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Lightness constancy is the ability to perceive black and
white surface colors under a wide range of lighting
conditions. This fundamental visual ability is not well
understood, and current theories differ greatly on what
image features are important for lightness perception.
Here we measured classification images for human
observers and four models of lightness perception to
determine which image regions influenced lightness
judgments. The models were a high-pass-filter model, an
oriented difference-of-Gaussians model, an anchoring
model, and an atmospheric-link-function model. Human
and model observers viewed three variants of the argyle
illusion (Adelson, 1993) and judged which of two test
patches appeared lighter. Classification images showed
that human lightness judgments were based on local,
anisotropic stimulus regions that were bounded by
regions of uniform lighting. The atmospheric-link-
function and anchoring models predicted the lightness
illusion perceived by human observers, but the high-
pass-filter and oriented-difference-of-Gaussians models
did not. Furthermore, all four models produced
classification images that were qualitatively different
from those of human observers, meaning that the model
lightness judgments were guided by different image
regions than human lightness judgments. These
experiments provide a new test of models of lightness
perception, and show that human observers’ lightness
computations can be highly local, as in low-level models,
and nevertheless depend strongly on lighting
boundaries, as suggested by midlevel models.

Introduction

Lightness constancy is the remarkable ability of the
human visual system to maintain a stable percept of

surface reflectance across a wide range of lighting
conditions. Reflectance is the proportion of incident
light reflected by a surface, as measured in photometric
units, and lightness is perceived reflectance. The
interactions between lighting, material properties, and
3-D shape during image formation mean that recover-
ing surface reflectance from image luminance is an
underdetermined problem: Under different lighting
conditions, surface patches with the same reflectance
can yield different luminances in the retinal image, and
surface patches with different reflectances can yield the
same luminance. How the human visual system
achieves lightness constancy remains poorly under-
stood, and research on this problem is a fundamental
topic in vision science.

Different theories of lightness perception identify
different image features as playing important roles in
estimating lightness. Anchoring theory (Gilchrist et al.,
1999) states that the image patch with the highest
luminance is a crucial reference point, and that other
image regions are assigned lightness values relative to
this region. Center–surround models (Heinemann &
Chase, 1995; Shapiro & Lu, 2011) emphasize the role of
the immediate surround of the region whose lightness is
being judged. The oriented difference-of-Gaussians
(ODOG; Blakeslee & McCourt, 1999) model, and its
extensions LODOG and FLODOG (Robinson, Ham-
mon, & de Sa, 2007), rely on oriented receptive fields at
multiple scales. Adelson (1993) emphasizes the impor-
tance of perceptual segmentation, highlighting X-
junctions as a possible cue to lighting boundaries (Beck,
Prazdny, & Ivry, 1984).

Most experiments on lightness perception have
examined human observers’ lightness matches in scenes
that were carefully designed so that different models
predicted different lightness percepts. Here we take the
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novel approach of measuring classification images to
evaluate models of lightness perception (Ahumada,
2002; Murray, 2011; Volterra, 1930). Classification
images measure the influence that local stimulus
regions have on an observer’s responses in a perceptual
task, and so they provide information about what
image features guide perceptual judgments. They are a
psychophysical version of methods that are called
reverse correlation or spike-triggered averaging in the
neurophysiological literature (Ringach & Shapley,
2004). While most often used to study spatial vision,
classification images provide a flexible experimental
tool for identifying important features in a variety of
domains, such as the perception of illusory contours
(Gold, Murray, Bennett, & Sekuler, 2000), facial
expressions (Kontsevich & Tyler, 2004), and translu-
cency (Nagai et al., 2013). Different theories of
lightness perception identify different image features as
being crucial to computing lightness percepts, so
classification images should provide a powerful way of
testing these theories. In the domain of brightness
perception, classification images have been used to
examine simultaneous contrast effects (Shimozaki,
Eckstein, & Abbey, 2005). Here we use classification
images to examine more complex stimuli where
lightness percepts may depend on scene structures such
as lighting boundaries.

We use the argyle illusion (Adelson, 1993; Figure
1A) as a test case for evaluating models of lightness
perception. In this illusion, one region (Figure 1A,
diamond A) appears lighter than another (diamond B)
even though they are of the same physical luminance.
We chose the argyle illusion as our ‘‘fruit fly’’ because it
is one of the strongest known lightness illusions, and
one which has consistently resisted explanations by
low-level models (e.g., Blakeslee & McCourt, 2012).
Therefore, it poses a difficult and interesting problem
for modeling visual perception, and understanding it
may reveal general principles of lightness constancy.

Adelson (1993) explains the argyle illusion in terms
of zones of uniform lighting—or, in the terminology
of Gilchrist et al. (1999), lighting frameworks. In
Figure 1A, diamond A appears to belong to a dimmer
lighting framework than B, yet it has the same
luminance; Adelson suggests that, from this, the visual
system infers that A has a higher reflectance than B.
Adelson further suggests that lighting frameworks in
the argyle illusion are determined by nonreversing X-
junctions at the boundaries between light and dark
columns, which create a percept of dark, vertical
shadows or semitransparent filters (Beck et al., 1984).
Indeed, if the X-junctions are destroyed by splitting
apart the columns (Figure 1B, the broken argyle),
observers report a much smaller lightness difference
between diamonds A and B.

In the present study, we investigate how human
observers perceive and process the argyle illusion, and
we compare human behavior to four computational
models. We compare the strength of the argyle illusion
for human and model observers, and we also compare
the critical image features for human and model
observers, using classification images to determine what
image features influence observers’ lightness judgments
most strongly. Our results show that human observers’
lightness judgments depend strongly on the luminances
in the immediate neighborhood of the test patches
being judged, in a way that tracks the boundaries of
local lighting frameworks. Interestingly, none of the
models that we tested are able to both replicate the
argyle illusion and produce classification images that
are even qualitatively similar to those from human
observers. These findings show that making progress
with computational models of lightness perception will
require a better understanding of how lighting frame-
works are established and of how the luminance of
elements within lighting frameworks contributes to
lightness percepts.

Figure 1. Stimuli in Experiment 1. (A) Standard argyle. (B) Broken argyle. (C) Noisy argyle. These stimuli are modeled after those of

Adelson (1993). We measured points of subjective equality for all three stimulus types, and classification images for the noisy argyle.

The letters A and B were not shown in the stimuli used in the experiment.
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Experiment 1

In Experiment 1, we investigated what image
features contribute to the argyle illusion for human
observers. We measured points of subjective equality
(PSEs) for standard, broken, and noisy argyle stimuli
(Figure 1), and we measured classification images for
the noisy argyle stimulus. We used PSEs to gauge the
strength of the illusion and to screen observers for the
much longer classification-image experiment. We mea-
sured classification images to determine what parts of
the image contributed most strongly to the illusion.

Methods

Observers

We recruited 11 observers from the York University
Centre for Vision Research. All were unaware of the
purpose of our experiment except observer RM, who is
one of the authors. In all experiments reported in this
article, observers reported normal or corrected-to-
normal monocular visual acuity in both eyes and gave
written informed consent before participating. All
procedures were approved by the Office of Research
Ethics at York University.

Pilot studies showed that the lightness illusion was
weaker in our stimuli than in the original argyle illusion
(Adelson, 1993), likely because our stimuli were lower
in contrast than Adelson’s (see Stimuli). We chose two
screening criteria, based on pilot data, to ensure that
only observers who experienced a strong lightness
illusion participated in the classification-image experi-
ment. First, the observer’s PSE had to be higher in the
standard argyle condition than in the broken argyle
condition. Second, the lightness illusion had to be at
least half as strong in the noisy condition as in the
standard condition; we operationalized this by requir-
ing that the difference between the observer’s PSEs in
the noisy and broken conditions be at least half as large
as the difference between their PSEs in the standard
and broken conditions. Of the 11 observers, seven met
the screening criteria, and four of those participated in
the classification-image experiment.

Stimuli

The standard argyle (Figure 1A) consisted of lines,
triangles, and diamonds arranged in a manner similar to
the argyle figure from Adelson (1993). These image
patches were set to light gray, dark gray, and middle
gray (Weber contrasts¼0.625,�0.453, and 0), except for
the two test patches labeled A and B in Figure 1A. These
contrasts are 67% of Adelson’s, and this contrast
reduction was necessary to allow enough dynamic range
to accommodate the contrast noise in the noisy argyle

condition (see later). Background luminance was 176 cd/
m2. The test diamonds subtended 0.798 horizontally and
vertically, and the whole stimulus subtended 3.978
horizontally and 4.768 vertically. The letters A and B in
Figure 1 were not shown in the experiment.

The broken argyle was the same as the standard argyle,
except that we introduced vertical gaps between the light
and dark vertical strips (Figure 1B). The gaps were half
as wide (0.398) as the vertical strips (0.798). The stimulus
subtended 5.958 horizontally and 4.768 vertically.

The noisy argyle was created by adding an indepen-
dent sample of Gaussian noise (M ¼ 0, SD ¼ 0.18) to
the contrast of every patch (i.e., diamond, triangle, and
line segment) in the standard argyle except the test
diamonds (Figure 1C). The noise was patch-wise rather
than pixel-wise, in that all pixels belonging to a single
patch were modulated by the same additive contrast
noise. We used patch-wise noise instead of pixel-wise
noise in order to investigate how the geometric
elements of the argyle stimulus contributed to the
lightness illusion, and to reduce the dimensionality of
the classification image. We used a different, indepen-
dent sample of noise on every trial, in both the PSE and
classification-image experiments.

All stimuli were shown on the LCD screen of a 21.5-
in. late-2013 iMac positioned 0.57 m from the observer.
The monitor had a resolution of 1,9203 1,200 pixels, a
pixel size of 0.247 mm, and a nominal refresh rate of 60
Hz. Our software inverted the monitor’s gamma
function to show the required luminances.

Procedure

PSE experiment: The PSE experiment had three
conditions: standard argyle, broken argyle, and noisy
argyle (Figure 1). Condition order was counterbalanced
across observers. Each condition ran as one 7-minute
block of 240 trials without a break. Each trial began
with the stimulus centered on a gray background (176
cd/m2) for 1,000 ms. After the stimulus disappeared,
the observer pressed a key to indicate which of the two
test diamonds appeared lighter. There was no feedback,
and the next trial began 500 ms after the observer’s
response. In a randomly selected half of the trials, the
stimulus was mirrored left to right so that test patch A
was on the right and B was on the left. We adjusted the
contrasts of the test diamonds using three interleaved
staircases (one-up/three-down, one-up/one-down, and
three-up/one-down; Wetherill & Levitt, 1965), with a
step size of 0.04 Weber-contrast unit. The staircases
modified the contrasts of both test diamonds at the
same time—that is, incremented the contrast of one test
diamond and decremented the other.

We obtained PSEs by making a maximum-likelihood
fit of the normal cumulative distribution function to the
empirical psychometric function and finding the 50%
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response point on the fitted function. Thus, the PSE
was the contrast of the test diamonds at which the
observer was equally likely to choose diamonds A and
B, and indicated the strength of the lightness illusion.
Confidence intervals for the PSEs were obtained using
a bootstrap procedure (Efron & Tibshirani, 1993).

We instructed observers to choose the ‘‘whiter’’ test
patch. We found that some observers described test
diamond B in the standard argyle as ‘‘more intense,’’
‘‘more luminous,’’ or ‘‘popping out more’’ than
diamond A, but nonetheless agreed that A seemed
‘‘closer to white’’ than B.
Classification-image experiment: Each observer com-
pleted seventeen 20-minute sessions of 600 trials that
showed the noisy argyle stimulus, with a short break
every 100 trials, for a total of 10,200 trials per observer.
Observers participated in a maximum of four sessions
per day, separated by breaks of at least 20 minutes, and
the sessions were spread over a period of one to seven
weeks. The sequence of events on each trial was the
same as in the PSE experiment. At the beginning of the
experiment, the contrast of the test diamonds was set to
the PSE obtained in the noisy argyle condition of the
PSE experiment. The contrast on each subsequent trial
was chosen using a modified QUEST procedure
(Watson & Pelli, 1983) that used the 50 most recent
trials to make a running maximum-likelihood estimate
of the observer’s PSE throughout the experiment.

We calculated the classification image for each
observer by taking the average noise field over all trials
where the observer chose test patch A as appearing
lighter, minus the average noise field over all trials
where the observer chose B (Ahumada, 2002; Murray,
2011). Some elements of the argyle stimulus were larger
than others (e.g., the diamonds were larger than the
triangles; see Figure 1C). In order to compensate for
the greater influence of larger patches on observers’
responses, we divided the value of each classification-
image patch by the number of pixels in that patch; see
Appendix A for a proof that this is the appropriate
correction for patch size under a linear observer model.

To determine the statistical significance of classifi-
cation-image elements, we used a two-tailed z test. For
classification images from individual observers, we
controlled the family-wise error rate using a permuta-
tion procedure (Fisher, 1966; Nichols & Holmes, 2001).
For the average classification images across observers,
we controlled the family-wise error rate using Bonfer-
roni correction. See Appendix B for details of these
statistical analyses.

Results and discussion

Figure 2 shows PSEs for all observers. The top row
shows the four observers who met the screening criteria

(see Methods) and participated in the classification-
image experiment. The middle row shows the three
observers who met the screening criteria but did not
participate in the classification-image experiment. The
bottom row shows the four observers who did not meet
the screening criteria. The height of each bar shows the
amount by which the test diamond contrasts had to be
adjusted in order for the observer to choose the two
diamonds equally often. It is thus a measure of the
strength of the lightness illusion.

The lightness illusion was about twice as strong in the
standard argyle as in the broken argyle for the observers
who passed screening (Ms¼ 18.4, SDs¼ 5.4; Mb¼ 9.2,
SDb¼ 4.0; paired, two tailed, t(6)¼ 6.3, p , 0.001). For
comparison, Adelson (1993) reports that the illusion was
four times as strong in the standard argyle. It is not
surprising that our stimuli generated a weaker illusion
than Adelson’s, since we used lower contrast to leave
room for contrast noise in the noisy argyle condition.

For the four observers selected for the classification-
image experiment, the illusion strength in the noisy
argyle was not significantly different from in the
standard argyle; adding noise to the argyle stimulus did
not substantially weaken the lightness illusion (Ms ¼
19.7, SDs ¼ 2.4; Mn ¼ 18.6, SDn ¼ 1.3; paired, two
tailed, t(3) ¼ 1.1, p¼ 0.359).

Figure 3 shows classification images for individual
observers, as well as the average across all observers.
The classification images were largely consistent with
each other, indicating a common strategy across
observers. The polarity of a patch (white or black) in a
classification image shows how the noise fluctuations at
that stimulus location were correlated with the observer
choosing test patch A. A white patch in the classifica-
tion image means that positive-contrast noise at that
location made the observer more likely to choose A and
negative-contrast noise made the observer less likely to
choose A. A black patch means that the effects were in
the opposite direction.

The classification images reveal a contrast-like effect
in observers’ lightness judgments. Test diamond A is
surrounded by dark patches in the classification image,
and B is surrounded by light patches. This means that
observers were more likely to choose a test diamond as
appearing lighter when it was surrounded by darker-
than-usual elements.

This contrast-like effect had interesting spatial
structure. First, it was localized: Lines, triangles, and
diamonds neighboring the test diamonds had the
strongest effect on observers’ lightness judgments,
whereas more distant stimulus elements had little or no
effect. This is surprising, since illusions like the argyle
illusion are often explained in terms of midlevel factors
such as shadows and transparency, and so we might
have expected an effect of distant but ecologically
relevant stimulus elements. Particularly in the area-
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corrected classification images (Figure 3, middle row),
it is striking how quickly influence falls off with
distance. This is unlike other variants of the argyle
illusion where there are long-range influences on
perceived lightness (Flynn & Shapiro, 2014).

Second, the contrast-like effect was anisotropic:
Neighboring diamond patches above and below the test
diamonds were influential, whereas those to the left and
right were not, even though they were the same distance
away. The direction of the anisotropy suggests that the
visual system is sensitive to the vertical structure of the
argyle stimulus and recognizes the top and bottom
diamonds as belonging to the same group as the test
diamonds. These vertically displaced diamonds had the
same polarity in the classification images as the lines and
triangles neighboring the test patches, indicating that the
diamonds also had a contrast-like effect on lightness. Our
interpretation is that the grouping indicates that the
visual system is sensitive to lighting frameworks, though
gestaltlike grouping processes could also explain the data
(e.g., grouping by similarity or by proximity).

A final remark is on using patch-wise noise rather
than pixel-wise noise: Using patch-wise noise reduced
the dimensionality of the classification image, but the
resulting classification image does not reveal how
different pixels within a patch contribute to the

lightness judgments. Using pixel-wise noise would
likely have shown a smooth falloff in the influence of
each pixel as a function of distance from the test patch,
but further experiments would be needed to confirm
this hypothesis.

In the Modeling section, we examine classification
images from four current models of lightness percep-
tion to see how well they account for the local,
anisotropic, contrast-like effects we found in human
classification images.

Experiment 2

In Experiment 1, the classification images were
anisotropic, in that diamonds above and below the test
diamonds significantly influenced observers’ judgments
but those to the left and right did not. Was this
anisotropy due to the vertical lighting frameworks in
the stimulus, or did it reflect a more general bias toward
the vertical? To investigate, we ran a variant of
Experiment 1 where we rotated the argyle stimuli
clockwise by 908. If the anisotropy was caused by a
general bias toward the vertical, then even with rotated

Figure 2. Points of subjective equality in Experiment 1. Bar height measures illusion strength. The top row shows observers who

participated in the classification-image experiment. The middle row shows observers who passed screening but did not participate in

the classification-image experiment. The bottom row shows observers who did not pass screening. Error bars are bootstrapped 95%

confidence intervals (Efron & Tibshirani, 1993).
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stimuli the classification images should show influences
in the vertical direction and not the horizontal.

Methods

Observers

We recruited six observers from York University.
None had participated in Experiment 1. All were
unaware of the purpose of the experiment. We used the
same PSE screening criteria as in Experiment 1 to
choose participants for the classification-image exper-
iment. Four observers met the screening criteria, and
two of those participated in the classification-image
experiment. Due to an error in the screening process,
the two observers who did not meet the screening
criteria also participated in the classification-image

experiment, and we separately report their classification
images here as well.

Stimuli

The stimuli were the same as in Experiment 1, except
that they were rotated clockwise by 908.

Procedure

Procedures were the same as in Experiment 1.

Results and discussion

Figure 4 shows PSEs for all observers. The top row
shows PSEs for observers who passed the PSE

Figure 3. Classification images in Experiment 1. The polarity of each patch shows the direction of the influence of the corresponding

stimulus patch on the probability that the observer chose test patch A as appearing lighter. The intensity of each patch shows the

strength of the influence. Each observer’s classification image has been scaled to fill the available black/white range, so values cannot be

compared across observers in these images. The top row shows raw classification images. The middle row shows classification images

where each image patch has been divided by the number of pixels it contains, to correct for patch size. The bottom row shows which

image patches were statistically significant elements at afw¼ 0.05. The family-wise error rate was controlled using a permutation

procedure for the individual observers (Nichols & Holmes, 2001) and Bonferroni correction for the average across observers.
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screening criteria and participated in the classification-
image experiment. The middle row shows PSEs for
observers who passed screening but did not participate
in the classification-image experiment. The bottom row
shows PSEs for observers who did not pass screening.
While observer SG passed screening according to the
criteria laid out for Experiment 1, SG showed very
small lightness illusions in all conditions, and further-
more showed a lightness illusion in the opposite of the
expected direction in the broken argyle condition.
Therefore, we consider SG to have failed the screening.

The left-hand side of Figure 5 shows classification
images from observers who passed screening in the PSE
condition (Figure 4, top row). These classification
images were similar to those in Experiment 1 but were
rotated 908 clockwise: The lines and triangles neigh-
boring the test diamonds showed the strongest influ-
ence, followed by neighboring diamonds. Critically, the
diamonds to the left and right of the test diamonds
were more influential than the diamonds above and
below, reflecting the orientation of the bright and dark
strips in the argyle stimulus in this experiment. We

conclude that the visual system is guided by the lighting
frameworks in the argyle figure when making lightness
judgments, rather than by a simple bias toward the
vertical.

The right-hand side of Figure 5 shows classification
images from the two observers who did not meet the
screening criteria in the PSE condition (Figure 4,
bottom row) but nevertheless participated in the
classification-image experiment due to an error in the
screening process. These observers’ classification
images were markedly different from those of ob-
servers with typical PSEs. For observer KL, the
lightness illusion was no stronger in the noisy argyle
condition than in the broken argyle condition (Figure
4), and this observer’s classification image showed
only a highly local contrast-like effect, with no
significant influence of neighboring diamonds. For
observer SG, the lightness illusion was weak in all
three argyle stimuli, and reversed from the usual
direction in the broken argyle stimulus (Figure 4).
This observer’s classification image was unusual in
that it showed a significant effect of just two diamonds
in the same bright and dark strips as the test patches,
and a significant effect of a diamond located in a
different strip than the test patches. Furthermore, the
lines immediately adjacent to test patch A (top test
patch in Figure 5) were positive contrast, whereas for
all other observers in Experiments 1 and 2 they were
negative contrast. We cannot draw strong conclu-
sions, but it is noteworthy that observers with
anomalous patterns of PSEs also show qualitatively
different classification images.

Experiment 3

Why did only local stimulus elements influence
observers’ lightness judgments in Experiment 1? One
possibility is that the noise in the noisy argyle stimuli
weakens grouping between distant patches and the test
diamonds. However, given that observers’ PSEs for the
noisy argyle were not significantly different from those
for the standard argyle, this explanation does not seem
likely.

Another possibility is that visual processing was
limited by the falloff of acuity away from the central
visual field. The 2 3 3 neighborhood of diamonds that
showed the strongest influence in the classification
image subtended 1.68 3 2.48, which approximately fills
the 28 diameter of the fovea. Therefore, it is possible
that the set of influential patches was determined by
poorer visual processing outside the fovea.

To test this explanation, we measured observers’
PSEs in argyle stimuli scaled by factors of 2, 3, and 4. If
the influence of stimulus elements is primarily limited

Figure 4. Points of subjective equality in Experiment 2. Bar

height corresponds to illusion strength. The top row shows

observers who participated in the classification-image experi-

ment. The middle row shows observers who passed screening

but did not participate in the classification-image experiment.

The bottom row shows observers who did not pass screening;

but nevertheless completed the classification-image experi-

ment. Error bars are bootstrapped 95% confidence intervals.
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by the falloff in acuity away from the fovea, then
scaling up the stimulus to extend well beyond the fovea
should greatly weaken the argyle illusion.

Methods

Observers

We recruited 12 observers from York University.
None had participated in Experiments 1 and 2. All were
unaware of the purpose of the experiment.

Stimuli

The stimuli were the same as in Experiment 1, except
that they were scaled by a factor of 1, 2, 3, or 4. At a scale
factor of 4, a single test diamond subtended 3.17833.178.

Procedure

Procedures were the same as in Experiment 1, except
that to ensure that the center of the stimulus was
presented to the center of each observer’s visual field, each
stimulus presentation was preceded by a brief fixation dot
at the center of the display, and the stimulus duration was
reduced from 1,000 ms to 200 ms to prevent observers
from making saccades to scan the stimulus.

Results and discussion

Figure 6 shows that, at all scales, PSEs were about twice
as large for the standard argyle as for the broken argyle,

demonstrating that the argyle illusion is approximately
scale invariant in the central 28 to 88 of the visual field. At a

scale factor of 4, a single test diamond extended outside of

the fovea. We conclude that the range of influential
stimulus patches in Experiment 1 was limited not by

poorer visual processing outside the fovea but by some
other, higher level property of perceptual processing.

Figure 5. Classification images in Experiment 2. The two observers shown on the left met the screening criteria for points of subjective

equality, and the two on the right did not. See Figure 3 for details.

Figure 6. Points of subjective equality in Experiment 3. Error

bars are standard error of the mean (n ¼ 12). In Appendix C

(Figure C1), we show points of subjective equality for individual

observers.
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Experiment 4

Classification-image analysis does not completely
reveal an observer’s strategy in a visual task. It is a
form of generalized linear regression (Knoblauch &
Maloney, 2008), so it captures some properties of the
observer’s stimulus-to-response mapping but not
others. One conclusion we drew from the first three
experiments is that only local stimulus elements have a
substantial influence on observers’ lightness judgments
in the argyle task. But have classification images failed
to capture the influence of more distant but never-
theless important image features? To test this hy-
pothesis, we measured PSEs with a cropped argyle
figure (Figure 7A) that showed only the central part of
the stimulus that classification images in Experiments
1 and 2 showed to have a strong influence on
observers’ lightness judgments. For comparison, we
also measured PSEs with the same standard and
broken argyle figures as in the previous experiments. If
distant image features play an important role in the
argyle illusion, then PSEs should be much smaller with
the cropped argyle figure than with the standard
figure.

Methods

Observers

We recruited 12 observers from York University.
Observers KL, KP, MA, and MD had also participated
in Experiment 2. Observers BH, KP, LD, MA, MD,
and MM had also participated in Experiment 3. All
were unaware of the purpose of this experiment.

Stimuli

The stimuli were the standard and broken argyle
figures used in the previous experiments, as well as a
cropped argyle figure that showed only a central part of
the standard argyle (Figure 7A). The cropped figure
subtended 2.378 horizontally and 3.168 vertically.

Procedure

Procedures were the same as in the PSE condition of
Experiment 1.

Results and discussion

Figure 7B shows that the PSE for the cropped argyle
was about twice as large as for the broken argyle (Mc¼
17.2, SDc¼ 6.9; Mb¼ 7.7, SDb¼ 4.7; paired, two tailed,
t(11) ¼ 6.1, p , 0.0001), and that the PSE for the

cropped argyle was not significantly different from that
for the standard argyle (Mc ¼ 17.2, SDc¼ 6.9; Ms ¼
15.1, SDs ¼ 5.8; paired, two tailed, t(11) ¼ 1.5, p¼
0.152). These findings support the conclusion that the
classification images in Experiments 1 and 2 did not
miss crucial, long-range influences of distant stimulus
elements.

Modeling

Classification images in these experiments showed
local, anisotropic, contrast-like effects that matched the
vertical structure of the stimulus. How well do current
models of lightness and brightness perception account
for these findings? To examine this question, we
implemented four models of lightness and brightness
perception and examined their performance in the same
PSE and classification-image experiments that human
observers participated in.

The first two models were a high-pass-filter model
(Shapiro & Lu, 2011) and the oriented difference-of-
Gaussians model (ODOG; Blakeslee & McCourt, 1999,
2012; Blakeslee, Cope, & McCourt, 2015). These are
low-level models that do not explicitly represent
lighting information; rather, they emphasize the role of
contrast, and discount illumination changes using
spatial filtering operations.

The other two models were an anchoring model
(Economou, Zdravković, & Gilchrist, 2007; Gilchrist et
al., 1999) and an atmospheric-link-function (ALF)
model that estimates atmospheric transfer functions
(Adelson, 2000; Metelli, 1974). These models rely on
representations of lighting frameworks and are consis-
tent with Adelson’s (1993) explanation of the argyle
illusion. However, they are incomplete in that they do
not automatically identify lighting frameworks; rather,
the modeler must manually segment the image.
Extensions of these models that detect lighting bound-
aries are certainly worth pursuing, but are beyond the
scope of this article.

Figure 7. Experiment 4. (A) Sample cropped argyle. (B) Average

points of subjective equality in the three conditions (n¼ 12). In

Appendix C (Figure C2), we show points of subjective equality

for individual observers.
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High-pass filter

Illumination is often constant over large regions of a
scene, and shadow boundaries are usually blurry, so
lighting changes are often signaled by low-pass image
features (Land & McCann, 1971). Shapiro and Lu’s
(2011) high-pass-filter model exploits this fact and
removes low-spatial-frequency components from im-
ages in order to discount illumination and recover
lightness. Given a luminance image L(x, y) as input, the
model calculates a lightness response B(x, y) by
subtracting out low-frequency components:

Bðx; yÞ ¼ Lðx; yÞ � ðBox � LÞðx; yÞ; ð1Þ
where Box(x, y) is a 2-D box filter that finds the average
luminance in a square region around its center, and * is
2-D convolution.

Equation 1 is equivalent to convolving the input L(x,
y) with a high-pass filter (d–Box), where d is the
Kronecker delta function. This filter has a positive peak
in the center, surrounded by a square negative region.
This is a simple center–surround receptive field,
meaning that the model implements a kind of lateral
inhibition. Unlike in classic lateral-inhibition models,
the scale of the box filter varies flexibly according to the
size of the test patch; Shapiro and Lu allow three orders
of magnitude in their model, from 0.018 to 108 of visual
angle, and they recommend matching the box-filter
width to the width of the test patch. We used a filter
width of 0.798 to match the test diamonds in the argyle
stimulus.

We computed the model’s response to the argyle
stimulus on each trial of a lightness-judgment task,
using the same stimuli and procedure as with human
observers, except that we measured PSEs using 1,000
trials in each condition and classification images using
100,000 trials. On each trial, we took the model’s mean
pixel-wise response over each test patch to be its
lightness response. The model chose the test patch with
the higher lightness response as appearing lighter (i.e.,
the model observer used a difference rule; Pritchett &
Murray, 2015). Using these procedures, we measured
PSEs for the high-pass-filter model in the standard,
broken, and noisy argyle conditions, and a classifica-
tion image in the noisy argyle condition.

ODOG

The ODOG model (Blakeslee et al., 2015; Blakeslee
& McCourt, 1999, 2012) is one of the most successful
filter-based models of lightness and brightness percep-
tion. Despite having no explicit representation of
lighting frameworks, ODOG accounts for some
brightness phenomena that have been thought to
involve midlevel factors such as shadows and trans-
parency (e.g., White’s illusion and Adelson’s snake
illusion; Blakeslee & McCourt, 2012), although it fails

to capture others (e.g., the reverse contrast illusion;
Economou et al., 2015).

The ODOG model’s filters have a circular on-center
region and a larger, elliptical off-surround region. It
sums the responses of these filters across scales and
orientations in a way that gives greater weight to higher
spatial frequencies, normalizes the root-mean-square
response at each orientation, and then sums responses
across all orientations. We calculated the ODOG
model’s response to each test patch in the argyle
stimulus as the mean pixel-wise response over the
patch, and the model chose the test patch with the
higher response as appearing lighter. Our implementa-
tion of ODOG is a direct MATLAB (MathWorks,
Natick, MA) translation of Mathematica code provid-
ed as supplementary material by Blakeslee et al. (2015).

Anchoring theory

Anchoring theory states that the human visual
system segments an image into lighting frameworks,
and estimates lightness using the distribution of image
luminances within each framework. We implemented
the version of anchoring theory that Economou et al.
(2007) used to examine the simultaneous contrast
illusion. This model assigns a lightness of 0.90 (i.e.,
white) to the highest luminance patch in each lighting
framework, and a lightness to every other patch in a
framework based on the ratio of its luminance to the
highest luminance: l¼ 0.90 L/Lmax, where l is lightness,
L is luminance, and Lmax is the highest luminance in the
framework. If the resulting lightness values in a
framework span a range smaller than 30:1, then all
lightness values less than 0.90 are adjusted downward
to expand the range (Economou et al., 2007, equation
2). The final lightness value of each patch is a weighted
average of the lightness calculated within its lighting
framework and the lightness calculated for the same
patch within the entire stimulus (the global framework).

The weighting parameter in the final step reflects
how strongly the local lighting framework is percep-
tually segmented from the rest of the scene. If the local
framework is strongly segmented, then the weight
assigned to the local lightness estimate is near 1 and the
weight assigned to the global lightness estimate near 0,
so the rest of the scene has little influence on lightness
estimates within the local framework.

In our model simulations, the local framework for
each test patch was the vertical light or dark strip that
contained the patch. The global framework was the
whole stimulus. On each trial, the model computed
lightness values for the two test patches and chose the
lighter patch. In the standard and noisy argyle
conditions we used a local-framework weighting
parameter of 0.6, and in the broken argyle condition we
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used 0.2, as these values reproduced the mean illusion
strength that we had found with human observers.

ALF

The ALF is a model that we implemented based on
Adelson’s (2000) suggestion that the human visual
system estimates an atmospheric transfer function for
each lighting framework—that is, an affine function
that maps surface reflectance to image luminance. In
this model, X-junctions have the twofold role of
segmenting the argyle stimulus into lighting frame-
works and providing information about how lighting
conditions differ between two frameworks.

Figure 8 shows a vertical boundary in the argyle
figure. If the central vertical line is a lighting boundary,
then each horizontally adjacent pair of triangles (ai, bi)
is a single reflectance patch seen in two lighting
frameworks. That is, triangles ai and bi have the same
reflectance but are seen under different lighting
conditions. Metelli (1970, 1974) and Adelson (2000)
point out that under many lighting conditions,
including viewing through many kinds of transparent
materials, image luminance L is related to surface

reflectance R by an affine transformation, L¼mRþ b.
From this it follows that the image luminances of
triangles ai and bi are also related by an affine
transformation, ai¼ pbiþ q, where here we identify the
triangles with their luminance, and the parameters p
and q depend on the lighting conditions in the two
vertical strips that meet at the boundary.

The ALF model used the relationship ai¼ pbiþ q for
adjacent triangles in an X-junction and estimated the
parameters p and q on each trial using a least-squares
linear regression of the 12 ai values against the
corresponding 12 bi values in the argyle stimulus. It
then used this affine transform and the luminance of
test diamond B to predict the luminance that B would
have if viewed in the same lighting framework as test
diamond A. If the predicted luminance of B was higher
than the actual luminance of A, then the model chose B
as appearing lighter; otherwise it chose A. We used this
model with the standard and noisy argyle stimuli. For
the broken argyle stimulus, the model simply compared
the luminances of the two test patches. As mentioned
before, the model did not identify lighting boundaries.
Instead, we hard-coded the location of the boundary in
the standard and noisy argyle stimuli.

Results and discussion

Figure 9 shows the average human PSEs from
Experiment 1 (Figure 9A) in comparison to the PSEs of
all models (Figure 9B through E). Figure 10 shows
classification images for all models, and average
classification images for human observers in Experi-
ment 1.

High-pass filter

Figure 9B shows the high-pass-filter model’s PSEs.
We found that the model predicts a strong illusion in
the standard argyle stimulus, consistent with Shapiro
and Lu’s (2011) findings. However, we also found that
the high-pass-filter model predicts an even stronger
lightness illusion with the broken argyle stimulus,

Figure 8. The ALF model. The figure shows a central section of

the argyle illusion. If the central vertical boundary is due to a

change in lighting, then each horizontally adjacent pair is a

single reflectance patch seen in two different lighting

frameworks.

Figure 9. Points of subjective equality from lightness-model simulations, with mean results from human observers in Experiment 1 for

comparison.

Journal of Vision (2018) 18(13):1, 1–20 Kim, Gold, & Murray 11

Downloaded from jov.arvojournals.org on 03/11/2020



which Shapiro and Lu did not test. By comparison,
human observers perceive a much stronger illusion in
the standard argyle than in the broken argyle.

Why does the high-pass model predict this reverse
illusion—that is, a stronger illusion in the broken argyle
stimulus than in the standard argyle? It subtracts low-
pass content from the original image, which tends to
make large dark regions brighter and large bright
regions darker. In the standard and broken argyles, the
low-pass content mostly consists of the bright and dark
vertical strips. In the standard argyle, the strips abut
each other, and therefore the model’s response inside
the test diamonds is influenced by neighboring vertical
strips. For example, the response of the model at test
diamond A is determined by the high-pass filter’s
response to the diamond’s own dark strip and to the
two neighboring bright strips. The filter has a large
inhibitory surround, so the neighboring bright strips
inhibit the model’s response in the test diamond. In the
broken argyle, there are empty gaps at background
luminance between the vertical strips, and these have a
weaker inhibitory effect on the model’s response at test
diamond A. Thus the model has a higher response at A
in the broken argyle stimulus than in the standard
argyle. For similar reasons, it has a lower response at
test diamond B in the broken argyle than in the
standard argyle. As a result, the model predicts a
stronger lightness illusion for the broken argyle than
for the standard argyle. Indeed, accounting for the
reduced lightness illusion in the broken argyle poses a
challenge to other lateral-inhibition models as well.

Using a different filter size does not improve the PSE
predictions of the high-pass model. We measured the
model’s PSEs for the standard and broken argyle
stimuli, with filter sizes ranging from 0.078 to 5.08 of
visual angle (Figure 11). At all filter sizes, the model
predicted that broken-argyle PSEs would be as high as
or higher than standard-argyle PSEs, except at large
filter sizes (38 to 58), where it predicted PSEs near zero.

The high-pass model’s classification images (Figure
10B) replicated the influence of bordering lines and
triangles that we found in human observers’ classifica-
tion images, but these local elements extended into
neighboring vertical strips. The high-pass model is a
simple linear filter that is not sensitive to scene

Figure 10. Classification images from lightness-model simulations, with mean results from human observers in Experiment 1 for

comparison. See Figure 3 for details.

Figure 11. Points of subjective equality predicted by the high-

pass-filter model as a function of filter width.
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structure, and the influential regions are determined by
the filter width. The filter is approximately isotropic
(though square), so the influential regions are also
approximately isotropic. This is critically different from
human observers, who showed anisotropic classifica-
tion images whose structure matched the structure of
the stimulus.

ODOG

Figure 9C shows the ODOG model’s PSEs, which
differed from those of human observers in two
important ways. First, the ODOG had negative PSEs in
all three conditions, meaning that it predicted a
lightness illusion in the wrong direction: The model
chose test diamond B as appearing lighter, whereas
human observers chose test diamond A. Second, its
PSE was slightly greater in the broken argyle condition
than in the standard argyle condition, whereas human
observers’ PSEs were greater in the standard argyle
condition.

The ODOG model’s classification images were also
qualitatively inconsistent with our findings from human
observers (Figure 10C). The lines immediately border-
ing test diamond A had positive contrast, meaning that
positive-contrast stimulus noise in these locations made
the model more likely to choose A as appearing lighter.
The lines bordering test diamond B had negative
contrast. For human observers, these bordering lines
had the opposite polarity.

Why did neighboring lines in the ODOG classifica-
tion images have the opposite polarity to those in the
human classification images? The ODOG uses linear
filters at six orientations, each with a small, circular
excitatory center lobe and a much larger, elongated
inhibitory surround lobe. When applied to the argyle
stimuli, the excitatory center of the ODOG filters
blurred the lines surrounding each test patch into the
test patch itself. As a result, random fluctuations that
increased the luminance of the surrounding lines
increased the model’s mean response in the corre-

sponding test patch and made the model more likely to
choose that test patch as appearing lighter.
Stimulus size: Blakeslee and McCourt (2012) have also
examined the ODOG model’s response to the argyle
illusion. Their argyle stimulus was approximately five
times as large as ours and had different numbers of
rows and columns of image elements. Like us, they
found that the ODOG incorrectly predicts a stronger
illusion in the broken argyle than in the standard
argyle, but unlike us they found that it at least correctly
predicts that test diamond A appears lighter than test
diamond B. To investigate this discrepancy, we ran the
ODOG model in a simulation with our argyle stimuli
enlarged by a factor of 5 (198 vertical extent). This
simulation with larger stimuli gave results that were
consistent with Blakeslee and McCourt’s findings: With
the larger stimulus, ODOG correctly predicts that test
diamond A is seen as lighter than test diamond B but
incorrectly predicts that the illusion is stronger in the
broken condition than in the standard condition
(Figure 12A). The difference between results with small
and large stimuli shows that the illusion is not scale
invariant for the ODOG model, whereas our Experi-
ment 3 showed that the illusion strength is scale
invariant over a large range for human observers.
Furthermore, for both small and large stimuli, PSEs
show that the argyle illusion is much weaker for the
ODOG model (;5% contrast) than for human
observers (;20% contrast).

The ODOG model’s classification images were also
different with the larger stimuli (Figure 13A) than with
the smaller stimuli (Figure 10C). With the larger
stimuli, image patches next to the test diamonds had a
contrast-like effect, where bright neighboring patches
made the test patches appear darker to the model;
whereas with the smaller stimuli the neighboring
patches had the opposite effect. Also, with the larger
stimuli a much larger area of neighboring patches had a
substantial effect on the lightness of the test patches,
with a larger role for neighboring patches in the same
frameworks as the test patches. Overall, ODOG’s
classification image with the larger stimuli was more

Figure 12. Points of subjective equality of oriented difference-of-Gaussians variants. In all cases, the model has a higher point of

subjective equality for the broken argyle than for the standard argyle.
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similar to those from human observers than the one
with the smaller stimuli.

ODOG extensions

To examine the robustness of our findings, we tested
variants of the ODOG model that used alternative
methods of reading out the lightness response in the
test diamonds.

In the first variant, the model based its decisions on
the median lightness response in each test diamond
instead of the mean. This model had near-zero,
negative PSEs (Figure 12B), and its classification image
still showed a strong effect of the lines neighboring the
test diamonds, with the effect in the opposite direction
as for human observers (Figure 13B).

In the second variant, the model based its decisions
on the lightness response of a single pixel in the center
of each test diamond. This model had near-zero,
positive PSEs (Figure 12C), with a slightly larger
lightness illusion for the broken argyle stimulus than
for the standard argyle. This model’s classification
image was broadly consistent with those of human
observers (Figure 13C). As explained previously, in the
standard ODOG model the lines adjacent to the test
diamonds were blurred into the test diamonds by the
excitatory center of the ODOG filters, and thus
classification images showed that these lines had an
excitatory effect on the model’s lightness judgments. In
the center-pixel variant of the ODOG, though, the
excitatory effect of the adjacent lines does not reach far
enough into the test diamonds to affect the observers’

responses, and thus the adjacent lines no longer have an
excitatory effect. Nevertheless, because this model
makes incorrect predictions for the PSEs, we reject it as
a model of lightness perception in this task.

Anchoring theory

Figure 9D shows the anchoring model’s PSEs. The
model showed a larger lightness illusion with the
standard argyle figure than with the broken argyle. This
is expected, as we chose the local weighting parameter
in the two conditions to produce the correct PSEs.

The anchoring model’s classification image was very
different from human observers’ (Figure 10D). Ac-
cording to anchoring theory, the influence that an
image patch has on the perceived lightness of a target
patch in the same framework does not decrease with
distance (e.g., Gilchrist, 2006, pp. 303–306), and the
model’s classification image shows that image patches
along the entire vertical length of the lighting frame-
works containing the target patches influenced lightness
judgments. For human observers, only image regions
near the target patches had a strong influence.

One way of improving the predictions of the
anchoring model would be to weaken the influence of
image patches with distance from the test patches. This
would be a rational strategy if image patches far from
the test patches were expected to convey little informa-
tion about the lighting conditions at the test patches. We
return to this point briefly in the General discussion.

Figure 13. Classification images of oriented difference-of-Gaussians variants.
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ALF

Figure 9E shows that the ALF model correctly
predicted a larger illusion with the standard argyle
figure than with the broken argyle. This is not
surprising, since we designed the model specifically to
compensate for the lighting boundary between the two
test patches in the standard argyle and not in the
broken argyle.

The model’s classification image was qualitatively
different from human observers’ (Figure 10E). The
model showed a strong influence of image patches that
formed X-junctions, whereas human observers did not.
Conversely, human observers showed significant influ-
ences of a wider range of neighboring patches in the
same framework as the test patches than the model did.
The classification images for this model are largely
what we would expect from the model’s design.
Nevertheless, the image patches in X-junctions con-
tribute to the model’s lightness judgments via the
nonlinear process of estimating linear regression
coefficients, so these classification images give a useful
confirmation that X-junctions would appear in human
observers’ classification images if observers used them
to compensate for the lighting boundary via an
atmospheric link function of the kind we have modeled
here.

As with the anchoring model, the ALF model’s
predictions would be more similar to human observers’
classification images if the influence of key image
features (here, X-junctions) declined with distance from
the test patches. In the General discussion, we briefly
outline how such behavior could emerge from a more
complete model that estimates lighting boundaries
from the image rather than having them artificially
imposed.

General discussion

The classification images we measured from human
observers showed a surprising mix of features that we
might have expected from low-level and midlevel
models of lightness perception. On the one hand, they
showed local, contrast-like effects of nearby image
elements on lightness judgments, as predicted by classic
low-level lateral-inhibition models. On the other hand,
the influence of surrounding image elements depended
on the structure of the stimulus, in that lightness
judgments were affected more strongly by elements in
the same bright and dark vertical frameworks as the
test patches than by similar elements in different
frameworks. This is what we would expect from
midlevel models that take account of lighting bound-
aries.

These findings rule out a broad class of linear lateral-
inhibition models. According to such models, the
psychophysical receptive field for a lightness judgment
is the stimulus convolved with an isotropic linear filter.
These models cannot block the influence of image
elements that are separated from the target patch by
stimulus features such as lighting boundaries.

However, the ODOG model is a good illustration of
how sophisticated behavior can emerge from even fairly
simple elaborations of linear filtering models. ODOG
did not correctly predict the PSEs we found with
human observers, and unlike with human observers, its
PSEs varied substantially with stimulus size. Further-
more, at our baseline stimulus size its classification
images were very different from those of human
observers. However, with a larger stimulus and in a
variant of ODOG that based its lightness judgments on
the center pixel of the test diamonds, its classification
images were much more similar to those from human
observers, and even showed a larger influence of
stimulus elements that belonged to the same lighting
frameworks as the test patches. Our experiments, and
many others, show that midlevel factors such as
lighting boundaries play an important role in lightness
perception; but it is not yet clear how flexible the
perceptual mechanisms that process these features need
to be. Although ODOG fails to predict the strength or
direction of the argyle illusion, classification images
show that under some conditions it is guided by image
features that are similar to those that guide human
observers, which suggests that a different model
constructed from similar elements (e.g., linear filters,
contrast normalization) may be able to deal more
adequately with lighting boundaries when computing
lightness.

Human observers’ raw classification images (Figures
3 and 5, top row) show that diamonds above and below
the test diamonds had a measurable influence on their
lightness judgments, but area-corrected classification
images (middle row) show that this influence was small
and was measurable only because of the relatively large
size of the diamonds. The raw classification images are
useful for testing computational models, as they show
that observers’ lightness computations depend on
lighting frameworks. However, the area-corrected
classification images are also informative, as they show
how very quickly the influence of neighboring elements
falls off with distance. The cropped argyle condition in
Experiment 4 gives some confirmation that the
classification images did not fail to capture more
distant but nevertheless important image features that
strongly affected observers’ responses.

A reasonable concern in classification-image exper-
iments is whether the noise that is added to the stimulus
changes how observers process the stimulus and make
their responses. Murray and Gold (2004) and Murray
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(2011) considered this problem and, based on obser-
vations such as the fact that noise-masking functions
tend to be linear, concluded that in many tasks the
stimulus noise does not substantially change how
observers process stimuli. In the present experiments,
we screened observers for the classification-image task
by testing whether the lightness illusion was weakened
in the noisy argyle condition. We found that for most
observers, the illusion was about as strong in the noisy
argyle condition as in the standard argyle condition;
and furthermore, several of the observers who failed
screening did not see the typical illusion even in the
noiseless conditions—for example, in Experiment 1
observer MM perceived a stronger illusion in the
broken argyle than in the standard argyle. In addition,
we used patch-wise stimulus noise, and so the noise did
not introduce any new luminance edges but only
perturbed the luminance of existing stimulus regions.
These observations suggest that the stimulus noise did
not substantially disrupt normal visual processing and
that the classification images we measured reveal useful
information about how observers process the standard,
noiseless argyle figure.

In this article we have not addressed the distinction
between lightness, which is perceived reflectance, and
brightness, which is perceived luminance. Observers can
make distinct judgments of reflectance and luminance in
natural scenes, and asking them to judge one or the other
can lead to different experimental results (e.g., Arend &
Spehar, 1993). Nevertheless, the relationship between
lightness and brightness is not well understood. To take
just one example, Adelson (2000) correctly describes the
argyle illusion as a brightness illusion yet convincingly
explains it as the product of a mechanism that computes
lightness. Furthermore, recent work suggests that whether
observers can distinguish lightness and brightness de-
pends on the realism of the stimulus. Logvinenko and
Maloney (2006) found that in achromatic paper stimuli
with real shadows, multidimensional scaling revealed two
perceptual dimensions, roughly corresponding to surface
reflectance and local lighting intensity. However, Logvi-
nenko, Petrini, and Maloney (2008) found that in the
snake illusion (Adelson, 2000)—a simplified stimulus with
no real lighting boundaries—achromatic patches had
only one perceptual dimension. Here we do not propose a
solution to the problem of how lightness and brightness
are related, and we raise it here only to point out that
although we have described our experiments as examining
lightness perception, they bear on brightness perception
as well. Logvinenko and Maloney’s (2006; Logvinenko,
2015; Logvinenko et al., 2008) work on the perceptual
dimensions of achromatic stimuli has made important
progress in clarifying these issues.

When testing computational models of lightness
perception, we found it useful to run the models in the
same experiments as human observers and examine the

models’ performance using the same measures as for
human observers, namely PSEs and classification
images. A common alternative approach is to report
models’ responses to stimuli in arbitrary units—for
example, the mean response of a linear filter in a region
of interest. This can make it difficult to know how well
the model actually accounts for some aspects of
behavioral measurements from human observers, such
as the absolute strength of an illusion. By measuring
PSEs for computational models in full simulations of
the experiments that human observers participated in,
we were able to show, for instance, that some models
predict lightness illusions that are about as strong as
those seen by human observers, while others predict
much weaker illusions (Figure 9).

In addition to testing computational models of
lightness perception, our findings suggest possible direc-
tions for improving these models. The clear role of
lighting frameworks in lightness computations shows that
a broad class of linear lateral-inhibition models is
inadequate. Elaborated low-level models like the ODOG
have some promise, but a successful model will need to
base lightness computations on image elements within
lighting frameworks in order to avoid lightness illusions
in the wrong direction due to contrast with surrounding
frameworks. The atmospheric transfer function gives a
useful way of describing local lighting regions, but our
classification images showed that the ALF model that we
built using this notion gives too large a role to X-
junctions. Variants of this model that rely on image
features other than X-junctions to estimate the atmo-
spheric transfer function would produce very different
classification images, though, so our findings do not rule
out the idea that an estimate of the atmospheric transfer
function plays a role in lightness perception.

The anchoring model is the most promising of the
models we tested, with the substantial caveats that it
does not account for the falloff in the influence of
image elements at greater distances within lighting
frameworks, and it requires the user to manually
segment the stimulus into lighting frameworks and
choose the weighting factor that links local and global
frameworks. These points may be related. In that
model, the luminance of one image patch affects the
perceived lightness of another image patch only to the
extent that they are judged to have common lighting
conditions, either because they belong to the same local
framework or because the weighting factor that links
their frameworks is greater than zero. When imple-
menting the anchoring model we assumed that the
argyle stimulus is cleanly divided into vertical lighting
frameworks, but this need not be the case. A fully
computational anchoring model that estimates the
lighting frameworks in a stimulus might judge some of
the diagonal lines in the argyle stimulus to be weak
lighting boundaries as well, and if so, then distant
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image elements in a single vertical strip may be judged
to belong to very different lighting frameworks. Thus, a
fully computational anchoring theory may resolve both
of these problems. In earlier work we found that a
Bayesian model that makes simple assumptions about
lighting and reflectance can account for many of the
rules that make up anchoring theory, such as that
perceived white should be anchored to the highest
luminance (Murray, 2013; see also Allred & Brainard,
2013). Developing a Bayesian theory that identifies
lighting frameworks and makes rational estimates of
reflectances within each framework is a promising
direction for future work on lightness models.

Keywords: lightness, argyle illusion, classification
images
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Appendix A: Patch size

In a model where the signal is represented as a vector
of pixel values s¼ (si) and stimulus noise is represented
as a vector n¼ (ni), the decision variable of a template-
matching observer with late noise is

d ¼
XN

i¼1
ðsi þ niÞti þ z; ð2Þ

where t¼ (ti) is the template and z is the internal noise.
According to the most common model of performance
in simple two-alternative tasks, the observer makes one
response when the decision variable d is at or below a
criterion value and the other response when d is above
the criterion. Classification-image methods exploit the
fact that the expected value of each noise element ni,
conditional on the observer model (Equation 2) giving
one of the two possible responses, is proportional to the
corresponding element ti of the template (Ahumada,
2002; Murray, 2011; Volterra, 1930).

Suppose that the stimulus is divided into N patches
(i.e., groups of pixels), where the ith patch has Mi

pixels. We can represent the signal as sij, the stimulus
noise as nij, and the template as tij, where i � {1, . . ., N}
is the patch number and j � {1, . . ., Mi} is the pixel
number within the patch. Then the decision variable is

d ¼
XN

i¼1

XMi

j¼1
ðsij þ nijÞtij þ z: ð3Þ

If the signal, noise, and template are constant within
each patch (nij ¼ ni, sij ¼ si, tij ¼ ti), this becomes

d ¼
XN

i¼1

XMi

j¼1
ðsi þ niÞti þ z ð4Þ

¼
XN

i¼1
Miðsi þ niÞti þ z: ð5Þ

Comparing Equations 2 and 5 shows that an experi-
ment with N stimulus patches is equivalent to an
experiment with N stimulus pixels and template values
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Miti. Thus, the expected value of each classification-
image element in an experiment with patch-wise noise is
proportional to Miti, and the expected value of each
classification-image element divided by Mi is propor-
tional to ti. This is the correction for patch size that we
used when calculating classification images.

Appendix B: Significance tests

In a two-tailed z test of a single classification-image
element with value ci, we could calculate the z score zi of ci
under the null hypothesis that the expected value of ci is
zero, set a criterion zcrit¼ 1.96, and consider ci to be
significantly different from zero if zij j.zcrit. This would
produce a type I error rate of a ¼ 0.05. However, our
classification images contained 280 elements, so following
this procedure for each element individually would
produce approximately 0.053 280¼ 14 false positives per
classification image. To correct for multiple comparisons,
we used a higher criterion zcrit, chosen so that the
probability of even a single type I error in a classification
image was a ¼ 0.05 (Nichols & Holmes, 2001).

We calculated zcrit as follows:

Pð any zij j . zcrit j H0 Þ
¼ Pð maxð zij j Þ . zcrit j H0 Þ ð6Þ

¼ Pð minð zi Þ,�zcrit

_ maxð zi Þ . zcrit j H0 Þ ð7Þ

’ 2Pð maxð zi Þ . zcrit j H0 Þ: ð8Þ
The last equality is only approximate, because the
maximum and minimum of the zi values are not

statistically independent, but with 280 classification-
image elements they will be very close to independent:

¼ 2ð1� Pðmax ðziÞ � zcrit H0j ÞÞ ð9Þ

¼ 2ð1� FzðzcritÞnÞ; ð10Þ

where Fz is the cumulative distribution function of the
z score of each classification-image pixel under the
null hypothesis that the expected value of each
classification-image element is zero; and n is the
number of classification-image pixels. Fz is just the
standard normal cumulative distribution function
U(x):

¼ 2ð1� UðzcritÞnÞ: ð11Þ
For a type I error rate of a¼ 0.05 and n ¼ 280
classification-image pixels, this evaluates to
zcrit ¼ U�1ðð1� 0:05=2Þ1=280Þ ¼ 3:74. Alternatively,
Nichols and Holmes (2001) describe a method for
choosing zcrit using Monte Carlo simulations.

To calculate the z score for each classification-image
element, we need its standard deviation under the null
hypothesis that the expected value of the element is
zero. Under the null hypothesis, the classification image
is just a weighted sum of stimulus noise samples that
are uncorrelated with the observer’s responses, so we
can calculate the standard deviation of the classifica-
tion-image elements using elementary formulas for the
standard deviation of arithmetic functions of random
variables. For example, if the stimulus noise contrast
has patch-wise standard deviation r ¼ 0.20, and if the
observer gives response A on 5,000 trials and response
B on 5,200 trials, then under the null hypothesis the
variance of each classification-image element is 0.202/
5,000þ 0.202/5,200.
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Appendix C: Subjective equality for
individual observers

Figure C1. Individual observers’ PSEs in Experiment 3. Each bar shows an observer’s PSE with the argyle figure enlarged by a factor of

one, two, three, or four. Error bars are bootstrapped 95% confidence intervals.

Figure C2. Individual observers’ PSEs in Experiment 4. Each bar shows an observer’s PSE with the cropped, standard, or broken argyle

figure. Error bars are bootstrapped 95% confidence intervals.
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