
Pairwise multiple comparisons: A model
comparison approach versus stepwise procedures

Robert A. Cribbie1* and H. J. Keselman2

1York University, Canada
2University of Manitoba, Canada

Researchers in the behavioural sciences have been presented with a host of pairwise
multiple comparison procedures that attempt to obtain an optimal combination of Type
I error control, power, and ease of application. However, these procedures share one
important limitation: intransitive decisions. Moreover, they can be characterized as a
piecemeal approach to the problem rather than a holistic approach. Dayton has
recently proposed a new approach to pairwise multiple comparisons testing that
eliminates intransitivity through a model selection procedure. The present study
compared the model selection approach (and a protected version) with three powerful
and easy-to-use stepwise multiple comparison procedures in terms of the proportion
of times that the procedure identi� ed the true pattern of differences among a set of
means across several one-way layouts. The protected version of the model selection
approach selected the true model a signi�cantly greater proportion of times than the
stepwise procedures and, in most cases, was not affected by variance heterogeneity and
non-normality.

1. Introduction
Over the past few decades researchers have been presented with a myriad of new
procedures and approaches for testing pairwise comparisons in one-way completely
randomized designs. With few exceptions, the methods previously proposed have
focused on strategies for achieving a better balance between Type I error control,
power, and ease of applicability.

However, as Dayton (1998) explains, multiple comparison procedures (MCPs) share
one important limitation: there is a high probability that conclusions from the study will
contain intransitive decisions. For example, a researcher conducting all pairwise
comparisons in a one-way randomized design with three groups ( j = 1, . . . , J, where
J = 3) may decide not to reject hypotheses implied by m1 = m 2 or m 2 = m 3, but to reject
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m 1 = m 3 , based on the results from a typical MCP. Interpreting the results of this
experiment can be ambiguous, especially concerning the outcome for m 2. Accepting
intransitive decisions in multiple comparisons testing has become commonplace with
researchers, even though this violates an underlying principle of statistical hypothesis
testing, the presumption of distinct populations. For example, a test of the omnibus null
hypothesis H0 : m1 = m 2 = m 3 evaluates whether all samples are drawn from the same
population against the alternative that all samples (or a subset of the samples, e.g., one
pair) were drawn from distinct populations. In the above example, concluding that the
second sample was drawn from two separate populations not only violates the
presumption of distinct populations, but also makes it dif�cult for applied researchers
to generate logical conclusions concerning the nature of relationships (i.e., population
differences) investigated. (Of course, researchers should be aware that failing to reject a
hypothesis does not require that they accept it as true; i.e., they have the option of
suspending judgement.)

A strategy recently proposed by Dayton (1998) attempts to rectify the problem of
intransitive decisions by investigating all possible transitive population models (i.e.,
mean con�gurations) in order to identify the ‘true’ pattern of differences among the set
of means. Again considering a design with J = 3, a researcher would be faced with
comparing (and selecting the best of ) the k = 2 J ± 1 = 2 3 ± 1 = 4 transitive population
models, instead of determining if any or all of the m = J

2

¡ ¢
= 3 pairwise comparisons are

signi�cant. With J = 3 the researcher would be comparing the models fm 1 m 2 m 3g ,
fm 1 , m 2 m 3g , fm1 m 2 , m 3g , and fm 1 , m 2 , m 3g , where means separated by commas repre-
sent distinct populations (i.e., populations with unequal means). In addition to
eliminating intransitive decisions, Dayton’s approach takes a more ‘holistic’ approach
to the testing of multiple comparisons. That is, the model comparison approach allows
researchers to examine, and thus compare, the relative competitiveness of various
models.

2. Review of the traditional approach
Researchers conducting all m pairwise comparisons with traditional MCPs (e.g., Tukey’s
honestly signi�cant difference (HSD)) are faced with important decisions regarding
Type I error control as a result of conducting multiple (and related) tests of signi�cance.
First, a signi�cance level, or decision criterion, must be speci�ed. Researchers have
made a practice of selecting some accepted level of signi�cance (e.g., a = .05), even
though it is important to acknowledge that the selection of a should be based on the
nature of the research.

Second, researchers must also specify the unit of analysis over which Type I error
control will be applied. The comparisonwise error rate (aPC) sets the probability of
falsely rejecting the null hypothesis for each comparison at a, and has been supported
and recommended by a number of authors (e.g., Carmer &Walker, 1985; Davis & Gaito,
1984; Rothman, 1990; Saville, 1990; Wilson, 1962). The primary disadvantage of aPC
control is that the probability of making at least one Type I error increases with the
number of comparisons, approaching 1 ± (1 ± a)m . Critics of aPC (e.g., Ryan, 1959,
1962) have often recommended control of the familywise error rate (aFW). With aFW
control, the probability of falsely rejecting one or more hypotheses in a family of
hypotheses is set at a. Controlling aFW has been recommended by many researchers
(e.g., Hancock & Klockars, 1996; Petrinovich & Hardyck, 1969; Ryan, 1959, 1962;
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Tukey, 1953) and is ‘the most commonly endorsed approach to accomplishing Type I
error control’ (Seaman, Levin, & Serlin, 1991, p. 577). Keselman et al. (1998) reported
that approximately 85%of researchers conducting pairwise comparisons adopt some
form of aFW control. The main advantage of procedures that provide aFW control is that
the probability of making a Type I error does not increase with the number of
comparisons conducted in the experiment. Although many MCPs purport to control
aFW, it is important to distinguish between those procedures that provide ‘strong’ aFW
control (aFW is maintained at a when all population means are equal, as well as when
multiple subsets of the population means are equal) and procedures that provide ‘weak’
aFW control (aFW is maintained at a only when all population means are equal).

After establishing a level of signi�cance and error rate, an appropriate pairwise MCP
must be selected. Traditional pairwise MCPs can test hypotheses either simultaneously
or in a series of steps (stepwise). A simultaneous MCP conducts all comparisons
regardless of whether the omnibus test, or any other comparison, is signi�cant (or
not signi�cant) at a constant critical value. Examples of simultaneous MCPs include
procedures proposed by Tukey (1953), Scheffe (1953) and Bonferroni (1937). A
stepwise (or sequential) MCP considers either the signi�cance of the omnibus test or
the signi�cance of other comparisons (or both) in generating critical values. MCPs that
require a signi�cant omnibus test in order to conduct pairwise comparisons are referred
to as protected tests. MCPs that consider the signi�cance of other comparisons when
evaluating the signi�cance of a particular comparison can be either step-down or step-
up procedures. Step-down MCPs begin by testing the largest pairwise mean difference
(i.e., the mean difference resulting in the largest numerical value). Non-signi�cance of
this mean difference implies non-signi�cance for smaller pairwise mean differences.
Step-up procedures begin by testing the smallest pairwise mean difference. Signi�cance
of this difference can imply signi�cance for larger pairwise mean differences. Three
stepwise procedures were investigated in this study.

Shaffer (1986) presented a step-down MCP that made use of the fact that the
maximum number of true null hypotheses at any stage of testing is often less than
m ± i + 1 (i = 1, . . . , m), the denominator used by Holm (1979) in determining a critical
alpha (ai = a / (m ± i + 1)) for evaluating the signi�cance of each of the m pairwise
comparisons. Shaffer provides tables for J = 3, . . . , 10, for the maximum number of true
nulls given rejections at previous stages of sequential testing. Therefore, given ordered
(smallest to largest) p-values, p (1) < p (2) < . . . < p (m), from an appropriate two-sample
test statistic, a researcher would reject H0 : m j = mj ¢ ( j Þ j ¢) if p i # a /Ck , where Ck is
the maximum number of true nulls possible at the i th stage of testing. If any H0 is not
rejected, testing stops and hypotheses associated with the remaining larger p i s are
declared non-signi�cant. Shaffer also suggested incorporating an omnibus test with her
original procedure, where rejection of the omnibus test is considered in deriving Ck at
the �rst stage of testing. Non-signi�cance of the omnibus test results in no further
testing. The protected version of the Shaffer procedure is hereafter referred to as
PSHR.

Hochberg (1988) proposed a step-up procedure (HBG) that combined Simes’s
(1986) inequality with Holm’s (1979) testing procedure. The p-values are ordered
(smallest to largest) and for any i = m, m ± 1, . . . , 1, if p i # a / (m ± i + 1), the HBG
procedure rejects all hypotheses where i ¢ # i .

Hayter (1986) proposed a modi�cation (HTR) to Fisher’s (1935) LSD procedure that
would provide strong aFW control. Like the LSD procedure, no comparisons are tested
unless the omnibus test is signi�cant. If the omnibus test is signi�cant, then a pairwise
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H0 is rejected if

| t | $
q(a, J ± 1, d fe)

21/2 ,

where t represents Student’s two-sample test statistic and q(a, J ± 1, d fe) is the a-level
critical value from the Studentized range distribution with J ± 1 numerator degrees of
freedom and error degrees of freedom (d fe) from an appropriate omnibus test (e.g.,
ANOVA F; Welch, 1951).

Each of the above procedures has been shown to control aFW in the ‘strong’ sense
when the validity assumptions (e.g., variance homogeneity, normality) of traditional test
statistics (e.g., t, F ) have been satis�ed. In addition, power is an important consideration
when selecting a MCP. Three popular conceptualizations of power with pairwise
comparisons are any-pair, all-pairs and average per-pair power. Any-pair power is the
probability of detecting any true pairwise mean difference, all-pairs power is the
probability of detecting all true pairwise mean differences, and average per-pair
power is the average probability of rejecting a true pairwise mean difference across
all pairwise comparisons. When the rate of Type I errors is comparable across
procedures, researchers can compare MCPs with respect to power. For example,
although the Bonferroni and Scheffe MCPs provide strong aFW control, they are not
recommended for testing all pairwise comparisons because they are often substantially
less powerful than other available MCPs (that also provide strong aFW control). In
addition, although Tukey’s HSDis the most powerful of the simultaneous MCPs, it is also
not recommended over the stepwise procedures due to a reduction in power under
most testing situations.

3. The model testing approach
Dayton’s (1998) model testing procedure (MTP) is based on the Akaike (1974)
information criterion (AIC). Dayton also examined Schwartz’s (1978) information
criterion, but found it did not perform as well as AIC. Mutually exclusive and transitive
models are each evaluated using AIC, and the model having the minimum AIC(i.e., the
minimum loss of precision relative to the true model) is retained, where

AIC = ± 2f± (N/2) ln(2p) ± (N/2) ln(S 2
w)g + SSw +

XJ

j = 1

n j (Xj ± Xk j)
2 + 2q ,

S2
w is the biased within-cell variance (i.e., SSw /N), SSw is the within-group sums of

squares, n j is the number of subjects in the j th group, Xj is the mean of the j th group,
Xk j is the estimated sample mean for the j th group (given the hypothesized population
mean con�guration for the k th model), and q is the number of independent parameters
estimated in �tting the model. In addition, Dayton (1998) showed that the MTP can be
modi�ed to handle heterogeneous treatment group variances. Like the original proce-
dure, mutually exclusive and transitive models are each evaluated using AIC, and the
model having the minimum AIC is retained. For heterogeneous variances,

AIC = ± 2 (± N/2)(ln(2p) + 1) ±
1
2

XJ

j = 1

n j ln(S 2
j )

Á !( )
+ 2q ,

where N is the total number of subjects in the experiment (S j n j) and S 2
j is the

biased variance for the j th group, substituting the estimated group mean (given the
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hypothesized mean con�guration for the k th model) for the actual group mean in the
calculation of the variance. The heterogeneous variance AIC statistic adopted in this
paper is referred to by Dayton (1998) as the unrestricted heterogeneous model (in
contrast to the restricted heterogeneous model also presented by Dayton). Note that
this form of the AIC does not pool variances, which is comparable to the approach
adopted by heteroscedastic test statistics (e.g., Welch, 1938). Both the homogeneous
variance and heterogeneous variance versions of the AIC statistics assume that the
errors are normally distributed.

As stated previously, the MTP rede�nes the traditional view of pairwise multiple
comparisons. Consider J = 4, where k = 2 J ± 1 = 2 4 ± 1 = 8 transitive models are
being compared (f1234g , f 1, 234g , f12, 34g , f123, 4g , f1, 2, 34g , f12, 3, 4g , f1, 23, 4g ,

f1, 2, 3, 4g ). Using the MTP approach, a researcher would select the model with the
minimum AIC value and discuss the implications of that decision within the realm of
his/her a priori theory. Furthermore, as indicated, researchers can compare the AIC
values (e.g., across homogeneous and heterogeneous models), thus assessing the
relative competitiveness of the models. Note that there are no decisions regarding the
level of signi�cance, the error rate, or the de�nition of power (per-pair, all-pairs, etc.)
with which to compare the procedures. In fact, the de�nitions of Type I and Type II
error can be discarded in favour of a rate referred to here as the ‘true-model rate’,
representing the proportion of times that the AIC statistic selects the true population
model (although the true-model rate could perhaps be conceptualized as a blending of
the classical Type I error and power rates, because hypotheses concerning population
means are not tested with this approach we, and others (Dayton, 1998), prefer to
conceptualize the true-model rate with respect to model comparisons). Dayton showed
that the true-model rate for the MTP was larger than that for Tukey’s HSD across many
population mean con�gurations.

One �nding reported by Dayton is that the AIC has a slight bias for selecting more
complicated models than the true model. For example, Dayton found that for the mean
pattern f12, 3, 4g , AICselected the more complicated pattern f1, 2, 3, 4g more than 10%
of the time, whereas AIC only rarely selected less complicated models (e.g., f12, 34g ).
This tendency can present a special problem for the complete null case, and conse-
quently it is recommended that an omnibus test be used to screen for the complete null.
Rejection of the omnibus test would result in comparing the k models, whereas not
rejecting the omnibus test would result in accepting the complete null population
model.

To summarize, the MTP has important advantages in being able to eliminate
intransitive decisions and provide a more holistic approach to summarizing mean
differences in studies where pairwise multiple comparisons are performed. However,
before recommending the MTP to applied researchers it is important to evaluate how
the MTP performs (with respect to the true-model rate) relative to other available MCPs.

4. Method
A Monte Carlo study was used to compare the true-model rate of the MTP with that of
the PSHR, HBG and HTR stepwise MCPs. In addition to the original MTP, we also
investigated a protected version of the MTP using Welch’s (1951) omnibus test (WMTP).
For the MTP and WMTP, the true-model rate is de�ned as the probability of selecting
the correct population model with the AIC statistic. For the PSHR, HBG and HTR
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procedures, the true-model rate is de�ned as the probability of detecting all false
pairwise hypotheses and not rejecting any true null hypotheses. For example, for the
J = 3 population model f12, 3g , the stepwise procedures would be required to reject
H0 : m 1 = m 3 and H0 : m 2 = m 3 , but not to reject H0 : m 1 = m 2 . For the PSHR and HTR
procedures the Welch (1951) omnibus test was used. Pairwise comparisons for the
stepwise procedures were examined with Welch’s (1938) two-sample statistic.

Seven variables were manipulated in this study: number of levels of the independent
variable; total sample size; degree of sample-size imbalance; degree of variance
inequality; pairings of group sizes and variances; con�guration of population means;
and population distribution shape.

To evaluate the effect of the number of pairwise comparisons on the true-model rate,
the number of levels of the independent variable was set at J = 3, 4 and 5, resulting in
m = 3, 6 and 10 pairwise comparisons, and k = 4, 8 and 16 transitive models,
respectively.

In order to investigate the effects of sample size, the total sample size (N) was
manipulated by setting the average n j = 10, 15, and 19, resulting in N = 30, 45 and
57 for J = 3, N = 40, 60 and 76 for J = 4, and N = 50, 75 and 95 for J = 5. For the
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Table 1. Sample sizes and population variances used in the Monte Carlo study

J Sample sizes Population variances

3 10, 10, 10 1, 1, 1
9, 10, 11 1, 2, 4
5, 10, 15 1, 4, 8
15, 15, 15
13, 15, 17
7, 15, 23
19, 19, 19
17, 19, 21
9, 19, 29

4 10, 10, 10, 10 1, 1, 1, 1
9, 10, 10, 11 1, 2, 4, 4
5, 7, 13, 15 1, 3, 5, 8
15, 15, 15, 15
13, 15, 15, 17
7, 11, 19, 23
19, 19, 19, 19
17, 19, 19, 21
9, 14, 24, 29

5 10, 10, 10, 10, 10 1, 1, 1, 1, 1
9, 10, 10, 10, 11 1, 1, 2, 3, 4
5, 6, 10, 14, 15 1, 2, 4, 6, 8
15, 15, 15, 15, 15
13, 14, 15, 16, 17
7, 9, 15, 21, 23
19, 19, 19, 19, 19
17, 18, 19, 20, 21
9, 11, 19, 27, 29



non-null mean con�gurations used in this study, the group sizes of 10, 15 and 19 result in
a prior omnibus (F statistic) power estimates of approximately.6, .8 and .9, respectively
(assuming equal group sizes and variances).

Sample-size balance/imbalance was also manipulated in this study. Keselman et al.
(1998) reported in a review of studies published in educational and psychological
journals that unbalanced designs were more common than balanced designs. Three
sample-size conditions were used (equal n j , moderately unequal n j and extremely
unequal n j). The sample sizes used in this study are presented in Table 1.

Degree of variance heterogeneity was also manipulated. According to Keselman
et al. (1998) ratios of largest to smallest variances of 8:1 were not uncommon in
educational and psychological studies and can have deleterious effects on the
performance of many MCPs, especially when paired with unequal sample sizes.
Therefore, three levels of variance equality/inequality were used: equal variances;
largest to smallest variance ratio of 4:1; and largest to smallest variance ratio of 8:1.
See Table 1 for speci�c group variances for J = 3, 4 and 5. The homogeneous and
heterogeneous variance AIC models were adopted with equal and unequal variances,
respectively.
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Table 2. Population mean con� gurations used in the Monte Carlo study

Population means
m1 m 2 m3 m4 m 5

J = 3
0.000 0.000 0.000
0.000 0.000 1.021
0.000 0.386 1.158
0.000 0.590 1.179

J = 4
0.000 0.000 0.000 0.000
0.000 0.000 0.000 1.031
0.000 0.000 0.893 0.893
0.000 0.000 0.538 1.077
0.000 0.410 0.410 1.229
0.000 0.631 0.631 1.263
0.000 0.399 0.799 1.198

J = 5
0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 1.048
0.000 0.000 0.000 0.856 0.856
0.000 0.000 0.383 0.383 1.148
0.000 0.000 0.469 0.938 0.938
0.000 0.000 0.360 0.719 1.079
0.000 0.663 0.663 0.663 1.326
0.000 0.560 0.560 1.121 1.121
0.000 0.411 0.411 0.822 1.234
0.000 0.226 0.452 0.904 1.131
0.000 0.297 0.593 0.890 1.186



The speci�c pairings of unequal variances and sample sizes can have differing effects
on test statistics. Therefore, both positive and negative pairings were evaluated for
conditions with unequal variances and unequal sample sizes.

Several con�gurations of non-null population means were also investigated in this
study. Following Ramsey’s (1978) de�nitions of mean con�guration, we examined
equally spaced, minimum variability and maximum variability con�gurations (see
Table 2).

Another factor examined was population distribution shape. In addition to normally
distributed data, we also investigated cases where the data were obtained from a x 2

3
distribution (skewness = 1.63, kurtosis = 4.00). We selected this non-normal distribu-
tion because Sawilowsky and Blair (1992) found that popular test statistics were
adversely affected when distributions had similar values of skewness and kurtosis.
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Table 3. True-model rates (%) over all mean conditions

J N Condition PSHR HBG HTR MTP WMTP

3 30 = n j or = j 2
j 30.8 29.2 30.8 35.9 37.1

PP 26.0 25.6 26.0 27.5 27.2
NP 26.2 25.4 26.2 31.0 31.0

45 = n j or = j 2
j 35.6 33.7 35.6 41.3 43.6

PP 28.2 27.2 28.2 31.0 29.8
NP 28.0 26.8 28.0 34.5 34.7

57 = n j or = j 2
j 39.3 37.4 39.3 44.8 47.9

PP 29.8 28.5 29.8 33.2 31.8
NP 29.9 28.2 29.9 36.9 37.8

4 40 = n j or = j 2
j 15.2 15.2 15.5 25.2 24.4

PP 13.8 14.0 13.9 17.7 16.2
NP 13.6 13.7 13.6 20.3 19.0

60 = n j or = j 2
j 17.8 17.6 18.2 30.3 31.1

PP 14.3 14.3 14.4 20.8 18.7
NP 14.0 14.1 14.1 23.8 22.5

76 = n j or = j 2
j 20.2 19.9 20.5 33.5 35.1

PP 14.7 14.6 14.8 23.1 20.6
NP 14.4 14.4 14.5 26.3 25.3

5 50 = n j or = j 2
j 9.0 9.1 9.1 13.4 14.4

PP 8.8 8.8 8.7 9.9 10.1
NP 8.6 8.6 8.5 11.3 12.0

75 = n j or = j 2
j 9.8 9.8 9.9 16.6 18.4

PP 8.9 8.9 8.9 12.0 11.6
NP 8.7 8.7 8.6 13.8 14.7

95 = n j or = j 2
j 10.9 10.7 11.0 19.1 21.4

PP 9.0 9.0 9.1 13.6 13.0
NP 8.8 8.8 8.8 15.5 16.7

Note: J = number of groups; N = total sample sizes; PSHR = protected Shaffer, HBG = Hochberg,
HTR = Hayter, MTP = model testing procedure, WMTP = model testing procedure with a Welch
omnibus test; = n j or = j 2

j represents equal sample sizes or population variances; PP represents
positively paired variances and sample sizes; NP represents negatively paired variances and sample
sizes.



The simulation program was written in SAS/IML (SAS Institute, 1989). Pseudo-
random normal variates were generated with the SAS generator RANNOR (SAS Institute,
1985). If Z i j is a standard normal deviate, then Xi j = mj + (j j Z i j) is a normal variate
with mean mj and variance j 2

j . To generate data from a x 2
3 distribution, three standard

normal variates were squared and summed. The x 2
3 variates were standardized and

transformed to variates with mean mj and variance j 2
j .

Five thousand replications were performed for each condition, with a nominal
signi�cance level of .05 used with the omnibus tests and stepwise MCPs.

5. Results
The true-model rates for the stepwise and model-testing procedures are presented in
Tables 3, 4 and 5. Table 3 presents the true-model rates across all complete null and
non-null conditions, Table 4 presents the true-model rates under only complete null
conditions and Table 5 presents the true-model rates under only non-null conditions.
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Table 4. True-model rates (%) for the complete null cases

J N Condition PSHR HBG HTR MTP WMTP

3 30 = n j or = j 2
j 94.6 95.7 94.6 65.4 94.6

PP 94.7 95.9 94.7 75.4 94.8
NP 93.0 93.8 93.0 66.4 93.0

45 = n j or = j 2
j 94.7 95.7 94.7 67.9 94.7

PP 95.0 95.9 95.0 79.3 95.0
NP 93.4 94.3 93.4 67.9 93.5

57 = n j or = j 2
j 94.3 95.1 94.3 68.1 94.3

PP 94.6 95.5 94.6 80.1 94.6
NP 93.5 94.3 93.5 69.2 93.6

4 40 = n j or = j 2
j 94.8 96.0 94.5 51.5 94.1

PP 95.0 96.0 94.7 65.0 94.2
NP 92.9 94.1 92.6 59.1 92.5

60 = n j or = j 2
j 95.2 96.1 94.8 54.2 94.5

PP 95.2 96.3 95.0 69.1 94.6
NP 93.7 94.6 93.5 61.7 93.2

76 = n j or = j 2
j 94.6 95.6 94.4 55.0 94.1

PP 94.9 95.9 94.7 70.8 94.3
NP 93.8 94.8 93.6 63.5 93.3

5 50 = n j or = j 2
j 95.5 96.3 94.9 39.6 94.0

PP 95.7 96.5 95.2 53.5 94.1
NP 93.8 94.5 93.1 49.9 92.5

75 = n j or = j 2
j 95.3 96.0 94.8 41.9 93.9

PP 95.6 96.4 95.1 57.7 94.1
NP 93.7 94.5 93.2 53.2 92.5

95 = n j or = j 2
j 95.3 96.1 94.8 42.5 94.0

PP 95.5 96.2 95.1 60.2 94.2
NP 94.0 94.8 93.6 54.9 93.0

Note: See Table 3.



The pattern of results for the normally distributed and the chi-square distributed data
were very similar and accordingly the results have been averaged over these conditions.
We will, however, discuss cases where the results differed between normally and
non-normally distributed data.

5.1. Overall true-model rates
For J = 3, the PSHR and HTR stepwise MCPs (which are equivalent for J = 3) were
uniformly (although not substantially) better at detecting the true model than the HBG
procedure. In addition, the MTP and WMTP had uniformly higher true-model rates than
any of the stepwise MCPs. For example, when sample sizes and variances were
negatively paired, there was approximately a 10 percentage point advantage for
the WMTP over any of the stepwise MCPs. There was little difference between the
true-model rates of the MTP and WMTP approaches.

For J = 4, the true-model rates of all of the procedures were substantially less than
the rates for J = 3. However, the fact that the true-model rates for J = 4 were lower than
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Table 5. True-model rates (%) for the non-null cases

J N Condition PSHR HBG HTR MTP WMTP

3 30 = n j or = j 2
j 9.5 7.1 9.5 26.0 17.9

PP 3.1 2.2 3.1 11.5 4.7
NP 3.9 2.5 3.9 19.2 10.3

45 = n j or = j 2
j 15.9 13.1 15.9 32.4 26.5

PP 5.9 4.3 5.9 15.0 8.1
NP 6.2 4.3 6.2 23.4 15.1

57 = n j or = j 2
j 21.0 18.2 21.0 37.1 32.5

PP 8.2 6.2 8.2 17.5 10.9
NP 8.7 6.2 8.7 26.1 19.2

4 40 = n j or = j 2
j 1.9 1.7 2.3 20.8 13.0

PP 0.3 0.3 0.4 9.8 3.2
NP 0.3 0.3 0.4 13.8 6.8

60 = n j or = j 2
j 5.0 4.5 5.4 26.3 20.5

PP 0.8 0.7 0.9 12.8 6.1
NP 0.7 0.6 0.9 17.4 10.7

76 = n j or = j 2
j 7.8 7.3 8.2 29.9 25.3

PP 1.3 1.1 1.5 15.1 8.3
NP 1.2 1.0 1.4 20.1 13.9

5 50 = n j or = j 2
j 0.4 0.3 0.5 10.8 6.5

PP 0.1 0.1 0.1 5.5 1.7
NP 0.0 0.0 0.1 7.5 4.0

75 = n j or = j 2
j 1.3 1.1 1.5 14.0 10.9

PP 0.2 0.2 0.3 7.4 3.3
NP 0.1 0.1 0.2 9.9 6.9

95 = n j or = j 2
j 2.4 2.2 2.6 16.7 14.1

PP 0.4 0.3 0.4 9.0 4.9
NP 0.3 0.2 0.3 11.6 9.2

Note: See Table 3.



the rates for J = 3 is somewhat expected given that there is an increase in the
complexity of the designs (i.e., for the stepwise MCPs six correct decisions must be
made instead of three, and for the MTP and WMTP there are eight models to select from
instead of four). There was very little difference in the true-model rates of the stepwise
MCPs. As was found for J = 3, the true-model rates for the MTP and WMTP were
signi�cantly larger than the rates for the stepwise MCPs, with advantages reaching more
than 10%.

For J = 5, there was a continued decrease in the true-model rates relative to the rates
for J = 3 and J = 4. The true-model rates for the stepwise MCPs were again very similar,
with true model rates for the MTP and WMTP consistently larger than the rates for the
stepwise procedures.

5.2. True-model rates for the complete null case
The true-model rates for the PSHR, HBG, HTR and WMTP were large (0.95) and
consistent across most conditions, indicating that one or more comparisons were
falsely declared signi�cant approximately 5%of the time. The true-model rates became
moderately depressed when the variances and sample sizes were negatively paired,
although a further examination of the results indicates that this was true primarily for
the chi-square data. Speci�cally, for chi-square data with negatively paired sample sizes
and variances, the true-model rates were on average .91 for the WMTP.

The true-model rates for the MTP were signi�cantly lower than the rates for any of
the stepwise procedures or the WMTP. For example, with J = 5 and equal variances or
sample sizes, the MTP selected models other than the complete null model in more than
50%of the cases, regardless of sample size, whereas PSHR, HBG, HTR or WMTP never
selected models other than the complete null model less than 92.5%of the time.

5.3. True-model rates for the non-null cases
For the non-null cases, the HTRprocedure had consistently higher true-model rates than
the HBG or PSHR procedures over all conditions, although the differences were not
substantial under any condition. However, there was a signi�cant difference in the true-
model rates between the MTP/WMTP and the stepwise MCPs. For J = 3, the true-model
rates for the MTP were, on average, three times as large as the rates for any of the
stepwise procedures. These differences were even more pronounced for J = 4 and
J = 5, even though �oor effects in�uenced absolute true-model rate differences
between the procedures. For J = 4 the true-model rates for the MTP were on average
15 times as large as the rates for any of the stepwise procedures, and the true-model
rates for the WMTP were on average eight times as large as the rates for the stepwise
procedures. For J = 5 the true-model rates for the MTP were on average 34 times as
large as the rates for any of the stepwise procedures, and the true-model rates for the
WMTP were on average 21 times as large as the rates for the stepwise procedures. To
further explore these effects, we simulated several J = 5 conditions with larger
treatment effects than those previously investigated, in an attempt to remove �oor
effects. As expected, the advantage of the MTPand WMTP over the stepwise procedures
increased as �oor effects were removed. For example, with J = 5, N = 50, extremely
unequal n j and largest to smallest variance ratio of 8:1, the average true model rate for
the HTR procedure across ten non-null con�gurations was 0.70%, whereas the average
true model rate for the WMTP across the ten non-null con�gurations was 37.48%, or 53
times that of the HTR procedure.
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6. Addendum
Based on the comments of a reviewer, additional data were generated. In particular, this
reviewer felt that the procedures should also be compared for more extreme cases of
non-normality and variance heterogeneity. Accordingly, we examined two more cases of
non-normality by generating data from two g-and-h distributions (Hoaglin, 1985) and by
creating unequal variance such that the ratio of the largest to smallest variance was 16:1.

Speci�cally, we chose to investigate a g = 0 and h = 0.5 (g1 = 0 and g2 is unde�ned)
and a g = 0.5 and h = 0.5 (g1 and g2 are unde�ned) distribution (see Wilcox, 1997,
p. 73). To give meaning to these values it should be noted that for the standard normal
distribution g = h = 0. Thus, when g = 0 a distribution is symmetric and the tails of a
distribution will become heavier as h increases in value. Finally, it should be noted that
though the selected combinations of g and h result in extremely heavy-tailed distribu-
tions, these values were investigated to indicate how well/poorly the tests will perform
under extreme conditions.

To generate data from a g-and-h distribution, standard normal variables were
transformed via

Xi j =
exp(gZ i j) ± 1

g
exp

hZ 2
i j

2

Á !
,

according to the values of g and h selected for investigation (g > 0). To obtain a
distribution with standard deviation jj , each Xi j was multiplied by a value of j j . It is
important to note that this does not affect the value of the null hypothesis when g = 0
(see Wilcox, 1994, p. 297). However, when g > 0, the population mean for a g-and-h-
distributed variable is

mgh =
expf g 2 /(2(1 ± h))g ± 1

g(1 ± h)1/2

(see Hoaglin, 1985, p. 503). Thus, for those conditions where g > 0, mgh was �rst
subtracted from Xi j before multiplying by j j .

Lastly, it should be noted that the standard deviation of a g-and-h distribution is not
equal to one, and thus the standard deviation values re�ect only the amount that each
random variable is multiplied by and not the actual values of the standard deviations
(see Wilcox, 1994, p. 298). As Wilcox noted, the values for the variances (standard
deviations) more aptly re�ect the ratio of the variances (standard deviations) between
the groups.

The unequal variances were, as indicated, modi�ed so that the disparity between the
largest and smallest cases would now be in a 16:1 ratio. Accordingly, the J = 3, J = 4
and J = 5 values were (1, 8, 16), (1, 6, 10, 16) and (1, 4, 8, 12, 16), respectively.

For the three designs investigated, we selected the two most discrepant sample-size
cases: 5, 10, 15 and 7, 15, 23 ( J = 3), 5, 7, 13, 15 and 7, 11, 19, 23 ( J = 4) and 5, 6, 10,
14, 15 and 7, 9, 15, 21, 23 ( J = 5). These unequal sample sizes were both positively and
negatively paired with the unequal variances (equal sample-size cases were not
reinvestigated).

We generated data under the same mean con�gurations as enumerated in Table 2
(we also included some larger mean differences to eliminate some �oor effects). As in
the original investigation, 5000 replications for each combination of non-normal
distribution and sample-size condition were generated. The true-model rates under all
conditions, the null condition and the non-null conditions are presented in Table 6. A
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comparison of the entries in this table with those presented in Tables 3, 4 and 5 reveals
similar �ndings. Indeed, just about everything that we noted earlier holds here as well.
That is, the true-model rates for the model testing methods (MTP and WMTP) were
always larger than the stepwise MCPs for the all-conditions data and the model testing
methods rates were always larger than the stepwise MCPs rates for the non-null mean
con�gurations. In addition the unprotected model testing approach (MTP) was not as
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Table 6. True-model rates (%) for the most heterogeneous sample-size conditions and a largest to
smallest variance ratio of 16:1

J Mean condition Distribution Pairing PSHR HBG HTR MTP WMTP

3 All conditions g = 0, h = .5 PP 19.2 18.5 19.2 24.7 23.5
NP 17.8 16.8 17.8 28.2 26.5

g = .5, h = .5 PP 13.5 13.6 13.5 19.1 16.5
NP 19.6 18.7 19.6 32.3 31.5

Complete null g = 0, h = .5 PP 97.5 98.0 97.5 58.8 97.5
NP 97.4 98.0 97.4 45.9 97.4

g = .5, h = .5 PP 87.7 89.9 87.7 44.4 87.8
NP 82.7 85.4 82.7 32.6 82.8

Non-null g = 0, h = .5 PP 6.1 5.3 6.1 19.1 11.2
NP 4.5 3.3 4.5 25.3 14.7

g = .5, h = .5 PP 1.1 0.9 1.1 14.9 4.6
NP 9.0 7.5 9.0 32.3 22.9

4 All conditions g = 0, h = .5 PP 8.8 8.8 8.6 17.8 15.7
NP 8.3 8.3 8.2 19.7 18.1

g = .5, h = .5 PP 7.1 7.3 7.0 13.4 10.5
NP 8.9 9.9 8.8 19.4 19.4

Complete null g = 0, h = .5 PP 97.8 98.4 97.7 52.7 97.4
NP 97.8 98.5 97.6 42.1 97.3

g = .5, h = .5 PP 89.0 91.6 88.5 35.4 87.6
NP 83.1 85.8 82.2 26.9 81.0

Non-null g = 0, h = .5 PP 1.4 1.2 1.3 14.8 8.9
NP 0.8 0.8 0.7 17.8 11.5

g = .5, h = .5 PP 0.2 0.2 0.2 11.6 4.1
NP 1.5 1.5 1.5 18.6 13.2

5 All conditions g = 0, h = .5 PP 4.9 4.9 4.8 9.8 9.2
NP 4.8 4.8 4.7 10.5 10.8

g = .5, h = .5 PP 4.3 4.4 4.3 7.3 6.3
NP 4.4 4.4 4.3 10.9 11.8

Complete null g = 0, h = .5 PP 98.6 98.8 98.3 45.5 97.8
NP 98.3 98.6 97.9 37.6 97.5

g = .5, h = .5 PP 90.7 92.4 89.9 28.7 88.2
NP 85.0 87.3 83.4 22.3 80.9

Non-null g = 0, h = .5 PP 0.2 0.2 0.2 8.4 4.8
NP 0.1 0.1 0.1 9.2 6.5

g = .5, h = .5 PP 0.0 0.0 0.0 6.2 2.2
NP 0.4 0.4 0.3 10.3 8.3

Note: See Table 3.



successful as the protected version (WMTP) in correctly identifying the underlying true
models, except in the non-null cases. One difference notable from Table 6 is that under
the complete null case, all procedures were affected by extreme non-normality (very
heavy-tailed skewed distribution g = 0.5 and h = 0.5); however, the MTP was most
affected, and moreover, was also affected when data were obtained from the other
extremely non-normal g = 0 and h = 0.5 (symmetric heavy-tailed) distribution.

7. Discussion
A number of MCPs have been proposed over the past few decades that purport to
provide a better balance between Type I error control, power and ease of application,
although each of the proposed procedures is plagued with a multiple comparison
strategy that often results in intransitive decisions. Recently, Dayton (1998) proposed a
model testing strategy for pairwise multiple comparisons testing that eliminates
intransitive decisions and provides a more practical method of summarizing mean
differences. The current study investigated how the MTP proposed by Dayton
performed relative to three stepwise MCPs with respect to the proportion of times in
which each procedure correctly selected the ‘true’ pattern of differences among a set of
means (i.e., true-model rate). The true-model rates for Dayton’s MTP were typically
larger than the true-model rates for the protected Shaffer (1986), Hochberg (1988) or
Hayter (1986) stepwise MCPs. In addition, a protected version of the MTP using Welch’s
(1951) omnibus test also had larger overall true-model rates relative to the stepwise
procedures.

Under the complete null hypothesis the MTP performed poorly, which supports the
�ndings of Dayton (1998) that the AICstatistic has a bias for selecting population models
more complex than the true null model. However, the true-model rates for the WMTP
were substantially larger than those for the MTP. This �nding supports Dayton’s
recommendation that an omnibus test could be used with the MTP to screen for the
complete null case, and in conditions where sample sizes and variances are unequal the
use of the Welch (1951) omnibus test is generally recommended. Nonetheless, it could
be argued that when all the population means are equal the model testing approach
will too frequently not identify this con�guration, based on the results we report in
Tables 4 and 6. Accordingly, one might argue that the model testing approach has some
dif�culty identifying the so called ‘null’ case. Though this may be the case, we
nonetheless believe, based on all the available data, that the approach merits serious
consideration by data analysts. Speci�cally, the method is in general no more prone to
problems associated with the ‘null’ case than the conventional piecemeal methods of
analysis for pairwise comparisons. That is, it is probably safe to say that no one method
of analysis will ever be discovered that works well under all data analysis scenarios.
What we seek is a procedure that performs well in most situations.

With this caveat in mind, our results, along with those presented by Dayton (1998),
clearly establish that the model testing approach much more frequently identi�es the
‘true’ pattern of differences among a set of means than do classical methods of analysis.
And moreover, researchers can get a holistic, rather than piecemeal, analysis of the data;
that is, they can compare the competitiveness of various models through Dayton’s
approach to examining differences between treatment group means.

When all population means were not equal the MTP and WMTP had signi�cantly
higher true-model rates than anyof the stepwise MCPs. Further, although the true-model
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rates were larger for the MTP than for the WMTP (as expected), the true-model rates for
the WMTP were consistently and signi�cantly larger than the most powerful stepwise
procedure (Hayter or Shaffer). Therefore, we are favourably impressed with the
protected model testing approach to pairwise multiple comparison testing. However,
what we have also discovered for the model testing approach is that for sample sizes that
are representative of studies in psychology, the true-model rates for the model testing
procedure, and even more so for the traditional MCPs, can be quite modest. One
must remember, however, that identifying the ‘true’ pattern of mean differences is
a very stringent criterion. For example, for J = 5 and the mean con�guration
[0.000 0.226 0.452 0.904 1.131] we found, through simulation, that one would
need approximately 320 subjects per group to detect this pattern 80%of the time
with the WMTP. However, the sample-size requirements would be even more demand-
ing (460 per group) to achieve 80% all-pairs power (detecting all true pairwise
differences, a standard identical to the true-model rate for this mean con�guration)
for the means just enumerated with a stepwise MCP, say Hochberg’s (1988) approach.

Our results also suggest that the WMTP outperforms the conventional methods
when variances are heterogeneous and/or if the data are non-normal in shape, except
under the complete null case when data are extremely non-normal (i.e., under the two
g-and-h distributions) when its performance is similar to the stepwise procedures. That
is, for all procedures examined, the true-model rates under the null con�guration were
most deviant from .95 when data were very non-normal and variances were very
heterogeneous. In this case it may be possible to use robust estimators (see Wilcox,
1997) with Dayton’s (1998) model comparison approach.

The reader should also take note that this ‘de�ciency’ of the model testing approach
(as well as the stepwise MCPs) occurred under quite extreme cases of non-normality and
variance heterogeneity, that is, under conditions that most likely do not typify the data
obtained in most applied settings. These conditions were included, as correctly
suggested by a reviewer, because they are intended to indicate the operating character-
istics of procedures under extreme conditions, with the premise being that, if a
procedure works under the most extreme of conditions, it is likely to work under
most conditions likely to be encountered by researchers. What we have rediscovered is
that there will always be (extreme) cases where a particular procedure will not perform
well; alas, there still is no procedure that will work well in all conditions that may arise.

References
Akaike, H. (1974). A new look at the statistical model identi�cation. IEEE Transactions on

Automatic Control, AC-19, 716–723.
Bonferroni, C. E. (1937). Teoria statistica delle classi e calcolo delle probabilità. In Volume in
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