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ABSTRACT 

In recent years, 3D indoor modeling has gained more attention due to its role in decision-

making process of maintaining the status and managing the security of building indoor 

spaces. A 3D indoor model is an abstract representation of an indoor environment which 

represents the existing state of indoor outlines, usually enriched with accurate semantic and 

geometric information. 3D indoor space models can play a great role in addressing various 

matters including Building Information Modeling (BIM), augmented reality, occupant’s 

safety and health, situational awareness and emergency response, etc. Yet, they have not 

been abundantly provided for many buildings and man-made structures. Thus, 3D indoor 

representations need to be generated for such structures to allow various analysis that 

decisions are based upon. 

In this thesis, the problem of continuous indoor corridor space modeling has been 

tackled through two approaches. The first approach develops a modeling method based on 

middle-level perceptual organization using an image. The second approach develops a 

visual Simultaneous Localisation and Mapping (SLAM) system with model-based loop 

closure using video sequences. 

In the first approach, the image space was searched for a corridor layout that can be 

converted into a geometrically accurate 3D model. Manhattan rule assumption was 

adopted, and indoor corridor layout hypotheses were generated through a random rule-

based intersection of image physical line segments and virtual rays from each of three 

orthogonal vanishing points. A scoring function is designed that considers volumetric 

aspect of created hypotheses along with their correspondences to physical edges, 
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orientation map and geometric context of an image. This approach provides physically 

plausible solutions while facing objects or occlusions in a corridor scene. 

In the second approach, a new technique was developed called Layout SLAM. The 

architecture of Layout SLAM has two major components, known as the “front-end” and 

the “back-end” together dealt with image observations and respective inferences of 

Extended Kalman Filtering (EKF) framework. Real time camera localization was 

performed by Layout SLAM while both corridor layout corner point features and normal 

point features were mapped in 3D. A new feature matching cost function was proposed 

considering both local and global context information. In addition, the introduced rotation 

compensation variable makes Layout SLAM robust against camera’s orientation errors 

accumulations. Moreover, layout model matching of keyframes insures accurate loop 

closures that prevent miss-association of newly visited landmarks to previously visited 

scene parts. 

To evaluate the proposed methods, a new dataset was generated. This dataset 

includes single images and video sequences acquired by hand-held cameras as well as 

Applanix TIMMS laser point clouds collected from various indoor corridors at York 

University. Geometrically accurate reference 2D (less than 3 image pixels accuracy) and 

3D (about 2cm accuracy) layout models were associated with this dataset. Accordingly, 

different experiments were conducted including Root Mean Square Error (RMSE) 

calculation for generated image models, geometric comparison of the estimated 3D layouts, 

and evaluating Layout SLAM camera trajectories. For instance, the comparison of 

generated single image-based 3D models to ground truth models showed that average ratio 
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differences in widths, heights and lengths were 1.8%, 3.7% and 19.2% respectively. Thus, 

the proposed method can successfully generate 3D indoor corridor models compared to its 

major counterpart. Moreover, Layout SLAM performed with the maximum absolute 

trajectory error of 2.4m in position and 8.2° degree in orientation for approximately 318m 

path on RAWSEEDS data set. Also, loop closing was performed strongly for Layout 

SLAM which provided 3D indoor corridor layouts with less than 1.05m displacement 

errors in length and less than 20cm in width and height for approximately 315m path on 

York University data set. Therefore, Layout SLAM performs robustly and produces very 

limited orientation errors. In future, I plan to extend Layout SLAM with less constrained 

geometric models. 
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Chapter 1 

Introduction 

 

1.1 Motivation 

Rapid changes in human’s lifestyle exacerbated their evolvement as indoor habitants. This 

imminent development is influenced by the world’s population that will be on the rise for 

the coming years (Lutz et al., 2017). The increasing population rate would increase the rate 

of urbanization as well (International Herald Tribune, 2008). Urbanization has drastically 

impacted both our lives and our environments. Note that urbanization growing rate 

necessitates more constructions to be accomplished. Thus, cities will become larger and 

consequently the urge to plan, monitor, operate, modernize, manage, and make decisions 

for updating and analysing urban infrastructure would be undeniable. 

Recently, Building Information Model (BIM) has become a significant part of 

building construction (Azhar, 2011). BIM is a digital representation of a facility and its 

physical and functional features. BIM is involved with high level of management and it 

can be a source of knowledge to support a facility construction and maintenance related 

decisions. Not only does BIM make building construction more productive and lucrative, 

but also supports the facility from the early stages of design and continues through its 

entire operational life. However, many of the existing urban infrastructures and facilities 

have been constructed based on traditional designing methods. Thus, new BIMs need to be 

generated for these urban infrastructures. Note that with new changes in existing 
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infrastructures and the expansion of buildings, their respective representations must be 

regularly updated as well. 

In the past years, many researchers in photogrammetry, computer vision and 

robotics fields dedicated their time and efforts to provide accurate representations of 

different building entities (Lee et al., 2010; Endres et al., 2012; Schwing and Urtasun, 

2012; Valero et al., 2012; Chao et al., 2013). Geometrically accurate 3D building models 

are expressed to be the most important feature in representation of digital cities (Fuchs et 

al., 1998). Note that primitive based geometric models of city entities are appropriate 

inputs for managing, updating and analysing urban infrastructures. However, the 

generalization of these representative primitives would be a challenge (Xiong et al., 2013; 

Henry et al., 2014; Diaz et al., 2015; Whelan et al., 2015 and Bueno et al., 2018). Primitive 

based geometric representations would enhance the level of understanding in urban 

structure management compare to other types of representations including mesh models. 

For instance, indoor spaces where we spend most of our time, are the most important city 

environments that can be represented by primitive based geometric models. 

Earlier efforts towards accurate representation of various city entities started by 

employing remotely sensed data to extract building models (Grün et al. 1995, 1997). 

Thereafter more studies have been presented on recognition, detection and reconstruction 

of building indoor spaces (Hähnel et al., 2003; Hedau et al., 2010; Schwing et al., 2013; 

Zhang et al., 2014; Liu et al., 2015; Tang at al., 2016; Zhu et al., 2016; Huang et al., 2017 

and Wang et al., 2018). Note that the task of 3D modeling of indoor spaces has been 

associated with navigation issues and autonomous systems from the beginning. Various 
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applications for indoor mapping and navigation services have been developed by 

companies including Google, Microsoft and Apple (Tóth et al., 2015). Accurate 3D indoor 

models are essential for various spatial information-based applications such as indoor 

security, indoor positioning and navigation (Li et al., 2013; Ochmann et al., 2016 and 

Lehtola et al., 2017). Moreover, new technologies like Mobile Augmented Reality (MAR) 

provide a platform for using 3D indoor models to interact with surroundings through a 

computer or mobile device. For instance, indoor space related information can be displayed 

on a mobile device upon a query entered by the user using the respective 3D indoor model. 

Various data gathering technologies are available which can be used for 3D indoor 

space modeling. Images have been used as a common data source for modeling. Early 

efforts in indoor modeling include manually digitizing images to detect indoor layout. 

Recently, the computer vision related approaches provide the base for automatically 

reconstruct indoor models. Simultaneous Localization and Mapping (SLAM) and Structure 

from Motion (SFM) are notable techniques for recovering indoor layout from a collection 

of images. Using image data, occlusions, shadows and low level of contrast may disrupt 

indoor modeling cues extraction and enforce human’s interactions. Laser scanners can 

directly provide accurate dense 3D point clouds and improve the level of automation in 

reconstruction of geometric models (Jung and Sohn, 2019). At an indoor scene, they can 

provide precise plane information. Yet, they cannot precisely identify layout boundaries 

(images are more accurate) due to their irregular point distribution. Laser scanners and 

cameras together can provide a full description of 3D indoor models. Note that registration 

between data sources is needed to achieve accurate performance in this regard. 
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In the past few years, many indoor modeling and reconstruction methods are 

presented that differ in terms of data sources (multi-data source vs. single data source), 

adopted data processing strategies (generic, parametric, or hybrid) and levels of automation 

(semi-automatic vs. full-automatic). Yet, developing a new method to generate 

geometrically accurate indoor models in a fully-automated way is still a big challenge. 

Sohn and Dowman, (2007) mentioned the critical factors that should be considered while 

developing a new modeling algorithm. These factors include: a) scene complexity, b) 

sensor dependency and c) incomplete cues. First, indoor spaces are containing various 

information of non-layout objects (e.g., tables, chairs, paintings, and other clutters) in 

addition to layout parts (e.g., floor, ceiling and walls). Moreover, indoor scenes have 

various formats and structures that cannot be described by a single standard type. 

Therefore, complex indoor scenes must be simplified to achieve a suitable interpretation. 

Second, sensors have their own characteristics in terms of data acquisition mechanism. 

These characteristics will have an impact on the reconstructed models and must be 

thoroughly understood prior to modeling. Third, missing data problem is quite common, 

and occlusions and objects overlap may cause disintegration problem in captured data. For 

instance, waxed floors may reveal redundant or spurious cues in images that cause 

confusion and ambiguity in modeling process. 

Thus far, different methods have been proposed for reconstructing 3D indoor 

layout using various data sources (Yang et al., 2018). Yet, the proposed methods have 

limitations due to inherent sensor dependency, modeling accuracies, levels of automation 

and ability to solve missing data problems. A promising approach for solving some of 
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these problems would be to take advantage of both model-driven and data-driven strategies 

using images. Indoor modeling using a single image have been exploited by other 

researchers (Hedau et al., 2010), since modeling cues can be extracted from a single image. 

Compared to laser point clouds, optical images can provide geometrically accurate and 

semantically rich information. However, laser point clouds have weakness in detecting 

layout edges, even though they can provide 3D information of planar patches. The cost of 

gathering high accuracy indoor laser point clouds is more expensive than capturing images. 

Also, post processing laser point clouds are very time consuming and labour intensive. 

Since high-quality images can be taken by low-cost cameras and plenty of images have 

been abundantly shared through the internet, the idea of crowd sourced modeling seems 

more achievable using images. Note that existing 3D indoor models can also be updated 

using newly captured images taken from different cameras. 

Regardless of which data source is applied, the selected strategy for reconstruction of 

the indoor layout is very important. The accuracy of the adopted strategy has a great 

impact on the quality of the reconstructed layout. The adopted strategy should establish a 

robust relation between captured data and the general perception of the indoor layout. In 

addition, the interaction between existing layouts and newly captured data should be 

expressed in terms of continuous indoor modeling. Even though different strategies that 

deal with layout complexity have been proposed, the reconstruction of 3D indoor layouts 

over a large-scale area (indoor corridors) has been investigated relatively less. Thus, more 

research on developing methods for reconstructing indoor layouts from single or set of 



6 

 

 

 

images are required. This notion provides a base for the idea of continuous indoor 

modeling. 

 

1.2 Research Objectives  

As mentioned previously, primitive based geometric representations of city entities are 

important for urban structure management. Moreover, geometric representation of indoor 

layouts would increase the level of understanding in preparing building information. Hence, 

the reconstruction of 3D indoor space geometric models (layouts) is essential for analysing 

and updating building information. The main objective of this thesis is to address critical 

steps towards creation of continuous 3D indoor space models, which includes 3D indoor 

corridor layout reconstruction (single view), indoor corridor mapping (visual SLAM) and 

update of the estimated corridor layouts, visual SLAM loop closing and quality evaluation. 

To accomplish these goals, the following issues need to be addressed:  

 First, the proposed 3D indoor layout reconstruction method should provide robust 

and accurate 3D indoor corridor layouts. The accuracy of reconstructed 3D layouts should 

meet urban planning and indoor navigation level accuracy to support indoor navigation and 

urban structure management. Regardless of indoor layout complexity (connected corridors) 

and the configuration of indoor clutters, the methods should produce accurate topologic 

and geometric 3D indoor corridor layouts. Second, the proposed methods must generate 

regularized indoor corridor layouts, abiding to standard regularities such as planes 

parallelism, planes orthogonality and global symmetry. Since the reconstructed layouts 

should represent the regular properties of real indoor corridor structures, applying these 
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types of regularities is essential. Third, a reliable loop closing accuracy must be achieved 

while applying visual SLAM for continuous indoor corridor mapping. A revisited scene 

should be accurately and robustly registered to the existing 3D indoor corridor layouts 

(map) through recalling visited scenes by visual SLAM system. The accumulated mapping 

errors of the estimated indoor corridor layouts should be corrected. Thus, the estimated 

indoor corridor layouts must be updated effectively. 

 

1.2.1 General Research Framework 

Figure 1.1 presents the overall workflow of the proposed method for continuous indoor 

space modeling and the interrelation between the main parts of this thesis (major 

contributions are highlighted in colorized boxes). First, 3D indoor corridor models are 

reconstructed using single images (Chapter 4). The proposed method reveals the steps for 

generating a 3D indoor corridor model from a single image. These steps start from low 

level image processing and finish with 2D to 3D conversion of best fitting layout 

hypothesis. The proposed method includes following steps: 1) edge detection and straight 

line extraction, 2) orthogonal vanishing points estimation, 3) major box hypotheses 

creation (topology construction), 4) extraction of features (edge correspondences, volume 

maximization, orientation map, geometric context), 5) major box hypotheses scoring using 

Artificial Neural Network (ANN), 6) side box hypotheses creation, 7) hypotheses scoring 

(major box with its side boxes) by ANN, 8) selection of best fitting hypothesis and 9) 2D 

to 3D conversion using vertical vanishing point. 
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Figure 1.1 Proposed workflow for continuous indoor space modeling. 

 

Regarding the process of modeling cues extraction and hypotheses creation, this 

dissertation explains how the combination of both detected straight line segments and 

virtual rays of vanishing points can effectively handle cluttered indoor scenes and create 

models even with incomplete layout evidences. For topology construction, the indoor 

layout is considered to follow the Manhattan rule assumption and the major corridor has 5 

regularized faces including ceiling, floor, front wall, right wall and left wall. As part of this 

study, scoring hypotheses by considering both geometric and semantic features is 

examined. In the proposed linear cost function, the combination of geometric context and 
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orientation map is tested for better layout hypotheses scoring. Finally, weight parameters 

were automatically determined through ANN while normalized features contributed to the 

network as inputs. 

Second, a visual SLAM method called Layout SLAM is proposed (Chapter 5). The 

proposed method consists of following steps: 1) the system initializes by introducing the 

scene layout and its structural corner point features at the first frame, 2) for the rest of 

frames, straight line segments are detected and vanishing points estimated to generate 

layout hypotheses, 3) the best fitting layout hypothesis to the scene is identified through 

layout features matching process, 4) rotation compensation variable is introduced to 

eliminate the effect of orientation errors accumulation, and 5) finally an online sparse map 

of the indoor corridors layouts is built. Note that the proposed feature matching cost 

function considers both local and global context information by measuring pixel to pixel 

orientation differences of matched junctions and examining angle differences of directly 

connected corners. The proposed method can deal with the presence of few geometrical 

features and absence of texture in the scene through introducing indoor layout. Also, the 

amount of rotations that should be compensated at each step is estimated by consecutive 

vanishing points matching on a unit sphere.  

Third, this dissertation reveals a new model-based loop closing technique that 

associates current scene parts to the previously visited landmarks (Chapter 6). Both layout 

information (topology and geometry of reconstructed layout models) and image 

information (photometric features) are used to match layout models of various keyframes. 

The proposed method imposes a geometric constraint on the global layout model 
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consistency and reduces matching ambiguity by considering topological context. 

Homogenously textured corridors can be easily handled, since introducing layout 

compensates the imposed matching limitations. Different types of modeling errors such as 

orientation error, boundary displacement and shape deformation can be reduced as well.  

Forth, to evaluate the performance of the proposed indoor space modeling algorithms a 

new type of dataset is prepared (Chapter 3). The prepared dataset acquired by hand held 

cameras including single images and video frames covering indoor corridor places. Also, 

laser point clouds were acquired, and ground truth 3D models were manually generated for 

evaluation of the results. This dataset is prepared to compensate for limitations of existing 

datasets. 

 

1.2.2 Contributions 

As discussed previously, in this thesis a solution for 3D reconstruction of indoor models is 

provided. The proposed approach considered and incorporated various study areas to shape 

the idea of continuous indoor space modeling. Here, major contributions of this thesis are 

summarized: 

• Proposing a method to reconstruct 3D indoor corridor models from a single image: 

To compensate limitations of existing single image-based indoor modeling methods, 

that mainly define the scene layout as a single box primitive, the proposed method 

represents the indoor scene layout through hypothesizing-verifying multiple box 

primitives. Using middle-level perceptual organization and finding the ground-wall 

and ceiling-wall boundaries, multiple layout hypotheses can be generated 
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intersecting detected straight line segments and virtual rays of vanishing points. 

Also, an edge-based objective function is proposed for evaluating layout 

hypotheses and finding the best fitting layout. 

• Proposing the combination of geometric context and orientation map for image-

based indoor layout evaluation: Clutter presence at indoor scenes causes shadows 

and occlusions that hinder a comprehensive interpretation of edge relations. 

Orientation map reveals the local belief of region orientations and geometric 

context can reveal the likelihood of possible label for the same region. Evaluation 

of indoor layout hypotheses by combining both, will incorporate image geometric 

and semantic information in hypothesis selection process and improve the results. 

• Introducing Layout SLAM method for real-time indoor corridor layout estimation: 

The system is initialized using layout corner point features detected in the first 

frame and performs real time indoor corridor layout estimation and camera 

localization. Layout SLAM can reduce the effect of abrupt camera rotations by 

introducing rotation compensation variable to visual SLAM architecture. Vanishing 

directions of consecutive video frames are matched to estimate the amount of 

relative camera orientations. Moreover, layout structural corner points are matched 

using features that are invariant under scale, translation, and rotation. Layout 

Feature matching cost function considers both local and global context information.  

• Proposing a new loop closing technique based on layout topology graph: 

Incorporating this loop closing method to the proposed layout SLAM algorithm 

will make it robust against error accumulations and miss-association of newly 
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visited scenes to the previously visited layouts. Both layout information (topology 

and geometry of reconstructed layouts) and image information (photometric 

features) are utilized to confirm a loop closing incident. This method imposes a 

metric constraint on the global layout consistency to adjust the mapping scale drifts 

and reduces matching ambiguity in the homogenously textured indoor corridors. 

• Building a new dataset covering Manhattan type indoor corridors at York 

University based on both camera and laser scanner data: This dataset is used to 

evaluate the performance of the proposed continuous indoor space modeling 

method. The acquired data using hand held cameras includes both single images 

and video frames. Also, 3D laser point clouds are incorporated into this dataset 

using Applanix TIMMS and used to manually generate ground truth 3D layout 

models. 

 

1.3 Thesis Outline 

This thesis is arranged in 7 chapters. Here is the overview of the presented chapters: 

Chapter 1 presents the motivation of this thesis and introduces the proposed methods and 

strategies for solving research questions.  

Chapter 2 provides background information for better understanding this thesis, and gives 

a literature review regarding indoor modeling strategies, main data sources and model 

representations. 
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Chapter 3 introduces newly generated dataset and reveals the characteristics of the 

generated 3D ground truth models. This new dataset is generated to effectively assess the 

quality of the proposed continuous indoor space modeling algorithm.  

Chapter 4 presents a method to reconstruct a 3D indoor corridor model using a single 

image. Manhattan rule assumption is applied to impose geometrical regularity on 3D 

indoor corridor models. Both physical line segments and virtual lines of vanishing points 

were used to generate multiple corridors layout hypotheses. Not only orientation map and 

geometric context of an image are combined, but also an artificial neural network is 

designed to evaluate and find the best fitting layout hypothesis. 

Chapter 5 proposes a new visual SLAM algorithm for estimation of indoor corridors 

layouts and camera poses at the same time. This method matches vanishing points of 

consecutive video frames on a Gaussian sphere to estimate relative camera orientations and 

reduce the angular drifts in the system. 

Chapter 6 introduces a new loop closing method using layout topology graph. Topology 

and geometry of reconstructed layouts and photometric features together assist loop 

closure occurrence. This method adjusts layouts scale drifts and reduces matching 

ambiguity where indoor corridors have low textures. 

Chapter 7 gives a conclusion for this study and provides recommendations for future 

works. 
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Chapter 2 

Background 

 

 

 

 

 

Over the years, we have improved our lifestyles and progressively become indoor creatures. Thus, 

understanding the 3D space of an indoor environment and studying the relation of humans’ 

activities to these places has become an important research topic. In recent years, for addressing 

related issues of indoor space data gathering, processing and modeling, many researchers have 

contributed in various fields. For instance, indoor space modeling is very well studied in Computer 

Vision and Robotics for navigation, recognition, and reconstruction. Moreover, spatial information 

of the indoor environments can be applied in many applications. Public security can be facilitated 

via accurate 3D indoor models that paired with current navigation technologies by the time of an 

incident. This chapter aims to review some of the most influential literatures related to indoor 

modeling. Here, we scrutinize data-driven and model-driven processing strategies in indoor 

modeling, and further discuss the current main sources of data in this field. Moreover, we reviewed 

current model representation techniques, and deepen our redaction by overviewing both metric and 

semantic representations.  
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2.1 Indoor Modeling  

Indoor modeling can be defined as a procedure to generate digital models which represent 

interior structures with a physical valid form. In this process, the input data will eventually 

be transformed into structured archetypes illustrating high geometric and semantic 

information. Indoor models are increasingly gaining importance due to their various 

applications in architectural planning, indoor navigation and tracking, energy and lighting 

analysis, crisis management and emergency route planning, etc. 

In recent years, the generation of 3D indoor space models has gained a lot of 

attention (Rassia, 2017). Thus, various indoor modeling techniques with respect to 

available data sources have been introduced to photogrammetry and computer vision 

communities. Categorizing indoor/outdoor building modeling and reconstruction 

algorithms into various classes may vary based on one’s special inference. Yet, this 

categorization would be more meaningful by considering different aspects of these 

algorithms. Factors which may influence this categorization may include: a) applied data, 

whether having single or multiple data sources, b) strategies adopted for data processing, 

either generic (data-driven) or parametric (model-driven) and c) to what extent human 

must intercept, either fully automatic, semi-automatic or completely manual (Jung and 

Sohn, 2019). In this section, the existing indoor space modeling strategies (section 2.1.1) 

and major indoor reconstruction data sources (section 2.1.2) will be reviewed. 

 

 

 



16 

 

 

 

2.1.1 Parametric or Generic  

To comprehensively understand the existing indoor modeling and reconstruction 

algorithms and to develop new ideas in this regard, paying special attention to their 

adopted data processing strategies would be an excellent choice. Generally parametric 

methods can reconstruct indoor models through fitting parameterized primitives to the 

acquired data. The main reason that these methods can be successful is that many 

manmade indoor places have common structure or shape. These common structures either 

cubical or cylindrical can represent indoor structures if they considered as the standard 

reconstruction primitives. Thus, ordinary indoor places can be simply represented as 

regularized indoor models. It should be noted that applying pre-defined parameterized 

primitives is crucial when encountering with low density or missing data problem. 

However, the proper selection of influential primitives is cumbersome. Moreover, complex 

indoor places cannot be fully represented with a set of basic primitives. 

Quattoni and Torralba (2009) expressed that indoor scenes recognition problem can 

be addressed through a model which exploits local and global discriminative information. 

Hence, they proposed a method to recognize indoor scenes through a prototype-based 

model that can successfully combine both global spatial properties and local objects of the 

scene. Xiong and Huber (2010) created semantic indoor 3D models based on context. 

Xiong and Huber (2010) encoded laser point cloud in a voxel data structure and assume 

that they can be modeled using a set of planar patches. Contextual relationships between 

patches and local features together classify planar patches using a Conditional Random 

Field (CRF) model. Thus, classifying planar patches extracted from laser data leads to 
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semantic 3D models of buildings. Understanding the 3D geometry of indoor scenes is 

possible via modeling the geometry and location of specific objects (Del Pero et al., 2012). 

Del Pero et al. (2012) defined rooms as box and windows, doors and pictures as 

rectangular frames. Also, they considered object characteristics meaning beds are shorter 

than they are wide, and cabinets are more likely to be tall and narrow. They used a 

statistical model which integrates objects with their specific prior on size, locations and 

relative dimensions to geometrically model indoor scenes. 

Wang et al. (2013) addressed the problem of indoor scene understanding by 

introducing latent variables to account for clutter. Hence, the observed scene is jointly 

explained by recovered furniture layout and room geometry. Note that model parameters 

are learned from training images labeled with only room layout (considered as parametric 

box). Ikehata et al. (2015) reconstructed an indoor 3D model from panoramic RGBD 

images. A graph represents the scene geometry and the graph nodes correspond to either 

rooms, walls or objects. Scene graph can be manipulated by a structure grammar which 

drives a principled algorithm for new reconstructions. To recover a structured model, the 

grammar rules should be sequentially applied. 

There are plenty of other methods that apply model-driven strategies for scene 

recognition or estimating indoor models (Hedau et al., 2010; Lee et al., 2010; Hedau et al., 

2012; Schwing et al., 2012; Schwing and Urtasun, 2012; Chao et al., 2013; Schwing et al., 

2013; Zhang et al., 2014; Diaz et al., 2015; Liu et al., 2015 and Zhu et al., 2016). However, 

contrary to parametric methods, generic ones do not make any assumptions about the 

shapes of indoor environments. Hence, they should be able to handle all types of indoor 
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environments. Yet, these methods might cause irrefutable amount of deformations due to 

presence of outliers in the data. Note that such approaches usually require a regularization 

step during their reconstruction process. Generally, generic approaches start by extracting 

indoor modeling cues like primitives of surfaces, lines, outer boundary lines and 

intersection lines followed by indoor model reconstruction. Lee et al. (2009) used 

geometric reasoning to recover an indoor layout from a single image. They create scene 

plausible interpretations from a collection of extracted line segments. Geometric reasoning 

and verification applied to find the best fitting model hypothesis. Lee et al. (2009) proved 

that geometric constraints on bunch of segments can be described by a set of rules which 

facilitate scene hypotheses interpretation. 

In generic approaches, extraction of surface primitives can be performed through 

Segmentation. Segmentation divides the available data into homogeneous regions. Popular 

segmentation algorithms based on Random Sample Consensus (RANSAC) (Tarsha-Kurdi 

et al., 2008) and region growing (Rottensteiner et al., 2005, Kada and Wichmann, 2012) 

can be used to segment indoor planes. Shao et al. (2012) proposed the semantic modeling 

of indoor scenes. Their method segments input images into semantical regions and replace 

the incoming segments by similar predefined three-dimensional models. This method can 

progressively reconstruct the whole scene based on captured RGBD-images. Silberman et 

al. (2012) proposed a method to interpret the main surfaces and objects at indoor scenes by 

parsing them into different regions and recovering support relationships. They calculated 

surface normal and aligned it to room dominant orthogonal direction. Using RANSAC, 

planes are fitted to RGBD data points and segmented based on color gradients and depth. 
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Silberman et al. (2012) reveal a better understanding of cues that can provide a 3D 

interpretation of structures. 

After a data-driven method extracts surface primitives or segments data into 

homogeneous regions, indoor modeling cues can be formed based on topological and 

geometrical relationships of the segmented regions. Note that line intersections can be 

simply achieved by intersecting two adjacent segmented regions or surfaces. After all 

indoor modelling cues are gathered, 3D indoor models can be reconstructed by combining 

these cues. As expressed previously, the generic approaches and parametric ones have 

different strategies in the modeling process. Wang and Gupta (2016) took advantage of 

both these strategies and proposed a generative image modeling method that consider 

images to be comprised of an underlying 3D structure and textures which are mapped onto 

it. They offered a 3D model and texture Generative Adversarial Network that generates a 

surface normal map which used for generation of a 2D image. Their method can generate 

rather realistic images. 

 

2.1.2 Data Sources 

As it can be inferred from the previous section, multiple sensors have been used to 

construct 3D models of building indoor spaces. The most popular data sources include: a) 

RGB-D cameras, b) laser scanners and c) perspective cameras in form of stereo, monocular 

or omnidirectional vision. In the following sections a summary of the researches that used 

these sensors for indoor space modeling will be presented. 

 



20 

 

 

 

2.1.2.1  RGB-D Cameras 

By the advent of new technologies in recent years, color and depth (RGB-D) images have 

become widely available. The RGB-D image is acquired by the combination of an RGB 

image and its corresponding depth image. Different techniques have been developed to 

capture RGB-D data (Chen et al., 2015). In stereoscopic camera pairs, the disparity 

between captured images provide depth information and in some other cameras light is 

emitted to help the calculation of depth. Also, various public RGB-D datasets have been 

introduced to computer vision community covering indoor scenes (Koppula et al., 2011; 

Silberman and Fergus 2011; Silberman et al., 2012; Anand et al., 2013; Xiao et al., 2013; 

Lai et al., 2014; Mattausch et al., 2014). 

Since RGB-D cameras can swiftly acquire the 3D digital representation of indoor 

places, they can be used as a major data provider to indoor scene modeling research. Yet, 

RGB-D cameras often provide noisy or distorted depth information and interior objects 

usually have complicated geometry (Chen et al., 2014). Thus, various methods have been 

proposed to address these problems while modeling indoor places using RGB-D images. 

Early attempts started by registering a set of RGB-D images into a single reference frame 

and volumetrically representing point cloud that can be converted into mesh-based 3D 

models later (Valentin et al., 2013). Thus, traditional registration and fusion algorithms are 

used to develop new geometric indoor modeling methods. Note that these methods must 

consider the quality of RGB-D data that might be low in many cases. 

Izadi et al. (2011) and Newcombe et al. (2011) proposed the Kinect Fusion system 

that provides level-of detail (LoD) scanning and modeling. Heredia and Favier (2012) used 
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volume shifting in larger scale environments to extend the Kinect Fusion framework 

further. It should be noted that RGB-D SLAM provides a more complete framework in this 

regard (Endres et al., 2012). In RGB-D SLAM, robust point correspondences between 

frames will be provided through both depth image shape-features and features of RGB 

image that complement each other. Note that RGB-D SLAM applies either sparse mapping 

or dense mapping techniques. In sparse mapping, limited number of keyframes will be 

sparsely selected for coarse reconstruction while in dense mapping the complete RGB-D 

stream is utilized to achieve detailed reconstruction (Endres et al., 2012; Li et al., 2013; 

Henry et al., 2014; Whelan et al., 2015; Tang at al., 2016; Huang et al., 2017). 

Low-quality RGB-D sparse data is suitable for modeling indoor scenes using 

semantic modeling techniques. Yet, segmenting an indoor scene into various semantic 

regions and separating each object from its surroundings is a challenging problem. Often in 

semantic indoor modeling the prior knowledge is applied in the form of contextual rules 

and interior objects shapes are usually known a priori. Chen et al. (2014) proposed to 

semantically model indoor scenes based on contextual information. They used a 3D scene 

database and investigate the co-occurrence of contextual information to not only ensure 

semantic compatibility but also constrain modeling. Li et al. (2011) proposed an iterative 

constrained optimization method to model objects by combining primitive shapes. Mutual 

relations such as placement, equality and orientation are considered to globally integrate 

locally fitted primitives. Also, the interior layout is commonly assumed as a box while 

walls and floors/ceilings are fitted with vertical and horizontal planar primitives, 

respectively (Xiao and Furukawa, 2014). Sanchez and Zakhor (2012) applied convex hull 
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and alpha-shape algorithms to form non-rectangular polygonal shapes through 

determination of each planar primitive spatial extent.  

 

2.1.2.2  Laser Scanners 

The use of laser scanner offers rapid high-resolution capture of surface elevation data 

suitable for a large range of applications. The commercial use of laser scanners in the last 

few years has upstretched as more reliable and accurate systems are produced. Laser 

scanners can widely be incorporated in different fields such as architecture, engineering 

and construction domain as well as generation of 3D models of building and indoor 

facilities (Hähnel et al., 2003; Valero et al., 2012; Xiong et al., 2013; Ochmann et al., 

2016; Lehtola et al., 2017). Yet, generated models are not often constructed automatically, 

and laser scanners data processing is labor-intensive and tedious. Early researches on 

modeling and mapping indoor spaces is performed using robots and terrestrial laser 

scanners (Maas and Vosselman 1999; El-Hakim, 2000; Frueh et al., 2005). However, fully 

automation of the modeling procedure is still a big challenge and it has gained a lot of 

attentions in past years (Pu and Vosselman 2009; Ripperda and Brenner 2009; Xiong et al., 

2013; Xiao et al., 2015; Gimenez et al., 2016; Macher et al., 2017; Bueno et al., 2018; 

Wang et al., 2018).  

As mentioned, a wide range of different algorithms have been proposed to model 

3D laser scanner data. Hahnel et al. (2003) proposed a probabilistic method to tackle the 

problem of map generation with mobile robots. They applied the Expectation-

Maximization method to extract dynamic objects from 2D and 3D data obtained with laser-
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range scanners. More intelligence-based approaches in this regard applied Random Sample 

Consensus (RANSAC) and Iterative Closest Point (ICP) to achieve better results (Rusu et 

al., 2007; Nüchter and Hertzberg 2008; Nüchter et al., 2010). Coughlan and Yuille (1999) 

mentioned that most of manmade indoor structures are constructed based on a Manhattan 

three-dimensional grid which can restrict the topology of indoor layouts. Adán and Huber 

(2010) proposed a method to reconstruct indoor spaces where clutters and occlusion are 

present in range data. They considered volume of indoor space to recognize significant 

surfaces through Support Vector Machines (SVM) learning technique and recover surface 

shapes in an acceptable condition. Budroni and Böhm (2010) also used laser scanners and 

followed the Manhattan world assumption to reconstruct a volume sweep of the indoor 

space. A cell decomposition approach was used to extract contours of the ground plan, and 

only suitable cells were added to the ground shape. Finally, walls were raised from the 

floor to the ceiling level. Armeni et al. (2016) proposed a hierarchical approach to 

semantically parse 3D laser scanner data obtained at a building. They defined the 

semantically meaningful spaces considering rules applied in Manhattan structures 

formation and further parsed the spaces into building elements such as walls and columns. 

Following Manhattan rule assumptions provides strong 3D prior for discovering building 

elements. Murali et al. (2017) generated building information models (BIMs) of houses 

using laser data. They used scans of Manhattan type indoor floors and created room 

layouts through detecting walls and reasoning on their relations. Xie et al. (2018) proposed 

a method to regularize building boundaries obtained from noisy point clouds. They 

detected planar structures and locally consolidated boundary points of planes and grouped 
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them into piecewise smooth segments. Parallel and orthogonal segments are globally 

regularized through a labeling process formulated as a Markov Random Field (MRF) 

which solved by graph cut. 

Not all of studies are considering Manhattan rules to simplify the formation of 

various building structures. Dealing with laser scanner data there would be other 

approaches to extract indoor structure elements. Recognizing structures in laser scanner 

data was in focus in many researches where a special attention is payed to the extraction of 

smooth planar surfaces (Vosselman et al., 2004). Boulaassal et al. (2007) proposed a 

method that delivers planar facade segments from Terrestrial Laser Scanner (TLS) data by 

applying RANSAC method to fit geometric primitives automatically. Nüchter et al. (2003) 

semantically analyzed the scanned indoor places. They transformed a 3D volumetric model 

into a very precise compact 3D map to generate semantic descriptions. Later, the scanned 

3D environment was matched against a rough semantic description of overall indoor 

environments. Matching was accomplished by a Prolog program compiled from 3D laser 

data. Biber et al. (2005) acquired a realistic 3D model using a mobile robot which had a 

laser scanner and a panoramic camera on board. Walls were extracted using 2D laser scans 

and textures were built from the panoramic images. Shukor et al. (2011) attached a laser 

scanner to a mobile platform and proposed a knowledge-based method to reconstruct 

planar surfaces from 3D laser scanner point cloud data. Their algorithm is based on a 

computational geometry approach. Chen and Cho (2016) created an on-line incremental 

3D environment map via orthogonal pair of laser scanners mounted on a mobile platform. 

The horizontal scanner provides information for the estimation of platform’s position and 
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orientation using SLAM solution and the building structure is recovered using vertical 

scanner. Tomljenovic et al. (2016) used a model-driven mapping approach to represent 

building roof outlines that extracted as 2D polygons inside laser data. They generated both 

Digital Surface Model (DSM) and Digital Elevation Model (DEM) from laser data and 

generated objects with respect to point statistics from the linked laser point cloud. Using 

class modelling techniques, they could generate the ultimate class of objects representing 

buildings. Although laser scanners are very keen in capturing 3D geometric information 

from indoor/outdoor spaces, they are not good at providing texture. Therefore, fusion of 

laser scanner and camera can be helpful to obtain complete 3D information of 

indoor/outdoor places. There are some hybrid approaches which combine images and point 

cloud for building reconstruction. Brenner (2005) provided a brief review on early attempts 

towards this fusion where the underlying principles of hybrid approaches has been 

introduced. However, the need to fuse and calibrate laser scanner and camera together as 

well as data registration procedure make these approaches less favorable. 

 

2.1.2.3  Cameras 

When it comes to human cognitive, it is very easy to interpret the 3D structure of an indoor 

or outdoor environment in an image. However, teaching machines to automatically 

recognize different structures in an image and achieving the same quality as human’s brain 

is tedious. Early attempts in computer vision is involved with line drawings. Guzmán 

(1968) was one of the first researchers who interpreted line drawings to distinguish 

between different parts of objects. Clowes (1971) classified lines of polyhedral objects into 
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convex, concave, and occluding to recover the 3D structure of the objects. The concept of 

gradient space has been introduced by Macworth (1973) and combined with some surface-

based constraints. Waltz (1972) put a step forward and let line drawings to have missing 

edges, and Sugihara (1984) used an algebraic optimization for line drawing interpretation. 

Kanade (1980) considered Origami world that includes hollow shells and planar sheets as 

well as imposing heuristics indicating that parallel lines in image are parallel in the space. 

Since images are excellent sources for providing both geometric and semantic information 

of the environments, image-based modeling is very much appealing (Kress and Van 

Leeuwen, 1996). In recent years, plenty of 3D modeling and building reconstruction 

approaches using multiple or single images have been proposed. Yin et al. (2009) 

generated three-dimensional building models based on architectural drawings. They used 

images as the input and converted them into CAD files to generate the 3D models 

automatically. 

Using images alone, Multi-View Stereo (MVS) algorithms can construct highly 

detailed 3D models of the environments (Vanegas et al., 2010). Furukawa et al. (2009) 

stated that multi-view stereo algorithms can produce high accurate data comparable to laser 

range scanners. They proposed MVS-based method which can perform in homogeneous 

places where piece-wise planar surfaces are abundant. They extracted dominant plane 

directions from planar surfaces to create plane hypotheses and recovered depth maps using 

MRF. Seitz et al. (2006) and Schöning and Heidemann (2015) quantitatively compared 

several multi-view stereo reconstruction algorithms. Furukawa and Hernández (2015) 

introduced efficient MVS optimization algorithms considering robust implementations of 
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photometric consistency measures. Langguth et al. (2016) presented a multi-view 

reconstruction method that transits between stereo-matching and Lambertian shape-from-

shading using image gradients. Ulusoy et al. (2017) applied object-level shape priors to 

propose a probabilistic model which integrates 3D shape information from multiple objects 

with image evidence from multiple views. Accurate objects 3D poses, and dense 3D 

reconstruction of the environment is inferred from their proposed model. Rebecq et al. 

(2018) proposed a solution for event-based multi-view stereo 3D reconstruction. They 

considered the ability of event cameras to provide semi-dense geometric information and 

continuous measurements while the sensor is moving. 

Apart from multi-view stereo techniques, plenty of building reconstruction 

approaches have chosen single images as their primary data source (Lee et al., 2010; 

Schwing et al., 2013; Chao et al., 2013; Zhang et al., 2014; Diaz et al., 2015 and Zhu et al., 

2016). When dealing with a single image, collection of line segments which can be 

detected by low level image processing can be a source to recover the building structure 

(Hedau et al., 2010). However, not all the detected lines can be helpful in the process of 

structure recovering. Some edges may lie on walls or objects surfaces which are not part of 

the original structure (Schwing and Urtasun, 2012). Information extraction from line 

segments of images is important specially where orthogonality constraints and Manhattan 

world assumption are applied. Košecká and Zhang (2002) proposed a method which can 

recover vanishing points and camera parameters in a single image. Their method is using 

line segments related to Manhattan world structure. Vanishing points were estimated using 

dominant rectangular structures in images by Košecká and Zhang (2005), Micusik et al. 
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(2008) and many other researchers. Han and Zhu (2009) found rectangles (grid or box 

patterns) in images from line segments that were aligned with vanishing points. 

It should be noted that multiple images are needed to extract 3D information of the 

scene, unless a reference is present in the image (Criminisi et al., 2000). For example, the 

ground plane can be treated as a reference in a single image. Delage et al. (2006) suggested 

that using Bayesian methods can help to efficiently recover 3D information. They could 

recognize the floor-wall boundary, since visual cues in the image were combined with 

some prior knowledge about the scene geometry. Given a single image, their trained model 

can be used for 3D reconstruction. Hoiem et al. (2005) focused on semantical information 

and proposed a method to recover the 3D structure of indoor/outdoor spaces from an 

image. They estimated orientations (e.g., horizontal, vertical) in an image using statistical 

methods considering color, texture, orientation of the edges, position, etc. Saxena et al. 

(2009) proposed a method to connect regions based on connectivity or co-planarity so that 

there would be no need to consider any assumption about the ground plane. Saxena et al. 

(2006) considered image properties to estimate the absolute depth in a single image. 

Nedovic et al. (2007) divided an ordinary scene into some limited stages of 3D scene 

geometry. The information extracted from these stages can be a guide for a better depth 

estimation and image interpretation. Lee et al. (2009) applied geometric reasoning to 

estimate the physical possible interpretations of an indoor layout in a single image. Hedau 

et al. (2009) and Wang et al. (2010) applied structural learning approach to estimate the 

best fitting layout to an indoor image. Parameterizing the indoor structure by a cubic that 

aligned with orthogonal directions is one solution for indoor modeling (Schwing et al., 



29 

 

 

 

2013). Objects can impose physical constraints which can be employed to estimate the 

room layout (Pero et al., 2012). Zhang et al. (2014) utilized objects for reasoning about the 

scene layout. Nevertheless, the scene layout can be used to improve detection of objects in 

the scene (Fidler et al., 2012). Liu et al. (2015) applied prior knowledge of the scene and 

its semantics to resolve some of objects and layout relation ambiguities in an image. Liu et 

al. (2017) acquired a relatively accurate normal map from a single image to interpret scene 

geometry. They represented object as a normal-based graph and applied graph matching to 

retrieve similar object model from the database. Yang et al. (2018) recovered the indoor 

layout and shapes of the objects from a single 2D panorama by extracting geometric and 

semantic cues. A constraint graph on image line segments and detected planar super-pixels 

impowered their layout inference. Note that super-pixels are usually defined as image 

patches that better aligne with edges compare to a rectangular patch. 

 

2.2 Model Representation 

With the advent of new technologies and the increasing growth rate of indoor location-

based service applications, there is much more demand for indoor space models especially 

from the new generation who requires more assistance indoors. Since indoor spaces 

including airport, hospitals, schools and shopping malls have quite complex structures, 

selection of a suitable model representation scheme will impact the indoor modeling 

research areas. Cadena et al. (2016) categorized model representation by considering two 

major aspects. First, metric representation which focuses on how to model geometry via a 

symbolic structure. Note that a geometric model encodes the geometry of an environment. 
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Second, semantic representation that considers geometric entities in an environment and 

associates them with semantic concepts. In this section, the major methods for geometric 

representation of models (section 2.2.1) and semantic representation of models (section 

2.2.2) will be discussed. 

 

2.2.1 Metric Representation 

Three-dimensional modeling of the environment through encoding geometry has been 

studied in different research fields including photogrammetry, computer vision, robotics 

and computer graphics (Requicha, 1980; Shapiro, 2002; Flint et al., 2011). Cadena et al. 

(2016) mentioned different metric representations including: a) Landmark-based sparse 

representations, b) Low-level raw dense representations, c) Boundary and spatial-

partitioning dense representations, and d) High-level object-based representations. In this 

section a brief review of these metric representation techniques will be provided. 

Observed discriminative features in different places such as corner points and lines 

can be represented as a set of sparse landmarks by applying various localization and 

mapping techniques (Mur-Artal et al., 2015). Many of the proposed SFM or SLAM 

methods provide the same landmark-based representation (Triggs et al., 1999; Ackerman, 

2014). In such methods, geometric aspects of the distinguishable landmarks will be 

measured. Since landmark-based representation is not suitable for visualisation and 

rendering purposes, low-level raw dense representations which can provide high-resolution 

geometric models are better choices in this regard. Unstructured set of point clouds can 

describe 3D geometry of an environment and have been successfully used in conjunction 
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with RGB-D and stereo cameras (Nüchter, 2008). Even though these types of 

representations are visually attractive, they have poor quality in giving high-level topologic 

information which is necessary for providing geometric descriptions. 

To overcome the weaknesses of using unstructured sets of low-level primitives, 

boundary and spatial-partitioning dense representations are introduced. Boundary 

representations are suitable for explicitly representing surfaces and volumes. They can 

detect objects surface boundaries which together define the objects. Various types of 

boundary representation methods are presented which include curve-based representations, 

implicit surface representations, plane-based models and surface mesh models (Whelan et 

al., 2012; Lu and Song, 2015; Whelan et al., 2015). Spatial-partitioning representations 

take advantage of contiguous non-intersecting primitives to define an object. In this regard, 

decomposing the 3D space into regular grid-based voxels is a tangible example which is 

applied in spatial-occupancy enumeration. Other methods for partitioning the environment 

include Binary Space-Partitioning (BSP) tree, octree and Polygonal Map octree 

(Everingham et al., 2010; Flint et al., 2011).  

Apart from the abovementioned metric representations, higher-level representations 

have been mentioned in literatures. These types of object-based representations explicitly 

encode real objects in 3D and include solid shapes in their roster as well (Curless and 

Levoy, 1996; Salas-Moreno et al., 2013; Cieslewski et al., 2015). Note that modeling 

objects as solid entities enables the association of mass and volume to those objects. 

Cadena et al. (2016) categorized solid representations into three groups including: a) 

Parameterized Primitive Instancing, b) Sweep representations, and c) Constructive solid 
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geometry. Families of objects (e.g., cubic, sphere, cylinder) are considered in 

parameterized primitive instancing methods, and a set of parameters (e.g., width, height, 

radius) are defined for uniquely identifying the objects for each family. Sweep 

representations consider the sweep of an object through space to define a solid entity. 

Leveraging symmetries, both translation sweep and rotation sweep are suitable to reason 

on the scene occluded areas (Bibby and Reid, 2010; Phillips et al., 2015). Complex solid 

entities are defined by constructive solid geometry methods applying Boolean operations 

on primitives (Requicha, 1980). These types of metric representations can model complex 

geometry by storing an object as a tree which primitives are its leaves and operations are 

the edges. 

 

2.2.2 Semantic Representation 

Some geometric models encounter with memory problems due to using many parameters 

such as points, lines and voxels to encode the entire 3D environment (Nießner et al., 2013). 

Using these parameters, they cannot provide high-level understanding of the geometric 

space. Thus, purely geometric models could not be the ultimate representation solution, 

and this notion opens the doors for creating semantic models of the environments. 

Generally, semantic models are created by adding semantic concepts to geometric entities 

of the environment (Bajcsy, 1988; Salas-Moreno et al., 2013). Various approaches for 

semantic modeling are proposed. Yet, these approaches are mainly different with respect to 

their adopted types of semantic concepts and their ways of associating these concepts with 

surrounding entities. Labeling various places (rooms) or segmenting known objects in the 
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environment would be a tangible example of different approaches in semantic modeling 

(Pronobis and Jensfelt, 2012; Pillai and Leonard, 2015). Thus, semantic modeling focuses 

on classifying the environment according to semantic labels. Semantic parsing is one of the 

earliest approaches that mentioned in the literatures. Basic level of semantic parsing 

defines the matter as a classification problem where a relation between the predefined 

semantic concepts and the captured data is established. 

The question about the semantic concepts relation and their numbers is normally 

answered by a task-driven decision which considers the organization and the level of 

semantic concepts. Thus, considering these two aspects a semantic representation can be 

built: a) level of semantic concepts, and b) organization of semantic concepts. Here, level 

of concepts means how much details must be considered in a representation. For example, 

categorizing rooms, corridors and doors in data is different from categorizing tables, chairs 

and books. It should be mentioned that semantic concepts are not exclusive since the 

number of concepts or properties of an entity is unknown. For example, an object can be 

stable or in motion. Moreover, both blackboard and table are pieces of woods sharing the 

same property but having different usability. Note that these points must be considered 

while arranging multiple semantic concepts. 
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Chapter 3 

York University Indoor Datasets 

 

 

 

Data gathering and processing are essential part in evaluation of any newly proposed algorithms. 

Although different kinds of datasets have been prepared to assess the quality of image based indoor 

models, most of these datasets were covering single rooms. Hence, for evaluating the specific 

performance of an algorithm which is related to indoor corridor modeling, a new type of dataset is 

needed. This dataset must be adapted to our research purpose so that it becomes suitable for 

performing the necessary assessments. In this chapter, we describe our newly generated datasets 

which used to evaluate the performance of our proposed methods. In the first half of this chapter, 

we describe datasets acquired by hand held cameras covering indoor corridor places. We collected 

single images and video frames datasets by crawling through different indoor corridors at York 

University campus area in Toronto, Canada. Different places such as Behavioural Science, Petrie 

Science, Osgoode Hall, Chemistry and Ross buildings are included. The two main selected test 

sites are: 1) first floor Petrie Science Building and 2) first floor Ross Building. For each site, 

acquired data types and their characteristics are thoroughly explained. Also, reference indoor 

corridor layouts and their respective orientation maps are provided through manually identifying 

corridor layouts in the image space (structural corner points positional errors are less than 3 image 

pixels). In the second half of this chapter, the acquired laser point clouds from the above test sites 

is introduced. To generate the laser benchmark dataset, we used the Trimble Indoor Mobile 

Mapping Solution (TIMMS). To improve TIMMS positional accuracy and geo-referencing the 

generated laser point clouds, several indoor control points (planar accuracies about 5mm) were 

delicately identified inside the selected buildings interiors through precise indoor surveying. The 

accuracies of TIMMS collected laser point clouds are close to 1cm relative to TIMMS positional 

accuracy. The prepared 3D laser point cloud is used to generate individual ground truth 3D models 

which further help to evaluate different aspects of our results. 
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3.1 Introduction 

One question might be on how to measure the quality of the generated indoor corridor 

models. To answer this question and to evaluate the estimated indoor corridor models by 

our proposed algorithms, the geometrically accurate 3D indoor corridor models should be 

reconstructed. Here, we introduce our newly generated datasets and describe how they 

captured by two different cameras and present their specific features in detail (section 3.2). 

Moreover, we introduce our prepared indoor laser point cloud data, a source for 3D ground 

truth model generation, which is used to assess the performance of our proposed Layout 

SLAM algorithm also presented in this thesis (section 3.3). 

 

3.2 Imaging Datasets 

In 2014 and 2016, the GeoICT research laboratory at York University initiated the 

generation of benchmark test datasets on 3D indoor corridor modeling. This benchmarking 

project supported by GeoICT research laboratory at York University, Natural Science and 

Engineering Research Council of Canada (NSERC) and Applanix Corporation Company 

that provided state-of-the-art indoor laser point clouds. The generated datasets can be used 

by avid individuals at GeoICT research laboratory to test their own algorithms on indoor 

corridor modeling and visual SLAM (Baligh Jahromi et al., 2017). By having this test 

dataset, we could conduct different analysis on our proposed algorithms in a less data-

sensitive manner.  

 In this thesis, the benchmark datasets provided by the GeoICT research laboratory 

were utilized for the performance assessment of our proposed methods. Independent 
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benchmark datasets were acquired over different indoor corridors at York University in 

Toronto, Canada. The main test sites are the first floors of both Petrie Science, and Ross 

Buildings. These benchmarks encompassed multi-sensor data including single images, 

hand held recorded videos and indoor laser scanning point cloud. In addition, we provided 

reference datasets, which include manually labelled indoor corridor layouts and their 

respective orientations in the image space. Both 3D indoor corridor models reconstructed 

using the estimated orthogonal vanishing points and extracted models in the object space 

from 3D laser point cloud, are included in this dataset as well. The GeoICT research 

laboratory also provided ground truth camera’s positions and orientations to facilitate the 

evaluation of the results produced by our proposed algorithm over the benchmark datasets. 

Figure 3.1 shows the location of the two main test sites at York University.  

 

  

(a) (b) 

Figure 3.1 Main test sites: (a) Petrie Science Building and (b) Ross Building 
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3.2.1 Dataset 1: Single Images 

The first benchmark dataset consisted of single images covering corridors of Behavioural 

Science, Petrie Science, Life Science, Atkinson, Assiniboine, Osgoode Hall, Chemistry 

and Ross buildings at York University. We chose these buildings due to their free 

accessibility over time, abundancy of indoor corridors aligned with Manhattan frame 

structure and availability of their geometric floor plans. We walked through these buildings 

after working hours and inspect many corridors to take some images showing main 

corridors and accessory hallways with a clear view and enough resolution. To acquire 

images, we used two different cameras: a) Apple iPhone 4s (cell phone) back camera, and 

b) GoPro Hero5 camera. Table 3.1 presents some of the specifications of these two 

cameras. Both two cameras went through on the field calibration procedure. Hence, all the 

captured images were corrected for distortions. The calibration procedure will be explained 

later in this chapter. 

 

Table 3.1 Specifications of digital cameras used for our dataset generation 

Camera 

Image Format 
Field of View 

(degree) 

Focal length 

(mm) 

Video Format 
Frame rate 

(per sec) Row 

(pixel) 

Col 

(pixel) 

Row 

(pixel) 

Col 

(pixel) 

Apple 

iPhone 4s 
2,448 3,264 56.423˚ 4.28 1,080 1,920 30 

GoPro 

Hero5 
3,000 4,000 149.20˚ 16.80 2,160 3,840 30 

 

Statistic-wise, images taken from the selected places are covering in total 297 

corridors, 1283 walls, 206 doors, and 53 windows. The number of images for each corridor 

ranges from 1 to 9, with the total number of selected images in our first dataset being 78, 
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not counting the single room images. Figure 3.2 depicts some of the images in this dataset 

captured by iPhone 4s camera. 

 

 

Figure 3.2 Sample images from our dataset taken by an iPhone 4s camera. 

 

Not necessarily all indoor corridors have a rectangular layout. However, 

considering indoor corridors with a complex polygonal shape is beyond the scope of this 
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study. Hence, only corridors having simple and rectangular outline were included in this 

dataset to conform the Manhattan frame assumption. Moreover, the prepared dataset is 

accompanied by different types of ground-truths including corridors layouts, orientation 

maps and 3D reconstructed corridor models. It should be noted that camera calibration is 

performed to estimate intrinsic camera parameters and image observations are undistorted 

prior to ground truth data generation. Also, 3D reconstruction is performed using 

orthogonal vanishing points while assuming camera height is 1, due to inability to measure 

absolute distances from single images. In the coming sub-sections these two subjects will 

further be explained. 

In all images, the ceiling, floor, front, left, and right walls of the main corridor are 

identified as well as the ceiling, floor, right or left walls of each accessory hallways (side 

corridors) visible in the image. To identify these structural polygons and planes, the image 

coordinates of their respective structural corner points manually pinpointed with less than 

3 pixels error using MATLAB R2009a software. If the respective pinpointed corner points 

are connected clockwise, they can identify each polygon’s boundaries in the image space. 

The structural corner points coordinate of each image were saved in different individual 

files. Later, these structural corner points coordinates were used while creating the ground 

truth orientation maps and indoor corridor layout 3D models. Figure 3.3 shows a sample 

image from the prepared dataset along with identified structural corner points, ground truth 

orientation map, and its respective 3D textured corridor model. 
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Figure 3.3 Ground truth orientation map and indoor corridor 3D model associated with a 

sample image from the prepared dataset. 

 

It should be noted that in some cases pinpointing the structural corner points in one 

image could be a very challenging task. This challenge rises from the complex polygonal 

shape of the corridor’s indoor layers. In most cases the problem could be resolved by 

considering semantics such as scene type, presence of doors or windows, and moreover 

presence of furniture and their locations. Yet, there were still cases where the correct 

corridor layout could not be completely identified in the image space. Rationally, we 
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allowed ourselves to remove the ambiguous examples from this dataset. The available 

images in the prepared dataset can be categorized by considering corridors lengths which 

directly affect the corridor scene complexity. Even though explicitly expressing the impact 

of corridors lengths on the overall corridor scene complexity is ambiguous, nobody can 

neglect the affect of this factor while generating ground truths for the prepared dataset. 

Hence, the dataset is partitioned into two image categories that cover long and short-range 

corridor lengths. 

 

3.2.1.1  Camera Calibration 

In this study, the appropriate model for the applied cameras is a pinhole camera model. 

This model recognizes the camera by a flat image plane and a perspective centre (a light-

barrier hole). For every image point a ray of light can be estimated which highlights the 

optical path. This ray can be reconstructed while knowing the intrinsic camera parameters. 

Camera calibration is a procedure for the estimation of intrinsic camera parameters. 

Intrinsic camera parameters are revealing the internal characteristics of a camera. 

Generally, these parameters include principal point coordinate, focal length, skew and 

image distortion. Knowledge about the intrinsic parameters of a camera is an essential first 

step for 3D reconstruction. Through the camera’s intrinsic parameters, the structure of a 

scene in Euclidean space can be estimated. Also, lens distortion can be removed to 

improve the accuracy of this estimation. To perform the camera calibration, a fully 

automated assisted calibration can be applied. In this thesis, cameras are calibrated using 

MATLAB R2009a calibration toolbox (Bouguet, 2004).  
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3.2.1.2  Converting Corridor Layouts to 3D 

Two-dimensional corridor layouts in image space can encode valid 3D models applying a 

few assumptions. Here, 3D coordinates can be computed sequentially without ambiguity. 

First the coordinates can be computed for floor and then for walls applying the constraint 

(walls and floor are attached) and ceiling at the end. If assuming the camera’s height 

(distance between the camera and the floor plane) is equal to 1, then all metrics units will 

be in camera height. This assumption is needed since absolute distances can not be 

observed in single images. 

Applying the homogeneous coordinate system, 2D and 3D coordinates are 

represented by small and capital letters, respectively. For example, vertical vanishing 

points v1= (x1, y1, 1)T and V1= (X1, Y1, Z1, 1)T are representing the vertical directions in 2D 

and 3D spaces, respectively. Also, camera intrinsic parameter matrix is represented by K 

and a point in image space can be represented by p. Thus, having coordinates of three 

vanishing points (xi, yi) in image space, a ray and the three main axes normal directions can 

be expressed as: 

 

𝑃 = 𝛽𝐾−1𝑝      ,   𝛽 > 0  

𝑣𝑖 = (𝑥𝑖, 𝑦𝑖 , 1)
𝑇  

𝑉𝑖 =
𝐾−1𝑣𝑖

||𝐾−1𝑣𝑖||2
  

(3.1) 
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In the above equations, 𝛽  is the scale factor and (x, y) are representing image 

coordinates. If normalizing the height to 1, the 3D coordinate of a point on the floor could 

be: 

 

𝑃 =
𝐾−1𝑝

𝑉1
𝑇𝐾−1𝑝

                                                              (3.2) 

 

Also, the height h between two image points p1 and p2 while p1 is a point residing 

on the floor can be calculated. Here, we assume that in 3D space P1 and P2 are vertically 

aligned. Therefore, p1, p2 and v1 must somehow be in line while applying the following 

equation: 

 

𝑃2 = 𝛽𝐾
−1𝑝2 = 𝑃1 + ℎ𝑉1  

=
𝐾−1𝑝1

𝑉1
𝑇𝐾−1𝑝1

+  ℎ𝑉1  

[−𝑉1 𝐾−1𝑝2] [
ℎ
𝛽
] =

𝐾−1𝑝1

𝑉1
𝑇𝐾−1𝑝1

  

(3.3) 

 

Note that h can be calculated through solving least-squares. A recovered 3D model 

is depicted in figure 3.3. 

 

3.2.2 Dataset 2: Video Frames 

This dataset covers first floors of both Petrie Science and Ross buildings at York 

University. Video frames were acquired by Apple iPhone 4s back camera in 2014 and by 



44 

 

 

 

GoPro Hero5 camera in 2016. All video frames were taken using hand-held shooting 

technique in which the camera is placed in the operator’s hand while he is passing through 

the corridors with normal speed. Thus, some frames were shaky and not as stable as the 

frames that could be captured by tripod-mounted cameras. Videos were captured at both 

day and night times and always starts and ends at the same location forming a close loop. 

This prepared data set contains five individual videos that their duration varies from 3 to 

12 minutes. 

 

3.3 Indoor Laser Point Cloud Dataset  

Point clouds are valuable materials for generating accurate 3D models. Theoretically, a 3D 

point cloud consists of a set of individual points in a three-dimensional reference frame. 

Point clouds are normally obtained from laser scanning or digital imagery. Even though 

imagery solutions can provide 3D point clouds through Structure from Motion (SFM) or 

visual Simultaneous Localisation and Mapping (SLAM) techniques, surfaces with no 

textures and problematic lighting conditions in indoor places make laser scanning to be the 

most promising technique for point cloud generation. 

Laser scanners obtain dense point clouds from range measurements. Normally, a 

laser scanner emits a laser beam which is reflected by a rotating mirror to obtain a profile 

of the environment. Since the scanner is simultaneously rotating, the 3D scan of the 

environment can be generated. If the scanner is mounted on top of a tripod on the ground, 

terrestrial laser scanning (TLS) is possible which is the most precise way to obtain point 

clouds. To obtain full coverage of the surrounding space by TLS, multiple scanning 
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locations may be needed due to occlusions. In such cases, several tripod scans must be 

combined which necessitates human intervention in the post processing stage. 

Indoor mobile scanning can provide more cost-effective solutions since it performs 

faster than the TLS technique. Note that range measurements by mobile scanners cannot be 

used individually and it is mandatory to know the origin and direction of the measurements. 

Usually the scanner is sitting on top of a platform and its position and attitude are known. 

So, scanning and moving happen simultaneously which may reduce the accuracy of the 

point cloud because estimating the scanner pose might be inaccurate itself. Hence, the 

challenge is to improve the accuracy of the estimated platform’s pose to reach the accuracy 

level that is suitable for indoor modelling. This scanner pose determination should be 

continuous even though satellite signals may not be available at indoor places. The 

solution is to incorporate auxiliary data and acquire platform trajectory in relative manner 

by correlating new measurements with earlier ones acquired at the beginning of the scan. 

 

3.3.1 Trimble Indoor Mobile Mapping Solution (TIMMS) 

To generate the indoor laser point cloud benchmark dataset, we used the Trimble Indoor 

Mobile Mapping Solution (TIMMS). This laser point cloud dataset in total covers corridors 

of Petrie Science (first, second and third floors), Chemistry (first and second floors) and 

Ross (first floor) buildings at York University. The point cloud acquisition from these 

buildings accomplished in a very short time. The whole data acquisition on 6 floors of 

these three buildings took approximately 4.5 hours. TIMMS needed 20 minutes 

initialization time at each building to fine-tune its Inertial Measuring Unit (IMU) for 



46 

 

 

 

calculating the prior drift information. Hence, the actual scanning time for each building 

was approximately 1 hour. 

TIMMS is the combination of various technologies for acquiring high precision 

indoor laser point clouds. TIMMS mounts on a cart moved by an operator. It primarily 

includes two sideway laser scanners which can acquire point clouds orthogonal to the 

direction of moving. The mounted laser scanners on the cart were Faro Focus X130 laser 

effective up to 130m with ranging error of ±2mm. Type 1 laser class with 1550nm 

wavelength. With a maximum scanning frequency, the vertical field of view is 300° and 

360° in horizontal. Also, a very precise IMU contributes to the position estimation 

improvement through identifying the drift vectors pitch, roll and yaw on every movement. 

The integration of IMU heavily impact the amount of drift error and the accumulated error 

remains low over relatively long corridors. Thus, the accuracy of collected laser point 

clouds was close to 1 cm relative to position accuracy (root mean square derived by 

comparison of TIMMS with static laser scan). Also, spherical camera is mounted on the 

platform which collects images of the environment. Figure 3.4 shows the TIMMS on a 

mission at York University.  

Note that initializing TIMMS at an indoor place without providing information 

about the global reference frame, enforce the incoming scan to be defined in an arbitrary 

coordinate system. Moreover, the other scans can be referenced to the coordinate system of 

the primary scan through tie points which results in a common coordinate system for the 

dataset. To address the geo-referencing problem and provide the absolute coordinates to 
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the incoming TIMMS laser point cloud, indoor space control points in the global reference 

frame are needed. 

 

  

Figure 3.4 TIMMS on a mission at York University. 

 

3.3.2 Indoor Space Control Points 

The geo-referencing of TIMMS laser point clouds into some global coordinate systems 

necessities the presence of indoor space control points related to those global coordinate 

systems. To acquire high accuracy laser point cloud through TIMMS, reference points that 

could be tied to some outdoor Global Navigation Satellite System (GNSS) points were 

delicately identified inside the selected buildings interiors. Here, the related indoor control 

points (planar accuracy about 5mm) were collected prior to TIMMS data acquisition 

through precise indoor surveying. Precise indoor surveying is encountered with various 

challenges in comparison to traditional field surveying including network visibility design, 

path planning, scheduling and logistics. To provide GNSS related control points inside the 
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buildings, 29 photogrammetric targets in total had been placed on the selected floors 

(Figure 3.5). 

 

  

(a) (b) 

Figure 3.5 (a) An indoor control point on second floor of Chemistry building and (b) The 

applied photogrammetric target and its attached global coordinate at Ross building. 

 

Overall, two sets of control points are provided inside and outside of the selected 

buildings. The first layer of survey control network was established outside the selected 

buildings which consists of seven GPS observed points. Note that the minimum number of 

GNSS reference points for establishing the survey control network was seven. Figure 

3.6(a) shows the distribution of these control points inside York University Keele campus 

area. 
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(a) (b) 

Figure 3.6 (a) GPS observed control points inside York University Keele campus area and 

(b) The first-floor traverse network of Petrie Science building. 

 

For each selected building, the two most visible GPS points from the stablished 

control network were used as the end points of the indoor corridors traverse network 

(Figure 3.6(b)). The traverse is the second layer of the established network which was also 

adjusted by holding the two GPS end points as known. The traverse enabled the creation of 

various stations which were used as set up points to measure coordinates of the installed 

photogrammetric targets on the floors. To determine the coordinates of the local network 

GPS (Trimble R8) and Total Station (Leica TCA 1800) were used. All the observations 

were done in the double run to get the better accuracy. Total station was used to determine 

the vertical and horizontal angles along with the slope distances inside the buildings and 

GPS was used to calculate the baselines and the exact coordinates of the outdoor survey 

control points. In the end coordinates of the photogrammetric targets on the floors were 

determined, considering the WGS84 datum as the reference. 
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3.3.2.1  GPS Data Processing 

To establish the GPS control network, the Real-time kinematic (RTK) positioning 

technique is applied. The RTK positioning is a technique for improving the position data 

precision derived from satellite-based positioning systems like GPS. RTK uses the signal 

information content and relies on a single base-station to provide real-time corrections 

while measuring the signal's carrier wave phase. Here, the applied RTK system comprised 

of a single base-station receiver near Tait McKenzie Centre at York University Keele 

campus area, and 7 mobile units close to the selected buildings. Theoretically, the base 

station observes the phase of the carrier and re-broadcasts it to the mobile units. The 

mobile units compare their own phase measurements with the one received from the base 

station. Comparing the phase measurements of the mobile units to the one provided by the 

base station, enhancement of the position data precision is achieved. 

The collected data was processed through Trimble R8 Office program which 

computed the relative baseline. Here, the baseline between the two receivers is not directly 

measured from the satellite observations. Instead the baselines are derived from the 

measured coordinates of each station. The processing of GPS data to form baselines 

involves forming linear combinations of the phase observables and their subsequent 

adjustments. Having baseline computed, a-posteriori reference variance, estimated integer 

ambiguities, residual plots and percentage of the rejected data can be used to indicate the 

quality of the baseline. The estimated standard deviation and covariance matrix of the 

parameters can be used as well to indicate the quality of the solution. Finally, the 

coordinates can be returned in geodetic (λ,ϕ,h) form on WGS84 ellipsoid.  
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Note that the cut off angle was set at 15 degrees which effectively blocks any 

satellite signals received at low elevation angles. Signals at low elevation angles are less 

accurate due to their further travel through the atmosphere. Also, the broadcast ephemeris 

is used for locating the position of the satellite relative to the receiver. The precise 

ephemeris data obtained to achieve a more accurate solution by performing a later data 

processing. Here, Hopfield model is used for the tropospheric delay corrections and the 

ionosphere corrections were automatic. 

 

Table 3.2 Calculated geodetic coordinates of the observed GPS mobile units. 

Station Latitude Longitude 
Horizontal 

SD 

Ellipsoidal 

height 

Vertical 

SD 

GPS PSE1 N 43-46-24.060740 W 79-30-23.602200 0.001 m 162.58480 0.002 m 

GPS PSE2 N 43-46-23.297980 W 79-30-22.932540 0.005 m 162.03980 0.011 m 

GPS PSE3 N 43-46-27.087990 W 79-30-24.678450 0.001 m 163.46880 0.002 m 

GPS ROSS1 N 43-46-23.986550 W 79-30-09.748780 0.001 m 163.82580 0.002 m 

GPS ROSS2 N 43-46-23.450670 W 79-30-10.869080 0.001 m 163.57880 0.002 m 

GPS ROSS3 N 43-46-24.979450 W 79-30-17.161850 0.001 m 163.29480 0.002 m 

GPS CHM1 N 43-46-25.650920 W 79-30-29.564730 0.005 m 159.67480 0.011 m 

 

It should be noted that the GPS observation periods were about 12 hours for the 

base station and more than 30 minutes for every mobile units. After identifying the reliable 

observations, least squares adjustment is performed to adjust the independent baseline in 

the network. Finally, the incoming results of the adjusted GPS coordinates and their 

standard deviations are used as an input to the second layer network which was established 
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inside the selected buildings. Table 3.2 represents the calculated geodetic coordinates for 

the observed GPS mobile units. 

 

3.3.2.2  Traverse Network 

The traverse was designed for the second layer network of control points which was 

supported by the first layer control network created by the GPS mobile units. The traverse 

network was processed in a similar way to the 3D Control Network and similar checks and 

corrections were applied to the observations. It should be noted that this process is 

completely performed using the latest version of the Columbus software in October 2014. 

The coordinates of GPS control points along with their respective reference directions 

achieved through the control network adjustment, were introduced to the Columbus 

software. Note that GPS control points are considered as “fixed” points in the traverse 

network. In the next step, the Total Station observations were added to the GPS control 

pints inputs in a specific order (To, From, Zenith, Direction, Distances, and standard 

deviations). Once all data is inputted, the Columbus software was able to perform the 

adjustment and provide coordinates to the unknown traverse points accompanied by their 

standard deviations. Figure 3.7 shows the positions of the unknown traverse points 

(photogrammetric targets) on the floor plan of the Chemistry and Petrie Science buildings 

first floors. 
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(a) (b) 

Figure 3.7 (a) Places of indoor traverse points on the first floor of Chemistry building and 

(b) Places of indoor traverse points on the first floor of Petrie Science building. 

 

As mentioned before, three different buildings at York University were selected for 

TIMMS indoor scanning which two of them had to be scanned on different floors (more 

than one). Hence, four different traverse networks were established and each of them were 

adjusted individually using the GPS control points as the reference.  

 

 

Figure 3.8 Positions of the traverse points on the floor plan of the Ross building first floor 
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Table 3.3 reveals the adjusted MTM zone 10 coordinates for the traverse points 

inside Ross building. Ellipsoidal heights are considered at this network so that control 

points could be easily used by TIMMS. It should be noted that Ross building traverse 

network was the most complex traverse that was set up for the buildings. Figure 3.8 depicts 

the positions of some traverse points on the floor plan of the Ross building first floor. 

 

Table 3.3 Adjusted MTM zone 10 coordinates of traverse points inside Ross building. 

Points North North SD East East SD 
Ellipsoid 

height 

Height 

SD 

CP1 4848121.73733 0.00175 304513.15381 0.00195 163.65874 0.01563 

CP2 4848111.21423 0.00287 304480.25050 0.00265 163.63225 0.02030 

CP3 4848101.35738 0.00348 304466.73639 0.00324 163.63255 0.02184 

CP4 4848096.12341 0.00337 304468.37515 0.00336 163.63024 0.02215 

CP5 4848046.85161 0.00271 304483.90065 0.00451 163.63033 0.02562 

CP6 4848041.44321 0.00305 304486.62510 0.00474 163.63750 0.02597 

CP7 4848046.03893 0.00302 304501.19422 0.00454 163.63724 0.02706 

CP8 4848008.58484 0.00288 304512.97212 0.00553 163.63790 0.02946 

CP9 4847999.37359 0.00290 304486.88583 0.00556 163.63128 0.02909 

CP10 4848043.44458 0.00269 304473.01517 0.00424 163.62788 0.02535 

CP11 4848103.02003 0.00291 304454.24657 0.00281 163.64091 0.02224 

CP12 4848163.58345 0.00294 304435.13507 0.00212 163.67731 0.01702 

CP13 4848158.76405 0.00270 304420.35663 0.00198 163.66806 0.01538 

 

3.3.3 TIMMS Data 

TIMMS scanning at York University was added by the prepared indoor control points 

inside the selected buildings. TIMMS initialized itself using one of the indoor control 
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points inside the buildings and managed the occurred drifts through regularly visiting the 

rest of indoor control points on the go. Since the prepared indoor control points were 

linked to the outdoor GPS control points, the incoming TIMMS laser point clouds had 

absolute coordinates in World Geodetic System 1984 (WGS84) datum as well. Hence, 

there would be no need to register the incoming laser point clouds of selected buildings 

together since they have already registered in a common coordinate system. 

 

 

Figure 3.9 Raw laser point cloud acquired by TIMMS at Ross building 

 

The incoming TIMMS laser point cloud data was pre-processed by Applanix 

Company technicians and provided to GeoICT laboratory in “LAZ” format. The data’s 

volume is approximately 10 gigabytes and it was delivered with 4 different resolutions 

including 0.5, 1, 5- and 20-centimeters resolutions. Because the data’s volume is too large, 

https://www.google.ca/url?sa=t&rct=j&q=&esrc=s&source=web&cd=10&cad=rja&uact=8&ved=2ahUKEwjOrfvc-ODdAhUk6YMKHa1rDggQFjAJegQIAhAB&url=https%3A%2F%2Fconfluence.qps.nl%2Fqinsy%2Fen%2Fworld-geodetic-system-1984-wgs84-29855173.html&usg=AOvVaw0Iwdng_U89r6nGTv-_1j3U
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it was partitioned into the small sets of point clouds. This data partitioning is necessary due 

to the large size of the selected buildings and abundancy of lengthy indoor corridors. 

Partitioning raw data into many pieces introduced advantageous in detection of noises 

which are imposed by the long-range laser scanners. Figure 3.9 shows a snapshot of the 

raw laser point cloud acquired by TIMMS at Ross building. 

 

3.3.3.1  Data Structural Units 

As mentioned before, three different buildings at York University Keele campus area are 

individually scanned by TIMMS. Each building can be considered as a combination of 

different structural units together encompassing the objects. The structural units together 

can form corridors, hallways, offices etc. The acquired TIMMS laser point cloud includes 

several different structural units such as floors, ceilings, walls, doors, windows, stairs, 

dome etc. Also, it includes different objects such as tables, chairs, cabinets, bookshelves, 

computers, monitors etc. 

The incoming TIMMS laser point cloud includes many points which are captured 

from the indoor corridors. In this dataset, indoor corridors are the most fundamental blocks 

of the buildings along with individual class rooms. These corridors provide the accessory 

networks inside the buildings. In this dataset, corridors of Chemistry and Petrie Science 

buildings are rectangular and approximately occupy cubic spaces. However, Ross building 

has some variations with larger corridors connecting bigger spaces including hallways and 

lecture halls. In Ross building laser point cloud, the connectivity is more between open 

spaces like corridors and halls rather than enclosed spaces like class rooms. Ross’s main 
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corridors are together connected to a 3-floor structure circling all over the center (Vari 

Hall). TIMMS could scan this huge one-piece space with no difference to a narrow 

corridor, using the 130-metre range laser scanner. Figure 3.10 shows TIMMS data 

covering the major parts of the Vari Hall. 

 

  

(a) (b) 

Figure 3.10 (a) Vari Hall TIMMS data ground view and (b) Vari Hall TIMMS data oblique 

view. 

 

Note that most of the entrances in this dataset are covered by glass doors, with Ross 

and Chemistry buildings having the largest main entrances of all. Having glass doors at the 

entrances increase the chance of laser lights escaping from the indoor spaces and 

producing many outlier points which together they form a conical shape. This necessitates 

a more in-depth pre-processing procedure to be performed on the raw data to remove the 

outliers from the outcoming laser point cloud.  

Beside corridors and halls, the prepared TIMMS laser data includes one Graduate 

Student Lounge (attached to Ross Building south corridor) and several individual office 

units directly connected to the main corridors. These places were scanned from inside by 
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occupant’s permission. This enables the prepared laser dataset to become more suitable for 

applying room modeling algorithms, beside being an enrich set for employing indoor 

corridor modeling algorithms. Figure 3.11 shows an oblique view of the laser data captured 

by TIMMS from Graduate Student Lounge at York University. 

 

 

Figure 3.11 TIMMS data captured from Graduate Student Lounge at York University. 

 

3.3.3.2  Ground Truth Corridor Models 

The TIMMS scanning project at York University on 3D indoor space modeling led by 

Applanix Company in a collaboration with GeoICT laboratory provides precise and dense 

point clouds of indoor corridors. This dataset can be used as a valuable source for creating 

ground truth indoor corridor models. Since our video frame dataset is mostly covering the 
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same areas as TIMMS laser data, ground truth 2D and 3D models can be generated using 

both datasets. 

Chapters four and five in this thesis are introducing single image indoor modeling 

and layout SLAM algorithms, respectively. To evaluate the results obtained from the 

proposed algorithms, ground truth corridor models were manually extracted from available 

datasets. Here, first floors of both Petrie Science and Ross buildings were chosen for this 

task. At the first stage, planes are fitted to TIMMS laser data with 1-centimeter margin 

using Cloud Compare software and its plane fitting algorithm. Next, the corridors 

constructive planes are manually identified, and the rest of planes are discarded. Next, the 

remaining planes were intersected to identify the true junctions of the corridors. The 3D 

coordinates of the corridor junctions together construct the 3D ground truth corridor 

models of the selected places. 

Having identified the 3D ground truth corridor models, several keyframes (9 and 32 

frames from Petrie Science and Ross buildings, respectively) were selected from the video 

frame dataset. For all these keyframes, the ground truth 2D corridor layouts were manually 

identified in the image space with less than 3 pixels accuracy. The respective 2D junction 

coordinates were preserved in separate text files. Figure 3.12 shows a sample keyframe 

image with manually identified constructive lines of the 2D layout model and the reference 

3D laser data of Ross building south section. 
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(a) (b) 

Figure 3.12 (a) Reference 3D laser data of Ross building south section and (b) A sample 

keyframe image with manually identified constructive lines of the 2D layout model. 

  

Having identified both 2D and 3D coordinates of an indoor corridor’s junctions, the 

camera trajectories (camera positions and orientations) were estimated through 

photogrammetric space resection. The created ground truth corridor models were used to 

evaluate the proposed Layout SLAM algorithm. 

 

3.4 Summary 

In this chapter, we presented the prepared datasets and their characteristics which used for 

assessing our proposed algorithms. The detailed descriptions of imaging datasets were 

given in the first half of this chapter. The second half summarized TIMMS laser point 

cloud and the generated ground truth corridor 2D and 3D models. Using the 2D and 3D 

ground truth corridor models, the camera trajectories could be estimated through space 

resection. These datasets were fully used to evaluate the proposed image based indoor 

modeling and Layout SLAM algorithms through assessing different quality aspects of the 
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generated 3D corridor models produced by these algorithms. In addition, we introduced 

new indoor space control networks in a global reference frame. These networks can be 

used as a benchmark for testing indoor space navigation algorithms. Even though this 

benchmark was not directly used to evaluate our Layout SLAM related results, in future 

works could be used to explicitly assess trajectory inconsistencies of robot-based SLAM 

algorithms.  
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Chapter 4 

3D Reconstruction of Indoor Corridor Layout 

Using Single Image 

 

 

 

 

In this chapter, the problem of indoor space modeling from a single image is tackled through 

middle-level perceptual organization. The search is for the corridor layout that can be translated 

into a physically plausible 3D model. Considering the Manhattan Rule Assumption, the stochastic 

approach is adopted to sequentially generate many physically valid layout hypotheses from image 

line segments. Each generated hypothesis will be scored for finding the one that best matches the 

scene. Finally, the best created hypothesis will be converted to a 3D model. The main contribution 

of the proposed method is providing an approach to create layout of indoor corridors in a hybrid 

way using both detected line segments and virtually generated rays from vanishing points. This 

method is beneficial for two main reasons. First, the hybrid way of generating scene layout 

provides a realistic solution when dealing with objects or occlusions in the scene. Moreover, it is 

well-suited to describe most corridor spaces. Since virtual rays used for layout creation are usually 

deviating from the true layout in long corridors due to the inaccuracy of the estimated vanishing 

points. Note that only using physical line segments for scene layout generation would be inefficient 

due to their inability to handle occlusions. Second, we considered different scoring functions to 

score the created layout hypotheses. These functions consider the volumetric aspect of the created 

hypotheses along with their correspondences to real edges, and compatibility to the orientation map 

and geometric context. These scoring function finds the most fitting solution in a linear way.  
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4.1 Introduction 

Over the course of time, humans have changed their lifestyles and increasingly become 

indoor creatures. Thus, studying human’s indoor activities and related issues in health, 

security and energy consumption is an important research field (Rassia, 2017). Usually, 

researchers in this field need to have access to spatial information of indoor spaces. 

However, unlikely in outdoor environment, not much spatial information of indoor spaces 

is available. 

In recent years, spatial information of indoor spaces provided in the context of 

Building Science and Building Information Model (BIM) which include semantically rich 

and geometrically accurate indoor models has gained a lot of attention not only in the 

architectural field but also in other engineering communities. The generation of an indoor 

space 3D model needs a proper implementation of sensors as well as selecting a proper 

algorithm to reconstruct 3D models from the incoming data. Considering the available data 

gathering sensors (laser scanners, single and stereo cameras, RGBD cameras, etc.) and 

paying special attention to data processing time and sensor’s cost, single cameras 

providing single images could be one of the reliable sources. Usually, a single image can 

cover a limited field of view and a large-scale environment may not be handled with a 

single image. Even though recovering the 3D model from a single image is inherently an 

ill-posed problem, single images are still suitable for modeling well-structured indoor 

corridor environments. 

The early attempts on understanding the scenes start by recovering vanishing points 

and camera parameters from an image using straight line segments (Kosecka and Zhang, 
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2002). Considering the Manhattan World Assumption, rectangular surfaces aligned with 

main orientations were detected using vanishing points (Kosecka and Zhang, 2005; 

Micusik et al., 2008). Han and Zhu (2005) applied top-down grammars on detected line 

segments for finding grid or box patterns aligned with vanishing points in an image. 

Vanishing points were also used by Yu et al., (2008) to infer the relative depth-order of 

partial rectangular regions in the image. Parameterized models of indoor environments 

which were fully constrained by specific rules introduced to guarantee physical validity 

(Lee et al., 2009). Possible spatial layout hypothesis is sampled from collection of straight-

line segments, but the method is not able to handle occlusions and fits room to object 

surfaces. 

Vanishing points are not the only cues for understanding the scenes. Statistical 

learning showed to be an alternative to rule-based approaches (Hoiem et al., 2005; Delage 

et al., 2006; Hoiem et al., 2007). The statistical methods on image properties were used to 

estimate regional orientations and vertical regions “popup” considering the estimated 

orientations (Hoiem et al., 2005). Having a new image, the list of extracted features should 

be evaluated. The associations of these features with 3D attributes can be learned from 

training images. Therefore, the most likely 3D attributes can be retrieved from the memory 

of associations. 

Although scene understanding is somehow feasible through applying statistical 

learning or rule-based approaches, fully inferring 3D information from a single image is 

still a challenging task in computer vision. Yet, prior knowledge about the scene type and 

its semantics might help resolve some of the ambiguities (Liu et al., 2015). The first 
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method to integrate local surface estimates and global scene geometry used a single box to 

parametrize the scene layout (Hedau et al., 2009). Appearance based classifier was used to 

identify clutter and visual features were only computed from non-clutter regions. Hedau et 

al., (2009) used the structural learning approach to estimate the best fitting box to the 

image. Another approach like this has been proposed which does not need the clutter 

ground truth labels (Wang et al., 2010). 

There are some other approaches related to the 3D room layout estimation from 

single images (Hedau et al., 2010; Lee et al., 2010; Hedau et al., 2012; Pero et al., 2012; 

Schwing et al., 2012; Schwing and Urtasun, 2012; Schwing et al., 2013; Chao et al., 2013; 

Zhang et al., 2014, and Liu et al., 2015). Most of these approaches parameterize the room 

layout with a single box and assume that the layout is aligned with the three orthogonal 

directions defined by vanishing points (Hedau et al., 2009; Wang et al., 2010; Schwing et 

al., 2013; Zhang et al., 2014, and Liu et al., 2015). Some of these approaches utilize 

objects for reasoning about the scene layout (Hedau et al., 2009; Wang et al., 2010, and 

Zhang et al., 2014). Presence of objects can provide some physical constraints such as 

containment in the room and can be employed for estimating the room layout (Lee et al., 

2010; Pero et al., 2012, and Schwing et al., 2012). Moreover, the scene layout can be 

utilized for better detection of objects (Hedau et al., 2012, and Fidler et al., 2012). 

Given a single image from a well-structured corridor, our goal is to reconstruct the 

corridor scene in 3D. That is, given only a monocular image of a corridor scene, we can 

provide a 3D model allowing the potential viewer to virtually explore the corridor without 

having to physically visit the scene. This adds another dimension to static GIS at indoor 
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places and is particularly convenient for buildings where direct search in those places is 

particularly time consuming.  

In this chapter, we take the room layout estimation one step further. Our goal is to 

estimate a layout for a corridor which might be connected to the other corridors from a 

monocular image. Therefore, there would be no single box constraint for the estimation of 

the scene layout. We phrase the problem as a hypothesis selection problem which makes 

use of middle-level perceptual organization that exploits rich information contained in the 

corridor. We search for the layout hypothesis which can be translated into a physically 

plausible 3D model. Based on Manhattan rule assumption, we adopt the stochastic 

approach to sequentially generate many physically valid layout hypotheses from both 

detected line segments and virtually generated ones. 

Here, each generated hypothesis will be scored to find the best match to the image 

features. Finally, the best generated hypothesis will be converted to a 3D model. The main 

contribution of the proposed method is the creation of corridor layouts which are no more 

bounded to the one single box format. The generated corridor layout provides a more 

realistic solution while dealing with objects or occlusions in the scene. Hence, it is well-

suited to describe most corridor spaces, and it outperforms the methods which are 

restricted to one box primitive for estimating the scene layout. Also, we propose a scoring 

function which takes advantage of both orientation map and geometric context for scoring 

the created layout hypotheses. Since no suitable data exists for this task, we used our own 

image dataset taken from York University Campus buildings. We collected images from 

various buildings, resulting in the total of 78 single images. We labeled our data with rich 
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annotations including the ground-truth layout and the floor plan of each corridor within the 

buildings. In the following section an overview of the proposed method will be provided. 

 

4.2 Indoor Layout Estimation 

While indoor space modeling is possible through applying either top-down or bottom-up 

approaches, it would be naive to choose any of these approaches without considering their 

pros and cons. Top-down approaches can be labelled as deterministic, and this labelling 

could be justified by their dependency on employing strong prior. Hence, top-down 

approaches are usually more robust to the missing data problem. An example of applying 

top-down approach is the indoor modeling method presented by Hedau et al. (2009). While 

top-down approaches are very much deterministic in employing strong priors, bottom-up 

approaches usually make use of weak priors. Therefore, in bottom-up approaches the 

perception forms by data. This basically means that if you adopt a bottom-up approach for 

indoor space modeling, then you expect the created model to be more flexible compare to a 

model created by applying a top-down approach (Baligh Jahromi and Sohn, 2015). 

Most of the time, indoor modeling using a single image must deal with the presence 

of clutters and occlusions in the scene. Hence, missing data problem could be a major issue 

in using single images for indoor modeling. Since top-down approaches are more robust to 

the missing data problem, they could be better approaches to be chosen for indoor 

modeling based on a single image. The proposed method in this chapter is more inclined to 

a top-down approach, and it is governed by this strong prior that the indoor scene layout 

must have a cubic formation. Yet, what makes this method different from the others is that 
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this method does not restrict the indoor scene layout to be comprised of only one box. The 

proposed method relaxes the strong prior that indicates the indoor layout is comprised of 

only one box and let the incoming layout to be comprised of multiple connected boxes. 

This advantage of the proposed method targets the modeling of somewhat occluded parts 

of the layout structure in the scene. 

Figure 4.1 shows the overall workflow of the proposed method which is as 

following; 1) Edges are extracted in the single image and grouped into straight line 

segments. 2) Line segments will be grouped based on parallelism, orthogonality, and 

convergence to common vanishing points. 3) Many physically valid major box layout 

hypotheses will be created using detected line segments and virtual rays of vanishing 

points. 4) The created major box layout hypotheses are scored using a scoring function, the 

parameters of which are optimized through artificial neural network (ANN) learning. 5) 

Only, 15% of layout hypotheses that get higher scores remain in the hypothesis generation 

pool and the rest are discarded. 6) The remaining major box layout hypotheses are 

deformed by sequentially introducing side box hypotheses to their structure. Note that the 

maximum number of side box hypotheses that can be integrated to a major box hypothesis 

is five. 7) Generated side box hypotheses are also scored using the same scoring function. 

8) Finally, the best layout hypothesis is selected by comparing scores and this hypothesis is 

converted to a 3D model. 
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Figure 4.1 The proposed method’s workflow for generating a 3D model from a single 

image. 

 

4.2.1 Vanishing Point Estimation 

Straight parallel lines in 3D space can be projected onto the 2D image plane, and they will 

intersect at a point called a vanishing point. In most of the manmade structures there are 

bunch of parallel lines which can provide orthogonal vanishing points (Kosecka and Zhang 

2002, and Denis et al., 2008). Vanishing points have special geometric attributes which can 

be employed in many computer vision applications, such as camera calibration (Kosecka 

and Zhang 2002; Cipolla et al., 1999; Caprile and Torre 1990, and Tardif 2009), estimation 

of rotation angles (Kosecka and Zhang 2002; Antone and Teller 2000, and Denis et al. 
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2008), and more importantly 3D reconstruction (Parodi and Piccioli 1996, and Criminisi et 

al., 2000). To find vanishing points, different methods of straight-line clustering are 

available (Bazin et al., 2012). There are four main categories for these methods based on: 

1) Hough Transform (HT), 2) Random Sample Consensus (RANSAC), 3) Exhaustive 

Search on some of the unknown entities, and 4) Expectation Maximization (Bazin et al., 

2012). 

Here, straight line segments were extracted in the image space using Line Segment 

Detector (LSD) method (Grompone von Gioi et al., 2010). LSD method can be used on 

digital images for line segment extraction and it is a linear-time line segment detector 

which can provide sub-pixel accurate results without tuning the parameters. The original 

idea of LSD is coming from Burns, Hanson, and Riseman's method (Burns et al., 1986), 

which makes use of a validation approach based on Desolneux, Moisan, and Morel's theory 

(Desolneux et al., 2000; and Desolneux et al., 2008). After the extraction of straight-line 

segments, recovering vanishing points is possible using RANSAC based algorithms. In this 

approach two straight line segments will be randomly selected and intersected to create a 

vanishing point hypothesis and then count the number of other lines (inliers) that pass 

through this point. The drawback of RANSAC based algorithms is that they do not 

guarantee the optimality of their solutions by considering the maximum intersecting lines 

as inliers. Here we follow Lee et al. (2009) to find three orthogonal vanishing points. In 

Lee et al. (2009) the coordinates of the RANSAC solution are fine-tuned using nonlinear 

optimization with the cost function proposed in (Rother 2000). Having estimated the three 

orthogonal vanishing points, the available line segments can be grouped into four different 
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classes. Three of these classes are represented by the estimated vanishing points. The last 

class contains the line segments which are not related to the estimated vanishing points.  

 

4.2.2 Scene Representation and Line Grouping 

An indoor scene complexity may be that much to provide various vanishing points in one 

image which makes the recognition and modeling of the scene more difficult. Here, we 

tried to simplify the indoor scene as much as possible. For example, to modify the structure 

of an indoor scene, walls would be at the primary interest rather than windows or doors. 

Following the Manhattan rule assumption, the structure of the incoming indoor model 

should have a box/cube like formation. If the indoor scene is not bounded to only one room 

or one corridor, then there must be a major/key box to represent the scene along with some 

other side boxes which are intersecting with the major box to form the scene layout. 

Hence, the whole structure of an indoor scene would be represented by a single box or the 

integration of different single boxes. It should be noted that this representation of the scene 

layout only allows us to legitimize the estimation of three orthogonal vanishing points in 

the image space. 

Normally, many edge pixels can be extracted from a single image. The intention is 

to link the extracted edge pixels into straight line segments based on predefined criteria. 

The criteria may include the proximity of edge pixels in the image space and similarity of 

the edge pixels gradients. Moreover, the straight-line segments can be grouped into line 

groups based on parallelism, orthogonality, and their orientation. The straight-line segment 

orientation can be identified based on its convergence into an estimated vanishing point. 
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As mentioned, only orthogonal vanishing points which are complying with the 

Manhattan World Assumption are valid to be detected in the image space. Thus, there 

could be only three different valid line groups identified in the image space. All the other 

detected line segments which do not converge at any of the three-estimated orthogonal 

vanishing points will be discarded. Consequently, vertical walls in the scene can only have 

two different orientations (facing the camera or being almost parallel to the camera line of 

sight (in case of having a vanishing point inside the image space), and floor plane and 

ceiling would have the same orientation. In other words, we can define 3 different surface 

planes in the scene which in the Cartesian coordinate system they might belong to: a) X-Y 

plane, b) X-Z plane, and c) Y-Z plane. 

 

4.2.3 Layout Hypotheses Creation 

Hedau et al. (2009) proposed a method for creation of a single box layout hypothesis by 

sampling pairs of rays from two furthest orthogonal vanishing points (Vx, Vz) on either side 

of the third vanishing point (Vy). They evenly spaced the image with these vanishing point 

rays. However, the positions of layout hypothesis junctions would be affected by ray 

spacing resolution and the estimated coordinates for vanishing points. Also, their approach 

may not provide acceptable results when dealing with long corridors due to the higher 

position uncertainty of the estimated vanishing points compare to ones estimated for small 

rooms. 

In our proposed approach the layout is not going to be created completely by 

sampling rays from vanishing points. Though, sampling rays will be created if their 
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presence is necessary for completing the process of layout hypothesis creation. In other 

words, these sampling rays will be employed if their presence is justified by physical line 

segments. For example, the intersection of two image physical line segments that can form 

a junction on the ceiling will provide information about its corresponding (directly 

connected) junction on the floor plane. Thus, a sampling ray of the vanishing point can be 

employed to connect these two junctions. 

 The structure of a scene layout hypothesis (ℎ) can be represented as a set of 

corridors (cubic) ℎ = {𝐶𝑖|𝑖 = 1, 2, … 𝑛}  while each corridor consists of multiple faces 

(different sides of a corridor) 𝐶 = {𝐹𝑗|𝑗 = 1, 2, …𝑚}. Here n and m denote the number of 

corridors and faces respectively. A major corridor (Cmain) is always represented by five 

faces 𝐶𝑚𝑎𝑖𝑛 = {𝐹𝑓𝑟𝑜𝑛𝑡 , 𝐹𝑙𝑒𝑓𝑡, 𝐹𝑟𝑖𝑔ℎ𝑡, 𝐹𝑡𝑜𝑝, 𝐹𝑏𝑜𝑡𝑡𝑜𝑚} while a sub-corridor (side corridor) has 

three faces 𝐶𝑠𝑢𝑏
𝑙𝑒𝑓𝑡

= {𝐹𝑙𝑒𝑓𝑡, 𝐹𝑡𝑜𝑝, 𝐹𝑏𝑜𝑡𝑡𝑜𝑚} or 𝐶𝑠𝑢𝑏
𝑟𝑖𝑔ℎ𝑡

= {𝐹𝑟𝑖𝑔ℎ𝑡, 𝐹𝑡𝑜𝑝, 𝐹𝑏𝑜𝑡𝑡𝑜𝑚}. 

 Here, a set of scene layout hypotheses 𝐻 = {ℎ𝑖|𝑖 = 1, 2, … 𝑛} will be sequentially 

created. For example, in Figure 4.1, the scene layout is created by the integration of three 

different corridors. The camera in standing in the major corridor at the time of exposure 

while there are two other corridors (side corridors/accessory hall ways) locating at the right 

and left side of the major corridor. Here, a major corridor hypothesis ℎ = {𝐶𝑚𝑎𝑖𝑛}  is 

generated first. More formally, let 𝑃𝐿 = {𝑝𝑙𝑖
𝑂|𝑖 = 1, 2, …𝑛} and 𝑉𝐿 = {𝑣𝑙𝑗

𝑂|𝑗 = 1, 2, …𝑚} 

be the set of physical line segments and virtually generated rays of orientation 𝑂, where 

𝑂 ∈ {𝑋, 𝑌, 𝑍}  denotes one of the three orthogonal directions. Also n  and m  reveal the 

number of physical line segments and virtually generated rays, respectively. 
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 A major corridor layout hypothesis ℎ is created by intersecting sample lines from 

𝑃𝐿 and 𝑉𝐿 where the minimum number of selected line segments from 𝑃𝐿 is 4, and the 

total number of line segments needed for this creation is 8. As mentioned before, a major 

corridor layout hypothesis is comprised of five polygons. The front wall has four junctions 

together forming a rectangular shape. Note that the layout structure in the object space is 

orthogonal. Thus, by identifying two junctions at the end of the front wall diagonal and 

with the help of vanishing point rays, a layout hypothesis can be created. Each junction can 

be created by intersecting two lines with different orientations. Figure 4.2 depicts an 

example of a major and side corridor layout hypothesis creation after identifying two of the 

opposite front wall junctions. This figure shows that layout hypothesis creation starts by 

inputting a single image into the system (a); Orthogonal vanishing points are extracted and 

physical straight line segments are classified (b); Physical lines of different classes are 

randomly selected (minimum 4 line segments) and intersected to generate potential layout 

junctions (c and d); Major corridor layout hypothesis generated by intersecting physical 

straight line segments (solid lines) and virtual rays (dashed lines) from vanishing points 

(e). Figure 4.2 also shows the creation of a side box hypothesis using both physical line 

segments and virtual rays from vanishing points. In this figure, virtual rays partition the 

right-side plane (in green) into small spaces (f); A partition that receive supports from the 

physical line segments will be preserved and more partitioning will be accomplished using 

virtual rays (g); Consequently a planar region (in blue) facing the camera is identified (h); 

Moreover, other regions representing floor and ceiling parts will be identified (i).  
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Figure 4.2 Creation of a major and a side corridor layout hypothesis by intersecting 

physical line segments and virtually generated rays from orthogonal vanishing points. 

 

 As mentioned above, in the proposed method line segments with different 

orientations are randomly selected and intersected to form the major scene layout 

hypotheses. It should be noted that very short line segments will be ruled out or merged 

with their adjacent line segments if their proximity is less than a predefined threshold (here 

the threshold is 5 pixels) while having the same edge gradients. Note that an 

image gradient is defined by the intensity/color directional change in an image. Eventually, 

hypothesis creation will start with line segments with longer length. The overall process is 
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described in Algorithm 1. In this algorithm the general workflow of generating major 

corridor hypothesis has been described. This will lead to the generation of many different 

hypothetic major corridors in the scene. Only physically valid corridor hypotheses should 

be accepted in this process. Hence, the number of created major corridor hypotheses will 

be reduced to some extent. 

 

Algorithm 1: Generating major corridor hypotheses 

 

Set 𝐻1  0, where 𝐻1 is the set of major corridor hypotheses; 

          for all pair of line segments and virtual rays (li, lj) that intersect below horizon do 

                   if (li ˄ lj) are having different orientations then 

                               add floor junction point P (li, lj) to 𝐹𝑏𝑜𝑡𝑡𝑜𝑚 

                   end if 

          end for 

          for all pair of line segments and virtual rays (lm, ln) that intersect above horizon do 

                   if (lm ˄ ln) are having different orientations then 

                               add ceiling junction point P (lm, ln) to 𝐹𝑡𝑜𝑝 

                   end if 

          end for 

          for all Pi ∈ 𝐹𝑏𝑜𝑡𝑡𝑜𝑚 and Pj ∈ 𝐹𝑡𝑜𝑝 do 

                   if (Pi ˄ Pj) are residing on different sides of the image then 

                               connect (Pi ˄ Pj) to (Vx) and (Vy) and (Vz) via line segments or virtual 

                               rays and add scene with 1 major corridor Cmain (Pi, Pj) to 𝐻1 

                   end if 

          end for 

return 𝐻1 
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Having created the major corridor hypotheses, the presence of the side boxes 

(accessory hallways on the sides of the major corridor) will be examined. This process will 

be accomplished by employing either physical line segments or virtual rays. For example, 

if any of the major corridor’s side-walls contain a line segment that has the same 

orientation as the wall itself, this line segment can be used for creating a side box 

hypothesis. Having the same orientation means the line segment must be perpendicular to 

the major corridor’s side-wall. This is a tangible hint for having a side box in the scene. 

This process is described in Algorithm 2. 

 

Algorithm 2: Generating side corridor hypotheses 

 

Set 𝐻2  0, where 𝐻2 is the set of layout hypotheses having side corridors; 

          for all line segments (𝑝𝑙𝑖
𝑥 ˄ {𝐹𝑙𝑒𝑓𝑡, 𝐹𝑟𝑖𝑔ℎ𝑡} ∈ 𝐶𝑚𝑎𝑖𝑛) where (𝐶𝑚𝑎𝑖𝑛 ∈ 𝐻1) do 

                   if (𝑝𝑙𝑖
𝑥) is inside {𝐹𝑙𝑒𝑓𝑡, 𝐹𝑟𝑖𝑔ℎ𝑡} then 

                             connect the end points of (𝑝𝑙𝑖
𝑥) to ({𝐹𝑙𝑒𝑓𝑡, 𝐹𝑟𝑖𝑔ℎ𝑡}  ∈  𝐶𝑚𝑎𝑖𝑛) borders via 

                             virtual rays of (Vz) to make ({𝐹𝑙𝑒𝑓𝑡, 𝐹𝑟𝑖𝑔ℎ𝑡}  ∈  𝐶𝑠𝑢𝑏
𝑙𝑒𝑓𝑡,𝑟𝑖𝑔ℎ𝑡

) and add scene 

                             with side corridor 𝐶𝑠𝑢𝑏
𝑙𝑒𝑓𝑡,𝑟𝑖𝑔ℎ𝑡

 to 𝐶𝑚𝑎𝑖𝑛 

                   end if 

           Set 𝐻2  𝐻2 U 𝐶𝑚𝑎𝑖𝑛 

          end for 

return 

 

In the above algorithm the general workflow of generating side corridor hypotheses 

has been described. Hence, many hypothetical corridors may be generated on the sides of 
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each major corridor hypothesis. It should be noted that in this process duplicate side 

corridor hypothesis will be deleted and overlapping hypothesis will be merged. Moreover, 

only physically valid hypotheses will remain in the hypothesis creation pool. Therefore, 

the number of valid hypothesis will be reduced, and the remaining ones are the final scene 

layout hypotheses. Figure 4.2 describes the core part of this process intuitively. 

 

4.3 Selecting Features 

As mentioned in the previous section, the proposed method sequentially creates the 

complete scene layout hypotheses through generation and integration of box form 

structures in the image space. This process is performed in the image space using classified 

line segments and virtual rays of vanishing points. Following this rational, many scene 

layout hypotheses will be created. To find the best fitting layout hypothesis to the scene, 

different features must be taken into consideration. These features should optimally 

characterize different qualities of the created hypothesis. In other words, these features 

together encode how well the created layout hypothesis represents the corridor scene in the 

image space. 

Here, we considered four different layout characteristics in the image space to 

specify the desirable set of features. The first characteristic is the layout feasibility in terms 

of covering the whole scene. We call this as the Volumetric Reasoning feature. The second 

characteristic is the layout interaction with the detected straight-line segments in the image. 

We call this as the Edge Correspondences feature. The third characteristic is the layout 

structure in terms of surface orientations. We call this as the Orientation Map feature. The 
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last one is the layout formation in terms of not being affected by the clutters. We call this 

as the Geometric Context feature. In the coming sections, these features will be introduced. 

 

4.3.1 Volumetric Reasoning 

Lee et al. (2010) imposed some volumetric constraints to estimate the room layout. They 

model the objects as solid cubes which occupy 3D volumes in the free space defined by the 

room walls. Following the same rational, here the containment constraint is taken into 

consideration which dictates that every object should be contained inside the layout. We 

interpret this constraint as the search for the maximum physically plausible created volume 

among all the created layout hypotheses. In other words, the layout hypothesis which 

covers a larger area is more probable to contain all the objects in the scene. Hence, the 

volumetric reasoning about the created layout hypothesis plays the role of a feature here. 

 

4.3.2 Edge Correspondences 

In an image, edges can be introduced as intensity discontinuities between the adjacent 

pixels. Hence, edges can identify the boundaries between various textures, an indication of 

a higher frequency in the image space. In some of the corridor scenes, enough and reliable 

layout features are not available due to the presence of objects with no texture or 

homogeneous texture. However, in such cases edges are readily available and where 

textures are homogeneous, edges could be valuable features most of the time. Usually, the 

intersection lines of the indoor corridor dominant planes can define the overall geometric 

structure of the layout. Normally, these planes have different textures or colors and their 
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boundaries can be identified by a collection of straight-line segments in the image space. 

Therefore, straight line segments, a by product of combined edges in the image space, can 

provide a powerful cue about the indoor corridor layout structure. Here, we identified the 

layout and image edge-correspondences as a valid feature which can provides a clue on the 

quality of a created layout hypothesis.  

 

4.3.3 Orientation Map 

Although single images are a reliable data for indoor space modeling, automatic 

recognition of different structures from a single image is very challenging. Lee et al., 

(2009) presented the orientation map for evaluation of their generated layout hypotheses. 

The main concept of the orientation map is to define which regions in an image have the 

same orientation. An orientation of a region is determined by the direction of the normal of 

that region. If a region belongs to the XY plane, then its orientation is Z. 

 

 
Figure 4.3 (a) Single image, line segments and orientation map. (a) Single image. (b) 

Detected straight line segments, vanishing point at centre, and two of vanishing lines in 

black. (c) Orientation map; regions are colorized according to their orientations. 
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Orientation map is a map that reveals the local belief of regional orientations 

computed from line segments (Figure 4.3). If a pixel is supported by two different line 

segments that have different orientations, then this would be a strong indication that the 

pixel orientation is perpendicular to the orientation of these two lines. For example, in 

figure 4.3(b), pixel (1) can be on a horizontal surface because a green line above it and two 

blue lines to the right and left are supporting pixel (1) to be perpendicular to the orientation 

of both lines. Also, pixel (2) seems to be on a vertical surface because blue lines above and 

below and red line to the right are supporting it. Also, there is a green line below pixel (2), 

but its support is blocked by the blue line between the green line and the pixel. Therefore, 

the support of a line will extend until it hits a line that has the same orientation as the 

normal orientation of the surface it is supporting. It means that a line cannot reside on a 

plane that it should be perpendicular to it. Here, we consider the image orientation map as 

one of the selected features.  

 

4.3.4 Geometric Context 

Hoiem et al., (2007) labeled an image of an outdoor scene into coarse geometric classes 

which is useful for tasks such as navigation, object recognition, and general scene 

understanding. Usually the camera axis is roughly aligned with the ground plane, enabling 

them to reconcile material with perspective. They categorized every region in an outdoor 

image into one of three main classes. First, surfaces which are roughly parallel to the 

ground and can potentially support another solid surface. Second, solid surfaces those are 
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too steep to support an object. Third, all image regions which are corresponding to the 

open air and clouds. 

Theoretically a region in the image could be generated by a surface of any 

orientation. To determine which orientation is most probable, Hoiem et al., (2007) used 

available cues such as material, location, texture gradients, shading, and vanishing points. 

It should be noted that some of these cues, are only helpful when considered over the 

appropriate spatial support which could be a region in a segmented image. The common 

solution is to build structural knowledge of the image from pixels to super-pixels. 

Hoiem et al., (2007) solution was to compute multiple segmentations based on 

simple cues. Generally, they sampled a small number of segmentations which were 

representative of the whole distribution. They computed the segmentations by grouping 

super-pixels into larger continuous segments. Note that different segmentations provide 

various views of the image. To find the best segmentation, the likelihood that each 

segment is good or homogeneous must be evaluated. Also, the likelihood of each possible 

label for each segment must be evaluated. Finally, combination of all the estimates 

produced by different segmentations would be possible in a probabilistic fashion. Note that 

a segment could be homogeneous if all the super-pixels inside that segment have the same 

label. Hoiem et al., (2007) estimated the homogeneity likelihood using all the cues and 

boosted decision trees. 
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Figure 4.4 Single image of an indoor corridor and the estimated surface labels shown by 

different colors. 

 

Hedau et al., (2009) used the same idea for labeling surfaces in an image, but this 

time the focus was on indoor places and recovering the spatial layout of cluttered rooms. 

They tried to achieve an overall estimate of where the objects are, to get a more accurate 

estimate of the room layout. To estimate the room layout surface labels including the 

objects, they use a modified version of Hoiem et al., (2007) surface layout algorithm. The 

image is over-segmented into super-pixels, and in the next step partitioned into multiple 

segmentations. Color, texture, edge, and vanishing points are the main cues which were 

computed over each segment. A classifier (boosted decision tree) is used to estimate the 

likelihood that each segment contains only one type of label and the likelihood of each of 

possible labels. Further, over the segmentations these likelihoods would be integrated to 

provide label confidences for each super-pixel. Figure 4.4 shows an indoor corridor image 

with its estimated surface labels. Here, we choose the geometric context as the last feature 

to be considered. 
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4.4 Evaluating Layout Hypotheses 

As mentioned before, in the proposed method the complete scene layout hypothesis is 

sequentially created through generation and integration of cubic structures. This process is 

performed in the image space using classified line segments and virtual rays of vanishing 

points. Following this rational, many scene layout hypotheses will be created. Therefore, 

the created layout hypotheses must undergo an evaluation process for selection of the best 

fitting hypothesis. Figure 4.5 shows only floor plans of several layout hypotheses (pink 

regions) in the image space where the best fitting hypothesis is needed. 

 

 

Figure 4.5 Several floor plans of layout hypotheses in the image space along with the 

classified straight-line segments and the estimated vanishing lines. 

 

To perform the evaluation process, a linear scoring function can be defined to score 

each hypothesis individually. Given a set of created layout hypotheses in the image space 



85 

 

 

 

{h1, h2, ...hn} ∈ H, we wish to do the mapping S: H → R which is used to define a score for 

the automatically generated candidate layouts in an image. For the proposed scoring 

function, we examined different type of features along with weight parameters. In the 

coming sub-sections these variations will be explained. 

 

4.4.1 Evaluating Hypotheses by a Linear Scoring Function 

The proposed scoring function must take some independent factors into consideration. 

Here, we considered the “Volume Maximization”, “Edge Correspondences” and 

“Orientation Map” as the main features affecting the layout hypotheses scores. Hence, the 

expected value of the proposed scoring function “S” can be decomposed into the sum of 

three different functions, which characterize different qualities of the created hypothesis. 

These functions together encode how well the created layout hypothesis fits the corridor 

scene. We thus have 

 

S(hi) = W1 × Svolume(hi) + W2 × Sedge(hi) + W3 × SOmap(hi) (4.1) 

 

Where  hi = candidate hypothesis 

 S = total scoring function 

 Svolume = scoring function for volume 

 Sedge = scoring function for edge correspondences 

 SOmap = scoring function for orientation map 

 W1,2,3 = equal weight values 
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As it can be seen in the above equation, the outcome of three different functions are 

combined to create the proposed total scoring function. Here, each function is focusing on 

a specific layout feature. These features are supposed to represent different qualities of the 

created layout hypothesis as close to the reality as it could be. Considering these features, 

three different functions can be defined to score each quality of the hypothesis. The final 

score of a candidate hypothesis will be defined by summing the outcomes of these three 

functions with equal weights. Note that equal weight values are imposed at this stage due 

to the lack of information about the importance of each function with respect to the others. 

First, the containment constraint should be taken into consideration that dictates 

every object must be contained inside the corridor. As mentioned before, we interpreted 

this constraint as the desire for the maximum plausible volume for the layout hypotheses. 

Therefore, we decide to give a higher score to the layout hypothesis which has a larger 

volume. Hence, the volume scoring function (Svolume) gives the highest volume score (score 

one) to the layout hypothesis which creates the largest valid volume. Also, it gives the 

minimum volume score (score zero) to the layout hypothesis which has the smallest valid 

volume. Hence, the incoming score of a candidate layout hypothesis will be a positive real 

number between zero and one. The volume score of a candidate hypothesis (hi) can be 

calculated from the following equation: 

 

𝑆𝑣𝑜𝑙𝑢𝑚𝑒(ℎ𝑖) =
𝑉𝑖 − 𝑉𝑀𝑖𝑛
𝑉𝑀𝑎𝑥 − 𝑉𝑀𝑖𝑛

 (4.2) 

 

Where  Svolume = scoring function for volume 

 hi = candidate layout hypothesis 
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 Vi = calculated volume for hypothesis hi 

 VMin = minimum calculated volume among all the created layout hypotheses 

 VMax = maximum calculated volume among all the created layout hypotheses 

 

Considering the above equation, the other two functions which score edge-

correspondences quality of the created layout hypothesis and the compatibility of the 

created layout hypothesis to the orientation map are also defined in the same way. The 

defined function gives the highest edge-correspondences score to the layout hypothesis 

which has the maximum positive edge-correspondences to the actual detected line 

segments. Here, the positive edge-correspondences are defined by counting the number of 

edge pixels which are residing close enough (here, less than 5 pixels) to the structural lines 

of the created layout hypothesis. Therefore, the layout hypothesis which has the biggest 

number of detected edges close enough to its borders will get the highest score from the 

proposed function (Sedge). 

The compatibility of the created layout hypothesis to the orientation map is 

calculated pixel by pixel. The created layout hypothesis will provide specific orientations 

to each pixel in the image, and the orientation map is also suggesting orientations to the 

image. Therefore, by comparing these two (pixel by pixel) the compatibility between the 

created layout hypothesis and the orientation map can be calculated. Here, the number of 

pixels which get the same orientation from the created layout hypothesis and the 

orientation map are going to be counted. The proposed function (SOmap) gives the highest 

orientation map score (score one) to the layout hypothesis which has the most pixel-wise 
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compatibility to the orientation map and lowest score (score zero) to the one which has the 

least compatibility. 

Considering the combination of these three functions as depicted above, each 

hypothesis will be examined individually, and gets score based on the above-mentioned 

functions. As discussed, the incoming scores will be normalized based on the maximum 

and minimum incoming values. The normalized scores will be integrated and the 

hypothesis with the maximum score will be selected as the best fitting hypothesis. 

 

4.4.2 Evaluating Hypotheses by OM and GC Combination  

Zhang et al., (2014) applied both orientation map and geometric context on overlapping 

perspective images. In their paper, they expressed that the geometric context can provide 

better surface normal estimation at the bottom of an image, while the orientation map 

works better at the top of an image. Hence, they combined the top part of the orientation 

map image and the bottom part of geometric context image and used the incoming result to 

evaluate the room layout. This drastic variation in the performance of orientation map and 

geometric context from the top to the bottom of the images is explainable. Since most of 

the images in their dataset were captured from single rooms, either this variation is due to 

the presence of clutters in most rooms, or because their model was trained based on images 

looking slightly downwards. 
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Figure 4.6 Orientation Map and Geometric Context accuracy changes by changing the 

horizontal viewing angle. 
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Unlike single rooms which are usually small in size and full of clutters, corridors 

are usually less occupied with clutters and have longer length. Therefore, we examined the 

horizontal view angle in the image to evaluate the performance of orientation map and 

geometric context in the corridors. Figure 4.6 shows the changes in the accuracy of 

orientation map and geometric context compare to the ground truth training images (here, 

34 images). As it can be seen in this figure, by changing the horizontal view angle from 

left to the right side of the image, the orientation map and geometric context performances 

are varying to a considerable extent. The geometric context is outperforming the 

orientation map around both sides of the images, while the orientation map is 

outperforming the geometric context around the center of the images. 

Hence, we decided to use this valuable information for evaluating the layout 

hypotheses through combining both orientation map and geometric context. The 

combination of orientation map and geometric context is performed by considering their 

respective performance curves with respect to the horizontal view angle. The combination 

of these two looks to be a very simple task, yet orientation map and geometric context have 

little differences in their representation. Hence, their representation must be standardized 

before this combination would be possible. 

On one hand, the orientation map is not numerically expressed, and on the other 

hand the geometric context is expressed by likelihood of each possible label for all super-

pixels in the image. As mentioned before, the orientation map is a map that reveals the 

local belief of region orientations in an image. These local orientations are assigned to the 

image regions through examining their supporting line segments. Usually the orientation 
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map is colorized with four different colors which are red, green, blue, and black. The first 

three colors are representing a specific orientation in 3D space which is either X, Y, or Z. 

Also, the black color represents the unsupported regions in an image. Since there is a 

possibility that some regions in a specific image could not get complete support from line 

segments, those specific regions would be colorized as black and officially would not be 

assigned with any orientation. 

A specific orientation can be assigned to a local region in an image, and the 

assigned orientation can be expressed numerically. In other words, it is possible to say how 

good the assigned orientation is. To express the orientation map numerically for every 

region in an image, the supporting line segments should be in focus. Here, image pixels 

(Ix,y) will get a value between zero and one for their assigned orientation (𝑂𝑀(𝐼𝑥,𝑦)). This 

value is assigned by comparing the length of supporting line segments to the lines created 

by the intersection of these line segments with respect to their distance to a pixel. In other 

words, when a region is fully supported by the complete line segments in an image, it will 

get a value of one for its assigned orientation. Also, when a region is supported by some 

truncated line segments, it may get the value of zero for its assigned orientation. Figure 4.7 

shows how this assignment can be interpreted. 
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Figure 4.7 An orientation of a region supported by classified line segments. 

 

𝑂𝑀(𝐼𝑥,𝑦) =  
𝑟3 × (

𝑑1
𝐷1
) + 𝑟1 × (

𝑑3
𝐷3
) + 𝑟4 × (

𝑑2
𝐷2
) + 𝑟2 × (

𝑑4
𝐷4
) 

𝑟1 + 𝑟2 + 𝑟3 + 𝑟4 
 

(4.3) 

 

Finally, the assigned values will be normalized and all the pixels in the orientation 

map image will get a value between zero and one for their respective orientation. It should 

be noted that in single images a small line segment might be longer in real world than what 

it looks in the image due to the perspective effect. Therefore, we used the vanishing points 

and project all the detected line segments to the image borders to suitably compare their 

lengths. 
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After assigning different values to the pixels in the orientation map image, we had 

to express the surface labels of geometric context as orientations. Therefore, we expressed 

the geometric context by the same three orientations which are suggested by the orientation 

map. Here, we choose the highest value of the surface label probabilities for each pixel as 

the assigned orientation value to that pixel. Finally, the assigned values will be normalized, 

and it is possible to combine the incoming results of the orientation map and geometric 

context with respect to the horizontal view angle in the image. Formulas below are 

showing how these values can be used for evaluating an individual layout hypothesis: 

 

kx,y = 
𝑎𝑥,𝑦   

𝑎𝑥,𝑦 + 𝑏𝑥,𝑦 
 (4.4) 

px,y =  kx,y×OM(Ix,y) (4.5) 

qx,y = (1 – kx,y)×GC(Ix,y) (4.6) 

Ix,y (OM, GC) = max (px,y , qx,y ) (4.7) 

SOM&GC (hi) =1- 
1

𝑛×𝑚
 × ∑ ∑ (|𝐼𝑥,𝑦(𝑂𝑀,  𝐺𝐶) − 𝐽𝑥,𝑦(ℎ𝑖)|)

𝑚
𝑦=1

𝑛
𝑥=1   (4.8) 

 

Where  axy = accuracy of Orientation Map at pixel (x,y) 

 bxy = accuracy of Geometric Context at pixel (x,y) 

 hi = candidate hypothesis 

 Jx,y (hi) = hypothesis “hi“ orientation value at pixel (x,y) 

 Ix,y (OM, GC) = OM and GC integration value at pixel (x,y) 

 OM(Ixy) = orientation map outcome at pixel (x,y) 

 GC(Ixy) = geometric context outcome at pixel (x,y) 

 SOM&GC (hi) = scoring function for OM and GC 
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The compatibility of the created layout hypothesis to the orientation map and 

geometric context is calculated pixel by pixel. The created layout hypothesis will provide 

specific orientations to each pixel in the image space, and the orientation map and 

geometric context are also conducting the same task. Therefore, by comparing layout 

hypothesis orientation to the orientation provided by the combination of orientation map 

and geometric context, the better pixel-wise evaluation of the layout hypothesis can be 

achieved. Consequently, the best fitting hypothesis is selected through the following 

scoring function applying equal weights: 

 

S(hi) = w1 × Svolume(hi) + w2 × Sedge(hi) + w3 × SOM&GC (hi) (4.9) 

 

4.4.3 Evaluating Hypotheses by ANN 

As mentioned in previous sections, different features are used for evaluating the created 

layout hypotheses. However, the defined scoring function were applying equal weights for 

all features. Here, we defined this weight optimization problem as a nonlinear 

classification problem. Common classifiers are categorized into linear classifiers and 

nonlinear classifiers. In our case, selected features are complicated, and classes are not 

linearly separable. Therefore, a classifier which produce nonlinear discriminates is needed. 

Artificial Neural Networks (ANN) are powerful nonlinear classifiers while input features 

and classes are too complex. Basic components of an artificial neuron include: A) 

connecting links that provide weights, wj, to the input values, xj, for j=1…m. Weights are 

designed to minimize mean square error through training data set. B) an accumulator, 
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summing the weighted input values to provide the input to the activation function. Here, w0 

is called the bias, a numerical value associated with the artificial neuron, as in equation 

(4.10). C) an activation function g, which is a consistent monotone function that projects 

from net to g(net), the output value of the artificial neuron.  

 

𝑛𝑒𝑡 =∑𝑤𝑖 𝑥𝑖 + 𝑤0

𝑛

𝑖=1

 (4.10) 

 

 Here, to optimize the influence of selected features (their respective weights) we 

applied a multilayer feed-forward network with back propagation. The introduced ANN 

input layer has 4 nodes and the input values are the normalized incoming values of the 

previously mentioned individual feature scoring functions (e.g. Svolume, Sedge, SOmap and SGc). 

The input layer accepts the input values and the outputs of each layer’s artificial neurons 

are the inputs to the artificial neurons in the next layer until they reach the output layer. 

Here, different number of layers and neurons are tested applying 10-fold cross-validation 

technique, and the optimal ANN was found to have four layers, with 4, 7, 5, and 1 neurons 

in each layer. There are two hidden layers between the input and output layers, each has 7 

and 5 nodes respectively and the final layer has only 1 node. The classification between the 

two classes is made by defining a threshold to the output value at the final node. 

 In the prepared ANN system, the activation function is a sigmoid function. A back-

propagation algorithm was used to optimize weight values. Thus, weight values (vector w) 

were estimated optimally through ANN trained by 161 and 206 positive and negative 

layout samples respectively. These samples are synthetic data manufactured based on 
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training data set mentioned earlier in this chapter. Finally, 100 epochs were executed to 

train the ANN. All input data was normalized from 0.1 to 0.9, and an optimal threshold of 

0.7 (empirically defined) was chosen for output results classification. This ANN is used on 

the provided testing dataset for classifying generated layout hypotheses to valid and invalid 

hypotheses. Eventually, the hypothesis with the highest output value is chosen as the best 

hypothesis. Further details about artificial neural networks and their applications can be 

found in Bishop (1995). 

 

4.5 Experimental Result 

The performance of the proposed method was evaluated over the prepared dataset at York 

University. As mentioned in chapter 3, the ground truth layouts and orientation images 

were provided for York University dataset. Here, the York University dataset is divided 

into two categories of training set and testing set. Out of 78 images (corridor scenes) in the 

dataset, 53 images were chosen for testing and the rest of 25 images were chosen for 

training. The training set is used for accomplishing two tasks; a) calculating the accuracy 

curves with respect to accuracy changes in horizontal viewing angles for both orientation 

map and geometric context; b) providing the training set for ANN along with the 

synthesized data. Since, the ground truth orientation images were provided for each image 

in the dataset, the comparison between estimated layouts and ground truth layouts is 

possible through test images. Both qualitative and quantitative assessments for the 

proposed indoor layout estimation method were conducted. In the following sub-sections, 

the incoming results will be presented. 
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4.5.1 Qualitative Assessment 

Qualitatively, around 58% of images returned acceptable layouts. Here, two different 

criteria are set to evaluate the estimated layouts in the image space. If the estimated layout 

conforms with these two criteria, then it is considered as an acceptable estimate. These two 

criteria together evaluate the topologic and geometric information of the estimated layout. 

The topologic acceptance is occurred when both the estimated layout and the ground truth 

layout can be represented by the same topological graph. This means that the number of 

present corridors (including major, right side, and left side corridors) in an image are the 

same for both estimated layout and the ground truth layout. The geometric acceptance is 

examined by considering layout structural junctions. If all Euclidean distances between 

corresponding junctions of the estimated layout and the ground truth layout are less than a 

predefined threshold (= 5 image pixels in experiments), then the estimated layout is 

considered geometrically acceptable in the image space. 

It should be noted that even when floor-wall boundary was partially occluded by 

the objects or could not be detected through middle-level perceptual organization, the 

scene layout was successfully recovered in some images (Figure 4.8). When the physical 

line segments cannot be detected from the image, virtual rays created through vanishing 

points can play the same role as the physical line segments. In these cases, the key cube 

hypothesis will be created using both physical line segments and virtual rays. It should be 

noted that virtual rays cannot be always helpful, specially when the corridor length is very 

long. In these cases, the estimated vanishing points may not have enough accuracy. 
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Therefore, the created virtual rays will be deviated from the real layout borders as the ray 

gets closer and closer to the camera. 

As shown in Figure 4.8, the incoming results show that almost similar levels of 

model quality were achieved for both linear (equation 4.9) and ANN (equation 4.10) 

hypotheses scoring. However, the model-based evaluations indicate that the model quality 

for the ANN hypotheses scoring is better than the one for linear hypotheses scoring. This is 

mainly related to depth errors which occur more in long corridor scenes. We observed that 

many front corridors planes (corridors front faces) in the linear scoring scheme were 

misplaced and resided closer to the camera. As a result, the corridor lengths estimated from 

linear hypotheses scoring caused a low success rate of corridor depth estimation. 

 

 
       Image                  OM                   GC                  Lines                 Linear              ANN          Hoiem (2009) 

Figure 4.8 Examples of the created layouts which can be successfully convert to 3D. 
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4.5.2 Quantitative Assessment 

We compared the evaluation results of both ANN and linear hypotheses scoring with those 

generated by Hedau and Hoiem (2009) algorithm. Here, this algorithm is chosen for 

comparisons due to its novelty and good performance compare to other proposed 

algorithms. Also, its source code is available to the public which facilitates quantitative 

comparisons without dealing with implementation difficulties compare to the other 

available algorithms. Note that Hedau and Hoiem (2009) source code has already been 

trained on a large dataset that includes single room and corridor images which makes it 

suitable to be compared to the proposed algorithm. 

Here, area-based evaluation results are considered (Table 4.1). In this experiment, 

the estimated layout for a test image is compared to its correspondent ground truth layout 

in the image space. To conduct this comparison, adopted orientations by both estimated 

layout and ground truth layout will be compared at pixel level for all test image. Results of 

this evaluation demonstrate that our method can outperform Hedau and Hoiem (2009) 

algorithm in terms of the completeness and quality, specially when accessory hallways are 

present in the scene. When corridors with accessory hallways were considered, our 

proposed method showed more accurate results. It should be noted that both methods are 

assessed only for our dataset which mainly includes indoor corridors. In terms of 

robustness, our proposed method outperforms the Hedau and Hoiem (2009) algorithm, 

since the accuracy of our method is better than Hedau and Hoiem (2009) evaluated method. 

Considering that the accuracy is above 58% for comparing our method to the ground truth 

data while the accuracy of Hedau and Hoiem (2009) method is only 17%.   



100 

 

 

 

Table 4.1 Area-based evaluation of the proposed method compare to Hoiem (2009). 

Dataset 

Proposed method Hedau and Hoiem (2009) 

Linear hypotheses 

scoring (average) 

ANN hypotheses scoring 

(average) Single 

corridor 

(average) 

Multiple 

corridors 

(average) Single 

corridor 

Multiple 

corridors 

Single 

corridor 

Multiple 

corridors 

GeoICT research 

laboratory dataset 
77% 71% 85% 76% 61% 49% 

 

Here, for each test image a quantitative table was produced to examine the 

proposed indoor modeling algorithm. Sample tables are presented here (Tables 4.2 and 4.3) 

which are presenting the quantitative results of the wrongly estimated layout in Figure 4.9. 

Table 4.2 reveals the orientation difference between this estimated layout and the ground 

truth layout. This table can be used for evaluating the overall performance of the generated 

layout. 

Here, a comparison between the ground truth orientation and the orientation 

suggested by the created layout is performed. It should be noted that this comparison is 

accomplished based on measuring pixel to pixel correspondences. Therefore, if two 

correspondent pixels on the ground truth image and the created layout image having the 

same orientation, then it shows that the proposed method could correctly estimate the 

layout orientation at that pixel. Each image pixel can accept only one orientation out of 

three (O1, O2 or O3). The orientations are colorized by “Red”, “Green”, or “Blue” in Figure 

4.9. Table 4.2 reveals the pixel to pixel orientation correspondences for the created layout 

in Figure 4.9. 
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Figure 4.9 The created layout and the ground truth layout visualized in the image space. 

 

Table 4.2 Pixel to pixel correspondences based on orientation. 

Figure 4.9 Floor Ceiling Front Walls Right Walls Left Walls 

Floor 172223 0 28448 0 4613 

Ceiling 0 265663 20131 0 0 

Front Walls 3478 4262 122469 1483 1060 

Right Walls 15833 21729 87519 78750 0 

Left Walls 0 11271 23933 0 217135 

 

Table 4.2 reveals valuable information. The (i, j)-th entry in this table represents the 

number of pixels with ground truth label i which are estimated as label j, over the test 

image. As it can be seen in this table, floor, ceiling and wall estimates are partially correct 
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and some specific regions were wrongly oriented. This can be explained by the dependence 

of the method on the creation of the true major box hypothesis (slightly deviated in Figure 

4.9) and the great impact of the linear scoring function in the selection of the best 

hypothesis. If the major box hypothesis is wrongly estimated at the first step, the method 

could not correct this false estimation and will end up in awkward result. Therefore, a true 

estimation of the major box provides a very strong condition to the success of our method. 

 

4.5.3 Layout Comparison to 3D Model 

Geometrical errors in length, width, and height of the estimated layouts can be assessed 

through evaluation of the 3D reconstructed layouts. Here, 3D reconstruction is performed 

following the proposed approach in Lee et al. (2009). To simplify the problem, three 

different parameters (λx, λy, and λz) are defined for each part (main corridor or accessory 

hallways) of the layout in the object space. Considering an arbitrary 3D coordinate system 

defined by the estimated orthogonal vanishing points in the object space, the ground truth 

and the estimated corridors (both reconstructed in this coordinate system) can be compared 

using these three parameters. For example, λx could be defined as the width of the 3D 

reconstructed main corridor divided by the width of the ground truth main corridor. With 

the same rational λy and λz could be defined as the ratio of length and height of the 3D 

reconstructed layout to the length and height of the ground truth layout. In table 4.3, width, 

length and height of the created layout (Figure 4.9) are compared to the ground truth layout 

in 3D space. 



103 

 

 

 

Here, the main reason that we chose λx, λy, and λz parameters for accomplishing this 

comparison is that both 3D ground truth layout and the 3D estimated layout are generated 

using estimated orthogonal vanishing points. Since, reconstruction of 3D model from a 

single image is an ill posed problem, the true scale factor remains as unknown. Therefore, 

comparison of the relative distances between the structural planes would be more logical 

than comparing the coordinates of the correspondent vertices in the layout through RMSE 

(measuring Euclidean distances in 3D space). 

 

Table 4.3 Ground truth layout and created layout comparison by scale ratios. 

Figure 4.9 λx λy λz 

Major Corridor 1.1219 0.3599 1.1934 

Right Corridor 1.6164 2.0545 0.9976 

First Left Corridor 0.9233 0.9494 0.9460 

Second Left Corridor 0 0 0 

Third Left Corridor 0 0 0 

 

As it can be seen in the above table that the number of accessory corridors in the 

scene is wrongly estimated and the length of reconstructed accessory hallway at the right 

side of the scene is almost 2 times longer than its correspondent ground truth. Hence, this 

table can give a better understanding of the geometrical errors of the proposed method. 

Figure 4.10 shows the results of comparison between the reconstructed major 

corridor layouts and their correspondent ground truth layouts in 24 different test images 

using the abovementioned scale ratios. Note that only 24 ground truth 3D models were 

available for this comparison that do not cover the whole testing data set. Hence, the 
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generation of more 3D ground truth models are in focus for future works which helps to 

expand such comparisons. Here, 𝐸𝑥,𝑦,𝑧(𝑀) =
∑ |𝜆𝑥,𝑦,𝑧−1|
𝑛
𝑖=1

𝑛
 is the average scale ratios 

differences in either X, Y or Z directions for the applied method “M” and n is the number 

of test images. The selected images have almost the same scene complexity, so that the 

comparison of their reconstructed layouts seems rational. Notice that scene complexity by 

itself is a subjective term which may cause confusion. To facilitate the understanding of 

this subject, scene complexity is defined as a function of four major factors which are: a) 

Type of scene layout or the number of structural planes, b) Presence of objects, c) Presence 

of occlusions, and d) Depth of the corridor. 

As it can be seen in Figure 4.10 the proposed method is providing better results 

compare to the method of Hedau and Hoiem (2009). However, our proposed method was 

more successful in the estimation of scene layout width and height (λx and λz are close to 1) 

over the test images. While, it has more problems in estimation of the true length of the 

corridors [𝐸𝑦(𝑂𝑢𝑟𝑠𝐴𝑁𝑁) = 0.192]. This is a very critical issue which must be scrutinized. 

A typical explanation for this may directly emerge from the selection of features for 

scoring layout hypotheses. It should be noted that the performance of selected features is 

very much sensitive to the presence and detection of straight-line segments. Basically, they 

lose their accuracy while the straight lines are hard to detect. This issue become more 

critical when the front face of the major corridor is residing far from the camera. Hence, 

more study must be performed on this subject in the future. 
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𝐸𝑥(𝑂𝑢𝑟𝑠𝐴𝑁𝑁) = 0.018 , 𝐸𝑥(𝑂𝑢𝑟𝑠𝐿𝑖𝑛𝑒𝑎𝑟) = 0.072 , 𝐸𝑥(𝐻𝑜𝑖𝑒𝑚) = 0.347 

 

𝐸𝑦(𝑂𝑢𝑟𝑠𝐴𝑁𝑁) = 0.192 , 𝐸𝑦(𝑂𝑢𝑟𝑠𝐿𝑖𝑛𝑒𝑎𝑟) = 0.232 , 𝐸𝑦(𝐻𝑜𝑖𝑒𝑚) = 0.497 

 

𝐸𝑧(𝑂𝑢𝑟𝑠𝐴𝑁𝑁) = 0.037 , 𝐸𝑧(𝑂𝑢𝑟𝑠𝐿𝑖𝑛𝑒𝑎𝑟) = 0.046 , 𝐸𝑧(𝐻𝑜𝑖𝑒𝑚) = 0.292 

 

Figure 4.10 Scale ratios differences between the 3D reconstructed ground truth layout and 

the created layout. X axis is showing the image index and Y axis is showing the scale ratio. 
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4.5.4 Failure Cases  

As mentioned previously in the algorithm of the proposed method, layout hypotheses are 

generated through intersection of both physical line segments and virtual rays created 

through vanishing points. However, fragmented straight-line segments and virtual rays 

together may cause the created hypotheses to deviate from the true layout borders specially 

when the length of a corridor is too long. This is one big reason in increasing failure cases. 

Either poorly estimated vanishing points or truncated line segments may result in poorly 

generated layout hypotheses. In these situations, even though some parts of the generated 

layout are aligned with the true layout borders, the other parts will be deviated from the 

reality when layout lines are getting closer to the image borders. 

The other reason for failure would be the occlusion of the layout borders through 

the presence of objects, furniture or people. When the real layout boundaries are fully 

occluded on the floor, the physical line segments detected from the ceiling-wall boundary 

along with the virtual rays of vanishing points may not be enough to identify the 

underlying scene layout. Also, there are some other failure cases which are mostly because 

of inability to identify orthogonal vanishing points, detection of wrong line segments on 

glass surfaces or waxed floors, misaligned boundaries, no lines supporting down the 

corridor or fully occluded side-wall boundaries. Note that if orthogonal vanishing points 

could not be estimated in an image while straight lines are abundant in the scene, one 

solution would be to add more tilt to the camera’s rigid body at exposure time. Figure 4.11 

depicts some exemplar failure cases. 
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Figure 4.11 Example of the failure cases due to wrong major corridor estimation, wrong 

corridor depth estimation or missing/misplacement of side cubes. 

 

In Figure 4.11 the created layout hypotheses are deviated from the actual scene 

layout. The most conspicuous problems in the above images are: a) wrong depth 

estimation for the major box hypothesis, b) wrong side cube generation. Both issues are 

interesting problems which can be tackled in the future researches. 
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4.5.5 Limitations 

Overall the algorithm could manage to estimate acceptable major corridor and select the 

correct number of side corridors in most of the images. However, the proposed edge-based 

layout estimation method can only be applied to Manhattan framed corridors and it is not 

able to estimate the indoor corridor layout when the orthogonal vanishing points cannot be 

estimated in the scene. Also, the proposed method could not filter out inaccurate edges, 

specially edges detected on waxed and glass surfaces which cause anomalies in both 

orientation map and geometric context. Moreover, the identified features for selecting the 

best hypothesis are not perfect and could not fully represent the reality of the scene. Hence, 

the proposed algorithm cannot precisely estimate the depth of the corridors in some cases. 

This is the main limitation of the proposed method caused by wrong estimation of the 

major corridor front face. Also, the other limitation is that the method does not consider 

line segments with small length while there is not enough boundary support for small 

length lines. This will reduce the number of generated layout hypotheses in the pool and 

consequently limits the possible layout choices. 

 

4.6 Summary 

In this chapter, we proposed an automatic 3D indoor corridor layout estimation method 

from a single image which covers a full chain of single image modeling. The focus of this 

chapter is on proposing a method which utilizes middle-level perceptual organization, 

which relies on finding the ground-wall and ceiling-wall boundaries using detected line 

segments and the orthogonal vanishing points. 3D modeling of indoor spaces is not a 
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trivial task, and it involves with major problems. These problems may directly inherit from 

the modeling approach itself, or the adopted data gathering technique. Here, the proposed 

indoor corridor layout estimation approach is following the Manhattan rule assumption to 

simplify the structure of the indoor corridor layouts. What makes the proposed method 

more conspicuous than the other methods is that the incoming estimated layout is not 

restricted to only one corridor. We addressed the indoor corridor layout estimation problem 

by hypothesizing-verifying multiple box primitives. The proposed method relies on both 

detected line segments and virtual rays created by orthogonal vanishing points to estimate 

indoor corridor layouts. This method can easily handle the presence of accessory hall ways 

and occlusions in corridor scenes even the objects were occluding some parts of the floor-

wall or ceiling-wall boundaries. This feature beside the compatibility of the estimated 

layout to the combination of orientation map and geometric context are the main 

advantages of the proposed method. The proposed method shows that by applying a prior 

knowledge (knowing camera’s distance to the floor), the 3D layout of an indoor scene can 

be successfully recovered using a single image. A very interesting future problem would 

be the integration of the created individual indoor layouts which is a huge step towards 

complete indoor space modeling. 
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Chapter 5 

Layout SLAM for 3D Indoor Corridor 

Reconstruction  

 

 

 

 

In this chapter, a recently developed visual Simultaneous Localization and Mapping (SLAM) 

technique, known as Layout SLAM, is introduced. This real time indoor corridor layout estimation 

method complies with the Manhattan World Assumption at indoor spaces. The proposed Layout 

SLAM architecture has two major sections, known as the “front-end” and the “back-end” together 

dealing with the captured video frames and the Extended Kalman Filtering (EKF) inference. The 

system initializes by introducing the scene layout and its structural corner point features which 

permit the real time camera localization on the run. The proposed method detects straight line 

segments and estimates orthogonal vanishing points to introduce physically plausible layout 

hypotheses at every instance. The created layout hypotheses for every video frame must go through 

a matching process to find the best fitting layout hypothesis of the scene. Hence, a layout structural 

corner points matching scheme is introduced with a feature matching cost function which considers 

both local and global context information. The proposed cost function consists of a unary term, 

which measures pixel to pixel orientation differences of the matched junctions, and a binary term, 

which examines the angle differences between directly connected layout junctions. Consequently, 

Layout SLAM can build an online sparse map of the indoor corridors layouts which enables the 

system to deal with the presence of few geometrical features and absence of texture in the scene. 

Layout SLAM is robust against error accumulations caused by sudden changes of camera 

orientation through introducing a rotation compensation variable. The system estimates the amount 

of rotations to be compensated through consecutive layout model and vanishing points matching on 

a unit sphere. The experiments performed on York University and the RAWSEEDS datasets. 

Results depict that Layout SLAM performs robustly while produces very limited orientation errors. 
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5.1 Introduction 

Simultaneous Localization and Mapping (SLAM) is the ensemble of techniques for 

building the globally consistent map of an environment and localizing the moving platform 

within that environment. SLAM is feasible in a wide range of environments including 

indoor, outdoor, airborne and underwater places. Moreover, SLAM is a solution for many 

problems including navigation, 3D mapping and inspection with both autonomous and 

manned platforms. Multiple sensors are used to perform SLAM and the most popular ones 

include: a) 2D/3D laser scanners (range and bearing sensors); b) perspective cameras in 

form of monocular, stereo, omnidirectional vision (bearing-only sensor); c) sonar and radio 

frequency beacons (range-only); and d) depth (RGBD) cameras (range and bearing).  

In this chapter, we combined our previously introduced single image indoor 

corridor layout estimation method with SLAM to “recognize” or “re-map” the observed 

indoor corridor layouts. Since the proposed method intends to map indoor corridor layouts, 

it is called “Layout SLAM”. Here, the focus is on visual SLAM (VSLAM) implemented 

using monocular vision. Compared to range sensors, monocular cameras have the benefit 

of gathering denser visual information from the environment using cheaper and lighter 

sensors. Also, real-time detection and recognition of objects are less challenging using 

images compared to sparse point clouds. As such, visual SLAM is extensively applied in 

indoor mapping, augmented reality and robotics applications. However, the main drawback 

of a monocular camera is its inability to perceive range directly; determining the 3D 

location of observed points requires at least two views as well as the knowledge of the 
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relative motion of the camera between the views. Inability to measure range also results in 

scale ambiguity; that is, the built map will be defined up to an arbitrary scale. 

The true scale can only be recovered using auxiliary sensors or external 

measurements from the scene (Engel et al., 2014). Another critical issue is the sensitivity 

of visual SLAM systems to irregular camera motions. For instance, if a camera is rotated 

substantially, tracking assumptions used in conventional visual SLAM will not hold true 

anymore. Therefore, we introduced a new technique based on matching orthogonal 

vanishing points on a unit sphere, which provides Layout SLAM with the ability to handle 

rapid camera motions. Matching vanishing directions of consecutive video frames on a unit 

sphere provides the ability to suppress the effect of rapid camera movements and mitigates 

the layout and features matching on the run. 

Different types of features have been introduced to visual SLAM systems, with 

point and edge features being the most common (Civera et al., 2010; Davison et al., 2007; 

Eade and Drummond, 2009; Klein and Murray, 2008; Konolige and Agrawal, 2008; 

Nist´er et al., 2004; Sibley et al., 2010; Zhou et al., 2015). Point features can be extracted 

in different ways, such as SIFT key points (Lowe, 2004), Harris Corner detection (Harris 

and Stephens, 1988), or AGAST corner detection (Mair et al., 2010; Rosten and 

Drummond, 2006). Point features have favourable properties; they can be easily detected 

in the image and they can be simply matched, which are both properties suitable for many 

environments. Hence, systems based on point features are fast and reliable. However, 

sufficient, reliable point features are not available in the case of objects with no texture or 
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homogeneous texture, e.g. unicolor walls; in fact, in many man-made structures point 

features are difficult to extract while edges are readily available. 

In such cases where textures are homogeneous, edge features can replace point 

features and thus be valuable features. As well, straight line segments can pose additional 

constraints on the object-space coordinates and provide higher redundancy for camera pose 

estimation. Despite these advantages, edge-based SLAM has some serious challenges. A 

tangible example would be identifying edge correspondences between two consecutive 

images (Meltzer and Soatto, 2008). Moreover, an edge might be detected in one image as a 

unique line segment, while it might be sliced into various shorter line segments in another 

image. Therefore, only a subset of all detected edge features can be used for successful 

matching. 

Considering the above information, Layout SLAM tries to take advantage of both 

points and lines to achieve robustness against the conditions of indoor corridor scenes. 

Hence, two types of features are incorporated into the Layout SLAM system which are the 

layout structural corner point features supported by image line segments, and normal point 

features that are conspicuous in the scene. Note that most of the current SLAM algorithms 

are not able to directly create 3D models of low-texture environments. Often, the incoming 

sparse map conveys little information about the geometric characteristics (geometric 

model) of the indoor corridor scene. Yet Layout SLAM with its incorporated features, not 

only can create real-time 3D models of the scene, but also can overcome most indoor 

corridor conditions where only a few distinct point features are present. 
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In general, we focus on using a single image estimated indoor corridor layout to 

initialize the Layout SLAM system, and estimate the camera pose and 3D positions of 

features in corridor scenes through EKF. The structural layout corner points feature, 

initialized in the Layout SLAM system tend to improve the robustness of both state and 

layout estimations on the run. The proposed method takes advantage of both point and line 

entities to compensate for the insufficiencies of current SLAM systems at indoor corridors. 

Note that the computational time was not considered as an influential factor in the 

abovementioned architect and real-time processing will be considered in future works. 

First, the spatial layout of the scene is created by fully applying line features of the 

first video frame. Then, the layout structural corner point features are identified which are 

supported by line features aligned with the true orthogonal directions. These features are 

initiated in the Layout SLAM system and enforce it to be bounded to the identified 

orthogonal directions on the run. Also, vanishing directions of consecutive video frames 

are matched on the unit sphere helping the algorithm to find the accurate feature matching 

search space. To match layout structural corner point features, a new feature matching cost 

function is proposed which considers both local and global context information. 

The proposed method can directly create 3D models while dealing with the presence 

of few geometrical features and absence of texture by benefiting from image based 

structural straight-line segments. This study demonstrates that layout understanding 

through straight line-segment detection and orthogonal vanishing point estimation could 

improve both camera state estimation and direct 3D modelling in visual SLAM system 

while dealing with low-textured environments. 
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5.2 Camera Model and Data 

The pinhole camera model is the simplest model to describe the camera imaging process 

recognized by a flat image plane and a light-barrier hole (the camera perspective centre). 

Here, the pinhole camera model is considered for applying the mathematical equations 

which explain the camera observations in the proposed Layout SLAM system. Note that to 

reconstruct the rays of light that have created any image point (reversible optical path), the 

interior orientation parameters (IOPs) of the camera are needed. These parameters include 

the principal distance, offsets of the principal point, and other intrinsic camera parameters 

such as lens distortions. Having identified these parameters, the image observations can be 

undistorted to ensure the collinearity condition. Here, the interior orientation parameters 

are obtained by calibrating the cameras using MATLAB calibration toolbox (Bouguet, 

2004), and all images undistorted accordingly. 

To evaluate the performance of the proposed Layout SLAM algorithm in this 

chapter, several datasets are used. The first is the newly generated dataset which 

introduced in chapter 3. This dataset is associated with ground-truth corridor layouts and 

camera trajectories for keyframes. The second is the publicly available Robotics 

Advancement through Web-publishing of Sensorial and Elaborated Extensive Data Sets 

(RAWSEEDS) by Bonarini et al., (2006). This dataset is gathered from buildings at the 

University of Milano-Bicocca, in Milan, Italy. Many indoor locations explored by a robot 

that crawled through floors of an office building and its nearby places. Various 

architectural structures are detected such as: a) Narrow corridors with offices on their sides 

which their entrances have various depths and deeply recessed within the walls. b) Wide 
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and narrow hallways of different types connecting to spaces with various dimensions and 

shapes occupied with chairs and tables. c) Narrow bridges with glass walls connecting 

buildings. d) A library with many open bookcases, computer desks, spaces with chairs and 

tables, and open halls. e) Different types of passageways and doors. Note that the floor is 

very smooth which brings more stability to the captured videos. 

Although RAWSEEDS dataset is not only covering indoor corridors and most of its 

scenes have complicated outlines, it is chosen for evaluation of the Layout SLAM because 

of its available ground truth camera trajectories. Here, the Bicocca_2009-02-25b dataset of 

RAWSEEDS is selected due to the robot’s path and the static environment which does not 

include moving people or objects. Figure 5.1 shows a sample video frame from 

RAWSEEDS (Bicocca_2009-02-25b) dataset and the robot’s path on building floor plan. 

 

  
(a) (b) 

Figure 5.1 (a) a sample video frame from RAWSEEDS (the Bicocca_2009-02-25b) dataset 

and (b) the robot’s path on the floor plan of the building. 
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The third dataset that utilized in this chapter is York Urban Line Segment database 

(Denis et al., 2008). This dataset is a collection of 102 images that only 45 of them are 

captured at indoor spaces. These images are mostly taken at York University campus 

buildings with a calibrated Panasonic Lumix DMC-LC80 digital camera (640 × 480 

image size). For each image a set of straight-line segments and their corresponding three 

orthogonal vanishing points, are provided. Note that the provided vanishing points 

conform to 3D orthogonal frame of the indoor space. 

 

5.3 Layout SLAM Architecture 

The structure of a SLAM system is comprised of two main parts: the “front-end” and the 

“back-end”. Together, these two components of the SLAM architecture are dealing with 

sensor data and the system inference about it. The front-end delivers the sensor data in 

form of models that can be used for estimation, while the back-end solely infers from the 

provided information by the front-end. The major parts of the front-end are “feature 

extraction” and “data association”. Data association itself includes feature tracking in 

short term and identifying map parts that belong to the same environment in long term. In 

general, the back-end is dedicated to map estimation. 

 

http://elderlab.yorku.ca/YorkUrbanDB/DenisElderEstradaECCV08.pdf


118 

 

 

 

 

 

Figure 5.2 Layout SLAM architecture with model-based loop closure (top); Schematic 

view of Layout SLAM performance at first floor of PSE building, York University 

(bottom). 
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The above architecture of the SLAM system enables the introducing of new SLAM 

algorithms by altering and improving the current SLAM system’s main components. In 

this thesis, we followed the mathematical concepts developed by Davison (2003) and 

modified the open-source MATLAB code provided by Civera et al., (2010) to introduce 

Layout SLAM algorithm. The key concept of the Layout SLAM method is the 

probabilistic layout estimation of indoor corridor scenes. Beside introducing a rotation 

compensation variable and a new technique for loop closing detection, both initialization 

scheme and feature selection and feature matching blocks of Davison’s (2003) Mono 

SLAM algorithm are significantly altered in Layout SLAM algorithm. Figure 5.2 shows 

the overall workflow of the proposed Layout SLAM algorithm that explained thoroughly 

in both chapters 5 and 6 of this thesis. In the following sections, more details about the 

proposed Layout SLAM algorithm will be presented. 

 

5.4 Layout SLAM Back-end 

In a typical SLAM system, given a set of measurements, several unknown variables should 

be estimated through the back-end block. Usually, these unknown variables in a visual 

SLAM system are: a) the discrete set of camera poses (camera trajectory), and b) the 

position of landmarks in the scene. The proposed Layout SLAM method uses the Extended 

Kalman Filtering (EKF) as its core back-end block to perform the predictions and updates 

on the desired variables. The extended Kalman filter can linearize about the current mean 

and covariance estimate. 
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5.4.1 Layout SLAM State Vector 

Layout SLAM provides the current estimate of the camera and all features states as well as 

the uncertainty of these estimates. The corridor scene layout is initialized through its layout 

structural corner points features at system start-up and grows dynamically as it is updated 

by the EKF. The created Layout SLAM is comprised of a state vector �̂� and covariance 

matrix P. State vector �̂� is composed of the camera state (�̂�𝑣), structural point features (�̂�𝑠) 

and normal point features (�̂�𝑛) state estimates. 

 

�̂� =  (

�̂�𝑣
�̂�𝑠
�̂�𝑛

) 

𝑃 =  [

𝑃𝑥𝑥 𝑃𝑥𝑦𝑠  𝑃𝑥𝑦𝑛  
𝑃𝑦𝑠𝑥 𝑃𝑦𝑠𝑦𝑠 𝑃𝑦𝑠𝑦𝑛
𝑃𝑦𝑛𝑥 𝑃𝑦𝑛𝑦𝑠 𝑃𝑦𝑛𝑦𝑛

] 

𝑥𝑣 = (

𝑟𝑤

𝑞𝑤𝑐

𝑣𝑤

𝜔𝑐

) 

(5.1) 

 

Here, the camera state vector (xv) comprises of a three-dimensional position vector 

(rw), orientation quaternion (qwc), velocity vector (vw), and angular velocity vector (𝜔c). 

The superscripts W and C represent the world frame and the camera frame respectively. 

Feature state �̂�𝑠  represents the three-dimensional position vectors of identified layout 

structural points which are the corridor junctions. Also, the feature state �̂�𝑛 represents the 

3D position vectors of normal points which are randomly selected from a bunch of 
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conspicuous corner points in the scene. Camera and features state estimates will be updated 

during camera motion and all features observation. As soon as a new layout structural 

corner point feature is observed, the layout will grow with new states. The mean estimates 

of the camera and features states as well as a first-order uncertainty distribution, associate 

the estimated scene layout over time. Note that the probability distribution over the 

mentioned parameters is approximated as Gaussian distribution. 

 

5.4.2 Layout SLAM Features 

One of the main differences of Layout SLAM system to the other SLAM algorithms like 

Mono SLAM is the incorporation of structural layout point features along with 

conspicuous corner point features in its state vector. The number of structural layout point 

features compare to the normal point features are very limited in a typical corridor scene. 

The corridor layout itself can impose a constraint on the map which has to be estimated 

and therefore the layout structural points together can assist accurate real-time localization. 

However, the structural point features are not always visible in a corridor scene, especially 

when the camera is turning from one corridor to the other. This necessitates the presence of 

normal point features in the layout SLAM state vector. 

The critical role of maintaining features as long-term landmarks in visual SLAM 

systems has been irrefutably proven in SLAM research. Layout SLAM is using the 

Extended Kalman Filtering as its core back-end section. Yet, EKF is not suitable for 

maintaining many features for a long time in the system. Hence, the primary goal in layout 

SLAM is to capture a sparse set of high-quality layout structural corner points and 
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maintain them in the system for as long as possible. These features can influence the 

correlation between the map and the camera poses estimates. These features may have 

position estimates which are uncertain in the reference frame, but they highly correlate the 

camera pose estimates in many sequences. Holding correlation information of these 

features in the system for a long time can improve estimates of the other related features 

and enables the system to recognize known areas after short periods of neglect. Therefore, 

the goal is to maintain the layout structural corner point features as long-term landmarks 

while maintaining normal point features for short term periods in the system to improve 

the camera pose estimates. 

 

5.4.3 Layout SLAM Motion Model 

The ability to measure the layout structural corner point features in many sequences is 

directly affected by the adopted motion model in the system. Introducing a motion model 

for a camera which is carried by a person walking inside a corridor is not fundamentally 

different from the motion model of a wheeled robot moving smoothly on a flat surface. 

Davison (2003) adopted a “constant velocity, constant angular velocity model” which 

assumes large accelerations to be unlikely and imposes smoothness to the camera motion. 

In the layout SLAM algorithm, the same motion model is adopted. 

Here, the assumption is that at each time step an amount of unknown acceleration 

aw and angular acceleration αc with Gaussian distribution and zero mean, generates an 

impulse of the velocity and angular velocity in the system. Note that the uncertainty 
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growth rate in the adopted motion model is determined by the covariance size of the noise 

vector n. 

 

𝑛 =  (
𝑣𝑤

𝛺𝑐
) =  (

𝑎𝑤∆𝑡
𝛼𝑐∆𝑡

) (5.2) 

 

5.4.4 Layout SLAM Prediction and Update 

The introduced state vector in the layout SLAM system is revolving in two alternating 

steps. The first step is called the prediction step, regarding the camera movements between 

the actual image capture. This important blind period movement must be predicted using 

layout SLAM adopted motion model. The second step is called the update step, regarding 

the update which is needed for the state vector after measurements of the features is 

attained. 

Considering the constant velocity, constant angular velocity model in the layout 

SLAM system, and assuming the introduced noise vector n’s covariance matrix is 

diagonal, the camera state prediction would be the same as the one proposed by Davison 

(2003): 

 

𝑓𝑣 = (

𝑟𝑛𝑒𝑤
𝑤

𝑞𝑛𝑒𝑤
𝑤𝑐

𝑣𝑛𝑒𝑤
𝑤

𝜔𝑛𝑒𝑤
𝑐

) = (

𝑟𝑤   + (𝑣𝑤  +  𝑉𝑤)∆𝑡

𝑞𝑤𝑐  ×  𝑞((𝜔𝑐  + 𝛺𝑐)∆𝑡)
𝑣𝑤   +   𝑉𝑤

𝜔𝑐    +   𝛺𝑐

) (5.3) 
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In the above equation, the notation 𝑞((𝜔𝑐  + 𝛺𝑐)∆𝑡)  denotes the quaternion 

defined by the angle-axis rotation vector (𝜔𝑐  + 𝛺𝑐)∆𝑡. Note that in the EKF framework, 

the new predicted camera state 𝑓𝑣 is affecting the camera state uncertainty 𝑄𝑣 along with 

the noise vector n’s covariance 𝑃𝑛. Here, Jacobian calculations will help to calculate 𝑄𝑣: 

 

𝑄𝑣 = 
𝜕𝑓𝑣
𝜕𝑛
𝑃𝑛
𝜕𝑓𝑣
𝜕𝑛

𝑇

 (5.4) 

 

As it can be inferred from the above equation, the uncertainty growth rate in this 

system is very much affected by the size of 𝑃𝑛. This is the main incentive to introduce a 

new variable to the system, which will be discussed in the following section. 

Note that not only the camera movement must be predicted by layout SLAM but 

also the position of features in the image space must be predicted. This prediction is a 

critical step in the process of measuring a feature which already exists in the layout SLAM 

state vector. Moreover, to successfully apply the layout SLAM system, proper feature 

observations should be made. Davison (2003) used the pinhole camera model to predict the 

image position (u, v) of a 3D point feature. Here, we used the same procedure for 

predicting 2D positions of normal point features relative to the camera in the proposed 

Layout SLAM method. 
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ℎ𝐿
𝑐 = 𝑅𝑐𝑤 (𝑦𝑖

𝑤 − 𝑟𝑤) 

ℎ𝑖 = (
𝑢
𝑣
) =  

(

 
 
𝑢0  −   𝑓𝑘𝑢

ℎ𝐿𝑥
𝑐

ℎ𝐿𝑧
𝑐

𝑣0  −   𝑓𝑘𝑣
ℎ𝐿𝑦
𝑐

ℎ𝐿𝑧
𝑐
)

 
 

 

(5.5) 

 

Here, u0, v0, fku, and fkv are the camera intrinsic calibration parameters, 𝑅𝑐𝑤 is the 

rotation matrix, and ℎ𝐿
𝑐  is the vector connecting the camera projection center to the 3D 

point feature 𝑦𝑖
𝑤  in the camera frame C. Note that, 𝑅𝑐𝑤  can affect the position of the 

predicted point, and also 𝑅𝑐𝑤  itself is affected by the applied motion model in the 

prediction step of the EKF. 

The uncertainty of the above prediction can be represented by the innovation 

covariance matrix Si which includes the constant noise covariance 𝑅 of measurements as 

well. Considering Si, an elliptical search window in the image space can be introduced for 

the predicted point where its corresponding match should lie with high probability. It 

should be noted that the update phase in EKF can be performed after the feature matching 

is completed. More information on this will be presented in the coming sections. 

While normal point features are being predicted in the image space, the structural 

point features (layout junctions) need to be predicted as well. Here, the procedure for 

predicting the structural point features involves the estimated orthogonal vanishing points. 

The orthogonal vanishing directions must be identified for consecutive video frames, 

projected onto the Gaussian sphere, and match the corresponding vanishing directions to 

estimate the amount of relative camera rotation between two frames. By applying the same 
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amount of rotation to the estimated layout in the former video frame while projecting it 

into the current frame, the layout position in this frame can be roughly estimated. Note that 

the vanishing point estimation algorithm is assumed to produce zero error. Thus, the 

maximum value of the normal point features innovation covariance matrix Si is chosen to 

represent the uncertainty of this prediction as well. The adopted symmetric 2 ×  2 

innovation covariance matrix identifies the shape of a two-dimensional Gaussian 

probability density function over predicted layout junctions in the image space. Setting the 

number of standard deviations at 3𝜎  provides an elliptical search window around the 

predicted layout junction that its match probably resides there. Hence, uncertainty helps the 

algorithm to facilitate the layout matching while it is trying to find the identified structural 

features in the next video frame. In the following sections, more information on the above 

subject will be presented. 

 

5.4.5 Layout SLAM Rotation Compensation 

As mentioned before, the size of the noise vector covariance 𝑃𝑛 is affecting the uncertainty 

growth rate in the layout SLAM motion model. Even though large covariance enables the 

system to cope with rapid accelerations, increasing the uncertainty in the system will affect 

the estimates and necessitates perfect measurements to be made at each time step to 

constrain estimates. It should be noted that accomplishing perfect measurements in a low 

textured corridor environment with a relatively narrow angle camera is unlikely. Therefore, 

small covariance which indicates a very smooth motion with small accelerations must be 

considered. Thus, a new variable must be introduced for enabling the system to cope with 
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sudden, rapid camera movements. Here, we introduced a rotation compensation variable 

“δ” to the layout SLAM system to cope with sudden rapid camera movements: 

 

𝜔𝑡−1
𝑤 = 𝜔𝑡−1

𝑤 ′ + 𝛿𝑡,𝑡−1 (5.6) 

 

Here, 𝜔𝑡−1
𝑤 ′  is the amount of rotation in the system after update phase has been 

accomplished in the EKF at step t-1. This variable will be replaced by 𝜔𝑡−1
𝑤  in the system 

before making predictions for step t. Moreover, 𝛿𝑡,𝑡−1 is the amount of rotation difference 

between two consecutive steps (t-1 and t), which is calculated independently using 

estimated vanishing points. Here, we assume that 𝛿𝑡,𝑡−1  is free of error. Hence, its 

uncertainty is not needed to be considered in the EKF. 

 

5.5 Layout SLAM Front-end 

Expressing the camera measurements (intensity of each pixel) as the SLAM state analytic 

function would be the ideal task of the Layout SLAM front-end. Yet, it is extremely hard 

to write such a function. First, designing a scene representation which is tractable and 

general is not possible. Second, it is extremely hard to prepare an analytic function which 

can connect the representation parameters to image measurements even if this general 

representation exists. Hence, Layout SLAM frond-end module extracts sufficient point 

features from video frames since these point features observations can be simply modeled 

within the back-end. As mentioned before, the front-end module also associates each 

feature measurement to an individual 3D point in the scene which is known as data 
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association. Data association module in the proposed Layout SLAM algorithm associates 

corresponding features in consecutive video frame measurements (feature tracking) in 

short term and associates new feature measurements to previous landmarks (loop closure) 

in long term. Note that the front-end module receives information from the back-end block 

to support validation and loop closure detection. 

 

5.5.1 Layout SLAM Initialization 

In the proposed Layout SLAM algorithm, the front-end module provides an initial guess 

for the unknown variables at the very beginning of the run. Camera position and its 

orientation along with the position of both layout structural point features and normal point 

features must be initialized at the first step. Beside camera position which is hypothesized 

to reside at the adopted coordinate system’s origin, the camera orientation hypothesized to 

be aligned with the adopted coordinate system’s axis. Since the actual positions of 

landmarks could not be estimated without triangulating from multiple views, their 

respective positions initialized on a unit sphere which its center resides at the camera 

projection center. Hence, the initial depth for all the landmarks would be 1. Note that 

landmarks depths could be estimated more precisely while more observations are achieved 

during the run. However, these initial guesses of the unknown variables are necessary for 

the nonlinear optimization process in the proposed Layout SLAM system. 
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5.5.2 Layout SLAM Feature Extraction 

As mentioned before, two types of features (structural and normal points) are contributing 

to the Layout SLAM system for improving the camera pose and map estimates. Here, the 

front-end module is responsible for both extraction and tracking of these features. Normal 

point features are selected among the conspicuous corner points in the scene through 

applying Features from Accelerated Segment Test (FAST) corner point detection 

algorithm (Rosten and Drummond, 2006). Note that a conspicuous corner point in the 

scene can be found where at least two different and dominant edge directions are 

intersecting at a local neighborhood. 

Although identifying normal point features in the scene does not need prerequisites, 

extracting structural point features requires the scene layout to be estimated in advance. 

Structural layout point features are directly extracted from the estimated layout in the 

scene. At the very first step of Layout SLAM initialization, the scene layout structural 

point features are introduced to the system through the same layout estimation algorithm 

proposed in chapter 4. Like what has been proposed in chapter 4, edges are extracted from 

the first video frame and then grouped into straight line segments. Orthogonal vanishing 

points are estimated, and different layout hypotheses are created. The generated layout 

hypotheses are evaluated by ANN and finally the best fitting layout hypothesis along with 

its structural corner points features are introduced into the Layout SLAM system. Note that 

introducing layout point features to the system may happen again if the system fails to 

efficiently track the scene layout during the run. 

 



130 

 

 

 

5.5.3 Layout SLAM Feature Tracking 

Feature tracking module in the Layout SLAM system is aided by consecutive frames 

orthogonal vanishing points matching on unit sphere. As mentioned before, straight 

parallel lines in 3D space can be projected onto the 2D image plane where they can 

intersect and form a vanishing point. Vanishing points have special geometric attributes 

that can be utilized in rotation estimation and some other computer vision applications like 

camera calibration. Note that Layout SLAM is specifically designed for mapping indoor 

corridor places where Manhattan world constraint is applicable. This constraint allows 

vanishing points to match more easily in small-baseline video frame sequences. Moreover, 

this improves the robustness of the rotation estimation where noisy line segments are 

extracted from video frame sequences. 

Representing vanishing points on a unit sphere enables the system to take 

advantage of the 3D space. Considering the adopted pinhole camera model, the unit sphere 

can be placed on the center of projection. Figure 5.3 shows 3D straight lines projected onto 

the image plane and represented by great circles on the unit sphere. These circles are 

created by the intersection of unit sphere and planes which contain both line and the center 

of projection. These great circles of parallel lines intersect at a specific point on the unit 

sphere, and the direction from the center of projection to this point is the vanishing 

direction (D). Here, the vanishing direction of line segments l1, l2 is estimated by 

intersecting their interpretation planes Q1, Q2 on the unit sphere. Vanishing direction in 3D 

space d ∈ R3 can be defined through homogeneous coordinates D ∈ P3. Note that in 3D 
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space, the vanishing direction D in homogeneous coordinates can be transformed into 

another vector D’ by a 4 × 4 rotation and translation matrix. 

 

𝐷 = [𝑑𝑇 0]𝑇 = [𝑋 𝑌 𝑍 0]𝑇 

𝐷’ = [
𝑅     𝑇
01×3 1

]𝐷 = [
𝑅𝑑
0
] 

(5.7) 

 

In the above equation, R is the rotation matrix and T is the translation vector. As 

shown, the transformed vanishing direction equals Rd. This indicates that the vanishing 

direction transformation is influenced by rotation only. Since a vanishing point on image 

plane is the projection of the vanishing direction, it can have the same property (Kroeger et 

al., 2015). Hence, a vanishing point is a translation-invariant feature and consequently 

rotation can be more accurately estimated through vanishing points. Considering this fact, 

the front-end module in the Layout SLAM system estimates the relative camera rotation 

between two consecutive video frames through identifying and matching vanishing points 

in these frames. Consequently, the feature tracking scheme is improved by real-time 

rotation estimation since it must search to find candidate feature matches in the image 

space.  
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Figure 5.3 Image line segments l1, l2 of 3D parallel lines intersect at a vanishing point on 

the image plane. The same vanishing point can be parametrized as a vector pointing 

towards the intersection of great circles of lines l1, l2 and the unit sphere (original figure 

from Kroeger et al., 2015). 

 

After the estimation of orthogonal vanishing points in each video frame, the 

corresponding vanishing directions are identified on the unit sphere. Since vanishing 

directions of two consecutive video frames are referring to the same indoor corridor layout, 

transforming from one to another will identify the amount of relative rotation between 

these two frames. Hence, having identified the relative rotation between consecutive 

vanishing directions, the same amount of rotation can be applied to the structural elements 

of the indoor layout (lines and corners) on the unit sphere. Therefore, the estimated layout 

in frame “t-1” can be back projected onto frame “t” with no rotation difference. This 

process enables the algorithm to remove the effect of abrupt camera rotation changes and 

facilitates the feature tracking of both normal and structural layout point features in the 

image space. 
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5.5.4 Layout SLAM Feature Matching 

Feature matching in the data association module of the proposed Layout SLAM system is 

performing a very critical rule. As mentioned before, the Layout SLAM feature vector 

contains two types of features. Although both features are representing points, they will go 

through different schemes for selection and matching in the proposed algorithm. Normal 

point features follow the rules set by Davison (2003), while layout structural corner point 

features will benefit from local image orientations and global cues of indoor corridor 

structures for both selection and matching. 

For normal point features, matching is done through a normalized cross-correlation 

search for the relatively large (11 × 11 pixels) template patch projected onto the current 

camera estimate. Note that 11 × 11 pixels template patch has proven to reveal enough 

information for matching (Davison 2003). The template should be scanned over the image 

to find a peak which indicates that a match is resided at that image location. Since the 

search for a match on the entire image space would be computationally expensive, the 

search space must be narrowed down to maximize efficiency. Here, Layout SLAM 

prediction module can help as an active approach for narrowing down the search space in 

the image. 

For structural corner point features, matching scheme is quite different. Here, the 

local orientations for the junctions of the estimated indoor layout in video frame “t-1” will 

be compared to the orientations of their corresponding junctions in the created layout 

hypotheses of video frame “t”. Also, the examination of the constructed angels between the 

connected junctions will enforce the global consistency in the matching scheme. Note that 
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the transition vector of the camera’s center of projection between two consecutive video 

frames is assumed to be very small. Yet, this small transition vector will cause the 

projected layout of the video frame “t-1” not to reside on the exact layout for video frame 

“t”. Therefore, identifying a search region in the image space around every junction in 

question is critical for the system which can potentially reduce the number of valid layout 

hypotheses in video frame “t”. 

Here, the maximum value of innovation covariance matrix for the normal point 

features helps to provide an elliptical search area around the layout junctions in question. 

The junctions of the matching candidate layout would reside there with high probability. 

Considering the extracted straight-line segments and the estimated vanishing points in the 

current video frame, several layout hypotheses are generated. Note that the estimated 

layout in the previous video frame provides valuable information about the structural 

corner points which should be matched to the ones in the current video frame. Figure 5.4 

highlights a search area around one of the structural corner points of the projected layout 

and the potential junction matches from the created front-face hypotheses. This figure 

shows how some front-face candidate hypotheses can be simply ruled out by considering 

their positions with respect to the identified search region. 
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Figure 5.4 Left: several front-face candidate hypotheses forming rectangular regions in the 

image space and some angles between connected structural corner points of the projected 

layout. Right: the structural corner points of several front-face candidate hypotheses are 

ruled out by residing outside of the search region. 

 

As mentioned before, a corner point feature reveals only the local information 

about the layout structure. Hence, the matching layout hypothesis cannot be identified in 

the current video frame only through the orientations of its junctions. Hence, beside 

orientation another feature must be included in the matching scheme to impart the global 

structure information. This feature is set by considering other structural corner points 

which are directly connected to the structural corner in question. In total, two types of 

features were adopted; a) the planar orientations which are defined by the type of a 

structural corner in question, and b) angles (αi, αj, αk …) between the lines connecting the 

corner in question (Ci) to the other directly connected corners (Cj, Ck, Cl …). Figure 5.4 

shows the angle features for structural corner Ci. The proposed cost function (S) consists of 

a unary term which measures the orientation differences of the matched corners, and a 



136 

 

 

 

binary term which measures the angle differences between corresponding layout structural 

corners, as following: 

 

𝑆 =
∑ [𝑎 × 

∑ 𝑂(𝑖)𝑛
𝑖=1

𝑛  + (1 − 𝑎) × 
∑ 𝑃(𝑖)𝑚
𝑖=1  
𝑚 ]𝑄

𝑖=1

𝑄
  

(5.8) 

 

Here, Q is the number of junctions in the projected layout of the previous video 

frame and “a” is the weight value which balances the unary term and the binary term (a = 

0.5 in the experiments). Also, “n” is the number of image pixels in the search area (here 11 

× 11 pixels) around the junctions in question and “m” is the number of other directly 

connected structural corner points to the candidate junction point. The unary term O(i) 

measures pixel to pixel orientation difference between the matched corner features derived 

from the estimated indoor layout of previous video frame and the current video frame: 

 

𝑂(𝑖) = |𝑂𝑖
𝑀 − 𝑂𝑖

𝐹| (5.9) 

 

The binary term is designed to deal with relationships between neighbor features in 

terms of angles. It is calculated for all corner features which are directly connected to the 

matched corner features derived from the indoor layout and the current video frame. For 

angle differences, we start from the vertical vanishing point direction at each corner feature 

and count the corresponding angles clockwise. The angle difference |𝛼𝑗𝑖𝑘
𝑀 − 𝛼𝑗𝑖𝑘

𝐹 | between 

the lines connecting the matched corners (𝐶𝑖
𝑀, 𝐶𝑖

𝐹) and the other directly connected corners 
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(𝐶𝑗
𝑀, 𝐶𝑘

𝑀 , 𝐶𝑗
𝐹 , 𝐶𝑘

𝐹) is valued by either 0 or 1. Note that the suggested layout corner match 

must maintain the orthogonality of the indoor structure. If the connected line between the 

candidate junction and the other corners converge to the estimated vanishing point, then 

the value of the angle difference would be 0 and 1 otherwise. To measure the convergence 

the bias of the vanishing point estimation error is considered. Moreover, if a junction is 

missing in the layout hypothesis, the hypothesis would be penalized by receiving the value 

of 1 for each missing angle. 

 

𝑃(𝑖) = |𝛼𝑗𝑖𝑘
𝑀 − 𝛼𝑗𝑖𝑘

𝐹 | =  {
0          𝑖𝑓           𝛼𝑗𝑖𝑘

𝑀  =  𝛼𝑗𝑖𝑘
𝐹

1                          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (5.10) 

 

For each video frame, a candidate layout and its corresponding layout junctions 

which minimize the proposed cost function is selected as the optimal layout match. Note 

that if the minimum cost is larger than a certain threshold (= 0.7), the matches are not 

considered as matched layouts. This threshold has an impact on the initialization of a new 

layout to the system if no layout matches could be found in several consecutive video 

frames. Hence, an experiment is performed for optimizing this threshold, which will be 

presented in the experiments section. 

 

5.6 Experimental Results 

To examine the performance of the proposed Layout SLAM algorithm, two main sites of 

the prepared York University dataset along with the dataset of Biccoca_2009-02-25b from 



138 

 

 

 

RAWSEEDS are used. The descriptions of York University sites (Ross and Petrie Science 

buildings first floors) are delivered in chapter 3. Overall, three different video sequences 

from the prepared dataset have been used along with the dataset of Biccoca_2009-02-25b 

from the RAWSEEDS. Table 5.1 provides more details about the selected videos.  

 

Table 5.1 Specifications of video frames used for Layout SLAM validation. 

Dataset Platform 

Video Frames Ground Truth Data 

Camera 
Resolution 

(pixels) 
Trajectory 3D Model #Frames length 

York University 

Petrie Science 

Building, one loop 

Human 
Apple 

iPhone 4s 
1920 x 1080 

Only 

Keyframes 

Laser point 

cloud 
9,245 159m 

York University Ross 

Building, one loop 
Human 

GoPro 

Hero5 
3840 x 2160 

Only 

Keyframes 

Laser point 

cloud 
3,627 112m 

York University Ross 

Building, two loops 
Human 

GoPro 

Hero5 
3840 x 2160 

Only 

Keyframes 

Laser point 

cloud 
8,553 315m 

Biccoca_2009-02-

25b of RAWSEEDS, 

several loops 

Robot 
Unibrain 

Fire-i 400 
320 x 240 

The whole 

path 
Null 52,695 774m 

 

Note that videos recorded by hand held cameras benefitted from the video 

stabilization quality and all of them were captured at 30 frames per second. For all the 

scenes, the cameras start their first motions from a position observing the indoor corridor 

from the mid part of the hallway. At the beginning, several layout structural corner point 

features including top and bottom corners of the connecting corridors as well as other 

salient point features such as points from paintings and posters are visible. In the following 

sections, experimental results would be presented which incorporates the tests on the 
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performance of the rotation compensation variable as well as Layout SLAM trajectory 

results on different datasets, and evaluation of estimated layouts in image space. 

 

5.6.1 Evaluation of Rotation Compensation Variable 

Layout SLAM performance is highly dependent on geometric content of video frames 

acquired through straight line segments. Here, the main assumption is that an indoor 

corridor scene is bounded by several flat surfaces. Thus, straight line segments are used as 

low-level features to provide information about the scene layout. Straight line segments 

extracted from flat surfaces will serve as a basic tool to detect the layout structure. 

As mentioned before, LSD method is adopted in Layout SLAM architecture to 

accurately detect straight line segments in the image space. The adopted LSD method is 

tested on York Urban dataset images and the average of 537-line segments per image were 

detected. Having detected straight line segments in the image space, the orthogonal 

vanishing points are estimated applying the adopted method described in chapter 4. Table 

5.2 reveals the incoming results of the adopted vanishing point estimation method using all 

detected line segments. Note that results are obtained by implementation of methods in 

MATLAB software using a desktop computer with 3.4 GHz Intel Core i7 processor and 

8GB RAM. 
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Table 5.2 Vanishing point estimation results on York Urban dataset images. 

Dataset 

Line detection Vanishing point estimation (average) Focal 

length 

error 

(average) 

Time 

Method 
Average 

# of lines 
Method 

Frame 

error 

Vertical 

error 

Horizontal 

error 

Running 

time per 

image 

York 

Urban 

dataset 

LSD 537.3 
RANSAC 

based 
1.6861° 2.3643° 1.1346° 7.6% 112.04s 

 

As it can be seen in the above table, the average running time is roughly 112 

seconds per image (102 images in total) which is not suitable for an online application. To 

reduce the computation time and improve the vanishing point estimation results, the 

number of participant line segments is reduced. LSD itself detects local straight contours 

on image space based on the gray level changing speed. A line support region is created by 

grouping local pixels which share the same level-line angle up to a specific threshold. 

Hence, a rectangle is associated with the local group of pixels and covers the whole line 

support region. This rectangle could represent a potential line segment if its angle 

corresponds to the level-line angle of the inside pixels. Here, the same notion is applied to 

approximate fragmented local straight-line segments, which share the same angle up to a 

certain tolerance, with an individual rectangle. The angle of this rectangle is considered as 

the angle of a line which represents these local straight-line segments in vanishing point 

estimation process. A tangible example is depicted in figure 5.5 where local straight-line 

segments are shown to be approximated by a rectangle. Note that both thresholds for 

identifying the closeness and tolerance angle of line segments which candidate them to be 

approximated by a rectangle, are chosen empirically.  
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Figure 5.5 Top: an image and its extracted line segments through applying LSD method 

(area of interest is specified by a rectangle in red). Bottom from left to right: the area of 

interest, its extracted straight-line segments and local straight-line segments approximated 

by a rectangle in red. 

 

Having applied the above-mentioned strategy, the number of line segments which 

can participate in the vanishing point estimation process will be reduced to some extent. 

Table 5.3 reveals the incoming results of applying the same vanishing point estimation 

method using the first longest 100-line segments. As it can be seen in this table the 

vanishing point estimation results are improved, and the average calculation time is 

reduced to 6.78 seconds per image. 
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Table 5.3 Vanishing point estimation results using 100-line segments detected in an image. 

Dataset 

Line detection Vanishing point estimation (average) Focal 

length 

error 

(average) 

Time 

Method 
# of line 

segments 
Method 

Frame 

error 

Vertical 

error 

Horizontal 

error 

Running 

time per 

image 

York 

Urban 

dataset 

LSD 100 
RANSAC 

based 
1.3969° 2.0011° 1.0093° 8.5% 6.78s 

 

Note that the vanishing point estimation results are improved, and their respective 

error ranges are identified. Thus, the effect of the proposed rotation compensation variable 

can be evaluated while considering the average accuracy of the estimated vanishing points. 

To perform this evaluation, small portions of a video recorded at the longest corridors of 

Ross building are considered. The camera starts recording at a position observing the long 

corridor from the mid part of it while several corridor junction points are visible. The 

camera swings somehow sharply to the left and right while it moves towards the end part 

of the corridor. Table 5.4 reveals the performance of the Layout SLAM method in tracking 

normal point features with and without applying the rotation compensation variable. 

 

Table 5.4 Effect of applying rotation compensation variable in Layout SLAM architecture. 

Dataset 

Rotation 

compensation 

variable 

The average times point features successfully measured 

compare to times predicted in the image space (%) 
Video 

Every 

frame 

Every 3 

frames 

Every 5 

frames 

Every 7 

frames 

Every 9 

frames 

Total # 

of 

features 

York dataset 

(Ross building 

video, 

corridors 4&5) 

Not applied  86.32% 81.76% 73.25% 69.31% 56.14% 112 

Applied 93.52% 90.80% 87.50% 85.58% 79.62% 112 
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As it can be interpreted from the above table, the incorporation of the rotation 

compensation variable into the layout SLAM architecture improves its performance while 

dealing with rapid movements of camera. Here, small covariance was adopted for the noise 

vector in Layout SLAM motion model which indicates small accelerations and smooth 

motions in the system. Yet, the rotation compensation variable tries to suppress the need 

for perfect measurements at each time step even though the system assumed to have 

smooth motions all the time. Note that the performance of this newly integrated variable 

will be influenced by the performance of both the adopted line segments extraction and 

vanishing point estimation methods. 

 

5.6.2 Comparisons of Camera Trajectories 

As mentioned before, the performance of the proposed Layout SLAM algorithm is tested 

on different datasets including the RAWSEEDS and York University datasets. Here, three 

different video sequences were used to examine the validity of the proposed Layout SLAM 

method for camera trajectory estimation. The descriptions about these videos are provided 

earlier in this section and Table 5.1. In the first video, consisting of 9245 frames, the 

handheld camera moved for about 159 meters and completed a relatively large loop of 4 

connected corridors (Petrie building first floor). The second video, consisting of 3615 

frames, one loop of 6 connected corridors was covered (Ross building first floor about 112 

meters). The third video is from Biccoca_2009-02-25b of RAWSEEDS dataset, consisting 

of total 52695 frames, covering several loops. 
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5.6.2.1  Qualitative Comparison 

Here, relatively challenging video sequences are considered, and camera trajectories 

estimated by Layout SLAM algorithm are compared to camera trajectories estimated by 

Mono SLAM algorithm (Civera et al., 2010). Here Mono SLAM algorithm is chosen 

because Layout SLAM architecture is reconstructed by altering some Mono SLAM core 

blocks and it is wise to compare its performance to the original work. Note that the 

comparison of the proposed Layout SLAM algorithm to recently proposed methods is not 

revealed in this thesis due to some technical difficulties and it will be revealed in future 

works. In this section the estimated camera trajectories are presented while no loop closing 

technique is applied. Figure 5.6 shows the camera trajectories estimated by both Layout 

SLAM and Mono SLAM algorithms at Petrie Science building first floor. The camera’s 

trajectory starting and ending points are depicted with green and black circles respectively. 

The validity of the resultant trajectories is undoubtedly clear from visual 

inspection. The demonstrated camera trajectory results depict that the proposed Layout 

SLAM algorithm outperforms the original Mono SLAM algorithm. Mono SLAM could 

not correctly estimate the camera orientations at the end part of the corridors while the 

camera is turning into the new corridor environment. This problem is mainly formed by the 

fact that the camera is getting very close to the corridor side wall while turning into the 

new corridor and the number of visible known features reduces a lot. This problem causes 

the Mono SLAM not to be able to estimate the correct amount of camera orientations while 

registering new features to the system. Yet, Layout SLAM can handle this situation very 

well. This is mostly due to the incorporation of vanishing point estimation results into the 
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Layout SLAM algorithm. This incorporation prevents the wrong estimation of the camera 

orientations during the run and reduces angular drifts a lot. 

 

  

(a) (b) 

Figure 5.6 (a) Schematic view of camera’s path on the first floor of Petrie Science Building 

and (b) Estimated camera trajectories by Layout SLAM (red) and Mono SLAM (blue). 

 

Figure 5.7 also depicts the camera trajectories estimated by both Layout SLAM and 

Mono SLAM algorithms at one section of Ross building first floor. The camera’s 

trajectory starting and ending points are depicted with green and black circles respectively. 

Here, the camera trajectory results depict the same quality of Layout SLAM algorithm in 

estimating the correct camera orientations at the turning points. Note that layout SLAM 

has encountered with scaling issues in this run which is mostly caused by the long length 

of the 5th and 6th corridors and low number of features on these corridors. 
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(a) (b) 

Figure 5.7 (a) Schematic view of camera’s path on the first floor of Ross Building and (b) 

Estimated camera trajectories by Layout SLAM (red) and Mono SLAM (blue). 

 

Note that Cumulative Distribution Function (CDF) of the trajectory error could be 

used for the above comparisons. CDF is normally used for measuring the precision of a 

system. Yet, it can be seen in figures 5.6 and 5.7 the proposed Layout SLAM system 

performance is superior to Mono SLAM and CDF trajectory error calculation seems 

unnecessary. Note that CDF trajectory error calculation would be considered in future 

comparisons of the proposed Layout SLAM algorithm to recently developed methods. 

 

5.6.2.2  Quantitative Comparison 

As mentioned before, the performance of Layout SLAM algorithm is tested on the dataset 

of Biccoca_2009-02-25b from RAWSEEDS as well. Although this dataset consists of 

various architectural features, only its indoor corridor environments are examined for 

experiments. The library scenes and part of connecting glass wall areas are excluded in 
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experiments due to their non-corridor type structure and significantly challenging lighting 

conditions. Hence, the whole dataset is divided into two parts (Figures 5.8(a) and 5.9(a)) 

which are mainly covering indoor corridor scenes. To evaluate the Layout SLAM 

algorithm, the incoming trajectory results are aligned with the provided ground truth data 

of RAWSEEDS (Figures 5.8(b) and 5.9(b)). Note that the camera’s trajectory starting and 

ending points are depicted with green and black circles respectively. The chosen scenes are 

quite challenging for having sharp turns in narrow corridors and including various 

featureless walls. It should be noted that the camera orientation errors increase at turns 

around featureless corners where the vanishing points cannot be estimated routinely. These 

errors will be accumulated on the run and lead to a position error at the end. 

 

  

(a) (b) 

Figure 5.8 (a) Schematic view of camera’s path on the first part of Biccoca_2009-02-25b 

data and (b) Camera trajectories by Layout SLAM (red) and ground truth (blue). 
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As it can be seen in figures 5.8(b) and 5.9(b), the accumulated drift error is 

noticeable while plotted with the ground truth trajectory. Yet, the amount of position error 

is not large and the relative error on the run is less than 1% of the trajectory length. 

 

  

(a) (b) 

Figure 5.9 (a) Schematic view of camera’s path on the second part of Biccoca_2009-02-

25b data and (b) Camera trajectories by Layout SLAM (red) and ground truth (blue). 

 

As it can be seen in figure 5.9(b), there is an obvious position drift after the camera 

make a sharp turn towards the southern section of the building because of scene complicity 

and lacking enough features to support. Since Layout SLAM method incorporates the 

orientation information of the estimated vanishing points as a correction to the estimates, 

the orientation errors will be reduced and not accumulated yet bounded during the run. 

Table 5.5 provides the mean and maximum errors obtained in the above experiments. This 
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table reveals the Layout SLAM performance with the maximum absolute trajectory errors 

of 2.4m in position and 8.2° degree in orientation for approximately 318m path. 

 

Table 5.5 Layout SLAM absolute trajectory errors compared to ground truth data. 

Dataset 
Approximate 

path length 

Position error (m) Orientation error (degree) 

Average Maximum 

Maximum 

error over 

trajectory 

Average Maximum 
Standard 

deviation 

Biccoca_2009-

02-25b (part 1) 
 75m 0.146 0.274 0.36% 0.531 4.255 0.496 

Biccoca_2009-

02-25b (part 2) 
318m 0.873 2.389 0.75% 1.483 8.171 1.141 

 

To reduce the amount of scale drift error, the number of measured features in every 

frame should be increased. However, increasing the number of features will affect the 

computational cost of the adopted EKF framework and make it impossible to perform in 

real-time. Therefore, in these experiments time is not considered as a governing factor.  

 

5.6.3 Evaluation of Estimated Layouts 

Layout SLAM is designed to estimate the indoor corridor layout along with the camera 

trajectory in Manhattan frame structure. Figure 5.10 depicts the estimated layout in 3D 

space for Petrie Science building first corridor. In the previous section the camera 

trajectory comparisons are presented. Here, the estimated layouts in the image space 

should be validated as well. Hence, the accuracies of the estimated indoor layouts in the 

image space are on focus for the evaluation of the proposed Layout SLAM method. The 
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ground truth layouts in the image space were manually created for a sparse set of video 

frames (only 12 keyframes) of Petrie Science building first floor.  

 

 

 

Figure 5.10 Top from left to right: a sample video frame and identified normal point 

features, camera trajectory and estimated layout in 3D space (top view) and current 

estimated layout in 3D. Bottom left: starting frame with detected straight-line segments. 

Bottom right: the estimated corridor layouts in 3D for Petrie science building dataset. 

 

To perform the accuracy assessment, the RMSE of the estimated layout structural 

corner points in the image space is considered. Table 5.6 reveals the quantitative 

assessment of the estimated layout structural corner points. The Layout SLAM 

experiments with respect to manually digitized corridor layouts in image space reveals that 

the average difference in x and y directions on layout structural corner points of first 

corridor are -2.37 and 1.98 pixels, with RMSE of ±1.83 and ±1.51 respectively. Also, the 
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result for the complete loop shows average differences in x and y directions are -4.91 and 

3.42 pixels, with RMSE of ±1.97 and ±1.84 respectively. 

 

Table 5.6 Quantitative assessment of estimated layout structural corner points (unit: pixel). 

Dataset 
Approximate 

path length 

Position error (x) Position error (y) 

Average RMSE Average RMSE 

Petrie Science 

Building (first 

corridor) 

 38m -2.37 ±1.83 1.98 ±1.51 

Petrie Science 

Building (first 

loop) 

159m -4.91 ±1.97 3.42 ±1.84 

 

As expressed in this chapter, the proposed cost function for finding the best fitting 

layout hypothesis is playing an important role in structural corner points matching. Hence, 

the acceptance threshold of the proposed matching cost function should be chosen 

carefully. Note that if the minimum cost is larger than this threshold, the layout hypothesis 

under question is not considered as a true match. To evaluate the impact of this cost 

function threshold, the overall matching performance is tested by assigning different 

values to this threshold. Once more the RMSE of the estimated structural corner points was 

measured in a sample subset of Petrie Science building video. Table 5.7 reveals the results 

of this experiment. As the minimum cost function threshold becomes larger, the overall 

number of matched layout corner points increases. Yet, the calculated RMSE shows that 

the overall cost function accuracy deteriorates as the threshold becomes larger. Note that 

the accuracy of the manually digitized layouts has an impact on these values as well. 
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However, the impact of the accuracies of both vanishing point estimation algorithm and 

the prepared ground truth data are neglected in the experiments. Moreover, if small values 

are assigned to the proposed cost function threshold the number of matched layout 

structural corner points would be too small to recover a physically plausible layout 

structure in the image space. Therefore, the optimal value for the cost function threshold 

which provide better results in matching a layout hypothesis to the image is 0.7 (table 5.7). 

 

Table 5.7 Quantitative assessment of layout matching cost function threshold (unit: pixel). 

Dataset 
Matching cost function 

threshold 

Total number of matched 

corners 

RMSE 

x y 

Petrie Science 

Building (first 

corridor) 

0.5 24 ±2.08 ±2.84 

0.6 32 ±2.31 ±2.12 

0.7 30 ±1.83 ±1.51 

0.8 33 ±2.49 ±2.01 

0.9 38 ±2.90 ±2.48 

 

5.6.4 Failure Cases 

As discussed previously, the performance of Layout SLAM is tested on Biccoca_2009-02-

25b from RAWSEEDS dataset. Layout SLAM is encountered with difficulties to correctly 

estimate the orthogonal vanishing points, generate the indoor layout and estimate the 

camera pose in the library section of RAWSEEDS dataset. These problems are directly 

related to the characteristics of the selected dataset. In the library scenes, there is a quite 

large space between the ceiling and side walls with surrounding bookshelves. This 

formation is not often suitable to be represented by a single cubic structure. Hence, Layout 
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SLAM is failed to reconstruct the indoor layouts in parts of the library scenes. In some 

occasions the camera approaches a very narrow corner and turns into a new space. In these 

cases, the image is often showing one or two plane walls which makes it impossible to 

extract enough line segments and estimate orthogonal vanishing points. Moreover, not 

enough point features can be measured in these types of scenes which makes the camera 

pose estimation inaccurate. Another problem with layout and camera poses estimation 

caused when the camera moves toward a window or a glass wall. In these cases, there are 

plenty of normal features visible through the glasses which will be detected in the scene 

yet residing outside of the indoor layout boundaries. Figure 5.11 shows some of the 

problematic video frames in the experiments. 

 

   

(a) (b) (c) 

  

(d) (e) 

Figure 5.11 Problematic video frames of RAWSEEDS dataset: (a, b, c) hard to detect 

indoor layout, (d, e) having not enough good quality point features. 
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5.6.5 Limitations 

Overall the proposed Layout SLAM algorithm could generate acceptable geometric and 

topologic results regarding both the estimation of indoor corridor layouts and camera 

poses. However, this method can only be applied to indoor corridor environments where 

Manhattan structure remains intact. If Layout SLAM method is applied to non-Manhattan 

frame environments where the orthogonal vanishing points cannot be estimated in images, 

then the algorithm retreats to its root and performs like Mono SLAM. Also, the proposed 

Layout SLAM algorithm would encounter with layout scale issues in some cases if the 

count of measured features is very low at texture-less corridors intersection. 

It should be noted that Layout SLAM back-end is founded on EKF framework. 

Therefore, the computational time for the algorithm increases if the number of video 

frames and features increase as well. In such cases the P matrix becomes very large at 

every state, and consequently increases the computational time. One solution would be 

truncating the whole path into several smaller size paths and perform the experiments 

individually. Yet, the resultant scale issues must be addressed while stitching the small size 

paths together. Note that in the previous experiments this technique is not applied.  

 

5.7 Summary 

In this chapter, we proposed a new visual SLAM method which can estimate the indoor 

corridors layouts along with camera poses at real time. The proposed Layout SLAM 

method extract different type of point features in video frames and estimate their respective 

3D coordinates in an arbitrary coordinate system. The estimated 3D point features together 
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form a structure which can be modeled as an indoor corridor layout. Note that the proposed 

Layout SLAM system is using the Extended Kalman Filtering (EKF) for inference. EKF 

provides the opportunity to perform real time camera localization at every instance. This 

method also utilizes the orthogonal vanishing point estimation results to improve the 

camera orientation estimation on the run. 

To find the best fitting layout to the scene, plenty of layout hypotheses are 

introduced to the system at every instance. Hence, a new cost function is designed to 

improve the feature matching scheme in Layout SLAM system. This cost function focuses 

on image based contextual information to improve the matching performance of the 

proposed method at indoor places. The experimental results reveal that the proposed 

Layout SLAM algorithm can successfully build an online sparse map of structural layout 

point features. Moreover, the proposed system is robust against orientation error 

accumulations via incorporation of a rotation compensation variable into the Layout 

SLAM architecture. 
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Chapter 6 

Model-Based Loop Closure for Layout SLAM 

 

 

 

 

 

 

In this chapter, a recently developed model-based loop closing technique is introduced. The 

proposed model-based method aims to accurately associate newly visited scene parts to the 

previously visited layouts. This loop closing technique refines the quality of layouts estimated by 

the existing Layout SLAM algorithm explained in Chapter 5. Layout SLAM benefits from this 

novel technique of loop closing by matching layout models of various keyframes. Both image 

information (photometric features) and layout information (topology and geometry of reconstructed 

layout models) are utilized to address a loop-closure detection. The novelty of using the layout-

related information in the proposed loop closing technique provides two advantages. First, it 

imposes a geometric constraint on the global layout model consistency and, thus, adjusts the 

mapping scale drifts. Second, matching ambiguity will be reduced in the context of indoor 

corridors. The second advantage specially reveals when encountering with homogenously textured 

corridors, where extracting enough conspicuous point features is fairly a challenging task. The 

proposed model-based loop closing method is designed to compensate the limitations of the 

existing loop closing algorithms. Hence, it reduces three types of modeling errors including 

orientation error, boundary displacement and shape deformation that are often involved in 

estimation of indoor corridor layout models. To evaluate the proposed loop closing technique, the 

experiments were performed on wide-angle videos acquired by a handheld camera (introduced 

dataset in chapter 3). The achieved results depict that the proposed algorithm can successfully 

improve the estimates of Layout SLAM algorithm by detecting loop closing instances while 

incorporating very limited number of features. 
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6.1 Introduction 

Layout SLAM is aimed at mapping the observed corridor environment progressively, 

localizing the camera with respect to indoor layout, and detecting loop-closures to avoid 

error accumulation. In general, SLAM has objectives like two other approaches namely 

visual odometry and optical/scene flow. Contrary to visual odometry, in SLAM the 

reconstructed environment map is used and updated over an extended period of time using 

loop closing. Moreover, contrary to the scene flow technique, the platform ego-motion is 

repetitively estimated in SLAM. Note that the scene flow technique is solely concerned 

with motions at any pixel.  

The main objectives of applying a loop closing technique in SLAM include 

accuracy enhancement for localization and mapping results, uncertainty reduction, and 

suppression of locally accumulated errors in the global context. For instance, if the camera 

rotates largely between two consecutive video frames then a new environment would be 

captured with no overlap by the immediately previous observed scene parts. Hence, a new 

map part will be generated that must be linked to the previous parts. This “linking” task is 

an important element that brings consistency to the global map and allows association of 

new measurements to old “landmarks” which is realized through loop closure.  

In general, loop-closure detection techniques are based on the principles of place 

recognition and can be divided into three different categories (Williams et al., 2009): i) 

image to image; ii) image to map; and iii) map to map. The following paragraphs shortly 

review some of the most common techniques of visual place recognition. Readers are 
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referred to Lowry et al. (2016) for a comprehensive survey of visual place recognition 

techniques and their applications in SLAM loop closing. 

Image to image (appearance based) techniques are mainly based on visual bag-of-

features models (Ho et al., 2006; Cummins et al, 2008). A visual vocabulary is first built 

from previous key-frames (reference images). Constructing the vocabulary consists of 

three main procedures: extracting features and their descriptors from reference images, 

clustering the descriptors, and filling the vocabulary with the centroids of these clusters as 

visual words. Then, the features of the new image (query image) are matched against the 

visual words in the vocabulary and a histogram is built from the matching outcomes. The 

peak of the histogram determines the place correspondence. To make these techniques 

more robust to appearance and viewpoint changes, advanced techniques such as burstiness 

weighting (Sattler et al., 2016), spatial matching (Philbin et al., 2007), and convolutional 

neural networks (Sunderhauf et al., 2015) are proposed. 

Image to map techniques perform 2D to 3D matching to identify the 

correspondences of the query image in the existing map (Williams et al., 2008). Loop-

closure validation can also be performed through RANSAC based algorithms. As a result, 

these techniques deliver the relative 3D similarity transformation between two parts of the 

map (new part and old landmarks). To retrieve the scale, the camera is tracked for a while 

in both map parts (Fischler and Bolles, 1981). 

Map to map techniques are actually extended versions of appearance-based 

techniques, where the relative geometric (spatial) distance between features is considered 

as additional constraints to make the matching procedure robust (Clemente et al., 2007). 
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Once the corresponding features are identified from two sub-maps, maps can be 

transformed to one another using a rigid body transformation. According to (Clemente et 

al., 2007), using five common features from different sub-maps is enough for closing a 

large loop. 

When a loop closure is successfully detected and validated (at the SLAM front-

end), it means that the camera has captured a part of the scene which was previously 

observed from a different perspective. Once this occurs, a pose-graph optimization or 

bundle adjustment (at the SLAM back-end) must be applied to adjust the accumulated 

errors of camera poses and map landmarks (Grisetti et al., 2010; Schneider et al., 2013). 

In this chapter, a new loop closure detection method is proposed which relies on 

top-down knowledge of corridor layout, i.e., spatial decomposition of corridor face 

topology graph, to make a keyframe matching performance robust. This model-based loop 

closure detection method allows a global adjustment of indoor corridor model parameters 

generated by the proposed Layout SLAM method. 

 

6.2 Side Corridor Model Detection 

One of key features of Layout SLAM is the ability to generate multiple cuboid models 

representing not only a main corridor, but also side corridors. Side corridors intersect with 

the structural walls of the main corridor and provide open spaces inside their layout 

structure. In Layout SLAM algorithm, the presence of side corridors can be detected in the 

image space through comparing the geometric features of the previously estimated main 

corridor layout to the ones detected in the current frame. Significant amount of geometric 
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differences between two corresponding image regions will trigger the process of side 

corridor model generation. The side corridor model generation process in the proposed 

Layout SLAM method is very much the same as the one explained in chapter 4. Yet, there 

is a difference in the generation of potential side corridor hypothesis. In the previous work 

by Baligh and Sohn, 2016, many side corridor hypotheses were generated using the 

extracted straight-line segments in the image space. These generated hypotheses will be 

examined later for finding the best fitting hypothesis to the estimated layout structure. 

Here, there would be no hypotheses pooling and instead the side corridor layout 

will be generated directly by considering the appearance cues of current video frame. With 

given video frame, two sets of appearance cues must be extracted. First, geometric cues 

indicate orientation context of planar surfaces estimated for the previous main corridor 

layout (previous video frame). Second, geometric cues measure the same orientation 

context, but using straight lines extracted from the given video frame. If a combinatory 

integration of these two geometric cues from successive video frames indicates the 

excessive presence beyond coverage of one corridor, a layout model generation process 

which creates a secondary corridor is initiated. Note that this process can continue to create 

multiple side corridors until a certain termination condition is met. 

The original method for side corridor creation in an image space is introduced by 

Baligh and Sohn, (2015). Here, the two generated orientation contexts will be overlaid to 

identify the regions with orientation conflict. The amount of orientation confliction is 

counted in pixels. Yet, the number of counted pixels should be more than a predefined 

threshold to trigger the side corridor creation process. Here, this threshold is chosen 
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intuitively. A region with orientation confliction should have proper formation and resides 

inside a wall of the estimated main corridor layout. The new side corridor layout that fully 

covers this region will be created by intersection of vanishing points virtual lines with the 

main corridor layout borders. Note that the created side corridor layout would satisfy the 

volumetric maximization and the orthogonality of the estimated layout structure. Figure 

6.1 shows an example of side corridor detection in a given frame.  

 

 

Figure 6.1 The orientation context of the projected scene layout (previous video frame) 

compared to the current frame orientation context to trigger side corridor generation. 

 

 The success of the side corridor generation method is highly dependent on the 

detection of orthogonal vanishing points which contribute to creation of the side corridor 

layouts. Therefore, considering the Manhattan rule assumption in the image space will play 
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a great role in the success of this method. The applied method intends to simplify the scene 

layout by considering it to be formed of integrated cubical structures. Hence, this method 

only intends to form key structural planes in the image space and identify a cubical 

structure in right or left sides of the major corridor layout by intersecting orthogonal lines 

originated from vanishing points. 

 

6.3 Model-Based Loop Closing 

Loop closure detection is one of the main features of any SLAM system which makes it 

distinctive of the other similar systems such as visual odometry. Loop closure detection in 

visual SLAM systems is a big challenge especially in robotics applications, since camera is 

the only sensor in these systems. The classical loop closure problem can be defined as 

recognising when the SLAM system has visited a previously mapped environment. In such 

cases, two parts of the map are found to belong to the same environment. However, these 

two map parts may have incompatible position and orientation even by considering the 

map uncertainty estimate. Therefore, the SLAM system must apply the appropriate 

transformation which is required to align these two map parts and allegedly close the loop. 

In this chapter, both model information (topology and geometry of reconstructed layout 

model in image space) and image information (radiometry) are used to address loop 

closure detection. Hence, the proposed model-based loop closure algorithm enables 

adjusting errors associated with indoor models generated by Layout SLAM through 

robustly detecting a global loop closure. The proposed loop closing method comprises of 

three steps: 1) selecting a keyframe which contains sub-corridors, 2) generating a corridor 
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topological graph, spatially decomposing a keyframe with wall faces, and 3) matching 

paired keyframes for detecting a global loop closure. Note that measuring a degree of 

visibility of side corridors from a given video frame is one of the factors which influence 

the selection of a keyframe. In the previous section, a side corridor layout generation is 

discussed, while the contribution of this process to the keyframe selection will be 

explained in the next section. 

To ease the problem of loop closing in the proposed Layout SLAM architecture, 

independent local maps were generated after detecting and closing each individual loop. 

The idea of hierarchical map creation by integration of independent local maps is proposed 

by Estrada et al. (2005). Since the back-end section of the proposed layout SLAM system 

is based on EKF, dividing the whole map of the environment into several local sub-maps 

provides benefits to both front-end and the back-end sections. One of the major benefits is 

related to EKF update processing time which increases when the number of map features 

increases too. The other benefit comes by limiting EKF cumulative linearization errors 

within the local map which happens through poor data association and leads to 

overconfident state estimates. The only issue arises here is the scale problem which is not 

observable through monocular vision. Hence, various local maps may have inconsistent 

scales which can be handled through a scale invariant matching scheme. 

Here the main influential factor is to build accurate sub-maps after identifying and 

closing the loops for all corridors and then matching local sub-maps which may contain 

high or low localization uncertainty. To apply the method, once the camera enters a 

previously visited corridor and the loop closing is accomplished, the current map freezes 
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and the next local map will be initialized. The next local map will use the last camera 

location as its initialization position. Here, the previous sub-map features which are 

currently visible in the scene should be initialized in the new sub-map through their image 

locations. These features will be common in adjacent sub-maps and they can provide 

information for integrating sub-maps. Through these common features the scale variations 

between adjacent sub-maps can be handled. It should be noted that for preserving the 

statistical independence among sub-maps, no other information will be inserted from the 

previous sub-map to the current sub-map. 

 

6.3.1 Finding Keyframes  

As mentioned before, the presence of a side corridor can be examined in the image space 

by comparing the geometrical features of both current video frame and the back projected 

layout from the previous video frame. As the camera moves forward in an indoor corridor 

scene, side corridors may appear gradually in many of the captured video frames. Side 

corridors are providing additional topological information to the current layout. Hence, this 

unique topological information along with the measured structural features can play a great 

role in identifying previously visited environments. 

Obviously, searching all the captured video frames and pinpointing common layout 

features is not optimal for performing the loop closing task. Yet, identifying the optimal 

video frames for benchmarking the Layout SLAM trajectory would be very beneficial. 

Here, this optimal video frame is called the keyframe. To handle loop closing instances, we 

propose choosing keyframes which reduce the possibility of matching ambiguity and 
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increase the efficiency of the structural point features detection. In other words, an optimal 

subset of reference video frames must be selected as keyframes which together they can 

approximate the whole corridor space. 

Here, the selected video frames must contain as many salient structural point 

features as possible while having normal point features uniformly distributed in the scene 

as well. Thus, the problem is defined as following: given 𝑛 number of video frames which 

side corridors are appeared in them 𝐼 = {𝐼𝑖|𝑖 = 1, 2, 3, …𝑛}, the optimal keyframe set 𝐹 =

{𝐼𝑘|𝑘 = 1, 2, …𝑚} must be computed that minimizes the cost function defined as 𝐶(𝐹, 𝐼). 

Here, the proposed cost function includes two terms: 𝐶𝑐(𝐹) which is modeling the 

completeness of the indoor corridor layout and 𝐶𝑣(𝐹) which is modeling the visibility of 

the same layout. Hence, the following equation can be defined: 

 

𝐶(𝐹, 𝐼)  =  𝛼 ×  𝐶𝑣(𝐹)  + 𝐶𝑐(𝐹) (6.1) 

 

In the above equation, α is the weight value (α = 2). The visibility term is 

introduced to identify the optimum view of the side corridors in the video frames under 

question. The visibility term can be simply defined by comparing the number of pixels 

covering a side corridor 𝑃𝑆 in the image space to the total number of pixels 𝑃𝑇; 𝐶𝑣(𝐹) =

1 −
𝑃𝑆

𝑃𝑇
 . When the number of pixels covering a side corridor goes higher, the visibility of 

this area would be more as well. 

The completeness term is introduced to guarantee that the chosen keyframes 

contain the maximum number of structural point features (indoor layout corner points) and 
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normal point features (FAST corner points) as possible. To improve the performance of the 

proposed Layout SLAM system, these features must appear in different video frames 

which lead to accurately localizing these features in 3D space. Here, the features which are 

matched during the data capturing procedure are grouped. The incoming feature groups 

can be denoted as 𝑌, which represents a series of matched features in various frames; 𝑌 =

 {𝑦𝑖|𝑖 ∈ 𝑔(𝑌)} where 𝑔(𝑌) represents the reference video frame set with respect to 𝑌.  

If |𝑔(𝑌)| = 0, this means an initialized feature in one frame does not have any 

corresponding match in the other frames. Hence, a threshold is defined to guarantee that 

the selected features were appeared in at least a minimum number of video frames: 

|𝑔(𝑌)| ≥ 35. Considering this fact, the saliency of a feature 𝑆(𝑦) can be defined as the 

match count of this feature in the other video frames |𝑔(𝑌)| divided by the number of 

times the feature is predicted by EKF: |𝑝(𝑦)|; 𝑆(𝑦) =
|𝑔(𝑌)|

|𝑝(𝑦)|
 . Finding insufficient matches 

for a feature may result to unreliable positioning of this feature in the environment. 

The other factor which can be considered here is the distribution of features in the 

image space which affect the quality of feature real time tracking in the proposed Layout 

SLAM method. Density of a feature 𝑑(𝑦𝑗) can be defined by considering each surrounding 

pixel 𝑥 in the image 𝑗. The density of a feature can be related to its position in the image 

space, examined by the number of pixels which are residing in a predefined window while 

the feature is at the center. If the feature is fully surrounded by image pixels in the 

predefined window, then the value of the respective density would be one, and zero 

otherwise. The size of this window can be adopted by considering the size of video frames 

(here window size is 61×61). Hence, we can define the density of a feature set as: 𝑑(𝑌) =
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1

𝑛 × |𝑔(𝑌)|
∑ ∑ 𝑑(𝑦𝑖𝑗)

𝑛

𝑖=1

|𝑔(𝑌)|

𝑗∈𝑔(𝑌)

 , where 𝑑(𝑦𝑖𝑗) expresses the density of a feature 𝑦𝑖  in 

image 𝑗 and 𝑛 is the number of features in a set. Eventually, the completeness term can be 

defined as: 

 

𝐶𝑐(𝐹) = 1 − (
∑

𝑆(𝑌)  +  𝑑(𝑌)
2 + 𝛾 𝑌∈𝐹

∑
𝑆(𝑌)  +  𝑑(𝑌)

2𝑌∈𝐼

 ) (6.2) 

 

Here γ controls the sensitivity to feature saliency and density. Also F and I denote 

the keyframe set and the video frame set, respectively. The exact solution to the selection 

of keyframes would be an exhaustive search of all possible subsets of 𝐼 in the reference 

video frames considering the above equation. However, in the case of Layout SLAM this 

approach would be computationally expensive. It should be noted that a constraint can be 

applied here, which bounds the maximum number of keyframes in a set. The maximum 

number is equal to the number of detected side corridors in the whole scene. For the 

selection of keyframe set, the procedure starts with an empty set and then the frames will 

be added progressively. At each step, a new keyframe will be added to the set if it produces 

the less cost for the system, and consequently it will be added to the keyframe set. The 

process stops when the incoming cost cannot be reduced any longer. Following this 

scenario, the complexity of the computations will be reduced to some extent. Considering 

the incoming results, keyframe based feature matching is possible which is essential for 

Layout SLAM loop closure algorithm. 
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6.3.2 Keyframes Matching  

In the previous sections, the generation of side corridors and selection of keyframes were 

presented. These two tasks can play a great role in the proposed loop closing algorithm. 

Hence, the best solution would be matching a test frame to the set of available keyframes 

for examining the occurrence of a loop closure. It should be noted that the test frame itself 

is a keyframe and it would be the last keyframe created on the run. To examine the 

possibility of matching an individual test frame to any of the previously created keyframes, 

some specific definitive terms must be introduced first. 

Considering the indoor corridor environments, a model M can be denoted as a set 

of corridors M = {Ci|i = 1, 2, … n} with n number of corridors. Each corridor consists of m 

numbers of faces C = {Fj|j = 1, 2, …m} representing front, left, right, top and bottom sides 

of a Manhattan type cubical corridor. 

It should be noted that the main corridor (major corridor) is always represented by 

five faces 𝐶𝑚𝑎𝑖𝑛 = {𝐹𝑓𝑟𝑜𝑛𝑡, 𝐹𝑙𝑒𝑓𝑡, 𝐹𝑟𝑖𝑔ℎ𝑡, 𝐹𝑡𝑜𝑝, 𝐹𝑏𝑜𝑡𝑡𝑜𝑚}  while sub-corridor (side corridor) 

has three faces 𝐶𝑠𝑢𝑏
𝑙𝑒𝑓𝑡

= {𝐹𝑙𝑒𝑓𝑡, 𝐹𝑡𝑜𝑝, 𝐹𝑏𝑜𝑡𝑡𝑜𝑚} or 𝐶𝑠𝑢𝑏
𝑟𝑖𝑔ℎ𝑡

= {𝐹𝑟𝑖𝑔ℎ𝑡, 𝐹𝑡𝑜𝑝, 𝐹𝑏𝑜𝑡𝑡𝑜𝑚}. Here, left 

and right are determined based on the attached position of the sub-corridor to the main 

corridor. Figure 6.2 shows a test frame with its specified corridors in the image space, and 

its respective corridor topological graph for the model. It should be noted that the sub-

corridor numbering always starts at the furthest position with respect to the camera. 

Therefore, the same sub-corridors would have similar numbering for their graph 

representation in the other keyframes. 
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Figure 6.2 Top: The image of a test frame with all its specified corridors; Bottom: The 

respective corridor topological graph of the same test frame. 
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To examine the possibility of having a match between a test frame and the selected 

keyframe, the first step is to geometrically transform the test frame into the keyframe in the 

image space. Here, the 6 parameters affine transformation is applied as following: 

 

𝑋 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑦 (6.3) 

 

𝑌 = 𝑏0 + 𝑏1𝑥 + 𝑏2𝑦 (6.4) 

 

In the above equations, X  and Y  represent the image coordinates of the indoor 

corridor layout specified vertices on the key frame while x and y represent the same layout 

vertices coordinates on the test frame. Also, a0 , a1 ,  a2 ,  b0 , b1  and b2  are the affine 

transformation parameters. These parameters are calculated using the least square method.  

To identify the corresponding vertices between the test frame and the keyframe, we first 

compare two corridor topological graphs derived from those models. If faces of one 

corridor topological graph match ones of the other graph, the vertices belonging to the 

faces are considered as corresponding vertices. For example, 𝐶𝑠𝑢𝑏1
𝑙𝑒𝑓𝑡

 of the test frame is 

always corresponds to 𝐶𝑠𝑢𝑏1
𝑙𝑒𝑓𝑡

 of the keyframe and not to 𝐶𝑠𝑢𝑏2,..,𝑛
𝑙𝑒𝑓𝑡

. Therefore, the 

corresponding vertices are used to estimate the affine transformation parameters using the 

least square method.  

After transforming the test frame indoor corridor layout into the selected keyframe 

through the affine transformation, a newly designed scoring function is used for finding the 

optimal match. Here, the proposed scoring function includes three terms which are 
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measuring the resemblance of the two indoor corridor layouts by considering their 

topology, geometry, and radiometric similarities. The proposed scoring function is as 

following:  

 

𝑆𝑐𝑜𝑟𝑒 = (𝑤𝑇 × 𝑆𝑇) + (𝑤𝐺 × 𝑆𝐺) + (𝑤𝑅 × 𝑆𝑅) (6.5) 

 

where ST , SG , and SR  represent topological similarity, geometry similarity and 

radiometric similarity, respectively.  wT, wG, and wR are weight parameters for ST, SG and 

SR  respectively. These weight parameters are considered as equal in the experiments 

(𝑤𝑇 = 𝑤𝐺 = 𝑤𝑅 =
1
3⁄ ) . Based on the generated topological graphs, the topological 

similarity 𝑆𝑇(𝑡, 𝑘)  is calculated by comparing the number of common faces 𝐹𝑡 ∩ 𝐹𝑘 

between a test frame and a keyframe as follows: 

 

𝑆𝑇(𝑡, 𝑘) =  
𝑛𝑢𝑚(𝐹𝑡 ∩ 𝐹𝑘)

𝑛𝑢𝑚(𝐹𝑡)
 (6.6) 

 

The geometric similarity 𝑆𝐺(𝑡, 𝑘) is calculated by measuring distances between the 

corresponding vertices belonging to common faces. If the measured distance 𝑑𝑡𝑘 between 

two corresponding vertices 𝑉𝑡 ∩ 𝑉𝑘 is less than a predefined threshold (𝑇1=100 pixel in 

experiments), indicator function 𝛿𝐺 for the geometric similarity is one, and zero otherwise.  

 

𝑆𝐺(𝑡, 𝑘) =
∑ 𝛿𝑉𝑡∩𝑉𝑘 𝐺

∑ 1𝑉𝑡∩𝑉𝑘

  , 𝛿𝐺 = {
1     𝑖𝑓   𝑑𝑡𝑘 ≤ 𝑇1
0     𝑖𝑓   𝑑𝑡𝑘 > 𝑇1

 
(6.7) 
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The radiometric similarity 𝑆𝑅(𝑡, 𝑘)  is calculated by comparing average colour 

values of corresponding faces 𝐹𝑡 ∩ 𝐹𝑘. For each individual layout face, the average values 

of pixels in three different bands (R, G, B) are calculated and assigned to the selected 

layout face. If the sum of colour differences in the three bands 𝑟𝑡𝑘 between 𝐹𝑡 and 𝐹𝑘 is 

less than a predefined threshold (𝑇2=50 in experiments), indicator function 𝛿𝑅 would be 

one and zero otherwise as follows:  

 

𝑆𝑅(𝑡, 𝑘) =
∑ 𝛿𝐹𝑡∩𝐹𝑘 𝑅

∑ 1𝐹𝑡∩𝐹𝑘

  ,  𝛿𝑅 = {
1      𝑖𝑓      𝑟𝑡𝑘 ≤ 𝑇2
0      𝑖𝑓      𝑟𝑡𝑘 > 𝑇2

 (6.8) 

 

After scores for all keyframes are calculated, the optimal keyframe for the test 

frame is determined by selecting a keyframe which maximize the scoring function as 

following: 

 

𝑀∗ = 𝑎𝑟𝑔 𝑚𝑎𝑥
∀𝑀𝑘

𝑆𝑐𝑜𝑟𝑒(𝑀𝑘) (6.9) 

 

If the maximum score is less than a user-defined threshold (𝑇3=0.9 in experiments), 

the test frame is considered not to be matched with keyframes. Note that in this chapter, 

thresholds values, weights and control parameters are chosen empirically, and how the 

algorithm will work in other conditions will be examined in future works. 
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6.3.3 Updating Layout Through Loop Closing  

In the previous section, the matching of a test frame to a keyframe is explained which 

provides the base for associating the current measurements in the system with the 

previously built components of the map at an earlier time. Once the appropriate match is 

found, loop closure would be possible. Visual SLAM systems are commonly utilizing 

global pose-graph optimization or bundle adjustment to perform loop closure 

optimizations. Globally consistent trajectory could be obtained by applying these 

techniques that reduce the amount of drift in visual SLAM systems. Applying pose-graph 

optimization method, the whole environment would be represented as a graph that consists 

of camera poses as nodes which are connected through edges, representing camera motion. 

Note that additional transformations between images would be included as further edge 

constraints in this graph. Inferences about accumulated drift can be drawn by observing 

previously visited scenes. Consequently, the amount of drift can be calculated by 

considering all edge constraints. 

Loop closing can also be performed through bundle adjustment over camera poses 

and point features (Triggs et al., 1999). In this thesis, bundle adjustment technique is 

adopted to perform loop closure optimization. Note that bundle adjustment can consider a 

local group of several images, instead of performing optimization over the whole camera 

poses. Bundle adjustment minimizes the reprojection errors through carrying out non-

linear optimization of 3D point features Y and camera poses P. In other words, bundle 

adjustment minimizes the distance between 3D point features back projected into the 
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image Ij and measured points y in the image space with the current camera pose estimate. 

Thus, the cost function which should be minimized can be defined as: 

 

𝑒 =  ∑ || 𝑃𝑗𝑌𝑖 − 𝑦𝑖,𝑗  ||
𝑖,𝑗

 (6.10) 

 

Here, indexes j and i are related to the camera and features respectively. The 

Levenberg–Marquardt algorithm (LMA) which is suitable for solving non-linear least 

squares problems can be used as the optimization method. This algorithm interpolates 

between gradient descent method and the Gauss–Newton algorithm (GNA). Thus, it is 

more robust than the original GNA and in various cases can achieve global solution. Here, 

6 parameters (𝑋𝑐, 𝑌𝑐, 𝑍𝑐, 𝜔, 𝜑, 𝑘) per camera and 3 parameters (𝑋𝑝, 𝑌𝑝, 𝑍𝑝) per point feature 

must be optimized. Initial values for camera pose and point features are provided through 

SLAM. Note that the detected loop through layout keyframe matching in previous section 

can impose a constraint to this optimization process. Hence, a set of point feature matches 

𝑦𝑢 and 𝑦𝑣 with respect to camera positions 𝑃𝑢 and 𝑃𝑣  are available in 2D and 3D spaces 

respectively. The respective 3D coordinates of this set of point feature matches 𝑌𝑢 and 𝑌𝑣 

are known as well. Due to the SLAM accumulated errors these 3D coordinates differ. Yet, 

the loop closing constraint dictates that the coordinates of these 3D points should be the 

same. Moreover, the reprojection of these 3D point features should be equal to 𝑦𝑢 and 𝑦𝑣. 

Thus, 𝑌𝑢 needs to be back projected to both 𝑦𝑢 and 𝑦𝑣. This information should be added to 

the bundle adjustment data structure. Having performed this task, the optimization can be 
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accomplished in a way that both cameras poses and point features are corrected and the 

loop is closed consequently. 

 

6.4 Experimental Results 

To examine the performance of the proposed model-based loop closing method, the video 

datasets of Petrie Science and Ross buildings were used. More information on these two 

datasets is presented at previous chapter (Table 5.1). Here, these two datasets are chosen 

over the other available benchmarks because they are associated with ground truth indoor 

corridor models (introduced in chapter 3). This provides a unique opportunity to evaluate 

indoor layouts estimated by Layout SLAM. 

 

6.4.1 Performance of Keyframe Selection Scheme 

Earlier in this chapter, a procedure is introduced for selection of keyframes among all 

captured video frames to progressively benchmark Layout SLAM trajectories. The 

proposed cost function in this procedure (equation 6.1) examines the completeness and 

visibility of features where the side corridors are appeared in given video frames. These 

two factors together play an important role for identifying optimum keyframes. Table 6.1 

reveals the average percentages of completeness and visibility of all features which are 

associated with the identified keyframes.  

It can be seen in this table that the average visibility is not 100% even though the 

side corridors are fully appeared in the identified keyframes. This is due to that fact that 

when the visibility of a side corridor layout is at its maximum pick, some of its structural 
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features are residing at the image borders. Thus, the density count of these features would 

be zero in the identified keyframe. Hence, reducing the amount of visibility to some extent 

will increase the count of density for a set of structural features. Note that in the proposed 

cost function equation (6.1), the weight parameter α intends to balance this relation. Yet, in 

experiments the value of this weight parameter is chosen empirically (α = 2). 

 

Table 6.1 Percentage of completeness and visibility of features in identified keyframes. 

Dataset 
Structural Features 

Visibility (average) 

Structural Features 

Completeness (average) 

Video Frames 

# of 

Keyframes 

Total # of 

Frames 

York University Petrie 

Science Building, one loop 
86% 83% 10 9,245 

York University Ross 

Building, one loop 
91% 94% 9 3,627 

York University Ross 

Building, two loops 
89% 78% 21 8,553 

 

As it can be seen in the above table, the number of keyframes compare to the total 

number of video frames is very small. Thus, the full Layout SLAM trajectory cannot be 

represented by this small number of keyframes. However, these keyframes together cover 

all changes of indoor layout on the run with respect to the initialized corridor layout. The 

proposed model-based loop closing technique can successfully perform regardless of 

having small number of identified keyframes. Thus, keyframes sparsity not only does not 

affect the loop closing scheme but also makes keyframe matching fast and robust. 
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6.4.2 Performance of Keyframe Matching Scheme 

To detect loop closure instances through the proposed model-based method, a test frame 

(the latest keyframe) should be examined whether it matches any keyframe from the 

available keyframe set. If a test frame and a keyframe under the question match with high 

score, then the occurrence of a loop closure is confirmed. As mentioned previously, 

topology and geometry of the reconstructed layout models and radiometry of the original 

video frames are considered to address the occurrence of a matching instance. Note that the 

proposed method uses basic mathematics in detecting loop closure instances. Thus, it 

works swiftly while it performs keyframe matching scheme.  

 

 

Figure 6.3 Schematic view of camera trajectory (Ross building data, first loop) 

accompanied with selected keyframes and a test frame in blue. 
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Figure 6.3 shows the camera path in Ross building, one loop dataset along with the 

selected keyframes. Since this dataset has the minimum number of identified keyframes, it 

is suitable for depicting the keyframe matching results. The first keyframe is chosen when 

the camera start observing the first corridor and the rest is added while it is crawling the 

other six corridors (total 8 keyframes and 1 test frame). 

 

 
 

 

Keyframe #0690 Keyframe #0914 Keyframe #1822 

   

Keyframe #1993 Keyframe #2485 Keyframe #2621 

 
 

 

Keyframe #3217 Keyframe #0221 Test frame #3375 

Figure 6.4 Test frame layout (in blue) is transformed into the other keyframes and 

compared to their layouts (in red). 
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The proposed keyframe matching technique applies the 2D affine transformation to 

project the layout of a test frame into the selected keyframe. Thus, matching individual 

keyframes would be more convenient to perform. Figure 6.4 shows the transformed test 

frame layout (frame #3375) in blue compared to different keyframe layouts in red for 

finding the best match.  

 

Table 6.2 Quantitative assessment of matching a test frame (#3375) to other keyframes. 

Dataset Keyframe 

Test frame #3375 

SG ST SR Total score 

York University 

Ross building, first 

loop 

#0221 0.941 1.000 1.000 0.980 

#0690 0.143 0.600 0.000 0.248 

#0914 0.000 0.500 1.000 0.500 

#1822 0.000 0.600 0.750 0.450 

#1993 0.769 0.317 0.409 0.232 

#2485 0.246 0.382 0.319 0.316 

#2621 0.000 0.833 0.000 0.278 

#3217 0.333 0.833 0.000 0.389 

 

Table 6.2 reveals the corresponding matching scores for this set of keyframes. As it 

can be seen in this table, keyframe #0221 is the best match for the test frame #3375 since 

achieving 98% of the matching scores. Details of the scores for topology, geometry, and 

radiometric similarities is given in this table as well. These individual scores together 
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evaluate the possibility of having a loop closure instance on the run. Note that threshold 𝑇3 

(𝑆𝑐𝑜𝑟𝑒 ≥  𝑇3 = 0.9) is applied for accepting two individual frames as correct match. 

 

6.4.3 Corridor Models After Loop Closing 

As stated at the beginning of this chapter, the prepared datasets of Ross and Petrie Science 

buildings were used to examine the performance of the proposed model-based loop closing 

method for Layout SLAM. The performance of Layout SLAM method with no loop 

closing is presented in chapter 5. The trajectory results were compared to the original 

Mono SLAM results (Civera et al., 2010) and RAWSEEDS dataset ground truth. Layout 

SLAM had encountered with corridor depth issues in Ross building dataset which was 

mostly due to the low number of features in images. Hence, in the new experiments the 

threshold which controls the minimum number of features in images is increased (𝑇𝑓=50 in 

new experiments; 𝑇𝑓=20 in 5th chapter experiments). Note that increasing this threshold 

would increase the computational time for Layout SLAM. Yet, the loop closing 

experiments in this section were performed in off-line mode. 

Figure 6.5 shows the top view of the estimated corridors by Layout SLAM 

performing on Ross building first loop dataset after model-based loop closing. Here, the 

trajectory is plotted up to the location where the last keyframe (test frame) is taken. The 

camera’s trajectory starting and ending points are depicted with green and blue circles 

respectively. This figure makes the qualitative assessment possible and proves that Layout 

SLAM can successfully estimate correct orientation angles where the camera turns into the 

new corridor environment. Yet, estimation of the correct corridor length was still an issue 
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on this dataset. Even though this problem has suppressed to some extent due to increasing 

the above-mentioned threshold, the ultimate solution is to close the loop.  

 

 

Figure 6.5 Generated corridor layouts for Ross building, first loop dataset; Adjusted 

corridor layouts after loop closing.  

 

It should be noted that in these experiments the first estimated corridor always 

considered as fixed and the rest of the corridors are adjusted accordingly through loop 

closing. This is because Layout SLAM is always initialized by introducing the first true 

corridor layout through its structural corner point features which has been identified in the 

image space. Figure 6.5 proves that the proposed Layout SLAM method produces small 
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orientation errors in estimation of the corridor layouts. Yet, the corridors depth scaling 

errors at long corridors are considerable where the count of features is low. This 

necessitates the implementation of the proposed model-based loop closing method in 

Layout SLAM architecture. 

It should be noted that after the loop closing is performed on structural corner point 

features, the updated structural planes of corridor layouts may not be orthogonal. Thus, the 

layout orthogonality constraint is applied to the updated layouts considering the first 

corridor. Note that the orthogonality of the first corridor is preserved after loop closing 

since it was considered as fixed in the procedure. 

Figure 6.6 shows the updated corridor layouts after model-based loop closing is 

performed on Ross building, two loops dataset. The camera’s starting and ending points 

are depicted with green and blue circles respectively. Note that in this experiment after the 

camera completed its first loop and the loop closing has performed the updated corridor 

layouts will be considered as fixed for the rest of the run. Thus, adjusting the layout 

estimation errors in the second half (right side) corridors would not be troublesome.  

After loop closing is performed on the estimated corridor layouts the outcoming 

results can be compared to the prepared ground truth layouts. As stated in chapter 3, three-

dimensional ground truth corridor layouts are manually generated from laser point cloud. 

Also, 2D ground truth layouts are manually identified in the selected images. Hence, the 

comparison is possible both in 2D and 3D spaces. To achieve a better in-depth analysis the 

estimated layout for each individual keyframe image is compared to the ground truth 

layout. Since these two sets of layouts are prepared in different coordinate systems, the 
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first task was to transform the estimated layouts into the same coordinate system as the 

laser data had. Here, side corridors and their connected walls are playing a great role in 

performing the 3D affine transformation. 

 

  

(a)                                                                        (b) 

 

(c) 

 

Figure 6.6 Estimated camera trajectory and corridor layouts, Ross building; (a) keyframe is 

matched to a test frame image (loop closing incident), (b) camera path schematic view, and 

(c) adjusted camera trajectory and corridor layouts after model-based loop closing. 
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(a) 

 

(b) 

Figure 6.7 Keyframe layouts comparison to the prepared ground truth data; (a) comparison 

of estimated keyframe corridor layouts for Petrie Science building dataset and (b) 

comparison of estimated keyframe corridor layouts for Ross building, two loops dataset. 

 

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9

Petrie Science Building 3D Models 

Width Length Height

D
is

p
la

ce
m

en
t 

(m
)

Keyframes Index

0

0.5

1

1.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Ross Building 3D Models

Width Length Height

D
is

p
la

ce
m

en
t 

(m
)

Keyframes Index



185 

 

 

 

Figure 6.7 shows the results of keyframe layouts comparison to the prepared 

ground truth data. Since the orthogonality of the generated layouts are preserved, the 

comparison could be performed in 3 major directions. As it can be seen in the above charts, 

the proposed Layout SLAM method could estimate the indoor corridor layouts with less 

than 20cm displacement errors in width and height and less than 1.05m in length. Table 6.3 

reveals the mean and maximum trajectory errors for selected keyframes in the above 

experiments as well. Note that the ground truth trajectories were calculated for keyframes 

using the available laser point cloud. This table provides a better understanding over the 

Layout SLAM results. Here, the maximum absolute trajectory errors of 68cm in position 

and 2.84° in orientation (kappa angle) for approximately 315m path is obtained. 

 

Table 6.3 Layout SLAM absolute trajectory errors on keyframes after loop closing. 

Dataset 
Approximate 

path length 

Position error (m) Orientation error (degree) 

Average Maximum 

Maximum 

error over 

trajectory 

Omega 

Avg. 

Phi 

Avg. 

Kappa 

Avg. 

York University 

Petrie Science 

Building, one 

loop 

 159m 0.239 0.546 0.34% 1.079 1.608 2.215 

York University 

Ross Building, 

two loops 

315m 0.301 0.673 0.21% 1.518 1.191 2.832 
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6.5 Summary 

In this chapter, we proposed a new method of loop closing detection for Layout SLAM. 

This model-based method can accurately identify the loop closing incidents when the 

camera visits the previously modeled corridor layouts in the seen. Since Layout SLAM 

algorithm is continuously challenged by long corridors and few numbers of features in the 

environments, applying a loop closing technique is essential for it. Hence, the proposed 

model-based loop closing method is specifically designed to address Layout SLAM 

drifting problems. The proposed method takes advantage of the estimated orthogonal 

layouts for various keyframes and identifies the loop closing incidents through applying a 

layout matching technique. Image and layout topology information is used to address 

keyframe matching. Considering image and layout topology information reduces matching 

ambiguity and increase the chance for global layout model consistency. Moreover, the 

mapping scale drifts would be suppressed while dealing with the same topological corridor 

layouts. Note that regardless of the textures in the scene the loop closing incident can be 

identified through examining layouts topology. This characteristic of the new method is 

more appealing when extracting enough features from texture-less environments is a 

challenging task. This method compensates the limitations of the existing loop closing 

algorithms at indoor corridor scenes. Yet, modeling errors including orientation error, 

shape deformation and boundary displacement can be addressed through model-based loop 

closing technique. The proposed method is evaluated through experiments conducted on 

York University dataset. The incoming result proves the robustness of this technique in 

detecting loop closing instances at indoor corridors. 
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Chapter 7 

Conclusions and Future Directions 

 

 

7.1 Conclusions 

In this study, 3D reconstruction of indoor corridor layouts using a single image and visual 

SLAM is delivered. To achieve this goal, a new indoor modeling dataset is prepared, and 

major steps towards continuous indoor corridor modeling are presented. Thus, various 3D 

indoor modeling and reconstruction related topics are studied, and novel solutions are 

provided to identified problems. At the first step, a new method for reconstruction of 

geometrically accurate and regularly robust indoor corridor layout using an image is 

presented. At the second step, Layout SLAM is presented that automatically maps indoor 

corridors and simultaneously estimates camera’s positions and orientations using set of 

images. At the third step, a model-based method for identifying SLAM loop closure 

incidents at indoor spaces is offered. Moreover, the quality of a reconstructed 3D indoor 

corridor layout is assessed using the prepared ground truth dataset. The following 

paragraphs will provide conclusions of each taken step towards automatically 

reconstruction of indoor corridor layouts in this thesis. 

 

 Chapter 3 introduced the newly generated indoor corridor modeling dataset. This 

dataset can be used for evaluating and assessing geometric qualities of reconstructed 3D 
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indoor corridor layouts. The existing image-based modeling related datasets are mainly 

focused on single rooms and usually do not provide reference 3D models. Contrary to the 

existing datasets, the introduced dataset in this thesis is mainly focused on corridor scenes 

and provides ground truth indoor corridor layouts accompanied with camera trajectories 

for keyframes. Hence, the quality evaluation of both single image and visual SLAM 

reconstructed 3D indoor corridor layouts and the respective camera trajectories is feasible. 

Note that both TIMMS generated laser point clouds and manually reconstructed 2D and 

3D corridor models are included in this dataset. Thus, measuring geometrical and 

topological accuracies of reconstructed indoor corridor models in both 2D and 3D spaces 

are possible. However, the limitation of the introduced dataset is that it does not reveal 

semantic related information of introduced indoor models. Therefore, addition of semantic-

based information to this dataset should be investigated in future works. 

 

 Chapter 4 introduced a method for automatic 3D indoor corridor layout 

reconstruction using a single image. Indoor corridor modeling aided by extraction of low 

and middle level cues from a single image involves with critical problems. Reconstruction 

of a 3D indoor model from a single image is inherently an ill posed problem. Thus, to 

achieve a realistic 3D reconstruction of the layout, some prior knowledge must be inputted 

directly into the algorithm. Knowing camera’s height at the time of exposure and adopting 

Manhattan rule assumption to regularize indoor layout structures are considered in the 

proposed algorithm. The proposed method allows the estimated corridor layout to be 

comprised of multiple connected boxes to simply handle the presence of side corridors, 
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contrary to existing methods, and solves the problem through hypothesizing-verifying 

multiple box primitives. Experiments reveal that using both physical line segments and 

virtual rays of vanishing points, the proposed method can generate corridor layout 

hypotheses even if clutters are occluding parts of the ceiling-wall or floor-wall boundaries. 

Both geometric and semantic information (orientation map and geometric context) of an 

image are extracted and incorporated in the suggested objective functions for finding the 

best fitting layout hypothesis to an image. The experimental results reveal that this 

incorporation enhances the performance of the proposed algorithm and reduces the 

occurrence of geometrical errors. The proposed method is one step forward towards image-

based continuous indoor space modeling where the integration of individual indoor layouts 

is needed. 

 

 Chapter 5 presented Layout SLAM which is a new method for real-time 

simultaneous corridors layouts and camera poses estimation from a set of images. This 

chapter tackles an important problem in visual navigation and SLAM representation that 

deals with tracking camera’s various poses in an unknown corridor environment. This 

method tracks corridors features in consecutive video frames and directly represents them 

in a 3D layout structure that has a known topological format. The proposed method solves 

the visual SLAM representation problem by directly providing layout topological 

information (eliminating the processing step to achieve better map representation). 

Experimental results depict that Layout SLAM can successfully compensate errors in 

camera orientation estimation through introducing the rotation compensation variable 
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(matching consecutive vanishing directions on a unit sphere). Therefore, not only the 

problem of abrupt camera movements can be minimized, but also layout features tracking, 

and matching would be less cumbersome. Moreover, experimental results depict that 

providing line-based layout hypotheses for layout tracking can compensate the absence of 

textures and abundant geometrical features in the scene. Note that layout features matching 

cost function considers both global and local context information to deal with corridor 

scene related challenges. Experimental results reveal that Layout SLAM is robust against 

orientation error accumulations and produces very limited geometrical errors in estimation 

of the corridors layouts. 

 

 Chapter 6 presented the model-based loop closing technique which is designed for 

reducing layout and trajectory related errors in Layout SLAM system. The proposed 

method can identify previously visited layouts (related features) which is essential for loop 

closing. This method identifies keyframes and compares the topological graph of 

previously observed layouts to find the loop closing incident. Both semantical and layout 

topological information are incorporated to solve keyframe matching problem. 

Experimental results show that by considering layout topology graph, the proposed method 

can perform robustly in texture-less environments. Thus, mapping scale drifts could be 

successfully suppressed with less ambiguity. Hence, model-based loop closing can 

compensate the limitations of pure feature-based loop closing algorithms. Experimental 

results indicate that the proposed technique for loop closing detection, limits the search 
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among the captured video frames and reduces the number of feature matching attempts 

which results in faster performance of the Layout SLAM. 

 

7.2 Directions for Future Research  

As stated in this thesis, the concept of continuous indoor space modeling involves with 

progressively reconstruct indoor models. This study provided a wide research platform for 

continuous indoor space modeling using a single source (image) data. This study’s main 

goal is to automatically generate 3D indoor space models. However, beside images, laser 

scanning point clouds and other type of images (e.g. panorama and RGBD image) should 

be able to be incorporated in our continuous indoor space modeling framework; this 

subject can be studied in future researches. Following paragraphs will provide the future 

works for each chapter of this thesis: 

 

• In terms of evaluating generated indoor space models, even though the prepared 

dataset provided valuable references of reconstructed indoor space models, this 

dataset only focused on providing geometric information of the models and the 

semantic information is missing. Thus, more works are needed to add semantic 

information to the prepared dataset. Moreover, in SLAM related reference dataset 

camera trajectories are only calculated for keyframe images which should be 

extended to the whole trajectory in the future. 
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• The proposed single image based indoor corridor modeling method provided 

promising results. However, the main limitation for this method was to accurately 

identify the end part of a corridor especially when the corridor is very lengthy 

(length is more than 50 meters). This is a main disadvantage of single image-based 

modeling approach that identifying layout’s front-face position is not possible if 

enough evidences are not present in an image. One possible solution would be the 

integration of other data sources in this process. Also, individual 3D indoor 

corridor models can be integrated by investigating their topological and semantical 

information. This approach would enable the progressive reconstruction of joint 

indoor corridor models while accommodating their scale differences. Hence, this 

cloud be a major future work in this research to integrate single models and step 

towards complete image-based indoor space modeling.  

 

• The proposed Layout SLAM method is following the Manhattan rule assumption 

and only considers the respective structural format for output representation. In the 

future, Layout SLAM can be extended with less constrained geometric models. 

Also, Layout SLAM is applying the Extended Kalman Filtering (EKF) for 

inference. EKF handles the real-time camera localization in Layout SLAM 

architecture. However, EKF is not suitable for handling large number of features 

since its state vector grows by adding more features to the system that prolongates 

the computation time. Thus, applying other mathematical frameworks to handle 

back-end section of the Layout SLAM would be an interesting work for future. 
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• In relation to Layout SLAM development, a layout topology-based key frame 

selection and loop closing techniques are presented. The current version of this 

method is only considering the camera to move inside the main corridors and 

always facing the front-faces of them. Yet, the camera may reach a corridor from 

one of its sides. Thus, matching front-faces of side corridors to front-face of the 

main corridor in question would be an interesting future work in identifying the 

occurrence of a loop closing instance. 
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