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ABSTRACT

Consumer cameras such as digital single-lens reflex camera (DSLR) and smartphone

cameras have onboard hardware that applies a series of processing steps to transform

the initial captured raw sensor image to the final output image that is provided to

the user. These processing steps collectively make up the in-camera image processing

pipeline. This dissertation aims to study the processing steps related to colour render-

ing which can be categorized into two stages. The first stage is to convert an image’s

sensor-specific raw colour space to a device-independent perceptual colour space. The

second stage is to further process the image into a display-referred colour space and

includes photo-finishing routines to make the image appear visually pleasing to a

human.

This dissertation makes four contributions towards the study of camera colour

rendering. The first contribution is the development of a software-based research

platform that closely emulates the in-camera image processing pipeline hardware.

This platform allows the examination of the various image states of the captured

image as it is processed from the sensor response to the final display output. Our

second contribution is to demonstrate the advantage of having access to intermediate

image states within the in-camera pipeline that provide more accurate colourimetric

consistency among multiple cameras. Our third contribution is to analyze the current

colourimetric method used by consumer cameras and to propose a modification that

is able to improve its colour accuracy. Our fourth contribution is to describe how to

customize a camera imaging pipeline using machine vision cameras to produce high-

quality perceptual images for dermatological applications. The dissertation concludes

with a summary and future directions.
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Chapter 1

Introduction

When we take a photograph using a digital camera, we often assume the output image

is a direct output of the camera’s sensor. However, there are a number of processing

steps applied on cameras to convert the digital response of the light falling on the

camera’s sensor to a final red, green, blue (RGB) colour image intended for human

perception and use on digital displays. These processing steps are applied in sequence

and make up what is known as the “camera imaging pipeline”. Figure 1.1 shows a

standard diagram of the in-camera processing pipeline (Ramanath, Snyder, Yoo, &

Drew, 2005). At a high level, the overall pipeline can be categorized into two stages:

(1) a colourimetric conversion stage and (2) photo-finishing stage. The first stage

converts sensor values from their sensor-specific colour space to a perceptual colour

space. We often refer to this as the colour space transform (CST). This first stage

preserves a linear relationship between the scene radiance and the image irradiance.

In colour science such image states are called “scene-referred” and imply the image

has a direct relationship to the physical scene that was imaged (Sharma, 2003).
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Stage 1: Colourimetric mapping Stage 2: Photo-finishing and output

Figure 1.1: A diagram of a typical in-camera imaging pipeline. Work in this disserta-
tion targets the colourimetric mapping in the first stage in the pipeline that
converts the camera-specific colour space to a perceptual colour space. The
procedure targeted by our work is highlighted in red and represents an inter-
mediate step in the overall pipeline.

After the colourimetric conversion, the second stage further processes the colour-

metric image such that it is suitable for consumer displays. This requires the image

values to be mapped to a standard RGB format (sRGB). This second stage includes

camera-specific proprietary colour manipulation to improve the perceptual qualities

of the image—that is, to make the image more visually appealing. As a result, we can

consider this stage to also include photo-finishing manipulation. In colour science,

such image states are called “display-referred” or “output-referred” as the image data

is not longer directly linked to the physical scene, but instead processed for display

or printing (Sharma, 2003).

1.1 Motivation

This thesis studies the colour rendering applied onboard cameras. Surprisingly, a

study of this nature is lacking in the computer vision literature. This stems from

the difficulty in accessing camera hardware. For many years it was possible only to

obtain the display-referred photo-finished sRGB images intended for display. Only
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recently did camera manufacturers allow consumers and developers access to the

initial unprocessed raw sensor image (often called a raw-RGB image). In the context

of computer vision, the drawback of sRGB (output) images is that they have been

manipulated by camera-specific photo-finishing routines that alter the colours. From

a computer vision application standpoint, such color manipulation makes it difficult

to develop a high-level application that relies on colour, because colours can appear

different depending on the camera. In a similar manner, the drawback of raw-RGB

images is that the RGB values are in the sensor-specific colour space. This means

the raw-RGB value can be vastly different when cameras using different sensors are

observing the exact same scene under the same illumination. As with sRGB, it

is challenging to design robust algorithms that work across multiple cameras using

unprocessed raw-RGB images.

In principle, the colourimetric conversion stage on the camera used to map the

raw-RGB values to the same perceptual colour space should make colour values sim-

ilar across multiple cameras and sensors. The problem, however, is that access to

the individual processing steps or intermediate image stages within the camera hard-

ware remains closed as camera manufacturers do not allow access to their underlying

in-camera pipelines. This makes it difficult to assess the quality of the individual

components, including those that make up colourimetric conversion, due to the lack

of access to camera hardware. To address this issue, open hardware implementations

have been proposed (e.g., Adams et al. (2010);Rowe, Goode, Goel, and Nourbakhsh

(2007)). Similar open design and functionality can be provided via a software-based

platform. The benefits of a software framework over a hardware solution are that it
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can work on images saved from a variety of different cameras and in an off-line man-

ner. Moreover, a software platform allows greater flexibility in processing the image

at intermediate stages than possible on fixed hardware implementations. Therefore,

providing a software-based research platform is needed to facilitate experimentation

and analysis. The need for a software-based camera emulator platform is the impetus

for our first contribution in this dissertation.

With a software camera pipeline platform established, we can analyze the interme-

diate stages in the hardware pipeline to see if an intermediate stage is indeed better

than raw-RGB or sRGB in terms of colourimetric consistency. This also gives us an

opportunity to examine the quality of the existing implementation for colourimetric

conversion. Finally, based on our knowledge of how cameras work, we can advise

researchers developing their own software platforms for machine vision cameras on

best practices for camera calibration and consumer camera emulation.

In the following, we provide a discussion on the scope of the work. Afterwards,

the chapter concludes with a road map for the rest of the dissertation.

1.2 Objective

Our first objective is to implement a new software platform that allows easy access to

each stage of the camera imaging pipeline. The platform allows modification of the

parameters for individual components as well as the ability to access and manipulate

the intermediate images as they pass through different stages. This first objective

forms a basis for the rest of the dissertation and makes it possible to complete the

following objectives.

Our second objective is to investigate a consistent image state in the camera
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imaging pipeline. The goal is to make the colours consistent among multiple cameras

imaging the same scene. Our approach leverages our ability to access the camera

imaging pipeline stages, and proposes that cameras should be allowed to output a

new image format related directly to the perceptual color space.

Directly related to our second objective, our third objective is to improve colour

reproduction accuracy within the camera imaging pipeline. To this end, we analyze

the colorimetric procedure that is currently applied, and state its limitations. We

then propose two methods to improve the colour reproduction accuracy.

Our final objective is to use our knowledge of camera pipelines to outline a proce-

dure for developing a custom imaging pipeline for use with machine vision cameras.

Most machine vision cameras used in computer vision apply minimal processing and

provide little detail to engineers and researchers on how to interpret their image val-

ues. We detail a straightforward procedure to calibrate such devices. We do this for

a specific application scenario of dermatological imaging for skin analysis. This work

also describes methods to integrate non-visible spectral information into the visible

sRGB image. Quantitative and subjective results, including feedback from clinicians,

suggest the effectiveness of our customization procedure.

1.3 Contributions

This dissertation makes four contributions on the colour-rendering process in the

camera imaging pipeline. These contributions are as follows:

• First, we present a software platform to allow easy access to each stage of the

imaging pipeline. Our approach operates on images saved in Adobe Digital
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Negative (DNG) raw-RGB image format, which represents the minimally pro-

cessed sensor response from the camera and the starting point for the camera

processing pipeline. Our platform allows images to be opened and run through

a software rendering application programming interface (API) that parallels the

onboard processing steps, including the individual processing components and

their associated parameters. More specifically, our platform provides API calls

that allow the modification of processing components’ parameters and full ac-

cess to the intermediate images at each processing stage. Such intermediate

images can be modified and inserted back into the pipeline to see the effect on

the final output. The proposed software platform is easily integrable with other

softwares, such as Matlab, and provides a much needed environment for im-

proving camera imaging, or performing experiments within the proper context

of the full camera imaging pipeline. This work has been published in Karaimer

and Brown (2016).

• Second, we advocate for a new image format to be made available to consumers

and application developers. Specifically, we argue that the internal image state

after it has been processed by the colourimetric steps in the camera pipeline is

more suitable for applications that assume imaged scene values are consistent

among multiple cameras. To demonstrate this, we perform experiments that

analyze the consistency of colour values at different image states for scene points

imaged by multiple cameras. We show that the colourimetric image state is by

far the most consistent across multiple cameras. These experiments reinforce

our advocacy for camera manufacturers to provide access to a colourimetric

image format. This work has been published in Karaimer and Brown (2019).
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• Third, we describe two methods to improve colour reproduction accuracy on

digital cameras. Toward this goal, we first overview the current colourimetric

mapping process and discuss why limitations in white balance create the need

for per-illumination CSTs. Next, two methods for improving the colourimetric

mapping are described. The first is to extend the current interpolation method

to include an additional pre-calibrated illumination. This simple modification

provides improved results and can be easily incorporated into the existing in-

camera pipeline. Our second strategy requires no interpolation and uses a single

fixed CST. This second method relies on true colour constancy (i.e., full colour

balance) instead of traditional white balance and is currently suitable for use in

an off-camera platform. Our experiments show that both proposed strategies

offer notable improvements in the colour reproduction accuracy for both DSLR

and mobile phone cameras. As part of this work, we have also created a dataset

of 700 carefully calibrated colourimetric images for research in this area. This

work has been published in Karaimer and Brown (2018).

• Lastly, we describe how to customize a machine vision camera image pipeline

to produce high-quality perceptual images for dermatological applications. As

part of this work, we describe the features provided by a typical machine vision

camera and discuss why they are not suitable to produce high-quality perceptual

images. Our primary contribution is to overview a calibration procedure that

not only colourimetrically calibrates the machine vision camera but also allows it

to mimic the photo-finishing applied on consumer cameras. Our dermatological

imaging system also has the ability to capture images from select narrow spectral

bands in both the visible and near-infrared (NIR) range. As part of this case
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study, our secondary contribution is to describe how select spectral images can

be incorporated into the visible RGB image to provide enhanced imagery. To

this end, we gathered feedback from clinicians to understand their preference

regarding which bands and integration methods are preferred. This work has

been published in Karaimer, Khodadad, Kazemzadeh, and Brown (2019).

1.4 Road Map

The rest of this dissertation is organized as follows. Chapter 2 provides preliminaries

to understand colour and work related to the topics in this dissertation. Our soft-

ware platform for manipulating the camera imaging pipeline is discussed in Chapter 3.

Chapter 4 presents a third image format that makes imaged scene values that are con-

sistent among multiple cameras. Chapter 5 describes methods for improving colour

reproduction accuracy on cameras. Our customization approach for dermatological

imaging is described in Chapter 6. Finally, Chapter 7 concludes the dissertation with

a summary and a discussion on possible future work.
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Chapter 2

Preliminaries and Related Work

This chapter presents background for colour and imaging, as well as related work for

white balance, colour constancy, and colour calibration.

2.1 Preliminaries

From the biological standpoint, colour is defined based on how we perceive electro-

magnetic radiation emitting or reflecting from physical objects. These definitions

limit themselves explaining how the electromagnetic radiations are perceived and the

change of perception under different viewing conditions. In the following, a short sum-

mary of the human visual system is provided. Then the physical aspects of colour

are presented. Afterwards, colourimetry, which is the low-level (i.e., sensor-level)

response of the human visual system to the physical phenomenon, is introduced. Fi-

nally, the section concludes with a summary of image formation in cameras and the

camera imaging pipeline.
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2.1.1 The Human Visual System

The human visual system (HVS) consists of the eyes, the optic nerves, and the com-

ponents in the brain. Optical elements in the eye are responsible for collecting light

reflecting from the surfaces, and focus the light onto the retina. The retina is the

curved surface at the back of the eye. The retina consists of photoreceptors, and

neural processes start in the retina. The photoreceptors contain rods and three types

of cones that convert the light into a neural signal. Rod photoreceptors are highly

sensitive to light and used for monochromatic vision under very low light levels. At

higher levels of light the rods become saturated. Under normal lighting conditions

cone photoreceptors are responsible for colour vision and come in three types with

different spectral sensitivities. The three types of cones are long, medium, and short

wavelength sensitive. Figure 2.1 shows the normalized spectral sensitivities of long,

medium, and short wavelength sensitive cones. Note that in addition to the photore-

ceptor, there are additional processing units in the retina, e.g., bipolar, horizontal,

ganglion and amacrine cells,which combineto provide non-trivial processing (Fairchild,

2013).

Models of Colour Vision Young (1802) and von Helmholtz (1925) introduced the

trichromatic theory, which is established on the existence of three types of cone pho-

toreceptors in the HVS. Based on the theory, weighted combination of the three sets of

receptors is used to sort out the colour appearance in the brain. The phenomenon of

colour perception is better described in the opponent colour theory (Hering, 1964). In

this theory, three types of cone photoreceptors are accepted, but they function based

on opponent mechanisms (i.e., red - green, blue - yellow, dark - light). The dual pro-

cess theory accepts that both trichromatic theory and the opponent process theory

10



S M L

Figure 2.1: Spectral sensitivities of the long-, medium-, and short-wavelength-sensitive
cones.

are correct, and hypothesises multi-stage processing in the visual system. According

to the theory, the first stage of processing photoreceptors is trichromatic, but these

signals are encoded into opponent signals in the following stages of the processing

(e.g., Haupt (2000), MacAdam (1970), Hurvich and Jameson (1957)).

Human vision is an highly complex combination of optics, biochemistry, and neu-

rology. A good grasp of the human visual system may lead to improvements on the

design of imaging systems. For a more thorough overview of the human visual system

see, e.g., (Fairchild, 2013). The next section provides the remaining background on

colour in light and objects.
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2.1.2 Colour in Light and Objects

Colour of light Isaac Newton hypothesized that colour was a property of light

through his experimentation with the diffraction of light in a prism (Newton, 1672).

Light sources are actual physical emitters of radiant energy. We can specify the colour

properties of light sources by measuring their spectral power distribution (SPD). An-

other way to specify colour properties of light sources is standardization. Hence, a

standard light source is specified using a group of physical and chemical specifications.

An illuminant is a specific SPD. Therefore, an illuminant SPD does not have to corre-

spond to a real source. Some of the sources can be black-body radiators, the sun, sky,

photographic flash, incandescent, fluorescent, or light-emitting diode (LED). Among

them a black-body radiator, or Planckian radiator, is an idealized source which absorbs

incoming radiation in all wavelengths and emits radiation based on its temperature.

When more energy is emitted by the black body, the temperature of the black body

increases as well as the energy shifts towards shorter wavelengths. Given the absolute

temperature T , the SPD of the black-body radiator can be calculated using Planck’s

equation:

Bλ(λ, T ) =
2hc2

λ5

1

e
hc

λkBT − 1
, (2.1)

where λ is wavelength, kB is the Boltzmann constant, h is the Planck constant, and

c is the speed of light. Black-body’s temperature T is called colour temperature since

colour (i.e., SPD) changes based on T . Since black-body radiators cannot be found

commonly, another quantity called correlated colour temperature (CCT) is often used.

Therefore, for the other sources CCT can be used. The CCT of a source is the colour

temperature of a Planckian radiator that has almost the same chromaticity as the
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source.

Colour of objects Objects become visible only when illuminated by light (unless

the object emits light). Since energy can be neither created or destroyed, the radiant

energy incident on an object is reflected, absorbed, or transmitted. In other words, the

sum of the reflected, absorbed, and transmitted power must sum to the radiant energy

incident on an object at each wavelength. In this context, the law of conservation of

energy can be expressed as:

Φ(λ) = R(λ) + T (λ) + A(λ), (2.2)

where Φ is the radiant energy incident on an object, R(λ) is the reflected component,

T (λ) is the transmitted component, and A(λ) is the absorbed component. Since the

quantities always sum to the incident light, the quantities of reflectance, transmit-

tance, and absorptance are measured as percentages of the radiant energy incident

on an object. Therefore, reflectance is the fraction of reflected light divided by the

incident light. Transmittance is the fraction of light that goes through divided by the

incident light. Absorbance or absorptance is the fraction of absorbed light divided by

the incident light.

Wavelength dependence of the absorption, transmission, and reflection determines

what colour the HVS sees. For example, a green leaf under white light (which has

energy in all regions of the spectrum) reflects back mostly in the region that cor-

responds to the middle wavelength of the spectrum. In this way, the perception of

green is produced. Therefore, the objects that we see as red reflect more light at

longer wavelengths (∼ 600–700 nm), objects that we see as green reflect more light

at middle wavelengths (∼ 500–600 nm), and objects that we see as blue reflect more
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light at shorter wavelengths (∼ 400–500 nm). Absorptance, transmittance, and re-

flectance are linear spectral metrics since they change linearly with respect to the

incident light. In the following, we will present a summary of colourimetry.

2.1.3 Colourimetry

Colourimetry is the measurement of perceived colour. The work in Wyszecki (1973)

makes a clear distinction on what is basic colourimetry and advanced colourimetry.

Basic colourimetry is a tool to check if two SPDs match for a standard observer.

However, advanced colourimetry incorporates techniques to assess colour appearance

methods for observer adaptation, including colour difference quantification and chro-

matic adaptation modeling.

In order to move deeper into colourimetry, we need to define the following terms

that will be used in colourimetry. Radiometry is the field of research that studies

measurement of electromagnetic radiation. Photometry studies measurement of the

HVS response to electromagnetic radiation. Transition from radiometric to photo-

metric quantities can be done using the spectral response of the HVS. For example,

Figure 2.3 shows the achromatic (photopic) sensitivity of the HVS over the wave-

lengths of visible light. Radiation sensed in the achromatic channel of the HVS is

measured as luminance. Hence, luminance can be computed as follows:

L = k

∫
ω

S(λ)R(λ)V (λ)dλ, (2.3)

where λ is the wavelength, ω is the visible spectrum 380–720 nm, S(λ) is the radiant

flux coming from the illumination source, R(λ) is the reflectance/transmittance of the

object, V (λ) is achromatic sensitivity of the HVS, and k is the constant that changes
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the unit of luminance. When S(λ) is in the unit of watt per steradian per square

meter, then k should be set to 683.002 to make the unit of luminance candelas per

square meter.

Weighting functions for colour vision The V (λ) function describes the achro-

matic response of the HVS, but as we mentioned in Section 2.1.1 three types of cones

are responsible for colour vision. Hence the low-level colour vision is a linear com-

bination of the three cone functions. The first attempt to estimate the sensitivity

functions came in 1931 while the cone spectral sensitivities were not known. There-

fore, linear transformations of the cone spectral sensitivities were determined using

a colour matching experiment by Guild (1931) and by Wright (1928–1929). Users

of the colour matching experiments tried to match a test colour with three visually

independent primary colours by leveraging Grassmann’s Laws (Grassmann, 1853),

which apply an additive mixture of colours. When taking additive combination of

the primary colours almost all test colours could be produced. In the cases that a

colour could not be produced, the users were allowed to add a primary to the test

colour. Using primaries at 436, 546, and 700 nm, users were showed a number of

test colours and this way the CIE RGB colour matching functions are produced (see

Figure 2.2). The implication of this result is that we can specify matching in terms

of the response of three channels. Given a SPD of a stimulus, CIE RGB makes it

possible to specify the stimulus in terms of red, green, and blue that are required

to match it. Threfore, the CIE RGB system for colour rendering forms a system to

specify a colour.

Some of the properties of the colour matching functions can be summarized as
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follows: Colour matching functions are invertible linear transformations of cone spec-

tral sensitivities. Each set of primaries makes up a set of colour matching functions.

Transformation between different sets of colour matching functions can be done using

a 3 × 3 matrix. Tristimulus values for a test colour can be computed using simple

integration:

R = k

∫
ω

r̄(λ)S(λ)R(λ)dλ,

G = k

∫
ω

ḡ(λ)S(λ)R(λ)dλ,

B = k

∫
ω

b̄(λ)S(λ)R(λ)dλ,

(2.4)

where r̄, ḡ, b̄ are CIE RGB colour matching functions, λ is the wavelength, ω is the

visible spectrum 380–720nm, S(λ) is the radiant flux coming from the illumination

source, R(λ) is the reflectance/transmittance of the object, and k is the constant that

changes the unit, as discussed before. For the relative colour and gamut measurements

the constant k does not factor in. Stimuli that produce the same R G B values will

have a visual match under the same adaptation conditions.

In CIE RGB, the selected primaries were a real set of physical primaries and this

caused negative lobes in CIE RGB colour matching functions. Negative values in CIE

RGB were found to be prone to errors. Also, researchers wanted to make one of the

trisitimulus values directly proportional to the luminance. For all these reasons, CIE

XYZ is introduced as a linear transform to CIE RGB:
X

Y

Z

 =


0.49 0.31 0.20

0.17697 0.81240 0.01063

0.00 0.01 0.99



R

G

B

 , (2.5)
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Figure 2.2: CIE RGB Colour matching functions using primaries at 436, 546, and 700
nm. The disadvantage of using real physical primaries is that colour matching
functions might have negative lobes.

where [R G B]T is a CIE RGB trisitimulus value and [X Y Z]T is a CIE XYZ

trisitimulus value. The same 3 × 3 matrix transformation can also be applied to

CIE RGB colour matching functions and CIE XYZ colour matching functions can

be obtained. This helped to make CIE RGB colour matching functions positive, but

in this case the corresponding primaries are not physical. Figure 2.4 shows the CIE

XYZ system for colour rendering.

When researchers began the systematic study of colour, 3D visualization was

difficult; so, they often worked with 2D representations. The 2D representations

are called chromaticity diagrams. One of the examples is the CIE xy chromaticity

diagram. It is obtained by normalizing the XY Z tristimulus values by the sum of all
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Figure 2.3: Achromatic (i.e., photopic) sensitivity function of the human visual system.

three. Formally:

x =
X

X + Y + Z
,

y =
Y

X + Y + Z
,

z =
Z

X + Y + Z
.

(2.6)

A clear implication of this is that the sum of x, y, and z is 1; in fact only two of them

are independent. Invariably z is dropped. Also, given the x, y, and Y value, X, Y ,

and Z can be reconstructed. In this way the CIE xyY space is obtained. Figure 2.5

shows the CIE xy chromaticity diagram for monochromatic stimuli for wavelengths

ranging from 380nm to 720 nm in the xy space. The curved boundary is called the

spectral locus. The line connecting the bottom of the spectral locus is called the

purple line. Based on the sensitivities of HVS, all trisitimulus colours lie inside the
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Figure 2.4: CIE XYZ Colour matching functions with respect to imaginary primaries.
The advantage of using imaginary primaries is that all tristimulus values are
in the positive octant. However, the primaries are not physical.
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spectral locus and purple line. The chromaticity transformation can be thought of

as removing the luminance information. As we discussed before, since the CIE XYZ

primaries are not physical they are not part of the locus. The CIE XYZ primaries

are located at (1,0), (0,1), and (0,0).

When chromaticity transform is applied to black-body (Planckian) radiators, they

all lie on a curve called the Planckian locus. In order to visualize the Planckian locus,

Planck’s law needs to be applied to obtain the SPD of black-body radiators first.

Then the SPDs can be projected to chromaticity coordinates. Figure 2.5 shows the

Planckian locus on CIE xy chromaticity and the crossing lines on the curve indicate

constant correlated colour temperature.

Although the CIE XYZ and CIE xy are based on human perception, both were not

perceptually uniform (i.e., when the Euclidian distances are computed the distances

do not correspond to perceived equal differences). Also, in a uniform chromaticity

space the crossing lines on the Planckian curve are perpendicular lines to the curve.

Therefore, attempts to obtain uniform colour spaces have been made. The first

uniform chromaticity colour space that is built targeting perpendicular CCT lines

was CIE u-v. X, Y , Z and u, v are related as follows:

u =
4X

X + 15Y + 3Z
,

v =
6Y

X + 15Y + 3Z
.

(2.7)

Considering the advantages, CIE u-v is used to calculate the CCT of an illumination.

In the next section we will summarize the image formation in cameras and the camera

imaging pipeline.
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Figure 2.5: CIE xy chromaticity diagram and the Planckian locus.

2.1.4 Image Formation and the Camera Pipeline

The early stages of the camera pipeline mimic the initial stages of the HVS. In par-

ticular, camera sensors have three spectral filters placed over the light-sensitive pho-

todiodes that respond to different parts of the visible spectrum similar to how the

human retina has three cone cells sensitive to the long, medium, and short visible

wavelengths. The raw-RGB image I(x) is formed at a pixel x, which can be written

as the following:

I(x) =

∫
ω

Qc(λ)S(λ)R(x, λ)dλ, (2.8)
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where Qc is the spectral sensitivity of the sensor’s colour filter array, λ is the wave-

length, ω is the visible spectrum 380–720 nm, S(λ) is the radiant flux coming from

the illumination source, R(x, λ) is the reflectance/transmittance of the object at a

pixel x, and c is the colour channel c = r, g, b.

After the raw-RGB image is formed, it is processed by camera pipeline steps until

a visually-pleasing image is obtained. The raw-RGB image first undergoes a series

of pre-processing operations, such as linearizing the raw-RGB values and correct-

ing for issues related to the lens’s vignetting and chromatic aberrations. Then it is

demosaiced to provide three full colour channels. Afterwards, the image undergoes

colourimetric conversation routines to convert its values to device-independent values

based on the CIE XYZ colour space. Note that this includes a white-balance step

realized as 3 × 3 diagonal matrix operation followed by a linear colourimetric map-

ping step as a 3× 3 matrix operation. Most cameras include an additional nonlinear

colourimetric mapping step that is performed as a 3D look-up-table (LUT). After this

stage, the image values are in a colourimetric colour space that is directly related to

the scene (i.e., a scene-referred colour space). After the colourimetric conversion, the

final stage is to apply photo-finishing operations to modify the image further to be

visually appealing and to be suitable for use on display devices. The final image is

encoded in a display-referred sRGB colour space. The following section summarizes

the literature that is related to the topics of this dissertation.

2.2 Related Work

In this section, we describe work related to the objectives in this thesis.

22



2.2.1 Computational Cameras

The basic steps composing the camera processing pipeline are illustrated in Figure 1.1

and may vary among different camera makes and models. Full details of each compo-

nent are outside the scope of this dissertation and readers are referred to Ramanath

et al. (2005) for an excellent overview. As mentioned in Section 1.1, many of the

components in the pipeline (e.g., white balance, noise reduction) are stand-alone re-

search topics in the computer vision and image processing community. Unfortunately,

the hardware implementation of the camera pipeline and closed nature of proprietary

cameras make it difficult for most researchers to directly access the individual com-

ponents.

To address this issue, open hardware platforms have been proposed. Early work

included the CMU-camera (Rowe et al., 2007) targeting robotic vision. While in-

dividual components (e.g., white balance) were not accessible, the camera provided

low-level image access and subsequent hardware releases allowed capture of the raw-

RGB sensor response. A more recent and comprehensive hardware platform was the

FrankenCamera introduced by Adams et al. (2010). The FrankenCamera was de-

signed as a fully operational camera that provided full access to the underlying hard-

ware components, including control of the flash and shutter, as well as the underlying

imaging pipeline. The FrankenCamera platform targeted computational photography

applications; however, the platform was suitable for modifying individual components

in the imaging pipeline. While the FrankenCamera project has officially stopped,

much of the platform’s functionality has been incorporated into the recent Android

Camera2 API (Google, 2015) that is available on devices running Android OS. The

benefits of a software framework over a hardware solution are that it can work on
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images saved from a variety of different cameras and in an off-line manner. Moreover,

a software platform allows greater flexibility in processing the image at intermediate

stages than possible on fixed hardware implementations. One of the earliest known

works in this area was proposed by Farrell, Xiao, Catrysse, and Wandell (2004). The

proposed software platform required radiometric image data as input and allowed

modifications on optics, scene, sensor, and processing pipeline. However, the tool was

designed for synthetic imagery, and the pipeline that has been used was suitable for

the first generation of digital cameras using a simple camera processing pipeline.

2.2.2 Colour Constancy and White Balance

HVS has been shown to be highly adaptive to changing conditions. One adaptation

mechanism is colour constancy. Hence, this section presents related works in colour

constancy and white-balance research.

Colour constancy is the ability of the human visual system to see objects as

being of the same colour under different light sources. According to the von Kries

hypothesis (von Kries, 1878), independent gains are applied to the human retinal

cones’ response. An enhanced version of the von Kries hypothesis has been studied

as the retinex theory (Land & McCann, 1971; Land, 1977, 1986). In the most recent

form (Land, 1986), three colour mechanisms with the spectral responsivities of the

cone photoreceptors have been proposed. These mechanisms are called retinexes.

Retinexes are a combination of retinal and cortical mechanisms. Within this context

a three-dimensional colour space has also been proposed. The dimensions of the

colour space are the long-, middle-, and short-wavelength retinexes. To determine

the output of a retinex, the signal at any point in the scene is normalized with an
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average of the signals in that retinex throughout the scene. The influence of the

spatial distribution of colours in a scene can be modelled by changing the spatial

distribution of the retinex signals that are used to normalize a given point in the

scene.

Cameras mimic this ability by applying computational colour constancy in the

camera imaging pipeline. The process starts with estimating the response of the il-

lumination in the sensor-specific colour space. After the illumination is estimated,

a transformation is applied to remove the effect of the illumination. A large body

of research has been proposed to estimate the illumination. These include statistical

methods (e.g., van de Weijer, Gevers, and Gijsenij, 2007; Finlayson and Trezzi, 2004;

Barnard, Cardei, and Funt, 2002), gamut-based methods (e.g., Forsyth, 1990; Fin-

layson, 1996; Gijsenij, Gevers, and van de Weijer, 2010), and machine-learning meth-

ods (e.g., Barron, 2015; Barron and Tsai, 2017; Cheng, Price, Cohen, and Brown,

2015b; Chakrabarti, 2015; Hu, Wang, and Lin, 2017; Bianco, Cusano, and Schettini,

2017; Shi, Loy, and Tang, 2016; Oh and Kim, 2017). Once the illumination is es-

timated, a simple 3 × 3 diagonal matrix can be used to normalize the illumination

response to appear white.

While a diagonal matrix is sufficient to make sure that the achromatic colours

are correct, attempts to correct all the colours (i.e., true colour constancy) have also

been proposed (e.g., Finlayson, Drew, and Funt, 1993a, 1993b; Chong, Gortler, and

Zickler, 2007; Cheng, Price, Cohen, and Brown, 2015a). Work by Finlayson et al.

(1993a, 1993b) proposed the use of a spectral sharpening transform in the form of a

3×3 full matrix that was applied to the camera-specific colour space. The transformed

colour space allowed the subsequent 3×3 diagonal white balance correction to perform
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better. To establish the sharpening matrix, it was necessary to image known spectral

materials under different illuminations. Chong et al. (2007) later extended this idea

to directly solve for the sharpening matrix by using the spectral sensitivities of the

sensor. When the estimated sharpening matrix is combined with the diagonal matrix,

these methods are effectively performing a full colour balance.

The drawback of these methods, however, is the need to have knowledge of the

spectral sensitivities of the underlying sensor or imaged materials. Recent work

by Cheng et al. (2015a) proposed a method to compute a full colour-balance cor-

rection matrix without the need of any spectral information of the camera or scene.

Their work found that when scenes were imaged under specific types of broadband

illumination (e.g., sunlight), the diagonal white balance correction was sufficient to

achieve full colour balance. They proposed a method that allowed images under other

illuminations to derive their full colour correction using colours observed under the

broadband spectrum. A full review of colour constancy methods falls outside of the

scope of this dissertation. We refer the interested readers to excellent surveys: Gi-

jsenij, Gevers, and van de Weijer (2011) and Barnard, Martin, Coath, and Funt

(2002).

2.2.3 Colour Calibration

After white balancing, the colours are still in the sensor-specific colour space. A

transformation that maps the sensor-specific colour space to a device-independent

perceptual colour space is needed. Most of the methods calculate a direct trans-

formation to measurements obtained from a colour rendition chart or other calibra-

tion device that has known values in a standard perceptual colour space (e.g., CIE
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XYZ) (e.g., Finlayson, Darrodi, and Mackiewicz, 2015; Finlayson, Gong, and Fisher,

2016; Finlayson, Mackiewicz, and Hurlbert, 2015; Bastani and Funt, 2014; Hong, Luo,

and Rhodes, 2001; Bianco, Bruna, Naccari, and Schettini, 2012). Most work focuses

on the types of mathematical functions used to perform the colour mappings, such

as high-order polynomial terms (e.g., Hong et al., 2001; Finlayson, Mackiewicz, and

Hurlbert, 2015), LUTs (e.g., Hung, 1993), or neural networks (e.g., Cheung and West-

land, 2002). Issues such as non-uniform illumination are also addressed (e.g., Bastani

and Funt, 2014; Finlayson, Darrodi, and Mackiewicz, 2015; Finlayson et al., 2016)

as it can be difficult to ensure uniform illumination on the physical calibration pat-

tern. There has even been work that demonstrates that additional physical filters can

be used to achieve better colourimetric properties (e.g., Farrell and Wandell, 1995;

Finlayson, Zhu, and Gong, 2018). Camera manufacturers have undoubtedly incor-

porated these research findings into their camera pipelines; however, users do not

have access to such results unless they manually perform and apply the calibration

methods discussed in these works.

2.2.4 Spectral Image Fusion

Another area that is related to the work presented in this dissertation is spectral image

fusion. There are a number of methods suitable to perform image fusion. Early work

typically relied on copying data from frequency decompositions between images and

then reconstructing a new image (e.g., de Zeeuw, Piella, and Heijmans, 2004; Misiti,

Misiti, Oppenheim, and Poggi, 2007). More modern methods involve joint-image

filtering (e.g., Paris and Durand, 2006; Paris, Hasinoff, and Kautz, 2011). While

these methods are generic in nature, they are suitable for transferring narrow-band
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spectral data to RGB images.

There are several works focused directly on processing visible images with the help

of non-visible data. For example, Krishnan and Fergus (2009) showed how noisy low-

light images could be denoised using a corresponding high-quality NIR image. Similar

work by Wu, Samadani, and Gunawardane (2011) removed light glows for low dy-

namic range web cameras using NIR imagery. Fredembach, Barbuscia, and Süsstrunk

(2009) and Süsstrunk, Fredembach, and Tamburrino (2010) proposed methods that

used NIR images to remove skin imperfections, like freckles, pores, warts, and wrinkles

from RGB images. Zhang, Sim, and Miao (2008) showed how to combine NIR images

to create high-dynamic-range RGB images. These methods employed variations on

joint-image filtering as discussed above. Recent work by Connah, Drew, and Fin-

layson (2014) and Finlayson and Hayes (2015) proposed gradient domain approaches

that avoid both filtering and frequency decomposition.

In Chapter 6, we evaluate several of the methods above to test their suitability

for our application for dermatological evaluation.

2.3 Summary

Our research differs from previously published methods for the following reasons.

First, prior work on camera simulation platforms often have to motivate their ar-

guments via synthetic imagery generated using relatively simple camera processing

models. The proposed research platform in this dissertation aims to provide the

FrankenCamera’s functionality via a software-based platform. Second, our research

focuses on how the colour mapping is performed onboard the camera without the

assistance of a calibration pattern but instead relying on methods related to factory
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calibration. Finally, the lack of a concrete example that details how to customize a

machine vision camera beyond simple colour mapping is one impetus for this disser-

tation.
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Chapter 3

A Software Platform for

Manipulating the

Camera Imaging Pipeline

In this chapter, we will investigate the drawbacks of the hardware embedding of the

camera imaging pipeline. The hardware embedding not only hinders research but

also makes evaluating the effects of modifying an individual pipeline component on

the final camera output challenging, if not impossible. As a result, many researchers

work on topics outside the proper context of the full imaging pipeline. Therefore,

this chapter presents a new software-based camera simulator that allows access to

each stage of the pipeline. The simulator allows modification of the parameters for

individual components as well as the ability to access and manipulate the intermediate

images as they pass through different stages. In the following, we detail our platform

design and demonstrate its usefulness on a number of examples.
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3.1 Introduction

Digital cameras are the cornerstone for virtually all computer vision applications as

they provide the image input to our algorithms. While camera images are often

modeled as simple light-measuring devices that directly convert incoming radiance to

numerical values, the reality is that there are a number of processing routines onboard

digital cameras that are applied to obtain the final RGB output. These processing

steps are generally performed in sequence and collectively make up the camera imag-

ing pipeline. Examples of these processing steps include Bayer pattern demosiacing,

white balance, colour space mapping, noise reduction, tone-mapping, and colour ma-

nipulation. Many of these processing steps are well-known research topics in their

own right—for example, white balance, colour space mapping (colourimetry), and

noise reduction.

Although cameras are the most prominent hardware tools in computer vision,

it is surprisingly difficult to get access to the underlying imaging pipeline. This

is because these routines are embedded in the camera’s hardware and may involve

proprietary image manipulation that is unique to individual camera manufacturers.

This is a significant drawback to the research community. In particular, it forces

many researchers to work on topics outside the proper context of the full imaging

pipeline. For example, much of the work targeting white balance and colour constancy

is performed directly on the camera-specific raw-RGB images without the ability to

demonstrate how it would affect the final output on the camera. Another example

includes noise reduction (NR) targeting sensor noise. On a camera, NR is applied

before many of the non-linear photo-finishing routines (e.g., tone-curve manipulation);
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Figure 3.1: The camera processing pipeline routines accessible by our software platform
are shown in (A). Each component is denoted by the type of parameters it
takes—for example, scalar values, 2-D arrays, 3× 3 matrices [MAT], function
calls [func], or 1-D or 3-D LUTs [LUT]. In addition, the software platform
API supports direct access and manipulation to the intermediate images at
each stage as shown in (B).

however, researchers are generally forced to apply NR on the final non-linear sRGB

image due to a lack of access to the camera pipeline. This presents a significant

mismatch between assumptions made in the academic literature and real industry

practice.

3.2 Platform Overview

Our platform uses images that are saved in the DNG format. While this format is not

yet supported by many of the DSLR cameras, it is currently being supported by the
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newer Android phones that implement the Camera 2 API. With Android’s adoption

of DNG, the number of raw-RGB images captured by mobile devices is expected to

increase significantly. However, in the event that images are not captured in DNG,

camera-specific raw-RGB formats can be converted to DNG using the Adobe DNG

conversion software tool (Adobe, 2018). The DNG image format not only contains

the raw-RGB image data but also contains metadata that specifies parameters (e.g.,

scalar values or a 1D or 3D LUT) intended to be used by different stages in the

processing pipeline.

Our platform is made possible by rewriting the interface of the open source Adobe

DNG SDK software (Adobe, 2012) that provides a full software implementation of

a camera pipeline to convert the DNG raw-RGB image to its final sRGB output.

While this is an engineering feat, the implementation is non-trivial. The stand-alone

Adobe DNG SDK is not designed to allow changes to the parameters of the individual

stages; instead the SDK uses the values in the DNG files, metadata directly. Thus

the processing pipeline had to be decomposed into its individual stages and API

calls designed to access and modify the underlying parameters. In addition, the

unmodified SDK uses a multi-threaded design that breaks the image into a number

of small tiles and processes them separately. This makes it difficult to access coherent

intermediate images in the pipeline using the native SDK. Our modification changes

this tiling structure to allow access to the intermediate image at each stage. We have

also added API calls to allow customized demosaicing and noise reduction, which are

not supported in the native SDK.

Figure 3.1-(A) overviews the processing steps that are available in the proposed

camera imaging platform. The top shows the steps with the associated parameters
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used by each of the components, while Figure 3.1-(B) shows the intermediate images

at each stage in the pipeline. In the following, we detail each stage and its associated

parameters that can be modified. The types of parameters used by the individual

stages are also discussed. In the case of a 1D LUT, the same LUT is applied to each

colour channel individually.

Stage 1: Reading the raw-RGB image (Params: None). The unmodified raw-RGB

image is read from the DNG image file. This is the unprocessed image produced by

the sensor that is still in its mosaiced Bayer pattern format.

Stage 2: Black light subtraction and linearization (Params: Level values or 1D

LUT ). The unmodified raw-RGB image is linearized such that its values range from

[0-1] in the processing pipeline. Many cameras provide a BlackLevel parameter that

represents the black level of the sensor that deviates from 0 due to sensor noise.

This is often image specific and related to other camera settings, including ISO and

gain. An additional WhiteLevel (maximum value) can also be specified. If nothing is

provided, the min and max values of all intensities in the image are used to normalize

the image. Another alternative is to provide a 1D LUT to perform the linearization.

The 1D LUT shown in the Figure 3.1-(A) is from an Nikon D40.

Stage 3: Lens/Flat Field correction (Params: 4×ArrayN×M). Many cameras provide

a spatially varying correction that compensates for lens distortion and uneven light

fall. For example, the Motorola Nexus 6 provides four (one for each Bayer pattern

pixel where G is repeated twice) scene-dependent 13× 17 2D arrays that are used to

provide this flat field correction. These arrays are scaled and bilinearly interpolated

to the image size, and then multiplied to the mosaiced image.
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Stage 4: Demosaicing (Params: func). The demosiacing step converts the single-

channel raw-RGB image to three full-size R/G/B colour channels by interpolating

the missing values in the Bayer pattern. We denote this operation as an arbitrary

function, func. The default interpolation is a standard bilinear interpolation based

on the Bayer pattern layout.

Stage 5: Noise reduction (Params: func). Similar to the demosaicing stage, noise

reduction is denoted as an arbitrary function, func. This function (not provided in

the Adobe SDK) has access to the intermediate image and returns a filtered image

to the pipeline.

Stage 6: White-balancing and colour space conversion (Params: Two 3×3 ma-

trices). This stage performs the necessary colour space conversion between the

camera-specific RGB colour space and a standard colour space (e.g., CIE XYZ or

ProPhoto RGB). This colourimetric procedure involves a 3×3 white-balance matrix

(generally a diagonal matrix) and a 3×3 colour space transformation matrix. The

default colour space used by the Adobe SDK is the ProPhoto RGB, which is a wide

gamut colour space commonly used for photographic colour manipulation.

Stage 7: Hue/Sat map application (Params: 3D LUT). This optional procedure is

intended to be part of the colour space conversion to allow a non-linear transformation

to be incorporated to improve the colour rendition. While this is referred to as a ‘hue’

and ‘saturation’ modification, it is implemented as a 3D LUT applied directly to the

RGB values obtained in Stage 6. For example, when saving a DNG file using the

X-Rite camera calibration software (X-Rite, 2010), X-Rite adds a 6 × 6 × 3 LUT to

the DNG metadata. From our experience, most cameras DNG files do not include

this step.
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Stage 8: Exposure compensation (Params: EV value, 1D LUT). The exposure com-

pensation is a digital exposure adjustment. While the input is given as an exposure

value (EV) that is used to control shutter and aperture settings on a camera, in the

digital case, this simply applies a linear gain (either up or down) to the intensities

values. The EV value passed as a parameter will generate a 1D LUT with 4096 values.

Alternatively, a 1D LUT can be provided directly.

Stage 9: Colour manipulation (Params: 3D LUT). Cameras often apply their own

proprietary colour manipulation that is linked to different picture styles on the cam-

era (Kim et al., 2012). Like the Hue/Sat map, this is applied as a 3D LUT where

RGB values are interpolated based on the table’s entries. The size of this table can be

arbitrary—for example, images saved using Nikon D40’s Camera Vivid setting have

a 36× 16× 16 LUT added in the DNG metadata.

Stage 10: Tone-curve application (Params: 1D LUT). A camera-specific tone-map

can be specified. This is part of the photo-finishing process on board the camera. For

example, the Nikon D40’s Camera Vivid profile includes a LUT with 248 entries. If

no tone-curve is specified, the Adobe DNG has a default tone-curve that is shown in

Figure 3.1.

Stage 11: Final colour space conversion (Params: 3× 3 Matrix). This colour space

conversion converts the internal camera working colour space into the final output-

referred colour space. This is done using a 3×3 matrix and is assumed to be related to

colour space used at stage 6. The most common colour space for cameras is the sRGB

and Adobe RGB. In this chapter, the sRGB colour space is used for all examples.

Stage 12: Gamma curve application (Params: 1D LUT). The final stage is a

gamma curve that is applied as a 1D LUT with 4096 entries. This is intended to
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represent the sRGB gamma correction that is part of the sRGB specification; however,

it can also be used for additional colour modification and photo-finishing.

These twelve steps make up the collective stages that can be controlled via API

calls or direct image modification to intermediate images. Access to this suite of

components provides a wide means for manipulating the image from the input raw-

RGB to its final sRGB output. Note that it is not necessary that all steps be applied.

For example, exposure compensation, noise reduction, hue/sat map modification, and

so forth can be skipped as desired.

3.3 Results

We have developed a fully functioning software platform for use on a Windows-based

PC. The software framework is developed in C++; however, it has also been modified

such that API calls can be made directly from Matlab. In this section, we demon-

strate several examples that serve to illustrate the various benefits of our platform.

The examples are divided loosely into three categories: (1) basic functionality; (2)

evaluating stages at certain points in the pipeline; and (3) evaluating stages within

the proper context of the full pipeline. Specifically, Section 3.3.1 demonstrates several

examples that show the basic ability to manipulate the pipeline components (e.g., EV

levels, tone-curve modification, and demosiacing). Section 3.3.2 provides an example

to evaluate the colour conversion stage, a task that is currently difficult to do with

existing tools. Section 3.3.3 provides examples targeting white balance, image de-

noising, and image blurring that show the benefits of considering these tasks within

the full pipeline.
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Figure 3.2: (A) Examples of applying different EV and 1D LUTs for exposure compensa-
tion (stage 8) and (B) tone-mapping (stage 10).

3.3.1 Basic Processing

Exposure compensation and tone-mapping Figure 3.2 starts with a simple

example showing the effects of manipulating parameters for the exposure compensa-

tion and tone-mapping stages. Figure 3.2-(A) shows a number of EV values that are

passed directly to our platform’s API which generates the 1D LUT shown. In the

case of the tone-mapping, the 1D LUTs are directly passed to the API as shown in

Figure 3.2-(B). The images shown represent the final sRGB output obtained using

these parameters in the full camera pipeline.

Demosaicing Figure 3.3-(A,B) demonstrates examples of two different demosaicing

procedures applied to an image. In particular, we use the default bilinear interpolation

and the work by Gunturk, Altunbasak, and Mersereau (2002) that uses alternating

projections. Interestingly, in the work by Gunturk et al. (2002), the results were
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Bilinear interpolation Alternating projections (Gunturk et al., 2002)
Demosaicing results(A) (B)

Figure 3.3: Demonstrating the results of two different demosiacing algorithms, in partic-
ular (A) bilinear interpolation and (B) Gunturk, Altunbasak, and Mersereau
(2002). In this example, the intermediate image passed to stage 4 (demosiac-
ing) is modified using Gunturk, Altunbasak, and Mersereau (2002) and in-
serted back into the imaging pipeline to obtain the final sRGB output.

demonstrated by simulating a mosaiced image by using an sRGB image and arranging

its colours into a Bayer pattern structure. In our example, their approach is applied

directly to a real mosaiced raw-RGB image and then returned back to the pipeline

to produce a realistic result.

3.3.2 Evaluation of Components

Colourimetry example One challenge for existing computer vision and image

processing research is the ability to obtain intermediate images in the camera pipeline

to evaluate the effectiveness at individual stages. An excellent example of this is

the colour conversion component (stage 6). This stage is crucial in making sure

that different camera-specific colour spaces align to the same canonical colour space

after colour conversion. Examining this stage in the camera pipeline is essentially

evaluating the quality of the colourimetric calibration of the camera.

To demonstrate our platform’s ability to assist with this task, we captured stan-

dard colour rendition charts with four different mobile cameras (LG-G4, Motorola

Nexus 6, Samsung S6-Edge, and an HTC One M9) under different illuminations.
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Figure 3.4: This figure demonstrates the ability to evaluate different colour space conver-
sion (stage 6) methods applied to four cameras. See Section 3.3.2 for details.
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These mobile device cameras all support the DNG file format and have embedded

in their DNG metadata the camera’s onboard parameters for this colour conversion.

This allows us to compare the results of the native camera’s colourimetric ability with

two other approaches: (1) the widely used X-Rite calibration software (X-Rite, 2010),

and (2) a recent method by Bastani and Funt (2014).

We use the 24-patch colour rendition chart to calibrate the colour space conversion

parameters using the X-Rite software and the method by Bastani and Funt (2014). In

this case, the colour space conversion is computed from the camera raw-RGB colour

space to the ProPhoto colour space. For all methods, including the camera native,

the white-balance matrix is estimated using the neutral colours on the colour chart

under a specific illumination. In order to compare these three methods, we need to

apply the 3× 3 colour conversion matrices to stage 6. In the case of X-Rite, we also

apply the additional hue/sat map (stage 7) that is used by X-Rite to provide a further

non-linear correction for the colour space mapping. The colour pipeline is stopped

at the appropriate location for each method and the intermediate image is obtained

and the colour patches’ average chromaticity values are compared.

The results are shown in Figure 3.4-(A) for colour rendition charts captured under

two different illuminations. The plots show the average chromaticity of the 24 colour

patches from the four different cameras. Under ideal colourimetric mapping, the

chromaticity values should all lie at the exact same location in the chromaticity plot;

however, due to errors in the colour conversion matrices, they are not the same.

To help with the visualization, we fit a Gaussian ellipsoid to show the spread for

each colour patch among the four cameras. Our experiment shows that the method

by Bastani and Funt (2014) provides the most consistent colour space mapping.
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Error
Incandescent Fluorescent Outdoor

CC AM#1 AM#2 CC AM#1 AM#2 CC AM#1 AM#2

Camera 0.84 1.67 3.43 0.97 2.37 4.49 0.68 1.80 3.01

X-Rite 0.33 1.06 1.57 0.48 1.68 2.72 0.15 0.74 0.95

Bastani and Funt (2014) 0.14 0.75 1.07 0.25 1.16 1.38 0.12 0.70 0.70

Table 3.1: The table shows the comparisons of error between native cameras, X-Rite’s, and
Bastani and Funt (2014) colour calibration (CC: colour chart, AM: additional
materials).

For the example in Figure 3.4-(A), X-Rite and Bastani and Funt (2014) have an

unfair advantage as they were calibrated using the same 24-colour rendition chart that

is used to show the results. To test these methods’ ability on additional materials, we

use their estimated colour space conversion parameters on a new set of colour patches

consisting of 81 different types of materials. This is shown in Figure 3.4-(B), where

again we see the work by Bastani and Funt (2014) obtain the best results.

We further evaluated these three methods by computing quantitative errors with

respect to the ground truth colour values of the colour rendition chart (X-Rite, 1976)

in the ProPhoto RGB colour space. In this case, we follow the procedure common

in colour research and consider the angular error εangle(ecolour) of a colour ecolour from

the ground truth colour egt is computed as follows:

εangle(ecolour) = cos−1(
ecolour · egt
||ecolour|| ||egt||

). (3.1)

Table 3.1 shows the angular errors for the colour chart (CC) and the additional

81 materials (AM). As demonstrated in the plots in Figure 3.4-(A,B), the method

by Bastani and Funt (2014) provides the best results. This type of analysis is chal-

lenging without the support of our platform.
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3.3.3 Evaluating Tasks Within the Full Pipeline

In the following, we show several tasks that benefit from having access to the full

processing pipeline.

White-balancing/colour constancy One of the key processing steps applied to

virtually all images is white-balancing. This procedure falls into the larger research

of colour constancy that mimics our human perceptual ability to perceive materials

under different illuminations as the same colour. White balance approximates this

ability by attempting to ensure that at least the neutral scene materials appear achro-

matic in the camera colour space. White balance is applied directly to the camera

raw-RGB image while the image values are still in the camera’s RGB colour space.

A number of research papers on this topic (e.g., Chakrabarti, Hirakawa, and Zick-

ler, 2012, Cheng et al., 2015b) provide subjective results of their white-balance result

directly on the camera raw-RGB images. Such results, however, have little visual

meaning as they provide a visual comparison in an non-standard camera-specific

colour space. A more appropriate way to evaluate the results subjectively would be

to run the white-balanced result through the full camera pipeline to produce a real-

istic output that would be produced by the camera. Figure 3.5 shows the difference

in these two approaches. In particular, two well-known white-balance methods, grey

world (Buchsbaum, 1980) and grey edge (van de Weijer et al., 2007), are applied

to an input image. Figure 3.5-(A) shows the results on the raw-RGB image and

Figure 3.5-(B) shows the sRGB outputs. The sRGB output provides a much more

realistic comparison of the two algorithms.

Noise reduction Similar to white-balancing, another research area that is at a dis-

advantage by not having access to the full camera pipeline is image denoising. Noise
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Grey world 
(Buchsbaum, 1980)

Grey edge
(van de Weijer et al., 2007) 

White balance applied to raw image input Final sRGB output after processing through the full pipeline

Grey world 
(Buchsbaum, 1980)

Grey edge
(van de Weijer et al., 2007) 

(A) (B)

Figure 3.5: (A) White-balancing algorithms applied on raw-RGB images. (B) sRGB out-
put of white-balanced images.

reduction is a well-researched topic and interested readers are referred to Chatterjee

and Milanfar (2010) for an excellent overview. One of the major sources of image

noise is what is collectively referred to as sensor noise and is attributed to an underly-

ing imaging sensor (CMOS or CCD). Because this noise is present on the sensor, it is

present in the raw-RGB image at the start of the pipeline. As such, noise reduction is

often applied before the non-linear stages in the camera pipeline. However, since few

researchers have access to the camera pipeline, noise reduction methods—for example,

the popular BM3D method by Dabov, Foi, Katkovnik, and Egiazarian (2007)—are

typically applied and evaluated on the sRGB output. Figure 3.6 demonstrates the dis-

advantages of applying image denoising outside the proper context of the full imaging

pipeline. Our example works from a synthetic image to provide a ground truth input

to compute the peak signal to noise ratio (PSNR). Figure 3.6-(A) shows a raw-RGB

image that has been corrupted with zero-mean Gaussian noise. The noise profile for

three different homogenous patches with increasing intensity values is shown. We

can see that this Gaussian noise profile appears uniform over the different patches in

the raw-RGB image, with only a shift by the mean intensity. Below this, we show

the corresponding noisy raw-RGB image that has been processed through the whole
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imaging pipeline, including the non-linear stages (e.g., stage 9, 10, 12). We can see

that the noise distribution for different patches is significantly affected by the non-

linear processing stages. In fact, it is not possible to make a uniform noise assumption

for the sRGB image as the non-linear process has changed this property of the noise.

Figure 3.6-(B) demonstrates BM3D applied at two different places in the pipeline.

The top shows BM3D applied to the raw-RGB image. The filtered result is then

processed through the remaining pipeline. This represents the proper application of

NR. The bottom shows BM3D applied directly to the noisy sRGB image as done

in most academic literature. The PSNR for both results in the sRGB final output

is computed against the ground truth (noise-free) sRGB image. The PSNRs are

drastically different, where the denoising applied at the right place in the pipeline is

58.27, while the application on the final non-linear sRGB stage is only 30.49.

This example serves to motivate the need for having access to the full camera

pipeline when examining image denoising. Even in the inevitable case that noise

reduction must be applied to the non-linear sRGB image, our software platform pro-

vides an excellent means to study sensor noise and how it is affected by the camera

processing steps as done in Figure 3.6-(A).

Deblurring Work by Tai et al. (2013) demonstrated that the non-linear processes

on the camera have a negative impact on image deblurring. Similar to the denoising

example, Tai et al. (2013) showed that the non-linear tone-mapping function (stage 10

and/or 12) changes the distortion profile, in this case the blur’s point-spread-function

(PSF), such that the PSF was no longer spatially uniform over the image. Tai et al.

used this to argue either that deblurring should be applied directly to the raw-RGB

image, or that care must be taken to undo any non-linear processing applied to the
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Figure 3.6: (A) Noise profiles for three colour patches for a raw-RGB image and
corresponding sRGB image. (B) PSNR comparison of application of
BM3D (Dabov, Foi, Katkovnik, & Egiazarian, 2007) on the raw-RGB image
at stage 5 and on the final sRGB output.

raw image with 
1-D motion blur

sRGB output of de-
blurred raw image
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sRGB image 
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sRGB output of the
blurred image
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Figure 3.7: (A) Motion blur is applied on the raw-RGB image and then run through the
full pipeline to obtain the sRGB output. (B) Deblurring applied to the raw-
RGB image and then its output using the camera pipeline, and the results
obtained by directly deblurring the blurred sRGB image.
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image before deblurring is applied. In that work, Tai et al. used a very simple camera

model that applied a single 1D LUT to the raw-RGB images. This is equivalent to

applying only stage 1 and 10 in our software platform.

With our platform, we are able to provide a much more realistic demonstration of

Tai et al.’s argument. Figure 3.7-(A) shows a raw-RGB image that has been blurred

with a PSF modeling linear motion across 50 pixels and its corresponding sRGB

output. This is applied directly to a demosaiced raw-RGB image (available at stage

4 in our pipeline). We then apply deconvolution via Wiener filtering (Gonzalez &

Woods, 2008) in two manners as shown in Figure 3.7-(B). The first, as advocated

by Tai et al. (2013), is on the raw-RGB image that is then processed through the

full pipeline. In the second example, we apply the Wiener filter directly to the sRGB

image. As expected, the results applied on the raw-RGB image are significantly

better than those applied on the sRGB image. As with the prior noise reduction

experiment, this example demonstrates the benefit of being able to perform various

computer vision and image processing tasks within the appropriate context of the

camera pipeline.

3.4 Software Pipeline to Support Imaging

Research

Our approach can also be used to support imaging research. For example, Akkay-

nak and Treibitz (2019) showed how sea water could be removed from underwater

images. The method estimates backscatter using dark pixels and their range infor-

mation. Then, it uses spatially varying illuminant to estimate the range-dependent
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attenuation. The authors apply their water removal method after stage stage 4 and

insert the resulting image back to the pipeline before stage 6. This work serves to

motivate the need for having access to the full camera pipeline to support imaging

research.

3.5 Discussion

One limitation of our approach is that it can operate only from the captured DNG

image saved by the camera. This means camera parameters such as ISO settings that

directly affect analog amplification on the sensor hardware or the image’s exposure at

capture time cannot be modified with our platform. This can impact work targeting

tasks, such as high dynamic imaging (e.g., Serrano, Heide, Gutierrez, Wetzstein, and

Masia, 2016). For such cases, it will be necessary to capture a number of DNG images

with varying ISO or exposure settings to simulate the manipulation on the camera.

We also note that this work represents the current camera architecture where

each stage in the pipeline is self-contained. Recent work by Heide et al. (2014)

demonstrated the benefits of considering a re-engineered onboard camera processing

system that provides a holistic consideration to image formation that is more readily

able to incorporate known priors about nature images. We also envision that in the

coming years the traditional pipeline described in this chapter will likely see significant

changes. Once again, it will be important for researchers to have access to a software

platform that allows research to be performed in the proper context of the onboard

imaging system.
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3.6 Summary

This chapter has presented a new software platform that allows low-level access to

the individual components in the camera imaging pipeline. Specifically, our platform

leverages the DNG image file format and makes the necessary modifications to the

available DNG SDK to provide an extensive API for modifying the parameters of the

pipeline, as well as allowing access and modification to intermediate images that can

then be inserted back into the pipeline to compute the final output that would be

obtained on a camera.

The usefulness of this platform has been demonstrated on a number of examples,

including white balance, noise reduction, and colourimetry. While this work is engi-

neering in nature, we believe this platform provides a much needed mechanism for

researchers to modify individual components in the pipeline and demonstrate their

results within the appropriate context of the full camera imaging pipeline. Further-

more, with the adoption of the DNG raw-RGB image format by the Android OS via

the Camera 2 API, the availability of DNG files is going to significantly increase,

further adding to the timeliness of this platform for the computer vision community.
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Chapter 4

Beyond raw-RGB and sRGB:

Advocating Access to a

Colourimetric Image State

Using the software camera pipeline described in the previous chapter, we can analyze

the intermediate stages to see if an intermediate stage is better than raw-RGB or

sRGB in terms of colourimetric consistency. In this chapter we investigate an image

stage, consistent across cameras, in the camera imaging pipeline. In particular, most

modern cameras allow captured images to be saved in two colour spaces: (1) raw-

RGB and (2) sRGB. The raw-RGB image is specific to the colour sensitivities of the

sensor’s colour filter array. The sRGB image represents a display-referred image that

has been rendered through the pipeline. For applications that desire to use a camera

for purposes beyond photography, both of the images’ colour spaces are undesirable.

As we discussed earlier, the colourimetric mapping stage converts the sensor-specific
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colours to a device-independent colour space. However, this image state is not acces-

sible. Therefore, we advocate for the ability to access the colourimetric image state

and recommend that cameras include the ability to output a third image format that

is based on this device-independent colourimetric space. To this end, we perform

experiments that show that image values in a colourimetric space are more similar

across different makes and models than sRGB and raw-RGB.

4.1 Introduction

As described in Chapters 1 and 2, camera producers apply proprietary photo-finishing

operations, such as tone and colour manipulation, to make images look visually pleas-

ing. After the photo-finishing steps the image is finally encoded in an sRGB colour

space. Recently, DSLR and mobile phone cameras are capable of saving a raw-RGB

format which corresponds to the beginning of the pipeline. The raw-RGB format is

useful for many computer vision tasks because of its linear relationship to the scene

radiance. However, as we discussed in Section 2.1.4 the raw-RGB values are specific

to the sensor being used in the camera. Considering each of the pipeline’s steps as

changing the state of the image, currently the two output states of the pipeline are

inconsistent across cameras.

In this chapter, we advocate for an additional (third) image format to be made

available to consumers and application developers. We propose that the internal

image state after it has been processed by the colourimetric mapping steps in the

camera pipeline is more suitable for applications that assume imaged scene values

are consistent among multiple cameras. In the following, we present an analysis of

the consistency of colour values at different image states for scene points imaged by
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Canon 5D Mark IV Nikon D7200 Fujifilm X-T20 Olympus OM-D E-M10 Mark III

2D projection

Camera 1 

Camera 2 
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Camera 4 

direct current (DC) 
light source

Paint chip chart 1 Paint chip chart 2
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Color Rendition Chart
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Figure 4.1: (A) Our experiment setup. Images from patches from three different physical
patterns (Macbeth Color Rendition Chart, and two custom charts of 81 flat
paint samples each) are imaged using four different cameras. A direct current
(DC) light source is used to illuminate the scene under different correlated
colour temperatures. (B) For each colour patch observed by the four cam-
eras, we compare their values in a 2D chromaticity space. In particular, we
are interested in the variance of these measures in different internal camera
pipeline image states.

multiple DSLR cameras.

4.2 Experimental Setup and Analysis

As described in the previous section, the goal of this chapter is to demonstrate that

providing access to image values after the colourimetric image conversion is the most

suitable way to provide consistent image values among different cameras.

Towards this goal, we perform the following experiments illustrated in Figure 4.1.

The following four DSLR cameras are used to capture scenes under various lighting

conditions: (1) a Canon 5D Mark IV, (2) a Nikon D7200, (3) a Fujifilm X-T20, and

(4) an Olympus OM-D E-M10. These cameras are placed in a controlled environ-

ment where each camera captures three types of planar scenes with different physical

materials. Specifically, we image a Macbeth Color Rendition Chart (with 24 colour

patches), and two charts of 81 paint samples that we have created, denoted as Paint

52



Samples #1 and Paint Samples #2. The scenes are illuminated by a tunable direct

current (DC) lighting rig. We use illuminations that correspond to correlated colour

temperatures (CCTs) of 3200◦K, 4340◦K, and 5500◦K.

Each scene and lighting condition are captured with each camera and saved in

a raw-RGB image format. For these particular DSLR cameras, the raw-RGB image

format embeds colourimetric conversion metadata that provides the parameters for

the linear transformation and nonlinear 3D LUTs. Using the software camera pipeline

from Karaimer and Brown (2016) we are able to render each state of the imaging

pipeline. To avoid errors due to each camera’s proprietary auto-white-balance func-

tions, we perform the white-balance operation based on the neutral colour patches in

the Macbeth Color Rendition Chart. This imaging setup is shown in Figure 4.1-(A).

In order to assess the consistency among the cameras, we map each observed

patch’s RGB values to 2D chromaticity space as shown in Figure 4.1-(B). We use the

2D chromaticity space to factor out differences related to overall image brightness

among the cameras due to issues such as image gain and differences in exposure.

We compute the mean variance of each patch in the 2D chromaticity space for the

following image states: (1) raw-RGB, (2) raw-RGB with white balance applied, (3)

raw-RGB with the linear colourimetric operation applied, and (4) raw-RGB with the

additional non-linear (3D LUT) colourimetric operation applied.

The results for the Macbeth Color Rendition Chart, Paint Samples #1, and Paint

Samples # 2, are shown in Table 4.1. The table summarizes the results for each

CCT as well as the overall result where all illumination conditions are combined. It

is clear that the full colourimetric conversion image state (raw-RGB with linear and

non-linear colourimetric conversion applied) is by far the most consistent state.
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(1) Colour Rendition Chart
Stage 3200◦K 4340◦K 5500◦K Combined

raw-RGB 0.046 0.049 0.051 0.130
white-balanced raw-RGB 0.018 0.017 0.018 0.016

colourimetric image state (linear) 0.125 0.117 0.103 0.095
colourimetric image state (non-linear) 0.004 0.004 0.003 0.004

sRGB 0.041 0.041 0.042 0.037

(2) Paint Samples #1
Stage 3200◦K 4340◦K 5500◦K Combined

raw-RGB 0.121 0.131 0.139 0.411
white-balanced raw-RGB 0.031 0.028 0.031 0.029

colourimetric image state (linear) 0.213 0.174 0.147 0.148
colourimetric image state (non-linear) 0.006 0.004 0.005 0.009

sRGB 0.042 0.029 0.038 0.041

(3) Paint Samples #2
Stage 3200◦K 4340◦K 5500◦K Combined

raw-RGB 0.127 0.135 0.143 0.424
white-balanced raw-RGB 0.034 0.033 0.035 0.031

colourimetric image state (linear) 0.218 0.177 0.155 0.152
colourimetric image state (non-linear) 0.004 0.004 0.005 0.007

sRGB 0.045 0.049 0.056 0.051

Table 4.1: Colourimetric consistency between four cameras at five different processing
stages of the camera imaging pipeline using the patches from (1) the Macbeth
Color Rendition Chart, (2) our first custom chart with 81 paint samples, (3)
our second custom chart with 81 different paint samples. The table reports the
average variance of each patch’s 2D chromaticity values among the four cameras
in the respective image states. The most consistent method is highlighted
in bold. Results are shown for each illumination CCT and all illuminations
combined. To avoid errors due to each camera’s proprietary auto-white-balance
functions, we perform the white-balance operation based on the neutral colour
patches in the Macbeth Color Rendition Chart.

Figures 4.2–4.4 show the corresponding plots in chromaticity space for the three

imaged charts. Here, each cluster of points represents the same patch imaged by the

four cameras. An ellipse is shown to show the spread of the measurements. From

these plots, we can also see that the full colourimetric conversion image state has the

minimum spread (i.e., lowest variance among the cameras).

Failure cases due to proprietary auto-white-balance functions Table 4.1

shows the results using the white-balance operation based on the neutral colour
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Figure 4.2: Colourimetric consistency between four cameras at five different processing
stages of the camera imaging pipeline using the patches of the Macbeth Color
Rendition Chart. It is clear that the full colourimetric conversion image state
(raw-RGB with linear and non-linear colourimetric conversion applied) is by
far the most consistent state. Results are shown for each illumination CCT
and all illuminations combined. To avoid errors due to each camera’s propri-
etary auto-white-balance functions, we perform the white-balance operation
based on the neutral colour patches in the Macbeth Color Rendition Chart.
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Figure 4.3: Colourimetric consistency between four cameras at five different processing
stages of the camera imaging pipeline using the patches of the 81 Paint Sam-
ples #1. It is clear that the full colourimetric conversion image state (raw-
RGB with linear and non-linear colourimetric conversion applied) is by far
the most consistent state. Results are shown for each illumination CCT and
all illuminations combined. To avoid errors due to each camera’s proprietary
auto-white-balance functions, we perform the white-balance operation based
on the neutral colour patches in the Macbeth Color Rendition Chart.
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Figure 4.4: Colourimetric consistency between four cameras at five different processing
stages of the camera imaging pipeline using the patches of the 81 Paint Sam-
ples #2. It is clear that the full colourimetric conversion image state (raw-
RGB with linear and non-linear colourimetric conversion applied) is by far
the most consistent state. Results are shown for each illumination CCT and
all illuminations combined. To avoid errors due to each camera’s proprietary
auto-white-balance functions, we perform the white-balance operation based
on the neutral colour patches in the Macbeth Color Rendition Chart.
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(1) Colour Rendition Chart
Stage 3200◦K 4340◦K 5500◦K Combined

raw-RGB 0.046 0.049 0.051 0.130
white-balanced raw-RGB 0.043 0.094 0.050 0.058

colourimetric image state (linear) 0.136 0.160 0.116 0.116
colourimetric image state (non-linear) 0.026 0.082 0.031 0.047

sRGB 0.066 0.097 0.053 0.068

(2) Paint Samples #1
Stage 3200◦K 4340◦K 5500◦K Combined

raw-RGB 0.121 0.131 0.139 0.411
white-balanced raw-RGB 0.059 0.402 0.039 0.220

colourimetric image state (linear) 0.210 0.544 0.161 0.305
colourimetric image state (non-linear) 0.034 0.483 0.011 0.267

sRGB 0.058 0.480 0.053 0.253

(3) Paint Samples #2
Stage 3200◦K 4340◦K 5500◦K Combined

raw-RGB 0.127 0.135 0.143 0.424
white-balanced raw-RGB 0.092 0.356 0.103 0.238

colourimetric image state (linear) 0.212 0.468 0.238 0.306
colourimetric image state (non-linear) 0.078 0.407 0.079 0.276

sRGB 0.091 0.383 0.123 0.261

Table 4.2: Colourimetric consistency between four cameras at five different processing
stages of the camera imaging pipeline using the patches from (1) the Macbeth
Color Rendition Chart, (2) our first custom chart with 81 paint samples, (3)
our second custom chart with 81 different paint samples. The table reports the
average variance of each patch’s 2D chromaticity values among the four cameras
in the respective image states. The most consistent method is highlighted
in bold. Results are shown for each illumination CCT and all illuminations
combined using the proprietary auto-white-balance functions of the cameras.

patches in the Macbeth Color Rendition Chart. Here we present how the consis-

tency fails due to the proprietary auto-white-balance functions. Table 4.2 shows the

results using the proprietary auto-white-balance functions and Figures 4.5–4.7 show

the corresponding plots in chromaticity space for the three imaged charts. In particu-

lar, notice how using each camera’s propriety white balance function no longer allows

for best cross camera colourimetric consistency following non-liinear colourimetric

processing.
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Figure 4.5: Colourimetric consistency between four cameras at five different processing
stages of the camera imaging pipeline using the patches of the Macbeth Color
Rendition Chart. Results are shown for each illumination CCT and all illu-
minations combined using the proprietary auto-white-balance functions of the
cameras.
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Figure 4.6: Colourimetric consistency between four cameras at five different processing
stages of the camera imaging pipeline using the patches of the 81 Paint Sam-
ples #1. Results are shown for each illumination CCT and all illuminations
combined using the proprietary auto-white-balance functions of the cameras.
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Figure 4.7: Colourimetric consistency between four cameras at five different processing
stages of the camera imaging pipeline using the patches of the 81 Paint Sam-
ples #2. Results are shown for each illumination CCT and all illuminations
combined using the proprietary auto-white-balance functions of the cameras.
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4.3 Discussion

We have performed a simple set of experiments to demonstrate the advantages to

allowing access to the colourimetric image state in the camera imaging pipeline. Our

experiments showed that image values in the colourimetric image state have the least

amount of variance among different cameras when compared to other image states.

Currently only the raw-RGB and sRGB image states are available to users, which

represent the arguably two worst image states for multi-camera consistency. We point

out that the white-balanced raw-RGB image state included in our experiments was

provided only for comparison; like the colourimetric image state, the white-balance

image state is not easily accessible.

It is worth noting that our experiments compared the variance of values in differ-

ent images states that represent different colour spaces. This is important to consider

as variance is not invariant to scaling which undoubtedly happens in the conversion

between colour spaces. A more proper evaluation would involve attempting to nor-

malize each colour space into a canonical 3D volume and then estimate the variance.

However, such normalization does not represent how image processing and computer

vision application developers use such values, nor how the camera pipeline manip-

ulates the image’s RGB values. Instead, applications developers would tune their

algorithms based on the colour space used, and in such cases, having lower variance

among different devices is always preferred.

Finally, our experiments were limited to DSLR cameras, as smartphone cameras

currently do not include the nonlinear colourimetric metadata in their raw-RGB files.

This lack of metadata made it impossible for us to evaluate the true colourimetric
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conversion performed onboard smartphone cameras. This issue with smartphone

cameras further bolsters our advocacy for more open access to various image states

within the camera image pipeline.

4.4 Summary

Our experiments show that the colourimetric mapping stage achieves the most con-

sistent results. More importantly, we obtain these results without the need for any

colourimetric calibration; this is simply a matter of accessing the appropriate im-

age state within the camera imaging pipeline. As a result, we advocate the need

for cameras to allow a third image format beyond raw-RGB and sRGB, named a

colourimetric image state.
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Chapter 5

Improving Colour Reproduction

Accuracy on Cameras

In this chapter, we examine the colourimetric mapping procedure currently used

on cameras. In particular, we discuss the limitations of the current colourimetric

mapping approach and propose two methods that are able to improve colour accuracy.

We evaluate our approach on seven different cameras and show improvements of

up to 30% (DSLR cameras) and 59% (mobile phone cameras) in terms of colour

reproduction error. This work can be categorized as part of the colour calibration

method. However, our research focuses on how the colour mapping is performed

onboard the camera without the assistance of the standard calibration pattern that

needs to be placed in the scene.
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5.1 Introduction

Leveraging the experimental platform that we presented in Chapter 3, we focus our

attention on the colourimetric mapping procedure. The colourimetric mapping proce-

dure currently used on cameras involves pre-computing two CSTs that correspond to

two fixed illuminations. The calibration needed to compute these CSTs is performed

in the factory and the transform parameters are part of the camera’s firmware. The

illuminations that correspond to these calibrated CSTs are selected to be “far apart”

in terms of CCT so that they represent sufficiently different illuminations. When an

image is captured that is not one of the two illuminations, an image-specific CST is

interpolated by linearly blending the two pre-calibrated CSTs. This reliance on an

interpolated CST can result in lower overall perceptual colour reproduction accuracy

as shown in Figure 5.1. Therefore, providing an improvement for this process allows

the camera to act as a colour reproduction, or a colourimetric, device.

Although the colour calibration methods are related to our overall goal of colour

reproduction, these methods rely on a colour rendition chart imaged under the scene’s

illumination to perform the colourimetric mapping. As a result, they compute a

direct mapping between the sensor’s RGB values and a target perceptual colour space

without the need for illumination correction. However, the proposed work in this

chapter restricts itself to the current pipeline’s two-step procedure involving a camera

colour space illumination correction followed by a colour space transform.
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Figure 5.1: (A) Angular colour reproduction error using the current method based on
white balance and CST interpolation using two pre-calibrated illuminations.
(B) Improvements by our first method using white balance and CST inter-
polation with three pre-calibrated illuminations. (C) Improvements by our
second method using a full colour balance and a fixed CST.
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Figure 5.2: This figure is modeled after Cheng, Price, Cohen, and Brown (2015b). (A)
Image formation in the camera colour space for two different illumination
sources. (B) Result of a conventional diagonal white balance (WD) and full
colour correction (WF ) applied to the input images. Errors are computed
as angular reproduction error (see Section 5.4.2). White balance introduces
notable errors for non-neutral colours. In addition, errors affect different scene
materials depending on the illumination. Full colour balance introduces fewer
reproduction errors for all materials.

5.2 Existing Camera Colourimetric Mapping

In this section, we describe the current colourimetric mapping process applied on

cameras. We begin by first providing preliminaries of the goal of the colourimetric

mapping procedure and the limitations arising from white balance. This is followed

by a description of the current interpolation-based method used on cameras.

5.2.1 Preliminaries

Goal of the colourimetric mapping Following the notation of Cheng et al.

(2015a), we model image formation using matrix notation. Specifically, let Ccam

represent a camera’s spectral sensitivity as a 3×N matrix, where N is the number

of spectral samples in the visible range (380 nm to 720 nm). The rows of the matrix

Ccam = [cR; cG; cB]T correspond to the spectral sensitivities of the camera’s R, G,

and B channels.
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Since our work is focused on colour manipulation, we can ignore the spatial loca-

tion of the materials in the scene. As a result, we represent the scene’s materials as

a matrix R, where each matrix column, ri, is a 1×N vector representing the spectral

reflectance of a material. When using this notation, the camera’s sensor responses to

the scene materials, Φl
cam, for a specific illumination, l, can be modeled as:

Φl
cam = Ccam diag(l) R = Ccam L R, (5.1)

where l is a 1×N vector representing the spectral illumination and the diag(·) operator

creates a N×N diagonal matrix from a vector (see Figure 5.2).

The goal of the colourimetric mapping of a camera is to have all the colours in the

scene transformed to a perceptual colour space. This target perceptual colour space

can be expressed as:

Φxyz = Cxyz R, (5.2)

where Cxyz is defined similar to Ccam but uses the perceptual CIE XYZ matching

functions (Guild, 1931; Wright, 1928–1929). In addition, the effects of the illumi-

nation matrix L are ignored by assuming the scene is captured under ideal white

light—that is, all entries of l are equal to 1.

The colourimetric mapping problem therefore is to map the camera’s Φl
cam under

a particular illumination l to the target perceptual colour space with the illumination

corrected—that is, Φxyz.

Deficiencies in white balance As previously discussed, the colourimetric mapping

on cameras is performed in two steps. The first is to remove the effects of the illu-

mination (i.e., computational colour constancy) in the camera sensor’s colour space.
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under an arbitrary illumination. (C) A plot of the weights used to interpolate
the new CST.

Ideally, computational colour constancy estimates a 3×3 linear transform, WF , to

remove the illumination as follows:

WF = arg min
WF

||Ccam R−WF Φl
cam||

2, (5.3)

where WF minimizes the error between all the observed scene materials. Here the

subscript F is used to denote that this matrix is a full 3×3 matrix.

However, most colour constancy methods target only the estimation of the illu-

mination in the camera space. This is equivalent to observing a neutral object in the

scene (i.e., an achromatic material r that reflects spectral energy at every wavelength

equally) and thus r = l. The matrix to correct neutral patches can be derived directly

from the observed illumination Ccam l as:

WD = diag(Ccam l)−1, (5.4)

where l is the observed scene illumination. The subscript D denotes that WD is
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restricted to a diagonal 3×3 matrix. It should be clear that this diagonal white-

balance correction is not the same as the full colour correction formulation in Eq. 5.3.

The obvious drawback to white balance is that it cannot guarantee that non-

neutral scene materials are properly corrected. Moreover, errors in the non-neutral

scene materials are dependant on the scene illumination. Figure 5.2 shows an example

where the scene materials R are the spectral properties of colour patches from a

standard colour rendition chart. In this figure, the results of using the full colour

balance matrix WF and the white-balance matrix, WD, are applied to two different

illuminations, l1 and l2. The errors are plotted as:

Err
W

li
F

= ||Ccam R−W li
F Φli

cam||
2

Err
W

li
D

= ||Ccam R−W li
D Φli

cam||
2,

(5.5)

where the index i is used to denote the different illuminations, l1 or l2. In this figure,

the W li
F and W li

D are computed for the respective illuminations li. We can see that the

diagonal matrix incurs notable errors for non-neutral materials. These errors must

be considered when computing the subsequent colour space transform.

Colour space transform (CST) Once the white-balance step has been applied,

we now need to perform a mapping that considers the differences in the camera

sensitivities Ccam and the desired perceptual colour space Cxyz. Because the camera

sensitivities of the sensor are generally unknown, it is common to derive this transform

by imaging an object with known CIE XYZ values, most commonly a colour rendition

chart.

Working from Eq. 5.1, we assume the matrix R captures the spectral properties

of the colour rendition chart’s patches. Our goal is to compute a 3×3 CST matrix,

70



#

#

#

#

#

#

# # #

# # #

# # #

# # #

# # #

# # #

𝑊𝐷
𝐥𝟐

𝑊𝐷
𝐥𝟑

6500°K

5000°K

𝑇𝐥𝟐

𝑇𝐥𝟑
Illumination 3 (CCT 6500K)

Illumination 2 (CCT 5000K)

New input

#

#

#

𝑊𝐷
𝐥𝐚

𝑇𝐥𝐚 = 𝑔𝑇𝐥𝟏 + (1 − 𝑔)𝑇𝐥𝟑

# # #

# # #

# # #

𝑇𝐥𝐚
(3000°K)

𝑔 =
CCT𝐥𝐚

−1 − CCT𝐥𝟑
−1

CCT𝐥𝟏
−1 − CCT𝐥𝟑

−1

5000∘K
𝑙3 2500∘K

𝑙1
6500∘K

𝑙2

#

#

#

# # #

# # #

# # #

𝑊𝐷
𝐥𝟏2500°K 𝑇𝐥𝟏

Illumination 1 (CCT 2500K)
3000∘K
𝑙𝑎

𝛟𝐜𝐚𝐦
𝐥𝒂

1

0
2500°K 6500°K

w
e
ig

h
t

Correlated colour temperature

g

(1-g)

5000°K

CIE XYZ target

CIE XYZ target

CIE XYZ target

Calibration Interpolation process CA B Weighting functions

6500∘K
2500∘K

𝑙𝑎
5000∘K

Figure 5.4: Our first method to improve the colourimetric mapping in the in-camera pro-
cessing pipeline. (A) An additional illumination is calibrated and added to
the interpolation process. (B) Shows the overall procedure to compute the
weights to interpolate the CST. (C) Shows the weighting function for differ-
ent estimated CCTs.

Tl, that minimizes the following:

Tl = arg min
Tl

||Cxyz R− TlW l
D Φl

cam||
2, (5.6)

where W l
D is the estimated white-balance correction for the given illumination L.

Since the results of W l
D Φl

cam differ depending on illumination, the matrix Tl needs

to be estimated per illumination to compensate for the differences.

5.2.2 Current Interpolation Approach

Instead of computing a Tl per illumination, the current procedure used on cameras is

to interpolate a CST based on two pre-calibrated illuminations. Figure 5.3 provides a

diagram of the overall procedure. The two illuminations are selected such that their

CCTs are sufficiently far apart. For each illumination, the illumination-specific CST

is estimated as shown in Figure 5.3-(A).

When an image is captured, its estimated illumination value is used to compute the

71



correlated colour temperature of the illumination (Wyszecki & Stiles, 1982; Robert-

son, 1968). Based on the correlated colour temperature, the two pre-computed CSTs

are interpolated (see Figure 5.3-(B)) to obtain the final CST to be applied as follows:

Tl = g Tl1 + (1− g) Tl2 , (5.7)

where

g =
CCT−1

l − CCT−1
l2

CCT−1
l1
− CCT−1

l2

. (5.8)

The factory pre-calibrated CCTs for l1 and l2 for most cameras are selected to be

2500◦K and 6500◦K. The interpolation weights of g and 1−g are shown in Figure 5.3-

(C), where the horizontal axis is the CCT of the image’s estimated illumination.

As shown in Figure 5.1, this interpolation procedure based on two fixed illumina-

tions does not always provide good results. In the following sections, we describe two

methods to improve the colourimetric mapping process.

5.3 Proposed Improvements

We introduce two methods to improve the colourimetric mapping procedure. The first

approach is a simple extension of the interpolation method to include an additional

calibrated illumination in the interpolation process. The second method relies on a

full colour correction matrix discussed in Section 5.2.1 and uses a fixed CST matrix

for all input images.

Method 1: Extending interpolation. The most obvious way to improve the cur-

rent colourimetric mapping procedure is to incorporate additional calibrated illumi-

nations into the interpolation process. Ideally we would like many illuminations to
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be represented as control points in this process; however, this is likely unrealistic in

a factory pre-calibration setting. As a result, we consider the case of adding only a

single additional interpolation control point with a CCT at approximately 5000◦K,

which is the median CCT of the dataset. Figure 5.4-(A) shows a diagram of our

approach.

When a new image is obtained, we estimate the scene illumination and then select

a pair of pre-calibrated Tl based on the estimated illumination’s CCT. The blending

weights g and 1 − g are adjusted accordingly between the pair of T selected using

Eq. 5.8. The final CST, Tl, is computed using Eq. 5.7. An example of this approach is

shown in Figure 5.4-(B). The weighting factors for g are shown in Figure 5.4-(C). This

simple inclusion of a single additional pre-calibrated illumination in the interpolation

process gives surprisingly good results and can be readily incorporated into an existing

in-camera pipeline.

Method 2: Using full colour balance. As discussed in Section 2.2.2, our second

method leverages the full colour-balance approach proposed by Cheng et al. (2015a).

A brief overview of the approach is provided here.

Cheng et al. (2015a) found that under certain types of broadband illumination, a

diagonal correction matrix was sufficient to correct all colours in the camera’s colour

space. Based on this finding, they proposed a method that first estimated a set of

ground truth colour values in the camera’s sensor space by imaging a colourful object

under broadband illumination (e.g., sunlight). This image is then corrected using a

diagonal white balance. Images of the same object under different illuminations could

then map their observed colours to these ground truth camera-specific colours. The

benefit of this approach is that unlike traditional colour calibration, this approach
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Figure 5.5: Our second method relies on full colour balance matrices estimated us-
ing Cheng, Price, Cohen, and Brown, 2015a’s approach. A fixed CST is
estimated using either a single observation of a calibration pattern or multi-
ple observations.

does not require a colour rendition chart with known CIE XYZ values; instead, any

colour pattern with colour variation will work. Consequently, this approach falls short

of colourimetric calibration, but does allow full colour balance to be achieved.

Cheng et al. (2015a) also proposed a machine-learning approach that trained a

Bayesian classifier to estimate the full colour balance matrix, W l
F , for a given camera

image Φl
cam under an arbitrary illumination l. Since the full colour balance attempts

to correct all colours, it is not necessary to compute an illumination-specific CST.

Instead, we can estimate a single fixed CST, Tfixed as follows:

Tfixed = arg min
T

||
∑
i

(Cxyz R− T W li
F Φli

cam)||2, (5.9)
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where the index i selects an image in the dataset, li represents the illumination for

that image’s scene, and R is again assumed to be calibration chart patches’ spectral

responses.

In our second approach, we assume that the full colour balance matrix can be

obtained. We estimate the fixed CST, Tfixed, in two ways. The first is to use only a

single observation of the colour chart. Therefore Eq. 5.9 can be simplified such that

i indexes to only a single observation of the colour chart with a single illumination

(we use an image with CCT of 6500◦K). The second approach is to consider all

observations of the colour chart for each different illumination. Figure 5.5 provides an

illustration of these two methods to estimate Tfixed. In our experiments, we distinguish

the results obtained with these two different approaches.

Method 2 (extension): Full colour balance with interpolation. While the full

colour balance allows the computation of a fixed CST that should be applicable to all

illuminations, from Eq. 5.9, it is clear the errors for the estimated CST mapping will be

minimized for a particular illumination when only a single i is used as described above.

As a result, we can use the same interpolation strategy as described in Sec. 5.2.2 that

used white balance corrected images, but instead use full colour balance and CST

estimated using Eq. 5.9. Results for this extension approach are not included in the

dissertation, but can be found in Appendix A.

5.4 Experimental Results

In this section, our experimental setup used to test the proposed colourimetric map-

ping methods is discussed along with an evaluation of the proposed methods.
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Method
Apple iPhone 7 Google Pixel LG-G4 Canon1D NikonD40 Sony α57 Olympus E-PL6
CC I CC I CC I CC I CC I CC I CC I

CB + Fixed CST (all) 0.80 0.91 0.88 1.05 0.81 0.86 0.84 0.63 0.93 0.77 1.00 0.77 0.85 0.69

CB + Fixed CST (single) 0.95 1.04 1.41 1.45 1.17 1.17 0.95 0.76 0.98 0.80 0.99 0.76 0.82 0.67

WB + 3 CSTs 1.36 1.08 1.27 1.04 1.55 1.24 1.04 0.70 1.07 0.65 1.04 0.74 0.86 0.61

WB + 2 CSTs (re-calibrated) 1.76 1.42 1.92 1.46 1.98 1.54 1.16 0.82 1.33 0.82 1.13 0.81 1.05 0.71

WB + 2 CSTs (factory) 3.07 2.46 2.28 1.75 2.74 2.04 1.58 1.18 2.02 1.26 1.14 0.79 1.12 0.75

Table 5.1: The table shows the comparisons of error between full colour balance with fixed
CST, diagonal matrix correction with three CST, native cameras (re-calibrated
for the datasets we use), and native cameras (factory calibration). Errors are
computed on colour chart colours only (denoted as CC), and on full images
(denoted as I). The top performance is indicated in bold.

Figure 5.6: Sample images from our dataset, including selected images from the publicly
available NUS dataset (Cheng, Prasad, & Brown, 2014) together with our
mobile phone camera images.

5.4.1 Setup and Ground Truth Dataset

Our dataset consists of four DSLR cameras (Canon 1D, Nikon D40, Sony α57, and

Olympus E-PL6) and three mobile phone cameras (Apple iPhone 7, Google Pixel,

and LG-G4). For each camera we generated 100 colourimetrically calibrated images.

For the DSLR cameras, we selected images from the NUS dataset (Cheng, Prasad,

& Brown, 2014) for calibration. The NUS dataset was created for research targeting

colour constancy and provides only ground truth for the illumination. This dataset

has over 200 images per camera, where each camera is imaging the same scene. We
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selected a subset of this dataset, considering images in which the colour chart is

sufficiently close to the camera and fronto-parallel with the respect to the image plane.

For the mobile phone cameras, we captured our own images, taking scenes outdoors

and in an indoor laboratory setting with multiple illumination sources. All scenes

contained a colour rendition chart. Like the NUS dataset, our dataset also carefully

positioned the cameras such that they were imaging the same scene. Figure 5.6 shows

an example of some of the images from our dataset.

Colourimetric calibration for each image in the dataset is performed using the

X-Rite’s camera calibration software (X-Rite, 2010) that produces an image-specific

colour profile for each image. The X-Rite software computes a scene-specific white-

balance correction and CST for the input scene. This is equivalent to estimating

Eq. 5.4 and Eq. 5.6 based on CIE XYZ values of the Macbeth Color Rendition Chart.

To obtain the colourimetrically calibrated image values, we used the software

platform by Karaimer and Brown (2016) with the X-Rite calibrated colour profiles

to process the images. The camera pipeline is stopped after the colourimetric cali-

bration stage, as discussed in Section 2.2. This allows us to obtain the image at the

colourimetric conversion stage without photo-finishing applied as shown in Figure 1.1.

Note that while the discussion in Section 5.2.1 used CIE XYZ as the target

perceptual colour space, cameras instead use the Reference Output Medium Met-

ric (ROMM) (Spaulding, Giorgianni, & Woolfe, 2000) colour space, also known as

ProPhoto RGB. ProPhoto RGB is a wide-gamut colour space that is related to CIE

XYZ by a linear transform. For our ground truth images, we stopped the camera

pipeline after the values were transformed to linear-ProPhoto RGB colour space.

Thus, our 700-image dataset provides images in their unprocessed raw-RGB colour
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space and their corresponding colourimetric calibrated colour space in ProPhoto RGB.

5.4.2 Evaluation

We compare three approaches: (1) the existing interpolation method based on two

calibrated illuminations currently used on cameras; (2) our proposed method 1 using

interpolation based on three calibrated illuminations; (3) our proposed method 2

using the full colour balance and a fixed CST.

The approach currently used on cameras is performed in two manners. First, we

directly use the camera’s factory calibration of the two fixed CSTs. This can be

obtained directly from the metadata in the raw-RGB files saved by the camera. To

provide a fairer comparison, we use the X-Rite software to build a custom camera

colour profile using images taken from the dataset. Specifically, the X-Rite software

provides support to generate a camera profile that replaces the factory default CST

matrices. This colour profile behaves exactly like the method described in Section 5.2.

To calibrate the CSTs, we select two images under different illuminations (approxi-

mately 2500◦K and 6500◦K) from the dataset and use them to build the colour space

profile.

We then use the same 2500◦K and 6500◦K images to calibrate the CSTs used by

our proposed method 1. We add an additional image with a CCT of approximately

5000◦K as the third illumination. For the interpolation-based methods, we estimate

the illumination in the scene using the colour rendition chart’s white patches. This

avoids any errors that may occur due to improper illuminant estimation. Similarly,

for our method 2 that relies on full colour balance, we compute the direct full colour-

balance matrix for a given input method based on the approach proposed by Cheng
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et al. (2015a). This can be considered Cheng et al.’s method providing optimal

performance.

Since each image in our dataset has a colour rendition chart, errors are reported on

the entire image as well as the colour patches in the rendition chart. Moreover, since

the different approaches (i.e., ground truth calibration and our evaluated methods)

may introduce scale modifications in their respective mappings that affect the overall

magnitude of RGB values, we do not report absolute RGB pixel errors, but instead

report angular reproduction error (Finlayson, Zakizadeh, & Gijsenij, 2017). This

error can be expressed as:

εr = cos−1
( wr · wgt

||wr|| ||wgt||

)
, (5.10)

where wr is a linear-ProPhoto RGB value expressed as a vector produced by one of

the methods and wgt is its corresponding ground truth linear-ProPhoto RGB value

also expressed as a vector.

Individual camera accuracy Table 5.1 shows the overall results for each camera

and approaches used. The approaches are labeled as follows. CB+fixed CST refers

to our method 2, using full colour balance followed by a fixed CST. The (all) and

(single) refer to the estimation of whether the CST uses either all images or a single

image as described in Section 5.3. Using white balance (WB), WB+3 CSTs refers

to our method 1 using an additional calibrated illumination. WB+2 CSTs refers to

the current camera approach, where (recalibrated) indicates this approach is using

the X-Rite colour profile described above and (factory) indicates the camera’s native

CST.

The columns show the different errors computed: (CC) is colour chart patches
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Method
Mobile Phones Mobile Phones Mobile Phones Mobile Phones DSLRs DSLRs DSLRs DSLRs

2900◦K 4500◦K 5500◦K 6000◦K 3000◦K 3500◦K 4300◦K 5200◦K

CB + Fixed CST (all) 4.6 2.1 1.1 1.0 1.6 1.8 1.2 1.1

CB + Fixed CST (single) 10.0 7.1 4.9 6.2 2.7 2.9 2.1 1.7

WB + 3 CSTs 37.9 6.9 6.6 8.1 4.4 2.8 2.3 2.1

WB + 2 CSTs (re-calibrated) 44.9 11.3 9.5 16.7 6.7 3.2 3.4 5.9

WB + 2 CSTs (factory) 34.2 38.2 32.6 36.2 13.3 7.1 7.1 7.7

Table 5.2: This table reproduces the mean variance for colour reproduction (in ProPhoto
RGB chromaticity space) for mobile phone cameras and DSLR cameras of the
24 colour patches on a colour rendition chart. Results are shown for different
scenes captured under different colour temperatures. A lower variance means
the colour reproduction is more consistent among the cameras. (Variances
values are ×1.0E-3.) The top performance is indicated in bold.

WB + 2 CSTs (factory) WB + 2 CSTs (re-calibrated) WB + 3 CSTs CB + Fixed CST (single) CB + Fixed CST (all)

Mean angular error: 2.64° Mean angular error: 1.19°Mean angular error: 2.13° Mean angular error: 1.20°

Mean angular error: 1.00° Mean angular error: 0.12°Mean angular error: 0.35°Mean angular error: 0.81° Mean angular error: 0.50°
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Mean angular error: 0.66°

Figure 5.7: Visual comparison for the LG-G4 and Canon-1D. Methods used are the same
as used for Table 5.2.

errors only, and (I) for full images. The overall mean angular colour reproduction

error is reported. We can see that for all approaches our method 2 based on full

colour balance generally performs the best. Our method 1 performs slightly better

in a few cases. The best improvements are gained from the mobile phone cameras;

however, DSLRs do show a notable improvement as well.

Figure 5.7 shows visual results on whole images for two representative cameras,

the LG-G4 and the Canon 1D. These results are accompanied by heat maps to reveal

which parts of the images are being most affected by errors.
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Multi-camera consistency One of the key benefits to improved colourimetric con-

version is that cameras of different makes and models will capture scene colours in a

more consistent manner. We demonstrate the gains made by our proposed approach

by examining the reproduction of the colour rendition chart patches among multiple

cameras. From the dataset images, we select images under four different illumination

temperatures. We then map each image using the respective methods and compute

the mean variance of the colour chart patches between the various approaches. The

variance is computed in chromaticity space to factor out changes in brightness among

the different cameras. Table 5.2 shows the result of this experiment. Our two pro-

posed methods offer the most consistent mapping of perceptual colours.

5.5 Discussion

The work by Cheng et al. (2015a) requires a machine-learning method to predict the

colour balance matrix. Because most cameras still rely on fast statistical-based white-

balance methods, our second proposed method is not yet suitable for use onboard a

camera, but can be beneficial to images processed off-line. These results, however, sug-

gest that future generations of camera designs would benefit from exploiting advances

offered by machine-learning methods as part of the colour reproduction pipeline.

5.6 Summary

We have presented two methods that offer improvements for colour reproduction

accuracy for cameras. Our first method expands the current interpolation procedure

to use three fixed illumination settings. This simple modification offers improvements
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up to 19% (DSLR cameras) and 33% (mobile phone cameras); moreover it can be

easily incorporated into existing pipelines with minimal modifications and overhead.

Our second method leverages recent work (Cheng et al., 2015a) that allows full colour

balance to be performed in lieu of white balance. This second method provides the

best overall colour reproduction, with improvements up to 30% (DSLR cameras) and

59% (mobile phone cameras).
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Chapter 6

A Customized Camera Imaging

Pipeline for Dermatological

Imaging

The work in Chapter 6 aims to leverage our knowledge of camera pipelines to develop

a procedure to assist computer vision researchers working with machine vision cam-

eras. This procedure is described for a custom-built hand-held dermatological imaging

device. The device uses a combination of visible and non-visible spectral LEDs to

allow capture of visible RGB imagery as well as selected non-visible wavelengths. Our

customization involves two components. The first component is a colour calibration

procedure that ensures the captured images are colourimetrically more accurate than

those obtained through the machine vision camera’s native API. The need for colour

calibration is a critical component that is often overlooked or poorly understood by

computer vision engineers. Our second component is a fast method to integrate the
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Our customized
colour processing

B

Output directly from the
machine vision camera's API

A

Enhanced RGB image (B) 
using a narrow band image

C
Figure 6.1: (A) Image directly obtained using the machine vision camera’s API. (B) Result

from our customized camera processing pipeline after colour calibration and
photo-finishing. (C) Enhancement of the visible imaging using a selected
spectral band to highlight melanin pigmentation. The narrow band image is
shown as an inset.

narrow band spectral images (some of which are outside the visible range) into the vis-

ible RGB image for enhanced visualization. This component of our pipeline involves

evaluating several algorithms capable of multiple image fusion to determine the most

suitable one for our application. Quantitative and subject results, including feedback

from clinicians, suggest the effectiveness of our customization procedure. While this

chapter targets a specific application, the description for the machine vision camera

calibration and perceptual mapping is generic and can be applied to other application

domains.

6.1 Introduction

This chapter describes a custom imaging device for dermatological inspection con-

structed with an integrated machine vision camera. Machine vision cameras offer

several advantages over consumer-oriented cameras, such as DSLR and mobile phone
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cameras. These advantages include: (1) a larger sensor offering improved signal-to-

noise performance; (2) the lack of an NIR filter that allows non-visible spectral data

to be captured; and (3) supporting software and APIs that allow low-level control

over camera settings and the ability to perform external event triggering for image

capture. One crucial disadvantage of machine vision cameras, often overlooked by

computer vision researchers, is that these cameras are typically not colourimetrically

calibrated. Moreover, their supporting APIs often do not provide any mechanism for

colour correction beyond simple per-channel gain manipulation. In addition, machine

vision cameras lack onboard photo-finishing that allows consumer-oriented cameras

to produce perceptually pleasing images. When machine vision camera images are

used in applications where the image content needs to be displayed to users (especially

non-vision experts), the perceived quality of the machine vision imagery often appears

lower than consumer-camera imagery—even though the overall sensor performance

of the machine vision camera is better (see Figure 6.1).

In addition, for applications that benefit from images within specific spectral

bands—for example NIR spectral bands—there are a range of different options re-

garding how to use this information to enhance a visible three-channel RGB image. In

this chapter, we explore these options within the context of dermatological imaging.

6.2 Imaging Device and Application

The customization described in this chapter is for a dermatological imaging device

that is undergoing clinical evaluation. Figure 6.2-(A) shows a diagram of the device’s

construction. A machine vision camera using a Sony IMX172 12MP RGB sensor is

integrated into a closed housing with an LED light ring. The light ring is composed
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Figure 6.2: Our device: (A) Schematic diagram of our imaging device. A machine vision
camera is integrated inside a closed housing with a ring of LEDs. The LEDs
emit a range of visible and non-visible spectra targeting different biomarkers
for dermatological disorders. (B) Image of the current prototype device.

for eight (8) LEDs that emitted selected visible and NIR wavelengths, each target-

ing different biomarkers (e.g., eumelanin and hemoglobin). The corresponding LED

wavelengths range between 400 nm and 1100 nm. An additional LED that emits

broadband visible light is included. The sensor lacks a hot mirror that is typically

found on consumer cameras to block NIR light. By triggering image capture with the

LED emission, a visible RGB image in addition to the multiple spectral bands can

be captured in a single image capture session. Figure 6.2-(B) shows an image of the

actual device.

The visible and non-visible images obtained from this device are used with a

proprietary deep-learning module that provides dermatologists with objective data

to decide if a biopsy is needed for further investigation of a skin lesion. In addition,

the doctors can use the device for magnification of the target and their own visual

inspection. When used manually, our device can serve as a potential replacement,

or auxiliary device, for existing hand-held dermatoscopes that use a magnifying lens
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Typical pipeline for machine vision cameras
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Figure 6.3: (A) A typical camera imaging pipeline overviews the common steps applied
onboard a machine vision camera. (B) A typical camera imaging pipeline
overviews the common steps applied onboard a consumer camera.

with an illumination source. We note that this chapter does not discuss the associated

deep-learning system. Instead our focus is on the calibration of the imaging rig, with

emphasis on processing the machine vision data for perceptual output.

6.3 Machine Vision Versus Consumer Camera

Pipelines

Here we describe the processing steps found on machine vision cameras and consumer

cameras. This section helps to reveal why machine vision cameras’ images appear

visually different from consumer cameras. The section also concludes with a short

discussion on common issues that arise when working with machine vision cameras.

Machine vision camera pipeline Figure 6.3-(A) shows a diagram of a machine

vision camera pipeline. Although machine vision cameras are generally more expen-

sive than consumer cameras, the onboard processing is typically much simpler. The

following steps are typical of most machine vision cameras.

Step 1: Raw-RGB capture. The raw-RGB image is obtained from the camera
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sensor in a mosaiced Bayer pattern format. The data is typically 10–16 bits per

channel.

Step 2: Pre-processing. The raw-RGB image is linearized to transform its values

to range between 0 and 1. This includes a black-level offset correction based on the

camera’s current sensor readings.

Step 3: Demosaicing. The image is demosaiced into three full-sized channels.

Step 4: White balance. An optional white balance can be applied. This is

typically applied as an independent gain on the red and blue channels only. Most

machine vision cameras will provide an auto white balance function or allow this to

be manually set via software API calls. Note that most APIs do not call this white

balance.

Step 5: Gamma. Most machine vision cameras will allow an optional gamma

function to be applied to the RGB image.

Step 6: Output. The final output image can be optionally quantized to 8-bit, but

is typically not compressed.

It is important to note that the machine vision camera image is still in the sensor-

specific RGB space. As a result, the image is not suitable for display on monitors

which assume a sRGB display-referred colour space. Figure 6.1-(A) shows an example

of an output image. Although the image may appear correct, the colours are being

incorrectly interpreted as sRGB.

Consumer camera pipeline As we have already described the details of the con-

sumer camera pipeline in Chapter 3, we skip it in this chapter. However, we will

provide a summary in order to provide a comparison. Figure 6.3-(B) shows a dia-

gram of a consumer camera pipeline. Consumer cameras aim for perceptually pleasing
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images. Steps 1 and 2 are the same as a machine vision camera and are not discussed

here. Note that some of the steps may be applied in different orders.

Step 3: A flat-field correction. A spatially varying gain is applied to correct for

uneven light fall on the sensor due to the camera’s form factor and lens characteristics.

Step 4: Demosaicing. This is applied similarly to the machine vision camera.

Often edge sharpen may be included to enhance the appearance of the image.

Step 5: Denoising. Many consumer cameras, especially smartphone cameras, in-

corporate some type of image denoising.

Step 6: White balance. Unlike machine vision cameras, this is not optional. All

consumer cameras apply a white-balance step. White balance compensates for the

scene illumination and prepares the image for a subsequent colour space transform to

map the sensor-specific raw-RGB to a device-independent perceptual colour space.

Step 7: Colour space transform. Consumer cameras convert the raw-RGB colour

space to a perceptual colour space based on CIE XYZ, such as a linear sRGB. This

transform is reliant on the quality of the previous white-balance step and does have

limitations (for more details see Chapter 5); however, in general, the colour transform

step serves as a reasonable colourimetric conversion of the raw-RGB image.

Step 8: Photo-finishing. Consumer cameras apply proprietary colour manipula-

tion to improve the appearance of the image. While this is shown as a single step

in Figure 6.3-(B), photo-finishing often involves multiple substeps depending on the

camera. These steps include per channel tone-curves, application of 3D LUTs, and

selective colour manipulation. Spatially varying photo-finishing can also be applied.

The photo-finishing step generally imparts a unique look and feel to the final output

image that is associated with a particular make and model of a camera (e.g., Nikon,
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Canon, iPhone, Samsung).

Step 9: Compression and output. Consumer cameras apply JPEG compression

to the output image. The image is encoded in a display-referred colour space, typically

sRGB. These images are suitable for display.

Remarks Many computer vision researchers are not aware of the differences between

a machine vision and consumer camera pipeline. Often the API documentation pro-

vided with machine vision cameras does not help to clarify these issues. The machine

vision camera based on the Sony IMX172 sensor provided additional API calls that

allowed manipulation of the captured image in the Hue, Saturation, Value (HSV)

space. While HSV can be used to re-parameterize an arbitrary RGB colour space,

it is most often associated with a gamma-encoded sRGB colour space. The Sony

IMX172 documentation failed to mention that the HSV is in the camera’s raw-RGB

colour space. Only by calling the manufacturer were we able to assess this. In fact, the

camera’s documentation never specified if a colourimetric conversion was performed

onboard the camera.

Not understanding the colour space images are saved in can have serious con-

sequences. For example, when displaying sensor-specific RGB images, the observer

is not seeing an image that is correctly calibrated for a display. Another serious

consequence is when the imagery is used to train machine learning modules. If a

deep-learning module is trained using a sensor-specific RGB input, it may not gener-

alize well to other input colour spaces—as a result, an application can be restricted

to work with only a particular make and model of a camera. The following section

discusses how this can be avoided by customizing the camera’s pipeline of a device.
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Figure 6.4: This figure shows the customized pipeline design which allows the machine
vision camera to behave more similarly to a consumer camera pipeline. A
noticeable difference is that we do not need to perform a white-balance step
since we will always be imaging under the same lighting conditions. This
means the white balance can be absorbed into the colour space transform.
We include additional tone curve processing and optional colour manipulation
(3D LUT) to mimic the appearance of consumer cameras. Our pipeline also
includes a select spectral band image pipeline that processes the narrow band
spectral image and then integrates it with the RGB image.

6.4 Custom Camera Pipeline and Results

This section describes our customized camera pipeline for our dermatological imaging

device. Further, given the availability of the narrow band spectral data (including

non-visible bands), we provide a mechanism to use this information to enhance our

RGB image. Figure 6.4 shows an overview of our customized pipeline.

Flat-field correction Because our LED lights are at different positions, we need

to compute a flat-field correction for each LED. We can do this by imaging one of

the achromatic patches on a colour rendition chart with each LED turned on. This

patch has a uniform reflection and therefore any deviation in the captured image is
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assumed to be due to a combination of light position and lens. To correct the non-

uniform response, we construct a map that inversely scales each pixel’s intensity to

the intensity level in the middle of the image that the lens focuses on best.

Figure 6.5 shows the vignetting maps computed for each nine LEDs. Due to

slight misalignment of the camera’s optical axis with the 3D printed housing of our

prototype device, the flat-field distortion maps are all dominated by strong fall near

the lower region of the imaging field. Such issues should be resolved with proper

industrial design of the production-level device.

Colour calibration Our sensor needs to be colourimetrically calibrated as discussed

in the previous section. We tested both a 3×3 and a 3×11 matrix CST to map our

raw-RGB values to the CIE XYZ colour space. The 3×11 matrix is based on the

polynomial equations proposed by Hong et al. (2001). Since we have a fixed light

source in our imaging device, we do not need to compute a white-balance matrix.

Instead we can directly compute a transform from the raw-RGB to our target colour

space. In our case, we map to linear-sRGB. To compute our CST, we place our device

over each of the colour patches in a Macbeth chart and take a reading with the visible

band LED light turned on. Flat-field correction is applied to the captured images

before extracting the raw-RGB colour values of each patch.

We use iteratively re-weighted least squares (Huber & Ronchetti, 2009) to compute

the mapping functions based on the colour correspondence. To examine the quality

of our mapping, we can visualize the angular error between the target patch colours

and our mapped colours.

We also examine our estimated CSTs on a different set of colour patches consisting

of 128 skin colours obtained from the Munsell Book of Color reference. The Munsell
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Figure 6.5: Flat-field correction maps corresponding to the nine different LED lights.
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Figure 6.6: Angular errors for colour chart colours (denoted as CC), and on skin colours
(denoted as SC) from the Munsell Book of Color reference.

Book of Color provides patches that are indicative of skin tones. We also compare the

results of applying white balance to the raw-RGB image. The white-balance gains are

computed by measuring an achromatic patch with the device and then adjusting the

camera’s red and blue gain such that R = G = B for all pixel intensities in that patch.

The angular RGB errors for each of these methods are shown in Figure 6.6. We can

see that colourimetric calibration drastically improves the accuracy of mapping to a

perceptual space.

Photo-finishing After colourimetric conversion, we can send the linear-sRGB images

off to our AI module for image analysis. However, for visualization, we still need to

apply an additional non-linear mapping. The sRGB standard specifies a 2.2−1 gamma

encoding to brighten the image. However, all cameras apply a proprietary tone-curve

to process the image instead of the 2.2−1 gamma encoding. These tone curves can

often be extracted from metadata saved in the Adobe DNG file format (Karaimer

& Brown, 2016). Additionally, many cameras, especially DSLRs, include a more

complicated colour manipulation based on a 3D LUT. The LUTs are associated with

different picture styles settings on the camera (see Kim et al., 2012).
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A B C D E F

Raw-RGB + gamma Linear-sRGB (B) Photo finished w/
Adobe tone-curve

(B) Photo finished w/
Nikon's Vivid mode

(B) Photo finished w/
Canon's Portrait mode

(B) Photo finished w/
Olympus's Natural mode

Figure 6.7: This figure shows the output of the machine vision camera with a gamma
mapping applied on two different examples (A). (B) shows the linear-sRGB
mapping computed from the colourimetric calibration. (C, D, E, F) show
various versions of photo-finishing applied to image (B) to produce different
appearances. These photo-finishing versions can be emulated in our custom
pipeline.

For our customization pipeline we are able to do both. Figure 6.7 shows an

example. Figure 6.7-(A) shows the standard output of the machine vision camera.

Figure 6.7-(B) shows the linear-sRGB result. Figure 6.7-(C) shows a tone-curve

applied based on Adobe’s standard photo-finishing tone-curve. This tone-curve is not

associated with any particular camera, but is used by Adobe’s Lightroom software

when no tone-curve is specified. This produces a perceptual image that looks much

more similar to a consumer camera.

Figure 6.7-(D,E,F) uses metadata extracted from DNG files to emulate the follow-

ing camera modes: D-Nikon Vivid mode, E-Canon Portrait mode, and F-Olympus

Natural mode. For our working system, we use the Adobe tone-curve (or a custom

curve), however; when desired, we can produce outputs that mimic existing camera

models. Our colourimetric conversion and photo-finishing can be performed in real

time and are part of the live-view display feed from the camera based on the visible

RGB image.
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Band 1 Band 2 Band 3 Band 4 Band 5Visible image Band 6 Band 7 Band 8

Figure 6.8: The visible and corresponding narrow band images for two different
melanocytic nevus lesions. The first lesion (top row) has a structure that
extends deeper into the skin; this is apparent in the individual spectral bands.
The second lesion (bottom row) is primarily on the outer layer of the skin and
contributes very little to the narrow spectral bands.

6.5 Spectral Data Fusion

As part of our customized pipeline, we allow the RGB image to be enhanced using

selected spectral bands. Which band to use for enhancement is currently manually

specified. Note that this process cannot yet be performed in real time, but instead

takes around 1.5–3 seconds per image. This part of our setup is currently not inte-

grated onboard the camera processor, but can be incorporated in future designs.

As shown in Figure 6.4, our device must first capture and process the single-

channel spectral bands using a simplified pipeline. Since these images are not obtained

from the visible spectrum, there is no need to perform colourimetric calibration.

Moreover, these bands are not demosaiced, but instead the channel most sensitive

to the imaged spectra is used (e.g., the raw-B channel for the light’s corresponding

shorter wavelengths, the raw-R channel for longer wavelengths, such as NIR). Once

the image is captured, flat-field correction is applied and the images are upsampled

to the RGB image’s size. Using this image we can perform enhancement. Figure 6.8

shows the visible and the corresponding spectral images for two sample skin lesions.
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We have examined the following three (3) spectral fusion methods. Each is based

on a different strategy, including bilateral filtering, Laplacian pyramid filtering, and

wavelet-based image fusion.

(1) Bilateral filter (Fredembach et al., 2009): The first method that we use

is based on work by Fredembach et al. (2009). While the authors proposed a method

that fused NIR to a visible image to remove skin imperfections, we used the spectral

data instead to boost the nonvisible details. This method is based on the fast bilateral

filter method introduced by Paris and Durand (2006), which is applied on both the

visible luminance image and single-channel spectral image. The method works by

decomposing the photo-finished sRGB image into the YCrCb colour space. A detail

layer is obtained from the spectral image by subtracting the input image from its

filtered version. This layer is added to the filtered Y channel of the sRGB filtered

image. The modified Y channel is recombined with the CrCb channels to produce

the final output with enhanced details from the spectral image.

(2) Fast local Laplacian filters (Aubry, Paris, Hasinoff, Kautz, & Durand,

2014): Our second method is based on the fast local Laplacian filters. This method

was proposed by Aubry et al. (2014), who provide a performance modification over

local Laplacian filters first introduced by Paris et al. (2011). While local Laplacian

filters were not used for image fusion, the method is fairly straightforward to allow

sharing of information between two images. Specifically, we use the algorithm outlined

in Aubry et al. (2014) to compute nine (9) levels of the Gaussian pyramid for the

spectral image, as well as the corresponding Gaussian pyramid and the Laplacian

pyramid of the visible image’s Y channel. Afterwards, we remapped the narrow band

image using the S-shaped curve as done in Aubry et al. (2014) to boost the local
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Modified bilateral filter method Wavelet-based image fusion

Band 1 Band 2 Band 3 Band 4 Band 5Visible image Band 6 Band 7 Band 8

Modified local Laplacian filter method

Figure 6.9: This figure shows the results of several different narrow band spectral im-
ages being used to modify the photo-finished sRGB image. The methods
applied are the bilateral filter based on a method by Fredembach, Barbus-
cia, and Süsstrunk (2009), a local Laplacian filtering approach based on the
method proposed by Aubry, Paris, Hasinoff, Kautz, and Durand (2014), and
a wavelet-based method. While there are subtle differences, the bilateral fil-
ter and local Laplacian give similar performance. The wavelet-based method
tends to introduce low-frequency intensity shifts in the overall image. Note
that each image to the right of the visible is the result of fusing the image
from the narrow band with the visible.
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gradients of the spectral image. These boosted gradients are blended with the local

gradient information from the Y channel of the RGB image. Before we collapse the

combined Laplacian pyramid, the last level of the Gaussian pyramid is copied from the

visible Y channel. This effectively transfers the spectral image’s details to the visible

image Y channel. The modified Y channel is recombined with the CrCb channels to

produce the final output.

(3) Wavelet-based image fusion: Our last method is a wavelet-based image

fusion approach that was also discussed in Fredembach et al. (2009). This method

also starts by converting the photo-finished sRGB image to the YCbCr colour space.

A wavelet decomposition is applied using a Symlet wavelet generator on the Y chan-

nel of the visible image and the selected spectral image. After the coefficients are

calculated, the wavelet coefficients in the visible image’s Y channel are replaced by

the corresponding spectral image’s wavelet coefficient if its coefficient’s magnitude is

larger. Reconstructing the image with the fused wavelet coefficients performs the im-

age fusion on the Y channel. The new Y image is recombined with the CrCb channels

of the visible image to produce the final output.

Figure 6.9 shows the results of the three approaches. While these results are

subjective in nature, our observations are that the local Laplacian filter and bilat-

eral filter methods give similar performance. The wavelet-based methods tend to

introduce low-frequency intensity shifts in the overall image. The bilateral and lo-

cal Laplacian filter methods both run in about 2 seconds on a standard workstation

PC. The narrow band spectral fusion is still an area of ongoing investigation and

will require several rounds of user study to determine the most preferred methods by

practitioners. However, regardless of which method will be eventually be adopted,
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the overall processing pipeline for this image fusion will be based on our current

customized pipeline design.

Clinical feedback In order to find out if there was a preference between the meth-

ods and the different spectral bands, we conducted a simple study with practicing

dermatologists who have been evaluating the device.

The clinicians examined the visible image and the corresponding spectral images

as well as the three fusion methods. We showed ten cases and for each case we asked

three questions:

(1) Among the three methods used to perform spectral image fusion, do you have a

preferred method?

(2) Is there a particular spectral image that you feel provides the most information?

(3) Do you feel this type of fusion is useful for you in a clinical setting (i.e., would it

help you make a more informed decision)?

The feedback was as follows. For question 1, dermatologist 1 chose the wavelet-

based method eight times out of ten samples. Similarly, dermatologist 2’s preference

was the wavelet-based method, which was chosen seven times out of ten examples.

Dermatologist 3 chose the method based on bilateral filtering of all their choices.

Regarding which wavelengths to fuse, band 8 (the highest NIR band) was the most

preferred. Dermatologist 1 preferred band 1 (the lowest UV band) seven times out

of ten cases. Dermatologist 2 equally chose band 2 and band 8 three times out of ten

samples, and dermatologist 3’s preference was band 8 nine times out of ten examples.

This suggests that the NIR data, especially for longer wavelengths, provided useful

information to the clinicians.
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For the last question, comments from our participants include “Yes, I think that

the fusion is very helpful” and “I could see the pattern of each lesion much better

(reticular, dots, borders).” One dermatologist who was neutral on the idea of fusion

commented, “Only in certain cases.” While the preferences of the dermatologists were

not always consistent with each other, their individual preferences were consistent.

6.6 Discussion

Specific to our dermatological application, we are still exploring ways to integrate

the narrow spectral bands for image enhancement. Currently we use only a single

spectral band at a time. Combining multiple bands may allow doctors to assess skin

lesions faster. Addressing these issues is part of ongoing work. Based on our pilot

user study, however, given the diversity in opinions regarding which bands are most

useful, we advocate allowing manual selection over an automated strategy.

6.7 Summary

This section has detailed a custom in-camera processing pipeline for a dermatolog-

ical imaging device that captures both visible and selected narrow band spectral

information. As part of this work, we have described the basic camera processing

pipelines found on machine vision cameras and discussed limitations that are often

overlooked in applications of this nature—namely, the lack of colourimetric calibra-

tion and photo-finishing on machine vision cameras. We have provided a detailed

description of how to calibrate our camera to improve the colourimetric accuracy as

well as mimic the photo-finishing routines found on consumer cameras. While our
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work targets a dermatological device, we believe information described in this chapter

will be useful for the design of similar devices.
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Chapter 7

Conclusion and Future Directions

This chapter concludes the dissertation with a collective summary of the contributions

made and potential future directions for follow-on research.

7.1 Summary

The goal of this dissertation has been to examine the colour rendering procedure in

the context of the in-camera imaging pipeline. In Chapter 2 we presented the required

background on colour and related work in the literature.

Chapter 3 presented our camera simulator for researchers to have access to the

onboard imaging system. The software platform allows modification of the param-

eters for individual components as well as the ability to access and manipulate the

intermediate images as they pass through different stages. The simulator made it

possible to complete the other chapters of the dissertation.

103



In order to make the colours consistent across multiple cameras, Chapter 4 in-

vestigated a consistent image state in the camera imaging pipeline. Our approach

leverages the camera imaging pipeline stages, and offers cameras the chance to pro-

duce an extra output at the colourimetric conversion stage.

Chapter 5 presented two methods to improve colour reproduction accuracy in the

camera imaging pipeline. Our first method uses white balance and CST interpolation

with three pre-calibrated illuminations. The second method uses a full colour balance

and a fixed CST. Although our second method requires a machine-learning method

to predict the colour balance matrix, it achieves the best results. On the other

hand, our first method can be easily incorporated into existing pipelines with minimal

modifications and overhead.

Finally, Chapter 6 presented how to customize a camera imaging pipeline for a

constrained use case scenario. To avoid errors due to proprietary functionality of the

cameras, the goal was to customize the camera imaging pipeline for a custom-built

device for a dermatological imaging application. Quantitative and subject results,

including feedback from clinicians, suggest the effectiveness of our customization pro-

cedure.

In summary, this dissertation examined the colour rendering procedure in the

camera imaging pipeline. In order to perform experiments within the proper context

of the pipeline, a camera simulation tool is developed. A new image output format

that makes imaged objects consistent across cameras is proposed. Improvements

on the individual camera colourimetric accuracy and consistency between multiple

cameras are presented. Finally, a customization procedure for an imaging pipeline in

the context of dermatological imaging is described.
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7.2 Future Directions

7.2.1 Cameras for Purposes Beyond Photography

In Chapter 4, we show compelling evidence that accessing the colourimetric image is

useful; however, access to all image states would be welcomed. As we discussed before,

smartphone cameras currently do not include the nonlinear colourimetric metadata

in their raw-RGB files. This lack of metadata made it impossible for us to evaluate

the true colourimetric conversion performed onboard smartphone camera. In order

to use the camera for purposes beyond photography, analysis of other image states

for both DSLR and smartphone cameras is part of our ongoing and future efforts.

7.2.2 A Full Learning-Based Camera Simulator

Although attempts at learning-based camera simulation software are proposed (Jiang,

Tian, Farrell, & Wandell, 2017; Nam & Kim, 2017; Jaroensri, Biscarrat, Aittala, &

Durand, 2019), currently none of them are able to simulate the effect of ISO change

and optics. Recent mobile phones are capable of changing aperture size and optical

zoom. Therefore, considering incorporating these features may help to serve the

goal of open research platforms. Moreover, scene-dependent photo-finishing routines

could also be included since this kind of processing is one of the core functionalities

for mainstream photography applications.
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Appendix A

Improving Colour Reproduction

Accuracy on Cameras

(Supplemental Material)

Overview

Here we provide supplemental details and results to accompany Section 5.4. The

supplemental material is organized as follows. Section A.1 presents how we use the

same interpolation strategy as described in Sec. 5.2.2 that used white balance cor-

rected images, but instead use full colour balance and CST estimated using Eq. 5.9.

Section A.2 provides details for the algorithm used to estimate the correlated colour

temperature (CCT) of an observed neutral object in the camera’s RGB colour space.
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This corresponds to Section 5.2.2 of the dissertation. Section A.3 shows the cor-

responding 2D plots of the chromaticity values of the colour rendition colour chart

patches from multiple cameras. This corresponds to the experiments in Section 5.4.2

(multi-camera consistency) of the dissertation. Section A.4 provides additional results

in terms of colour reproduction angular error. This corresponds to the experiments

in Section 5.4.2 (individual camera accuracy).

A.1 Method 2 (Extension): Full Colour Balance

with Interpolation

While the full colour balance allows the computation of a fixed CST that should be

applicable to all illuminations, from Eq. 5.9, it is clear the errors for the estimated

CST mapping will be minimized for a particular illumination when only a single i

is used as described in Section 5.3. As a result, we can use the same interpolation

strategy as described in Section 5.2.2 that used white-balance corrected images, but

instead use full colour balance and CST estimated using Eq. 5.9. Results for this

extension approach are not included in the dissertation, but can be found in this

appendix. We present results of this extension (CB + 2 CSTs) incorporated into the

tables in the dissertation.

107



Method
Apple iPhone 7 Google Pixel LG-G4 Canon1D NikonD40 Sony α57 Olympus E-PL6
CC I CC I CC I CC I CC I CC I CC I

CB + Fixed CST (all) 0.80 0.91 0.88 1.05 0.81 0.86 0.84 0.63 0.93 0.77 1.00 0.77 0.85 0.69

CB + Fixed CST (single) 0.95 1.04 1.41 1.45 1.17 1.17 0.95 0.76 0.98 0.80 0.99 0.76 0.82 0.67

CB + 2 CSTs 0.83 0.95 1.16 1.21 0.88 0.91 0.91 0.66 0.93 0.72 0.93 0.73 0.82 0.65

WB + 3 CSTs 1.36 1.08 1.27 1.04 1.55 1.24 1.04 0.70 1.07 0.65 1.04 0.74 0.86 0.61

WB + 2 CSTs (re-calibrated) 1.76 1.42 1.92 1.46 1.98 1.54 1.16 0.82 1.33 0.82 1.13 0.81 1.05 0.71

WB + 2 CSTs (factory) 3.07 2.46 2.28 1.75 2.74 2.04 1.58 1.18 2.02 1.26 1.14 0.79 1.12 0.75

Table A.1: The table shows the comparisons of error between full colour balance with fixed
CST, diagonal matrix correction with 3 CST, native cameras (re-calibrated
for the datasets we use), and native cameras (factory calibration). Errors are
computed on colour chart colours only (denoted as CC), and on full images
(denoted as I). The top performance is indicated in bold.

Method
Mobile Phones Mobile Phones Mobile Phones Mobile Phones DSLRs DSLRs DSLRs DSLRs

2900◦K 4500◦K 5500◦K 6000◦K 3000◦K 3500◦K 4300◦K 5200◦K

CB + Fixed CST (all) 4.6 2.1 1.1 1.0 1.6 1.8 1.2 1.1

CB + Fixed CST (single) 10.0 7.1 4.9 6.2 2.7 2.9 2.1 1.7

CB + 2 CSTs 7.3 4.7 3.5 4.8 2.2 3.4 1.9 1.7

WB + 3 CSTs 37.9 6.9 6.6 8.1 4.4 2.8 2.3 2.1

WB + 2 CSTs (re-calibrated) 44.9 11.3 9.5 16.7 6.7 3.2 3.4 5.9

WB + 2 CSTs (factory) 34.2 38.2 32.6 36.2 13.3 7.1 7.1 7.7

Table A.2: This table reproduces the mean variance for colour reproduction (in ProPhoto
RGB chromaticity space) for mobile phone cameras and DSLR cameras of the
24 colour patches on a colour rendition chart. Results are shown for different
scenes captured under different colour temperatures. A lower variance means
the colour reproduction is more consistent among the cameras. (Variances
values are ×1.0E-3). The top performance is indicated in bold.
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A.2 Estimating the Illumination’s CCT

The methods used to compute the colour space transform (CST) based on interpo-

lation in the dissertation rely on the ability to estimate the correlated colour tem-

perature (CCT) of the scene’s illumination. The algorithm for determining the CCT

is presented here. More specifically, we describe the algorithm to map the estimated

illumination of the scene (i.e., the camera’s observation of an achromatic or neutral

object) to its CIE xy chromaticity coordinates. From the CIE xy chromaticity coor-

dinates, the correlated colour temperature can be determined by projecting the CIE

xy coordinates to its location on the Planckian locus in the CIE u-v chromaticity

space that is the basis for the correlated colour temperature. The details of this CCT

projection are outside the scope of this work and readers are referred to Wyszecki

and Stiles (1982) for more details.

Instead, we focus here on estimating the CIE xy coordinates. We feel this algo-

rithm is worth noting, because as stated in the dissertation, the goal of the combined

white-balance correction and CST is to establish a mapping from the camera’s colour

space to the CIE XYZ perceptual colour space. However, the interpolation of the CST

itself relies on mapping the neutral colour to CIE XYZ, before the CST is established.

The algorithm described here provides this mapping of the scene’s illumination in the

sensor’s colour space to CIE XYZ.

The algorithm presented is based on the algorithm used in DNG SDK (Adobe,

2012). The algorithm uses the two pre-calibrated CSTs and their corresponding

CCTs. For the camera native method, as well as our proposed interpolation-based

method described in Section 5.2.2 of the dissertation, we use the pre-calibrated CSTs,
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Tl1 and Tl2 for CCTs values: 2500◦K and 6500◦K respectively.

The algorithm works by initially assuming that the CCT of the input is 5000K. It

then estimates a new CST, Tl based on this CCT using Equations 5.7 and 5.8 in the

dissertation. The new CST is then used to map the camera’s neutral point to a new

CIE xy value (and a new CCT). This process is repeated until the neutral colour’s

mapping to CIE xy converges to a specific CIE xy value. The final CCT of the

scene’s illumination is computed using this converged CIE xy value. The algorithm

is presented in Algorithm 1.

A.3 Plots of Multi-Camera Variance

In this section, we present the chromaticity plots from the multi-camera consistency

experiments described in Section 5.4.2 of the dissertation. Recall that our multi-

camera consistency experiments are performed per camera type (DSLR or mobile

phone camera) and for four different illuminations.

The following plots correspond to each result reported in Table 5.2 of the dis-

sertation. The plots show the mapping of a colour rendition chart colour patches

projected into ProPhoto RGB chromaticity space. This experiment is performed to

reveal which colour rendition method results in the least amount of variance in the

overall colour values among multiple cameras.

Figures A.1, A.2, A.3, A.4, A.5, and A.6 show the variance for the mobile phone

cameras under illumination 2900◦K.

Figures A.7, A.8, A.9, A.10, A.11, and A.12 show the variance for the mobile

phone cameras under illumination 4500◦K.

Figures A.13, A.14, A.15, A.16, A.17, and A.18 show the variance for the mobile
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Algorithm 1 Mapping the estimated illumination to its CIE xy value and CCT

Input: 1. Observed neutral object in the camera’s RGB: neutral
2. Pre-calibrated CSTs: Tl1 and Tl2 and their corresponding CCT values

2500K and 6500K
3. Lookup function CCT(x, y)that returns the CCT of an CIE x, y

chromaticity.
1: last.x← 0.34 // Starting values correspond to CCT 5000K
2: last.y← 0.35 // in CIE xy
3: maxNumberOfPasses← 30
4: for pass ∈ {0, . . . ,maxNumberOfPasses−1} do
5: CCTlast ← CCT(last.x, last.y)
6: g = CCT−1

last − CCT−1
6500/CCT−1

2500 − CCT−1
6500

7: Tl = g Tl1 + (1− g) Tl2
8: Apply Tl to neutral to map it to the updated CIE XYZ
9: next← the updated CIE xy

10: if |next.x− last.x|+ |next.y− last.y| < 0.0000001 then
11: last← next
12: BREAK;
13: end if
14: last← next
15: end for
16: if pass = maxNumberOfPasses− 1 then
17: last.x← (last.x + next.x) ∗ 0.5
18: last.y← (last.y + next.y) ∗ 0.5
19: end if
20: last← next
Output: CCT(last.x, last.y).
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variance = 0.0342 

Mobile phones (2900°K) 

WB + 2 CSTs (factory) 

Apple iPhone7

Google Pixel

LG-G4

Figure A.1: WB + CSTs (factory) consistency among mobile phone cameras capturing
the same scene under illumination 2900◦K.

phone cameras under illumination 5500◦K.

Figures A.19, A.20, A.21, A.22, A.23, and A.24 show the variance for the mobile

phone cameras under illumination 6000◦K.

Figures A.25, A.26, A.27, A.28, A.29, and A.30 show the variance for the DSLR

cameras under illumination 3000◦K.

Figures A.31, A.32, A.33, A.34, A.35, and A.36 show the variance for the DSLR

cameras under illumination 3500◦K.

Figures A.37, A.38, A.39, A.40, A.41, and A.42 show the variance for the DSLR

cameras under illumination 4300◦K.

Figures A.43, A.44, A.45, A.46, A.47, and A.48 show the variance for the DSLR

cameras under illumination 5200◦K.
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variance = 0.0449 

Mobile phones (2900°K) 

WB + 2 CSTs (re-calibrated)

Apple iPhone7

Google Pixel

LG-G4

Figure A.2: WB + CSTs (re-calibrated) consistency among mobile phone cameras cap-
turing the same scene under illumination 2900◦K.
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variance = 0.0379

Mobile phones (2900°K) 

WB + 3 CSTs

Apple iPhone7

Google Pixel

LG-G4

Figure A.3: WB + 3 CSTs consistency among mobile phone cameras capturing the same
scene under illumination 2900◦K.
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variance = 0.0073 

Mobile phones (2900°K) 

CB + 2 CSTs

Apple iPhone7

Google Pixel

LG-G4

Figure A.4: CB + 2 CSTs consistency among mobile phone cameras capturing the same
scene under illumination 2900◦K.
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variance = 0.0100  

Mobile phones (2900°K) 

CB + Fixed CST (single)

Apple iPhone7

Google Pixel

LG-G4

Figure A.5: CB + Fixed CST (single) consistency among mobile phone cameras capturing
the same scene under illumination 2900◦K.
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variance = 0.0046

Mobile phones (2900°K) 

CB + Fixed CST (all)

Apple iPhone7

Google Pixel

LG-G4

Figure A.6: CB + Fixed CST (all) consistency among mobile phone cameras capturing
the same scene under illumination 2900◦K.
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variance = 0.0382 

Mobile phones (4500°K) 

WB + 2 CSTs (factory) 

Apple iPhone7

Google Pixel

LG-G4

Figure A.7: WB + CSTs (factory) consistency among mobile phone cameras capturing
the same scene under illumination 4500◦K.
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variance = 0.0113 

Mobile phones (4500°K) 

WB + 2 CSTs (re-calibrated)

Apple iPhone7

Google Pixel

LG-G4

Figure A.8: WB + CSTs (re-calibrated) consistency among mobile phone cameras cap-
turing the same scene under illumination 4500◦K.
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variance = 0.0069 

Mobile phones (4500°K) 

WB + 3 CSTs

Apple iPhone7

Google Pixel

LG-G4

Figure A.9: WB + 3 CSTs consistency among mobile phone cameras capturing the same
scene under illumination 4500◦K.
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variance = 0.0047 

Mobile phones (4500°K) 

CB + 2 CSTs

Apple iPhone7

Google Pixel

LG-G4

Figure A.10: CB + 2 CSTs consistency among mobile phone cameras capturing the same
scene under illumination 4500◦K.
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variance = 0.0071 

Mobile phones (4500°K) 

CB + Fixed CST (single)

Apple iPhone7

Google Pixel

LG-G4

Figure A.11: CB + Fixed CST (single) consistency among mobile phone cameras captur-
ing the same scene under illumination 4500◦K.

122



variance = 0.0021 

Mobile phones (4500°K) 

CB + Fixed CST (all)

Apple iPhone7

Google Pixel

LG-G4

Figure A.12: CB + Fixed CST (all) consistency among mobile phone cameras capturing
the same scene under illumination 4500◦K.
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variance = 0.0326

Mobile phones (5500°K) 

WB + 2 CSTs (factory) 

Apple iPhone7

Google Pixel

LG-G4

Figure A.13: WB + CSTs (factory) consistency among mobile phone cameras capturing
the same scene under illumination 5500◦K.
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variance = 0.0095

Mobile phones (5500°K) 

WB + 2 CSTs (re-calibrated)

Apple iPhone7

Google Pixel

LG-G4

Figure A.14: WB + CSTs (re-calibrated) consistency among mobile phone cameras cap-
turing the same scene under illumination 5500◦K.
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variance = 0.0066

Mobile phones (5500°K) 

WB + 3 CSTs

Apple iPhone7

Google Pixel

LG-G4

Figure A.15: WB + 3 CSTs consistency among mobile phone cameras capturing the same
scene under illumination 5500◦K.
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variance = 0.0035 

Mobile phones (5500°K) 

CB + 2 CSTs

Apple iPhone7

Google Pixel

LG-G4

Figure A.16: CB + 2 CSTs consistency among mobile phone cameras capturing the same
scene under illumination 5500◦K.
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variance = 0.0049

Mobile phones (5500°K) 

CB + Fixed CST (single)

Apple iPhone7

Google Pixel

LG-G4

Figure A.17: CB + Fixed CST (single) consistency among mobile phone cameras captur-
ing the same scene under illumination 5500◦K.
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variance = 0.0011

Mobile phones (5500°K) 

CB + Fixed CST (all)

Apple iPhone7

Google Pixel

LG-G4

Figure A.18: CB + Fixed CST (all) consistency among mobile phone cameras capturing
the same scene under illumination 5500◦K.
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variance = 0.0362

Mobile phones (6000°K) 

WB + 2 CSTs (factory) 

Apple iPhone7

Google Pixel

LG-G4

Figure A.19: WB + CSTs (factory) consistency among mobile phone cameras capturing
the same scene under illumination 6000◦K.
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variance = 0.0167

Mobile phones (6000°K) 

WB + 2 CSTs (re-calibrated)

Apple iPhone7

Google Pixel

LG-G4

Figure A.20: WB + CSTs (re-calibrated) consistency among mobile phone cameras cap-
turing the same scene under illumination 6000◦K.
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variance = 0.0081

Mobile phones (6000°K) 

WB + 3 CSTs

Apple iPhone7

Google Pixel

LG-G4

Figure A.21: WB + 3 CSTs consistency among mobile phone cameras capturing the same
scene under illumination 6000◦K.
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variance = 0.0048 

Mobile phones (6000°K) 

CB + 2 CSTs

Apple iPhone7

Google Pixel

LG-G4

Figure A.22: CB + 2 CSTs consistency among mobile phone cameras capturing the same
scene under illumination 6000◦K.
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variance = 0.0062

Mobile phones (6000°K) 

CB + Fixed CST (single)

Apple iPhone7

Google Pixel

LG-G4

Figure A.23: CB + Fixed CST (single)consistency among mobile phone cameras captur-
ing the same scene under illumination 6000◦K.
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variance = 0.0010

Mobile phones (6000°K) 

CB + Fixed CST (all)

Apple iPhone7

Google Pixel

LG-G4

Figure A.24: CB + Fixed CST (all) consistency among mobile phone cameras capturing
the same scene under illumination 6000◦K.
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variance = 0.0133

DSLRs (3000°K) 

WB + 2 CSTs (factory) 

Canon1D

NikonD40 

Olympus E-PL6

Sony 𝛼 57

Figure A.25: WB + CSTs (factory) consistency among DSLR cameras capturing the same
scene under illumination 3000◦K.
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variance = 0.0067

DSLRs (3000°K) 

WB + 2 CSTs (re-calibrated)

Canon1D

NikonD40 

Olympus E-PL6

Sony 𝛼 57

Figure A.26: WB + CSTs (re-calibrated) consistency among DSLR cameras capturing
the same scene under illumination 3000◦K.
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variance = 0.0044

DSLRs (3000°K) 

WB + 3 CSTs

Canon1D

NikonD40 

Olympus E-PL6

Sony 𝛼 57

Figure A.27: WB + 3 CSTs consistency among DSLR cameras capturing the same scene
under illumination 3000◦K.
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variance = 0.0022

DSLRs (3000°K) 

CB + 2 CSTs

Canon1D

NikonD40 

Olympus E-PL6

Sony 𝛼 57

Figure A.28: CB + 2 CSTs consistency among DSLR cameras capturing the same scene
under illumination 3000◦K.
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variance = 0.0027

DSLRs (3000°K) 

CB + Fixed CST (single)

Canon1D

NikonD40 

Olympus E-PL6

Sony 𝛼 57

Figure A.29: CB + Fixed CST (single) consistency among DSLR cameras capturing the
same scene under illumination 3000◦K.

140



variance = 0.0016

DSLRs (3000°K) 

CB + Fixed CST (all)

Canon1D

NikonD40 

Olympus E-PL6

Sony 𝛼 57

Figure A.30: CB + Fixed CST (all) consistency among DSLR cameras capturing the
same scene under illumination 3000◦K.
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variance = 0.0071

DSLRs (3500°K) 

WB + 2 CSTs (factory) 

Canon1D

NikonD40 

Olympus E-PL6

Sony 𝛼 57

Figure A.31: WB + CSTs (factory) consistency among DSLR cameras capturing the same
scene under illumination 3500◦K.
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variance = 0.0032

DSLRs (3500°K) 

WB + 2 CSTs (re-calibrated)

Canon1D

NikonD40 

Olympus E-PL6

Sony 𝛼 57

Figure A.32: WB + CSTs (re-calibrated) consistency among DSLR cameras capturing
the same scene under illumination 3500◦K.
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variance = 0.0028

DSLRs (3500°K) 

WB + 3 CSTs

Canon1D

NikonD40 

Olympus E-PL6

Sony 𝛼 57

Figure A.33: WB + 3 CSTs consistency among DSLR cameras capturing the same scene
under illumination 3500◦K.
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variance = 0.0034

DSLRs (3500°K) 

CB + 2 CSTs

Canon1D

NikonD40 

Olympus E-PL6

Sony 𝛼 57

Figure A.34: CB + 2 CSTs consistency among DSLR cameras capturing the same scene
under illumination 3500◦K.
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variance = 0.0029

DSLRs (3500°K) 

CB + Fixed CST (single)

Canon1D

NikonD40 

Olympus E-PL6

Sony 𝛼 57

Figure A.35: CB + Fixed CST (single) consistency among DSLR cameras capturing the
same scene under illumination 3500◦K.
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variance = 0.0018

DSLRs (3500°K) 

CB + Fixed CST (all)

Canon1D

NikonD40 

Olympus E-PL6

Sony 𝛼 57

Figure A.36: CB + Fixed CST (all) consistency among DSLR cameras capturing the
same scene under illumination 3500◦K.
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variance = 0.0071

DSLRs (4300°K) 

WB + 2 CSTs (factory) 

Canon1D

NikonD40 

Olympus E-PL6

Sony 𝛼 57

Figure A.37: WB + CSTs (factory) consistency among DSLR cameras capturing the same
scene under illumination 4300◦K.
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variance = 0.0034

DSLRs (4300°K) 

WB + 2 CSTs (re-calibrated)

Canon1D

NikonD40 

Olympus E-PL6

Sony 𝛼 57

Figure A.38: WB + CSTs (re-calibrated) consistency among DSLR cameras capturing
the same scene under illumination 4300◦K.
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variance = 0.0023

DSLRs (4300°K) 

WB + 3 CSTs

Canon1D

NikonD40 

Olympus E-PL6

Sony 𝛼 57

Figure A.39: WB + 3 CSTs consistency among DSLR cameras capturing the same scene
under illumination 4300◦K.
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variance = 0.0019

DSLRs (4300°K) 

CB + 2 CSTs

Canon1D

NikonD40 

Olympus E-PL6

Sony 𝛼 57

Figure A.40: CB + 2 CSTs consistency among DSLR cameras capturing the same scene
under illumination 4300◦K.
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variance = 0.0021

DSLRs (4300°K) 

CB + Fixed CST (single)

Canon1D

NikonD40 

Olympus E-PL6

Sony 𝛼 57

Figure A.41: CB + Fixed CST (single) consistency among DSLR cameras capturing the
same scene under illumination 4300◦K.
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variance = 0.0012

DSLRs (4300°K) 

CB + Fixed CST (all)

Canon1D

NikonD40 

Olympus E-PL6

Sony 𝛼 57

Figure A.42: CB + Fixed CST (all) consistency among DSLR cameras capturing the
same scene under illumination 4300◦K.
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variance = 0.0077

DSLRs (5200°K) 

WB + 2 CSTs (factory) 

Canon1D

NikonD40 

Olympus E-PL6

Sony 𝛼 57

Figure A.43: WB + CSTs (factory) consistency among DSLR cameras capturing the same
scene under illumination 5200◦K.
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variance = 0.0059

DSLRs (5200°K) 

WB + 2 CSTs (re-calibrated)

Canon1D

NikonD40 

Olympus E-PL6

Sony 𝛼 57

Figure A.44: WB + CSTs (re-calibrated) consistency among DSLR cameras capturing
the same scene under illumination 5200◦K.
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variance = 0.0021

DSLRs (5200°K) 

WB + 3 CSTs

Canon1D

NikonD40 

Olympus E-PL6

Sony 𝛼 57

Figure A.45: WB + 3 CSTs consistency among DSLR cameras capturing the same scene
under illumination 5200◦K.
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variance = 0.0017

DSLRs (5200°K) 

CB + 2 CSTs

Canon1D

NikonD40 

Olympus E-PL6

Sony 𝛼 57

Figure A.46: CB + 2 CSTs consistency among DSLR cameras capturing the same scene
under illumination 5200◦K.
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variance = 0.0017

DSLRs (5200°K) 

CB + Fixed CST (single)

Canon1D

NikonD40 

Olympus E-PL6

Sony 𝛼 57

Figure A.47: CB + Fixed CST (single) consistency among DSLR cameras capturing the
same scene under illumination 5200◦K.
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variance = 0.0011

DSLRs (5200°K) 

CB + Fixed CST (all)

Canon1D

NikonD40 

Olympus E-PL6

Sony 𝛼 57

Figure A.48: CB + Fixed CST (all) consistency among DSLR cameras capturing the
same scene under illumination 5200◦K.
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A.4 Additional Visual Results

As we stated in the dissertation, we compute the Tfixed for method #2 in two ways.

The first is to use only a single observation of the colour chart image with CCT of

6500◦K. The second approach is to consider all observations of the colour rendition

chart for each different illumination. In our experiments, we distinguish the results

obtained with these two different approaches to estimate Tfixed. In this appendix

section we also present visual results for “Method 2 (extension)” shown as CB + 2

CSTs.

When using all observations, we use a standard ten-fold cross validation procedure

that uses 90 images for estimating the Tfixed with the iteratively re-weighted least

squares (IRLS) (Huber & Ronchetti, 2009) algorithm and the remaining 10 images

for computing the error. The final error is the average error across the ten-fold cross

validation.

Figures A.49, A.50, A.51, A.52, A.53, A.54, and A.55 show visual results on

whole images for the Apple iPhone7, the Google Pixel, the LG-G4, the Canon1D,

the NikonD40, the Sony α57, and the Olympus E-PL6 respectively. These results are

accompanied by heat maps to reveal which parts of the images are being most affected

by errors. For all figures, the corresponding sRGB (as rendered by the camera) is

also provided.
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WB + 2 CSTs (factory) WB + 2 CSTs (re-calibrated) WB + 3 CSTs CB + Fixed CST (single) CB + Fixed CST (all)

Mean angular error: 1.88° Mean angular error: 0.37°Mean angular error: 0.42°Mean angular error: 0.59° Mean angular error: 0.26°

Mean angular error: 2.81° Mean angular error: 0.68°Mean angular error: 0.90°Mean angular error: 1.61° Mean angular error: 1.13°
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Figure A.49: Visual comparison for the Apple iPhone7.

WB + 2 CSTs (factory) WB + 2 CSTs (re-calibrated) WB + 3 CSTs CB + Fixed CST (single) CB + Fixed CST (all)
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Figure A.50: Visual comparison for the Google Pixel.

WB + 2 CSTs (factory) WB + 2 CSTs (re-calibrated) WB + 3 CSTs CB + Fixed CST (single) CB + Fixed CST (all)

Mean angular error: 2.07° Mean angular error: 0.75°Mean angular error: 1.31°Mean angular error: 1.60° Mean angular error: 1.31°
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Figure A.51: Visual comparison for the LG-G4.
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WB + 2 CSTs (factory) WB + 2 CSTs (re-calibrated) WB + 3 CSTs CB + Fixed CST (single) CB + Fixed CST (all)

Mean angular error: 0.98° Mean angular error: 0.48°Mean angular error: 0.53°Mean angular error: 0.82° Mean angular error: 0.28°

Mean angular error: 1.34° Mean angular error: 0.38°Mean angular error: 0.33°Mean angular error: 1.00° Mean angular error: 0.21°

C
a
n

o
n
1

D
C

a
n

o
n

1
D

°

CB + 2 CSTs

Mean angular error: 0.33°

Mean angular error: 0.36°

Figure A.52: Visual comparison for the Canon1D.

WB + 2 CSTs (factory) WB + 2 CSTs (re-calibrated) WB + 3 CSTs CB + Fixed CST (single) CB + Fixed CST (all)
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Figure A.53: Visual comparison for the NikonD40.
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Figure A.54: Visual comparison for the Sony α57.
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WB + 2 CSTs (factory) WB + 2 CSTs (re-calibrated) WB + 3 CSTs CB + Fixed CST (single) CB + Fixed CST (all)
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O
ly

m
p

u
s
 E

-P
L
6

O
ly

m
p

u
s
 E

-P
L
6

°

CB + 2 CSTs

Mean angular error: 0.72°

Mean angular error: 0.29°

Figure A.55: Visual comparison for the Olympus E-PL6.
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