Hence, the pdf of Rc2 is given by

fRc2(x) =
1

A2

dP

{

r1 < x, r2 <
(

P2

P1

) 1
α2 r

α1
α2
1

}

dx

=
1

A2

∫
(

P2
P1

) 1
α2 x

α1
α2

0

fr1,r2(x, y)dy. (C.2)

Similarly, the pdf of RcB is derived as follows.

fRcB
(x) =

1

AB

∫
(

BP2
P1

) 1
α2 x

α1
α2

(

P2
P1

) 1
α2 x

α1
α2

fr1,r2(x, y)dy. (C.3)

�

C.3 Proof of Lemma 14

The coverage probability, which is the ccdf of the SINR, can be expressed in terms of the

Laplace transform (LT) of the aggregate interference. Using the general SINR model in

(5.23), the coverage probability is given by

P[SINR > θ] = P

[
PBSHro

−α

Iagg + σ2
> θ

]

(a)
=

∫ ∞

0

exp

(

−σ
2θrαo
PBS

)

LIagg(θ
rαo
PBS

)fro(r)dr, (C.4)
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where (a) follows from the exponential distribution of H and the definition of the LT [63,75],

and the parameters in (C.4) can be obtained for each user case from Table 5.2. In the case

of shared spectrum access, Iagg is the superposition of two independent interferences from

the two tiers 1 and 2, and hence, can be decomposed to the multiplications of the LTs of the

interferences from each tier as follows:

LIagg(s) = LI1(s)LI2(s). (C.5)

In the other cases, the aggregate interference is simply single-tier interference. The LT of

the interference for a given network tier k ∈ {1, 2} is calculated as:

LIk(s) = E

[

e
−sPk

∑

x∈Φk\bo

Hxx−αk
]

= E




∏

x∈Φ1\bo
e−sPkHxx−αk





(b)
= exp

{

− 2πλk

∫ ∞

‖bo‖

sPkx

xαk + sPk
dx

}

. (C.6)

where (b) follows by from the probability generating functional of the PPP and the i.i.d.

exponential distribution of Hx, and bo is the location of the serving BS determined by the

employed association criterion. The lemma is obtained by calculating the LT of the aggregate

interference affecting the test user according to Table 5.2 using (C.5) and (C.6), in which

the the location of the serving BS bo is obtained via the association criterion given in (5.1).

Then, by substituting the LT of the interference in (C.4) and integrating over the appropriate

link distance given in Table 5.2, we obtain the coverage probabilities. �
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