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Abstract 

 

With the prevalence of dementia increasing each year, preclinically implemented therapeutic 

interventions are critically needed. It has been suggested that cascading neural network failures may 

bring on behavioural deficits associated with Alzheimer’s disease. Previously we have shown that 

cognitive-motor integration (CMI) training in adults with mild cognitive impairments generalized to 

improved global cognitive and activities of daily living scores. Here we employ a novel movement-

control based training approach involving CMI rather than traditional cognition-only brain training. We 

hypothesized that such training would stimulate widespread neural networks and enhance rule-based 

visuomotor ability in at-risk individuals. We observed a significant improvement in bimanual 

coordination in the at-risk training group. We also observed significant decreases in movement variability 

for the most complex CMI condition in the at-risk and healthy training groups. These data suggest that 

integrating cognition into action in a training intervention may be effective at strengthening vulnerable 

brain networks in asymptomatic adults at risk for developing dementia.  
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Introduction 

 In recent years, a consensus has emerged that research on non-pharmaceutical intervention 

strategies to prevent functional decline in dementia should focus on preclinical disease stages (Sperling 

et al., 2011). Dementia is an umbrella term for a broad range of heterogeneous brain diseases which 

often manifest as progressively worsening motor, affective and cognitive processes. The most common 

cause of the pathological decline which leads to dementia is Alzheimer’s disease (AD; Jorm, & Jolley, 

1998). Presently there is no curative treatment for dementia, and early diagnosis is still elusive. With 

such a large portion of the population over the age of 60, the prevalence of dementia is increasing 

drastically, leaving a larger number of patients and caregivers in overwhelming duress (Prince et al., 

2013). There is a heavy demand for research that focuses on low-cost, non-invasive therapeutic 

intervention strategies to offset this increasing healthcare burden. Thus, research is shifting focus 

towards the preclinical stages of dementia for clues about the timeline of pathological decline in the 

brain, symptom development, and prevention. 

The ability to make a resolute early diagnosis of dementia is still in its infancy. At present a 

diagnosis generally relies on an interview with a caregiver, neuropsychological tests, painful 

cerebrospinal fluid biomarker procedures, and/or expensive neuroimaging. A probable diagnosis of AD 

can be made only after clinical symptoms appear and significant damage to the brain has already 

occurred (Ewers, Sperling, Klunk, Weiner, & Hampel, 2011). With current clinical diagnostic 

techniques, it is especially difficult to detect when an individual may be in the preclinical stages 

because behavioural symptoms are mostly absent, despite the fact that the pathophysiological processes 

of AD begin years to decades before clinical symptoms would appear (Morris, 2005; Sperling et al., 

2011). It is becoming evident that treatment should be targeted towards individuals before symptoms 

develop, as is commonly done for other chronic illnesses like cardiovascular disease (CVD) or 

diabetes. 
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A general shift in strategy is taking place from traditional, single aspect strategies, e.g., 

cognitive training (CT) or improvement of cardiovascular health, to strategies that focus on integrated 

approaches and more generalizable improvements to brain health. Two recent insights drive this shift: 

1) the pathological changes associated with dementia start years or decades before the onset of clinical 

symptoms (Prince et al., 2013), and 2) the earliest changes in the dementia brain appear to be an altered 

functionality of large brain-wide neural networks rather than atrophy, in specific regions such as the 

medial-temporal area (Hawkins, Goyal, & Sergio, 2015; Jones et al., 2016). Here these concepts will be 

incorporated into a decline-prevention strategy by examining the efficacy of a tablet based, behavioral 

intervention program in older adults at an increased risk of developing dementia. 

Neural Correlates of Movement Control 

Properly coordinating smooth movements for regular daily activity requires many areas of the 

brain for even the most basic movements. Movements often begin with visual input to the retina about 

an object of interest. This visual information is processed in the primary visual cortex (V1; see Figure 

1) and can be sent dorsally to the parieto-occipital extrastriate cortex to facilitate action based on vision 

(Kandel, Schwartz, & Jessell, 2000, p. 396-399; Mishkin & Ungerleider, 1982; Mishkin, Ungerleider, 

& Macko, 1983). Input is received by the posterior parietal cortex (PPC), which is an area that has an 

essential role in encoding spatial information in relation to motor output by transforming visual cues 

into a motor plan that will properly align movement effectors with a target (i.e., by computing the 

effector position in fixation-centred coordinates). This function is mainly computed in the superior 

parietal lobule (SPL; John F Kalaska, Scott, Cisek, & Sergio, 1997). With information from the PPC 

about placement of the body in peripersonal space, connections to the frontal lobes carry this 

information to the premotor cortex (PM; Wise, Boussaoud, Johnson, & Caminiti, 1997). This input is 

continually updated in the PM via feedback from the PPC, which allows the desired trajectory to be 

planned based on the displacement of the hand during movement in relation to the target position. 
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Figure 1. Simplified overview of brain regions involved in both standard and non-standard visuomotor 

transformations. Primary visual cortex (V1), superior parieto-occipital extrastriate cortex (SPOC), 

superior parietal lobule (SPL) inferior parietal lobule (IPL), dorsal premotor cortex (PMd), dorsal 

premotor rostral (PMdr), dorsal premotor caudal (PMdc), ventral premotor cortex (PMv), 

supplementary motor area (SMA), cingulate motor area (CMA), primary motor area (M1), dorsolateral 

prefrontal cortex (DLPFC), medial superior temporal area (MST), posterior cingulate cortex (PCC). 
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The PM functions in planning, spatial/sensory guidance, rule-integration and in some cases, 

direct control of movement (having direct connections to motor neurons driving proximal 

musculature). PM neurons organize and gather information to assist with selecting the most effective 

primary motor cortex (M1) neurons to carry-out the desired task (Kandel, Schwartz, & Jessell, 2000, p. 

412-415). Specifically, the dorsal premotor cortex (PMd) seems to be intricately involved in the process 

of creating motor plans for reaching and pointing by identifying the target and selecting an effector 

(Hoshi & Tanji, 2006). Neurons in the caudal area of the dorsal, caudal area (PMdc) appear to fire 

rapidly for specific target positions in relation to the hand during the planning phase and execution of 

the reaching movement (Cisek & Kalaska, 2005; Sayegh, Hawkins, Hoffman, & Sergio, 2013). 

Additionally, cells in the rostral area of the dorsal premotor cortex (PMdr) are selective for arbitrary 

associations and rule integration in planning movements (Muhammad, Wallis, & Miller, 2006; Sayegh 

et al., 2013). Additional areas outside of the PM, like the precuneus region, contribute to this program 

by updating visuospatial information, specifically by creating spatial representations of the 

environment in relation to the self (Cavanna & Trimble, 2006). The cerebellum also offers pertinent 

contributions regarding coordination of the movement, corrective motor learning, state estimation and 

possibly combining predicted and perceived sensory consequences of movement (Hart & Henriques, 

2016; Miall, Reckess, & Imamizu, 2001), and thus becomes more activated as movement tasks become 

more complex (Gorbet & Sergio, 2016). After such extensive processing, the necessary forces to enact 

a planned movement are encoded by M1 and this information is transformed into a command to the 

spinal cord to coordinate the desired muscle activity patterns (Kandel et al., 2000, p. 344).  

The control of movement to perform regular activities in daily life involves intricate processing 

and communication in the brain. This action requires multiple brain areas to work together to process 

and then integrate information with assistance from white matter (WM) tracts that connect these areas 

and allow for communication between cortical areas. For example, vision guides most goal-directed 

movements and requires a transformation from input to the retina into a command for motor neurons to 
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move limbs to the desired location; this is referred to as a visuomotor transformation. The 

frontoparietal network appears to be important for transforming extrinsic visuospatial information into 

intrinsic motor activity (Corbetta, 1998). This network has many association fibres that mainly consist 

of reciprocal connections between the parietal lobe and the frontal lobe, among others. Overall, these 

fibres include the superior longitudinal fasciculus (SLF) and to a lesser extent, other subdivisions 

including, the middle longitudinal fasciculus (MLF), the inferior longitudinal fasciculus (ILF), the 

cingulum bundle and the fronto-occipital fasciculus (Schmahmann & Pandya, 2009). Specifically, the 

frontoparietal network is involved in assisting with the integration of cognitive processing and motor 

planning via frontal and parietal lobes for computation of visuomotor tasks (Hawkins et al., 2015).  

Different movements recruit distinct brain areas and WM tracts for precise timing and smooth 

motor output. Simple movements typically involve a direct/standard interaction with an object whereby 

vision and movements are aligned with a target. Visuomotor brain networks are responsible for 

coordinating these types of movements by incorporating input from M1, SPL, and PMd during the 

planning stages and initiation of the movement (Gorbet, Staines, & Sergio, 2004). When movements 

become more complicated, they require resources from additional brain networks to create an algorithm 

that will assist with creating and following cognitive rules to help align the effector with the desired 

target location when this location is not consistent with guiding visual stimuli (Wise, di Pellegrino, & 

Boussaoud, 1996; Redding & Wallace, 1996). The frontoparietal network is particularly helpful in 

transferring information between brain areas to create the algorithm for this type of movement. An 

example of such a nonstandard interaction occurs when using a desktop computer: in this case, gaze 

remains fixed on the screen in the vertical plane while hand movements over a mouse or touchpad are 

performed in the horizontal plane (Wise, di Pellegrino, & Boussaoud, 1996). The horizontally placed 

mouse controls a cursor in the vertical plane, but the two are spatially dissociated. The ability to 

perform more complex rule-based visuomotor tasks by integrating information from multiple brain 

areas is called cognitive-motor integration (CMI). It appears that for nonstandard CMI tasks, the 
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anterior SPL, PFC and the PMdc, which are connected by the frontoparietal network, integrate 

information about planned movement direction with updates from current limb and target position to 

produce movement based on cognitive decisions (Hawkins, Sayegh, Yan, Crawford, & Sergio, 2013; 

Sayegh et al., 2013).  

The decoupling of visual and spatial target information can be differentially processed based on 

either spatial or strategic recalibrations. When learning to work in a separate plane, like when using a 

desktop computer as described above, implicit recalibration based on internal recognition of movement 

error causes corrective feedback for the movement without conscious awareness (Clower & 

Boussaoud, 2000). Alternatively, the premise of strategic control is that an explicit rule will be adapted 

to properly perform a selected movement (Clower & Boussaoud, 2000). In this case, working with 

reversed visual feedback, like when getting used to using a mouse to scroll up and down on a new 

laptop, may require rule-integration until the motor behaviour is learned (i.e. remembering a rule like to 

scroll down to move up a webpage and vice versa). This type of movement learning relies on external 

feedback of errors and uses explicit rules to incorporate the new appropriate movement pattern. 

Therefore, tasks that require spatial or strategic recalibration offer insights into an individual’s CMI 

ability by demonstrating how well their brain can perform thinking-while-moving tasks. 

It appears that in performing movements where planes are spatially dissociated, most of the 

same brain areas are activated as in non-dissociated movements; however, patterns of activity within 

these regions differ substantially. This indicates that cells throughout visuomotor brain regions, like 

PMd cells, have a preferred direction for firing that matches both targets, are co-activated to fire in 

alignment to movement toward either target (Gorbet & Sergio, 2017; Klaes, Westendorff, Chakrabarti, 

& Gail, 2011). When the movement path is selected, the path to the unchosen target is simply inhibited. 

Thus, when complicated movements are required, it appears that the brain plans accordingly for any 

relevant potential movement, but upon execution of the motor plan, the unselected movements are 

inhibited, and the chosen path is implemented. Proper movements in the correct direction while 
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receiving reversed visual feedback require areas of the brain (i.e. cuneus and medial premotor cortex) 

to transform motor output to overcome the default tendency to move eyes and hands to the same spatial 

location (Gorbet & Sergio, 2016). The movement itself relies on a number of areas, but with altered 

visual feedback, there is additional reliance on the left superior posterior cerebellum and right inferior 

parietal lobule (IPL) to organize and produce the nonstandard movement (Gorbet & Sergio, 2016). 

Additionally, both the PMdc and PMdr tend to be activated during nonstandard tasks (Sayegh et al., 

2013). 

Another important factor for effective motor control that is used in day-to-day living is 

bimanual coordination. Bimanual coordination engages communication through interhemispheric WM 

tracts of the corpus callosum (CC) which joins left and right parietal regions posteriorly and the left and 

right frontal lobes anteriorly. According to previous research, damage to the CC in participants with 

traumatic brain injury was related to decreased fractional anisotropy (FA) and increased radial 

diffusivity (RD) in sub-regional callosal fibers in parietal and prefrontal areas. These WM changes 

were associated with decreased movement times (MT), reaction times (RT) and performance during 

bimanual coordination tasks (Caeyenberghs et al., 2011). Many of the brain areas and even brain cells 

involved in unimanual movements, are the same as those used for bimanual coordination, although they 

have differing patterns of activity (Walsh, Small, Chen, & Solodkin, 2008). More often than not, 

unimanual movements are used to enact a visuomotor transformation, but more research is needed to 

understand how stimulation to this network during a unimanual task may affect (i.e., produce 

behavioural change) in the overlapping bimanual areas. Since bimanual coordination and nonstandard 

visuomotor tasks seem to be functionally related (Hawkins et al., 2015), more research will be needed 

to understand whether bimanual coordination tasks may also be an early indicator of brain network 

pathology.  
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Cortical Control of Video-game Playing 

Playing video-games often involves nonstandard visuomotor brain mapping, which requires 

CMI; video-gamers with extensive experience have altered cortical activation of the frontoparietal 

network, cerebellar and visual areas during nonstandard tasks (Gorbet & Sergio, 2018; Granek, Gorbet, 

& Sergio, 2010) . One of the biggest differences between standard and nonstandard brain networks is 

the functional involvement of the PMd. This is highlighted by a study in which non-human primates 

were injected with muscimol, a localized depressant, to their PMd area and separately given both 

standard and nonstandard tasks to perform. Performance was not altered in direct interactions, but the 

primates became unable to learn the motor skills required for the nonstandard interaction task (Kurata 

& Hoffman, 1994). When playing a video-game, there is often a physical external device that is used to 

manipulate a virtual in-game character. When an action requires the use of a tool to indirectly act upon 

another stimulus, the brain must incorporate the tool as an additional property of its own effector (i.e., 

the hand). For example, adding a controller or computer mouse as an extension of the hand in this way 

involves incorporation of a representation of the updated effector in the ventral premotor area (PMv) as 

well as an adaptation for the updated movement for using the controller; performed by the IPL 

(Obayashi et al., 2001). Neural load is increased during movements that incorporate the addition of a 

controller to the end effector along with spatial dissociation between movements and guiding visual 

stimuli on screen in the video-game. According to previous research, in cases of increased neural load, 

additional brain networks are recruited for task performance (Gorbet, Staines, & Sergio, 2004). This 

study found that overall, in nonstandard tasks like these, less brain areas were activated during 

performance; it was hypothesized that this was due to silencing of the standard motor plan (i.e. the 

natural movement tendency) to enact the nonstandard motor plan only. 

When playing a video-game, movement goals may be inferred from supplementary information, 

as they might not always be based on permanently present or static stimuli. In allocentric coding, a 

target location can be inferred relative to other reference points, even without sight of the target 
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location (Chen et al., 2014). Gaze-centred  and allocentric mechanisms also assist with goal-oriented 

movement extrapolation to pre-emptively avoid an incoming projectile (Byrne & Crawford, 2010) or to 

remap gaze-centred signals based on self-motion during a video-game (Crawford et al., 2011). 

Movement goals can be inferred using a combination of position and velocity information (i.e., about 

moving targets). This type of goal extrapolation is especially useful when playing a video-game 

because success often depends on the brain’s ability to incorporate current position with velocities of 

other nearby objects to determine an end goal for movement location. According to a study that used 

repetitive transcranial magnetic stimulation (TMS) to assess the spatial and temporal aspects of 

movement when the hand intercepts an object, the superior parieto-occipital cortex (SPOC) appears to 

be active during position coding, whereas the medial superior temporal (MST) region and areas for 

visual processing of motion appear to account for the timing of when the target will reach the hand 

(Dessing, Vesia, & Crawford, 2013). The final movement time is calculated as a combination of 

information about the position and change in time relative to object motion (Dessing et al., 2013). The 

mid-posterior intraparietal sulcus is activated when calculating the distance of the reach and how 

far/close the hand should go by calculating these vectors in visual coordinates. This assists in mapping 

where a target is in visual space based on its depth (Yu, Farley, Jin, & Sur, 2005).  

Once the task commences, various stimuli generally appear, and the eyes move rapidly between 

them while the fingers/hands respond accordingly. The location of stimuli in a video-game must be 

remapped for perception and appropriate action. Trans-saccadic perception (TSP) enables the additional 

storage of information about the stimulus between eye and limb movements (Melcher & Colby, 2008). 

For this to occur, information must be retained in visuospatial memory (VSM), followed by spatial 

updating that accounts for changes in the position of the retina with changes in the visual stimuli on 

screen. To retain information about stimuli between saccades, previously retained information from a 

point of earlier fixation must be integrated with the updated information from the current fixation point; 

to do so, it seems that VSM and mechanisms for egocentric spatial updating must be combined 
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(Melcher & Colby, 2008). Evidence suggests that this organization takes place around visually attended 

points in space, without explicit remapping of the features (Cavanaugh et al., 2010).  

For such complicated, nonstandard video-game tasks several brain areas take on specialized 

roles in processing information and executing an appropriate movement. The precuneus area as 

previously described seems to assist with processing visuospatial information. It also appears to have a 

central role in cognitive control of task performance while task complexity is continually increasing 

(Wenderoth, Debaere, Sunaert, & Swinnen, 2005). This area also seems to have a specialized function 

in working with the tracking of moving stimuli/objects seen on a screen (Culham et al., 1998), as is 

often the case in video-game playing.  

Cascading Decline in Large-Scale Networks in Neurodegenerative Diseases 

Motor deficits exist in later stages of AD, early AD (eAD) and possibly preclinical AD. Proper 

execution of motor skills in everyday living is a complicated process which requires input from many 

brain areas throughout sensorimotor networks. Movements require planning, initiating, executing and 

sometimes correcting the movement with sensory feedback. Accurate movements rely on visuospatial 

ability, especially when processing burden occurs after the introduction of a new or complex task 

(Buchman & Bennett, 2011; Gorbet, Staines, & Sergio, 2004). One study was able to 

differentiate/detect pathology in cognition based on complex fine-motor tasks in groups at-risk for 

developing dementia with some mild cognitive impairments (MCI), diagnosed AD and healthy controls 

(Kluger, Gianutsos, Golomb, Ferris, & Reisberg, 1997). Additionally, another study found that 

individuals in eAD or those with MCI do not yet have difficulty with tasks that require standard/direct 

interactions (Yashar Salek, Anderson, & Sergio, 2011). However, when individuals who were only at-

risk of developing dementia were required to perform nonstandard tasks, performance deficits were 

evident when compared to controls (Hawkins & Sergio, 2014). The performance decrements that were 

observed during nonstandard tasks in the at-risk group were also associated with lower scores of 
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cognitive statuses on the Montreal Cognitive Assessment (MOCA), which suggests that visuomotor 

impairment may be related to cognitive decline. Importantly, even when MOCA scores were normal in 

at-risk groups, there were still evident deficits in CMI ability. Visuomotor skill is relevant to daily life 

functioning in that many tasks carried out each day like driving, walking or climbing stairs require 

adequate visuomotor ability (Elble & Leffler, 2000). Current research in the field has demonstrated that 

gray matter (GM) atrophy and hypometabolism, and WM compromise occur in eAD and that before 

clinical manifestation of symptoms, WM disruptions are particularly characteristic of preclinical stages 

(Fischer, Wolf, Scheurich, & Fellgiebel, 2015; Honea, Swerdlow, Vidoni, & Burns, 2011; Mosconi et 

al., 2007). Thus, tasks which rely on the functional connectivity of large-scale networks to integrate 

information from many brain areas would unsurprisingly result in depreciated performance in these 

groups.  

The brain is highly interconnected by WM tracts that tie together cortical areas; damage to these 

WM tracts, as in the disruptions that are expected with the progression of AD, result in decreased 

overall brain processing capability which reduces general performance ability for complex tasks 

(Voineskos et al., 2012). Diffusion tensor imaging (DTI) can be helpful for detecting alterations in WM 

tracts before behavioural symptoms are evident. To further investigate this brain-behaviour relationship 

Hawkins and colleagues (2015) assessed structural/functional brain images of participants in relation to 

their difficulty with performing CMI tasks. They found that large frontopartietal networks which are 

required for task performance also appeared to be compromised in individuals at-risk of developing 

dementia. This is consistent with previous research which has shown that patients with AD have 

compromised WM tracts in frontoparietal networks that is associated with decline in functional abilities 

(Braak & Braak, 1991). Imaging techniques including DTI and resting state functional magnetic 

resonance imaging (rs-fMRI) are effective for diagnosing AD but unfortunately are also costly and not 

accessible to most patients. Since nonstandard cognitive-motor tasks have been strongly correlated with 

DTI of WM compromise, implementing these tasks may be a more feasible substitute for early 
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detection of pathology in asymptomatic individuals who are at-risk of developing dementia.  

Risk factors for developing dementia mainly include age (i.e., typically age 65 and over) and 

genetic factors like carrying one or two copies of the Apolipoprotein E Epsilon 4 (ApoE ε4) allele, or 

having multiple family members with diagnoses of dementia or AD (Duara et al., 1996; Fratiglioni, 

Ahlbom, Viitanen, & Winblad, 1993; Green, 2002; Mosconi et al., 2007; Reitz & Mayeux, 2014). The 

ApoE gene is a lipid-binding protein with important functions in maintaining myelin and neuronal cell 

membrane integrity. The ApoE ε4 allele particularly, is associated with reduced efficiency of beta 

amyloid (Aβ) clearance in the brain along with tau accumulation; the main biomarkers of AD 

pathology (Mattsson et al., 2009). In North America, Alzheimer’s patients that also carried an ApoE ε4 

allele made up 58% of the total population of diagnosed patients, the rest may have been attributable to 

other genetic or environmental factors (Crean et al., 2011). Again, in patients with AD, 58% had a 

family history of dementia; these two factors independently increase risk of developing dementia, but 

together can also increase risk additively (Duara et al., 1996). Having a first-degree relative with AD 

doubles the lifetime risk of developing late-onset AD (Reitz & Mayeux, 2014). The prevalence of AD 

is also higher in females and maternal history of AD is more indicative of risk for development than 

paternal history of AD (Honea et al., 2011; Lisa Mosconi et al., 2010; Schmidt et al., 2008). There are 

other factors that independently increase risk of developing dementia including psychiatric illness, 

chronic depression, substantial alcohol consumption, diabetes or hypertension (Yoshitake et al., 1995). 

According to Dubois and colleagues (2016), there are no discrete clinical events that characterize the 

preclinical stages. The genetic risk factors distinguish work with this variable type of risk group as a 

primary prevention intervention which involves intervening in those with no outward symptoms – the 

general population.  

Dementia is more commonly being recognized as a disconnection or ‘network failure syndrome’ 

(Agosta et al., 2012; Jones et al., 2016; Liu et al., 2014; Villain et al., 2008). According to this 

framework, disruptions in white matter tracts of the posterior cingulum bundle are associated with 
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hippocampal atrophy (Villain et al., 2008); it seems that these disconnections may augment the 

cascading failure that implicate posterior regions. Aside from the typical GM atrophy associated with 

dementia, one of the first pathological changes that can be detected through behavioural measures is a 

reduced efficiency of communication in WM networks, including between frontal and parietal areas 

(Bonnì et al., 2013). As a form of treatment, stimulating networks that are most vulnerable in early 

stages of decline seems to be a promising way to enhance overall brain health. Previous studies and as 

well as a recent pilot study in our lab demonstrated that cognitive-motor training improved global 

cognitive scores in populations with MCI (de Boer, Echlin, Rogojin, Baltaretu, & Sergio, 2018; Tippett 

& Rizkalla, 2014). The results were encouraging because participants’ cognitive status improved after 

16-weeks of video-game training; the improvement according to multiple cognitive tests was not 

related to the tasks that participants were trained on during the intervention. These findings suggest that 

behavioural intervention strategies which incorporate large neural networks like the frontoparietal 

network in this case, may enhance brain-wide connectivity by stimulating communication between 

areas of the brain that are needed to perform these tasks. It appears that enhancing network connectivity 

through longitudinal CMI training may be an effective method of preventing decline in functional 

independence in individuals with cognitive deficits.  

Studies have indicated that no symptoms exist in individuals in the preclinical stage, but recent 

research has demonstrated that individuals who may be at-risk do indeed have compromised 

performance, specifically in nonstandard visuomotor tasks; along with altered functional networks 

(Hawkins et al., 2015; Hawkins & Sergio, 2016). The behavioural deficits may stem from the neural 

load caused by the required recalibration. When decoupling of visual and spatial target information 

occurs during a task, healthy populations tend to perform with decreased accuracy and increased RT 

and MT (Gorbet & Sergio, 2009). The increased difficulty during nonstandard tasks in populations with 

cognitive impairments is less understood. Research that is specifically targeted toward better 

understanding why CMI ability falters in preclinical disease stages and this link to functional ability is 
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of the utmost importance for finding preventative and rehabilitative measures for those with cognitive 

impairments or those who are at-risk for developing dementia. 

Contrary to the commonly held belief that disease-related decline begins with Aβ accumulation 

and hippocampal atrophy, recent evidence suggests instead that in the early stages of cognitive decline, 

decreased WM integrity is associated with reduced resting state connectivity, with origins in the PPC. 

According to Jones et al. (2016), in AD, this decreased connectivity begins in the posterior parietal 

node, which shifts processing burden to adjacent nodes and results in increased connectivity in these 

areas; with Aβ build-up in the brain, interactions with pre-existing vulnerable substrates in the medial 

temporal lobes leads to a tau-associated neurodegenerative process. Additionally, in another study 

cognitively healthy older adults with two copies of the ApoE ε4 allele (which is associated with the 

highest risk of developing AD) underwent PET scans and they found that preclinically there was 

reduced glucose metabolism in posterior cingulate, parietal, temporal and prefrontal regions which was 

in alignment with findings from patients with probable AD (Reiman et al., 1996). Issues with simple 

eye-hand coordination tasks or complex movements, typical of older adults with MCI or AD/dementia, 

seem to arise due to this altered brain connectivity, especially in the posterior parietal area.  

The early stages of degradation in structure and function of the posterior parietal area and/or 

compromised frontoparietal WM tracts seem to be the initial factors that impinge on visuomotor 

ability; effective visuomotor performance relies on both frontoparietal networks and posterior parietal 

areas (Caminiti, Ferraina, & Battaglia Mayer, 1998). Nonstandard tasks that are specifically targeted to 

stimulate frontoparietal networks in those at-risk of developing dementia would use eye-hand 

coordination tasks with movements that involve increasing levels of complexity and cognitive demand. 

This sort of nonstandard movement requires rule-integration and altered visuomotor mapping into a 

motor plan. From this, localizing issues in frontoparietal WM tracts (i.e., based on the ability to 

integrate information) or in cerebral regions responsible for the processing of a single domain may be 

possible. Research indicates that the former is more likely, since large-scale WM tracts appear to be 
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disrupted and show symptoms of decline before the connected cerebral areas demonstrate deficits in 

any single domain (Bartzokis, 2004; Gold, Powell, Andersen, & Smith, 2010; Smith et al., 2010). To 

this end, simple motor deficits (i.e., deficits in standard visuomotor mappings) alone typically do not 

appear until clinical symptoms are quite advanced (Parakh, Roy, Koo, & Black, 2004). The networks 

involved in these praxic functions appear to undergo degradation in early or preclinical stages of 

dementia and could therefore be useful as an early identifying feature and target for intervention 

(Buchman & Bennett, 2011; Verheij et al., 2012).  

With such vast interconnectivity between brain areas, there are plenty of routes for pathology to 

interfere with proper brain function or cause disconnection. For example, the rostral cingulum bundle 

which connects the hippocampus to the posterior cingulate cortex (PCC), appears to be disrupted in 

those with AD which may be associated with PCC hypometabolism and hippocampal atrophy (Villain 

et al., 2008). Additionally, areas in the prefrontal cortex (PFC), mainly the energy-demanding dorsal 

lateral prefrontal cortex (DLPFC), tend to experience hypometabolism in eAD. The DLPFC is highly 

connected to the PMd and has reciprocal connections particularly in the SPL (Tomassini et al., 2007); 

once this area experiences initial stages of decline it may negatively impact the ability to perform 

decoupled movements. 

Failures and Successes of Current Treatments for Symptoms of Dementia 

Generally, symptoms of dementia are initially recognized by an apparent decline in memory, 

cognitive functions, and independence/functionality in daily living. With the prevalence of dementia 

expected to double every 20 years (Prince et al., 2013), commercially available prevention strategies 

have become popular. Unfortunately, the merit behind these programs is often lacking and they are 

regularly debunked for not having a generalizable effect on overall cognitive status (Kable et al., 2017; 

Owen et al., 2010). Intervention strategies usually target the preservation or compensation of these 

functions after symptom onset; however, it has been with limited success. Research has indicated that 
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instead, restorative therapeutic interventions appear more fruitful for improving cognitive functions 

(Sitzer, Twamley, & Jeste, 2006). Restorative strategies are targeted towards improving performance in 

the specific cognitive domain that a patient is experiencing decline in. When visuomotor activities are 

incorporated in restorative interventions, more beneficial and generalizable effects are found (Acevedo 

& Loewenstein, 2007; Basak, Boot, Voss, & Kramer, 2008; Lee et al., 2012). A meta-analysis of 

restorative strategies that were implemented in CT programs to elderly with cognitive deficits found 

that this type of intervention is most effective when given in individual sessions using more generalized 

stimulation (Sitzer et al., 2006). To observe if these effects exist in an appropriately larger sample, Ball 

and colleagues offered this type of training program to individuals with minor cognitive impairments 

and healthy individuals; verifying that these findings remained stable, with the caveat of not finding 

any generalizable effects to functional abilities (Ball et al., 2002). Notably, it appears that intervention 

programs that train procedural memory are more successful in generalizing to improvements in 

functional ability to perform activities of daily living (ADL; Farina et al., 2002).  

Lately, it appears that research is disproving the efficacy of many commercially-accepted 

methods of preventing pathological decline using diet supplementation (Mecocci, Tinarelli, Schulz, & 

Polidori, 2014). There are many possible targets for intervention with regards to supplementation but, it 

appears that most nutraceuticals and even some pharmaceuticals have shown miniscule or sometimes 

no effects on cognition after years of rigorous testing (Amenta, Parnetti, Gallai, & Wallin, 2001; 

Mecocci et al., 2014). Some non-product related alternatives appear to produce more benefits for 

preventing cognitive decline than their marketed counterparts. For example, it is estimated that about 

one third of all dementia cases can be attributed to modifiable risk factors related to lifestyle habits 

involving obesity, smoking, depression, lack of exercise, lack of mental stimulation, diet, diabetes and 

low levels of education (Norton, Matthews, Barnes, Yaffe, & Brayne, 2014). Modifying diet in 

particular, has demonstrated positive effects on cognitive status in older adults with no cognitive 

impairment according to randomized clinical trials (Valls-Pedret et al., 2015). Diet appears to be a 
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common theme among many of the modifiable risk factors mentioned and might be an important target 

for therapeutic intervention. 

Since the pathological decline that leads to dementia is not well understood, more research is 

needed about the efficacy of non-pharmaceutical, early-targeted intervention programs that aim to 

stimulate large-scale brain networks. Since cognitive symptoms are often the earliest indicator of 

decline, many studies have attempted to use CT to increase brain connectivity and improve brain health 

globally. Most CT programs have difficulty in obtaining this generalizability (Owen et al., 2010; 

Roberts et al., 2016). CT alone does not typically produce the desired generalizability in global 

cognitive status or functional ability in populations with eAD (Clare & Woods, 2004); but CT can still 

result in positive effects in the same areas that an individual is trained in, especially in unimpaired 

adults (Valenzuela, Hons, & Sachdev, 2009; Willis et al., 2013). Although, there are many caveats like 

these to using interventions that train cognitive domains only, this evidence may still be helpful for 

individuals in preclinical stages, as they perform at healthy control levels on cognitive tests and thus 

may still experience benefits from this type of training (Gates & Sachdev, 2014). Since cognitive 

symptoms may indicate a pathological decline leading to dementia, it’s also possible that participants 

may feel too ashamed or embarrassed to participate in CT programs alone due to a fear of having their 

deficits exposed (Clare & Woods, 2004). It appears that CT can be helpful for treating symptoms of 

decline but combining other types of training to this type of program would likely aid in producing 

larger and more generalizable effects.  

Similarly, physical aerobic training has become a popular treatment method, but has also shown 

only modest effects on cognitive functioning, which usually do not have lasting results. Many studies 

have highlighted the potential benefit of physical activity on cognitive status when working with 

healthy older adults (Kramer & Erickson, 2007; Yaffe et al., 2009). Aerobic training is useful for 

enhancing brain oxygenation and for increasing levels of some neurotransmitters (González-Alonso et 

al., 2004; Patrick & Ames, 2015), like serotonin which can have beneficial effects on hippocampal cells 
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that subserve memory function (Haider, Khaliq, Ahmed, & Haleem, 2006). Some studies indicate that 

aerobic training may have a beneficial impact on the timing of symptom development by delaying 

symptom onset; still, physical activity does not appear to have much influence in terms of curative 

treatment for the underlying pathology (Rolland, Abellan van Kan, & Vellas, 2008). Other studies have 

shown beneficial effects from aerobic exercise, including increased frontal and parietal GM densities 

that may result from increased blood supply and synaptic connections; this may act as a form of brain 

reserve that can be recruited when in conditions of higher cognitive load (Colcombe et al., 2006; 

Fratiglioni & Wang, 2007; Stern, 2009). Lack of physical exercise causes decreased mobility in elderly 

and this is associated with ratings of lower quality of life as well as higher instances of falls and 

hospitalizations (Cesari et al., 2009; Oh et al., 2014). These studies highlight the indirect benefits of 

living an active lifestyle. Physical activity is a necessity for maintaining general brain health and 

quality of life, especially when combined with other types of training; it appears that physical training 

can produce substantial benefits to overall health.  

Motor and cognitive processes are performed in the brain simultaneously, which suggests that it 

would be more advantageous to test them simultaneously as well. This would assist with getting a 

better understanding of how an individual’s brain is functioning overall. Research indicates that AD-

vulnerable large-scale networks tend to interact with one another when learning different training 

strategies and this has beneficial network-wide effects. (Voss et al., 2012) Previous studies have 

attempted interventions with separate cognitive and motor components since both types of training 

might be expected to contribute incrementally to global cognitive status (Maffei et al., 2017); but this 

has not necessarily been the case for most studies. For example, separate cognitive and motor training 

was administered to patients with primary degenerative dementia, but deterioration of cognitive 

function and activities of daily living was still evident by 10-months follow-up (Luttenberger, Hofner, 

& Graessel, 2012). This study design still does not address the issue of having cognitive and motor 

skills performed in conjunction. The brain operates in an integrative way to receive and send signals 
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simultaneously for optimal functioning; this is how training and test measures should also train/assess 

performance ability. Many strategies have been attempted in recent decades to stave off symptoms of 

decline in elderly populations, but success rates in these domains are negligible. With this, it seems that 

assessment measures should invoke efforts from different areas of the brain so that integration is 

required in a way that stimulates large-scale networks.  

To avoid reliance on prescription medications to improve cognitive symptoms, more research is 

needed about interventions involving social interactions and/or puzzles that require strategic planning 

and engagement of brain networks in ways that may otherwise be left unstimulated. Using these 

strategies but with an added component (i.e., CMI) would highly diversify future studies from previous 

research by incorporating an analysis of the brain’s ability to integrate information; an indirect method 

of testing the integrity of WM pathways in addition to relevant cortical areas. As previously described, 

large WM tracts like the frontoparietal WM pathways in the brain are some of the first to show 

behavioural symptoms of decline in preclinical dementia; the weakening of these tracts reduces the 

communication between movement control and cognitive processing areas of the brain resulting in 

greater visuomotor deficits on CMI tasks. In preclinical dementia, individuals appear healthy and 

perform at normal levels on cognitive and other standard tests. Aside from accumulation of proteins in 

the brain, some structural/functional changes, and possible gait disturbances (Ramakers et al., 2007), 

visuomotor deficits are the only other behavioural identifiers in this group at present. These changes 

may be slight and potentially difficult to detect; therefore, focusing on fine motor, eye-hand 

coordination-based visuomotor tasks would enable a more detailed assessment, sensitive enough to 

detect minute changes as compared to gross motor movements. The transparent discrepancy is that 

more strategies for preventing decline should incorporate large neural networks to produce 

generalizable effects on other brain areas and domains. If this type of intervention were introduced 

preclinically, it would enable vulnerable brain networks to be strengthened before decline could begin. 

This in turn would offer important insights about decline prevention in populations without a diagnosis 
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but with an increased risk of developing dementia.  

Purpose & Hypotheses 

Maintaining functional independence in the face of dementia is a major health concern for a 

growing number of Canadians. Unfortunately, individuals with dementia are unable to preserve this 

ability in their daily lives. The focus of the present study is to characterize how a movement control-

based 16-week behavioural intervention program may influence cognitive, motor and visuomotor skill 

performance in those who are at risk of developing dementia. One of the apparent downfalls of most 

training and assessment measures that are used in dementia research is that they separately target 

cognitive processing and motor control, even though the brain performs these actions in unison. The 

current study will address this issue by including a cognitive measure, a motor measure, and a 

cognitive-motor measure before and after a 16-week intervention so that these relationships can be 

observed in depth by comparing these domains to each other. Accordingly, instead of studying the 

affected cognitive and motor processes independently, this study will introduce a task that requires the 

performance of both cognitive and motor functions in conjunction. The experimental setup for this 

assessment uses a touchscreen tablet to track finger-sliding movements in response to a dynamically 

changing task. This study uses CMI tasks to assess performance differences in those at risk of 

developing dementia based on maternal family history or having multiple family members with a 

diagnosis (Hawkins & Sergio, 2014).  

The design of the study employs a novel approach to indirectly assess WM integrity through 

tasks that require the brain to integrate processes from different domains (i.e. cognitive processing in 

frontal areas and sensory-integrated motor planning in visuomotor areas). According to a recent 

neuroimaging study, these WM tracts which are engaged during this task while information is 

integrated, have shown an early vulnerability to pathology in preclinical and early dementia (Hawkins 

et al., 2015). More specifically, reductions in hippocampal, frontal and parietal neural networks were 
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implicated in rule-integration and goal-directed movement (Hawkins et al., 2013; Sayegh et al., 2014, 

2013). With this apparent early faltering, it seems plausible that engaging in CMI tasks may be useful 

for stimulating communication between relevant brain areas. The present study will require participants 

to perform CMI on visuomotor tasks with increasing levels of complexity to detect and improve on 

possible impairment in at-risk groups. The preclinical stages of dementia are not typically accompanied 

by any behavioural deficits that are detectable with current clinical assessment practises nor are there 

tools available for this type of behavioural assessment, aside from visuomotor impairment and the 

proposed CMI technology. Use of CMI tools for the assessment of subtle visuomotor deficits offers an 

objective way of better understanding the relationship between altered kinematics and the associated 

pathological decline. Based on the generalizability of CMI training to increased global cognitive status 

in previous research, we expect that this training will result in a strengthening of the large neural 

networks involved in the task as detected by measures of visuomotor ability in a healthy population 

with increased risk for developing dementia (de Boer et al., 2018).  

The intervention protocol relies on similar principles as the assessment tool in that it involves 

playing a video-game using nonstandard interactions that require CMI. Since research has shown that 

optimal functioning of large-scale WM tracts, particularly frontoparietal networks, are required to 

perform CMI tasks and that individuals with cognitive impairment show deficits when performing 

these tasks, then introducing a task which requires communication between relevant brain areas may 

promote neuroplasticity, strengthen connections in these brain networks and improve performance on 

said tasks. This repeated stimulation during training is expected to engage these large-scale networks in 

a way that will enhance visuomotor performance ability thereby strengthening these networks which 

may potentially serve as a protective factor for potential symptom progression in asymptomatic 

individuals who are at risk of developing dementia. In previous research, improvements from this 

training setup generalized over time to improved cognitive status (de Boer et al., 2018), but since the 

population for the current study is still cognitively healthy it would only be reflected by improved 
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cognitive-motor ability and likely a healthy boost in connectivity in large-scale brain networks which is 

important for avoiding pathological decline. These findings will add to the current research on 

functional decline prevention in individuals facing neurodegenerative disease and may also provide 

indirect insight about the brain networks that are used for CMI and how training may relate to 

improved global cognition. 

Previous studies have shown that similarly designed video-games with added CMI components 

have demonstrated beneficial effects in populations with cognitive impairment (de Boer et al., 2017; 

Tippett & Rizkalla, 2014). According to de Boer and colleagues, this improved global cognition may 

stem from a strengthening of brain networks in a large-scale manner that translates from stimulation 

with CMI into improvements in other domains in groups with MCI (de Boer et al., 2018). This 

evidence supports our hypothesis that behavioural intervention strategies may preserve and enhance the 

connections in large-scale networks that are stimulated by CMI tasks. Using this portable equipment 

and simple video-game design, the objective is to assess whether longitudinal CMI training can 

strengthen the targeted brain networks preclinically, as measured by improved visuomotor ability, 

before cognitive symptoms begin to appear to prolong healthy cognitive status. If training in at-risk 

groups enables participants to improve CMI ability close to healthy control levels compared to those at-

risk who do not receive training, then we hope that this simple to administer, non-invasive, low-cost, 

and self-motivational method will be adapted to disrupt symptom progression in populations at-risk of 

developing dementia. This study will indirectly offer a better understanding of the relationship between 

functionality in daily living and brain network integrity and how it can be preserved or enhanced 

through CMI training. The focus is to address the issue of finding an evidence-based intervention for 

preventing decline in functionality and promoting stabilization of cognitive status among those at 

increased risk of developing dementia. The specific hypotheses of the study are as follows:  

1. The at-risk groups will perform worse than both healthy control groups on the CMI and motor 

measures at initial assessment. 
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2. All training groups will show an improvement over time on the nonstandard intervention task. 

3. The at-risk training group will demonstrate greater improvement over time on the CMI and 

motor assessments compared to the at-risk control group. 

Methods 

Participants 

For this study, 23 participants between the ages of 50-71 were recruited from the community via 

a senior’s home called Unionville Home Society and through a volunteer-based program from York 

University. These participants were placed into an at-risk or healthy training group based on having 

reported a maternal history of dementia/multiple family members with a diagnosis or reported no 

family history of dementia. Both groups of participants were age/sex-matched with control groups who 

did not partake in the intervention but completed the pre- and post-tests five months apart. The at-risk 

training group was matched with another at-risk group that did not receive training and the healthy 

training group was matched with a healthy group that also did not receive training. In total there were 

10 participants with dementia risk, and 13 without. Participants did not have any cognitive complaints 

or deficits including a diagnosis of a neurological disorder, severe head injury or the presence of a 

motor disability which may hinder performance on the tasks that are used for this study. Cognitive 

status was assessed at baseline and post-intervention to ascertain that a healthy sample was used. This 

study was approved by the Human Participants Review Sub-Committee of York University’s Ethics 

Review Board. 

Measures 

 Demographic questionnaire. 

Participants were given a demographic questionnaire to obtain information about family history 

of dementia as well as age, sex, ethnicity, level of education, activity level and video-game/tablet 
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experience (see appendix A). This questionnaire was used to ascertain that participants were eligible to 

participate based on inclusion/exclusion criteria. Exclusion criteria included health-related factors that 

could interfere with the study design such as a diagnosis of a neurological disorder, severe head injury 

or vision/upper limb impairment. Participants also self-reported their experience with a tablet, video-

games, puzzles and computers on a likert-type scale ranging from 1 = almost never to 5 = almost 

always. Another survey of self-reported activity levels was included as an assessment of participants’ 

activeness regarding things like “labour work” or “walking for more than 25 minutes” whereby 

participants indicated on a likert-type scale how often they engage in these activities in a typical week 

(0 = never, 5 = 5-7 days per week) 

 Dementia Rating Scale-2 (DRS-2; Jurica, Leitten, & Mattis, 2001). 

The Dementia Rating Scale-2 is used to assess mental status in those with suspected dementia. 

The test has five subscales: attention, initiation/perseveration, construction, conceptualization and 

memory. The entire test is out of 144 and a higher score is indicative of better cognitive health and lack 

of symptoms of dementia, the overall score is representative of estimated dementia symptom severity. 

Points are allotted based on whether participants can successfully complete mildly cognitively 

demanding tasks like repeating back a string of numbers to the experimenter backwards, copying hand 

movements or drawing simple shapes. The test-retest reliability of the DRS has been established in 

several studies, in one study, this test was administered twice within one week to 30 participants with 

Alzheimer’s type dementia; the correlation coefficient for the DRS total score was .97. The subscales 

ranged from .61 to .94 (Coblentz, J. M., Mattis, S., Zingesser, L. H., Kasoff S.S., & Wiśniewski, H.M., 

1973). The DRS has demonstrated construct validity with many other cognitive health-based measures. 

The Mini-Mental State Examination (MMSE; Folstein, Folstein, & McHugh, 1975) is a widely used, 

brief measure of cognitive status. The DRS was compared with the MMSE over a three-year period in a 

group of patients who were diagnosed with probable AD. These two tests afforded a significant 

correlation (r = .82), with the DRS showing greater sensitivity to more severe cases of dementia and to 
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change over time. Further, in a group of 20 patients with organic brain syndromes between the ages of 

58-71, high construct validity (r = .75) was demonstrated between the Wechsler Adult Intelligence 

Scale Full Scale IQ (WAIS; Wechsler, 1944, 1955) test and the DRS (Coblentz et al., 1973). The DRS 

has also demonstrated internal consistency; the split-half reliability of the DRS was observed with a 

group of 25 patients who were diagnosed with either senile dementia or organic brain syndrome 

(Gardner, Oliver-Munoz, Fisher, & Empting, 1981). The split-half reliability coefficient indicated that 

the test had high internal consistency (α = .90), an additional t-test indicated that there were no 

significant differences between the two halves of the test. 

Brain Dysfunction Indicator (BrDI™). 

The BrDI™ measure is an indicator of CMI ability that is sensitive to brain network 

dysfunction. Four conditions of the task were used in total for each participant including direct, 

feedback reversal (FR), plane change and plane change reversal conditions (see Figure 2). The BrDI™ 

task was done using a 10.1-inch tablet (ASUS Transformer Book T100 2 in 1 tablet, sampling rate: 60 

Hz) situated for use in the vertical plane, with an external Keytec™ touchpad (Keytec Magic Screen: 

Model KTMT-1315, sampling rate: 100 Hz; Keytec™, Garland, TX, USA; 18 inch) placed directly 

below, in the horizontal plane. A calibration was done during setup so that the functional area of the 

Keytec™ matched the dimensions of the tablet. The Keytec™ was only used for conditions that 

involved a plane dissociation (PD). Participants sat at a table in front of this setup, where they could 

comfortably reach both apparatuses and were given instructions to move straight to the target as 

quickly and accurately as possible on all trials.  

The standard condition involved a direct interaction with targets on the tablet touchscreen, using 

the dominant hand. Participants were instructed to keep their finger on the touchscreen for the duration 

of the task and to move their finger to the centre of the screen. Once the task commenced, a yellow 

target circle in the centre of the screen appeared (7.5mm in diameter) and participants moved their 

finger to this location by directly touching the vertical screen. When the software detected the presence 
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of a finger in the central target, it turned green. After 2000ms a red peripheral target appeared 55mm 

away from the central target in one of four directions (90° to the top, bottom, left or right of the centre 

target), eye movements were directed toward the presented target to guide the finger sliding movement 

on the same screen. This red circle was a cue for participants to begin their finger-sliding movement 

toward the peripheral target.  Once the participant reached the peripheral target and remained there for 

500ms, the peripheral target disappeared. Then, after an inter-trial interval of 2000ms, the yellow 

central home target reappeared, signaling the beginning of the next trial (see Figure 3). Participants 

completed five trials per target for a total of 20 trials per condition in random order; 80 in total. 

During nonstandard conditions, all timing, presentation order and sizes/measurements were 

unchanged. In the feedback reversal condition, a 180° visual feedback reversal is incorporated into the 

task meaning that participants were required to move in the opposite direction of the intended target to 

successfully complete the trial; this introduces a strategic control requirement. The plane change 

condition involves a plane dissociation between guiding visual stimuli and hand movements. 

Participants were instructed to look at the targets on the vertical tablet screen, rather than look at their 

hand moving on the horizontal Keytec™ touchpad below the tablet screen (i.e., gaze and hand 

movements were spatially dissociated from each other). The plane change reversal condition 

incorporates both the spatially dissociated planes between eye and hand movements, but also a 180° 

feedback as well. Each condition was presented in random order between participants. All nonstandard 

conditions required participants to keep their gaze on the vertical tablet screen throughout the task; 

these nonstandard conditions require CMI for effective task performance. 
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Figure 2. Graphic of the computer-based visuomotor conditions in the BrDI task. The task requires 

finger-sliding movements on a touchscreen from a central target to one of four peripheral targets. The 

green circle denotes the center, or home, target in which all movements begin, and the lighter eye and 

hand symbols denote the starting position for each trial. The red circle represents the peripheral target 

(which appears randomly to either 90o to top, bottom, left, or right of centre) and the peripheral eye and 

hand symbols represent the instructed eye/hand movements for the task. a) Direct (standard interaction) 

condition involves simple finger-sliding movements to peripheral targets with hand and eye movements 

on the same screen. b) Feedback Reversal (nonstandard interaction) condition incorporates a 180° 

feedback reversal into the task. c) Plane Change (nonstandard interaction) condition involves a plane 

dissociation between guiding visual stimuli and hand movements. d) Plane Change Reversal 

(nonstandard) condition incorporates both the spatially dissociated planes between eye and hand 

movements, with a 180° feedback reversal as well. All nonstandard tasks described here also require 

CMI. 

 

 
 

Figure 3. Sequence of events during one trial of the BrDI task. The green circle in the centre of box 1 

denotes the home target, where all movements begin. This target changes from yellow to green to 

signify that the software can detect the presence of a participant’s finger. After 2000ms a red peripheral 

target appears in one of four directions (90° to the top, bottom, left or right of the centre target) which 

signifies the cue for participants to begin their finger-sliding movement toward the peripheral target. 

Once the participant has reached the peripheral target and remained there for an inter-trial interval of 

2000ms, the yellow centre home target reappears, signaling the end of the previous trial and initiation 

of the following trial. 
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Each trial was scored using a normalized measure of velocity; with absolute velocity data 

available as well. The movement was considered initiated once a participant’s velocity surpassed 10% 

of their normalized peak velocity. In the same way, the movement was considered complete once 

velocity decelerated to lower than 10% of peak velocity within the peripheral target. An image of the 

entire reach trajectory was available for additional inspection and when necessary, revision of 

movement onset and offset timing along with the velocity profile data which is analyzed in MATLAB 

by a program made using custom software. The data are presented on a Cartesian plot which depicts the 

trajectory of a single finger movement from the centre home target to the peripheral target. Several 

outcome measures are produced based on the scored data. These measures summarize the profile of the 

movement based on timing, errors, and execution. After scoring is completed, the data is processed 

once more to remove outliers beyond two standard deviations from the participant’s mean for each 

outcome measure.  

If trials are considered unsuccessful by the data collection software, then they are terminated 

during the active trial and scored based on the type of error that resulted in termination. Kinematic 

outcome measures are not computed from these data aside from the type of error that caused trial 

termination. Trials are terminated if a participant made any of the following mistakes: if the finger does 

not enter or leaves the home target before the peripheral target appears; if RT is less than 150ms or 

beyond 8000ms; if total MT exceeds 10,000ms; if participants do not hold their finger in the peripheral 

target for 500ms. The exception to these error trials are direction reversals (DR) because these data are 

removed from the correct trials but are still analyzed. A DR occurs when a participant moves more than 

90° away from the cued peripheral target upon initiating movement out of the central target. 

The kinematic outcome variables used for this study were: MT for the full movement (MTf), 

RT, absolute error (AE), variable error (VE), peak velocity (PV), and percentage of DR’s (%DR). The 

MTf refers to the time in milliseconds between initial movement acceleration beyond 10% of peak 

velocity to final deceleration of the full movement going below the 10% threshold of peak velocity 
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once more in the peripheral target (i.e., after any movement corrections). The RT is scored as the time 

in milliseconds for movement onset in response to the appearance of a peripheral target. The AE is a 

measure of the distance of finger end-point position in relation to target location in millimeters, while 

VE represents the variability of individual finger end-point locations from the average end-point 

location in millimeters. The PV is the maximum velocity of each finger-sliding movement per trial. 

Finally, the %DR is calculated as the percentage of trials that begin with a movement from the central 

target at least 90° in the wrong direction of the desired peripheral target.  

This task has been used in asymptomatic adults who were at-risk of developing dementia based 

on their family history. Discriminant analyses were able to differentiate between those who were at 

high-risk and those who were not, using this task (FH+: Wilks’ Lambda=0.474, p<0.001, canonical 

correlation=0.73; MCI: Wilks’ Lambda=0.344, p<0.001, canonical correlation=0.81. The grouping of 

cases also resulted in an overall classification accuracy of 86.4%, with a sensitivity of 81.8% and 

specificity of 90.9%. Poor CMI performance on BrDI™ has correlated with decreased scores on other 

measures of cognitive status (i.e., MOCA scores), and as well as with positive family history of 

dementia (Hawkins & Sergio, 2014). Each condition of the task (i.e., using timing variables) has been 

able to demonstrate medium-large effect sizes between healthy control and AD groups: d = 0.74 for the 

direct condition, d = 0.75 for the feedback reversal condition, d = 1.2 for the plane change condition 

and d = 0.94 for the plane change reversal condition (Tippett et al., 2012). These studies suggest that 

this tool could be helpful for distinguishing between behavioural signs of healthy and pathological 

aging. At present, this measure is lacking statistical analysis of validation, but recent neuroimaging has 

supported our hypotheses that the brain areas and networks activated during CMI tasks are reliant on 

the frontoparietal network in addition to cerebellar and visual areas (Gorbet & Sergio, 2018). 

Bimanual Coordination Tasks. 

The Bimanual Coordination Tasks (Albines, Granek, Gorbet, & Sergio, 2016) are timed tasks 

that involve switching between left and right hands to either pick up a lever or move a washer/press a 
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button in serial order according to the rules of the board used (i.e., washers or buttons; see Figure 4). 

First, the task was explained and demonstrated until participants indicated that they understood the 

procedure. The order of the two bimanual coordination tasks was randomized to counterbalance any 

learning effects. The boards were placed in front of the participants on a table at approximately hip 

height.  

For the Precision board which used washers, there were six equally spaced pegs along the 

bottom edge of the board closest to the participants where all 12 washers were evenly stacked in pairs 

(see Figure 4; the brown board on the left). A small washer of 22mm was placed beneath a larger 

washer of 25mm on each peg before the task began. Towards the middle of the board were two more 

pegs, both covered by spring-loaded, hinged metal levers. The lever closer to the participant was 18cm 

from the bottom edge; this lever was lifted by the participant’s left hand. The second lever was further 

from participants, 32cm from the bottom edge of the board and was lifted by the participant’s right 

hand. Start and stop buttons were placed to the left of the pegs for recording participants’ task 

completion time. To begin, participants pressed the start button and lifted the closest lever with their 

left hand to reveal a peg; next, their right hand quickly moved a washer from the bottom of the board to 

the peg they just revealed. The next step is to repeat the following step using the opposite hand and 

alternating positions/movement locations (i.e., participants then lift the furthest lever with their right 

hand and place a washer on that peg with their left hand). This switching continued until all 12 washers 

were on the two pegs in the centre of the board and then the participant pressed the stop button. 

Similarly, for the whole-hand/Button version of the Bimanual Coordination Task, a board was 

placed in front of participants on a table at approximately hip height (see Figure 4; the grey board on 

the right). Much like the washer version of the task, participants were given a start button to track the 

time to completion but instead of washers there were four buttons. Two buttons were located at the 

bottom edge of the board closest to the participant, one is red, and one is green. In the centre of the 

board, with the same distance measurements as the previous task are two hinged metal levers with one 



 

 

31 

button underneath. The closer lever on the left covered a green button and the more distant lever on the 

right covered a red button. Once participants pressed the start button, their left hand lifted the lever on 

the left and then the participant pressed the green button at the bottom of the board and sequentially 

pressed the corresponding green button that was under the lever. The next step was to lift the farther 

lever on the right with the right hand and use the left hand to press the red button at the bottom of the 

board and then the red button under the lever. These alternating movements would continue for a total 

of 12 repetitions. The dependent variable was the total time to complete the task on the first attempt. 
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(a)                                                                     (b)

  

Figure 4. Two Bimanual Coordination Tasks. (a) The Precision Bimanual Task. Participants must move 

the washers from the pegs at the bottom of the board to the pegs beneath the levers, one at a time and 

while switching between left and right hands. (b) The Whole-Hand Bimanual Task. Participants must 

press the yellow start button to begin and then press the green button at the bottom of the board, lift the 

corresponding lever with the matching green circle using their left hand and press the green button that 

is underneath with their right hand. Immediately after, the red button at the bottom of the board will be 

pressed, the corresponding lever marked with a red circle will be lifted by the participants right hand, 

and the red button underneath will be pressed by the participants left hand. These movement patterns 

will repeat in this exact order for 12 repetitions.   

  



 

 

33 

Fruit Ninja® intervention.  

The intervention protocol used a proxy video-game called Fruit Ninja® which was modified to 

require CMI (see Figure 5). The intervention task has adapted similar CMI principles as per the BrDI 

assessment task, but the intervention task allows for less structured movements and more cognitive 

processing/flexibility than BrDI in that there are more dynamic and variable exercises presented. 

Approximately two weeks after baseline data collection, participants began playing this video-game 

twice a week for 30 minutes each time, for 16 weeks in total. This visuomotor training game required 

basic eye-hand coordination to swipe at fruit that appear quickly on the screen; this game was chosen 

because invoking these types of actions requires the use of frontopartietal networks. This task was done 

in three different conditions, the first being the direct condition in which participants simply played the 

game on a tablet placed on the horizontal plane in front of them. The Plane Change condition required 

participants to cast their screen to a TV or external monitor so that they could look up at the screen in 

the vertical plane while their hand still moved on the tablet in the horizontal plane, which spatially 

dissociated their gaze and reach. The third condition required participants to physically turn their tablet 

upside down while it was casting to incorporate both the plane dissociation and a visual feedback 

rotation of 180 degrees.  

The game also has 2 modes, in the “Zen” version of the game which is used as practice; 

participants are given 90 seconds to swipe as many moving fruits on their screen as possible. The total 

number of fruit that are intercepted by the participant’s finger is saved and presented at the end of the 

trial. In the “Classic” mode there is a no-go bomb task which requires additional cognitive processing 

for inhibiting action, i.e., not touching the bomb while still accurately slicing the fruit. No more than 

three fruits can be missed or else the game will end, with usually fewer total numbers of fruit 

intercepted.  
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Figure 5. Schematic drawing of the tablet-based video-game intervention. All participants played a 

practice mode and a no-go inhibition mode across three settings: (1) Direct setting: viewing and 

movement plane are the same, (2) Plane Change setting: viewing and movement planes are dissociated 

(i.e. the player watches a vertical monitor while moving their finger on a horizontal screen), and (3) 

Plane Change Reversal setting: viewing and moving planes are dissociated, and the movement plane is 

reversed (left=right, up=down). 

 

  

  

Direct 

Plane Change Plane Change Reversal 
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Procedure 

All participants were asked to give written informed consent (see Appendix B) before 

commencing with the study. The training groups did a 16-week training program in which they played 

a video-game that required CMI (described above). The video-game assessed participants’ ability to 

quickly slide their finger across a tablet screen toward moving targets with altered visual feedback 

and/or a dissociated spatial plane between guiding visual stimuli and motor movements. This training 

was performed for 30 minutes, twice a week, for four months, for a total of 32 sessions. The no-training 

groups simply did one hour of crosswords/puzzles from home each week. The study was designed as 

an intervention and thus involved a pre-test battery made up of the aforementioned cognitive, motor, 

and visuomotor measures followed in one to two weeks by the intervention period and then finished 

with a post-test battery of all the same measures as the pre-test battery. The test batteries consisted of a 

neuropsychological test called the Dementia Rating Scale-2 (DRS-2), a CMI touchscreen task called 

the Brain Dysfunction Indicator (BrDI), two fine-motor Bimanual Coordination tasks, and a 

questionnaire quantifying relevant variables like activity levels, history of concussion or dementia, and 

tablet/video-game experience. The pre- and post-test battery was used to assess cognitive processing, 

motor control and visuomotor ability. Performance in these domains was used to make inferences about 

whether impairments exist in CMI or in the processing of a single domain. 

During training, participants played the Zen version in Direct, Plane Change and Plane Change 

Reversal conditions, as well as the Classic version in Direct, Plane Change and Plane Change Reversal 

conditions of the game, three times each per condition. The video-game was played from home, twice a 

week, by repeating all the previous steps fully. The participants were responsible for writing down their 

scores on a scoring sheet after each game and emailing them to the experimenter each week. The 

experimental setup required participants to have access to a tablet, as well as an adapter which connects 

to an external monitor to project live visuals from the game for the plane change conditions. 

Participants were instructed how to set up the experiment from home, sent home with the appropriate 
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equipment and instructions and were also given a demonstration in person about how to setup the 

equipment. As a proof of principle study, we were interested in seeing if participants could perform the 

intervention independently from home to provide further evidence for the feasibility and efficacy of 

this intervention. This method would offer an alternate method for at-home care as an easy to access 

tool for a busy working-class population.  

Design and analyses.  

To assess whether there is a difference in CMI ability, fine motor skill and cognitive status from 

baseline to post-intervention sessions, in at-risk groups compared to healthy groups without training or 

with training, paired and independent nonparametric tests as well as repeated measures analysis of 

variance were conducted. The intervention was given to half of the at-risk participants and half of the 

healthy participants to observe changes over time in any of the previously mentioned domains due to 

the intervention as compared to the healthy controls and those who did not receive training.  

Due to the low sample size, non-parametric tests were computed to assess most dependent 

variables; however, a large amount of the data did not violate tests of equal variances or normality. In 

cases where the majority of the data, or data of interest did not violate normality or equality of variance 

tests, repeated measures ANOVAs were performed to follow-up in assessing any preliminary trends. If 

all dependent variables for a particular measure passed tests of normality and equality of variances, 

then repeated measures ANOVAs were performed on each dependent variable as stand-alone tests. 

Since the omnibus tests were not the main interest based on the hypotheses, post-hoc comparisons were 

assessed for all outcomes variables even if omnibus tests were not significant. The pairwise 

comparisons of particular interest were between the at-risk training participants and their no-training 

counterparts at baseline and post-intervention. To assess video-game score changes in Fruit Ninja® 

during training, data were grouped into 4 blocks corresponding to the average scores of each month of 

training and a repeated measures ANOVA was used to assess the progression of scores over time. The 

within-subject variable was the training month, while group was used as the between-subject variable. 
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The statistical analysis of data was done using SPSS statistical software (SPSS 24, IBM). The rejection 

level for all analyses were set at p = 0.05. 

Overall Timing and End Point Error composite variables were created based on their respective 

outcome variables obtained during the CMI task. To create the timing composite variable, z-scores 

based on the mean of both healthy control groups were used; these combined reaction time, full 

movement time and peak velocity. The value for peak velocity was inversed so that all negative values 

on each timing variable corresponded to better performance. The same procedure was used to make an 

end point error score that was based on absolute error and variable error z-scores for the CMI task.  

Internal consistency was assessed using Cronbach’s alphas for the z-scores that comprised the 

timing and end point error composites to ascertain that the appropriate kinematic outcome measures 

were effectively combined to create a score that was similarly as meaningful as measuring each 

variable separately (see Table 1). The Cronbach’s alpha for the totaled average timing and end point 

error composites of 0.724 and 0.789 respectively, indicates an acceptable level of internal consistency 

for both composites.  

 

Table 1 Cronbach’s alphas for each condition of the BrDI task at baseline and post-intervention. 

 Direct condition Feedback Reversal 

condition 

Plane Change 

condition 

Plane Change 

Reversal 

condition 

Timing composite: 

Baseline 

0.805 0.746 0.708 0.713 

Timing composite: 

Post-Intervention 

0.761 0.607 0.757 0.702 

End Point Error 

composite: 

Baseline 

0.762 0.671 0.928 0.904 

End Point Error 

composite: Post-

Intervention 

0.836 0.563 0.773 0.877 
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Results 

Demographic Characteristics 

Participants were mostly female (female: 18, male: 5), and Caucasian (74%), with an average 

age of 62.2 years (SD = 6.6) and with an average of 16.4 years of formal education (SD = 1.8); see 

Table 1. Generally, outcome measure performance was the same between males and females. However, 

sex differences could not be tested in all groups due to a lack of power (i.e., sample size was small, and 

some groups had no males). A one-way ANOVA with group as the factor and age as the dependent 

variable, indicated that there was no significant differences in age in each group (F(3, 21) = 1.234, p = 

0.326). There were no effects of group on baseline cognitive test scores (F(3, 21) = 0.603, p = 0.621) or 

on the bimanual coordination washers (F(3, 17) = 0.652, p = 0.595 or buttons (F(3, 17) = 0.384, p = 

0.766) tasks.   

 

Table 2 Demographic characteristics for all groups. 

Variable At-Risk 

Training 

(n = 5) 

Healthy  

Training 

(n = 6) 

Healthy No -

Training 

(n = 7) 

At-Risk No -

Training 

(n = 5) 

Overall 

 

(n = 23) 

Sex: Female 

n (%) 

4 (80%) 6 (100%) 6 (86%) 2 (40%) 18 (78%) 

Ethnicity: Caucasian 

n (%) 

5 (100%) 6 (100%) 3 (43%) 3 (60%) 17 (74%) 

Age 

mean (SD) 

62.4 (5.1) 64 (7.8) 65.9 (6.0) 59.8 (7.3) 62.9 (6.6) 

Years of Education 

mean (SD) 

17 (1.6) 14 (1.5) 15.8 (1.8) 19.2 (2.3) 16.4 (1.8) 

Where appropriate, data is expressed as means and standard deviations. 
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Progression During the Intervention Program 

After affirmation of normality in all conditions, multivariate repeated-measures ANOVAs were 

used to assess the progression of training scores across the four months of training for at-risk and 

healthy training groups, according to each training condition. The within-subject variable was the 

training month, while group was used as the between-subject variable. The repeated-measures ANOVA 

indicated that there was no main effect of group, meaning that both groups had a similar pattern of 

training score progression overall. In the Zen mode of the training game, there was a significant effect 

for training month (F(3, 27) = 4.623, p = 0.010, ηp
2 = 0.339) but no significant month by group 

interaction (F(3, 27) = 0.279, p = 0.840, ηp
2 = 0.030), and a trend for a significant effect for group in 

the Direct condition (F(1,9) = 4.789, p = 0.056, ηp
2 = 0.348; see Figure 6). Sidak post-hoc comparisons 

of training month progression indicated that there were no significant differences in training scores in 

the Direct Zen condition. There were no significant changes in training scores in the Plane Change Zen 

condition (See Figure 7). There was, however, a significant effect for training month (F(3, 27) = 4.135, 

p = 0.016. ηp
2 = 0.315) in the Plane Change Reversal condition (See Figure 8). Post-hoc comparisons 

of training month progression in the Plane Change Reversal Zen condition indicated that there were no 

significant differences in any months of training. 
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Figure 6. Average monthly performance on the video-game training program for both groups in the 

Direct Zen condition. Error bars represent the standard error of the mean (SEM), * = < 0.05. 

 

 

Figure 7. Average monthly performance on the video-game training program for both groups in the 

Plane Change Zen condition. Error bars represent standard error of the mean (SEM), * = < 0.05. 

 

 

Figure 8. Average monthly performance on the video-game training program for both groups in the 

Plane Change Reversal Zen condition. Error bars represent standard error of the mean (SEM), * = < 

0.05. 
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In the Classic mode of the training game (requiring inhibition of responses at random times), 

there was a significant effect of training month (F(3, 27), = 13.742, p <0.001, ηp
2 = 0.604) and a 

significant month by group interaction (F(3, 27) = 6.789, p = 0.005, ηp
2 = 0.430), but no main effect for 

group in the Direct condition (See Figure 9). Sidak post-hoc comparisons of training month progression 

in the Direct Classic condition indicated that there was a significant improvement in training scores 

from month one (M = 66.3, SEM = 8.6) to two (M = 81.6, SEM = 10.1; p = 0.014), from month one to 

three (M = 95, SEM = 10; p = 0.004), and from month one to four (M = 97.7, SEM = 11.3; p = 0.007). 

The post-hoc comparison of month by group interactions indicated that there were significant 

differences between month one (M = 77.7, SEM = 11.6)  to two (M = 96.4, SEM = 13.6; p = 0.026) for 

the healthy training group and between month one (M = 54.8, SEM = 12.7)  to three (M = 88, SEM = 

14.8; p = 0.021), one to four (M = 105.8, SEM = 16.7; p = 0.004) and month two to four (p = 0.002) in 

the at-risk group on the Direct Classic condition. In the Plane Change condition (See Figure 10), there 

was only a significant effect of training month (F(3, 27) = 4.454, p = 0.011, ηp
2 = 0.331). Post-hoc 

comparisons of training month progression in the Plane Change Classic condition indicated that there 

were no significant differences in training scores in any month of training. In the Plane Change 

Reversal condition (See Figure 11), there was also only an effect of training month (F(3, 27) = 7.559, p 

= 0.001). Post-hoc comparisons of training month progression in the Plane Change Reversal Classic 

condition indicated that there were no significant differences in any specific months of training. 

Overall, both groups showed a significant improvement across the four months of training in five of the 

six conditions, with a relatively similar progression pattern. 
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Figure 9. Average monthly performance on the video-game training program for both groups in the 

Direct Classic condition. Error bars represent standard error of the mean (SEM), * = < 0.05. 

 

 

Figure 10. Average monthly performance on the video-game training program for both groups in the 

Plane Change Classic condition. Error bars represent standard error of the mean (SEM), * = < 0.05. 

 

 

Figure 11. Average monthly performance on the video-game training program for both groups in the 

Plane Change Reversal Classic condition. Error bars represent standard error of the mean (SEM), * = < 

0.05, ** = < 0.01. 
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Effects of the Intervention on Neurocognitive Test Scores 

Since the distribution of neurocognitive test scores violated the assumptions of normality 

according to the Shapiro-Wilk test of normality at baseline (W(17) = 0.744, p < 0.001) and post-

intervention (W(17) = 0.600, p < 0.001), related-samples non-parametric tests were used. A Related-

Samples Wilcoxon Signed Rank Test indicated that there were no significant differences from baseline 

to post-intervention in neurocognitive scores in the at-risk training group (Z = -1.000, p = 0.317), in the 

healthy training group (Z = -1.841, p = 0.066), the healthy no-training group (Z = -1.342, p = 0.180) or 

the at-risk no-training group (Z = -1.000, p = 0.317, see Fig. 12). Given that all participants were 

cognitively healthy to begin with, this finding was not unexpected. 
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Figure 12. Change in neurocognitive test scores on the Dementia Rating Scale II from baseline to the 

post-intervention period across each group. Error bars represent standard error of the mean (SEM). 
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Effects of the Intervention on Fine-Motor Bimanual Tasks 

Shapiro-Wilk tests of normality indicated that the sample distribution was normal for the 

Bimanual Washers task both at baseline (W(13) = 0.911, p = 0.191) and post-intervention (W(13) = 

0.984, p = 0.993) after exclusion of one outlier; see Figure 13. These were confirmed by the Box’s test 

(p = 0.990) and Levene’s Tests Equality of Error Variances was also checked for Bimanual Washers at 

baseline (F(3, 9) = 0.398, p = 0.758) and post-intervention (F(3, 9) = 0.209, p = 0.888). Despite the 

small sample sizes at baseline and post-intervention, ANOVAs were used since no tests of normality 

nor equality of error variances were violated. A univariate repeated measures ANOVA indicated that 

there was a significant effect of time point on the Bimanual Coordination Washers task (F(1, 9) = 

13.451, p = 0.005, ηp
2 = 0.599; Fig. 13). There was no time point by group interaction (F(3, 9) = 0.668, 

p = 0.593, ηp
2 = 0.182) and no significant effect of group on this task (F(3, 9) = 1.212, p = 0.360, ηp

2 = 

0.288). LSD post-hoc tests indicated that there was a significant improvement overall (p = 0.005) from 

baseline (M = 25.65 s, SEM = 1.018) to post-intervention (M = 23.65 s, SEM = 0.679). Despite the lack 

of a significant group by timepoint interaction, LSD post-hoc tests indicated that the at-risk training 

group significantly improved (p = 0.006) from baseline (M = 27.6 s, SEM = 1.558) to post-intervention 

(M = 24.6 s, SEM = 1.039). Notably we observed no change in performance across time in untrained 

groups which suggests that the lack of significant group differences may be due to the lack of power. 

A Shapiro-Wilk test of normality indicated that the sample distribution was normal for the 

Bimanual Coordination Buttons task both at baseline (W(12) = 0.9112, p = 0.228) and post-intervention 

(W(12) = 0.885, p = 0.103) after exclusion of two outliers; see Figure 14. These were confirmed by the 

Box’s test (p = 0.158); Levene’s Test for Equality of Error Variance was nonsignificant for Bimanual 

Buttons at baseline (F(3, 8) = 1.736, p = 0.237) and post-intervention (F(3, 8) = 1.641, p = 0.256). 

Additionally, based on a univariate repeated measures ANOVA, there were no significant effects of 

time point (F(1, 8) = 0.340, p = 0.576), or group (F(3, 8) = 0.355, p = 0.787), and no time point by 

group interaction (F(3, 8) = 1.847, p = 0.217) for the bimanual button task. 
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Figure 13. Change in Bimanual Coordination Timing scores on the Washers task from baseline to the 

post-intervention period across each group. Error bars represent standard error of the mean (SEM), * = 

< 0.05, ** = < 0.01. 

 

 

Figure 14. Change in Bimanual Coordination Timing scores on the Buttons task from baseline to the 

post-intervention period across each group. Error bars represent standard error of the mean (SEM). 
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Effects of the Intervention on outcome measures of the Cognitive-Motor Integration Task 

Generally, we observed some behavioural changes across groups in their ability to follow 

cognitive rules while executing movements after 16-weeks of rule-based visuomotor training. Figure 

15 demonstrates examples of both healthy and at-risk sample trajectories after the intervention period. 

A noticeable difference in overall trajectory can be seen across groups, especially in the at-risk no-

training group; this participant had quite large trajectory deviations compared to the other healthy or 

trained groups, after an equivalent passing of time. The at-risk participant that received training appears 

to be performing at a similar level of ability as the healthy participants. Specific indicators of 

performance ability based on the percentage of direction reversals, overall timing composites, and end 

point error composites will be discussed further below.  
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Figure 15. Sample hand movement trajectories from a participant in each group at post-intervention, as 

measured by the Plane Change Reversal condition of the BrDI task. This is the most challenging 

condition which involves two levels of dissociation at once. Hand trajectories began at the central 

target (the red dots in the central circle) and move towards one of the four peripheral targets. Each 

green line represents a single movement trajectory; the blue ellipses denote the 95% confidence interval 

for the final end point of the finger movements (the blue dots in the peripheral circles). These data 

provide an indication of overall cognitive-motor integration performance.  
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Change in direction reversals based on training. 

The longitudinal effects of training or no-training on direction reversals were analyzed with 

related-samples non-parametric tests since the sample distribution violated assumptions of normality 

according to Shapiro-Wilk’s test of normality, across most conditions; see Figure 16. The Related-

Samples Wilcoxon Signed Rank Test indicated that there was no change in the percentage of direction 

reversals from baseline to post-intervention on the Direct condition in at-risk training (Z < 0.001, p = 

1.000), healthy training (Z = -1.000, p = 0.317), healthy no-training (Z < 0.001, p = 1.000), or at-risk 

no-training (Z < 0.001, p = 1.000); in the Feedback Reversal condition in at-risk training (Z = -1.342, p 

= 0.180), healthy training (Z = -1.483, p = 0.138), healthy no-training (Z = -1.604, p = 0.109, or at-risk 

no-training (Z < 0.001, p = 1.000); on the Plane Change condition in at-risk training (Z = -0.447, p = 

0.665), healthy training (Z = -1.069, p = 0.285), healthy no-training (Z = -1.000, p = 0.317), or at-risk 

no-training (Z = -1.000, p = 0.317); nor on the Plane Change Reversal condition in at-risk training (Z = 

-0.730, p = 0.465), healthy training (Z = -0.338, p = 0.735), healthy no-training (Z = -0.365, p = 0.715), 

or at-risk no-training (Z = -0.447, p = 0.655).  
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Figure 16. Sample trajectories of direction reversals from a participant in the at-risk training group and 

a healthy control participant. These images indicate improvement/reduction in the number of direction 

reversal errors from baseline (left images: 6 errors for the at-risk participant and 2 for the healthy 

participant) to post-intervention (right images: 2 direction reversal errors for the at-risk participant and 

0 for the healthy participant) during the BrDI task in the Plane Change Reversal condition. This 

condition involves two levels of dissociation; and since it is performed upside down and backwards, 

participants may be more likely to make a directional error upon movement execution in this condition. 
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Change in timing composite scores based on training. 

Since most individuals with MCI or dementia are still able to perform tasks with only one level 

of dissociation and the present study recruited healthy adults, we did not expect differences in 

performance on conditions with less than two levels of dissociation. Therefore, we only examined 

variability analyses and post-hoc comparisons if significance was found in the Plane Change Reversal 

condition. According to the Shapiro-Wilk tests of normality, seven of the eight timing composite score 

variables had a normal distribution: Direct condition at baseline (W(17) = 0.968, p = 0.786) and post-

intervention (W(17) = 0.949, p = 0.446); Feedback Reversal condition at baseline (W(17) = 0.981, p = 

0.969) and post-intervention (W(17) = 0.912, p = 0.106); Plane Change condition at baseline (W(17) = 

0.936, p = 0.277) and post-intervention (W(17) = 0.963, p = 0.683); Plane Change Reversal condition at 

baseline (W(17) = 0.964, p = 0.699) and post-intervention (W(17) = 0.852, p = 0.012).  

Additionally, according to Levene’s Test of Equality of Error Variance, six of the eight 

dependent variables had equal error variances: Direct condition at baseline (F(3, 13) = 10.797, p = 

0.001) and post-intervention (F(3, 13) = 2.444, p = 0.111); the Feedback Reversal condition at baseline 

(F(3, 13) = 0.656, p = 0.594) and post-intervention (F(3, 13) = 3.653, p = 0.042); the Plane Change 

condition at baseline (F(3, 13) = 0.521, p = 0.675) and post-intervention (F(3, 13) = 2.752, p = 0.085); 

the Plane Change Reversal condition at baseline (F(3, 13) = 1.078, p = 0.393) and post-intervention 

(F(3, 13) = 2.316, p = 0.124). With a lack of significance from the Levene’s test on the Plane Change 

Reversal condition, more in-depth analyses of pre- to post-test variability were not performed on 

composite timing scores. 

Since this pilot study was lacking in sample size, the longitudinal effects of training or not on 

timing and error composites across all groups were analyzed first with non-parametric tests and then 

were followed-up with multivariate repeated measures ANOVAs to investigate patterns further. Time 

point was the within-subject factor, and group was the between-subject factor. A Related-Samples 

Wilcoxon Signed Rank Test was performed to observe each group on all 4 conditions for any change in 
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timing composites from pre- to post-intervention; none of which were significant. An independent 

samples Kruskal-Wallis H Test was used to assess median differences between groups over time on 

each condition of this task. There were no significant differences in performance between any groups at 

baseline or post-intervention for any condition (see Figure 17). 

According to the multivariate repeated measures ANOVA, there were no significant differences 

in timing composites from pre- to post-intervention in the Direct condition (F(1, 13) = 1.174, p = 

0.298, ηp
2 = 0.083), the Feedback Reversal condition (F(1, 13) = 0.401, p = 0.538, ηp

2 = 0.030), the 

Plane Change condition (F(1, 13) = 0.069, p = 0.798, ηp
2 = 0.005) or the Plane Change Reversal 

condition (F(1, 13) = 0.450, p = 0.514, ηp
2 = 0.033). There were also no time point by group 

interactions from pre- to post-intervention in the Direct condition (F(3, 13) = 1.911, p = 0.178, ηp
2 = 

0.306), the Feedback Reversal condition (F(3, 13) = 1.329, p = 0.308, ηp
2 = 0.235), the Plane Change 

condition (F(3, 13) = 0.829, p = 0.501, ηp
2 = 0.161), or the Plane Change Reversal condition (F(3, 13) = 

0.994, p = 0.426, ηp
2 = 0.187). Finally, there were no effects of group in the Direct condition (F(3, 13) 

= 0.262, p = 0.852, ηp
2 = 0.057), the Feedback Reversal condition (F(3, 13) = 1.599, p = 0.238, ηp

2 = 

0.270), the Plane Change condition (F(3, 13) = 0.908, p = 0.464, ηp
2 = 0.173), or the Plane Change 

Reversal condition (F(3, 13) = 2.094, p = 0.150, ηp
2 = 0.326).  

Although there was no significant time point by group interactions in any condition, LSD post-

hoc comparisons suggest that there was a significant difference in timing composites on the Plane 

Change Reversal condition at post-intervention between the at-risk training group (M = -4.401, SEM = 

1.480) and the at-risk no-training group (M = 1.775, SEM = 2.340; p = 0.044); and also, between the at-

risk training group and the healthy no-training group (M = 0.591 SEM = 1.655; p = 0.043); the at-risk 

training group was significantly fastest. These significant post-hoc tests suggest an underlying time 

point by group interaction for timing composites; however, power was lacking for statistical 

demonstration of effects. 
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Figure 17. Change in the timing composite scores during the BrDI task on the Plane Change Reversal 

condition from baseline to the post-intervention period across each group. A negative composite score 

indicates better (i.e., faster) performance. Error bars represent standard error of the mean (SEM). 
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Change in end point error composite scores based on training. 

According to the Shapiro-Wilk tests of normality, six of the eight end point error composite 

score variables had a normal distribution: Direct condition at baseline (W(17) = 0.901, p = 0.072) and 

post-intervention (W(17) = 0.951, p = 0.481); the Feedback Reversal condition at baseline (W(17) = 

0.911, p = 0.104) and post-intervention (W(17) = 0.947, p = 0.434); the Plane Change condition at 

baseline (W(17) = 0.923, p = 0.166) and post-intervention (W(17) = 0.946, p = 0.398); the Plane 

Change Reversal condition at baseline (W(17) = 0.799, p = 0.002) and post-intervention (W(17) = 

0.672, p < 0.001).  

Additionally, according to Levene’s Test of Equality of Error Variance, five of the eight 

dependent variables had equal error variances: Direct condition at baseline (F(3, 13) = 1.211, p = 

0.345) and post-intervention (F(3, 13) = 1.077, p = 0.393); the Feedback Reversal condition at baseline 

(F(3, 13) = 4.437, p = 0.023) and post-intervention (F(3, 13) = 2.331, p = 0.122); the Plane Change 

condition at baseline (F(3, 13) = 6.450, p = 0.007) and post-intervention (F(3, 13) = 0.967, p = 0.438); 

the Plane Change Reversal condition at baseline (F(3, 13) = 3.241, p = 0.057) and post-intervention 

(F(3, 13) = 5.966, p = 0.009).  

Since there was a significant difference on the condition of interest (i.e., Plane Change 

Reversal) variance at post-intervention between groups, this condition was explored further with 

additional Levene’s tests. A univariate ANOVA with performance on the Plane Change Reversal 

condition among all groups as the dependent variable and pre- and post- combined with group as the 

between subjects factor was conducted, output from the Levene’s test indicated that there was a 

significant difference in variance between baseline and post-intervention overall (F(8, 34) = 3.448, p = 

0.007). To explore this further, additional univariate ANOVAs were conducted for each group to assess 

change in variability from pre- to post-intervention. The resulting Levene’s tests indicated that the at-

risk training group had a significant reduction in variability (F(1, 8) = 6.371, p = 0.036) from pre- (SD 

= 1.56) to post-intervention (SD = 0.48) while that at-risk no-training group had a significant increase 
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in variability (F(1, 5) = 9.218, p = 0.029)  from pre- (SD = 0.62) to post-intervention (SD = 2.75). 

Variance did not significantly change from pre- to post-intervention in either of the healthy control 

groups. 

A Related-Samples Wilcoxon Signed Rank Test was performed to observe each group on all 4 

conditions for any change in median end point error composites from pre- to post-intervention; none of 

which were significant. An independent samples Kruskal-Wallis H Test was used to assess median 

differences between groups over time on each condition of this task. There were no significant 

differences in performance between any groups at baseline or post-intervention for any condition. 

According to the multivariate repeated measures ANOVA with end point error composites in 

each condition as the dependent variable, time point as within-subject variable and group as the 

between-subject variable, there were no significant differences in end point error composites from pre- 

to post-intervention in the direct condition (F(1, 13) = 0.003, p = 0.958, ηp
2 = 0.005), in the Feedback 

Reversal condition (F(1, 13) = 0.219, p = 0.648, ηp
2 = 0.001), in the Plane Change condition (F(1, 13) 

= 0.156, p = 0.699, ηp
2 = 0.016) or in the Plane Change Reversal condition (F(1, 13) = 0.368, p = 0.554, 

ηp
2 = 0.025). There were also no significant time point by group interactions from pre- to post-

intervention in the Direct condition (F(3, 13) = 2.287, p = 0.127, ηp
2 = 0.347); the Feedback Reversal 

condition (F(3, 13) = 0.135, p = 0.937, ηp
2 = 0.041); the Plane Change condition (F(3, 13) = 0.752, p = 

0.540, ηp
2 = 0.148); the Plane Change Reversal condition (F(3, 13) = 0.510, p = 0.682, ηp

2 = 0.103). 

Finally, there were no significant effects of group from pre- to post-intervention in the Direct condition 

(F(3, 13) = 0.709, p = 0.563, ηp
2 = 0.142), in the Feedback Reversal condition (F(3, 13) = 1.380 p = 

0.293, ηp
2 = 0.238), in the Plane Change condition (F(3, 13) = 0.720, p = 0.558, ηp

2 = 0.142), or in the 

Plane Change Reversal condition (F(3, 13) = 2.844, p = 0.079, ηp
2 = 0.395).  

Despite non-significant group by time point interactions, LSD post-hoc comparisons indicated a 

significant difference in end point error scores on the Plane Change Reversal condition at post-

intervention, the at-risk training group (M = -0.621, SEM = 0.807) significantly outperformed the at-
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risk no-training group (M = 2.709, SEM = 1.276; p = 0.046); and the healthy training group (M = -

0.721, SEM = 0.736) also significantly outperformed the at-risk no-training group (p = 0.037), which 

actually got worse. Again, these patterns of significance among post-hoc comparisons suggest that with 

a larger sample size, effects may have been present but with the current sample size, it was not possible 

to detect these patterns. See Figure 18. 

 

  



 

 

57 

 

Figure 18. Change in the end point error composite scores during the BrDI task on the Plane Change 

Reversal condition from baseline to the post-intervention period across each group. A negative 

composite score indicates better (i.e., more accurate and precise) performance. Error bars represent 

standard error of the mean (SEM). 
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Discussion 

The goal of this study was to incorporate the study design used by de Boer and colleagues 

(2018), but in an asymptomatic population with increased risk for developing dementia to strengthen 

neural processes prior to any potential symptom onset. To this effect, we made minor adjustments to 

the study design by asking participants to perform the training twice a week instead of once and by 

adding a measure of motor ability since we showed previously that cognitive status is affected by CMI 

training and we did not expect to find similar changes in cognitive status in healthy groups; instead we 

hoped to see some generalizability of the training to motor skill along with improved CMI ability. As a 

quickly expanding field of literature, objective measures of health status (i.e., like measures of motor 

skill) are in higher demand since previously, changes in cognition have been the central focus. 

Cognition can be difficult to assess, especially in at-risk, asymptomatic adults since status may 

deteriorate after only advanced disease progression and testing of it may be accompanied by biases or 

error not related to cognitive status (e.g., language barriers, hearing difficulties or poor instructions), 

and for this reason objective measures are desired. We were particularly interested in knowing if 

visuomotor training could translate to improved motor skill, as it did to cognitive status in groups with 

sub-average cognition/MCI in previous work from our lab. Based on the current findings, this study 

was able to find a translation effect of visuomotor training to improved motor ability on a skill 

requiring communication between hemispheres. 

The specific motor skill of interest was bimanual coordination since performance of this task 

also incorporates large-scale neural networks (i.e., similar in scale to the associative fibres in the 

frontoparietal network). This task requires interhemispheric communication reliant 

on callosal fibres that transmit signals from one side of the brain to the other. We postulate that the 

findings of generalizability (e.g., visuomotor training translating to improved functional independence 

and global cognition) from the previous study are attributed to the use of tasks that stimulate large 

neural networks that are deeply interconnected with various domains and require altered patterns of 
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neuronal firing. For example, recent neuroimaging research has found that during nonstandard, 

feedback reversal tasks (i.e., as in the training program) there is greater activation in the right IPL and 

left superior posterior cerebellum; additionally, based on their roles, activation in the cuneus and medial 

premotor area suggest that these regions were involved in detecting/differentiating between standard 

and nonstandard tasks (Gorbet & Sergio, 2016). According to another recent fMRI study and some 

animal neurophysiology research, most of the same brain areas are activated during plane dissociation 

tasks as in movements without a plane dissociation (Cisek, 2006; Gorbet & Sergio, 2018). However, 

PMd cells which have a preferred direction for firing that matches both plane dissociated and non-

dissociated targets, are co-activated to fire in alignment to movement toward either target. The non-

selected target pathway is then inhibited for the desired movement to occur in these nonstandard 

interactions (Cisek, 2006). Therefore, with information from these studies combined, the brain areas 

involved in performing the plane change condition and reversed visual feedback conditions (i.e., tasks 

that require CMI) have been mapped along the frontoparietal network as expected (in addition to 

cerebellar and visual areas). Without neuroimaging in the present study, these studies assisted with 

providing a framework for our hypothesis that the CMI task is engaging large-scale integrative 

networks and relevant cortical areas for task performance; many of which overlap with AD-vulnerable 

networks (Jones et al., 2016).  

In a similar way, the bimanual coordination tasks involved inhibitory control processes in order 

to properly sequence the correct movement, and this also involves following cognitive rules via frontal 

and parietal connections. Previous research has shown that poor CMI ability in at-risk individuals is 

correlated with WM disruptions in areas that overlap with those involved in bimanually coordinated 

movements (Hawkins et al., 2015). This overlapping network-based generalizability idea has support 

from the literature which indicates that brain regions within the frontoparietal network that are also 

involved with bimanual coordination, show altered activation with more experience and skill 

acquisition (Haslinger et al., 2004; Jäncke, Shah, & Peters, 2000; Sun, Miller, Rao, & D’Esposito, 
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2007). This is consistent with the effect that visuomotor training has on this network (Granek, Gorbet, 

& Sergio, 2010); which has translated to improved functioning in cognitive areas as well (de Boer et 

al., 2018). Therefore, the present data provide further evidence for the benefits of performing tasks that 

stimulate large neural networks, particularly the frontoparietal network, for generalizable effects from 

one domain to another in older/middle-aged adults. 

Baseline Motor and CMI Performance in Participants At-Risk for Dementia 

The hypothesis that the at-risk groups would perform significantly worse on measures of CMI 

and motor ability than the healthy groups at baseline, was not supported. None of the groups were 

significantly different from one another on any measures at baseline testing. The lack of baseline 

differences between at-risk and not at-risk groups in the present study is contradictory to what we have 

seen previously in our group’s research using a CMI task. In previous work, we have found that 

females who are at-risk for developing dementia based on their family history, have worse CMI ability 

that is associated with WM disruption and reduced resting state functional connectivity (Hawkins et al., 

2015; Hawkins & Sergio, 2016). One possible reason for this lack of group differences in the present 

study is that in both at-risk groups combined, the sample was made up of 50 percent males. In more 

recent, not yet published work, it has been noted that males tend not to express these visuomotor 

deficits as much as females, or perhaps not as early (Rogojin, Gorbet, Hawkins, & Sergio, n.d.). The 

combination of males and females together in a small sample may have washed-out this sex-related 

difference effect (i.e., as opposed to using a sample of only women that may be more likely to show 

early visuomotor deficits with an at-risk status).  

Alternatively, all groups were considered healthy and were not exhibiting any symptoms. They 

were a normal sample of middle-aged/older adults and perhaps they did not differ across tasks at 

baseline because they were too young to experience any such symptoms (i.e., if at-risk participants 

were to express any such early symptoms, perhaps they would still manifest later on, with an even later 
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expression of MCI). This notion is supported by previous work which suggests that impaired CMI 

ability is associated with the earliest stages of damage to the brain which starts with decreased 

connectivity in the posterior node (Hawkins & Sergio, 2016; Jones et al., 2016). The current findings 

suggest that the participants in this group were not at that level of impairment, but this cross-sectional 

data does not tell us if they will develop this impairment later, since the CMI task is only sensitive to 

network dysfunction that is already present. Finally, it is also possible that the at-risk training group 

was particularly keen, and this may have been a protective factor or performance bias against evidence 

of decline in this group; or perhaps with a more aware and prevention-tailored lifestyle, these 

individuals may have had more cognitive reserve. Cognitive reserve would have benefitted participants 

on each task, since all training and outcome measures incorporated an aspect of cognitive ability. When 

individuals were contacted via the York University research participant pool, there may have been a 

bias in that those who were worried about their health based on their family history may also have been 

more likely to respond. Also, many of the control group members were obtained in a more random 

fashion; some were workers at a facility for seniors who may have been motivated to participate based 

on genuine interest in contributing to the scientific literature and to support ongoing research at their 

facility and with their senior community in the future (i.e., with less reason for concern about their 

health, the healthy controls may not have been as keen as the at-risk group). 

Progression in Video-Game Scores During the Intervention Program 

The hypothesis that all groups would show an improvement over time on the intervention task 

was supported. Mainly, the biggest improvement was seen as a function of time, consistent across 

groups, rather than any specific differences among groups. Therefore, all groups showed a fairly 

consistent progression of motor learning across the 16-week training period based on their video-game 

scores. The literature is supportive of this finding in many regards, since impaired ability to show any 

motor learning over time would be indicative of a more severe form of impairment, which would have 
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met the exclusion criteria for the present study. Among the distributed neural networks that are first 

affected by neurodegenerative disease, those involved in basic motor learning and functional ability 

tend not to be affected until later stages of the disease (Eslinger & Damasio, 1986; Salek, Anderson, & 

Sergio, 2011). This study was comprised of healthy older adults with no cognitive or motor symptoms, 

and thus finding that scores of visuomotor skill on the training task improved significantly over time in 

all groups was highly anticipated.  

Many of the adults in this study indicated that they had little to no previous video-gaming 

experience; since these training exercises incorporated adaptations to altered motor skills (i.e., 

changing the plane of movement  or moving upside-down to reach the target), we would expect a 

steeper learning curve earlier on in the program (i.e., faster processes for learning earlier on, and slower 

processes later for better retention along with skill plateau; Karni et al., 1998; Ruttle, Cressman, ’T 

Hart, & Henriques, 2016). A similar finding, although less rapid, was noted in the present study when 

comparing performance from later months back to performance in month one of the program, 

especially in the at-risk group. Despite the low sample size and lack of significant group differences, 

some patterns can be noted in our findings. Specifically, the at-risk group tends to show a steeper (i.e., 

increased) rate of learning as suggested by the video-game scores. With more potential network 

vulnerability in this group, they would be more likely to have subthreshold visuomotor deficits and thus 

steeper learning earlier on in their training. Stimulating training early on that leads to enhanced skill 

may have protective effects against network decline. In a longitudinal motor skill acquisition study, it 

was shown that at a five year follow up, older adults declined in their ability to perform a motor task 

that was done at baseline; however, adults that performed similarly to younger cohorts at baseline, 

showed no such decline in performance at the five-year follow-up (Rodrigue, Kennedy, & Raz, 2005). 

This prevention of functional decline has similar implications for the type of visuomotor training that 

was performed in the present study. If training can stave-off symptoms of decline, then perhaps the 

stimulation of these same networks will have a similar protective effect globally. 
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Effects of the Intervention Program on CMI and Motor Performance 

The hypothesis that the at-risk group would demonstrate greater improvement over time on the 

measures of CMI and motor ability compared to the at-risk no-training group was partially supported. 

While all groups seemed to improve slightly over time (i.e., possible practice effects), the at-risk 

training group was the only group to significantly improve performance from baseline to post-

intervention on the Bimanual Washers task. Interestingly, this effect was only found in the Bimanual 

Washers task and not the Bimanual Buttons task. It is possible that the lack of significant findings for 

the Buttons task is simply due to the small sample size, but it is also possible that since the Washers 

task required more complex, fine-motor precision, that higher demand on neural resources and 

involvement of more brain areas needed to produce such intricate movement, ultimately lead to the 

division in performance across tasks. Gross motor tasks can distinguish groups with eAD from healthy 

controls, but typically movements with fine-motor components are required to differentiate individuals 

with MCI from healthy controls (Kluger, Gianutsos, Golomb, Ferris, George, et al., 1997). This 

increases the complexity of the task as well as the likelihood for connections with other brain areas that 

may be affected by visuomotor training. Thus, we speculate that the Bimanual Washers task required 

more precision and had a more demanding cross-hemispheric motor control component than the 

Bimanual Buttons task, which in contrast, may have been too simple and resulted in a ceiling effect. 

Additionally, there were trends for differences between the at-risk training and at-risk no-

training groups on both main outcome measures of CMI. In regard to the timing composite score in the 

Plane Change Reversal condition, although significance was not present in the omnibus tests, post-hoc 

comparisons indicated a trend for a significant difference at post-intervention between the at-risk 

training and at-risk no-training groups and between the at-risk training and healthy no-training groups. 

The at-risk training group had a faster average speed in both comparisons. Similarly, post-hoc 

comparisons indicated trends for differences between both training groups and the at-risk no-training 

group at post-intervention for the end point error scores as well. In this case the at-risk no-training 
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group demonstrated a lower average end point error score in both comparisons (i.e., poorer accuracy 

and precision). There were no significant differences between any other groups. There were also no 

improvements over time, nor differences between groups in their ability to inhibit movements that 

would result in a direction reversal. Variability in this outcome measure was quite large, and thus a 

larger sample would have assisted in clarifying these findings. Also, since all groups were healthy, they 

were not necessarily at the point of demonstrating significant impairment in these domains.  

Additionally, the two groups that received training showed a significant reduction in movement 

variability from pre- to post-intervention on the CMI task while the groups that did not receive training 

had greater movement variability at post-intervention compared to their baseline. While biological 

noise is an innate and normal aspect of cellular functioning that promotes heterogeneity and makes 

each human unique, sometimes having cells in a particular system (i.e., motor systems) fire with less 

cohesivity may indicate a less optimal and concise conduction of signals that may result in poorer 

motor performance (Matthews, 1996). With training, cells can adapt by sending signals with improved 

timing and muscle recruitment. Considering that all groups in the present study were asymptomatic, we 

may not expect evident behavioural differences to appear on the measures tested, but reduced 

movement variability instead may be indicative of a reduction in noisy signals (Müller & Sternad, 

2004). Therefore, the reduced movement variability across time in the end point error composites for 

the training groups were positive findings since these suggests that the training program may have 

improved the efficiency of the coordination of motor planning/execution as a result of less noisy 

signals. 

Together, these findings suggest that there was a difference in the way that the visuomotor 

training affected the at-risk training group compared to the other control groups. When observing test 

performance in each domain, it seems that the at-risk group showed the greatest improvement based on 

the longitudinal training, even though findings did not always reach significance. Some of the adults 

sampled may be at higher risk than others for developing dementia, but currently symptoms are not 
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evident; although, they showed some benefit from receiving training which suggests that the vulnerable 

brain networks that were targeted may have been strengthened with this stimulation. With these 

optimistic results based on the rule-based visuomotor training, it seems likely that the targeted 

vulnerable brain networks were stimulated in a beneficial way; future brain imaging studies with pre- 

and post-training will be needed in order to assess this thoroughly. With the present patterns, it seems 

likely that these findings would be supported further with a larger sample size. It is also quite possible 

that with a larger sample, or more females, underlying differences in performance at baseline may 

become evident. This would be consistent with the literature which indicates that being at-risk alone 

may predispose individuals to poorer/earlier decline in motor/CMI performance (Buchman & Bennett, 

2011; Hawkins et al., 2015).  

Limitations and Future Directions 

Overall, behavioural evidence from this proof-of-principle study supports previous research 

which has indicated that cognitive-motor training may be beneficial for generalized improvement of 

functional ability via increased frontoparietal network integrity. Although the present study was limited 

by the small sample size and a lack of pre- to post-test neuroimaging, patterns of improvement after 16-

weeks of visuomotor training in the at-risk group suggest that we may have indeed stimulated these 

targeted neural networks in a beneficial way. Thus, future research with this form of intervention 

should also include structural and functional neuroimaging both before and after the intervention as 

well as baseline genotyping to assess dementia risk in more depth along with network changes 

associated with the program. In addition, future studies could improve upon this design by recruiting a 

larger sample with a balanced age and gender ratio. One important limitation of the current study was 

that participants were not allocated to their respective groups in randomized order. Participants were 

assigned to groups based on their family history of AD/dementia, as well as their willingness to 

complete the training program or not. This may have been confounding to some degree since 
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participants with a family history of dementia who volunteered for this study may have been 

particularly keen and more interested in maintaining their overall health and therefore not necessarily 

representative of the general population. Also, if participants were not fully equipped with the 

technology at home beyond what the study could provide, then they were placed in the control no-

training group; they were still able to receive training if they chose, but only after a delay and with 

alternative hardware involved.  

Conclusions 

 The findings of this study have numerous therapeutic implications. Firstly, these findings lend 

support to the literature about the effectiveness and simplicity of using video games as a tool to 

improve motor functioning. Importantly, this visuomotor training had a generalizable effect on 

performance for motor skills that were not directly involved in the training program itself. That is, the 

training program was a unimanual task, but bimanual coordination improved, a skill that required brain 

network communication via the corpus callosum. Previously, in adults with MCI, training with these 

video-games translated to improved visuomotor and global cognition as well (de Boer et al., 2018). 

Since the sample for the current study was healthy and had a healthier cognitive status overall, the 

present study was only able to extend these results to improved motor ability with the additional 

finding of reduced movement variability in groups that were trained. This finding is consistent with 

previous literature suggesting that certain visuomotor abilities may be a more sensitive measure of 

early decline (i.e., a target for therapeutic intervention) than measures of cognitive status (Buchman & 

Bennett, 2011; Hawkins et al., 2015). Second, the importance of using tasks that incorporate large-scale 

neural networks are highlighted by our findings. The interconnectedness of the networks involved in 

the training task may contribute to the generalizability of effects that we have seen across tasks. Third, 

motor areas of the brain can offer objective information about brain health given that the process of 

degradation is a whole-brain process. Some areas are affected earlier than others, but ultimately, 



 

 

67 

evaluating cognitive status is an important indicator of pathological processes that have already taken 

place in the brain and evaluating motor ability also has functional relevance. Requiring combined 

output from both domains at once places more demand on brain resources and may be a more sensitive 

measure of early indication of decline. The novelty and benefit of a performance-based task like the 

one used for this study, is that it is quick to administer (i.e., about 15 minutes), portable, computerized, 

and a biased-reduced assessment tool. Participants did not report any difficulty setting up or using this 

training task from home for 16-weeks. Hence the feasibility of remotely administering a technology-

based solution for maintenance of brain health and potentially the prevention of functional decline is 

supported by this approach. Overall, the findings of this study contribute to present knowledge about 

functional decline prevention in individuals facing a neurodegenerative disease. 

  



 

 

68 

References 

Acevedo, A., & Loewenstein, D. a. (2007). Nonpharmacological cognitive interventions in aging and 

dementia. Journal of Geriatric Psychiatry and Neurology, 20(4), 239–249. 

https://doi.org/10.1177/0891988707308808 

Agosta, F., Pievani, M., Geroldi, C., Copetti, M., Frisoni, G. B., & Filippi, M. (2012). Resting state 

fMRI in Alzheimer’s disease: Beyond the default mode network. Neurobiology of Aging, 33(8), 

1564–1578. https://doi.org/10.1016/j.neurobiolaging.2011.06.007 

Albines, D., Granek, J., Gorbet, G., & Sergio, L. (2016). Bimanual coordination development is 

enhanced in young females and experienced athletes. Journal of Motor Learning & Development, 

4(2), 274–286. 

Amenta, F., Parnetti, L., Gallai, V., & Wallin, A. (2001). Treatment of cognitive dysfunction associated 

with Alzheimer’s disease with cholinergic precursors. Ineffective treatments or inappropriate 

approaches? Mechanisms of Ageing and Development, 122(16), 2025–2040. 

Ball, K., Berch, D. B., Helmers, K. F., Jobe, J. B., Leveck, M. D., Marsiske, M., … Willis, S. L. (2002). 

Effects of cognitive training interventions with older adults. The Journal of the American Medical 

Association, 288(18), 2271–2281. 

Bartzokis, G. (2004). Age-related myelin breakdown: A developmental model of cognitive decline and 

Alzheimer’s disease. Neurobiology of Aging, 25(1), 5–18. 

https://doi.org/10.1016/j.neurobiolaging.2003.03.001 

Basak, C., Boot, W. R., Voss, M. W., & Kramer, A. F. (2008). Can training in a real-time strategy video 

game attenuate cognitive decline in older adults? Psychology and Aging, 23(4), 765–777. 

https://doi.org/Doi 10.1037/A0013494 

Bonnì, S., Lupo, F., Lo Gerfo, E., Martorana, A., Perri, R., Caltagirone, C., & Koch, G. (2013). Altered 

parietal-motor connections in Alzheimer’s disease patients. Journal of Alzheimer’s Disease, 33(2), 

525–533. https://doi.org/10.3233/JAD-2012-121144 

Braak, H., & Braak, E. (1991). Neuropathological stageing of Alzheimer-related changes. Acta 

Neuropathol (Berl), 82(4), 239–259. 

Buchman, A. S., & Bennett, D. A. (2011). Loss of motor function in preclinical Alzheimer ’ s disease. 

Expert Rev Neurother., 11(5), 665–676. https://doi.org/10.1586/ern.11.57.Loss 

Byrne, P. A., & Crawford, J. D. (2010). Cue reliability and a landmark stability heuristic determine 

relative weighting between egocentric and allocentric visual information in memory-guided reach. 

Journal of Neurophysiology, 103(6), 3054–3069. https://doi.org/10.1152/jn.01008.2009 

Caeyenberghs, K., Leemans, A., Coxon, J., Leunissen, I., Drijkoningen, D., Geurts, M., … Swinnen, S. 

P. (2011). Bimanual coordination and corpus callosum microstructure in young adults with 

traumatic brain injury: A diffusion tensor imaging study. Journal of Neurotrauma, 28(6), 897–913. 

https://doi.org/10.1089/neu.2010.1721 

Caminiti, R., Ferraina, S., & Battaglia Mayer, A. (1998). Visuomotor transformations: early cortical 

mechanisms or reaching. Current Opinion in Neurobiology, 8, 753–761. 

Cavanna, A. E., & Trimble, M. R. (2006). The precuneus: A review of its functional anatomy and 

behavioural correlates. Brain, 129(3), 564–583. https://doi.org/10.1093/brain/awl004 

Cesari, M., Kritchevsky, S. B., Newman, A. B., Simonsick, E. M., Harris, T. B., Penninx, B. W., … 

Pahor, M. (2009). Added value of physical performance measures in predicting adverse health-

related events: Results from the health, aging and body composition study. Journal of the 

American Geriatrics Society, 57(2), 251–259. https://doi.org/10.1111/j.1532-5415.2008.02126.x 

Chen, Y., Monaco, S., Byrne, P., Yan, X., Henriques, D. Y. P., & Crawford, J. D. (2014). Allocentric 

versus egocentric representation of remembered reach targets in human cortex. The Journal of 

Neuroscience : The Official Journal of the Society for Neuroscience, 34(37), 12515–26. 

https://doi.org/10.1523/JNEUROSCI.1445-14.2014 



 

 

69 

Cisek, P. (2006). Integrated Neural Processes for Defining Potential Actions and Deciding between 

Them: A Computational Model. Journal of Neuroscience, 26(38), 9761–9770. 

https://doi.org/10.1523/JNEUROSCI.5605-05.2006 

Cisek, P., & Kalaska, J. F. (2005). Neural correlates of reaching decisions in dorsal premotor cortex: 

specification of multiple direction choices and final selection of action. Neuron, 45(5), 801–814. 

https://doi.org/10.1016/j.neuron.2005.01.027 

Clare, L. (2004). Cognitive training and cognitive rehabilitation for people with early-stage 

Alzheimer’s disease: A review. Reviews in Clinical Gerontology, 13(1), 75–83. 

https://doi.org/10.1017/S0959259803013171 

Clare, L., & Woods, R. (2004). Cognitive training and cognitive rehabilitation for people with early-

stage Alzheimer’s disease: A review. Neuropsychological Rehabilitation, 14(4), 385–401. 

Clower, D. M., & Boussaoud, D. (2000). Selective use of perceptual recalibration versus visuomotor 

skill acquisition. J Neurophysiol, 84, 2703–2708. 

Coblentz, J. M., Mattis, S., Zingesser, L. H., Kasoff, S. S., Wisniewski, H. M., & Katzman, R. (1973). 

Presenile dementia: Clinical aspects and evaluation of cerebrospinal fluid dynamics. Archives of 

Neurology, 29(5), 299–308. 

Colcombe, S. J., Erickson, K. I., Scalf, P. E., Kim, J. S., Prakash, R., McAuley, E., … Kramer, A. F. 

(2006). Aerobic exercise training increases brain volume in aging humans. Biological Sciences 

and Medical Sciences, 61A(11), 1166–1170. 

Corbetta, M. (1998). Frontoparietal cortical networks for directing attention and the eye to visual 

locations: Identical, independent, or overlapping neural systems? Proceedings of the National 

Academy of Sciences of the United States of America, 95(3), 831–838. 

Crawford, J. D., Henriques, D. Y., & Medendorp, W. P. (2011). Three-dimensional transformations for 

goal-directed action. Annual Review of Neuroscience, 34, 309–331. 

https://doi.org/10.1146/annurev-neuro-061010-113749; 10.1146/annurev-neuro-061010-113749 

Crean, S., Ward, A., Mercaldi, C. J., Collins, J. M., Cook, M. N., Baker, N. L., & Arrighi, H. M. (2011). 

Apolipoprotein E ε4 prevalence in Alzheimer’s disease patients varies across global populations: 

A systematic literature review and meta-analysis. Dementia and Geriatric Cognitive Disorders, 

31(1), 20–30. https://doi.org/10.1159/000321984 

Culham, J. C., Brandt, S. A., Cavanagh, P., Kanwisher, N. G., Dale, A. M., & Tootell, R. B. (1998). 

Cortical fMRI activation produced by attentive tracking of moving targets. Journal of 

Neurophysiology, 80(5), 2657–2670. 

de Boer, C., Echlin, H., Rogojin, A., Baltaretu, B., & Sergio, L. (2018). Thinking-while-moving 

exercises improves cognition in elderly with mild cognitive deficits: a proof-of-principle study. 

Dementia and Geriatric Cognitive Disorders EXTRA. 

Dessing, J. C., Vesia, M., & Crawford, J. D. (2013). The role of areas MT+/V5 and SPOC in spatial and 

temporal control of manual interception: an rTMS study. Frontiers in Behavioral Neuroscience, 

7(March), 15. https://doi.org/10.3389/fnbeh.2013.00015 

Duara, R., Barker, W. W., Lopez-Alberola, R., Loewenstein, D. A., Grau, L. B., Gilchrist, D., … St. 

George-Hyslop, P. H. (1996). Alzheimer’s disease: Interaction of apolipoprotein E genotype, 

family history of dementia, gender, education, ethnicity, and age of onset. Neurology, 46(6), 1575–

1579. https://doi.org/10.1212/WNL.46.6.1575 

Dubois, B., Hampel, H., Feldman, H. H., Scheltens, P., Aisen, P., Andrieu, S., … Jack, C. R. (2016). 

Preclinical Alzheimer’s disease: Definition, natural history, and diagnostic criteria. Alzheimer’s 

and Dementia. https://doi.org/10.1016/j.jalz.2016.02.002 

Elble, R. J., & Leffler, K. (2000). Pushing and pulling with the upper extremities while standing: the 

effects of mild Alzheimer dementia and Parkinson’s disease. Mov Disord, 15(2), 255–268. 

Retrieved from 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_



 

 

70 

uids=10752574 

Eslinger, P. J., & Damasio, A. R. (1986). Preserved motor learning in Alzheimer’s disease: implications 

for anatomy and behavior. The Journal of Neuroscience : The Official Journal of the Society for 

Neuroscience, 6(10), 3006–9. https://doi.org/10.1523/JNEUROSCI.06-10-03006.1986 

Ewers, M., Sperling, R. A., Klunk, W. E., Weiner, M. W., & Hampel, H. (2011). Neuroimaging markers 

for the prediction and early diagnosis of Alzheimer’s disease dementia. Trends in Neurosciences, 

34(8), 430–442. https://doi.org/10.1016/j.tins.2011.05.005 

Farina, E., Fioravanti, R., Chiavari, L., Imbornone, E., Alberoni, M., Pomati, S., … Mariani, C. (2002). 

Comparing two programs of cognitive training in Alzheimer’s disease: a pilot study. Acta 

Neurologica Scandinavica, 105(5), 365–371. https://doi.org/10.1034/j.1600-0404.2002.01086.x 

Fischer, F. U., Wolf, D., Scheurich, A., & Fellgiebel, A. (2015). Altered whole-brain white matter 

networks in preclinical Alzheimer’s disease. NeuroImage: Clinical, 8, 660–666. 

https://doi.org/10.1016/J.NICL.2015.06.007 

Fratiglioni, L., Ahlbom, A., Viitanen, M., & Winblad, B. (1993). Risk factors for late-onset alzheimer’s 

disease: A population- based, case-control study. Annals of Neurology, 33, 258–266. 

Fratiglioni, L., & Wang, H. X. (2007). Brain reserve hypothesis in dementia. Journal of Alzheimer’s 

Disease, 12(1), 11–22. 

Gardner, R., Oliver-Munoz, S., Fisher, L., & Empting, L. (1981). Mattis Dementia Rating Scale: 

Internal Reliability Study Using a Diffusely Impaired Population. Journal of Clinical 

Neuropsychology, 3(3), 271–275. https://doi.org/10.1080/01688638108403130 

Gates, N. J., & Sachdev, P. (2014). Is cognitive training an effective treatment for preclinical and early 

Alzheimer’s disease? Journal of Alzheimer’s Disease, 42(s4), S551–S559. 

Gold, B. T., Powell, D. K., Andersen, A. H., & Smith, C. D. (2010). Alterations in multiple measures of 

white matter integrity in normal women at high risk for Alzheimer’s disease. NeuroImage, 52(4), 

1487–1494. https://doi.org/10.1016/j.neuroimage.2010.05.036 

González-Alonso, J., Dalsgaard, M. K., Osada, T., Volianitis, S., Dawson, E. A., Yoshiga, C. C., & 

Secher, N. H. (2004). Brain and central haemodynamics and oxygenation during maximal exercise 

in humans. The Journal of Physiology, 557(1), 331–342. 

https://doi.org/10.1113/jphysiol.2004.060574 

Gorbet, D. J., & Sergio, L. E. (2009). The behavioural consequences of dissociating the spatial 

directions of eye and arm movements. Brain Research, 1284, 77–88. 

https://doi.org/10.1016/j.brainres.2009.05.057 

Gorbet, D. J., & Sergio, L. E. (2016). Don’t watch where you’re going: The neural correlates of 

decoupling eye and arm movements. Behavioural Brain Research, 298, 229–240. 

https://doi.org/10.1016/j.bbr.2015.11.012 

Gorbet, D. J., & Sergio, L. E. (2018). Move faster, think later: Women who play action video games 

have quicker visually-guided responses with later onset visuomotor-related brain activity. PLoS 

ONE, 13(1). https://doi.org/10.1371/journal.pone.0189110 

Gorbet, D. J., Staines, W. R., & Sergio, L. E. (2004). Brain mechanisms for preparing increasingly 

complex sensory to motor transformations. NeuroImage, 23(3), 1100–11. 

https://doi.org/10.1016/j.neuroimage.2004.07.043 

Gorbet, D., & Sergio, L. (2018). Looking up while reaching down: the neural correlates of making eye 

and arm movements in different spatial planes. Manuscript Submitted for Publication. 

Granek, J. A., Gorbet, D. J., & Sergio, L. E. (2010). Extensive video-game experience alters cortical 

networks for complex visuomotor transformations. Cortex; a Journal Devoted to the Study of the 

Nervous System and Behavior, 46(9), 1165–77. https://doi.org/10.1016/j.cortex.2009.10.009 

Green, R. C. (2002). Risk of dementia among white and african american relatives of patients with 

Alzheimer disease. JAMA, 287(3), 329. https://doi.org/10.1001/jama.287.3.329 

Haider, S., Khaliq, S., Ahmed, S. P., & Haleem, D. J. (2006). Long-term tryptophan administration 



 

 

71 

enhances cognitive performance and increases 5HT metabolism in the hippocampus of female 

rats. Amino Acids, 31(4), 421–425. https://doi.org/10.1007/s00726-005-0310-x 

Hart, B. M. t., & Henriques, D. Y. P. (2016). Separating predicted and perceived sensory consequences 

of motor learning. PLoS ONE, 11(9), 1–15. https://doi.org/10.1371/journal.pone.0163556 

Haslinger, B., Erhard, P., Altenmüller, E., Hennenlotter, A., Schwaiger, M., Von Einsiedel, H. G., … 

Ceballos-Baumann, A. O. (2004). Reduced recruitment of motor association areas during 

bimanual coordination in concert pianists. Human Brain Mapping, 22(3), 206–215. 

https://doi.org/10.1002/hbm.20028 

Hawkins, K. M., Goyal, A. I., & Sergio, L. E. (2015). Diffusion tensor imaging correlates of cognitive-

motor decline in normal aging and increased Alzheimer’s disease risk. Journal of Alzheimer’s 

Disease, 44(3). https://doi.org/10.3233/JAD-142079 

Hawkins, K. M., Sayegh, P., Yan, X., Crawford, J. D., & Sergio, L. E. (2013). Neural activity in 

superior parietal cortex during rule-based visual-motor transformations. Journal of Cognitive 

Neuroscience, 25(3), 436–454. https://doi.org/10.1162/jocn_a_00318; 10.1162/jocn_a_00318 

Hawkins, K. M., & Sergio, L. E. (2014). Visuomotor impairments in older adults at increased 

Alzheimer’s disease risk. Journal of Alzheimer’s Disease : JAD, 42(2), 607–21. 

https://doi.org/10.3233/JAD-140051 

Hawkins, K. M., & Sergio, L. E. (2016). Adults at increased Alzheimer’s disease risk display cognitive-

motor integration impairment associated with changes in resting-state functional connectivity: A 

preliminary study. Journal of Alzheimer’s Disease, 53(3), 1161–1172. 

https://doi.org/10.3233/JAD-151137 

Honea, R. A., Swerdlow, R. H., Vidoni, E. D., & Burns, J. M. (2011). Progressive regional atrophy in 

normal adults with a maternal history of Alzheimer disease. Neurology, 76(9), 822–829. 

https://doi.org/10.1212/WNL.0b013e31820e7b74 

Hoshi, E., & Tanji, J. (2006). Differential involvement of neurons in the dorsal and ventral premotor 

cortex during processing of visual signals for action planning. Journal of Neurophysiology, 95(6), 

3596–3616. https://doi.org/10.1152/jn.01126.2005 

Jäncke, L., Shah, N. J., & Peters, M. (2000). Cortical activations in primary and secondary motor areas 

for complex bimanual movements in professional pianists. Cognitive Brain Research, 10(1–2), 

177–183. https://doi.org/10.1016/S0926-6410(00)00028-8 

Jones, D. T., Knopman, D. S., Gunter, J. L., Graff-Radford, J., Vemuri, P., Boeve, B. F., … Jack, C. R. 

(2016). Cascading network failure across the Alzheimer’s disease spectrum. Brain, 139(2), 547–

562. https://doi.org/10.1093/brain/awv338 

Jorm, A. F., & Jolley, D. (1998). The incidence of dementia: A meta-analysis. Neurology, 51(3), 728–

733. https://doi.org/10.1212/WNL.51.3.728 

Kable, J. W., Caulfield, M. K., Falcone, M., McConnell, M., Bernardo, L., Parthasarathi, T., … 

Lerman, C. (2017). No effect of commercial cognitive training on neural activity during decision-

making. Journal of Neuroscience, 37(31), 7390–7402. https://doi.org/10.1523/jneurosci.2832-

16.2017 

Kalaska, J. F., Scott, S. H., Cisek, P., & Sergio, L. E. (1997). Cortical control of reaching movements. 

Curr.Opin.Neurobiol., 7(0959–4388 (Print)), 849–859. https://doi.org/10.1016/S0959-

4388(97)80146-8 

Kandel, E. R., Schwartz, J. H., & Jessell, T. N. (2000). Principles of Neural Science (Vol. 4th). Toronto: 

McGraw-Hill. 

Karni, A., Meyer, G., Rey-Hipolito, C., Jezzard, P., Adams, M. M., Turner, R., & Ungerleider, L. G. 

(1998). The acquisition of skilled motor performance: fast and slow experience-driven changes in 

primary motor cortex. Proc Natl Acad Sci U S A, 95(3), 861–868. Retrieved from 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_

uids=9448252 



 

 

72 

Klaes, C., Westendorff, S., Chakrabarti, S., & Gail, A. (2011). Choosing goals, not rules: Deciding 

among rule-based action plans. Neuron, 70(3), 536–548. 

https://doi.org/10.1016/j.neuron.2011.02.053 

Kluger, A., Gianutsos, J. G., Golomb, J., Ferris, S. H., George, A. E., Franssen, E., & Reisberg, B. 

(1997). Patterns of motor impairement in normal aging, mild cognitive decline, and early 

Alzheimer’s disease. J Gerontol B Psychol Sci Soc Sci, 52(1), P28-39. Retrieved from 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_

uids=9008673 

Kluger, A., Gianutsos, J. G., Golomb, J., Ferris, S. H., & Reisberg, B. (1997). Motor/psychomotor 

dysfunction in normal aging, mild cognitive decline, and early Alzheimer’s disease: diagnostic and 

differential diagnostic features. International Psychogeriatrics / IPA, 9 Suppl 1, 307–321. 

Kramer, A. F., & Erickson, K. I. (2007). Capitalizing on cortical plasticity: influence of physical 

activity on cognition and brain function. Trends in Cognitive Sciences, 11(8), 342–348. 

https://doi.org/10.1016/j.tics.2007.06.009 

Kurata, K., & Hoffman, D. S. (1994). Differential effects of muscimol microinjection into dorsal and 

ventral aspects of the premotor cortex of monkeys. Journal of Neurophysiology, 71(3), 1151–

1164. 

Lee, H., Voss, M. W., Prakash, R. S., Boot, W. R., Vo, L. T. K., Basak, C., … Kramer, A. F. (2012). 

Videogame training strategy-induced change in brain function during a complex visuomotor task. 

Behavioural Brain Research, 232(2), 348–357. https://doi.org/10.1016/j.bbr.2012.03.043 

Liu, Y., Yu, C., Zhang, X., Liu, J., Duan, Y., Alexander-Bloch, A. F., … Bullmore, E. (2014). Impaired 

long distance functional connectivity and weighted network architecture in alzheimer’s disease. 

Cerebral Cortex, 24(6), 1422–1435. https://doi.org/10.1093/cercor/bhs410 

Luttenberger, K., Hofner, B., & Graessel, E. (2012). Are the effects of a non-drug multimodal 

activation therapy of dementia sustainable? Follow-up study 10 months after completion of a 

randomised controlled trial. BMC Neurology, 12(1), 151. https://doi.org/10.1186/1471-2377-12-

151 

Maffei, L., Picano, E., Andreassi, M. G., Angelucci, A., Baldacci, F., Baroncelli, L., … Volpi, L. 

(2017). Randomized trial on the effects of a combined physical/cognitive training in aged MCI 

subjects: the Train the Brain study. Scientific Reports, 7, 39471. https://doi.org/10.1038/srep39471 

Matthews, P. B. C. (1996). Relationship of firing intervals of human motor units to the trajectory of 

post-spike after-hyperpolarization and synaptic noise. Journal of Physiology, 492(2), 597–628. 

https://doi.org/10.1113/jphysiol.1996.sp021332 

Mattsson, N., Ewers, M., Rich, K., Kaiser, E., Mulugeta, E., & Rose, E. (2009). CSF Biomarkers and 

Incipient Alzheimer Disease. JAMA : The Journal of the American Medical Association, 302(4), 

385–393. https://doi.org/10.1001/jama.2009.1064 

Mecocci, P., Tinarelli, C., Schulz, R. J., & Polidori, M. C. (2014). Nutraceuticals in cognitive 

impairment and Alzheimer’s disease. Frontiers in Pharmacology, 5 JUN(June), 1–11. 

https://doi.org/10.3389/fphar.2014.00147 

Melcher, D., & Colby, C. L. (2008). Trans-saccadic perception. Trends in Cognitive Sciences, 12(12), 

466–473. https://doi.org/10.1016/j.tics.2008.09.003 

Miall, R., Reckess, G., & Imamizu, H. (2001). The cerebellum coordinates eye and hand tracking 

movements. Nat Neurosci, 4(6), 638–644. Retrieved from 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_

uids=11369946 

Mishkin, M., Ungerleider, L. G., & Macko, K. A. (1983). Object vision and spatial vision: two cortical 

pathways. Trends in Neurosciences, 6(C), 414–417. https://doi.org/10.1016/0166-2236(83)90190-

X 

Morris, J. C. (2005). Early-stage and preclinical Alzheimer disease. Alzheimer Disease and Associated 



 

 

73 

Disorders, 19(3), 163–5. https://doi.org/10.1097/01.wad.0000184005.22611.cc 

Mosconi, L., Brys, M., Switalski, R., Mistur, R., Glodzik, L., Pirraglia, E., … de Leon, M. J. (2007). 

Maternal family history of Alzheimer’s disease predisposes to reduced brain glucose metabolism. 

Proceedings of the National Academy of Sciences of the United States of America, 104(48), 

19067–19072. https://doi.org/10.1073/pnas.0705036104 

Mosconi, L., Glodzik, L., Mistur, R., McHugh, P., Rich, K. E., Javier, E., … De Leon, M. J. (2010). 

Oxidative stress and amyloid-beta pathology in normal individuals with a maternal history of 

Alzheimer’s. Biological Psychiatry, 68(10), 913–921. 

https://doi.org/10.1016/j.biopsych.2010.07.011 

Muhammad, R., Wallis, J. D., & Miller, E. K. (2006). A comparison of abstract rules in the prefrontal 

cortex, premotor cortex, inferior temporal cortex, and striatum. Journal of Cognitive 

Neuroscience, 18(6), 974–989. https://doi.org/10.1162/jocn.2006.18.6.974 

Müller, H., & Sternad, D. (2004). Decomposition of Variability in the Execution of Goal-Oriented 

Tasks: Three Components of Skill Improvement. Journal of Experimental Psychology: Human 

Perception and Performance, 30(1), 212–233. https://doi.org/10.1037/0096-1523.30.1.212 

Norton, S., Matthews, F. E., Barnes, D. E., Yaffe, K., & Brayne, C. (2014). Potential for primary 

prevention of Alzheimer’s disease: An analysis of population-based data. The Lancet Neurology, 

13(8), 788–794. https://doi.org/10.1016/S1474-4422(14)70136-X 

Obayashi, S., Suhara, T., Kawabe, K., Okauchi, T., Maeda, J., Akine, Y., … Iriki, A. (2001). Functional 

brain mapping of monkey tool use. NeuroImage, 14(4), 853–861. 

https://doi.org/10.1006/nimg.2001.0878 

Oh, B., Cho, B., Choi, H. C., Son, K. Y., Park, S. M., Chun, S., & Cho, S. Il. (2014). The influence of 

lower-extremity function in elderly individuals’ quality of life (QOL): An analysis of the 

correlation between SPPB and EQ-5D. Archives of Gerontology and Geriatrics, 58(2), 278–282. 

https://doi.org/10.1016/j.archger.2013.10.008 

Owen, A. M., Hampshire, A., Grahn, J. A., Stenton, R., Dajani, S., Burns, A. S., … Ballard, C. G. 

(2010). Putting brain training to the test. Nature, 465(7299), 775–778. 

https://doi.org/10.1038/nature09042 

Parakh, R., Roy, E., Koo, E., & Black, S. (2004). Pantomime and imitation of limb gestures in relation 

to the severity of Alzheimer’s disease. Brain and Cognition, 55(2), 272–274. 

Patrick, R. P., & Ames, B. N. (2015). Vitamin D and the omega-3 fatty acids control serotonin synthesis 

and action, part 2: Relevance for ADHD, bipolar disorder, schizophrenia, and impulsive behavior. 

FASEB Journal, 29(6), 2207–2222. https://doi.org/10.1096/fj.14-268342 

Prince, M., Bryce, R., Albanese, E., Wimo, A., Ribeiro, W., & Ferri, C. P. (2013). The global 

prevalence of dementia: A systematic review and metaanalysis. Alzheimer’s and Dementia. 

https://doi.org/10.1016/j.jalz.2012.11.007 

Ramakers, I. H. G. B., Visser, P. J., Aalten, P., Boesten, J. H. M., Metsemakers, J. F. M., Jolles, J., & 

Verhey, F. R. J. (2007). Symptoms of preclinical dementia in general practice up to five years 

before dementia diagnosis. Dementia and Geriatric Cognitive Disorders, 24(4), 300–306. 

https://doi.org/10.1159/000107594 

Redding, G. M., & Wallace, B. (1996). Adaptive spatial alignment and strategic perceptual-motor 

control. Journal of Experimental Psychology. Human Perception and Performance, 22(2), 379–

394. 

Reiman, E. M., Caselli, R. J., Yun, L. S., Chen, K., Bandy, D., Minoshima, S., … Osborne, D. (1996). 

Preclinical Evidence of Alzheimer’s Disease in Persons Homozygous for the ε4 Allele for 

Apolipoprotein E. New England Journal of Medicine, 334(12), 752–758. 

https://doi.org/10.1056/NEJM199603213341202 

Reitz, C., & Mayeux, R. (2014). Alzheimer disease: Epidemiology, diagnostic criteria, risk factors and 

biomarkers. Biochemical Pharmacology, 88(4), 640–651. 



 

 

74 

https://doi.org/10.1016/j.bcp.2013.12.024 

Roberts, G., Quach, J., Spencer-Smith, M., Anderson, P. J., Gathercole, S., Gold, L., … Wake, M. 

(2016). Academic outcomes 2 years after working memory training for children with low working 

memory. JAMA Pediatrics, 170(5), e154568. https://doi.org/10.1001/jamapediatrics.2015.4568 

Rodrigue, K. M., Kennedy, K. M., & Raz, N. (2005). Aging and Longitudinal Change in Perceptual-

Motor Skill Acquisition in Healthy Adults. The Journals of Gerontology Series B: Psychological 

Sciences and Social Sciences, 60(4), P174–P181. https://doi.org/10.1093/geronb/60.4.P174 

Rogojin, A., Gorbet, D., Hawkins, K., & Sergio, L. (n.d.). Early detection of preclinical Alzheimer’s 

disease using a cognitive-motor integration task. Manusctript in Preparation. 

Rolland, Y., Abellan van Kan, G., & Vellas, B. (2008). Physical activity and Alzheimer’s disease: From 

prevention to therapeutic perspectives. Journal of the American Medical Directors Association, 

9(6), 390–405. https://doi.org/10.1016/j.jamda.2008.02.007 

Ruttle, J. E., Cressman, E. K., ’T Hart, B. M., & Henriques, D. Y. P. (2016). Time course of reach 

adaptation and proprioceptive recalibration during visuomotor learning. PLoS ONE, 11(10), 1–16. 

https://doi.org/10.1371/journal.pone.0163695 

Salek, Y., Anderson, N. D., & Sergio, L. (2011). Mild cognitive impairment is associated with impaired 

visual-motor planning when visual stimuli and actions are incongruent. European Neurology, 

66(5), 283–293. 

Salek, Y., Anderson, N. D., & Sergio, L. (2011). Mild cognitive impairment is associated with impaired 

visual-motor planning when visual stimuli and actions are incongruent. European Neurology, 

66(5), 283–293. https://doi.org/10.1159/000331049 

Sayegh, P. F., Hawkins, K. M., Hoffman, K. L., & Sergio, L. E. (2013). Differences in spectral profiles 

between rostral and caudal premotor cortex when eye-hand actions are decoupled. Journal of 

Neurophysiology. https://doi.org/10.1152/jn.00764.2012 

Sayegh, P. F., Hawkins, K. M., Neagu, B., Crawford, J. D., Hoffman, K. L., & Sergio, L. E. (2014). 

Decoupling the actions of the eyes from the hand alters beta and gamma synchrony within SPL. 

Journal of Neurophysiology, 111(11), 2210–2221. https://doi.org/10.1152/jn.00793.2013; 

10.1152/jn.00793.2013 

Schmahmann, J. D., & Pandya, D. N. (2009). Fiber Pathways of the Brain (1st ed.). Oxford University 

Press. 

Schmidt, R., Kienbacher, E., Benke, T., Dal-Bianco, P., Delazer, M., Ladurner, G., … Wehringer, C. 

(2008). Sex differences in Alzheimer’s disease. Neuropsychiatry, 22, 1–15. 

Sitzer, D. I., Twamley, E. W., & Jeste, D. V. (2006). Cognitive training in Alzheimer’s disease: A meta-

analysis of the literature. Acta Psychiatrica Scandinavica, 114(2), 75–90. 

https://doi.org/10.1111/j.1600-0447.2006.00789.x 

Smith, C. D., Chebrolu, H., Andersen, A. H., Powell, D. A., Lovell, M. A., Xiong, S., & Gold, B. T. 

(2010). White matter diffusion alterations in normal women at risk of Alzheimer’s disease. 

Neurobiology of Aging, 31(7), 1122–1131. https://doi.org/10.1016/j.neurobiolaging.2008.08.006 

Sperling, R. A., Aisen, P. S., Beckett, L. A., Bennett, D. A., Craft, S., Fagan, A. M., … Phelps, C. H. 

(2011). Toward defining the preclinical stages of Alzheimer’s disease: Recommendations from the 

National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for 

Alzheimer’s disease. Alzheimer’s and Dementia. https://doi.org/10.1016/j.jalz.2011.03.003 

Stern, Y. (2009). Cognitive reserve. Neuropsychologia. 

https://doi.org/10.1016/j.neuropsychologia.2009.03.004 

Sun, F. T., Miller, L. M., Rao, A. A., & D’Esposito, M. (2007). Functional connectivity of cortical 

networks involved in bimanual motor sequence learning. Cerebral Cortex, 17(5), 1227–1234. 

https://doi.org/10.1093/cercor/bhl033 

Tippett, W. J., & Rizkalla, M. N. (2014). Brain training: Rationale, methods, and pilot data for a 

specific visuomotor/visuospatial activity program to change progressive cognitive decline. Brain 



 

 

75 

and Behavior, 4(2), 171–179. https://doi.org/10.1002/brb3.196 

Tippett, W. J., Sergio, L. E., & Black, S. E. (2012). Compromised visually guided motor control in 

individuals with Alzheimer’s disease: Can reliable distinctions be observed? Journal of Clinical 

Neuroscience, 19(5), 655–660. https://doi.org/10.1016/j.jocn.2011.09.013 

Tomassini, V., Jbabdi, S., Klein, J. C., Behrens, T. E., Pozzilli, C., Matthews, P. M., … Johansen-Berg, 

H. (2007). Diffusion-weighted imaging tractography-based parcellation of the human lateral 

premotor cortex identifies dorsal and ventral subregions with anatomical and functional 

specializations. The Journal of Neuroscience : The Official Journal of the Society for 

Neuroscience, 27(38), 10259–10269. https://doi.org/10.1523/JNEUROSCI.2144-07.2007 

Valenzuela, M., Hons, M., & Sachdev, P. (2009). Can cognitive exercise prevent the onset of dementia? 

Systematic review of randomized clinical trials with longitudinal follow-up. American Journal of 

Geriatric Psychiatry, 173(17), 179–187. https://doi.org/10.1097/JGP.0b013e3181953b57 

Valls-Pedret, C., Sala-Vila, A., Serra-Mir, M., Corella, D., de la Torre, R., Martínez-González, M. Á., 

… Ros, E. (2015). Mediterranean diet and age-related cognitive decline. JAMA Internal Medicine, 

175(7), 1094. https://doi.org/10.1001/jamainternmed.2015.1668 

Verheij, S., Muilwijk, D., Pel, J. J. M., Van Der Cammen, T. J. M., Mattace-Raso, F. U. S., & Van Der 

Steen, J. (2012). Visuomotor impairment in early-stage alzheimer’s disease: Changes in relative 

timing of eye and hand movements. Journal of Alzheimer’s Disease, 30(1), 131–143. 

https://doi.org/10.3233/JAD-2012-111883 

Villain, N., Desgranges, B., Viader, F., de la Sayette, V., Mezenge, F., Landeau, B., … Chetelat, G. 

(2008). Relationships between hippocampal atrophy, white matter disruption, and gray matter 

hypometabolism in Alzheimer’s disease. Journal of Neuroscience, 28(24), 6174–6181. 

https://doi.org/10.1523/JNEUROSCI.1392-08.2008 

Voineskos, A. N., Rajji, T. K., Lobaugh, N. J., Miranda, D., Shenton, M. E., Kennedy, J. L., … Mulsant, 

B. H. (2012). Age-related decline in white matter tract integrity and cognitive performance: A DTI 

tractography and structural equation modeling study. Neurobiology of Aging, 33(1), 21–34. 

https://doi.org/10.1016/j.neurobiolaging.2010.02.009 

Voss, M. W., Prakash, R. S., Erickson, K. I., Boot, W. R., Basak, C., Neider, M. B., … Kramer, A. F. 

(2012). Effects of training strategies implemented in a complex videogame on functional 

connectivity of attentional networks. NeuroImage, 59(1), 138–148. 

https://doi.org/10.1016/j.neuroimage.2011.03.052 

Walsh, R. R., Small, S. L., Chen, E. E., & Solodkin, A. (2008). Network activation during bimanual 

movements in humans. NeuroImage, 43(3), 540–553. 

https://doi.org/10.1016/j.neuroimage.2008.07.019 

Wenderoth, N., Debaere, F., Sunaert, S., & Swinnen, S. P. (2005). The role of anterior cingulate cortex 

and precuneus in the coordination of motor behaviour. The European Journal of Neuroscience, 

22(1), 235–246. https://doi.org/10.1111/j.1460-9568.2005.04176.x 

Willis, S. L., Tennstedt, S. L., Marsiske, M., Ball, K., Elias, J., Koepke, K. M., … Wright, E. (2013). 

Long-term effects of cognitive training on everyday functional outcomes in older adults. The 

Journal of the American Medical Association, 296(23), 2805–2814. 

Wise, S. P., Boussaoud, D., Johnson, P. B., & Caminiti, R. (1997). Premotor and parietal cortex: 

Corticocortical connectivity and combinatorial computations. Annual Review of Neuroscience, 

20(1), 25–42. https://doi.org/10.1146/annurev.neuro.20.1.25 

Wise, S. P., di Pellegrino, G., & Boussaoud, D. (1996). The premotor cortex and nonstandard 

sensorimotor mapping. Canadian Journal of Physiology and Pharmacology, 74(4), 469–482. 

Yaffe, K., Fiocco, A. J., Lindquist, K., Vittinghoff, E., Simonsick, E. M., Newman, A. B., … Harris, T. 

B. (2009). Predictors of maintaining cognitive function in older adults. Neurology, 72, 2029–2035. 

https://doi.org/10.1212/WNL.0b013e3181a92c36 

Yoshitake, T., Kiyohara, Y., Kato, I., Ohmura, T., Iwamoto, H., Nakayama, K., Ohmori, S., Nomiyama, 



 

 

76 

K., Kawano, H., Ueda, K., Sueishi, K., Tsuneyoshi, M., Fujishima, M. (1995). Incidence and risk 

factors of vascular dementia and Alzheimer’s disease in a defined elderly Japanese population: 

The Hisayama Study. Neurology, 45(6), 1161–1168. https://doi.org/10.1212/WNL.45.6.1161 

Yu, H., Farley, B. J., Jin, D. Z., & Sur, M. (2005). The coordinated mapping of visual space and 

response features in visual cortex. Neuron, 47(2), 267–280. 

https://doi.org/10.1016/j.neuron.2005.06.011 

 

 

 

  



 

 

77 

APPENDIX A 

Questionnaire 

Pretest Intake Questionnaire - BrDI Flight study 
(The information received will remain confidential) 

 
 

ID: __________________________  Age: _______         DOB: ___________________________ 

Dominant Hand:   LEFT  or  RIGHT  or  BOTH   Sex:    Male    or    Female 

Level of Education:  ________________ Work Full Time / Part Time / Neither:_________________ 

Ethnicity: ______________________________ Occupation:  _______________________________ 

Sport(s) Played (recreational or competitive):______________________________________________ 

How long did you play your sport(s):_____________________________________________________ 

1. Do you currently have a concussion? (an impact to the head which MAY have resulted in: 

headaches, loss of consciousness, confusion, amnesia, dizziness, nausea, etc.)    

 YES    or    NO  

a) Date of concussion: _______________________________ 

b) Did you lose consciousness? ___________ For how long? _______________________ 

c)      Please list any current signs and symptoms: 

_____________________________________________________________________________ 

_____________________________________________________________________________ 

 

2. Have you previously had any concussions (an impact to the head which MAY have resulted in: 

headaches, loss of consciousness, confusion, amnesia, dizziness, nausea, etc)?     

 YES    or    NO 

a) How many? ____________ 

b) Did you lose consciousness? ___________  For how long? _______________________ 

c) Date(s) and time out before returning to play: 

_____________________________________________________________________________ 

_____________________________________________________________________________ 
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3. Do you smoke?    YES   or    NO 

a) Do you smoke:   Cigarettes, Cannabis, Both or Other: ____________________________ 

b) How often do you smoke the above-mentioned substance(s) per day, week or month?   

___________________________________________________________________________ 

 

4. Do you currently have a non-head related injury?    YES    or    NO 

a) Has it kept you from play for longer than 48 hours?   YES    or    NO 

b) Has it kept you from play for longer than 3 weeks?   YES    or    NO 

 

5. Have you been diagnosed with any neurological disorders?   YES   or   NO 

 What disorder? ________________________________________________________________ 

 

6. Do you have a computer (YES   or   NO) or a tablet (YES   or   NO) at home? 

How often do you use your computer?  (all the time / often / sometimes / rarely / never) 

How often do you use your tablet?   (all the time / often / sometimes / rarely / never) 

 

7. Do you do puzzles?   YES   or   NO   (all the time / often / sometimes / rarely / never) 

 

8. Do you play video games?   YES   or   NO (all the time / often / sometimes / rarely / never) 

a) What type of games do you typically play? ACTION (time pressure) or NON-ACTION  

b) How would you rate your skill compared to your peers? (Low / Intermediate / High) 

 

9.  To your knowledge, does anyone in your family have any form of dementia?   YES   or   NO 

a) What is their relationship to you (e.g., mother, father, brother, sister, maternal aunt, 

uncle, grandmother, grandfather, cousin, paternal aunt, uncle, grandmother, 

grandfather, cousin). List all if more than one relative.  

_____________________________________________________________________________ 

_____________________________________________________________________________ 



 

 

79 

THE FOLLOWING IS A LIST OF ACTIVITIES THAT PEOPLE MAY PARTICIPATE IN. PLEASE INDICATE THE 
FREQUENCY (IN DAYS PER WEEK) THAT YOU TYPICALLY PARTICIPATE IN THESE ACTIVITES. 
FOR EACH ITEM CHOOSE FROM ONE OF THE FOLLOWING ALTERNATIVES:  

   
   RARELY SOMETIMES  FAIRLY OFTEN VERY OFTEN 

  (1 DAY/ (2 DAYS/ (3-4 DAYS/ (5-7 DAYS/ 

 NEVER WEEK) WEEK)  WEEK) WEEK) 

 

 0  1 2 3 4   

 

1. WATCHING TV OR 0 1 2 3 4 

MOVIES 

 

2. READING 0 1 2 3 4 

 

3. SOCIALIZING (E.G.   0 1 2 3 4 
PLAYING CARDS, TALKING  

TO FRIENDS, ETC.)  

 

4. PLAYING REC SPORTS 0 1 2 3 4 

 

5. PLAYING 0 1 2 3 4 

COMPETITIVE SPORTS 

 

6. PLAYING VIDEO/ 0 1 2 3 4 

COMPUTER GAMES 

 

7. WALKING (AT LEAST 0 1 2 3 4 

25 MINUTES) 

 

8. LISTENING TO MUSIC 0 1 2 3 4 

 

 

9. EXERCISING AT A 0 1 2 3 4 

GYM 

  

10. DOING NON-LABOUR 0 1 2 3 4  

WORK (PAID OR VOLUNTEER)  

 

11. DOING LABOUR 0 1 2 3 4 

WORK (E.G. LANDSCAPING  

SHOVELING, PAINTING, ETC. 

PAID OR VOLUNTEER) 

 

12. RUNNING/JOGGING 0 1 2 3 4 

 

13. PUZZLES, ARTS &  0 1 2 3 4 

      CRAFTS (E.G. KNITTING, 

 CROSSWORDS, ETC.) 
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APPENDIX B 

INFORMED CONSENT  
School of Kinesiology and Health Science, Faculty of Graduate Studies  

York University, Toronto, ON Canada 

 “Cognitive-motor integration training for functional decline prevention in early 

dementia”  
Investigators:  Dr. Lauren E. Sergio (Associate Professor), Dr. Diana Gorbet (Research Scientist), Dr. 
Marc Dalecki, Dr. Casper de Boer, Holly Echlin, Sarah Zaidl (research trainees) 
    

Our research team is working to understand the control processes employed by the brain 
when interacting with one’s environment. The data from this study will benefit you indirectly, by 
providing us with information about your ability to interact with your environment when the guiding 
visual stimulus and the required motor action are dissociated from one another. This information 
will be used to devise an assessment tool of functional eye-hand coordination ability in 
neurologically healthy adults and neurological patient populations. The research team is headed 
by Dr. L. Sergio, and the York University Human Participants Review Committee has approved the 
study. There are no risks involved in the study, which will involve the following procedures: 

You will be asked to make simple point-to-point hand movements in order to move a cursor 
to a target displayed on a computer monitor. We will be recording the position of your finger as 
you displace the cursor. To obtain these measures, we will ask you to move your finger along a 
touch sensitive screen. There should be no discomfort or fatigue associated with these 
procedures. 

Your participation in the study is completely voluntary and you may choose to stop 
participating at any time. If you do not volunteer for the study, this decision will not influence any 
treatment that you may be receiving, the nature of the ongoing relationship you may have with the 
researchers or study staff, or the nature of your relationship with York University either now, or in 
the future. 

Your estimated participation time will be between 5 to 20 minutes total for the tasks. You 
will be given breaks between tasks if you wish. You can stop participating in the study at any time, 
for any reason.  If you decide to stop participating, all associated data collected will be 
immediately destroyed wherever possible. Your decision to stop participating, or to refuse to 
answer particular questions, will not affect your relationship with the researchers, York University, 
or any other group associated with this project.  

All information you supply during the research will be held in confidence and unless you 
specifically indicate your consent, your name will not appear in any report or publication of the 
research.  Your data will be safely stored in a locked facility and only research staff will have 
access to this information. Confidentiality will be provided to the fullest extent possible by law. The 
data will be stored securely for 10 years and then destroyed.  

If you have questions about the research in general or about your role in the study, please 
feel free to contact Dr. Sergio either by telephone at (416) 736-2100, extension 33641 or by e-mail 
(lsergio@yorku.ca).  This research has been reviewed by the Human Participants in Research 
Committee, York University’s Ethics Review Board and conforms to the standards of the Canadian 
Tri-Council Research Ethics guidelines.  If you have any questions about this process or about your 
rights as a participant in the study, please contact the Sr. Manager & Policy Advisor for the Office 
of Research Ethics, 5th Floor, York Research Tower, York University (telephone 416-736-5914 or 
e-mail ore@yorku.ca. 
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INFORMED CONSENT  
School of Kinesiology and Health Science, Faculty of Graduate Studies 

York University, Toronto, ON Canada 

 “Cognitive-motor integration training for functional decline prevention in early 

dementia”  
 

I,                                , consent to participate in “Cognitive-motor integration 

training for functional decline prevention in early dementia” conducted by Dr. Lauren 

E. Sergio.  I understand the nature of this project and wish to participate. I am not waiving any 
of my legal rights by signing this form.  My signature below indicates my consent. 
 

Signature      Date________________________________ 

 

 

Signature                 Date________________________________ 

Principal Investigator 
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