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Abstract

This thesis introduces a way to generalize of peak algebra. There are several

equivalent definitions for the peak algebra. Stembridge describes it via

enriched P -partitions to generalize marked shifted tableaux and Schur’s Q

functions. Nyman shows that it is a the sum of permutations with the same

peak set. Aguiar, Bergeron and Sottile show that the peak algebra is the odd

Hopf sub-algebra of quasi-symmetric functions using their theory of

combinatorial Hopf algebras.

In all these cases, there is a very natural and well-behaved Hopf algebra

morphism from quasi-symmetric functions or non-commutative symmetric

functions to their respective peak algebra, which we call the theta map. This

thesis focuses on generalizing the peak algebra by constructing generalized

theta maps for an arbitrary combinatorial Hopf algebra.

The motivating example of this thesis is the Malvenuto-Reutenauer Hopf

algebra of permutations. Our main result is a combinatorial description of all

of the theta maps of this Hopf algebra whose images are generalizations of

the peak algebra. We also give a criterion to check whether a map is a theta

map, and we find theta maps for Hopf sub-algebras of quasi-symmetric

functions. We also show the existence of theta maps for any commutative

and cocommutative Hopf algebras. From there, we study the diagonally

symmetric functions and diagonally quasi-symmetric functions. Lastly, we

describe theta maps for a Hopf algebra V on permutations.
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Chapter 1

Introduction

Let k[[x]] be the set of power series in variables x = x1, x2, x3, . . . of bounded

degrees. The symmetric functions are the set of invariant power series under

permutation of variables i.e. the set of elements f such that

f(x1, x2, x3, . . . ) = f(xσ(1), xσ(2), xσ(3) . . . )

for all bijections σ : {1, 2, . . . } → {1, 2, . . . } that fix all but finitely many

numbers. Bases elements of the space of symmetric functions are indexed

by partitions λ = (λ1, λ2, . . . , λk) such that λ1 ≥ λ2 ≥ · · · ≥ λk > 0. The

monomial symmetric function mλ is the sum of the monomials in the orbit of

xλ11 . . . xλkk , e.g.

m21(x) = x2
1x2 + x1x

2
2 + x2

1x3 + x1x2
3 + x2

2x3 + · · ·
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Symmetric functions inherit the regular multiplication from power series, and

they have a co-multiplication given as follows

f(x) 7→ f(x,y) =
∑
f1,f2

f1(x)f2(y) 7→
∑
f1,f2

f1 ⊗ f2.

For example,

m21(x,y) = x2
1x1 + x1x

2
2 + · · ·+ x2

1y1 + · · ·+ x1y
2
1 + · · ·+ y1y

2
2 + · · ·

= m21(x) +m2(x)m1(y) +m1(x)m2(y) +m21(y)

The symmetric functions can be shown to satisfy the conditions of a Hopf

algebra. The symmetric functions are core objects in algebraic

combinatorics. They are isomorphic as a Hopf algebra to the class functions

of the symmetric groups via Frobenius characteristic map [44]. They also

represent special Schubert classes in the colomology of flag varieties and

Grassmanians [39].

These applications lead to the fundamental basis of symmetric functions,

known as the Schur basis {sλ}. This is a self-dual basis of Sym i.e. we have a

bilinear form 〈−,−〉 : Sym× Sym → k, called Hall inner product, such that

〈sλ, sµ〉 = δλµ where δ is the Kronecker delta. In the other words, we have an

isomorphism between Sym and its dual space ISym : Sym → Sym∗ that maps

sλ 7→ s∗λ. This is an Hopf isomorphism that preserves product and coproduct.

The Schur function sλ is the generating function for the semi-standard Young

tableaux of shape λ i.e. tableaux whose rows are weakly increasing and
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columns are strictly increasing. For example,

s21(x) =

1 1

2 +
1 2

2 +
1 3

2 +
1 2

3 + · · ·

x2
1x2 + x1x

2
2 + x1x2x3 + x1x2x3 + · · ·

There are combinatorial rules for the product of a Schur with a Schur

function (Littlewood-Richardson rule), Schur function with a complete

symmetric function (Pieri rule), Schur function with a power sum generator

(Murnaghan-Nakayama rule) [25]. The structure constants for these products

are weighted sums of tableaux with certain properties. And these can be

restated as the product formula for irreducible characters of symmetric

groups, intersection formula for certain Schubert cells, etc.

In 1911, Schur defines the Q functions in the study of projective

representations of symmetric groups and alternating groups [47]. The Q

functions show great importance in several different contexts including

representation theory of Lie superalgebras, certain cohomology classes, and

they play a similar role in projective representations of symmetric groups as

the Schur functions do in representation theory of symmetric groups [31, 42].

The Q functions are also known to play the role of Schur functions in

Hecke-Clifford algebra i.e. the Q functions correspond to simple

Hecke-Clifford modules [33].

Combinatorially, the Q functions are indexed by strict partitions

(λ1, λ2, . . . , λk) such that λ1 > λ2 > · · · > λk > 0. They are generating

functions for marked shifted tableaux [44, 54] i.e. tableaux that are filled

with {1, 1’, 2, 2’, . . . } such that each x (x’) appears at most once in each row

3



(column), e.g.

Q421 =

1 1’ 1’ 1’

2 2’

3
+

1 1’ 1’ 2

2 2’

3
+

1 1’ 2 2’

2 2’

3
+ · · ·

x4
1x

2
2x3 + x3

1x
3
2x3 + x2

1x
4
2x3 + · · ·

The Schur’sQ functions are known satisfy analogous Pieri rule and Littlewood-

Richardson rule.

Consider the algebra morphism ΘSym : Sym→ Sym, which maps sn 7→ Qn and

extend the map multiplicatively. This completely defines the map since {sn}

is a set of generators of Sym. We call this map the theta map for symmetric

functions. It is not only an algebra morphism, but also a Hopf morphism

that is self-adjoint with respect to the Hall scalar product. In the language of

combinatorial Hopf algebra, it is the unique lifting of the odd character of ζSym

[5]. We will explain later in detail. This is our starting point of the theory of

theta maps.

The P-partitions and quasi-symmetric functions (QSym) are introduced as

one of the most important generalizations of semi-standard Young tableaux

and symmetric functions [20, 49]. They are generating functions for partially

ordered sets whose covering relations are labeled with < or ≤ that satisfy

certain transitivity properties (P-partitions can be equivalently defined as

poset P with labeled vertices). For example, consider the labeled poset P

4



π(3)

π(4)

π(1)

π(2)

<

≤

≤

LP =
∑

P-partitions π

xwt(π) =
∑

π(1)≤π(2),π(1)<π(3)≤π(4)

xπ(1)xπ(2)xπ(3)xπ(4)

= x2
1x

2
2 + x2

1x2x3 + x1x
3
2 + x1x

2
2x3 + x1x

2
2x4 + · · ·

The linear space spanned by P-partitions is the space of quasi-symmetric

functions (QSym). The quasi-symmetric functions can be multiplied as power

series, and co-multiplied via introducing a new set of variables

x1 < x2 < · · · < y1 < y2 < · · · similar to the way that the coproduct is

defined on Sym. Then, QSym also form a Hopf algebra. Note that

semi-standard Young tableaux can be views as a partially ordered set whose

rows are labeled with ≤ and columns are labeled with <. We have an

embedding ι : Sym → QSym. In Stanely’s thesis, he gives a fundamental

lemma that states that {LP : P is totally ordered} forms a basis of QSym.

Hence, in the degree n component of QSym, the basis elements are indexed

by the places where < occur, i.e. subsets of {1, 2, . . . , n− 1}.

In the groundbreaking paper by Stembridge [51], he defines enriched

P-partitions and the peak algebra that are generalizations of marked shifted

tableaux and Schur’s Q functions. An enriched P-partition is a filling of a

labeled poset with 1 < 1’< 2 < 2’< · · · such that no x’< x’ or x ≤ x occurs.

5



Then, KP is the generating function for enriched P-partitions where both i

and i’ contribute to xi. For example, consider the same poset P in the

previous example of P-partitions, the following are samples of enriched P

partitions

1

1’

1

1’
<

≤

≤
1’

1’

1

1’
<

≤

≤
1’

2

1

1’
<

≤

≤

2

2’

1’

1’
<

≤

≤
2’

2’

1’

1’
<

≤

≤
1’

1’

1’

2’
<

≤

≤

KP =
∑

enriched P-partitions π

xwt(π) = 2x4
1 + 2x3

1x2 + 2x2
1x

2
2 + · · ·

In the paper of Stembridge, he shows that the linear span of {KP}, denoted

by Π, is spanned by {KP : P is totally ordered}. Moreover, for two totally

ordered sets P and P ′, KP = KP ′ if and only if the places of occurrence of

intervals of length 2 with labels a ≤ b < c in P and P ′ are the same. Therefore,

a basis of Π is indexed by intervals of length 2 with labels a ≤ b < c, which

is called peak. Hence, Π is called the peak algebra, indexed by the peak sets,

and the dimension of the degree n component is the n-th Fibonacci number.

Consider the natural map
∑

P-partitions π

xwt(π) to
∑

enriched P-partitions π

xwt(π) i.e.

6



LP 7→ KP for any labeled poset P . This map is called the theta map for

QSym, ΘQSym : QSym → QSym, as θ is the symbol Stembridge uses. This

map is compatible with ΘSym via the inclusion map ι : Sym → QSym.

Moreover, ΘQSym is a Hopf morphism and Π is a Hopf algebra [16]. Further

more, the dual of the image of ΘQSym, is the image of the dual map of ΘQSym.

In [17], the authors give the connection between peak algebra and the

representation theory of the 0-Hecke-Clifford algebras, analoguous to the

isomorphism between QSym and representation theory of 0-Hecke algebra

[34]. In the language of combinatorial Hopf algebras, ΘQSym is the unique

lifting of the odd character of ζQSym [5].

The graded dual of QSym is the non-commutative symmetric functions

(NSym) [22]. We will explain it in terms of Malvenuto-Reutenauer Hopf

algebra of permutations (SSym) [40]. The Hopf algebra SSym live in the

ring k〈X1, X2, . . . 〉 of power series of bounded degree in non-commuting

variables. As a vector space, SSym has basis indexed by permutations as

follows, for each permutation σ ∈ Sn, we define

Fσ =
∑

std(ω1,ω2,...,ωn)=σ−1

Xω1Xω2 · · ·Xωn

where std is the standardization of a word to make it a permutation. Let

std(ω) = σ for some word ω and permutation σ, then for any i < j, ωi ≤ ωj

if σi < σj; ωi > ωj if σi > σj.

7



For example,

F231 =
∑

std(ω1,ω2,ω3)=312

Xω1Xω2Xω3

=
∑

ω2≤ω3<ω1

Xω1Xω2Xω3

= X2X1X1 +X3X1X1 +X3X1X2 +X3X2X2 + · · ·

With the same method of introducing a new set of variables, SSym has a

co-multiplication structure and it forms a Hopf algebra. Moreover, by making

the variables commutative, we obtain a Hopf morphism D : SSym → QSym.

It is not hard to see that the image of Fσ only depends on the descent set of

σ, Des(σ) = {i : σ(i) > σ(i + 1)}. In fact, D(Fσ) = LDes(σ). Hence, D is

frequently referred to as the descent map.

Dually, the graded dual of QSym, i.e. NSym, is a Hopf sub-algebra of SSym.

Its degree n component is indexed by subsets of {1, 2, . . . , n − 1}. For each

subset S ⊆ {1, 2, . . . , n− 1}, the embedding is

RS 7→
∑

Des(σ)=S,σ∈Sn

F ∗σ

where {F ∗σ} is the dual basis of {Fσ} and {RS} is the basis dual to {LS}. This

embedding is denoted by D∗ as it is the dual map of the descent map D.

Moreover, when making the variables commutative, NSym is projected to the

symmetric functions Sym, and this projection π is dual to the embedding

ι : Sym→ QSym. Then, we obtain the following classical commutative square

8



NSym SSym

Sym QSym

D∗

ι

π D

The dual map of ΘQSym is the theta map for NSym, ΘNSym : NSym → NSym.

In particular, its image is the space spanned by
∑
σ∈Sn

peak(σ)=S

F ∗σ : S ⊆ {1, 2, . . . , n− 1}

 where the peak set is

peak(σ) = {i : σ(i− 1) < σ(i) > σ(i+ 1)}.

The original construction of peak algebra is combinatorial. But after its

introduction, it inspired a series of researches and surprising results that

connected a number of area together and there have been many attempts at

generalizations.

In [15], the authors relate the enriched P-partitions to chains in Eulerian

posets and their cd-index. They give a combinatorial interpretation of when a

function in Π can be expressed positively in enriched P-partitions. Then, they

studied the theta map ΘQSym as operators of certain posets and in particular,

they show that ΘQSym is diagonalizable on Π.

In [41], Nyman proves that the dual of the space of enriched P-partitions is

isomorphic to the sub-algebra of the Hopf algebra of permutations spanned by

elements of the form
∑
σ∈Sn

peak(σ)=S

F ∗σ where S ⊆ {1, 2, . . . , n−1}. In addtion, when

we identify SSym with the group ring kS =
⊕
n≥0

kSn, then its subspace NSym

9



is given an internal multiplication for which it is closed under multiplication.

The space NSym is isomorphic to Solomon’s descent algebra [48]. And Nyman

shows that the peak algebra also forms a sub-algebra of Solomon’s descent

algebra and has many properties analoguous to the descent algebra.

From the relation between descents and peaks, the peak algebra is extended

to Coxeter groups of type B in papers [6]. The peak algebra of type B also

has a Hopf algebra structure similar to NSym and SSym, and a descent-to-

peak theta map is constructed in [29]. And then in [14], the authors further

generalize the peak algebra to Mantaci-Reutenauer Hopf algebra of G-colored

symmetric groups. However, no similar construction is known for other types

of Coxeter groups.

From the combinatorial perspective, in [32], the authors generalize the

combinatorics of marked shifted tableaux and enriched P-partitions further

to Poirier-Reutenauer Hopf algebra of standard Young tableaux [43]. They

introduced the shifted Poirier-Reutenauer Hopf algebra. However, there is no

natural ways to give a nice analoguous theta map that is compatible with

their construction. The authors give two candidates, but neither is a Hopf

morphism.

Many other authors have also explored the Hopf algebra and representation

theoretical structure of the peak algebra (see for instance [16, 46]). As listed

above, the peak algebra and its generalizations appear in the form of Schur’s

Q functions, enriched P-partitions, sum of elements in certain Coxeter

groups with given peak set, shifted standard Young tableaux, etc. Each of

these constructions, both combinatorial and algebraic, has certain interesting

10



properties. The problem is then as follows, is there a unified way of

describing these peak algebras? Can we generalize the peak algebra to an

arbitrary Hopf algebra in a meaningful way, and obtain analogous

combinatorial and algebraic properties?

In this thesis, we will partially answer this question from the angle of theta

maps. More precisely, given a Hopf algebra H with a Hopf morphism Ψ : H →

QSym, we define a theta map to be a Hopf morphism ΘH : H → H that makes

the following diagram commute.

NSym

NSym

Sym∗

Sym∗ Sym

Sym

QSym

QSym

H∗

H∗

H

H

π π

ΘNSym

ΘSym

ι

ι

Θ∗Sym

ΘQSymISym

ISym

Θ∗H

ΘH

Then the image of ΘH is a generalized peak algebra. Moreover, if H is self-

dual, we want ΘH to be self-adjoint, in which case the two self-adjointness

squares in bottom-left and top-right can be omitted and the diagram becomes

a cube. Usually, making ΘH self-adjoint simplifies the calculations a lot.

The importance of the theta maps comes from the theory of combinatorial

Hopf algebras developed in [5]. A combinatorial Hopf algebra is a graded

connected Hopf k-algebra H equipped with a multiplicative and linear map

11



ζ : H → k called character. The set of characters forms a group. Two

characters can be multiplied via convolution product, and the inverse of a

character ζ is ζ ◦ SH where SH is the antipode of H. Let ζ be the character

such that ζ(h) = (−1)deg(h)ζ(h) for homogeneous h. Then χ = ζ−1ζ is called

the odd character of ζ as χ = χ−1.

Consider the canonical character for Hopf algebras in power series via

evaluation ζ(f(x1, x2, . . . )) = f(1, 0, 0, 0, . . . ), both in commuting and

non-commuting variables. When restricted to Sym, QSym, NSym and SSym,

we obtain ζSym, ζQSym, ζNSym and ζSSym respectively. In [5], the authors show

that (QSym, ζQSym) is the terminal object in the category of combinatorial

Hopf algebras i.e. for any pair (H, ζ), there exists a unique Hopf morphism

Φ : H → QSym such that ζ = ζQSym ◦ Φ. And similarly, (Sym, ζSym) is the

terminal object in co-commutative combinatorial Hopf algebras. In

particular, ζSym, ζQSym, ζNSym, ζSSym are compatible with the classical square

i.e. the maps are combinatorial Hopf morphism.

The theta maps for Sym and QSym are the unique combinatorial Hopf

morphisms for
(
Sym, ζ−1

SymζSym

)
,
(
QSym, ζ−1

QSymζQSym

)
respectively. Under this

construction, the space of Schur’s Q functions and peak algebra are the odd

Hopf sub-algebras of Sym and QSym that satisfy the generalized

Dehn-Sommerville relations introduced in [10]. By choosing appropriate

combinatorial Hopf algebras, relations among flag vectors in Eulerian posets

can be obtained from the generalized Dehn-Sommerville relations. For NSym,

although it is not a terminal object, its theta map also comes from the odd

character i.e. ζ−1
NSymζNSym = ζNSym ◦ ΘNSym, and the image is the odd Hopf

sub-algebra of (NSym, ζNSym).

12



Our first result is that for any combinatorial Hopf algebra (H, ζ), a Hopf

morphism ΘH : H → H is a theta map if and only if it is obtained from the

odd character i.e. ζ−1ζ = ζ ◦ΘH. Moreover, the image of any theta map must

lie inside the odd Hopf sub-algebra of (H, ζ). From this result, we compute

theta maps for different combinatorial Hopf algebras.

The central candidate of combinatorial Hopf algebras, and our main

motivation for considering this problem, is the Malvenuto-Reutenauer Hopf

algebra of permutations, also known as the free quasi-symmetric functions. It

is a non-commutative, non-cocommutative, self-dual and graded Hopf

algebra. Its sub and quotient Hopf algebras contain Sym, QSym, NSym, the

peak algebra, the Loday-Ronco Hopf algebra of binary trees, the

Poirier-Reutenauer Hopf algebra of standard Young tableaux and many

other central objects in algebraic combinatorics.

Our main result is that we are able to give a combinatorial description the

theta maps for SSym. In fact, there are infinitely many, and we will give

an algorithm to construct all of them. The tool we use is monomial basis

introduced in [8]. The monomial basis gives a set of free generators of SSym.

We also heavily use the combinatorics of the peak set, global descents and the

weak order on permutations.

In addition to this, we also prove related results on other combinatorial Hopf

algebras.

In Chapter 2, we provide the background, definitions and notation needed in

this thesis.

13



In Chapter 3, we will study odd Hopf subalgebra of an arbitrary

combinatorial Hopf algebra. We give an algorithm to find the odd

subalgebra, and we show that the image of a theta map, if it exists, will be

contained in the odd subalgebra. In particular, it satisfies the generalized

Dehn-Sommerville relations. A main part of this chapter comes from the

paper [7] that is a joint work with Farid Aliniaeifard.

In Chapter 4, we first provide the connection between theta maps and

characters. Using that, we show that for any Hopf subalgebra of QSym, the

theta map, if it exists, must be unique. We also give theta maps for any Hopf

algebras that are commutative and cocommutative, and we use the

diagonally symmetric functions DSym as example. In particular, we

construct a non-trivial Hopf sub-algebra of DSym. After that, we extend it to

diagonally quasi-symmetric functions. We also have a structural result on the

quasi-symmetric analogue of the diagonal harmonics. We leave it in

appendix as it is not directly related with theta maps. Some sections of

chapter 4 are also found in my joint paper with Farid Aliniaeifard [7] and

some other sections are in [35]. The appendix is from the paper [36].

Then, we study another Hopf algebra of permutations, called V [53], which is

the coradical filtration of SSym. We give the theta maps for V . And we find

a particular theta map, whose image is exactly the peak algebra. After that,

we will construct and describe the theta maps for the Malvenuto-Reutenauer

Hopf algebra of permutations.

14



Chapter 2

Background

In this section, we provide some the definitions and background used in this

thesis to make it self-contained as possible. For more details, a good reference

would be [25].

2.1 Hopf algebras

A Hopf algebra H is a k-vector space with the following k-linear maps.

• product m : H⊗H → H that is associative i.e. m◦(m⊗id) = m◦(id⊗m).

• unit u : k→ H such that u(1) is the identity element for multiplication.

• coproduct ∆ : H → H ⊗ H that is coassociative i.e. (∆ ⊗ id) ◦ ∆ =

(id⊗∆)◦∆. It is sometimes convenient to write the coproduct as ∆(c) =∑
(c) c1 ⊗ c2.

• counit ε : H → k such that
∑

(c) m(c1 ⊗ ε(c2)) = c.

15



These maps satisfy the following compatibility axioms

1. ∆ ◦m = (m⊗m) ◦ (id⊗ T ⊗ id) ◦ (∆⊗∆) where T is the transposition

a⊗ b 7→ b⊗ a

2. m ◦ (ε⊗ ε) = ε ◦m

3. ∆ ◦ u = (u⊗ u) ◦∆

4. ε ◦ u = id

And there exists a linear map called antipode S : H → H such that∑
(c) S(c1)c2 = u(ε)(c) =

∑
(c) c1S(c2).

A Hopf algebra H is graded if

1. the underlying vector space is graded i.e. H =
⊕
n≥0

Hn, Hn is called the

graded component of degree n.

2. given two homogeneous elements h1 ∈ Hi and h2 ∈ Hj, then m(h1⊗h2) ∈

Hi+j,

3. given a homogeneous element h ∈ Hn, ∆(h) ∈
⊕
i+j=n

Hi ⊗Hj.

A Hopf algebra is graded and connected if it is graded and H0 = k.

In this thesis, all Hopf algebras will be graded and connected, and the

dimensions in all graded component are finite. In this case, we can drop the

antipode axiom because it always exists via the Takeuchi formula [52]

S =
∑
n≥0

(−1)nm(n−1)f⊗n∆(n−1)

16



where f = id− uε, m−1 = u, ∆−1 = ε and m0 = ∆0 = id.

Given two Hopf algebras H and H′, we say a map ϕ : H → H′ is a Hopf

morphism if it is a linear map that preserves the product and coproduct i.e.

1. ϕ ◦m = m ◦ (ϕ⊗ ϕ)

2. ∆ ◦ ϕ = (ϕ⊗ ϕ) ◦∆.

Similarly, a map is an algebra morphism or coalgebra morphism if it is linear

and it preserves the product or coproduct respectively.

Given a graded connected Hopf k-algebraH =
⊕
n≥0

Hn, we can define its graded

dual, denoted by H∗ =
⊕
n≥0

H∗n where H∗n is the set of all linear maps from H

to k such that all homogeneous elements h ∈ Hi are mapped to 0 unless n = i.

The graded dual space H∗ is a graded connected k-vector space and we have

a bilinear scalar product

〈−,−〉H : H∗ ×H → k

that takes a pair (f, h) ∈ H∗ ×H to f(h).

For each linear map φ : H → H, there is a unique adjoint map φ∗ : H∗ → H∗

such that for all a ∈ H, b ∈ H∗, we have 〈b, φ(a)〉H = 〈φ∗(a), b〉H.

The graded dual space has a Hopf structure where the product on H∗ is the

adjoint map of the coproduct on H and the coproduct on H∗ is the adjoint

map of the product on H with respect to the scalar product 〈−,−〉H.
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It is not hard to check that the product and coproduct on H∗ satisfy the

compatiblility axioms of Hopf algebra with its grading.

Let {b1, b2, . . . } be a homogeneous basis of H, then there is a homogeneous

dual basis {b∗1, b∗2 . . . } forH∗ such that 〈b∗i , bj〉H = δij where δij = 1 when i = j,

and otherwise δij = 0.

A Hopf algebra H is called self-dual if it is isomorphic to its graded dual space

as Hopf algebras.

Given two Hopf algebras A,B and a Hopf morphism φ : A → B, we have

the dual map φ∗ : B∗ → A∗ such that φ∗(f)(a) = f(φ(a)). If B = A∗, then

the dual map φ∗ is the adjoint map of φ with respect to the scalar product

〈−,−〉A.

Given a Hopf algebraH and two Hopf morphisms f, g : H → H, we define their

convolution product, denoted by f∗g, to be the map composition m◦(f⊗g)◦∆.

The convolution product is a linear map, but it fails to be a Hopf morphism

in general.

Remark 2.1.1. The convolution product can be defined for any linear maps

between a coalgebra C and an algebra A. In fact, it makes Hom(C,A) an

algebra. But we will not use it in this thesis.

The rest of this section recalls the central Hopf algebras we will use in this

thesis including the symmetric functions (Sym), the quasi-symmetric functions

(QSym), the non-commutative symmetric functions (NSym), the free quasi-

symmetric functions (SSym) and Vargas Hopf algebra of permutations (V).

For more details, we refer to [25].
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2.1.1 The Hopf algebra of symmetric functions

In this section, we recall symmetric functions and their basis properties. More

details can be found in [45, 38]

A partition λ of n, written λ ` n is a finite tuple of positive integers (λ1, . . . , λ`)

such that λ1 + · · ·+ λ` = n and λ1 ≥ λ2 ≥ · · · ≥ λ`. We say the length of λ is

`(λ) = ` and the size of λ is |λ| = n.

For partitions µ, ν, and positive integer s, we say µ ≺s ν, or ν/µ is a horizontal

s-strip, if

1. |ν| = |µ|+ s,

2. µj ≤ νj for all 1 ≤ j ≤ `(µ),

3. If νi > µi and νj > µj for two different integers i, j, then either νi ≤ µj

or νj ≤ µi.

By convention, we let µj = 0 for j > `(µ).

The ring of symmetric functions, Sym =
⊕
n≥0

Symn, is sub-ring of the power

series k[[x1, x2, . . . ]] with bounded degree that are fixed under symmetric group

action where Symn is the space of homogeneous symmetric functions of degree

n. More precisely, f ∈ Sym if f(x1, x2, . . . ) = f(xσ(1), xσ(2), . . . ) for all σ ∈

S(∞) where S(∞) is the set of all bijections from the set of positive integers to

itself that fix all but finitely many numbers.

The symmetric functions clearly form a graded vector space, and the degree

n component is clearly has a basis, called the monomial basis mλ, the sum of
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all monomials in the orbit of xλ11 x
λ2
2 · · ·x

λ`(λ)
`(λ) , for all λ ` n.

Example 2.1.2. For n = 3, we have

• m(3)(x) = x3
1 + x3

2 + x3
3 + · · ·

• m(2,1)(x) = x2
1x2 + x1x

2
2 + x2

1x3 + x1x
2
3 + · · ·

• m(1,1,1)(x) = x1x2x3 + x1x2x4 + x1x3x4 + · · ·

The symmetric functions form a ring with the regular multiplication of power

series. It is, in fact, a free commutative ring with generators {h1, h2, . . . }

where hn =
∑
λ`n

mλ. The {hn} are called the complete homogeneous functions.

For a partition λ, we denote hλ = hλ1hλ2 · · ·hλ`(λ) .

Proposition 2.1.3. [45] {hλ : λ ` n} is a basis of Symn.

We define the coproduct on Sym to be ∆(hn) =
∑

i+j=n hi ⊗ hj and extended

multiplicatively. Then Sym becomes a Hopf algebra.

We will then define the most important basis {sλ} using tableaux.

Definition 2.1.4. A tableau is a finite collection of cells, arranged in left-

justified rows and filled with positive integers e.g.

T =

1 1 2

2

2 3

Let T be a tableau. The shape of T , denoted by sh(T ), is the integer vector

whose i-th entry is the length of row i, reading from top to bottom. The

content of T , denoted by c(T ), is the integer vector whose j-th entry is the
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number of times j appears in T . Since all but finitely many of the entries

in sh(T ) and c(T ) are zero, we identify them with a finite sequence of non-

negative integers.

The reading word of T , denoted by read(T ), is the word of entries read

starting in the top row from right to left, then proceeding down the rows. In

the example above, sh(T ) = (3, 1, 2), c(T ) = (2, 3, 1), and

read(T ) = (2, 1, 1, 2, 3, 2).

For compositions α, β with αi ≥ βi for all i, a skew tableau of shape α/β is a

tableau of shape α with cells of β removed from the upper left corner e.g.

T ′ =

1 1 2

2

2 3

has skew shape (4, 3, 2)/(1, 2).

In this case, β is called the inner shape of T ′ and α is called the outer shape

of T ′, denoted by outsh(T ′).

A tableau is called semi-standard if its rows are weakly increasing from left to

right and its columns are strictly increasing from top to bottom. A tableau

is said to be immaculate if its rows are weakly increasing from left to right

and its first column is strictly increasing from top to bottom. A tableau T is

called Yamanouchi if in read(T ), for every positive integer j and every prefix

d, there are at least as many occurrences of j as there are of j + 1 in d.

All the definitions above for tableaux apply verbatim to skew tableaux.

Definition 2.1.5. The Schur functions sλ(x) =
∑

semi-standard tableaux
T of shape λ

xc(T ) where
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xc(T ) = x
c(T )1
1 x

c(T )2
2 · · ·

Example 2.1.6.

s21(x) =

1 1

2 +
1 2

2 +
1 3

2 +
1 2

3 + · · ·

x2
1x2 + x1x

2
2 + x1x2x3 + x1x2x3 + · · ·

Proposition 2.1.7. ([25], Proposition 2.11) The Schur functions are

symmetric i.e. sλ ∈ Sym. Moreover, {sλ : λ ` n} forms a basis of Symn.

The Schur functions are positive, self-dual basis. Let λ, µ, ν be partitions

and cλµν be the number of skew semi-standard Yamanouchi tableaux of shape

λ/µ and content ν. Then we have the following Pieri rule and Littlewood-

Richardson rule that are nicely explained in [25].

Theorem 2.1.8. ([25], Theorem 2.58) For a partition µ and a positive integer

n,

sµhn =
∑
µ≺nλ

sλ.

Theorem 2.1.9. [37] For partitions λ, µ and ν,

sµsν =
∑

λ`|µ|+|ν|

cλµνsλ.

∆(sλ) =
∑

λ`|µ|+|ν|

cλµνsµ ⊗ sν .

These show that Sym is a self-dual Hopf algebra via the isomorphism

ISym : Sym → Sym∗

sλ 7→ s∗λ
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and we have the Hall scalar product on Sym, 〈−,−〉 : Sym× Sym → k such

that 〈sλ, sµ〉 = 〈hλ,mµ〉 = δλµ.

The importance of positivity and self-duality was studied by Zelevinsky and

that results in beautiful descriptions of irreducible representations of many

families of finite groups including the symmetric groups and general linear

groups.

One can also obtain Schur functions directly using the homogeneous basis via

the Jacobi-Trudi formula.

Theorem 2.1.10. [30] For a partition λ = (λ1, λ2, . . . , λk),

sλ = det



hλ1 hλ1+1 · · · hλ1+k−1

hλ2−1 hλ2 · · · hλ2+k−2

...
...

. . .
...

hλk−k+1 hλk−k+2 · · · hλk


=
∑
σ∈Sk

(−1)σhλ1+σ1−1,...,λk+σk−k

where for convinience we use σi to denote σ(i) and the same notation is used

later.

Another important class of symmetric functions is the Schur’s Q functions,

defined using marked shifted tableaux.

A shifted tableau of shape λ is a tableau of shape λ whose row i is shifted to

the right by i − 1 for all rows i.e. of shape

(λ + (0, 1, . . . , `(λ) − 1))/(0, 1, . . . , `(λ) − 1) A marked shifted tableau is a

shifted tableau that are filled with {1, 1’, 2, 2’, 3, 3’, · · · } such that

1. both rows and columns are weakly increasing with respect to the ordering
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1 < 1’< 2 < 2’< 3 < 3’< · · · ,

2. there can be at most one x in each row and at most one x’ in each column

for all numbers x.

The content of a marked shifted tableau is the regular content by reading x’

as x for all numbers x.

Definition 2.1.11. The Schur’s Q functions is Qλ =
∑

marked shifted tableaux
T of shape λ

xc(T )

where xc(T ) = x
c(T )1
1 x

c(T )2
2 · · ·

Example 2.1.12.

Q421 =

1 1’ 1’ 1’

2 2’

3
+

1 1’ 1’ 2

2 2’

3
+

1 1’ 2 2’

2 2’

3
+ · · ·

x4
1x

2
2x3 + x3

1x
3
2x3 + x2

1x
4
2x3 + · · ·

The Schur’s Q functions form a subspace of Sym, with a basis {Qλ : λ1 > λ2 >

· · · > λ`(λ)} indexed by strict partitions. The set {Qn} is a set of generators

of the space of Schur’s Q functions [38].

The Schur’s Q functions play a central role in the projective representations of

symmetric groups, similar to Schur functions in regular representation theory.

They also have analogous Pieri rule and Littlewood-Richardson rule.

Consider the algebra morphism ΘSym : Sym → Sym that sends hn → Qn and

extended multiplicatively. This map is in fact a self-adjoint Hopf morphism

with respect to the Hall scalar product i.e. ΘSym preserves the coproduct, and

it makes the following diagram commute.
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Sym Sym∗

Sym Sym∗

ISym

ISym

ΘSym Θ∗Sym

It is not hard to see that Qn = 2
n∑
k=1

s(k,1,1,...,1) where each term has n− k 1’s.

Therefore, we may write ΘSym(hn) = 2
∑

hook λ of size n

sλ.

2.1.2 The Hopf algebra of quasi-symmetric functions

A composition α of n, written α |= n, is a finite tuple of positive integers

(α1, . . . , α`) where α1 + . . .+α` = n. We say the length of α, `(α) = ` and the

size of α, |α| = n.

For compositions α, β, and positive integer i, we say α ⊂i β if

1. |β| = |α|+ i,

2. αj ≤ βj for all 1 ≤ j ≤ `(α),

3. `(β) ≤ `(α) + 1.

Denote by Qn the set of all subsets of [n − 1] := {1, 2, . . . , n − 1}. There is

a one-to-one correspondence I between Qn and the set of compositions of n,

where

I(α) = {α1, α1 + α2, . . . , α1 + . . .+ α`(α)−1}.

25



Then we have a refinement order on the set of compositions of n. For two

compositions α, β |= n, α ≤ β if I(α) ⊆ I(β). For a composition α of n, let

Mα :=
∑

i1<...<i`(α)

xα1
i1
· · · xα`(α)i`(α)

.

This is an element of the commutative algebra of formal power series in

variables {xi}i≥1. By convention, M() = 1, where () denotes the unique

composition of 0 with no parts. The multiplication is inherited from the ring

of power series.

The ring of quasisymmetric functions is denoted by QSym and is defined as

follows

QSym =
⊕
n≥0

QSymn,

where

QSymn = k-{Mα : α |= n}.

The ring of quasisymmetric functions is indeed a Hopf algebra with

co-multiplication

∆(Mα) =
∑

α=β�γ

Mβ ⊗Mγ,

where β � γ is the concatenation of compositions β and γ i.e. a composition

of length `(β) + `(γ) whose i-th entry is βi if i ≤ `(β) and γi−`(β) otherwise.

Example 2.1.13. (2, 1, 3)� (3, 1) = (2, 1, 3, 3, 1) and

∆(M(2,1,3)) = 1⊗M(2,1,3) +M(2) ⊗M(1,3) +M(2,1) ⊗M(3) +M(2,1,3) ⊗ 1.

Clearly, QSym is commutative but not co-comutative.
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The Hopf algebra QSym contains Sym has a Hopf sub-algebra as follows.

mλ =
∑

sort(α)=λ

Mα

where sort(α) is the partition obtained by reordering entries of α in decreasing

order. This gives a natural embedding

ι : Sym→ QSym .

Another well-known linear basis of QSymn is obtained by defining for each

α |= n,

Lα =
∑
α≤β

Mβ.

The sum is over all β that refines α. The set {Lα} is called the fundamental

basis that can be more naturally described using the theory of P-partitions.

Let P be a finite labelled partially ordered set whose underlying vertices are

totally ordered. For convenience, we assume the underlying set is some finite

set of integers.

This definition is equivalent to the definition in introduction where edges of P

are labeled by < and ≤. Because the inequalities on the edges are determined

by the labellings on the vertices.

Definition 2.1.14. A P-partition is a function f : P → {1, 2, 3, . . . } such

that

1. i <P j and i <Z j implies f(i) ≤ f(j),
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2. i <P j and i >Z j implies f(i) < f(j).

Example 2.1.15. Consider the following poset P, then a P partition f must

satisfy

1

2

3

4 f(1)

f(2)

f(3)

f(4)

<

≤

≤

The generating functions

LP =
∑

P-partitions f

xwt(f) =
∑

P-partitions f

(∏
i∈P

xf(i)

)

are quasi-symmetric functions.

When P is totally ordered, we obtain the fundamental basis LI(Des(P)) = LP .

Without loss of generality, we can write P as a permutation σ of [n] i.e.

σ(1) <P σ(2) <P · · · <P σ(n). We say σ has a descent at i if σ(i) > σ(i+ 1).

Let Des(σ) = {i : σ(i) > σ(i+ 1)} denote the descent set of σ, then,

LP = LI−1(Des(σ)).

Example 2.1.16. Let P be the totally ordered set 35412. Then its descent set

is {2, 3} and LP = L(2,1,2).

The next proposition is the Stanley’s main lemma in P-partition theory.

Theorem 2.1.17. [49] Let P be a poset and L(P) be the set of all linear
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extensions of P, then

LP =
∑

σ∈L(P)

Lσ.

The semi-standard tableaux can be viewed as special labelled posets and its

generating Schur functions can be written as linear combinations of the

fundamental basis in QSym.

In 1995, Stembridge gave a analogous generalization for Schur’s Q functions

using enriched P-partitions.

Definition 2.1.18. Consider the totally order set 1 < 1’< 2 < 2’< · · · .

Given a labelled poset P , an enriched P-partition is a function f : P →

{1, 1’, 2, 2’, . . . } such that for all i <P j, we have

1. f(i) ≤ f(j).

2. f(i) = f(j) and f(i) is of the form x’ for some number x implies i <Z j.

3. f(i) = f(j) and f(i) is not of the form x’ for some number x implies

i >Z j.

The enriched P-partitions generalize the marked shifted tableaux and its

generating functions,

KP =
∑

enriched P-partitions f

xwt(f) =
∑

enriched P-partitions f

(∏
i∈P

xf(i)

)

where f(i) is the underlying integer of f(i), generalize the Schur’s Q functions.

We also have the following fundamental lemma.

Lemma 2.1.19. [51] Let P be a poset and L(P) be the set of all linear
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extensions of P, then

KP =
∑

σ∈L(P)

Kσ.

It is still true that Kσ depends only on the peak set of σ where the peak set

is peak(σ) = {i : σ(i− 1) < σ(i) > σ(i+ 1)}.

Therefore, the space of enriched P-partitions is a linear subspace of QSym

whose degree n component is the n-th Fibonacci number (1, 1, 2, 3, 5, 8, . . . ).

Moreover, the results by Stembridge [51] and Bergeron et al. [16] show that it

is also closed under product and coproduct inherited from QSym.

Theorem 2.1.20. [16] The space of enriched P-partitions is a Hopf

sub-algebra of QSym.

Therefore, it is also referred to as the peak algebra.

In fact, it is the image of the map ΘQSym : QSym → QSym that sends LP to

KP for all labelled poset P .

The map ΘQSym is a Hopf morphism, and it is also compatible with ΘSym via

the embedding i.e. we have the following commutative diagram.

Sym QSym

Sym QSym

ι

ι

ΘSym ΘQSym

We will work with the space enriched P-partitions and ΘQSym extensively in
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this thesis, and try to generalize them into other Hopf algebras.

Another basis of QSym we will use is the shuffle basis {Sα}, first introduced in

[40]. In this case, we assume k contains Q as a sub-field. For two compositions

α, β |= n and α ≤ β, let dαβ =
1

n1!n2! . . . nk!
where β = (α1 + · · ·+αn1 , αn1+1 +

· · ·+ αn1+n2 , . . . , αn−nk+1 + · · ·+ α`(α)).

Definition 2.1.21.

Sα =
∑
β≤α

dβαMβ.

Example 2.1.22.

S(1,1) = M(1,1) +
1

2
M(2).

By triangularity, {Sα} forms a basis of QSym. And its Hopf structure is

isomorphic to the shuffle algebra.

Let Shn,m be the following subset of permutation group Sn+m

{σ ∈ Sn+m : σ−1(1) < σ−1(2) < · · · < σ−1(n);σ−1(n+1) < · · · < σ−1(n+m)}.

For two compositions α, β of length n,m respectively, we define α�β to be the

multi-set {ωσ(1), ωσ(2), . . . , ωσ(n+m) : σ ∈ Shn,m} where ω is the concatenated

composition α� β.

Proposition 2.1.23. [28]

SαSβ =
∑
γ∈α�β

Sγ,

∆(Sα) =
∑

α=β�γ

Sβ ⊗ Sγ.
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Example 2.1.24.

S1 · S1 = M1 ·M1 = 2M(1,1) +M2 = 2S(1,1)

∆(S(1,1)) = ∆

(
M(1,1) +

1

2
M2

)
= 1⊗M(1,1) +M1 ⊗M1 +M(1,1) ⊗ 1 +

1

2
⊗M2 +M2 ⊗

1

2

= 1⊗ S(1,1) + S1 ⊗ S1 + S(1,1) ⊗ 1.

2.1.3 The Hopf algebra of non-commutative symmetric functions

The graded dual of QSym is the non-commutative symmetric functions, NSym.

The dual basis of {Mα} is denoted by {Hα} i.e. 〈Hα,Mβ〉 = δαβ.

In fact, NSym = 〈H1, H2, · · · , 〉 is the non-commutative algebra freely

generated by infinitely many elements {Hn}n≥1. The algebra NSym is a

graded connected Hopf algebra with comultiplication

∆(Hn) =
∑
i+j=n

Hi ⊗Hj.

For a composition α = (α1, . . . , αn), let Hα = Hα1 . . . Hαn , and by convention

we let H0 = 1. Then we have

NSym =
⊕
n≥0

NSymn,

where

NSymn = k-Span{Hα : α |= n}.

32



Recall that there is an embedding ι : Sym → QSym. Dually, we have a

surjective Hopf morphism.

π : NSym → Sym

Hn 7→ hn

Hence, {Hα} is called the homogeneous basis of NSym.

The dual basis of {Lα} is called the non-commutative ribbon basis {Rα} with

〈Rα, Lβ〉 = δαβ. Their relate with homogeneous basis in the following way

Hα =
∑
β≤α

Rβ,

Rα =
∑
β≤α

(−1)`(α)−`(β)Hβ.

If we dualize the map ΘQSym, we obtain ΘNSym : NSym → NSym. It maps Hn

to 2
n∑
k=1

R(1,1,...,1,k) where each term has n− k 1’s.

This map is compatible with ΘSym i.e. it makes the following diagram

commute.

NSym Sym

NSym Sym

π

π

ΘNSym ΘSym

Moreover, the image of ΘNSym, as a Hopf algebra, is isomorphic to the graded
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dual of the image of ΘQSym.

In [12], the authors introduced a new basis {Sα} for NSym, called the

immaculate basis. This basis is one of the best non-commutative analogues

of the Schur functions.

The Schur functions can be defined using the Jacobi-Trudi formula, and {Sα}

admits a very similar expression. For a composition α of length k,

Sα =
∑
σ∈Sk

(−1)σHα1+σ1−1,...,αk+σk−k. (2.1)

The immaculate basis also satisfies a formula analogous to the Pieri rule

Theorem 2.1.25. ([12] Theorem 3.5) For a composition α and a positive

integer s,

SαHs =
∑
α⊂sβ

Sβ.

It also has an analogous Littlewood-Richardson rule.

Theorem 2.1.26. ([12] Theorem 7.3) For composition α and partition λ,

SαSλ =
∑

γ|=|α|+|λ|

Cγ
αλSγ

where Cγ
α,λ is the number of skew immaculate Yamanouchi tableaux of shape

γ/α and content λ.

Unfortunately, we do not have a nice formula for general structure constants

because they could be negative, and no general cancellation-free formula is

known for a composition β in the place of a partition λ.
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Example 2.1.27.

S2S2,4 = S3,1,4 + S2,2,4 + S3,2,3 −S5,3 −S4,3,1.

However, we have a cancellation free formula for the left Pieri rule. We will

introduce it in section 4.2.

2.1.4 Malvenuto-Reutenauer Hopf algebra of permutations

Let Sn denote the set of permutations on {1, 2, . . . , n}. The elements σ ∈ Sn

are viewed as word σ(1), . . . , σ(n). We denote the length of a word w by |w|. If

σ, τ are two words, σ� τ = ω is the word such that ω(i) = σ(i) for 1 ≤ i ≤ |σ|

and ω(i) = τ(i − |σ|) for i > |σ|. If σ, τ are permutations, σ\τ = ω is the

permutation such that ω(i) = σ(i) + |τ | for 1 ≤ i ≤ |σ| and ω(i) = τ(i − |σ|)

for i > |σ|.

Let ω be a word of N such that ω(i) 6= ω(j) for all i 6= j. The set of inversions

of ω is Inv(ω) = {(a, b) : a < b, ω(a) > ω(b)}. The descent set of ω is

Des(ω) = {i : ω(i) > ω(i + 1)}. The set of global descents of ω is GD(ω) =

{i : ω(a) > ω(b) for all a ≤ i < b}. The peak set of ω is peak(ω) = {i :

ω(i− 1) < ω(i) > ω(i+ 1)}.

The standardization of ω, denoted by std(ω) is the unique permutation in S|ω|

such that Inv(ω) = Inv(std(ω)). We have a weak order, <, on Sn by σ < τ

if Inv(σ) ⊂ Inv(τ). If σ, τ are permutations, their shifted shuffle, denoted by

σ−→�τ , is the set of ω ∈ S|σ|+|γ| such that std(ω−1(σ(1)), . . . ω−1(σ(|σ|))) = σ

and std(ω−1(|σ|+ τ(1)), . . . ω−1(|σ|+ τ(|τ |))) = τ .
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The Malvenuto-Reutenauer Hopf algebra, denoted by SSym, is the graded

Hopf algebra SSym =
⊕
n≥0

SSymn that SSymn = k-Span{Fσ : σ ∈ Sn}.

The product formula is

Fσ · Fτ =
∑

γ∈σ−→�τ

Fγ.

The coproduct formula is

∆(Fσ) =
∑

µ�ω=σ

Fstd(µ) ⊗ Fstd(ω).

The product and coproduct formula are obtained from the operations on power

series in non-commuting variables, defined in the introduction. They satisfy

the axioms of Hopf algebra [40]. In the rest of this thesis, we only use these

shifted shuffle and deconcatenation formula to do calculation.

A second basis, introduced in [8], is defined as

Mσ =
∑
τ≥σ

µ(σ, τ)Fτ

where µ(σ, τ) is the Möbius function on the weak order.

By Möbius inversion formula,

Fσ =
∑
τ≥σ

Mτ .
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The M basis has a particularly nice coproduct formula

∆(Mσ) =
∑

i∈GD(σ)∪{0,|σ|}

Mstd(σ(1),...,σ(i)) ⊗Mσ(i+1),...,σ(|σ|).

Let {F ∗σ} and {M∗
σ} denote the dual bases of F and M bases respectively, we

have

M∗
σ =

∑
τ≤σ

F ∗τ

and

M∗
σ ·M∗

τ = M∗
σ\τ .

The self-duality of SSym follows from the isomorphism ISSym : SSym →

SSym∗

ISSym(Fσ) = F ∗σ−1 .

We have a surjective descent map D : SSym→ QSym

D(Fσ) = LDes(σ).

The dual map is D∗ : NSym→ SSym∗

D∗(Hn) = F ∗idn .
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As a result, D∗(Hα) =
∑

I−1(Des(σ))≤α

F ∗σ and D∗(Rα) =
∑

I−1(Des(σ))=α

F ∗σ .

Example 2.1.28.

D∗(H(1,3)) = F ∗4123 + F ∗3124 + F ∗2134 + F ∗1234.

D∗(R(1,3)) = F ∗4123 + F ∗3124 + F ∗2134.

In this sense, NSym is equivalent to the Solomon descent algebra as vector

space.

Consider the elements

 ∑
I−1(peak(σ))=α

F ∗σ

. They form a basis for the image

space of ΘNSym. Therefore, the image of ΘNSym is called the peak algebra.

Moreover, SSym fits nicely into the following commutative square

NSym SSym

Sym QSym

D∗

ι

π D

2.1.5 Vargas Hopf algebra of permutations

In this section, we present another Hopf structure on permutations, the Hopf

algebra V [53]. It also appears as associated graded Hopf algebra to SSym [9].
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Let

V =
⊕
n≥0

Vn,

where

Vn = C-Span{vσ : σ ∈ Sn}.

By convention when n = 0, S0 is the set of the permutation of empty set and

V0 = C-Span{1}.

For each permutation σ, there is a unique way of writing it as σ1\σ2\ · · · \σn

such that each σi is a permutation with no global descents and σi is the

standardization of the subword

(σ(|σ1|+ |σ2|+ · · ·+ |σi−1|+ 1), . . . , σ(|σ1|+ |σ2|+ · · ·+ |σi|)).

Example 2.1.29. The permutation 6743521 corresponds to 12\213\1\1.

Assume that σ = σ1\ · · · \σn and δ = δ1\ · · · \δm. Let

c1\c2\ · · · \cn+m = σ1\ · · · \σn\δ1\ · · · \δm.

We define the shuffle of σ and δ to be the shuffle of blocks,

σ1\ · · · \σn� δ1\ · · · \δm = {cγ(1)\cγ(2)\ · · · \cγ(n+m) : γ ∈ Shn,m}.

We define the product and coproduct for V by
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vσvδ =
∑

w∈σ1\···\σn�δ1\···\δm

vw

and

∆(vσ) =
n∑
i=0

vσ1\···\σi ⊗ vσi+1\···\σn

respectively. By this product and coproduct, V is a Hopf algebra. In face, V

is a shuffle algebra. This follows e.g. from the fact that quasi-symmetric is a

Hopf algebra, and it is isomorphism to shuffle algebra [40, 28]. And we have a

surjective Hopf morphism.

Ψ : V → QSym

vσ1\···\σn 7→ S(|σ1|,...,|σn|)

Remark 2.1.30. The Hopf algebra V is the coradical filtration of SSym.

Hence, it is isomorphic to the graded dual of Grossman-Larson Hopf algebra

of heap ordered trees [24]. The connection can be found in [9].

2.2 Combinatorial Hopf algebras

Combinatorial Hopf algebras usually refer to Hopf algebras that arise from

combinatorial objects.

In this thesis, we will follow the definition in [5]. A combinatorial Hopf algebra

is a pair (H, ζ) where H is a graded connected Hopf k-alegbra and ζ : H → k

is a multiplicative and linear map. The map ζ is called a character of H.
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Let H =
⊕
n≥0

Hn. With abuse of notation, we write ζ|Hn to be the function

that maps a homogeneous element h to ζ(h) if h ∈ Hn, and 0 otherwise. Then,

ζ|Hn ∈ H∗n.

The set of characters of H forms a group, with convolution product ζ ∗ ζ ′ =

m◦ (ζ⊗ζ ′)◦∆. For simplicity, we usually write multiplication of characters as

ζζ ′. The identity element is the counit ε, the inverse is given by ζ−1 = ζ ◦ SH

where SH is the antipode of H. We define ζ̄ to be the character such that

ζ̄|Hn = (−1)nζ|Hn . Note that ¯̄ζ = ζ. For more details about the group of

characters of a combinatorial Hopf algebra, refer to [5].

The class of combinatorial Hopf algebras forms a category. A combinatorial

Hopf morphism between two combinatorial Hopf algebras (H1, ζ1) and (H2, ζ2)

is a Hopf morphism Φ : H1 → H2 such that ζ1 = ζ2 ◦ Φ.

Consider the canonical linear map ζ : k[[x1, x2, . . . ]]→ k satisfying ζ(xi) = δi,1.

Restricting this character to Sym and QSym gives ζSym : Sym → k, where

ζSym(mλ) =

 1 if λ = (n) or (),

0 otherwise
and ζQSym : QSym → k, where

ζQSym(Mα) =

 1 if α = (n) or (),

0 otherwise.

Theorem 2.2.1. [5, Theorem 4.1] For any combinatorial coalgebra (Hopf

algebra) (H, ζ), there exists a unique morphism of combinatorial coalgebras

(Hopf algebras)

Ψ : (H, ζ)→ (QSym, ζQSym).
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Moreover, Ψ is explicitly given as follows. For h ∈ Hn,

Ψ(h) =
∑
α|=n

ζαMα

where, for α = (α1, . . . , αk), ζα is the composite

H ∆(k−1)

−→ H⊗k � Hα1 ⊗ . . .⊗Hαk

ζ⊗k−→ k,

where the unlabelled map is the canonical projection onto a homogeneous

component. Also, if H is cocommutative, then Ψ(H) ⊆ Sym.

The theorem above is to say that (QSym, ζQSym) is the terminal object in the

category of combinatorial Hopf algebra.

2.2.1 Odd Hopf sub-algebras

Definition 2.2.2. A character ζ of a graded Hopf algebra H is said to be even

if

ζ = ζ

and it is said to be odd if

ζ = ζ−1.

Given a character ζ of H, let S−(H, ζ) be the largest graded coalgebra of H

such that

∀h ∈ S−(H, ζ), ζ(h) = ζ−1(h),
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or equivalently

∀h ∈ S−(H, ζ), ζζ(h) = ε(h).

Indeed, by [5, Proposition 5.8] S−(H, ζ) is a Hopf algebra and is called the

odd Hopf subalgebra of (H, ζ). Also, S−(H, ζ) is the set of all elements h ∈ H

satisfying one of the following equivalent relations:

(id⊗ (ζ − ζ−1)⊗ id) ◦∆2(h) = 0,

(id⊗ (χ− ε)⊗ id) ◦∆2(h) = 0,

where χ = ζζ and ε is the counit of H.

These are called the Generalized Dehn-Sommerville relations for the

combinatorial Hopf algebra (H, ζ). When we choose (H, ζ) to be

(QSym, ζQSym), we obtain the relations introduced in [10].

2.3 Theta maps

We have already introduced ΘSym, ΘQSym and ΘNSym. In this section, we will

describe them in terms of combinatorial Hopf algebras.

Consider the combinatorial Hopf algebra
(
QSym, ζ−1

QSymζQSym

)
. According to

the universal property, we have a unique combinatorial Hopf morphism Φ :
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QSym→ QSym that can be described as follows.

Let odd(β) be the composition obtained by adding the entries within each

maximal segment of β of the form (even, even, ..., odd). For example,

odd(3, 4, 2, 1, 3, 2, 1) = (3, 7, 3, 3). Then by [5, Example 4.9] we have

Φ(Mβ) =


1 if β = (),

(−1)|β|+l(β)
∑

α≤odd(β) 2l(α)Mα if the last part of β is odd,

0 otherwise.

In fact, this map Φ is exactly the map ΘQSym according to a result by Hsiao

[19]. Moreover, its image, the space of enriched P -partitions, is the odd Hopf

sub-algebra of (QSym, ζQSym).

Similarly, for the combinatorial Hopf algebra
(
Sym, ζ−1

SymζSym

)
, we obtain a

universal combinatorial Hopf morphism Ψ : Sym → Sym (as Sym is

co-commutative). And this map Ψ is exactly the map ΘSym. Moreover, its

image, the space of Schur’s Q functions, is the odd Hopf sub-algebra of

(Sym, ζSym).

Let ζNSym = ζSym ◦ π. Clearly, this is a character for NSym. Then, the image

of ΘNSym, the peak algebra, is the odd Hopf sub-algebra of (NSym, ζNSym).

Up to this point in the thesis, we have the following commutative diagram.
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NSym

NSym

Sym∗

Sym∗ Sym

Sym

QSym

QSym

π π

ΘNSym

ΘSym

ι

ι

Θ∗Sym

ΘQSymISym

ISym

We now can define theta maps for an arbitrary combinatorial Hopf algebra. Let

(H, ζ) be a combinatorial Hopf algebra, and Ψ : H → QSym be the universal

combinatorial Hopf morphism. A map ΘH : H → H is called a theta map if

it is a Hopf mophism that makes the following diagram commute.

NSym

NSym

Sym∗

Sym∗ Sym

Sym

QSym

QSym

H∗

H∗

H

H

π π

ΘNSym

ΘSym

ι

ι

Θ∗Sym

ΘQSymISym

ISym

Θ∗H

ΘH

Ψ Ψ

Ψ∗

Ψ∗

Moreover, if H is self-dual, we want ΘH to be self-adjoint. In this case, the

diagram above can be reduced to a cube.
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It is not hard to see that, because of duality, ΘH is a theta map if the following

square commutes

H H

QSym QSym

ΘH

ΘQSym

Ψ Ψ

The image of ΘH will be a lifting of the space of enriched P-partitions. The

main objective of this thesis is to study possible ways to lift ΘQSym to ΘH

and study their images which are potentially generalizations of enriched P-

partitions and the peak algebra.
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Chapter 3

The odd Hopf subalgebras for

combinatorial Hopf algebras

In this section we analyze the image of combinatorial Hopf morphisms, more

specifically, we show that the image of a theta map is contained in odd Hopf

subalgebra. We will extensively use the map ΘQSym, and we will denote its

image, the space of enriched P -partitions, by Π. A main part of this section

comes from the paper [7].

Any graded Hopf algebra H carries a canonical automorphism

h 7→ h := (−1)nh

for homogeneous elements h ∈ Hn. This is an involution: h = h. Therefore,

it induces an involution φ 7→ φ on the character group of H, with

φ(h) = (−1)nφ(h) for h ∈ Hn.
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The image of Theta maps for Sym, QSym and NSym are the algebra of Q-

Schur functions, the Peak algebra and the dual of peak algebra, respectively,

and they are the corresponding odd Hopf subalgebras. We will show that if Θ

is a Theta map for (H, ζ), then the image of Θ must be in S−(H, ζ). Before

that we need following theorem which also help us to find a strategy for finding

the odd Hopf subalgebra of any combinatorial Hopf algebra.

Theorem 3.0.1. Let (H, ζ) and (H′ , ζ ′) be combinatorial Hopf algebras. Let

α : (H, ζ)→ (H′ , ζ ′) be a combinatorial Hopf morphism.

1. Let I be a Hopf ideal of H such that I ⊆ ker(ζ). Then (H/I, ζI) is a

combinatorial Hopf algebra where ζI(h+ I) = ζ(h) for every h ∈ H.

2. Let I be a Hopf ideal of H such that I ⊆ ker(ζ). Then S−(H/I, ζI) =

S−(H, ζ)/I.

3. If α is surjective, then α(S−(H, ζ)) = S−(H′ , ζ ′).

4. S−(H, ζ) = α−1(S−(H′ , ζ ′)), where α−1(S−(H′ , ζ ′)) = {h ∈ H : α(h) ∈

S−(H′ , ζ ′)}.

Proof. (1) We first show that ζI is well defined. For all g ∈ I ⊆ ker(ζ), we

have ζI(I) = ζI(g + I) = ζ(g) = 0.

Since I is a Hopf ideal, H/I is a Hopf algebra. Also, ζI is a character of H/I

because

ζI((h+ I)(g + I)) = ζI(hg + I) = ζ(hg) = ζ(h)ζ(g) = ζI(h+ I)ζI(g + I).

48



(2) Let

p : (H, ζ) → (H/I, ζI)

h 7→ h+ I.

This is a Hopf morphism and by [5, Proposition 5.6(a)],

p(S−(H, ζ)) ⊆ S−(H/I, ζI) i.e.,

(S−(H, ζ) + I)/I ⊆ S−(H/I, ζI).

Since S−(H/I, ζI) is a Hopf subalgebra of H/I ([5], Proposition 5.8), there is

a graded coalgebra A of H such that

S−(H/I, ζI) = A/I.

The Hopf algebra S−(H/I, ζI) is the largest graded Hopf subalgebra of H

contained in ker(χI − εI) where εI is the counit of H/I and χI = ζIζI is the

Euler character of H/I. Let a be a homogeneous element in A. Note that

S−(H/I, ζI) = A/I, thus

χ(a)− ε(a) = χI(a+ I)− εI(a+ I) = 0.

Therefore,

A ⊆ S−(H, ζ).

Since (S−(H, ζ)+I)/I ⊆ S−(H/I, ζI) = A/I, we conclude that S−(H, ζ) ⊆ A,

and so

S−(H/I, ζI) = A/I = S−(H, ζ)/I.

(3) Since α is a combinatorial Hopf morphism, ζ
′ ◦ α = ζ. Thus, we have
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ker(α) ⊆ ker(ζ), and so (H/ ker(α), ζker(α)) is a combinatorial Hopf algebra.

Therefore,

α : (H/ ker(α), ζker(α)) → (H′ , ζ ′)

h+ ker(α) 7→ α(h).

is well defined and is a Hopf algebra isomorphism. Furthermore, by (2),

α(S−(H, ζ)) = α(S−(H/ker(α), ζker(α))) = S−(H′ , ζ ′).

(4) We first show that α(S−(H, ζ)) = S−(H′, ζ ′) ∩ α(H). By [5, Proposition

5.6], we have

α(S−(H, ζ)) ⊆ S−(H′, ζ ′)

and therefore

α(S−(H, ζ)) ⊆ S−(H′, ζ ′) ∩ α(H).

For the other direction, observe that S−(H′, ζ ′) ∩ α(H) is a graded

sub-coalgebra of α(H). Moreover, for all m ∈ S−(H′, ζ ′) ∩ α(H), we have

m ∈ S−(H′, ζ ′) and by definition, ζ̄ ′(m) = ζ ′−1(m). Therefore,

S−(H′, ζ ′) ∩ α(H) ⊆ S−(α(H), ζ ′|α(H)) = α(S−(H, ζ)) as the last equality

follows from (3).

If α(h) ∈ S−(H′, ζ ′) for some h ∈ H, we have

α(h) ∈ S−(H′, ζ ′) ∩ α(H) = α(S−(H, ζ))

i.e. there exists some k ∈ S−(H, ζ) such that α(h) = α(k), or equivalently

h− k ∈ ker(α). But we know that ker(α) ⊆ ker(ζ) ⊆ S−(H, ζ) because ker(ζ)

is a graded sub-coalgebra of H and for all g ∈ ker(ζ), ζ̄(g) = ζ−1(g) = 0.
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Hence, h ∈ S−(H, ζ) i.e. α−1(S−(H′, ζ ′)) ⊆ S−(H, ζ). The other direction,

S−(H, ζ) ⊆ α−1(S−(H′, ζ ′)), follows from [5, Proposition 5.6(a)].

We now show that the image of a theta map for (H, ζ) is in the odd Hopf

subalgebra of (H, ζ).

Corollary 3.0.2. Let Θ be a theta map for (H, ζ). Then the image of Θ is in

S−(H, ζ).

Proof. A Theta map for a combinatorial Hopf algebra (H, ζ) is a Hopf algebra

map

Θ : H → H

that makes the following diagram commutative.

H H

QSym QSym

ΘH

ΘQSym

Ψ Ψ

Therefore, we have Ψ ◦ Θ(H) ⊆ Π. Since Π is the odd Hopf subalgebra of

QSym, by Theorem 3.0.1 (4) we have Θ(H) ⊆ S−(H, ζ).
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3.1 A Strategy for finding S−(H, ζ)

In [5, Sections 6,7,8], the authors give dimensions of the odd Hopf subalgebra

of Sym, QSym, NSym, SSym, and LR. In the following, we present a strategy to

find an explicit basis for the odd combinatorial Hopf subalgebra of an arbitrary

combinatorial Hopf algebra.

1. By [5, Theorem 4.1], there is a combinatorial Hopf morphism Ψ : (H, ζ)→

(QSym, ζQSym).

2. By [5, Proposition 5.8],

S−(Img(Ψ), ζQSym|ker Ψ) = Img(Ψ) ∩ Π.

3. We have (H/ ker Ψ, ζker Ψ) ∼= Img(Ψ). So by Theorem 3.0.1 (3),

S−(H, ζ)/ ker Ψ ∼= S−(Img(Ψ), (ζQSym)ker Ψ) = Img(Ψ) ∩ Π.

4. Let {vi : i ∈ I} be a basis for Img(Ψ) ∩ Π. Pick a set {si : i ∈ I} such

that Ψ(si + ker Ψ) = vi.

5. Pick a basis {kj : j ∈ J} for ker Ψ.

6. The set {si, kj : i ∈ I, j ∈ J} is a basis for S−(H, ζ).

In the next sections, we apply this strategy to find S−H, ζ for SSym and V .
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3.2 The odd Hopf subalgebra of SSym

We now use the above steps to find the odd Hopf subalgebra of (SSym, ζSSym).

For permutations σ ∈ Sp and τ ∈ Sq, recall that we write ρ = σ\τ when

ρ = σ(1) + q, σ(2) + q, · · · , σ(p) + q, τ(1), τ(2), · · · , τ(q).

Every permutation σ can be decomposed to permutation with no global

descent, i.e.,

ρ = σ1\ · · · \σk,

where each σi has no global descent. Let k(σ) := k.

Let D be the surjective descent map from SSym to QSym. Assume that

σ ∈ Sn, by [8, Proposition 1.4] we have that

D(Mσ) =


M(α1,...,αk) if σ = idα1\idα2\ · · · \idαk ,

0 otherwise.

Therefore,

kerD =
⊕
n≥2

KSn

where

KSn = C-Span{Mσ : σ 6= idα1\idα2\ · · · \idαk , for all (α1, . . . , αk) |= n}.

A composition α = (α1, . . . , αl) of n is said to be odd if each part αi of α is
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odd. Given an odd composition β, set

ηβ =
∑
α≤β

2`(α)Mα,

where `(α) is the length of α and the sum is over all compositions α ≤ β in

the weak order. In [5, Proposition 6.5] it was shown that {ηβ}β odd is a basis

for Π. A permutation σ is said to be odd if σ = idn1\ . . . \idnk and each ni is

odd. Given an odd permutation σ, set

ησ =
∑
τ≤σ

2k(τ)Mτ .

Note that for an odd permutation σ = idn1\ . . . \idnk , we have

D(ησ) = D

(∑
τ≤σ

2k(τ)Mτ

)
=
∑
τ≤σ

2k(τ)D(Mτ )

We see that D(Mτ ) = 0 if τ 6= idα1\idα2\ · · · \idαk , for all (α1, . . . , αk) |= n.

Also, if τ = idα1\idα2\ · · · \idαk , for some α = (α1, . . . , αk) |= n, then k(τ) =

l(α). Therefore,

D(ησ) =
∑
τ≤σ

2k(τ)D(Mτ ) =
∑
α≤β

2l(α)Mα = ηβ,

where β = (n1, . . . , nk). To see the equality in the middle, since the sum is over

all τ whose inversion set is a subset of that of σ, the only τ such thatD(Mτ ) = 0

are those of the form τ = idα1+···+αi1\idαi1+1+···+αi2\ · · · \idαit+1+···+αk .

We conclude that

{Mσ : σ 6= idα1\idα2\ · · · \idαk , for all (α1, . . . , αk) |= n} t {ησ}σ odd
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is a basis for S−(SSym, ζSSym), and also

S−(SSym, ζSSym) = kerD ⊕ C-Span{ησ}σ odd.

3.3 The odd Hopf subalgebra of V

Let σ1\ · · · \σn be the unique decomposition of a permutation such that each

σi has no global descent. We define the following function,

ζV : V → C

vσ1\···\σn 7→ 1/n!.

Lemma 3.3.1. The function ζV is a character for V.

Proof. To show the character is multiplicative, we compute

ζV(νσνδ) =
∑

w∈σ1\···\σn�δ1\···\δm

ζV(vw) =
∑

w∈σ1\···\σn�δ1\···\δm

1

(m+ n)!
=

1

(m+ n)!

(
m+ n

n

)
=

1

n!

1

m!
= ζV(νρ)ζV(νδ).

For each composition α = (α1, . . . , αn) ≤ β, let dαβ = 1
n1!...nk!

where (α1 +

. . .+αn1 , αn1+1 + . . .+αn1+n2 , . . . , αn−nk+1 + . . .+αn). By Theorem 2.2.1, the

character ζV yields a Hopf algebra morphism Ψ from V to QSym as follows

Ψ : V → QSym

vρ1\···\ρn 7→ S(|ρ1|,··· ,|ρn|),
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where for every composition α = (α1, . . . , αn),

Sα =
∑
β≤α

dαβMβ.

Since {Sα : α |= n} is a basis for QSymn, we can write

Mα =
∑
β|=n

cαβSβ

for some coefficients cαβ in C.

If σ ∈ Sn, let |σ| := n. Define a new basis {Mσ : σ ∈ tn≥0Sn} for V , where

Mσ1\···\σk :=


∑

β|=n c
(|σ1|,...,|σk|)
β νidβ1\···\idβl(β) if σ = id|σ1|\ · · · \id|σk|

νσ1\···\σk − νid|σ1|\···\id|σk| otherwise.

Therefore, we have

Ψ(Mσ1\···\σk) =


M(|σ1|,...,|σk|) if σ = id|σ1|\ · · · \id|σk|

0 otherwise.

Therefore,

ker Ψ =
⊕
n≥2

KVn

where

KVn = C-Span{Mσ : σ 6= idα1\idα2\ · · · \idαk , for every (α1, . . . , αk) |= n}.

Note that if we restrict Ψ to C-Span{Midn1\···\idnk : ni ∈ N, k ∈ N0} we have a
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Hopf algebra isomorphism, thus we have

C-Span{Midn1\···\idnk : ni ∈ N, k ∈ N0} ∼= QSym .

Also,

V = ker Ψ⊕ C-Span{Midn1\···\idnk : ni ∈ N, k ∈ N0}.

Given an odd permutation σ = idn1\ . . . \idnk , set

ηVσ :=
∑

α≤(n1,...,nk)

2l(α)Midα1\...\idαl(α) .

Note that for an odd permutation σ = idn1\ . . . \idnk , we have

Ψ(ηVσ ) = Ψ(
∑

α≤(n1,...,nk)

2l(α)Midα1\...\idαl(α) ) =
∑

α≤(n1,...,nk)

2l(α)Ψ(Midα1\...\idαl(α) ) =

∑
α≤(n1,...,nk)

2l(α)Mα1,...,αl(α) = η(n1,...,nk).

We conclude that

{Mσ : σ 6= idα1\idα2\ · · · \idαk , for every (α1, . . . , αk) |= n} t {ησ}σ odd

is a basis for S−(V , ζV), and also

S−(V , ζV) = ker Ψ⊕ C-Span{ηVσ }σ odd,

where

Π ∼= C-Span{ηVσ }σ odd.
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Chapter 4

Theta maps for combinatorial

Hopf algebras

In this section, the necessary and sufficient conditions for existence of a Theta

map will be presented. Later on, we will find Theta maps for several families

of Hopf algebras and also V and SSym. A part of this chapter comes from the

paper [7].

The following theorem gives the necessary and sufficient conditions for a Hopf

map to be a Theta map.

Theorem 4.0.2. Let (H, ζH) be a combinatorial Hopf algebra and let Ψ :

(H, ζH) → (QSym, ζQSym) be the canonical Hopf morphism. There exists a

combinatorial Hopf morphism ΘH : (H, ζ−1
QSymζQSym ◦Ψ)→ (H, ζH) if and only

if the following diagram commutes,
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H H

QSym QSym

ΘH

ΘQSym

Ψ Ψ

i.e., H has a theta map.

Proof. We have

ζ−1
QSymζQSym ◦Ψ = ζH ◦ΘH (ΘH is a combinatorial Hopf morphism)

m

ζ−1
QSymζQSym ◦Ψ = ζQSym ◦Ψ ◦ΘH (

Ψ is a combinatorial Hopf morphism

and so ζH = ζQSym ◦Ψ
)

m

ζQSym ◦ΘQSym ◦Ψ = ζQSym ◦Ψ ◦ΘH (because ζ−1
QSymζQSym = ζQSym ◦ΘQSym)

m

ΘQSym ◦Ψ = Ψ ◦ΘH.

The last equation is because there is a unique combinatorial morphism from

(H, ζH) to (QSym, ζQSym) for any character ζH. We have ΘQSym ◦ Ψ and

Ψ ◦ ΘH are combinatorial Hopf morphisms from (H, ζQSym ◦ ΘQSym ◦ Ψ) to

(QSym, ζQSym), thus they must be equal.
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4.1 Theta map for NSym in the immaculate basis

In this section, we study the map ΘNSym in terms of the immaculate basis. We

begin with proving some nice properties. A main part of this section comes

from the paper [35].

In [18], the authors gave a formula for left Pieri Rule using the dual Hopf

algebra, quasi-symmetric functions (QSym). We will give another proof of

that using a combinatorial approach.

Unlike the commutative case, for immaculate functions, the left Pieri rule is

much different from the right Pieri rule. As shown in Example 2.1.27, the

structure constants could be negative.

We start with the following property.

Let Cγ
α,β be the multiplicative structure constants for immaculate basis i.e.

SαSβ =
∑
γ

Cγ
α,βSγ.

Theorem 4.1.1. For compositions α, β, γ, v with `(v) ≤ `(α), we have Cγ
α,β =

Cγ+v
α+v,β.

Proof. Let β = (β1, . . . , βm). Using the definition (2.1) of Sβ, we have

SαSβ =
∑
σ∈Sm

(−1)σSαHβ1+σ1−1,β2+σ2−2,...,βm+σm−m.

An iterative use of the right Pieri rule (Theorem 2.1.25) gives

60



SαHτ =
∑

sh(T )=γ/α
c(T )=τ

Sγ

where τ is an integer vector and the sum is over all skew immaculate tableaux

T .

Combining the two equations above yields

SαSβ =
∑
σ∈Sm

∑
sh(T )=γ/α

c(T )=β+σ−Id

(−1)σSγ.

Let Tβα be the set of skew immaculate tableaux of inner shape α for which

c(T ) − β + Id is a permutation in Sm (in one-line notation), where Id =

(1, 2, . . . . ,m). In this case, entries in T must be in {1, 2, . . . ,m} and c(T )

means the content vector of length m by padding 0’s. Let σ(T ) = c(T )−β+Id,

we have:

SαSβ =
∑
T∈Tβα

(−1)σ(T )Soutsh(T ) (4.1)

Example 4.1.2. Let α = (1), β = (1, 3, 1), then

T =

2

1 2 2

2
∈ Tβα

and σ(T ) = (1, 4, 0)− (1, 3, 1) + (1, 2, 3) = (1, 3, 2).

For each T ∈ Tβα with sh(T ) = γ/α, we move each of the first `(v) rows of T to
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the right by a certain number of steps, namely, the i-th row by vi steps, where

v = (v1, v2, . . . , v`(v)). By this construction, we obtain a tableau T ′ ∈ Tβα+v

with sh(T ′) = (γ + v)/α, and vice versa. Since `(v) ≤ `(α), the first column

is preserved under this map. Moreover, c(T ) = c(T ′) and hence σ(T ) = σ(T ′).

Then, the result follows.

In the case that γ−α has negative entries, Cγ
αβ must be zero by equation (4.1).

Therefore, in order to understand Cγ
αβ, it suffices to understand those when α

is the n-tuple (1, 1, . . . , 1) for n ∈ N.

Example 4.1.3. Let α = (1, 1, 2), β = (2, 1, 3), v = (1, 2), then

1

1 2 3

3 3
∈ Tβα ⇔

1

1 2 3

3 3
∈ Tβα+v.

Theorem 4.1.1 tells that formulating the left Pieri rule is equivalent to

understanding H1Sβ = S1Sβ. Equation (4.1) gives a combinatorial

interpretation of the coefficients, but with a sign. In [12], the authors proved

Theorem 2.1.26 by using a sign-reversing involution. Inspired by that, we

now modify that involution and obtain a cancellation-free formula for the

coefficients.

Fix a composition β with `(β) = n. For any composition α, we define Tβα to

be the set of all skew immaculate tableaux T with inner shape α, entries in

{1, 2, . . . , n} and c(T ) − β + Id is a permutation in Sn (written in one-line

notation), where Id = (1, 2, . . . , n). We define an involution from Tβα to itself.

Definition 4.1.4. For each tableau T ∈ Tβα, we construct a tableau y(T ) as

follows. For every cell of content r in the i-th row of T , we put a cell of content
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i in the σ(T )(r)-th row of y(T ). We sort the entries of the rows of y(T ) in

non-decreasing order. In general, y(T ) is to be a straight-shape tableau, and

might have empty rows.

We define a function Y that maps T ∈ Tβα to the pair (y(T ), σ(T )). Note that

Y is injective i.e. fixing α, we can recover T from (y(T ), σ(T )). We define

Y −1 to be the reversed construction from a pair (T ′, σ) to T where T ′ is a

tableau with at most n rows and σ is a permutation in Sn. More precisely,

T = Y −1((T ′, σ)) is constructed as follows: for every cell of content r in the

i-th row of T ′, we put a cell of content σ−1(i) in the r-th row of T .

Here, Y −1 is not the inverse map of Y because Y −1(T, σ) may not be

immaculate i.e. the domain of Y is not equal to the image of Y −1.

In this case, Y −1 ◦Y is the identity map while Y ◦Y −1 is not because Y −1 has

a much larger domain.

Definition 4.1.5. We say a cell x not in the first row with value a is nefarious

if the cell above x is either empty or it contains b with b ≥ a i.e.

a or
b

a

Example 4.1.6. Let α = (1, 2) and β = (2, 2, 2). Let

T =

1 1 2

2

2 3

Note that σ(T ) = c(T ) − β + Id = (2, 3, 1) − (2, 2, 2) + (1, 2, 3) = (1, 3, 2),
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hence,

y(T ) =

1 1

3

1 2 3

and the nefarious cells in y(T ) are the three cells in the third row.

The next definition defines a key involution that is a modified version of the

Lindstrom-Gessel-Viennot swap, which is usually illustrated on lattice paths,

but can be applied to tableaux equally. Details about

Lindstrom-Gessel-Viennot swap can be found in chapter 4.5 of [45].

Definition 4.1.7. For each (y(T ), σ(T )) ∈ Y (Tβα) that contains a nefarious

cell x, we define a tableau θx(y(T )) and a pair Θx(y(T ), σ(T )) as follows:

Let the cell x appear in the (r + 1)-th row of y(T ).

1. If the cell y above x is not empty, then define θx(y(T )) to be the tableau

obtained from y(T ) by moving:

(a) all the cells strictly to the right of x into row r;

(b) all the cells weakly to the right of y into row r + 1.

2. Otherwise, move all the cells strictly to the right of x into row r.

row r + 1

row r

· · ·
· · ·

x

y

u

v θx7−→
· · ·
· · ·

x y
u

v

row r + 1

row r

· · ·
· · ·

x u

θx7−→
· · ·
· · ·

x

u

Let tr = (1, 2, . . . , r − 1, r + 1, r, r + 2, r + 3, . . . , n) be the transposition of r

and r + 1. Then, Θx maps the pair (y(T ), σ(T )) to (θx(y(T )), tr ◦ σ(T )).
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Example 4.1.8. Let x be the second cell in row 2. Then, θx maps

1 2 3

2 2 3 →
1 3

2 2 2 3

or
1

2 2 3 →
1 3

2 2 .

Definition 4.1.9. For 1 ≤ r ≤ `(α) and a cell x in row r of y(T ), we say that

x is the most nefarious cell in row r if it is the left-most nefarious cell in row

r such that Y −1 ◦ Θx ◦ Y (T ) has the same first column of T . In particular,

Y −1 ◦Θx ◦ Y (T ) is immaculate.

Then, for each 1 ≤ r ≤ n we can define a map Φr : Tβα → Tβα by either

Φr(T ) = Y −1 ◦Θx ◦ Y (T ) where x is the most nefarious cell in row r of y(T ),

or T is fixed by Φr if there is no most nefarious cell in row r of y(T ).

For every r, Φr has the following properties.

Lemma 4.1.10. For each T ∈ Tβα,

1. If there exists a most nefarious cell x in row r of y(T ), then it must be

the left-most nefarious cell in row r.

2. Φr is an involution i.e. Φ2
r = id.

3. T and Φr(T ) have the same shape.

4. If T is not fixed by Φr, then σ(T ) and σ(Φr(T )) have opposite sign.

Proof. For simplicity, we denote σ(T ) by σ.
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(1) Suppose x is the most nefarious cell in row r of y(T ), as shown in Figure

1, with entry c(x). Let c(z) denote the entry in cell z in y(T ). To obtain

Φr(T ) from T , it suffices to do the following. For every cell z in row r of y(T )

which lies weakly to the left of x, we replace a σ−1(r) in row c(z) of T by a

σ−1(r − 1). For every cell z in row r − 1 of y(T ) which lies strictly to the left

of x, we replace a σ−1(r − 1) in row c(z) of T by a σ−1(r).

Since Y −1 ◦ Θx ◦ Y fixes the first column of T , and if a cell ai is nefarious,

then we claim that Y −1 ◦Θai ◦ Y also fixes the first column of T , because we

interchange less cells. If c(bk) > c(x), Y −1 ◦ Θx ◦ Y changes some σ−1(r − 1)

to σ−1(r) in row c(bk) of T while keeping the first column unchanged. That

means the first entry of row c(bk) of T is no bigger than σ−1(r) and σ−1(r−1).

Therefore, if we interchange less cells as in Y −1 ◦ Θai ◦ Y , the first column

remains untouched as the rows in T are weakly increasing and first column is

strictly increasing. The argument for the case c(x) ≥ c(bk) is almost identical,

just switching σ−1(r) and σ−1(r−1). Therefore, if x is the most nefarious cell,

it must be the left-most nefarious cell.

row c(ai)

row c(bi)

row c(x) · · · σ−1(r) · · ·
· · ·
· · ·

σ−1(r)

σ−1(r − 1)

· · ·
· · · y7−→

row r

row r − 1

a1

b1
· · ·
· · ·

ak

bk
x

u

v

θx7−→
row r

row r − 1

a1

b1
· · ·
· · ·

ak

bk
x

v

u

y←− [
row c(ai)

row c(bi)

row c(x) · · · σ−1(r − 1) · · ·
· · ·
· · ·

σ−1(r − 1)

σ−1(r)

· · ·
· · ·

Figure 4.1: σ−1(r), σ−1(r − 1) are entries while ai, bi and x stand for cells

(2) If there is no most nefarious cell in row r, then Φr(T ) = T and Φ2
r(T ) = T .

Otherwise, since Φr preserves the first column of T , Y −1(θx ◦y(T ), tr ◦σ(T )) ∈

Tβα and hence, Y −1 ◦ Y = id. By part (1), the most nefarious cell remains
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unchanged under θx. Therefore, Φ2
r(T ) = T as Θ2

x(T ) = T , and Φr is an

involution.

(3) sh(T ) = c(y(T )) and Θx preserves the content of y(T ).

(4) By the definition of Θx, if Φr(T ) 6= T , then σ(Φr(T )) = tr−1 ◦ σ(T ).

Before we continue, consider the case where α = 0. Since S0 = 1, we know

that S0Sβ = Sβ. On the other hand, we can also express S0Sβ using (4.1).

Hence, there must exist a sign-reversing involution on Tβ0 that cancels

everything except the tableau corresponding to Sβ, namely the unique

immaculate tableau of shape β and content β. For simplicity, we call this

involution Φ0.

Now, we characterize the tableaux that are fixed by all Φr. For simplicity, for

α = (1), a composition β and T ∈ Tβα, we define δ(T ) as (s + 1, δ1, . . . , δn)

where n = `(β), s is the number of non-empty cells in the first row of T , and

δi is the length of row that starts with i, not including the first row as it starts

with empty cell. Here, δ(T ) is an integer vector, it may not be a composition

as some δi could be 0. Then, sh(T ) = γ/α = comp(δ(T ))/α where comp(δ(T ))

is the composition obtained from δ(T ) by removing the zeroes.

Lemma 4.1.11. Fix α = (1). Let T ∈ Tβα with outer shape γ be fixed by all

Φr and δ(T ) be defined as above, then

1. All entries in the first row of T must be the same, say k, and σ(k) = 1.

In particular, all 1’s in y(T ) appear in its first row.

2. If β1 > s, then all entries in the first row of T are 1, and δ1 ≤ β1.
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3. If β1 < s, then σ(1) = 2 and δ1 > β1.

4. If β1 = s, then

(a) σ(1) = 1 and δi = βi for all i > 1, or

(b) σ(1) = 2 and δ1 > β1.

5. If δ1 > β1, and if k is an entry in the second row of T and k 6= 1, then k

appears in the first row of T .

In particular, the positions all 1’s in T are determined.

Proof. (1) Let k1, . . . , km be the m distinct entries in the first row of T . Let

r = max{σ(ki)} and suppose r > 1. Then, the first cell in row r of y(T ) is

1, which must be the most nefarious cell: It is clearly the left-most nefarious

cell, and (if we denote it by x) the map Y −1 ◦Θx ◦ Y fixes the first column of

T (since it only changes a single entry in the first row of T , but the first row

of T does not intersect the first column).

Applying Φr gives an involution that cancels it, because in Φr(T ), there is a

σ−1(r − 1) in row 1, and that cell again corresponds to a most nefarious cell

and r is still the new max{tr−1 ◦ σ(ki)} for Φr(T ). Therefore, Φr is indeed a

involution, T 6= Φr(T ), they have opposite sign and get canceled by Φr. This

contradict to our choice of T .

(2) If β1 > s and the entries in the first row of T is k 6= 1, then all 1’s must

be in the second row of T , because T is immaculate. We claim that σ(1) = 2.

If not, σ(1) > 2, and the first 2 in row σ(1) of y(T ) is the most nefarious cell.

The involution Φσ(1) fixes the first column because there are at least two 1’s

in the second row of T , but only one of them is changed to σ−1(σ(1)− 1).
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That means in y(T ), there are at least β1 + 1 ≥ s+ 2 many 2’s in row 2. Since

there are only s 1’s appearing in y(T ), the s+ 1 cell, counting from the left, in

row 2 must be the nefarious cell. Applying Φ2 gives an involution that maps

it to the following situation, that is, we have (t1 ◦ σ)(1) = 1, all s entries in

the first row are changed 1, and s + 1 1’s in the second row are changed to

σ−1(1). Therefore, the first column of T remain unchanged.

In this case, we have σ(1) = 1, all entries in the first row are 1 and the

remaining 1’s are in the second row. Now, we can consider the 1’s as empty

cells, and we are in a similar situation where α′ = β1 − s, β′ = (β2, . . . , βn)

and s′ = δ1 − β1 + s. By part (1), if it is fixed by all Φr, all entries in the

second row must be the same k and σ(k) = 2. That means there are s′ 2’s in

the second row of y(T ). But there are s 1’s in the first row of y(T ). If δ1 > β1,

then s′ > s and the s + 1 cell in the second row of y(T ) becomes the most

nefarious cell. The first column of T is fixed under Φ2 because the smallest

entry in the second row is always 1. Therefore, the only tableaux that are

fixed by Φ2 are those as defined in the statement.

(3) If β1 < s, then it is not possible to fill the first row with 1 while keeping

σ(1) = 1 since c(T ) = σ(T ) + β − Id. Therefore, all the 1’s in T must appear

in the second row. Using the same argument as in the proof of part 2, we must

have σ(1) = 2 Moreover, since there are β1 + 1 1’s in the second row of T , we

must have δ1 > β1.

(4) If β1 = s, then there are two cases. If σ(1) = 1, then all 1’s appear in

the first row of T and we are in the case that α′ = 0 and β′ = (β2, . . . , βn).

Applying Φ0 gives the desired result.
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If σ(1) > 1, then we are in the same case as (3). Hence, σ(1) = 2 and δ1 > β1.

(5) If δ1 > β1, by (2),(3) and (4), we have σ(1) = 2 and all 1’s in T appear

in its second row. Therefore, if there is some k in the second row of T that

k 6= 1 and k does not appear in the first row of T , we must have σ(k) > 2.

In this case, let k to be the one with maximal σ(k) among all entries j in the

second row. It corresponds to a 2 in row σ(k) of y(T ). This must be the most

nefarious cell because by (1), all 1’s in y(T ) are in the first row of y(T ). Φσ(k)

also fixes the first column of T because the first entry in the second row of T

remains 1.

We now use Lemma 4.1.11 iteratively. If a tableau T is in situation (2) of

the Lemma, we can consider all the 1’s in T as empty cells. To be precise,

we consider the tableau T ′ ∈ T
(β2,...,βn)
(1) obtained in the following way. Start

with T , remove all but one 1’s in the second row of T , then remove its first

row, and finally relabel the entries (1, 2, . . . , n) to (empty cell, 1, 2, . . . , n− 1).

Clearly, T can be obtained from (sh(T ), T ′). We can now apply Lemma 4.1.11

to determine the 1’s in T ′, which leads to the 2’s in T .

Suppose a tableau T is in situation (3). By claim (5), there must be exactly

two types of entries in the first two rows, let them be 1 and k. We consider

the tableau T ′ ∈ T
(β2,...,βn)
(1) obtained in the following way. Start with T , move

all the k’s in its first row (the same as all non-empty cells in the first row) to

the second row, remove all but two 1’s in the second row, change one of the

1’s into k, then remove its first row, and finally relabel the entries (1, 2, . . . , n)

to (empty cell, 1, 2, . . . , n− 1). Again T can be obtained from (sh(T ), T ′) and
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we can apply Lemma 4.1.11 to determine the 1’s in T ′, which leads to the 2’s

in T . The involutions on T ′ can be transferred to involutions on T because

the first column will remain unchanged.

Corollary 4.1.12. If α = (1), let T ∈ Tβα with outer shape γ be fixed by all

Φr, and δ be defined as above, then,

1. if βi < s+
i−1∑
j=1

(δj − βj), then βi < δi, σ(T )(i) = i+ 1 and all i’s in T are

in row i+ 1.

2. if βi > s +
i−1∑
j=1

(δj − βj), then βi ≥ δi ≥
i∑

j=1

βj −
i−1∑
j=1

δj − s,

σ(T )(i) = max

{
k + 1 | k < i, βi > s+

i−1∑
j=1

(δj − βj) or k = 0

}
and all

cells above row i+ 1 in T are filled with {1, 2, . . . , i}.

3. if βi = s+
i−1∑
j=1

(δj − βj), then

(a) βi < δi, σ(T )(i) = i + 1 and all i′s in T are in row i + 1. (same as

case 1), or

(b) δi = 0, σ(T )(i) is the same as in case 2 and for all i < j ≤ n, βj = δj,

σ(j) = j and all j′s are in row j + 1 of T .

Let Zγ
β be the set of all integer vectors δ(T ) = (s + 1, δ1, . . . , δn) that satisfy

these three conditions and comp(δ) = γ, then we have Cγ
α,β =

∑
δ∈Zγβ

sgn(β − δ),

where sgn(β − δ) = (−1)k and k is the number of negative terms in β − δ.

Proof. (1) In the iterative use of Lemma 4.1.11 as mentioned above, in both

cases, after we fill in entry i, we remove βi cells. That means if βi < s +
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i−1∑
j=1

(δj − βj), then after filling in {1, 2, . . . , i − 1}, we are in the situation of

claim (3) of Lemma 4.1.11. Hence, βi < δi, σ(T ) = i+ 1 and all i’s appear in

row i+ 1.

(2) Similarly, if βi > s+
i−1∑
j=1

(δj − βj), that means after filling {1, 2, . . . , i− 1},

we are in the situation of claim (2) of Lemma 4.1.11. Hence, βi > δi. And

δi ≥
i∑

j=1

βj −
i−1∑
j=1

δj − s because we need enough space to put {1, 2, . . . , i} into

the first i+ 1 rows of T . To find σ(i), we need to trace back and find the last

time where σ(k) 6= k + 1 among all k < i, or 1 if k does not exist. Therefore,

σ(T )(i) = max

{
k + 1 | k < i, βi > s+

i−1∑
j=1

(δj − βj) or k = 0

}
.

(3) If βi = s+
i−1∑
j=1

(δj − βj), that means after filling {1, 2, . . . , i− 1}, we are in

the situation of claim (4) of Lemma 4.1.11, and the result follows.

To sum up, each time we have a βi < δi, that corresponds to a σ(i) = i + 1.

Therefore, the sign of σ(T ) is sgn(β − δ).

Clearly, if `(γ) < `(β) or `(γ) > `(β) + 1, then Zγ
β = ∅. If `(γ) = `(β) + 1,

then either Zγ
β = ∅ or Zγ

β = {γ}. If `(γ) = `(β), it could happen that δ 6= δ′

but comp(δ) =comp(δ′).

Suppose δ = (δ1, . . . , δn) ∈ Zγ
β and `(δ) = `(β). Let 1 ≤ k ≤ n be the smallest

integer such that βj = δj for all j > k. Let k ≤ r ≤ n be the largest integer

such that βj < βj+1 for all k ≤ j < r.

Since δ ∈ Zγ
β , the composition (δ1, . . . , δk, 0, δk+1, . . . , δn) will satisfy the

conditions in Corollary 4.1.12. If βk < βk+1 = δk+1, by condition (3), we can
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always interchange σ(k) to k + 1 and obtain (δ1, . . . , δk+1, 0, δk+2, . . . , δn)

which also satisfies the conditions in Corollary 4.1.12. However, for j > r, we

cannot have the composition because condition (3.a) fails at row r. Since the

compositions proceed in alternating signs, they cancel each other in pairs.

Therefore, if r − k is odd, then everything cancels and if r − k is even, the

first composition is left.

Finally, we have the following criterion to determine the structure constants,

and Lemma 4.1.11 and Corollary 4.1.12 give an algorithm to construct the

corresponding tableau. At each step of filling numbers, if Corollary 4.1.12

fails, then Lemma 4.1.11 gives a corresponding Φr that cancels it, or an implicit

involution using S0. Therefore, combining with the argument above, we can

assign each tableau in the above cases their corresponding involutions, and

the remaining tableaux in Tβα are left fixed. This indeed gives an involution

because all the cases are disjoint and the involution sends the tableaux into

tableaux in the same case, clear from the construction in Lemma 4.1.11.

For each outer shape γ, there can be at most one tableau fixed by this

involution, which shows the left-Pieri rule is multiplicity free.

Theorem 4.1.13. For α = (1) and a partition β of length n,
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S1Sβ =
∑
γ

Cγ
βSγ and

Cγ
β =



sgn(β1 − γ2, . . . , βn − γn+1) if `(γ) = `(β) + 1 and γ ∈ Zγ
β

sgn(β1 − γ2, . . . , βk−1 − γk) if `(γ) = `(β), r − k is even and

(γ1, . . . , γk, 0, γk+1, . . . , γn) ∈ Zγ
β

0 otherwise

where k and r are as defined above.

Example 4.1.14. Let α = (1), β = (3, 1, 4) and γ = (2, 3, 2, 2). As shown

below, since γ1 − 1 < β1 and γ2 ≤ β1, we have σ(1) = 1 and all 1’s appear in

rows 1 and 2 of T . Then, since γ2 − 2 = β2 and γ3 > β2, we have σ(2) = 3

and all 2’s appear in row 3 of T . Finally, σ(3) = 2. Therefore, σ = (1, 3, 2)

and Cγ
α,β = −1 = sgn(1,−1, 2).

→

1

1 1
→

1

1 1

2 2 →

1

1 1 3

2 2

3 3

This result is equivalent to the one in [18], but here we give an explicit

combinatorial interpretation and an algorithm for constructing the tableaux

corresponding to the structure constants.

We now give the theta map in terms of the immaculate basis.

74



Proposition 4.1.15.

ΘNSym(Sn) = 2
∑
α|=n

Sα.

Proof. We first claim that ΘNSym(Hn) = 2
n∑
k=1

R(1,1,...,1,k) with n − k 1’s. This

follows from the adjointness

〈ΘNSym(Hn), Lα〉 = 〈Hn,ΘQSym(Lα)〉 =

 2 if α = (1, 1, . . . , 1, k)

0 otherwise

The last equality comes from the definition of enriched P partitions. If α has

a peak, then it is not possible to label the poset with only x and x’ for any

x. Whereas if α has no peak, then we can label the poset with only x and x’,

and we can use either x or x’ at the bottom.

For example, consider the following totally ordered set P and possible enriched

P partitions

1

1

1’

1’

>

>

<

1

1

1

1’

>

>

<

Then, we use a result from [12]. An immaculate tableau is standard if its

content is (1, 1, . . . , 1). A standard immaculate tableau T has a descent at i

if the row that contains i + 1 is strictly lower than the row that contains i.
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We write Des(T ) to be the set of descents of T . Let Lα,β be the number of

standard immaculate tableaux with shape α and descent set corresponding to

the composition β. Then,

Rβ =
∑
α

Lα,βSα.

For example,

R23 =

1 2

3 4 5 +
1 2 5

3 4 +
1 2 4 5

3

S23 + S32 + S41

In our case, when β = (1, 1, . . . , 1, k), the only possible tableaux must be of

height `(β), first column is filled with 1, 2, . . . , `(β), and the rest numbers are

filled increasingly from bottom to top. And there is exactly one tableau of

each shape.

Therefore, let (1, 1, . . . , 1, k) be a hook of size n, we have

R(1,1,...,1,k) =
∑

α|=n,`(α)=`(β)

Sα

Summing up all possible hooks, we get the proposition

ΘNSym(Hn) = 2
n∑
k=1

R(1,1,...,1,k) = 2
∑
α|=n

Sα.
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4.2 Theta maps for Hopf subalgebras of QSym

We show that the theta map of any combinatorial Hopf sub-algebra of

(QSym, ζQSym), if it exists, is unique.

Theorem 4.2.1. Let (H, ζ) be a combinatorial Hopf algebra, and assume there

is a one-to-one combinatorial Hopf morphism β from (H, ζ) to (QSym, ζQSym).

Then (H, ζ) has a Theta map if and only if Img(β) is ΘQSym-invariant (i.e.,

ΘQSym(Img(β)) ⊆ Img(β)). Moreover, the Theta map for (H, ζ) is β−1 ◦

ΘQSym ◦ β, and it is unique.

Proof. Let

β : (H, ζ) → (Img(β), ζQSym|Img(β))

h 7→ β(h).

Then β is an isomorphism. The map ΘQSym is a combinatorial Hopf morphism,

thus the following diagram commutes.

Img(β) QSym

Img(β)H

H

QSym

i

i

ΘQSym ΘQSym

β

β

β−1 ◦ΘQSym ◦ β
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therefore, the following diagram commutes,

H QSym

H QSym

β

β

β−1 ◦ΘQSym ◦ β ΘQSym

and so β−1ΘQβ is the theta map for (H, ζ).

Conversely, assume that (H, ζ) has a Theta map ΘH. Then the following

diagram commutes.

H QSym

H QSym

β

β

ΘH ΘQSym

i.e., ΘQSym(β(H)) = β(ΘH(H)). Therefore, Img(β) is ΘQSym-invariant.

Furthermore, if (H, ζ) has a Theta map, then ΘQSym ◦ β = β ◦ ΘH, and so

β−1 ◦ΘQSym ◦β = ΘH. This shows that there is a unique Theta map for (H, ζ).
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4.3 Theta maps for commutative and co-commutative

Hopf algebras

In the case of symmetric function this theta map originate from plethysm and

is defined as follows

ΘSym : Sym → Sym

pn 7→


2pn n is odd,

0 n is even.

We can see that

ΘSym(pn) = m ◦ (S ◦R−1 ⊗ id) ◦∆(pn)

where R−1(f) = (−1)deg(f)f .

We will show that for every commutative and co-commutative combinatorial

Hopf algebra m ◦ (S ◦R−1 ⊗ id) ◦∆ is a theta map.

Lemma 4.3.1. If H is commutative and co-commutative, then Φ = m ◦ (S ◦

R−1 ⊗ id) ◦∆ is a Hopf morphism.

Proof. We first show that Φ is an algebra morphism. Let a, b be two

homogeneous elements in H, then

m ◦ Φ⊗ Φ(a⊗ b) = m

∑
(a)

(−1)deg(a1)S(a1)a2

⊗
∑

(b)

(−1)deg(b1)S(b1)b2


=
∑

(a),(b)

(−1)deg(a1+b1)S(a1)a2S(b1)b2.
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On the other hand,

Φ ◦m(a, b) = m ◦ (S ◦R−1 ⊗ id) ◦∆ ◦m(a⊗ b)

= m ◦ (S ◦R−1 ⊗ id) ◦ (m⊗m) ◦ (id⊗ T ⊗ id) ◦ (∆⊗∆)(a⊗ b)

= m ◦ (S ◦R−1 ⊗ id)

∑
(a),(b)

a1b1 ⊗ a2b2


=
∑

(a),(b)

(−1)deg(a1+b1)S(a1b1)a2b2.

The two sides are the same when H is commutative. Hence, Φ is an algebra

morphism.

The proof of coalgebra morphism is similar so it is omitted.

Theorem 4.3.2. Let (H, ζ) be a commutative and co-commutative

combinatorial Hopf algebra (or m ◦ (S ◦ R−1 ⊗ id) ◦∆ be a Hopf morphism),

then there is a theta map for (H, ζ) as follows,

Θ(H,ζ) = m ◦ (S ◦R−1 ⊗ id) ◦∆.

Proof. Since (H, ζ) is a combinatorial Hopf algebra by [5, Theorem 4.1] we

have a combinatorial Hopf algebra morphism Ψ from (H, ζ) to (Sym, ζQSym).

Note that

m ◦ (S ◦R−1 ⊗ id) ◦∆ ◦Ψ =

m ◦ (S ◦R−1 ⊗ id) ◦ (Ψ⊗Ψ) ◦∆ =

m ◦ (S ◦R−1 ◦Ψ⊗ id ◦Ψ) ◦∆ =
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m ◦ (Ψ⊗Ψ) ◦ (S ◦R−1 ⊗ id) ◦∆ =

Ψ ◦m ◦ (S ◦R−1 ⊗ id) ◦∆,

i.e., the following diagram commutes.

SymH

SymH

Ψ

Ψ

m ◦ (S ◦R−1 ⊗ id) ◦∆ m ◦ (S ◦R−1 ⊗ id) ◦∆

Corollary 4.3.3. Let (H, ζ) be a commutative and co-commutative

combinatorial Hopf algebra. Then there is a theta map as follows

Θ(H,ζ)(h) =
∑
(h)

(−1)deg(h1)S(h1)h2,

where ∆(h) =
∑

(h) h1 ⊗ h2.

Remark 4.3.4. From definition, the theta maps are dependent on the

character of combinatorial Hopf algebras. In the case of commutative and

co-commutative Hopf algebra, the map Φ is always a theta map regardless of

the choice of character.

Remark 4.3.5. Even though in the case of non-commutative symmetric

functions , m ◦ (S ◦ R−1 ⊗ id) ◦ ∆(Hn) = ΘNSym(Hn) =
∑n

k=0 2R(1k,n−k),

m ◦ (S ◦ R−1 ⊗ id) ◦ ∆ is not the Theta map for NSym since otherwise the

dual must be the Theta map for QSym, but the following example shows that

m ◦ (S ◦R−1 ⊗ id) ◦∆ is not the Theta map for QSym.
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Example 4.3.6. The map m ◦ (S ◦ R−1 ⊗ id) ◦ ∆ is not the theta map for

QSym.

The theta map for QSym takes M32 to 0, i.e., ΘQSym(M32) = 0 (see 2.3).

But,

m ◦ (S ◦R−1 ⊗ id) ◦∆(M32) =

m ◦ (S ◦R−1 ⊗ id)(M32 ⊗ 1 +M3 ⊗M2 + 1⊗M32) =

S ◦R−1(M32) + S ◦R−1(M3)M2 +M32 =

−M23 −M5 +M3M2 +M32 =

−M23 −M5 +M32 +M23 +M5 +M32 = 2M32 6= 0.

4.3.1 Theta maps for diagonally symmetric functions

In this section, we provide an example of a commutative and co-commutative

Hopf algebra.

A bipartition λ of length k is a 2× k matrix λ =

λ11 λ12 · · · λ1k

λ21 λ22 · · · λ2k

 such

that the columns are ordered in lexicographic order and no column is
(

0
0

)
. The

size of λ, denoted by |λ|, is the sum of all its entries. If the size of λ is n, we

write λ ` n. There also exists a generalized bipartition with length 0 and size

0, called the zero bipartition, denoted by
(

0
0

)
.

Let λ, µ be two bipartitions, we say their disjoint union, λ]µ is the bipartition

obtained by taking the disjoint union of columnns of λ and µ, and re-order in

decreasing order.
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Let k[[x,y]] = k[[x1, x2, . . . , y1, y2, . . . ]] be the set of power series in two sets

of variables with bounded degree.

The diagonally symmetric functions, DSym =
⊕
n≥0

DSymn, is sub-ring of the

power series k[[x,y]] that are fixed under diagonal action of the symmetric

group. More precisely, f ∈ DSym if

f(x1, x2, . . . , y1, y2, . . . ) = f(xσ(1), xσ(2), . . . , yσ(1), yσ(2), . . . )

for all σ ∈ S(∞) where S(∞) is the set of all bijections from the set of positive

integers to itself that fix all but finitely many numbers.

The diagonally symmetric functions clearly form a graded vector space, and

the degree n component is spanned by the monomial basis mλ indexed by

bipartitions, the sum of all monomials in the orbit of

Xλ = xλ111 yλ21
1 xλ122 yλ222 · · ·xλ1`(λ)`(λ) y

λ2`(λ)
`(λ) , for all λ ` n.

Example 4.3.7. For n = 2, we have

• m( 2
0

) = x2
1 + x2

2 + x2
3 + · · ·

• m( 1
1

) = x1y1 + x2y2 + x3y3 + · · ·

• m( 10
01

) = x1y2 + x2y1 + x1y3 + · · ·

The main reason why DSym is interesting is that the quotient space

k[[x,y]]/〈DSym+〉 over the ideal generated by diagonally symmetric functions

with positive degree is known as the diagonal harmonics. The central result

is by Garsia and Haiman [23, 26] where it was used to prove the n!

conjecture and Macdonald positivity.
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The product is the regular multiplication of power series. The coproduct is as

follows

∆(mλ) =
∑
µ]ν=λ

mµ ⊗mν .

It is not hard to see that DSym is a commutative and co-commutative Hopf

algebra. We have a projection given by (λ is a bipartition)

p : DSym → Sym

mλ 7→ msort(λ11+λ21,λ12+λ22,...,λ1`(λ)+λ2`(λ))

and an embedding (λ is a partition)

i : Sym → DSym

mλ 7→ m(λ1λ2···λ`(λ)
0 0 ··· 0

)
Then, the map Θ = i ◦ ΘSym ◦ p is a theta map for DSym. The image of Θ is

isomorphic to the image of ΘSym, the space of Schur’s Q functions.

According the theorem 4.3.2, we have a non-trivial theta map

ΘDSym = m ◦ (S ◦R−1 ⊗ id) ◦∆.

The image of ΘDSym is a generalization of Schur’s Q functions into two sets of

variables. We now describe the image in more details.

We begin with defining two sets of diagonally symmetric functions

Definition 4.3.8. For each pair (a, b), we define the homogeneous and

84



elementary functions h(a
b

), e(a
b

) via the following generating functions

H(s, t) =
∑
a,b

h(a
b

)satb =
∏
i

1

1− xis− yit
,

E(s, t) =
∑
a,b

e(a
b

)satb =
∏
i

(1 + xis+ yit).

For a bipartition λ,

hλ = h(λ11
λ21

)h(λ12
λ22

) . . . h(λ1`(λ)
λ2`(λ)

),
eλ = e(λ11

λ21

)e(λ12
λ22

) . . . e(λ1`(λ)
λ2`(λ)

).
These functions are introduced by Gessel [21], and he showed that they are

bases for DSym.

Remark 4.3.9. Gessel also defined a third multiplicative bases, the power

sum {pλ} where p(a
b

) = m(a
b

).
Now we study the antipode of DSym. We start with the following observations.

Lemma 4.3.10. For each pair (a, b), we have the following coproduct formula

∆

(
e(a

b

)) =
∑

i+j=a,k+`=b

e( i
k

) ⊗ e( j
`

),
Proof. This follows from the fact that e(a

b

) = m( 1...10...0
0...01...1

) with a copies of
(

1
0

)
and b copies of

(
0
1

)
.

Proposition 4.3.11. The antipode S of DSym is S

(
e(a

b

)) = (−1)a+bh(a
b

).
Proof. From the generating functions H(s, t) and E(s, t), it is not hard to see
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that

1 = H(s, t)E(−s,−t) =

(∑
a,b

h(a
b

)satb)(∑
a,b

e(a
b

)(−s)a(−t)b) .
Then, for any pair (a, b) 6= (0, 0), we have

∑
i+j=a,k+`=b

(−1)j+`h( i
k

)e( j
`

) = 0

On the other hand, from the coproduct formula of e basis, we know that the

antipode is determined by the relation

∑
i+j=a,k+`=b

S

(
e( i

k

)) e( j
`

) = 0

for all pair (a, b) 6= (0, 0). Compairing these two equations, we will obtain the

desired result via induction.

Therefore, we have the following formula for ΘDSym.

ΘDSym

(
e(a

b

)) =
∑

i+j=a,k+`=b

h( i
k

)e( j
`

).
Its generating function is

Q(s, t) =
∑
a,b

ΘDSym

(
e(a

b

)) satb =
∏
i

1 + xis+ yit

1− xis− yit
.

We denote ΘDSym

(
e(a

b

)) by q(a
b

). We now give some properties of these q(a
b

)
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that are analoguous Schur’s Q functions qn = ΘSym(en).

Proposition 4.3.12. Assuming the base field k is of characteristic 0. The

image space ΘDSym(DSym) is generated by

{
q(a

b

) : a+ b is odd

}

Proof. Since Q(s, t) = E(s, t)H(s, t), we have that Q(s, t)Q(−s,−t) = 1.

Therefore, for each (n,m) 6= (0, 0), we have

∑
a+c=n
b+d=m

(−1)a+bq(a
b

)q( c
d

) = 0.

When n+m is even, we have

2q( n
m

) = −
∑

a+c=n,b+d=m
(a,b)6=(0,0),(c,d)6=(0,0)

(−1)a+bq(a
b

)q( c
d

)

Therefore, by induction, q( n
m

) ∈ k
[
q(a

b

) : a ≤ n, b ≤ m, a+ b is odd

]
.

Remark 4.3.13. It presents no difficulty in generalizing this construction to

diagonally symmetric functions in more sets of variables.

4.3.2 Theta maps for diagonally quasi-symmetric functions

An element α̃ =

α̃11 α̃12 · · ·

α̃21 α̃22 · · ·

 ∈ N2N is called a generalized bicomposition

if all but finitely many (α̃1k, α̃2k) are (0, 0). Let k be the maximum number

such that (α̃1k, α̃2k) 6= (0, 0). The length of α̃, denoted by `(α̃), is k. The size

of α̃, denoted by |α̃|, is the sum of all its entries. For simplicity, we usually

write α̃ as
(
α̃11 ··· α̃1k

α̃21 ··· α̃2k

)
. There also exists a generalized bicomposition with

length 0 and size 0, called the zero bicomposition, denoted by
(

0
0

)
.

87



Every monomial in R can be expressed as Xα̃ = xα̃11
1 yα̃21

1 · · ·xα̃1k
k yα̃2k

k for some

generalized bicomposition α̃. A generalized bicomposition α is called a

bicomposition if `(α) = 0 or (α1j, α2j) 6= (0, 0) for all 1 ≤ j ≤ `(α).

In this section, we use Greek letters to denote bicompositions, and Greek

letters with tilde to denote generalized bicompositions.

Let α̃, β̃ and γ̃ be non-zero generalized bicompositions. We write α̃ = β̃γ̃ if

α̃ij = β̃ij for all 1 ≤ j ≤ `(α̃) − `(γ̃), β̃ij = 0 for all j > `(α̃) − `(γ̃) and

α̃i(j+`(α̃)−`(γ̃)) = γ̃ij for all j ≥ 1. We write α̃ =
(

0
0

)
β̃ if α̃11 = α̃21 = 0 and

α̃i(j+1) = β̃ij for all j ≥ 2.

Note that for each generalized bicomposition α̃ that is not a bicomposition,

there is a unique way to decompose it into α̃ = β̃
(

0
0

)
γ for some generalized

bicomposition β̃ and bicomposition γ.

The algebra of diagonally quasi-symmetric functions, DQSym, is a subalgebra

of k[[x,y]] spanned by monomials indexed by bicompositions

Mα =
∑

i1<···<ik

xα11
i1
yα21
i1
· · ·xα1k

ik
yα2k
ik
.

As a graded algebra, DQSym =
⊕
n≥0

DQSymn where DQSymn = span-{Mα :

|α| = n} is the degree n component.

The quotient space k[[x,y]]/〈DQSym+〉 over the ideal generated by

diagonally quasi-symmetric functions with positive degree is a

quasi-symmetric analogue of the diagonal harmonics. It is introduced in [3]

where the quotient is called the diagonal Temperley-Lieb harmonics. In [36],

we studied the linear structure of this quotient space, and we give a
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description of its Hilbert basis. This result is not directly related to theta

maps, so we leave it in appendix.

Similar to DSym, the space of DQSym admits a Hopf algebra structure where

the product is the regular multiplication of power series, and the coproduct is

given by deconcatenation

∆(Mα) =
∑
α=βγ

Mβ ⊗Mγ.

This gives a commutative but not co-commutative Hopf structure, and we

have a projection given by (α is a bicomposition)

p : DQSym → QSym

Mα 7→ M(α11+α21,α12+α22,...,α1`(α)+α2`(α))

and an embedding (α is a composition)

i : QSym → DQSym

Mα 7→ M(α1α2···α`(α)
0 0 ··· 0

)
Then, the map Θ = i ◦ΘQSym ◦ p is a theta map for DQSym. The image of Θ

is isomorphic to the image of ΘQSym, Π.

It is yet unknown whether there exists a theta map for DQSym that is

compatible with ΘDSym.
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4.4 Theta maps for V

Some combinatorial Hopf algebras can have many theta maps. We show that

when a Hopf morphism can be a theta map for (V , ζV).

Recall that we defined the basis {Mσ : σ ∈ tn≥0Sn} for (V , ζV), where

Ψ(Mσ1\···\σk) =


M(|σ1|,...,|σk|) if σ = id|σ1|\ · · · \id|σk|

0 otherwise.

Moreover, since ζV = ζQSym ◦Ψ, for σ = σ1\ · · · \σk we have that

ζV(Mσ) = ζQSym◦Ψ(Mσ1\···\σk) =


ζQSym(M(|σ1|,...,|σk|)) if σ = id|σ1|\ · · · \id|σk|,

0 otherwise.

Since

ζQSym(M(|σ1|,...,|σk|)) =


1 if k = 1 or σ ∈ S0,

0 otherwise,

we can conclude that

ζV(Mσ) =


1 if σ = idn or σ ∈ S0,

0 otherwise.

Proposition 4.4.1. Let ΘV : V → V be a Hopf morphism and let

ζ = ζ−1
QSymζQSym ◦Ψ. Then the following statements are equivalent.

1. Ψ ◦ΘV = ΘQSym ◦Ψ, i.e., ΘV is a Theta map for V.

2. ζ = ζV ◦ΘV .
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3. Θ∗V : V∗ → V∗ satisfies that M∗
idn
7→ ζ|Vn.

4. Ψ∗ ◦ΘNSym = Θ∗V ◦Ψ∗.

Proof. Note that (1) and (4) are equivalent by duality, and by Theorem 4.0.2,

(1) and (2) are equivalent.

Now, ζ = ζV ◦ΘV if and only if ζ(Mσ) = ζV ◦ΘV(Mσ) for all σ. Fix a σ ∈ Sn,

we have that ζ(Mσ) = ζ|SSymn(Mσ), thus

ζV ◦ΘV(Mσ) = 〈ΘV(Mσ),M∗
idn〉 = Θ∗V(M∗

idn)(Mσ).

Therefore, ζ = ζV ◦ ΘV if and only if Θ∗V(M∗
idn

)(Mσ) = ζ|Vn(Mσ) for all σ if

and only if Θ∗V(M∗
idn

) = ζ|Vn . Therefore, (2) and (3) are equivalent.

Let QV := C-span{Midn1\···\idnk}. Recall that QV is isomorphic to QSym via

the isomorphism I = Ψ|QV. And V = QV ⊕ ker(Ψ).

For all b ∈ ker(Ψ), Ψ ◦ΘV(b) = ΘQSym ◦Ψ(b) = 0 i.e. ΘV(b) ∈ ker(Ψ).

For all a ∈ QV, Ψ ◦ΘV(a) = ΘQSym ◦Ψ(a) = ΘQSym ◦ I(a). Therefore, ΘV(a) =

ΘQSym ◦ I(a) + b for some b ∈ ker(Ψ).

Consider the case that ΘV(b) = 0 for all b ∈ ker(Ψ) and ΘV(a) = ΘQSym ◦ I(a)

for all a ∈ QV, then ΘV : V → V is a Hopf morphism. Therefore, we have a

theta map for V whose image is isomorphic to the peak algebra Π.
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4.5 Theta maps for Malvenuto-Reutenauer Hopf

algebra

We now denote ζ = ζ−1
QSymζQSym ◦ D and ζSSym = ζQSym ◦ D. In particular,

ζ|SSymn =
∑
σ∈Sn

peak(σ)=∅

2F ∗σ .

Proposition 4.5.1. Let Θ : SSym → SSym be a coalgebra morphism. The

following are equivalent.

1. D ◦Θ = ΘQSym ◦D,

2. ζ = ζSSym ◦Θ,

3. Θ∗ : SSym∗ → SSym∗ satisfies that M∗
idn
7→ ζ|SSymn,

4. D∗ ◦ΘNSym = Θ∗ ◦D∗.

Proof. The same as Proposition 4.4.1. We only need to check that ζSSym =

ζQSym ◦D maps Mσ to 1 when σ = idn and 0 otherwise.

Definition 4.5.2. A map Θ : SSym → SSym is said to be self-adjoint if

Θ∗ ◦ ISSym = ISSym ◦Θ.

Proposition 4.5.3. If Θ : SSym → SSym is a self-adjoint coalgebra

morphism, then it is a Hopf morphism.

Proof. All we need to show is that Θ is an algebra morphism. If Θ is a coalgebra

morphism, then Θ∗ is an algebra morphism. And the result follows from the

composition of algebra morphisms Θ = I−1
SSym ◦Θ∗ ◦ ISSym.
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We will construct graded maps Θ∗ : SSym∗ → SSym∗ that has three

properties:

• P1: Θ∗(M∗
idn) =

∑
σ∈Sn

Peak(σ)=∅

2F ∗σ ;

• P2: Θ∗ is self-adjoint.

• P3 :Θ∗ is an algebra morphism;

Lemma 4.5.4. Θ∗ is self-adjoint if and only if

〈Θ∗(F ∗σ ), Fτ−1〉 = 〈Θ∗(F ∗τ ), Fσ−1〉.

Proof. We know that

〈
F ∗σ , I

−1
SSym(F ∗τ )

〉
= 〈F ∗σ , Fτ−1〉 = δσ,τ−1 = δτ,σ−1 = 〈F ∗τ , Fσ−1〉 =

〈
F ∗τ , I

−1
SSym(F ∗σ )

〉
.

Hence, we have

〈Θ∗(F ∗σ ), Fτ−1〉 = 〈F ∗σ ,Θ(Fτ−1)〉 =
〈
F ∗σ ,Θ ◦ I−1

SSym(F ∗τ )
〉

and

〈Θ∗(F ∗τ ), Fσ−1〉 =
〈
Θ∗(F ∗τ ), I−1

SSym(F ∗σ )
〉

=
〈
F ∗σ , I

−1
SSym ◦Θ∗(F ∗τ )

〉

Therefore, in terms of the structure coefficients, the three properties are as

follows:

• C1:
〈
Θ∗(F ∗idn), Fσ

〉
=

 2 if peak(σ) = ∅

0 otherwise
;
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• C2: 〈Θ∗(F ∗σ ), Fτ−1〉 = 〈Θ∗(F ∗τ ), Fσ−1〉;

• C3: If σ = µ\ν has global descent, and M∗
σ = M∗

µ ·M∗
ν , where µ and ν

are non-empty, then∑
τ≤σ

〈Θ∗(F ∗τ ), Fγ〉 = 〈Θ∗(M∗
σ), Fγ〉 =

〈
Θ∗(M∗

µ) ·Θ∗(M∗
ν ), Fγ

〉
is

determined by structure coefficients in lower degrees.

Definition 4.5.5. We choose a total order <t on Sn that satisfies the following

two relations:

• if σ < τ in the weak order, then σ <t τ .

• if GD(σ) = ∅ and GD(τ) 6= ∅, then σ <t τ .

We need the following lemma to show that <t is well defined.

Lemma 4.5.6. For σ, τ ∈ Sn, if σ < τ and GD(σ) 6= ∅, then GD(τ) 6= ∅.

Proof. This follows from the fact that {(a, b) : a ≤ i, b > i} ⊆ Inv(σ) if and

only if i ∈ GD(σ), and σ < τ if and only if Inv(σ) ⊆ Inv(τ).

We construct Θ∗ inductively with respect to degree. In degree 1, Θ∗(F ∗1 ) =

2F ∗1 , which satisfies all three conditions. Suppose we have constructed Θ∗ for

degree 1, . . . , n − 1, in degree n, we also use induction with respect to <t as

follows:

1.
〈
Θ∗(F ∗idn), Fσ

〉
=

 2 if peak(σ) = ∅

0 otherwise
;

2. 〈Θ∗(F ∗σ ), Fidn〉 =
〈
Θ∗(F ∗idn), Fσ−1

〉
;

3. if GD(σ) = GD(τ) = ∅ and σ ≤t τ , then 〈Θ∗(F ∗σ ), Fτ−1〉 is a free variable;
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4. if GD(σ) = GD(τ) = ∅ and σ >t τ , then

〈Θ∗(F ∗σ ), Fτ−1〉 = 〈Θ∗(F ∗τ ), Fσ−1〉;

5. if GD(σ) 6= ∅ and GD(τ) = ∅, then 〈Θ∗(F ∗σ ), Fτ−1〉 = 〈Θ∗(M∗
σ), Fτ−1〉 −∑

γ<σ

〈
Θ∗(F ∗γ ), Fτ−1

〉
;

6. if GD(σ) = ∅ and GD(τ) 6= ∅, then 〈Θ∗(F ∗σ ), Fτ−1〉 = 〈Θ∗(F ∗τ ), Fσ−1〉;

7. if GD(σ) 6= ∅ and GD(τ) 6= ∅, then 〈Θ∗(F ∗σ ), Fτ−1〉 = 〈Θ∗(M∗
σ), Fτ−1〉 −∑

γ<σ

〈
Θ∗(F ∗γ ), Fτ−1

〉
where σ and τ in steps (3)− (7) are not idn.

Example 4.5.7. The following tables are structure coefficients in degree 2 and

3. The entry at row F ∗σ and column Fτ is 〈Θ∗(F ∗σ ), Fτ 〉.

Degree 2:

F12 F21

F ∗12 2 2

F ∗21 2 2

Degree 3:

F123 F132 F213 F312 F231 F321

F ∗123 2 0 2 2 0 2

F ∗132 0 a b 4− a 4− b 0

F ∗213 2 b c 2− b 2− c 2

F ∗231 2 4− a 2− b a− 2 b 2

F ∗312 0 4− b 2− c b c+ 2 0

F ∗321 2 0 2 2 0 2
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This construction defines Θ∗, in order to show that Θ∗ satisfies the three

properties, it suffices to check the following:

1. when GD(σ) 6= ∅, 〈Θ∗(M∗
σ), Fidn〉 satisfies property 3;

2. when GD(σ) 6= ∅ and GD(τ) 6= ∅, 〈Θ∗(F ∗σ ), Fτ−1〉 satisfies property 2.

Proof of (1).

By construction, 〈Θ∗(M∗
σ), Fidn〉 =

∑
τ≤σ

〈Θ∗(F ∗τ ), Fidn〉 =∑
τ≤σ

〈
Θ∗(F ∗idn), Fτ−1

〉
= 2

∣∣{τ ≤ σ : peak(τ−1) = ∅
}∣∣.

When GD(σ) 6= ∅, M∗
σ = M∗

µ · M∗
ν for some µ, ν non-empty. In this case,

property 3 states that

〈Θ∗(M∗
σ), Fidn〉 =

〈
Θ∗(M∗

µ) ·Θ∗(M∗
ν ), Fidn

〉
=
〈
Θ∗(M∗

µ)⊗Θ∗(M∗
ν ),∆(Fidn)

〉
=
〈

Θ∗(M∗
µ)⊗Θ∗(M∗

ν ), Fid|µ| ⊗ Fid|ν|
〉

=
〈

Θ∗(M∗
µ), Fid|µ|

〉
·
〈

Θ∗(M∗
ν ), Fid|ν|

〉
= 2

∣∣{τ ≤ µ : peak(τ−1) = ∅
}∣∣ · 2 ∣∣{τ ≤ ν : peak(τ−1) = ∅

}∣∣
where the last equality is by induction on degree. Then, the following lemma

completes the proof.

Lemma 4.5.8. If M∗
σ = M∗

µ ·M∗
ν , σ ∈ Sn and µ, ν non-empty, then

∣∣{τ ≤ σ : peak(τ−1) = ∅
}∣∣ = 2

∣∣{τ ≤ µ : peak(τ−1) = ∅
}∣∣ · ∣∣{τ ≤ ν : peak(τ−1) = ∅

}∣∣ .
Proof. If τ ∈ Sn and peak(τ−1) = ∅, then τ−1(1) = n or τ−1(n) = n. Hence,
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τ(n) = 1 or n.

Case 1: σ(n) = 1. Assume that µ ∈ Sn−1 that µ(i) = σ(i) − 1 and ν = 1.

Then it suffices to show

∣∣{τ ≤ σ : peak(τ−1) = ∅
}∣∣ = 2

∣∣{τ ≤ µ : peak(τ−1) = ∅
}∣∣ .

We construct two bijections. One is between

{τ ≤ σ : τ(n) = 1, peak(τ−1) = ∅} and {τ ≤ µ : peak(τ−1) = ∅}. The other

one is between {τ ≤ µ : peak(τ−1) = ∅} and

{τ ≤ σ : τ(n) = n, peak(τ−1) = ∅}.

For each τ ∈ {τ ≤ µ : peak(τ−1) = ∅}, we assign two elements τ̃ = τ\1 and

τ̃ ′ = τ � n.

Since Inv(τ̃ ′) = Inv(τ), Inv(τ̃) = Inv(τ) ∪ {(a, n) : 1 ≤ a < n}, Inv(τ) ⊆

Inv(µ) and Inv(σ) = Inv(µ)∪{(a, n) : 1 ≤ a < n}, we have τ̃ ≤ σ and τ̃ ′ ≤ σ.

Since τ̃(i) = τ(i) + 1 for 1 ≤ i ≤ n − 1 and τ̃(n) = 1, we have τ̃−1(i) =

τ−1(i − 1) for 2 ≤ i ≤ n. Since 2 /∈ peak(τ̃−1) as τ̃−1(1) = n, it follows that

τ̃−1(i− 1) < τ̃−1(i) > τ̃−1(i+ 1) if and only if τ−1(i− 2) < τ−1(i− 1) > τ−1(i)

for 3 ≤ i ≤ n− 1. Hence, peak(τ̃−1) = ∅.

Since τ̃ ′(i) = τ(i) for 1 ≤ i ≤ n − 1 and τ̃ ′(n) = n, we have τ̃ ′−1(i) = τ−1(i)

for 1 ≤ i ≤ n − 1. Since n − 1 /∈ peak(τ̃ ′−1) as τ̃ ′−1(n) = n, it follows that

τ̃ ′−1(i−1) < τ̃ ′−1(i) > τ̃ ′−1(i+1) if and only if τ−1(i−1) < τ−1(i) > τ−1(i+1)

for 2 ≤ i ≤ n− 2. Hence, peak(τ̃ ′−1) = ∅.

Conversely, for each τ ∈ {τ ≤ σ : peak(τ−1) = ∅}, if τ(n) = 1, we assign
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τ̃ ∈ Sn−1 that τ̃(i) = τ(i)−1, if τ(n) = n, we assign τ̃ ∈ Sn−1 that τ̃(i) = τ(i).

By a similar argument, τ̃ ∈ {τ ≤ µ : peak(τ−1) = ∅}. And they are clearly

inverse of each other.

If M∗
ν = M∗

ω ·M∗
1 for some non-empty ω, then by induction

∣∣{τ ≤ ν : peak(τ−1) = ∅
}∣∣ = 2

∣∣{τ ≤ ω : peak(τ−1) = ∅
}∣∣

and

∣∣{τ ≤ µ\ω : peak(τ−1) = ∅
}∣∣ = 2

∣∣{τ ≤ µ : peak(τ−1) = ∅
}∣∣ · ∣∣{τ ≤ ω : peak(τ−1) = ∅

}∣∣ .
Therefore,

2
∣∣{τ ≤ µ : peak(τ−1) = ∅

}∣∣ · ∣∣{τ ≤ ν : peak(τ−1) = ∅
}∣∣

=4
∣∣{τ ≤ µ : peak(τ−1) = ∅

}∣∣ · ∣∣{τ ≤ ω : peak(τ−1) = ∅
}∣∣

=2
∣∣{τ ≤ µ\ω : peak(τ−1) = ∅

}∣∣
=
∣∣{τ ≤ σ : peak(τ−1) = ∅

}∣∣ .
Case 2: σ(n) > 1. In this case, |ν| ≥ 2. For simplicity, let γ = std(σ(1)�· · ·�

σ(n− 1)) and ω = std(ν(1)� · · · � ν(|ν| − 1)).

Claim 1: if τ ≤ σ, then τ(n) > 1. If not, (σ−1(1), n) /∈ Inv(σ) but

(σ−1(1), n) ∈ Inv(τ).

Claim 2: τ ≤ σ and τ(n) = n if and only if τ ≤ γ � n. First, γ � n ≤ σ as

Inv(γ � n) = Inv(σ) \ {(a, n) : 1 ≤ a ≤ n − 1}. Second, if τ ≤ γ � n and

τ(n) < n then (τ−1(n), n) ∈ Inv(τ) but (τ−1(n), n) /∈ Inv(γ � n). Therefore,
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if τ ≤ γ � n, then τ ≤ σ and τ(n) = n. Conversely, if τ ≤ σ and τ(n) = n,

then Inv(τ) ⊆ Inv(σ) \ {(a, n) : 1 ≤ a ≤ n− 1} = Inv(γ � n) i.e. τ ≤ γ � n.

Therefore, {τ ≤ σ : peak(τ−1) = ∅} = {τ ≤ γ � n : peak(τ−1) = ∅} as

peak(τ) = ∅ only if τ(n) = 1 or n.

We also know that |{τ ≤ γ � n : peak(τ−1) = ∅}| = |{τ ≤ γ : peak(τ−1) = ∅}|

from Case 1. Hence, by induction, we have

2
∣∣{τ ≤ µ : peak(τ−1) = ∅

}∣∣ · ∣∣{τ ≤ ν : peak(τ−1) = ∅
}∣∣

=2
∣∣{τ ≤ µ : peak(τ−1) = ∅

}∣∣ · ∣∣{τ ≤ ω � |ν| : peak(τ−1) = ∅
}∣∣

=2
∣∣{τ ≤ µ : peak(τ−1) = ∅

}∣∣ · ∣∣{τ ≤ ω : peak(τ−1) = ∅
}∣∣

=
∣∣{τ ≤ µ\ω : peak(τ−1) = ∅

}∣∣
=
∣∣{τ ≤ γ : peak(τ−1) = ∅

}∣∣
=
∣∣{τ ≤ γ � n : peak(τ−1) = ∅

}∣∣
=
∣∣{τ ≤ σ : peak(τ−1) = ∅

}∣∣ .

Proof of (2).

Lemma 4.5.9. The map Θ∗ is a coalgebra morphism i.e.

(Θ∗ ⊗ Θ∗) ◦ (∆s,t(M
∗
σ)) = ∆s,t ◦ Θ∗(M∗

σ) for all s, t ≥ 1, s + t = |σ|, where

∆s,t : SSyms+t → SSyms⊗SSymt is the co-multiplication followed by

projection to degree s and degree t components.

Proof. The equality clearly holds when σ = 1. Suppose |σ| ≥ 2 and we use

induction on degree.
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Case 1: GD(σ) = ∅. The equality clearly holds when σ = idn, in which

case it is equivalent to that ΘNSym is a coalgebra morphism. When σ 6= idn, by

induction on <t, it suffices to prove that (Θ∗⊗Θ∗)◦(∆s,t(F
∗
σ )) = ∆s,t◦Θ∗(F ∗σ ).

Let ∆s,t(Fσ−1) = Fδ ⊗ Fε. For all µ ∈ Ss, ν ∈ St, we have

〈∆s,t ◦Θ∗(F ∗σ ), Fµ ⊗ Fν〉 = 〈Θ∗(F ∗σ ), Fµ · Fν〉

= 〈Θ∗(F ∗µ−1 · F ∗ν−1), Fσ−1〉

= 〈(Θ∗ ⊗Θ∗)(F ∗µ−1 ⊗ F ∗ν−1),∆s,t(Fσ−1)〉

= 〈Θ∗(F ∗µ−1), Fδ〉 · 〈Θ∗(F ∗ν−1), Fε〉

= 〈(Θ∗ ⊗Θ∗)(F ∗δ−1 ⊗ F ∗ε−1), Fµ ⊗ Fν)〉

= 〈(Θ∗ ⊗Θ∗) ◦∆s,t(F
∗
σ ), Fµ ⊗ Fν)〉.

Case 2: GD(σ) 6= ∅. Let σ = µ\ν, then by induction on degree,

∆(Θ∗(M∗
σ)) = ∆(Θ∗(M∗

µ) ·Θ∗(M∗
ν ))

= ∆(Θ∗(M∗
µ)) ·∆(Θ∗(M∗

ν ))

=
(
(Θ∗ ⊗Θ∗) ◦∆(M∗

µ)
)
· ((Θ∗ ⊗Θ∗) ◦∆(M∗

ν ))

= (Θ∗ ⊗Θ∗) ◦
(
∆(M∗

µ) ·∆(M∗
ν )
)

= (Θ∗ ⊗Θ∗) ◦ (∆(M∗
σ)) .

Let σ, τ ∈ Sn and GD(σ) 6= ∅, GD(τ) 6= ∅. Let σ = µ\ν and τ = δ\ε where
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µ, ν, δ, ε are non-empty. By construction,

〈Θ∗(F ∗σ ), Fτ−1〉 = 〈Θ∗(M∗
σ), Fτ−1〉 −

∑
γ<σ

〈Θ∗(F ∗γ ), Fτ−1〉

= 〈Θ∗(M∗
σ), Fτ−1〉 −

∑
γ<σ

〈Θ∗(F ∗τ ), Fγ−1〉

= 〈Θ∗(M∗
σ), Fτ−1〉 −

∑
γ<σ

〈Θ∗(M∗
τ ), Fγ−1〉+

∑
γ<σ
ρ<τ

〈Θ∗(F ∗ρ ), Fγ−1〉.

Similarly,

〈Θ∗(F ∗τ ), Fσ−1〉 = 〈Θ∗(M∗
τ ), Fσ−1〉 −

∑
ρ<τ

〈Θ∗(M∗
σ), Fρ−1〉+

∑
ρ<τ
γ<σ

〈Θ∗(F ∗γ ), Fρ−1〉.

Therefore, by induction on <t, 〈Θ∗(F ∗σ ), Fτ−1〉 = 〈Θ∗(F ∗τ ), Fσ−1〉 if and only if

∑
γ≤σ

〈Θ∗(M∗
τ ), Fγ−1〉 =

∑
ρ≤τ

〈Θ∗(M∗
σ), Fρ−1〉.

Let ∆|µ|,|ν|(M
∗
δ ) =

∑
α,β

Cδ
α,βM

∗
α ⊗M∗

β and ∆|µ|,|ν|(M
∗
ε ) =

∑
α′,β′

Cε
α′,β′M

∗
α′ ⊗M∗

β′ .

Then

∆|µ|,|ν|(M
∗
τ ) = ∆|µ|,|ν|(M

∗
δ ·M∗

ε ) =
∑

α,β,α′β′

Cδ
α,βC

ε
α′,β′M

∗
α\α′ ⊗M∗

β\β′ .

By induction on degree, we get
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∑
ρ≤τ

〈Θ∗(M∗
σ), Fρ−1〉 =

∑
ρ≤τ

〈Θ∗(M∗
σ), I−1

SSym

(
F ∗ρ
)
〉 = 〈Θ∗(M∗

σ), I−1
SSym (M∗

τ )〉

=
〈
Θ∗(M∗

µ) ·Θ∗(M∗
ν ), I−1

SSym (M∗
τ )
〉

=
〈
Θ∗(M∗

µ)⊗Θ∗(M∗
ν ),∆|µ|,|ν|

(
I−1
SSym (M∗

τ )
)〉

=
〈
Θ∗(M∗

µ)⊗Θ∗(M∗
ν ),
(
I−1
SSym ⊗ I

−1
SSym

)
◦
(
∆|µ|,|ν| (M

∗
τ )
)〉

=
∑

α,β,α′,β′

Cδ
α,βC

ε
α′,β′

〈
Θ∗(M∗

µ), I−1
SSym(M∗

α\α′)
〉 〈

Θ∗(M∗
ν ), I−1

SSym(M∗
β\β′)

〉
=

∑
α,β,α′,β′

Cδ
α,βC

ε
α′,β′

〈
Θ∗(M∗

α\α′), I
−1
SSym(M∗

µ)
〉 〈

Θ∗(M∗
β\β′), I

−1
SSym(M∗

ν )
〉

=
〈
(Θ∗ ⊗Θ∗) ◦

(
∆|µ|,|ν| (M

∗
τ )
)
,
(
I−1
SSym

(
M∗

µ

))
⊗
(
I−1
SSym (M∗

ν )
)〉

=
〈
∆|µ|,|ν| (Θ

∗ (M∗
τ )) ,

(
I−1
SSym

(
M∗

µ

))
⊗
(
I−1
SSym (M∗

ν )
)〉

=
〈
Θ∗ (M∗

τ ) , I−1
SSym (M∗

σ)
〉

=
∑
γ≤σ

〈Θ∗(M∗
τ ), I−1

SSym

(
F ∗γ
)
〉 =

∑
γ≤σ

〈Θ∗(M∗
τ ), Fγ−1〉.

4.6 Convolutions of theta maps

In this section, we study an operation on the set of theta maps.

Let (H, ζH) be a combinatorial Hopf algebra, and Θ1,Θ2 be two of its theta

maps.

The most natural way of combining two maps is to consider their convolution

product Θ1 ∗Θ2 : H → H. Unfortunately, Θ1 ∗Θ2 is not a theta map because

it is not compatible with ΘQSym.

However, if we take the commutator [Θ1,Θ2] = Θ1∗Θ2−Θ2∗Θ1. This is a non-

trivial map in general, when H is not co-commutative. But when projected
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down to the level of QSym, it is the commutator of ΘQSym with itself, which

is the 0 map. Therefore, if we take any theta map Θ, we obtain an infinite

family of maps T = Θ + k[Θ1,Θ2] that is compatible with ΘQSym.

Theorem 4.6.1. Let (H, ζH) be a combinatorial Hopf algebra with Hopf

morphism Ψ : H → QSym and Θ,Θ1,Θ2 be its theta maps. Then

T = Θ + k[Θ1,Θ2] makes the following square commute.

H H

QSym QSym

T

ΘQSym

Ψ Ψ

Proof. Since Θ1 and Θ2 are theta maps, we have

Ψ ◦ (Θ1 ∗Θ2) = Ψ ◦m ◦ (Θ1 ⊗Θ2) ◦∆

= m ◦ (Ψ⊗Ψ) ◦ (Θ1 ⊗Θ2) ◦∆

= m ◦ (Ψ ◦Θ1 ⊗Ψ ◦Θ2) ◦∆

= m ◦ (ΘQSym ◦Ψ⊗ΘQSym ◦Ψ) ◦∆

= m ◦ (ΘQSym ⊗ΘQSym) ◦ (Ψ⊗Ψ) ◦∆

= m ◦ (ΘQSym ⊗ΘQSym) ◦∆ ◦Ψ

= (ΘQSym ∗ΘQSym) ◦Ψ.
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Therefore,

Ψ ◦ [Θ1,Θ2] = Ψ ◦ (Θ1 ∗Θ2)−Ψ ◦ (Θ2 ∗Θ1)

= (ΘQSym ∗ΘQSym) ◦Ψ− (ΘQSym ∗ΘQSym) ◦Ψ

= 0

and

Ψ ◦ T = Ψ ◦ (Θ + k[Θ1,Θ2]) = Ψ ◦Θ + kΨ ◦ [Θ1,Θ2] = Ψ ◦Θ = ΘQSym ◦Ψ.

Moreover, when H is self-dual, then T is self-adjoint.

Lemma 4.6.2. If H is a self-dual graded Hopf algebra with isomorphism I :

H → H∗, and we have two self-adjoint map f, g : H → H, then af + bg is

self-adjoint for any constant a, b.

Proof. For any h ∈ H, k ∈ H∗, we have

〈(af + bg)∗(k), h〉 = 〈k, (af + bg)(h)〉 = a〈k, f(h)〉+ b〈k, g(h)〉

= a〈f ∗(k), h〉+ b〈g∗(k), h〉 = 〈(af ∗ + bg∗)(k), h〉

Hence, we have (af + bg)∗ = af ∗ + bg∗ and

I ◦ (af + bg) = a(I ◦ f) + b(I ◦ g) = a(f ∗ ◦ I) + b(g∗ ◦ I)

= (af ∗ + bg∗) ◦ I = (af + bg)∗ ◦ I.
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Proposition 4.6.3. When H is a self-dual combinatorial Hopf algebra, with

isomorphism I : H → H∗, and Θ,Θ1,Θ2 are self-adjoint theta maps. Then

T = Θ + k[Θ1,Θ2] is self-adjoint i.e. I ◦ T = T ∗ ◦ I.

Proof. By Lemma 4.6.2, it suffices to show that Θ1 ∗Θ2 is self-adjoint.

For any h ∈ H, k ∈ H∗, we have

〈(Θ1 ∗Θ2)∗(k), h〉 = 〈k, (Θ1 ∗Θ2)(h)〉

= 〈k,m ◦ (Θ1 ⊗Θ2) ◦∆(h)〉

= 〈∆(k), (Θ1 ⊗Θ2) ◦∆(h)〉

= 〈(Θ∗1 ⊗Θ∗2) ◦∆(k),∆(h)〉

= 〈m ◦ (Θ∗1 ⊗Θ∗2) ◦∆(k), h〉

= 〈(Θ∗1 ∗Θ∗2)(k), h〉.

Hence, (Θ1 ∗Θ2)∗ = Θ∗1 ∗Θ∗2, and we have

I ◦ (Θ1 ∗Θ2) = I ◦m ◦ (Θ1 ⊗Θ2) ◦∆

= m ◦ (I ⊗ I) ◦ (Θ1 ⊗Θ2) ◦∆

= m ◦ (Θ∗1 ⊗Θ∗2) ◦ (I ⊗ I) ◦∆

= m ◦ (Θ∗1 ⊗Θ∗2) ◦∆ ◦ I

= (Θ∗1 ∗Θ∗2) ◦ I = (Θ1 ∗Θ2)∗ ◦ I.

In general, when H is not co-commutative, the commutator is non-trivial.

Example 4.6.4. Consider the Hopf algebra SSym. We described its theta
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maps in the previous section. Consider two theta maps whose multiplicative

structure constants on degree 3 are

Θ1 F123 F132 F213 F312 F231 F321

F ∗123 2 0 2 2 0 2

F ∗132 0 2 2 2 2 0

F ∗213 2 2 0 0 2 2

F ∗231 2 2 0 0 2 2

F ∗312 0 2 2 2 2 0

F ∗321 2 0 2 2 0 2

Θ2 F123 F132 F213 F312 F231 F321

F ∗123 2 0 2 2 0 2

F ∗132 0 4 0 0 4 0

F ∗213 2 0 2 2 0 2

F ∗231 2 0 2 2 0 2

F ∗312 0 4 0 0 4 0

F ∗321 2 0 2 2 0 2

Then, the commutator [Θ1,Θ2] is non-trivial because 〈F ∗1243, [Θ1,Θ2](F3142)〉 =

4 6= 0.

Remark 4.6.5. These maps in general are not Hopf morphisms. They fail

to be algebra morphism and co-algebra morphism because algebra morphisms

and co-algebra morphisms are not additive. The best we can do right now is

to define them on generators, and extend the map multiplicatively, that give

an algebra morphism.
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Appendix A

Diagonally quasi-symmetric

functions

In this section, we study the diagonally quasi-symmetric functions DQSym.

This appendix comes from the paper [36].

In the polynomial ring Q[xn] = Q[x1, . . . , xn] with n variables, the ring of

symmetric polynomials (cf. [38, 44]), Symn, is the subspace of invariants under

the symmetric group Sn action

σ · f(x1, x2, . . . , xn) = f(xσ(1), xσ(2), . . . , xσ(n)).

The quotient space Q[xn]/〈Sym+
n 〉 over the ideal generated by symmetric

polynomials with no constant term is thus called the coinvariant space of

symmetric group. Classic results by Artin [1] and Steinberg [50] asserts that

this quotient forms an Sn-module that is isomorphic to the left regular
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representation. Moreover, considering the natural scalar product

〈f, g〉 =
(
f(∂x1, . . . , ∂xn)(g(x1, . . . , xn))

)
(0, 0, . . . , 0),

this quotient is equal to the orthogonal complement of Symn. In particular,

the coinvariant space is killed by Laplacian operator ∆ = ∂x2
1 + · · · + ∂x2

n.

Hence, it is also known as the harmonic space.

One can show that {hk(xk, . . . , xn) : 1 ≤ k ≤ n} forms a Gröbner basis of

〈Sym+
n 〉 with respect to the usual order x1 > · · · > xn, where hk is the complete

homogeneous basis of degree k. As a result, the dimension of Q[xn]/〈Sym+
n 〉

is n!.

One generalization is the diagonal harmonic space. In the context of

Q[xn,yn] = Q[x1, . . . , xn, y1, . . . , yn], the diagonally symmetric functions,

DSymn, is the space of invariants under the diagonal action of Sn

σ · f(x1, . . . , xn, y1, . . . , yn) = f(xσ(1), . . . , xσ(n), yσ(1), . . . , yσ(n)).

The diagonal harmonics, Q[xn,yn]/〈DSym+
n 〉, was studied by Garsia and

Haiman [23, 26] where it was used to prove the n! conjecture and Macdonald

positivity. In particular, its dimension turns out to be (n + 1)n−1. More

interesting results and applications can be found in [11, 13, 27].

The ring of quasi-symmetric functions, QSym, was introduced by Gessel [20]

as generating function for Stanley’s P -partitions [49]. It soon shows great

importance in algebraic combinatorics e.g. [5, 22]. In our context, QSymn can
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be defined as the space of invariants in Q[xn] under the Sn-action of Hivert

σ ·
(
xa1i1 · · ·x

ak
ik

)
= xa1j1 · · ·x

ak
jk

where i1 < · · · < ik, j1 < · · · < jk and {j1, . . . , jk} = {σ(i1), . . . , σ(ik)}.

In a series of papers by Aval, F. Bergeron and N. Bergeron, the authors

studied the quotient Q[xn]/〈QSym+
n 〉 over the ideal generated by

quasi-symmetric polynomials with no constant term, which they called the

super-covariant space of Sn. Their main result is that a basis of this quotient

corresponds to Dyck paths, and the dimension of the quotient space is the

n-th Catalan number Cn [2, 3].

After that, they extended QSym to diagonal setting, called diagonally

quasi-symmetric functions, DQSym [4]. They described a Hopf algebra

structure on DQSym, and made a conjecture about the linear structure of

Q[xn,yn]/〈DQSym+
n 〉.

In this appendix, we continue the study of the linear structure. We start with

the case where there are infinitely many variables i.e. R = Q[[x,y]] is the

ring of formal power series where x = x1, x2, . . . and y = y1, y2, . . . . The main

result is that we give a description of a Hilbert basis for the quotient space R/I

where I = DQSym+ is the closure of the ideal generated by DQSym without

constant terms. This Hilbert basis gives an upper bound on the degree of

Q[xn,yn]/〈DQSym+
n 〉. We then use it to compute the second column of the

Hilbert matrix, which coincides with the conjecture in [4].
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A.1 The F basis

We define a partial ordering � on bicompositions: α � β and β covers α if

there exists a 1 ≤ k ≤ `(α)− 1 such that either α2k = 0 or α1(k+1) = 0, and

β =

α11 · · · α1(k−1) α1k + α1(k+1) α1(k+2) · · · α1`(α)

α21 · · · α2(k−1) α2k + α2(k+1) α2(k+2) · · · α2`(α)

 .

By triangularity,

{
Fα =

∑
α�β

Mβ

}
forms a basis for DQSym. This basis is

originally introduced in [4]. For example,

F( 2
2

) = M( 2
2

)+M( 2 0
0 2

)+M( 1 1
0 2

)+M( 1 1 0
0 0 2

)+M( 2 0
1 1

)+M( 2 0 0
0 1 1

)+M( 1 1 0
0 1 1

)+M( 1 1 0 0
0 0 1 1

).
For convenience, we set F( 0

0

) = 1. This basis has the following easy but

important properties:

If α11 ≥ 1 and α11 + α21 ≥ 2, then

Fα = x1F(α11−1 α12 ··· α1`(α)
α21 α22 ··· α2`(α)

) + Fα(x2, x3, . . . , y2, y3, . . . ); (1.1)

If α11 = 1 and α21 = 0, then

Fα = x1F(α12 ··· α1`(α)
α22 ··· α2`(α)

)(x2, x3, . . . , y2, y3, . . . )+Fα(x2, x3, . . . , y2, y3, . . . ); (1.2)

If α11 = 0 and α21 ≥ 2, then

Fα = y1F( 0 α12 ··· α1`(α)
α21−1 α22 ··· α2`(α)

) + Fα(x2, x3, . . . , y2, y3, . . . ); (1.3)
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If α11 = 0 and α21 = 1, then

Fα = y1F(α12 ··· α1`(α)
α22 ··· α2`(α)

)(x2, x3, . . . , y2, y3, . . . )+Fα(x2, x3, . . . , y2, y3, . . . ). (1.4)

A.2 The G basis

In this section, we define a basis {Gε̃} indexed by generalized bicompositions

for Q[[x,y]].

Base cases: G( 0
0

) = 1 and Gε̃ = Fε̃ if ε̃ is a bicomposition. Otherwise, let

ε̃ = α̃
(

0
0

)
β where β is a non-zero bicomposition. Let k = `(ε̃)− `(β)− 1.

If β11 > 0,

Gε̃ = Gα̃β − xk+1G
α̃
(
β11−1 β12 ··· β1`(β)
β21 β22 ··· β2`(β)

). (2.1)

If β11 = 0,

Gε̃ = Gα̃β − yk+1G
α̃
(

0 β12 ··· β1`(β)
β21−1 β22 ··· β2`(β)

). (2.2)

Inductively, {Gε̃} is defined for all generalized bicomposition ε̃. Clearly Gε̃ is

homogeneous in degree |ε̃|. Hence, we have a notion of leading monomial of

Gε̃, denoted by LM(Gε̃) with respect to the lexicographic order with x1 >

y1 > x2 > y2 > · · · . To show that {Gε̃} forms a basis, it suffices to prove the

leading monomial of Gε̃ is Xε̃.

Lemma A.2.1. Let α̃ =
(
a
b

)
β̃ be a generalized bicomposition,

1. if a = b = 0, then Gα̃ = Gβ̃(x2, x3, . . . , y2, y3, . . . ),

2. if a > 0, then Gα̃ = x1G(a−1
b

)
β̃

+ P (x2, x3, . . . , y2, y3, . . . ),
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3. if a = 0 and b > 0, then Gα̃ = y1G( 0
b−1

)
β̃

+ P (x2, x3, . . . , y2, y3, . . . )

for some P ∈ Q[[x,y]].

Proof. We prove by induction on the length of α̃.

1. If α̃ =
(

0
0

)
, then Gα̃ = 1 and we are done.

2. If β̃ = β is a bicomposition,

(a) if a = b = 0 and β non-zero,

i. if β11 ≥ 1 and β11 + β21 ≥ 2, using (1.1) and (2.1), we get

Gα̃ = Gβ − x1G(β11−1 β12 ··· β1`(β)
β21 β22 ··· β2`(β)

)
= Fβ − x1F(β11−1 β12 ··· β1`(β)

β21 β22 ··· β2`(β)

)
= Fβ(x2, x3, . . . , y2, y3, . . . ) = Gβ(x2, x3, . . . , y2, y3, . . . )

and the lemma follows.

ii. if β11 = 1 and β21 = 0, using (1.2), (2.1) and induction on `(β̃),

we get

Gα̃ = Gβ − x1G( 0 β12 ··· β1`(β)
0 β22 ··· β2`(β)

)
= Gβ − x1G(β12 ··· β1`(β)

β22 ··· β2`(β)

)(x2, x3, . . . , y2, y3, . . . )

= Fβ − x1F(β12 ··· β1`(β)
β22 ··· β2`(β)

)(x2, x3, . . . , y2, y3, . . . )

= Fβ(x2, x3, . . . , y2, y3, . . . ) = Gβ(x2, x3, . . . , y2, y3, . . . )

and the lemma follows.
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iii. if β11 = 0 and β21 ≥ 2, using (1.3) and (2.2), we get

Gα̃ = Gβ − y1G( 0 β12 ··· β1`(β)
β21−1 β22 ··· β2`(β)

)
= Fβ − y1F( 0 β12 ··· β1`(β)

β21−1 β22 ··· β2`(β)

)
= Fβ(x2, x3, . . . , y2, y3, . . . ) = Gβ(x2, x3, . . . , y2, y3, . . . )

and the lemma follows.

iv. if β11 = 0 and β21 = 1, using (1.4), (2.2) and induction on `(β̃),

we get

Gα̃ = Gβ − y1G( 0 β12 ··· β1`(β)
0 β22 ··· β2`(β)

)
= Gβ − y1G(β12 ··· β1`(β)

β22 ··· β2`(β)

)(x2, x3, . . . , y2, y3, . . . )

= Fβ − y1F(β12 ··· β1`(β)
β22 ··· β2`(β)

)(x2, x3, . . . , y2, y3, . . . )

= Fβ(x2, x3, . . . , y2, y3, . . . ) = Gβ(x2, x3, . . . , y2, y3, . . . )

and the lemma follows.

(b) if a ≥ 1 and a+ b ≥ 2, by definition Gα̃ = Fα̃. Using (1.1), we get

Gα̃ = Fα̃ = x1F(a−1
b

)
β

+ Fα̃(x2, x3, . . . , y2, y3, . . . )

and the lemma follows, with P = Fα̃(x2, x3, . . . , y2, y3, . . . ).

(c) if a = 1 and b = 0, by definition Gα̃ = Fα̃. Using (1.2) and (2a). we
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get

Gα̃ = Fα̃ = x1Fβ(x2, x3, . . . , y2, y3, . . . ) + Fα̃(x2, x3, . . . , y2, y3, . . . )

= x1G( 0
0

)
β

+ Fα̃(x2, x3, . . . , y2, y3, . . . )

and the lemma follows with P = Fα̃(x2, x3, . . . , y2, y3, . . . ).

(d) if a = 0 and b ≥ 2, by definition Gα̃ = Fα̃. Using (1.3), we get

Gα̃ = Fα̃ = y1F( a
b−1

)
β

+ Fα̃(x2, x3, . . . , y2, y3, . . . )

and the lemma follows, with P = Fα̃(x2, x3, . . . , y2, y3, . . . ).

(e) if a = 0 and b = 1, by definition Gα̃ = Fα̃. Using (1.4) and (2a). we

get

Gα̃ = Fα̃ = y1Fβ(x2, x3, . . . , y2, y3, . . . ) + Fα̃(x2, x3, . . . , y2, y3, . . . )

= y1G( 0
0

)
β

+ Fα̃(x2, x3, . . . , y2, y3, . . . )

and the lemma follows with P = Fα̃(x2, x3, . . . , y2, y3, . . . ).

3. In the general case, let α̃ = γ̃
(

0
0

)
β where β is a non-empty bicomposition

and k = `(α̃)− `(β)− 1. We prove by induction on k. If k = 1, then we

are back in case (2a) above. Hence, we assume k > 1 and γ̃ =
(
a
b

)
µ̃.

(a) If a = b = 0,
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i. if β11 ≥ 1, by induction and (2.1), we have

Gα̃ =G( 0
0

)
µ̃
(

0
0

)
β

= G( 0
0

)
µ̃β
− xkG( 0

0

)
µ̃
(
β11−1 β12 ··· β1`(β)
β21 β22 ··· β2`(β)

)
=Gµ̃β(x2, x3, . . . , y2, y3, . . . )

− x(k−1)+1G
µ̃
(
β11−1 β12 ··· β1`(β)
β21 β22 ··· β2`(β)

)(x2, x3, . . . , y2, y3, . . . )

=G
µ̃
(

0
0

)
β
(x2, x3, . . . , y2, y3, . . . )

and the lemma follows.

ii. if β11 = 0, by induction and (2.2), we have

Gα̃ =G( 0
0

)
µ̃
(

0
0

)
β

= G( 0
0

)
µ̃β
− ykG( 0

0

)
µ̃
(

0 β12 ··· β1`(β)
β21−1 β22 ··· β2`(β)

)
=Gµ̃β(x2, x3, . . . , y2, y3, . . . )

− y(k−1)+1G
µ̃
(

0 β12 ··· β1`(β)
β21−1 β22 ··· β2`(β)

)(x2, x3, . . . , y2, y3, . . . )

=G
µ̃
(

0
0

)
β
(x2, x3, . . . , y2, y3, . . . )

and the lemma follows.

(b) If a ≥ 1,
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i. if β11 ≥ 1, by induction and (2.1), we have

Gα̃ =G(a
b

)
µ̃
(

0
0

)
β

= G(a
b

)
µ̃β
− xkG(a

b

)
µ̃
(
β11−1 β12 ··· β1`(β)
β21 β22 ··· β2`(β)

)
=x1G(a−1

b

)
µ̃β

+ P1(x2, x3, . . . , y2, y3, . . . )

− xk
(
x1G(a−1

b

)
µ̃
(
β11−1 β12 ··· β1`(β)
β21 β22 ··· β2`(β)

)
+ P2(x2, x3, . . . , y2, y3, . . . )

)
=x1

(
G(a−1

b

)
µ̃β
− xkG(a−1

b

)
µ̃
(
β11−1 β12 ··· β1`(β)
β21 β22 ··· β2`(β)

))
+ P (x2, x3, . . . , y2, y3, . . . )

=x1G(a−1
b

)
µ̃
(

0
0

)
β

+ P (x2, x3, . . . , y2, y3, . . . )

and the lemma follows with P = P1 − xkP2.

ii. if β11 = 0, by induction and (2.2), we have

Gα̃ =G(a
b

)
µ̃
(

0
0

)
β

= G(a
b

)
µ̃β
− ykG(a

b

)
µ̃
(

0 β12 ··· β1`(β)
β21−1 β22 ··· β2`(β)

)
=x1G(a−1

b

)
µ̃β

+ P1(x2, x3, . . . , y2, y3, . . . )

− yk
(
x1G(a−1

b

)
µ̃
(

0 β12 ··· β1`(β)
β21−1 β22 ··· β2`(β)

)
+ P2(x2, x3, . . . , y2, y3, . . . )

)
=x1

(
G(a−1

b

)
µ̃β
− ykG(a−1

b

)
µ̃
(

0 β12 ··· β1`(β)
β21−1 β22 ··· β2`(β)

))
+ P (x2, x3, . . . , y2, y3, . . . )

=x1G(a−1
b

)
µ̃
(

0
0

)
β

+ P (x2, x3, . . . , y2, y3, . . . )

and the lemma follows with P = P1 − ykP2.
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(c) If a = 0 and b ≥ 1,

i. if β11 ≥ 1, by induction and (2.1), we have

Gα̃ =G( 0
b

)
µ̃
(

0
0

)
β

= G( 0
b

)
µ̃β
− xkG( 0

b

)
µ̃
(
β11−1 β12 ··· β1`(β)
β21 β22 ··· β2`(β)

)
=y1G( 0

b−1

)
µ̃β

+ P1(x2, x3, . . . , y2, y3, . . . )

− xk
(
y1G( 0

b−1

)
µ̃
(
β11−1 β12 ··· β1`(β)
β21 β22 ··· β2`(β)

)
+ P2(x2, x3, . . . , y2, y3, . . . )

)
=y1

(
G( 0

b−1

)
µ̃β
− xkG( 0

b−1

)
µ̃
(
β11−1 β12 ··· β1`(β)
β21 β22 ··· β2`(β)

))
+ P (x2, x3, . . . , y2, y3, . . . )

=y1G( 0
b−1

)
µ̃
(

0
0

)
β

+ P (x2, x3, . . . , y2, y3, . . . )

and the lemma follows with P = P1 − xkP2.

ii. if β11 = 0, by induction and (2.2), we have

Gα̃ =G( 0
b

)
µ̃
(

0
0

)
β

= G( 0
b

)
µ̃β
− ykG( 0

b

)
µ̃
(

0 β12 ··· β1`(β)
β21−1 β22 ··· β2`(β)

)
=y1G( 0

b−1

)
µ̃β

+ P1(x2, x3, . . . , y2, y3, . . . )

− yk
(
y1G( 0

b−1

)
µ̃
(

0 β12 ··· β1`(β)
β21−1 β22 ··· β2`(β)

)
+ P2(x2, x3, . . . , y2, y3, . . . )

)
=y1

(
G( 0

b−1

)
µ̃β
− ykG( 0

b−1

)
µ̃
(

0 β12 ··· β1`(β)
β21−1 β22 ··· β2`(β)

))
+ P (x2, x3, . . . , y2, y3, . . . )

=y1G( 0
b−1

)
µ̃
(

0
0

)
β

+ P (x2, x3, . . . , y2, y3, . . . )
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and the lemma follows with P = P1 − ykP2.

Corollary A.2.2. Let ε̃ be a generalized bicomposition, then the leading

monomial of Gε̃ is Xε̃. Hence, {Gα̃} forms a Hilbert basis for R.

Proof. We prove by induction on `(ε̃) and |ε̃|. If ε̃ =
(

0
0

)
, by definition Gε̃ =

1 = X ε̃. Otherwise, let ε̃ =
(
a
b

)
β̃.

1. If a = b = 0 and β̃ non-zero, by induction on `(ε̃) and Lemma A.2.1, we

have

LM(Gε̃) = LM(Gβ̃(x2, x3, . . . , y2, y3, . . . )) = (x2, x3, . . . , y2, y3, . . . )
β̃ = Xε̃.

2. If a ≥ 1, by induction on |ε̃| and Lemma A.2.1, we have

LM(Gε̃) = LM

(
x1G(a−1

b

)
β̃

)
= Xε̃.

3. If a = 0 and b ≥ 1, by induction on |ε̃| and Lemma A.2.1, we have

LM(Gε̃) = LM

(
y1G( 0

b−1

)
β̃

)
= Xε̃.
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A.3 The Hilbert Basis

The set {xα̃Fβ} is a spanning set of the ideal I. For each α̃ and β, we write

xα̃Fβ in terms of the G basis by the following rules.

(1) We reorder the product xα̃Fβ as · · ·
(
xα̃21

2

(
yα̃22

2

(
xα̃11

1

(
yα̃21

1 Fβ
))))

.

(2) We reduce the above product recursively using (2.1)

xiGγ̃ = xiG( ··· γ̃1i ···
··· γ̃2i ···

) = G( ··· γ̃1i+1 ···
··· γ̃2i ···

) −G( ··· 0 γ̃1i+1 ···
··· 0 γ̃2i ···

); (3.1)

or using (2.2) when γ̃1i = 0 for some i,

yiGγ̃ = yiG( ··· γ̃1i ···
··· γ̃2i ···

) = G( ··· γ̃1i ···
··· γ̃2i+1 ···

) −G( ··· 0 γ̃1i ···
··· 0 γ̃2i+1 ···

). (3.2)

(3) When γ̃1i = a > 0, we reduce yiGγ̃ as

y1Gγ̃ = yiG( ··· a ···
··· γ̃2i ···

) = yi

(
G( ··· 0 a ···

··· 0 γ̃2i ···

) + xiG( ··· a−1 ···
··· γ̃2i ···

)) (3.3)

= yiG( ··· 0 a ···
··· 0 γ̃2i ···

) + xi

(
yiG( ··· a−1 ···

··· γ̃2i ···

)) = · · ·

=
a−1∑
k=0

xki

(
yiG( ··· 0 a−k ···

··· 0 γ̃2i ···

))+ xai

(
yiG( ··· 0 ···

··· γ̃2i ···

)) .
The “ · · · ” above means γ̃11 · · · γ̃1(i−1), γ̃1(i+1) · · · γ̃1`(γ̃), γ̃21 · · · γ̃2(i−1) or

γ̃2(i+1) · · · γ̃1`(γ̃) with respect to their positions in the generalized

bicomposition.
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For example,

y1F( 1
0

) = y1

(
G( 0 1

0 0

) + x1G( 0
0

)) = y1G( 0 1
0 0

) + x1y1G( 0
0

)
=G( 0 1

1 0

) −G( 0 0 1
0 1 0

) + x1

(
G( 0

1

) −G( 0 0
0 1

))
=G( 0 1

1 0

) −G( 0 0 1
0 1 0

) +G( 1
1

) −G( 0 1
0 1

) −G( 1 0
0 1

) +G( 0 1 0
0 0 1

).
For each of the above rule, we choose a leading basis element Gη̃ as follows.

We define a function φ from ({xi} × {Gγ̃}) ∪ ({yi} × {Gγ̃}) to {Gγ̃}.

Definition A.3.1. In the case of rules 3.1, 3.2, we choose

φ (xi, Gγ̃) = G( ··· 0 γ̃1i+1 ···
··· 0 γ̃2i ···

) and φ (yi, Gγ̃) = G( ··· 0 γ̃1i ···
··· 0 γ̃2i+1 ···

). In the case of

rule 3.3, we choose φ (yi, Gγ̃) = φ

(
yi, G( ··· 0 a ···

··· 0 γ̃2i ···

)) = G( ··· 0 0 a ···
··· 0 1 γ̃2i ···

).
In the other words, at each step of the expansion, we choose the

lexicographically smallest η̃ such that Gη̃ appears as a term in the expansion.

Lemma A.3.2. The process of choosing in Definition A.3.1 is invertible, i.e.

φ is injective.

Proof. Since each time we multiply xi or yi, the chosen term contains a
(

0
0

)
at position i. Combining this fact with the rule that we have to multiply yi

before xi, we have the following inverse function.

Let i be the largest number that (γ̃1i, γ̃2i) = (0, 0) and 0 < i < `(γ̃).

(1) If γ̃1(i+1) > 0, then φ−1

(
G( ··· 0 γ̃1(i+1) ···

··· 0 γ̃2(i+1) ···

)) = xiG( ··· γ̃1(i+1)−1 ···
··· γ̃2(i+1) ···

).
(2) If γ̃1(i+1) = 0 and, γ̃1(i+2) = 0 or γ̃2(i+1) > 1, then
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φ−1

(
G( ··· 0 γ̃1(i+1) ···

··· 0 γ̃2(i+1) ···

)) = yiG( ··· γ̃1(i+1) ···
··· γ̃2(i+1)−1 ···

).
(3) If γ̃1(i+1) = 0, γ̃2(i+1) = 1 and γ̃1(i+2) > 0, then

φ−1

(
G( ··· 0 0 γ̃1(i+2) ···

··· 0 1 γ̃2(i+2) ···

)) = yiG( ··· γ̃1(i+2) ···
··· γ̃2(i+2) ···

).
Then, we can construct a map Φ : {X α̃Fβ : |β| ≥ 1} → {Gγ̃} that is defined by

“composing” φ with itself (|α̃| − 1) times. By the above Lemma, we also have

Φ is injective. For simplicity, we define φ−1(Gγ̃) (or Φ−1(Gγ̃)) to be X α̃Gβ̃ (or

X α̃Fβ) if φ(X α̃Gβ̃) = Gγ̃ (or Φ(X α̃Fβ) = Gγ̃ respectively).

Lemma A.3.3. In the expansion of X α̃Fβ in the G basis using the rules

3.1, 3.2 and 3.3, the term Φ(X α̃Fβ) appears only once. In particular, it has

coefficients 1 or −1.

Proof. We begin with the claim that if µ̃ 6= ν̃, then φ(xiGµ̃) and φ(yiGµ̃) do

not appear in the expansion of xiGν̃ and yiGν̃ respectively.

Let k be the smallest integer such that (µ̃k1, µ̃k2) 6= (ν̃k1, ν̃k2). In rules (4.1),

(4.2) and (4.3), for all Gγ̃ in the expansion of xiGµ̃ or yiGµ̃, the first i − 1

columns of γ̃ is the same as that of µ̃. Hence, the claim follows if k < i.

If k = i, and if we are multiplying xi using rules (4.1) or (4.2), then the claim

holds because either the i-th or the i+ 1-th columns of xiGµ̃ will be different

from terms in expansions of xiGν̃ . If we are multiplying by yi, then note that

if the i − th column of µ is (0, 0), then µ(i+1)1 must be 0 because otherwise,

that means we multiplied an xi or xj or yj with j > i before yi, which violates

our rule. And the same condition applies to ν. With this restriction, it is easy
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to check that the claim holds.

If k > i, in both cases, if we choose any term in the expansion that is not

φ(xiGν̃) or φ(yiGν̃), then the i or i + 1 column of its index must be different

from that of φ(xiGµ̃) or φ(yiGµ̃). If we choose φ(xiGν̃) or φ(yiGν̃), we also

have φ(xiGµ̃) 6= φ(xiGν̃) and φ(yiGµ̃)φ(yiGν̃) because µ 6= ν.

Since each term in the expansion of X α̃Fβ corresponds to a sequence of choice

using rules (4.1), (4.2) or (43), if at some point, we choose a term that is

different from the choice in Φ, then a recursive use of the claim asserts that

Φ(X α̃Fβ) will not appear again.

We now define an order (<G) on the set of generalized bicompositions as follows

1. If α̃ and β̃ are bicompositions, then α̃ <G β̃ if α̃ <lex β̃.

2. If α̃ is a bicomposition and β̃ is not, then α̃ <G β̃.

3. If α̃ = µ̃
(

0
0

)
α′, β̃ = ν̃

(
0
0

)
β′ where α′ and β′ are bicompositions, let u =

`(α̃)− `(α′)− 1, v = `(α̃)− `(β′)− 1, then α̃ <G β̃ if

(a) u < v, or

(b) u = v, α′11 > 0 and β′11 = 0, or

(c) u = v, α′11 > 0, β′11 > 0 (or α′11 = 0, β′11 = 0) and
←−
φ (Gα̃) <G

←−
φ (Gβ̃)

where we define
←−
φ (Gδ̃) to be γ̃ if φ(xiGγ̃) = Gδ̃ or φ(yiGγ̃) = Gδ̃ for

some i.

Lemma A.3.4. The order <G is a total order on the set of generalized

bicompositions such that if Gγ̃ = Φ(X α̃Fβ), then for all Gδ̃ that appears in

the expansion of X α̃Fβ, we have γ̃ ≥G δ̃.
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Proof. Clearly this is a total order. If α̃ < β̃ by (1) or (2), then β̃ cannot

appear in the expansion of Φ−1(α̃) = α̃.

If α̃ < β̃ by (3a), that means φ−1(α̃) = xu+1Gγ̃ or yu+1Gγ̃ for some γ̃. Hence,

β̃ cannot appear in the expansion of Φ−1(α̃) because β̃(v+1)1 = β̃(v+1)2 = 0

cannot be created.

If α̃ < β̃ by (3b), that means φ−1(α̃) = xu+1Gγ̃ for some γ̃. Hence, β̃ cannot

appear in the expansion of Φ−1(α̃) because it is not in that of xu+1Gδ̃ for any

δ̃.

With this ordering, there is a unique leading Gδ̃ for each expansion of X α̃Fβ.

Theorem A.3.5. The set A = {Gα̃ | Gα̃ /∈ Img(Φ)} forms a Hilbert basis for

the quotient space R/I.

Proof. For any polynomial p in R, we write p in terms of the G basis with <G

order. For each term Gα̃ ∈ Img(Φ), we subtract p by Φ−1(Gα̃) ∈ I and Gα̃ is

cancelled. If we repeat this process (possibly countably many times), we can

express p as a series of A.

A.4 Finitely many variables case

In the case that there are finitely many variables,

Rn = Q[x1, . . . , xn, y1, . . . , yn], the above constructions of

DQSym(x1, . . . , xn, y1, . . . , yn), the F , G bases and the ideal

In =< DQSym+(x1, . . . , xn, y1, . . . , yn) > remain the same by taking
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xi = yi = 0 for i > n. In this case, LM(Gα̃) = X α̃ whenever `(α̃) ≤ n and

hence {Gα̃ : `(α̃) ≤ n} spans Rn.

Let Ri,j
n be the span of {X α̃ : `(α̃) ≤ n,

∑
k α̃1k = i,

∑
k α̃2k = j}. Since

In is bihomogeneous in x and y, In =
⊕
i,j

I i,jn where I i,jn = In ∩ Ri,j
n , and

Rn/In =
⊕
i,j

V i,j
n where V i,j

n = Rn/In ∩Ri,j
n .

The Hilbert matrix corresponding to Rn/In is the matrix

Mn(i, j) = dim(V i−1,j−1
n ).

The goal of this section is to compute the second column of the Hilbert matrix.

The proof is slight generalization of the one in [3].

Lemma A.4.1. The set {Gα̃ | Gα̃ /∈ Img(Φ), `(α̃) ≤ n} spans the quotient

Rn/In.

Proof. Among all α̃ such that Gα̃ ∈ Img(Φ), `(α̃) ≤ n and Gα̃ cannot be

reduced to 0, let β̃ be the smallest one with respect to the <G order. Then,

Gβ̃ = Gβ̃ − Φ−1(Gβ̃) + Φ−1(Gβ̃)

≡ Gβ̃ − Φ−1(Gβ̃) mod In

But since Gβ̃ is the leading term in Φ−1(Gβ̃), terms in Gβ̃ − Φ−1(Gβ̃) are

strictly smaller than Gβ̃, and thus they reduce to 0. This contradicts to our

assumption on β̃.

Let Bn be the set of generalized bicompositions {α̃} such that
k∑
i=1

(α̃1i+ α̃2i) <

k for all 1 ≤ k ≤ n and `(α̃) ≤ n. Clearly from the definition of G basis, if

α̃ /∈ Bn, then Gα̃ ∈ In. Therefore, the set {X α̃ : α̃ ∈ Bn} spans Rn/In, the
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proof is essentially the same as Lemma A.4.1. In particular, X α̃ ∈ In for all

|α̃| ≥ n.

Lemma A.4.2. The set {X α̃Fβ : α̃ ∈ Bn, |β| ≥ 0} spans Rn.

Proof. We already have X ε̃ ≡
∑
α̃∈Bn

X α̃ mod In, which means X ε̃ =
∑
α̃∈Bn

X α̃+∑
|β|≥1

PβFβ for some polynomial Pβ. If we reduce each monomial Pβ using the

above rule, and write the product of F basis in terms of F basis, the claim

will be satisfied in a finite number of steps.

For a generalized bicomposition α̃ with `(α̃) ≤ n, we define its reverse α to be

the generalized bicomposition such that α1i = α̃1(n−i+1) and α2i = α̃2(n−i+1)

for all 1 ≤ i ≤ n.

We denote the set {X α̃ : α ∈ Bn} by An. The endomorphism of Rn that

sends xi to xn−i+1 and yi to yn−i+1 is clearly an algebra isomorphism that

fixes DQSym(x,y), in fact, it sends Mα to Mα′ where α′ is the reversed

bicomposition of α. Therefore, by Lemma A.4.2, the set

{X α̃Fβ : α̃ ∈ An, |β| ≥ 0} spans Rn.

Hence, In = 〈Fγ : |γ| ≥ 1〉 is spanned by {X α̃FβFγ : α̃ ∈ An, |β| ≥ 0, |γ| ≥ 1},

which means it is spanned by {X α̃Fβ : α̃ ∈ An, |β| ≥ 1}.

Lemma A.4.3. For X α̃Fβ ∈ Ri,1
n with α̃ ∈ An, |β| ≥ 1 and |α̃|+ |β| < n, let

Gγ̃ = Φ(X α̃Fβ), then `(γ̃) ≤ n.

Proof. First, rules (4.1) and (4.2) increase the length by 1 while (4.3) increase

the length by 2. Now, we need to track γ̃`(γ̃). If γ̃`(γ̃) comes from β`(β) and
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gets shifted, since we can use (4.3) at most once, we can make at most |α̃|+ 1

steps to the right. Therefore, `(γ̃) ≤ |α̃|+ 1 + `(β) ≤ |α̃|+ 1 + |β| ≤ n.

If γ̃`(γ̃) is 1 which comes from multiplying xk or yk to Gε̃ with k > `(ε̃), since

α̃ ∈ An, we have
∑

i≥k(α̃1i + α̃2i) < n − k + 1. In this process, we use rules

(4.1) and (4.2) only and each increases the length by 1. Therefore, γ̃`(γ̃) can

be shifted to at most position k + n− k = n.

Corollary A.4.4. Let Mn be the Hilbert matrix of Rn/In, then

Mn(n − 1, 2) =
1

n

(
2n− 2

n− 1

)
, Mn(i, 2) =

∑
1≤j≤i,1≤k≤2

Mn−1(j, k) for

1 ≤ i ≤ n− 2, and Mn(2, 1) = 0 for i ≥ n.

Proof. Lemma A.4.1 shows that Ci = {Gα̃ ∈ V i,1
n : Gα̃ /∈ Img(Φ)} spans

V i,1
n . Suppose there is a linear dependence P =

∑
Gα̃∈Ci

aα̃Gα̃ ∈ I i,1n . Since

I i,1n is spanned by D = {X α̃Fβ ∈ Ri,1
n : α̃ ∈ An, |β| ≥ 1}, we have P =∑

Xα̃Fβ∈D

bα̃βX
α̃Fβ. This means the leading term of P when we expand in G

basis is some Gγ̃ such that γ̃ ∈ Img(Φ) and by Lemma A.4.3 `(γ̃) ≤ n, which

is absurd. Therefore, Ci is a linear basis for V i,1
n .

Now, Mn(i, 1) = dimV i−1,1
n = |Ci−1|. Let Gγ̃ ∈ V i,1

n and k be the unique

number that γ̃k2 = 1. First, from definition of G, γ̃ /∈ Bn implies Gγ̃ ∈ In and

Gγ̃ ∈ Img(Φ).

If i = n − 1, then |γ̃| = n − 1. If k < `(γ̃), since
n∑

j=k+1

γ̃1j ≥ n − k, we will

be using rules (4.3) when applying φ−1. This reduces the length by 2 while

the size by 1, which means Gγ̃ ∈ Img(Φ). If k = `(γ̃), we only use rules (4.1)

and (4.2) when applying φ−1. In this case, Gγ̃ /∈ Img(Φ) whenever γ̃ ∈ Bn.
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Therefore, |Cn−2| is the Catalan number
1

n

(
2n− 2

n− 1

)
.

If 1 ≤ i ≤ n − 2, |γ̃| ≤ n − 2. From the definition of φ, Gγ̃ /∈ Img(Φ) if

and only if G( γ̃11 ··· γ̃1(n−1)
γ̃21 ··· γ̃2(n−1)

) ∈ V j,k
n−1 \ Img(Φ) for some 1 ≤ j ≤ i, 1 ≤ k ≤ 2.

Therefore, Mn(i, 2) =
∑

1≤j≤i,1≤k≤2

Mn−1(j, k) for 1 ≤ i ≤ n− 2.

By the symmetryMn(a, b) = Mn(b, a), we obtain the first to rows of the Hilbert

matrix, namely Mn(2, n− 1) =
1

n

(
2n− 2

n− 1

)
, Mn(2, i) =

∑
1≤j≤i,1≤k≤2

Mn−1(k, j)

for 1 ≤ i ≤ n− 2, and Mn(2, i) = 0 for i ≥ n.

This method can be applied directly to some other terms. To be more specific,

for 2i+ j ≤ n, the set {Gα̃ | Gα̃ /∈ Img(Φ), `(α̃) ≤ n} is a linear basis in V i,j
n .

Therefore, the formula for each column stabilizes when the number of variables

is large enough. However, it fails in some other terms and this set is not a

linear basis in general.
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