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Abstract

Statistical methods are motivated by the desire of learning from data to solve prob-

lems in the real world. The credit risk management area of the banking book in the

financial industry is a field extensively applying statistical knowledge to solve the

problems and continually innovating new statistical methods. In credit risk area,

a fundamental assumption of the probability of default (PD) rates for a portfolio

is that the PD rates are monotonic increasing as the borrower’s creditworthiness

worsen. However, since the banks’ internal data are not big enough, the empirical

realized PD rates often violate this assumption. For the same reason, the violation

of the assumption for the PD transition matrix also happens often. These viola-

tions will cause a severe problem if we directly calibrate the risk models based this

non-smoothed empirical observed PD rates. We propose a smoothing algorithm for

the observed PD rates and PD transition matrix by using Constrained Maximum a

Posteriori (CMAP) method to solve these problems. The results from the proposed

smoothing method are validated by simulation and real default data showing that
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CMAP method can provide the smoothed and consistent PD rates. We also pro-

pose a new approach in this dissertation to estimate the correlated mixed response

variable which is often found in credit risk area. The proposed approach simultane-

ously estimates the mixed response regression and estimates the correlation among

the response variables. Moreover, we extend this methodology to the high dimen-

sional mixed response regression models by using the pairwise composite likelihood

method. The simulation results show that the proposed method can provide accurate

coefficients and correlation for mixed response variables model.

Keywords: Smoothing, Constrained Maximum Likelihood Estimation, Maximum

a Posteriori, Composite Likelihood, Newton-Raphson Method, Mixed Response
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1 Introduction

Statistical methods are motivated by the desire of learning from data to solve

problems in the real world. The credit risk management area for the banking book

in the financial industry is a field extensively applying statistical knowledge to solve

the real problems and continually innovating new statistical methods. In this area,

as information technology develops and historical credit data grows exponentially,

it becomes possible to develop and apply more advanced statistical algorithms to

accurately assess the risk faced by financial institutions and maximize profit under

appropriate risk control. Banks experience loss as a result of lending to an individ-

ual or company that may default. Losses incurred in a particular year are volatile

from year to year depending on the frequency and severity of credit events, even

if a portfolio is assumed consistent over time. To precisely measure credit risk, fi-

nancial institutions usually split credit risk into two categories: Expected Loss and

Unexpected Loss. The Expected Loss is the reasonable expectation of the average

level of credit losses in the portfolio and is treated as a cost component of the bank-
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ing business and managed through risk management strategies. Unexpected Loss

is the loss above the expected level which the banks know will occur sometime in

the future, but cannot know their timing and severity in advance. To control credit

risk, the banks need to hold adequate capital against loss caused by these credit

risks and make sure that the capital adequately compensates for risks incurred. As

a profit-seeking institution, however, banks have a great incentive to minimize the

capital they hold and free up economic resources to efficiently invest the capital to

make more profit. Consequently, precisely identifying, measuring, monitoring and

controlling the credit risk is very important for financial institutions and calls for the

use of the advanced, efficient and robust statistical methods.

The Expected Loss of a portfolio is viewed as the probability of default (PD) of

the obligors within a specific time frame (typically 12 months), multiplied by the

loss given default (LGD) rate and then multiplied by the outstanding exposure at

default (EAD).

EL = PD * LGD * EAD

Since these three risk factors are random variables, banks know in advance neither the

exact number of defaults within a portfolio during a specific time frame nor the exact

amount outstanding nor the actual loss rate. However, banks can leverage sound

statistical methods to calibrate these three parameters for a portfolio either through
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the top-down approach or through the bottom-up approach. The top-down approach

estimates the risk parameters of PD, LGD and EAD from pre-defined risk segments

for a portfolio. The bottom-up approaches directly calibrate the PD, LGD and EAD

parameters based on the risk attributes of the individual account(facility). The

expected loss of the portfolio then can be calculated based on these risk parameters.

As an introduction, here we briefly introduce the statistical methods involved in

the credit risk field under the framework of Expected Loss.

The probability of default measures the possibility of default of a borrower taking

a loan or credit within a specific time range. There are different types of PD for the

different perspectives of risk management, such as through the cycle (TTC) PD and

point in time (PIT) PD, conditional (stressed) PD and marginal (unstressed) PD.

Accordingly, different statistical methodologies are applied to calibrate these different

forms of PD rates. Usually, PD models for retail customers are built on the borrower’s

characteristics and their financial status, while PD models for commercial borrowers

are built on their financial statement information and macroeconomic variables such

as GDP growth, employment rate, and bond yield rate, etc. There are many research

papers related to PD models which aim to predict the PD rate for a borrower. The

pioneer PD model is Altman’s Z-score model [1] which is actually a linear equation

of the risk factors. As the PD rate measures the probability of a binary event of
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default or non-default, the logistic, ordinal or probit regression are widely used in

the industry [2]. The decision tree [3] and Cox proportional hazards model [4, 5]

are also applied to predict the borrower’s PD rate. In addition, some complicated

algorithms are adopted by the banks to calibrate the PD rate such as the one factor

model [6], which considers the correlation between individual borrowers risk factors

and the systematic (market) risk factors, or Markov chain Monte Carlo (MCMC)

[7] algorithm, which calibrates the PD rates of no default or very low default risk

ratings.

Loss given default (LGD) assesses the percentage of the exposure at the time of

default that cannot be recovered from a borrower. Since the empirical distribution

of the LGD rates at the facility level is bi-mode and bounded between [0,1] by def-

inition (in the real data, the bound is not rigorously between [0,1] because of the

existence of recovery cost and legal fees in the recovery process), the linear regression

and fractional response regression are widely used in the industry to predict LGD

[8, 9, 10]. The joint beta regression (inflated beta regression) model was proposed by

Calabrese [11], which considers the dependent variables as a mixture of the continu-

ous variable on (0, 1) represented by the beta distribution and a discrete probability

mass at the boundaries of 0 and 1 (or we can set the bound to 1.5 as the LGD

cap) represented by the Bernoulli distribution to model the LGD rate. In addition,
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the mixed effect model based on Vasicek’s single factor framework [12] is applied to

LGD calibration, which assumes LGD rate is dependent on both the observable risk

factors and the unobservable systematic risk factor [13]. In the one factor models

settings, the unobservable systematic risk factor works as a random effect term, and

the idiosyncratic risk factor works as the residual term.

Exposure at default (EAD) measures the borrower ’s outstanding exposure at

the time of default. It has received much less attention than PD and LGD in the

literature because it is less critical in the EL calculation by nature, and because of

the difficulties that exist in modeling EAD because the distribution of EAD being

comparatively random. When a practitioner estimates the EAD for a facility with

an explicitly authorized limit amount, there are three typical link functions used to

connect the EAD to the authorized limit: usage given default (UGD), credit con-

version factor (CCF) and additional utilization factor (AUF). The EAD calibration

methodologies focus on predicting link factors from the risk drivers of the borrowers.

In the literature, Barakova and Parthasarathy introduce additional utilization fac-

tor (AUF) model [14], Asarnow and Marker [15] described the relationship between

credit quality and utilization for the lower UGD. Araten and Jacobs [16, 17]proposed

the UGD model with risk factors such as the commitment type and the commitment

size. Moral [18] studied SME (small and medium enterprise) portfolio by optimiza-
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tion method using the various loss functions. Jacobs [19], Qi [20] and Taplin et al

[21] proposed and investigated the credit conversion factor (CCF) model.

Currently, regulators ask the financial institutions to implement the expected

credit losses (ECL) models under the IFRS9 framework, which requests the banks

recognize the lifetime losses of a borrower more quickly compared to the expectation

of losses for one-year time range only under the Advanced Internal Rating Based

(AIRB) approach. To reach the expected lifetime credit losses, the risk practitioners

apply forward PD models. One approach of forward PD rate models is through

the rational PD transition matrix [22] to obtain the future time’s PD rates for the

borrowers. Under this circumstance, the rational PD transition matrix plays a critical

role in the new ECL models and the rational PD rates for each risk rating grade,

the components of the transition matrix, become very important. A fundamental

assumption of the probability of default (PD) rates for a portfolio is that the PD rates

are monotonic increasing as the borrower ’s creditworthiness worsens. However, since

the banks’ internal data are not big enough, the empirical realized PD rates often

violate this assumption. For the same reason, the violation of the assumption for the

PD transition matrix also happens often. Theses violation will cause a severe problem

if we directly use this empirical PD rate to calibrate the risk models. Accordingly,

we propose a smoothing algorithm for the observed PD rates and PD transition
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matrix by using Constrained Maximum a Posteriori (CMAP) method to solve these

problems in Chapter 2.

When we assess a borrower’s risk attributes, different measurements are utilized

including both binary (categorical) and continuous outcomes at the same time. For

example, for a mortgage loan, it may have binary risk measures of default status

and prepayment status, as well as continuous measures of prepayment amount and

loss amount if it may default. These measures may or may not share common risk

factors. The traditional approaches of building each model for each risk measure

consider neither the correlation nor the trending movement among risk measures.

Another practical problem in risk management is the correlation between the PD

rates and LGD rates which is investigated by many researchers [23]. Most approaches

calculate the correlation based on the observed PD rates and LGD rates, or based

on the PD rates and the LGD rates separately calibrated in advance. We propose

a new approach to solve this kind of correlated mixed response variable problems.

It simultaneously solves the mixed response regression and estimates the correla-

tion among the response variables. Moreover, we extend this methodology to the

high dimensional mixed response regression models by using the pairwise composite

likelihood method in Chapter 3.
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2 Probability of Default Smoothing through

Constrained Maximum a Posteriori

In this chapter, we focus on the smoothing algorithm using the Constrained Max-

imum a Posteriori(CMAP) method to estimate rational PD rates and PD transition

matrices in the credit risk area for observed non-monotonic PD rates and PD tran-

sition matrices.

2.1 Introduction

It is very important that a regression relationship is monotonic in a specific range

in many applications, such as in the credit risk field people assume that the proba-

bility of default rates is monotonic increasing as the credit quality of associated risk

rating grades become worse, and in the actuarial science the mortality rate follows

the specific bathtub curve shape in specific population. However, the empirical distri-

bution of the internal data is usually not rigorously follow the expected distribution
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because the data samples from only internal data are not big enough to represent

the population. This issue of non-monotonous empirical observation will cause se-

vere problems when people want to build the statistical models further based on the

empirical distribution to predict some interested relationship. Monotone smooth-

ing methodology is used to solve the non-monotonic observed distribution problem.

Many existing monotonic smoothing methodologies either may not result in desir-

able pattern as the industry expectation or are very complicated to implement. In

this chapter, we propose a simple and efficient monotonic smoother for the prob-

ability of default (PD) ratio in credit risk field based on Constrained Maximum a

Posteriori (CMAP) method leveraging the monotonic increasing attribute of loga-

rithm function. The CMAP method can incorporate the prior knowledge of the

parameters which gives us more reasonable estimation to the reality compared to

maximum likelihood method. Specifically, in PDs estimation, there is a merit of

CMAP method: the estimated PDs can incorporate the historical economic cycle

with the prior knowledge of PDs for different rating grades. This property makes the

estimated PDs not only monotonic in the single dimension of risk rating grades but

also consider the second dimension of economic cycle represented by the cohort of

the fiscal year. It will let the financial institutions build the forward-looking PD term

structure model and plan their capital more rationally. The testing of monotonicity

9



is demonstrated via the Standard & Poor′s (S&P ′s) historical real default data and

a toy data (small changed real default data from an anonymous financial institution)

study.

In credit risk area, financial institutions including banks and non-bank finan-

cial companies usually follow or map their own risk rating system to the Moody′s

Investors Service′s ratings system or S&P ′s rating system to assign a rating grade

to a borrower or a instrument to represent the borrower or instrument’s creditwor-

thiness. Such as Moody’s Investors Service’s rating system, securities are assigned a

rating from Aaa to C, with Aaa be the highest credit quality and C be the lowest.

Accordingly, the PD rate is expected as monotonic increasing from lowest to highest

for the rating grade from Aaa to C. This PD pattern has been proved by the long-

term historical data industry-wide, as shown by the historical default rates span from

the year 1981 to the year 2015 sourced from S&P ′s, which is illustrated in Table 2.1.

. However, when the financial institutions calibrate the credit models based on the

internal data requested by the regulator, they often encounter the problem of the

non-monotonic empirical default rates and no default information for some rating

grades in some time periods. Therefore, the smoothing algorithm must be applied

to the overserved default rates based on the sparse internal default data to provide

a smoothed PD rates before they were inputted to next modeling process.
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Monotonic smoothing can be done by a variety of different algorithms, such as

random smoothing, random walk model, moving average, and simple (linear or sea-

sonal) exponential smoothing. All these techniques for monotonic smoothing have

been proposed in the literature. Most of them are combined the monotone and

smoothing algorithm together. In terms of monotonicity, a simple estimator can

be modeled by isotonic (monotonic) regression through the Pool Adjacent Violators

(PAV) algorithm ([24] and [25]). In terms of smoothness, smoother such as smooth-

ing spline [26], kernel [27], regression splines [28], or local polynomial [29], penalized

splines with monotonicity constraints [30] and isotonic regression combined with the

local average for monotonic smooth of scatterplots [31] can be used.

Specifically, in the perspective of PD rates smoothing, Tasche [32] proposed a

smoothing algorithm using quasi-moment matching (QMM) method which is a nu-

merical solution of two-dimensional non-linear equations system. It assumes that

both default and performing events in each rating grade are following the normal

distribution and share the same variance but with different means and with a con-

straint that the mean value of maintaining the performing status is higher than the

mean value of downgrade to default, which is empirically rational in the industry.

For each rating grade at a specific time point, it is assumed that the PD rate follows

the logistic regression since there are only two statuses of performing and default
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for a borrower, and the accuracy ratio is defined thereafter. The QMM algorithm

numerically solves the equations to achieve the maximum accuracy ratio to get the

estimated PD rates. The proper solutions from QMM method need a meaningful

initial guess.

A Constrained Maximum Likelihood Estimation (CMLE) proposed by Yang [33]

can also provide the smoothed PD rates by maximizing the likelihood. However,

the estimations from this MLE based method often have the drawback of overfitting

problem since it always offers us the parameters with the maximum likelihood fitting

the training data. In addition, another drawback of MEL method is that it does

not incorporate any prior knowledge of PD rates we have learned from the historical

credit data. Maximum a Posteriori (MAP) estimation can improve this deficiency

caused by MLE method. In this dissertation, we propose the Constrained Maximum

a Posteriori (CMAP) algorithm to smooth the observed PD rates and use the QMM

and CMLE as the benchmark.

The proposed smoothing CMAP algorithm and benchmark method CMLE are

implemented in both R and SAS which call the general purpose optimization function

of optim in R and proc nlmixed in SAS, which use the Newton−Raphson method

to reach the optimum values. The benchmark smoothing method of QMM is al-

ready implemented as an R package called LDPD. Since Newton−Raphson method
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is leveraged to find the parameters estimation (roots) at the optimized value of the

log-likelihood function for both smoothing algorithm and mixed response variable

models. We briefly introduce the numerical algorithm here.

Newton−Raphson Method

Newton−Raphson method [63] is a numerical method which is widely used to

find the optimized value of a real-valued function. The process is repeated until a

sufficiently more accurate value is reached or the pre-defined threshold of accuracy

reached. The iterative scheme is constructed by replacing initial value deduct the

Jacobian matrix J multiply the inverse of the Hessian matrix H of the function lc(η).

Let η̂t be the results from tth iteration, then

η̂t+1 = η̂t −H−1(η̂t)J(η̂t),

where

J(η̂t) =
∂lc(η)

∂η

∣∣∣∣
η̂t

,

H(η̂t) =
∂2lc(η)

∂η∂ηT

∣∣∣∣
η̂t

.

Newton−Raphson method can fail to get the optimum value of the parameters

in three situations: the iteration is not converging to the global maximum value,

the iteration is converging too slow, and there is no first-order derivative of the
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parameters. Thus, we need be careful to fix Newton−Raphson method in these

situations. In our PD rates smoothing, we applied the constrained Newton−Raphson

method, which use the theory of Lagrange multipliers to state first order necessary

optimality conditions of the constraints.

2.2 Constrained Maximum Likelihood Smoothing

A typical credit data is organized this way: first, for a portfolio with N loans

at the beginning of a fiscal year, a bank splits these N loans into K rating grades

(segments) according to their credit quality. Assume that each loan in the same

rating grade Ri, (i = 1, ..., K) has the same probability of default (PD) pi, Ni loans

are assigned to rating Ri at the beginning of year, thus N =
∑K

1 Ni. There may have

n default loans observed during a specific fiscal year and ni defaulted loans observed

from rating Ri during the fiscal year, then n =
∑K

1 ni.

With the assumption that the credit quality is worse as the rating Ri downgrad-

ing, for a sequence of PDs pi, i ∈ [1, K], the rational PD rates should follow the

monotonic increasing pattern and capped by 1 and floored with 0,

0 ≤ p1 ≤ p2 ≤ ... ≤ pK ≤ 1. (2.1)

The borrower within each rating grade Ri has only 2 statuses will be at the
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end of year: Performing or Default, associated with the probability of 1 − pi and

pi respectively. Obviously, this is a Bernoulli Distribution for each borrower in the

rating grade Ri, and the default count ni follows the binomial distribution B(Ni, pi),

with the following probability mass function,(
Ni

ni

)
pnii (1− pi)Ni−ni .

According to Miller and Freund [34], the log-likelihood function for rating Ri to

be maximized of binomial distribution (Bernoulli trials) is given as

li(pi) = log

(
Ni

ni

)
pnii (1− pi)Ni−ni

= log

(
Ni

ni

)
+ ni log pi + (Ni − ni) log(1− pi), (2.2)

and the MLE of pi will be at the value which makes ∂li
∂pi

= 0,

p̂i =
ni
Ni

,

which is the exact realized (empirical) default rate for the risk rating Ri.

Under the assumption that the default rates from each risk rating are mutually

independent, the likelihood function of PDs for the portfolio will be

K∏
i=1

(
Ni

ni

)
pnii (1− pi)Ni−ni ,

15



and the log-likelihood function l is

K∑
i=1

[
log

(
Ni

ni

)
+ ni log pi + (Ni − ni) log(1− pi)

]
. (2.3)

By simply setting the score function to 0: ∂l
∂p

= 0, we will get the MLE of pi for

the portfolio as

p̂i =
ni
Ni

, i = 1, ..., K.

Still, the MLE of pi is the exact observed (empirical) default rates for each rating

grade Ri of the portfolio.

In practice, however, we often encounter two prevalent obstacles needed to be

resolved before further analysis with the empirical PD: one is the non-monotonic

realized PDs ( ni
Ni
≥ ni+1

Ni+1
), another is 0 default rates for some rating grade because

there is no default in these rating grades during the observation time. Thus, when we

calibrate the regression model based on these observed default rates to predict credit

behaviors for the further use (such as AIRB, CCAR, IFRS9, etc.), it will generate

the unexpected results such as distorted capital. Accordingly, the practitioners have

to conduct smoothing process to remove the sample bias from the internal samples

and force the realized PDs to be rational as the expected as a monotonic increasing

and with floor 0 and cap 1.

Constrained MLE (CMLE) method proposed by Yang [33] leverages the mono-
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tonic increasing property of logarithm function. Given K performing risk rating

grades, let Ni be the number of the total number in the rating Ri at the beginning

of the observation time, and ni be the number of default for the rating Ri in the

observed data set (internal data set of a portfolio). Then the log-likelihood of the es-

timated PD rates for this portfolio at the end of the year is the same as equation 2.3.

However, CMLE runs with the constraint of pi+1 = pi + eεi where εi ≥ 0. Wherein

εi is set as the expected increment value of the default rates for the adjacent rating

grades of the portfolio.

max
pi

K∑
i=1

[
log

(
Ni

ni

)
+ ni log pi + (Ni − ni) log(1− pi)

]

s.t. 0 ≤ pi ≤ 1,

pi+1

pi
≥ eεi ,

1 ≤ i ≤ K,

εi ≥ 0.

(2.4)

With this constrained setup, once we set the appropriate value for εi, we can

obtain any monotonic increasing pattern with different expected default rate velocity

of pi among rating grades. The typical way to set the εi is through the regression of

external PD rates and internal PD rates to get the upper or lower bound of εi. When

εi = 0, then we get the exact same constrains of non-decreasing PD rates pattern
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(equation 2.1),

0 ≤ p1 ≤ p2 ≤ ... ≤ pK ≤ 1.

Although the CMLE method can provide a good quality of the monotonic in-

creasing PDs, the estimation does not incorporate any prior knowledge of historical

default information about the PD rates we learned from the past experience. Mean-

while, the well-known drawback of MLE method is too sensitive to the training data

means the variance of the estimated parameter is high. So, statistician usually adds

regularization to MLE method such as reducing variance through introducing bias

into the estimate to overcome this drawback. Maximum a posteriori (MAP) is one

of the modifications to the MLE method in which the regularization is considered

assuming that the estimated parameters themselves are also drawn from a random

process in addition to the data. Accordingly, we propose the CMAP method to

smooth the empirical default rate in this dissertation.

2.3 Constrained Maximum a Posteriori Smoothing

Maximum a posteriori (MAP) estimator of the parameters is to maximize the

entire posteriori distribution which is calculated from the likelihood function and in

fact the estimated parameters are the mode of the posteriori distribution if the pos-

teriori distribution is single mode distributed. If the prior distribution is the uniform
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distribution (equal weights everywhere) or the observed sample data infinitely large,

then there is no difference between the MLE and the MAP estimates.

It is well known that if the prior knowledge about the parameters is strong,

then the observed data sample will have relatively small impact on the parameter’s

estimation, (i.e., low variance but high bias), otherwise the estimated parameter

will close to MLE’s outcomes (i.e., low bias but high variance). We consider pi

to be a random variable from the prior distribution of π(pi), Bayesian approaches

incorporate this prior belief about pi into a posteriori probability P (pi|X), where X

is the observations. Here X is the counts of instruments/borrowers in each risk rating

at the beginning of the year and the default counts of each risk rating overserved

during the fiscal year. Let i represents the specific risk rating and there is total K

risk ratings in the portfolio,

P (pi|X) =
P (X|pi)π(pi)

P (X)
.

The maximum a posteriori (MAP) estimate is then defined as

p̂MAP
i = arg max

pi
P (pi|X).
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Note that because P (X) does not depend on pi, we have

p̂MAP
i = arg max

pi
P (pi|X)

= arg max
pi

P (X|pi)π(pi)

p(X)

= arg max
pi

P (X|pi)π(pi)

= arg max
pi

∏
Xi∈X

P (Xi|pi)π(pi)

= arg max
pi

∑
Xi∈X

logP (Xi|pi) + log π(pi). (2.5)

Equation 2.5 shows that the MAP estimation comes from injecting our prior

beliefs about parameter into the MLE process. However, different from MLE method,

the MAP estimation need the assumption of appropriate prior distribution of the

parameters. The appropriate choice of the prior distribution can pull the estimation

closer to our expectation and thus greatly simplify the MAP estimation process.

2.3.1 Prior Distribution of PD

It is well known that the conjugate distribution of the binomial distribution is

the beta distribution with hyperparameters α and β, where α and β are the positive

shape parameters respectively of the prior beta distribution, which can be estimated

by the distribution of the empirically observed default rates. The posteriori distri-

bution from conjugate beta prior will be another beta distribution with new shape
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parameters will be α + CD and β + CP , where CD and CP are the count of default

and count of performing respectively. We applied the conjugate beta prior to our

empirical data, however, since the empirical default rate is close to 0 for some rating

grades, the posteriori beta distribution cannot provide the estimation for these low

default ratings. Another deficiency of posteriori beta distribution is that the results

from posteriori beta distribution directly are not monotonic. The estimated PD rates

for S&P ′s data by posteriori beta distribution is shown in Appendix B. As a result,

we need to consider other approaches to fulfill our task.

A practical and rational assumption of the prior distribution of pi, i ∈ [1, K] is

that they are independent of each other and each pi is normally distributed along the

time frame [35]. In our research, we assume that the PD rates of each rating grade

pi is normally distributed with the mean of long-run average of the probability of

default (LRA) and the standard deviation can be calculated by the difference between

empirically observed default rates and LRA which can leverage both the observed

the default rates and the estimated long run average. The difference between the

observed empirical PD and the LRA reflects the economic environment changes and

the credit cycle effect on the internal portfolio.

We assume that the real PD rates pit of the default rate for rating grade Ri at

fiscal year t is normally distributed with N(µpi , si), where both µpi and si can be
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derived theoretically from the historical data if the observation history is long enough

to cover several credit cycles. If the observed credit history is not long enough, the

practitioners usually calibrate the mean value of pit first by combining the short-

term internal data with the long-term external data and assuming this combination

are distributed as a bivariate normal, then obtain the standard deviation using the

empirical observed default rate pit and estimated mean value of default rate µpi .

Thus, the mean value of µpi plays a significant role in calibrating the prior distribution

of pi. We have following common approaches in calibrating µpi : the empirical average

(mode) or MLE based long-run average (LRA) [35]. The common choices of LRA

are as follows,

1. The empirical (weighted) average of observed default rates LRAavg;

2. The average default rates attaining the mode that matches the simple average

of the observed default rates (LRAmod);

3. Long run PDs by MLE approach (LRAMLE1) based on the internal default

data only;

4. Long run PDs by MLE approach (LRAMLE2) based on both the internal and

external default data together.

All four choices are believed to be consistent estimators [35]. Among these four

22



methods, LRAavg is an unbiased estimator, LRAMLE1 is asymptotically efficient, and

LRAMLE2 is used if the internal data is considered without enough historical infor-

mation . LRAmod is considered as a conservative estimator of LRA by the Canadian

financial institution’s regulator. However, it is seldom used in the Advanced Inter-

nal Rating-Based (AIRB) framework. Financial institutions using AIRB framework

build their own risk rating models and calibrate the PD parameters based on the

default information of each risk rating grade from their internal risk rating models.

LRAavg is the most straightforward method and the (weighted) average of the

historical default rates (DR) of each rating grade. The weight w can be portfolio

count of ni or portfolio size each year. For an observed M year historic data,

ˆLRA
avg

i =
1

M

M∑
j=1

(wj)DRi, i ∈ (1, K). (2.6)

The MLE based LRA is based on Vasicek’s one-factor model [12], which is derived

from the asset pricing framework of Merton’s structure model. Here we give a brief

introduction to this approach since it is widely used in the PD parameters estimation.

Under the Merton’s framework, a borrower’s probability of default at time t

pt is considered as a normalized function of the borrower’s asset value, in fact, it

is represented by a latent variable of either or not the borrower will default. If

pt is less than a specified (threshold) default point (DP), the borrow becomes the

default. At the meanwhile, assume that the firm’s default risk is correlated because
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firm values are correlated via the common dependence on the systematic (market)

factor (economy). Then we can assume that the correlation between firms’ asset

values arises because of correlation between the individual firm’s asset value and the

common systematic factor.

Now we assume that the correlation structure follows Gaussian Copula, which

supposes a correlation between each firm’s value and the systematic factor is the same

and equal to R. The coefficient R measures the sensitivity of individual borrower’s

risk to the systematic PD which is uniform across borrowers, R = Corr(pit, Pt).

Therefore, the parameter R2 is the pair-wise correlation of asset values among bor-

rowers, which governs the cross-sectional dependency of credit risk. The PD rate pt

is driven by both the systematic PD rate Pt and the borrower’s specific PD risk εt,

pt = R× Pt +
√

1−R2 × εt. (2.7)

where systematic factor Pt and individual risk εt are assumed to conform the standard

normal distribution, with having Pt and εt independent. Because pt is assumed to

be a standard normal distribution, given the condition that the borrower will default

if the borrower’s pt less than DP, then the unconditional probability of default for a

borrower is simply Φ(DP). Assume there is the threshold DP related to the default,

with the conditions of an infinite number of borrowers and the borrower’s credit

quality are homogeneous in the portfolio. Then the cumulative probability of default
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of borrower i at time t conditional on the realized systematic PD risk Pt is expressed

as:

P
[
pit < DP |Pt

]
= Φ

( 1√
1−R2

(DP −R · Pt)
)
. (2.8)

Since PD for borrower i is assumed independent with borrower j for i 6= j,

under the condition of homogeneous portfolio, the probability of the realized default

number of k out of the portfolio number n at the beginning of the time is

P (nt, kt) =

(
nt
kt

)(
P
[
pt < DP |Pt

])kt(
1− P

[
pt < DP |Pt

])nt−kt
.

Then, the cumulative probability of the number of defaults can be obtained by

integrating out the systematic factor Pt,

F (
kt
nt

) =
kt∑
i=0

∫ ∞
−∞

P (nt, kt)dPt.

In practice, the financial institutions have a cohort observed default rates for a

sequence of risk rating Ri, where i = 1, . . . , K at each time point t in T years, t =

1, ..., T . Let θt = kt
nt

be the realized default rate in the portfolio at the observation year

end, given the infinite number of n within the portfolio, the cumulative distribution

of θt will asymptotically be

lim
n→∞

F (θt) = Φ

[
1

R

(√
1−R2 · Φ−1(θt)−DP

)]
.

Accordingly, Φ−1(θt) is normally distributed with mean and standard deviation
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equal to DP√
1−R2 and R√

1−R2 respectively. The realized default rate θt is actually a

transformation of Pt, which is

Φ−1(θt) =
1√

1−R2
(DP −R · Pt). (2.9)

Miu and Ozdemir [35] proposed the Generalized Least Squares (GLS) estimator

to reach the two types of MLE estimators of LRA: internal observed default data

only and combine both short-term internal data and longer-term external observed

default data. If there is no time dependence (serial correlation), the internal data

only estimator will be

DPMLE =

√
1−R2

T

T∑
t=1

Φ−1(θt),

LRAMLE = Φ(DPMLE). (2.10)

The second approach of combining the short-term internal data and the longer

external default data can be applied if the financial institutions think that their

internal observed time is not long enough to obtain the reliable PD estimation. This

approach first need map the risk rating grades of the internal and external to make

sure the pairwise default data referring to the same credit quality bands.

From equation 2.9, we can derive that Φ−1(θ) for both internal and external de-

fault rates follows normal distribution. Now, we assume that the external Φ−1(θx)

and internal Φ−1(θ) follow a bivariate normal distribution with correlation ρ. Follow-
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ing the MLE approach of the bivariate normal distribution, we reach the estimator

of both marginal external LRA LRAMLE
X and the internal LRA of LRAMLE which

is conditional on the external LRA,

LRAMLE
X = Φ

(√1−R2
X

TX

TX∑
t=1

Φ−1(θt,X)
)
,

LRAMLE = Φ
(√1−R2

T

T∑
t=1

Φ−1(θt) +
R · ρ
Rx

[
T · LRAMLE

X

−
√

1−R2

T∑
t=1

Φ−1(θt,X)
])
. (2.11)

Once we have Long run PD estimation for pi, the mean value of pit, the standard

deviation of pit can be calculated directly by the formula

si =

√√√√ 1

T − 1

T∑
i=1

(pi − µi)2. (2.12)

Therefore, the prior distribution for the PD rate for rating Ri at time t is

π(pi) =
1√
2πsi

e
− (pi−µpi )

2

2s2
i . (2.13)

2.4 Redefining the CMAP Method

Recall that equation 2.6 of the MAP method and equation 2.4 show the CMLE

for PD rates calibration, with the belief of prior distribution for the PD rate pi, we
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reach the CMAP algorithm for PD estimation.

p̂i = arg max
pi

∑
Xi∈X

logP (Xi|pi) + log π(pi)

subject to. 0 ≤ pi ≤ 1

pi
pi−1

≥ exp(εi)

1 ≤ i ≤ K

εi ≥ 0

(2.14)

where,

logP (Xi|pi) =
K∑
i=1

[
log

(
Ni

ni

)
+ ni log pi + (Ni − ni) log(1− pi)

]
,

log π(pi) =
K∑
i=1

log πi(pi),

πi(pi) =
1√
2πsi

e
− (pi−µpi )

2

2s2
i .

2.5 Empirical Data Analysis

2.5.1 S&P ′s Default Data

All three smoothing algorithms of QMM, CMLE and CMAP need the input of

total count at the beginning of the observation time and default numbers during the

observation period for each rating grade. We conduct the empirical data analysis on

the S&P ′s rated corporate entities spaning from the year 2009 to the year 2013, from
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which the required data can be extracted from S&P ′s annual report. Out of this time

range, S&P ′s only publish the default rates but without the number of issuer and

default. Data from another rating agency Moody′s is less suitable because Moody′s

did not provide issuer numbers at rating grade level and estimate default rates in

a way that makes it impossible to infer exact grade-level numbers of defaults. To

get the reliable mean values of each rating grades and have a first impression of the

long-term industry-wised default rate, we illustrate the summary statistic of S&P ′s

observed default data span from the year 1981 to the year 2015 in Table 2.1.

Table 2.1: Empirical default rate distribution from S&P : 1981-2015.

Rating grade AAA AA+ AA AA- A+ A A- BBB+ BBB BBB- BB+ BB BB- B+ B B- CCC-C

Average 0.0% 0.0% 0.0% 0.0% 0.1% 0.1% 0.1% 0.1% 0.2% 0.3% 0.5% 0.8% 1.3% 2.2% 6.4% 9.1% 23.7%

Median 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.7% 0.7% 1.7% 5.3% 7.4% 23.1%

Standard 0.0% 0.0% 0.1% 0.1% 0.1% 0.1% 0.2% 0.3% 0.4% 0.4% 0.9% 0.8% 1.7% 2.1% 4.9% 7.6% 11.8%

Minimum 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Maximum 0.0% 0.0% 0.4% 0.4% 0.6% 0.4% 0.8% 1.1% 1.4% 1.3% 3.7% 3.1% 7.0% 8.7% 17.2% 32.4% 49.5%

Sources: S&P (2016, tables 9 From year 1981 to year 2015).

We can note from Tables 2.1 that the average default rates were monotone increas-

ing over a long-time period as the associated risk rating’s credit quality worsened,

which prove that our assumption about the monotonic increasing property of the PD

rate is correct. Since the time frame of Table 2.1 is long enough, we assume that the

distribution of S&P ′s data follow the same mean and standard deviation and will
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work as the input value of the prior distributions in the proposed CMAP method.

Table 2.2 below presents the observed credit data by S&P ′s span from the year

2009 to the year 2013. Nevertheless, Table 2.2 reveals that the empirical default

rates for each fiscal year are volatile and usually violate the monotone assumption.

As well as the high rating grades (above AA) usually has no default observed, and

the very low default rate is realized in a good economic environment. Thus, the

empirical default rates must be smoothed before further use.

The real data analysis will base on the data in Table 2.2.
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Table 2.2: Default data from S&P : 2009-2013.

Rating grade
2009 2010 2011 2012 2013

Rated Defaults DR Rated Defaults DR Rated Defaults DR Rated Defaults DR Rated Defaults DR

AAA 81 0 0.00% 72 0 0.00% 51 0 0.00% 24 0 0.00% 21 0 0.00%

AA+ 37 0 0.00% 25 0 0.00% 36 0 0.00% 51 0 0.00% 48 0 0.00%

AA 188 0 0.00% 143 0 0.00% 120 0 0.00% 61 0 0.00% 63 0 0.00%

AA- 245 0 0.00% 209 0 0.00% 207 0 0.00% 238 0 0.00% 210 0 0.00%

A+ 340 1 0.29% 353 0 0.00% 357 0 0.00% 337 0 0.00% 325 0 0.00%

A 510 2 0.39% 474 0 0.00% 470 0 0.00% 445 0 0.00% 419 0 0.00%

A- 546 0 0.00% 528 0 0.00% 560 0 0.00% 548 0 0.00% 542 0 0.00%

BBB+ 498 2 0.40% 457 0 0.00% 473 0 0.00% 523 0 0.00% 515 0 0.00%

BBB 541 1 0.18% 583 0 0.00% 549 0 0.00% 589 0 0.00% 641 0 0.00%

BBB- 459 5 1.09% 430 0 0.00% 508 1 0.20% 525 0 0.00% 533 0 0.00%

BB+ 266 0 0.00% 254 2 0.79% 260 0 0.00% 311 0 0.00% 324 0 0.00%

BB 295 3 1.02% 276 1 0.36% 319 0 0.00% 333 0 0.00% 359 0 0.00%

BB- 441 4 0.91% 379 2 0.53% 403 0 0.00% 403 3 0.74% 395 0 0.00%

B+ 438 24 5.48% 393 0 0.00% 509 2 0.39% 526 3 0.57% 538 0 0.00%

B 482 48 9.96% 436 3 0.69% 586 7 1.19% 646 9 1.39% 739 0 0.00%

B- 303 52 17.16% 290 6 2.07% 301 12 3.99% 299 10 3.34% 352 3 0.85%

CCC-C 190 92 48.42% 220 49 22.27% 138 22 15.94% 154 41 26.62% 158 2 1.27%

All 5860 234 3.99% 5522 63 1.14% 5847 44 0.75% 6013 66 1.10% 6182 5 0.08%

Note: S&P ′s corporate ratings, defaults and default rates from 2009 to 2013. Sources: S&P (2010, Tables 51 to

53), S&P (2011, Tables 50 to 52), S&P (2012, Tables 50 to 52), S&P (2013, Tables 50 to 52), S&P (2014, tables

50 to 52).
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Tables 2.3 below illustrates the smoothed PD rate by three methodologies: QMM,

CMLE and CMAP. All three methods provide the monotonic increasing PD rates as

the rating grades’ creditworthiness worsen, however, QMM cannot estimate smoothed

PD parameters in the situation of very low default (good economic) situation such

as the year of 2013. This is a critical drawback of QMM.

Table 2.3: Comparison of the smoothed PD rates: QMM, CMLE and CMAP.

Rating grade
QMM CMLE CMAP

2009 2010 2011 2012 2013 2009 2010 2011 2012 2013 2009 2010 2011 2012 2013

AAA 0.0078 0.0009 0.0001 0.0013 - 0.0005 0.0001 0.0000 0.0001 0.0000 0.0003 0.0001 0.0000 0.0001 0.0000

AA+ 0.0083 0.0016 0.0002 0.0021 - 0.0007 0.0001 0.0000 0.0001 0.0000 0.0004 0.0001 0.0000 0.0001 0.0000

AA 0.0087 0.0023 0.0004 0.0031 - 0.0009 0.0001 0.0000 0.0001 0.0000 0.0005 0.0002 0.0001 0.0001 0.0000

AA- 0.0091 0.0030 0.0008 0.0042 - 0.0012 0.0002 0.0001 0.0001 0.0000 0.0007 0.0002 0.0001 0.0002 0.0000

A+ 0.0093 0.0037 0.0012 0.0051 - 0.0016 0.0003 0.0001 0.0002 0.0000 0.0010 0.0003 0.0001 0.0002 0.0000

A 0.0095 0.0044 0.0016 0.0058 - 0.0022 0.0004 0.0001 0.0002 0.0000 0.0013 0.0004 0.0001 0.0003 0.0000

A- 0.0096 0.0050 0.0020 0.0064 - 0.0023 0.0005 0.0002 0.0003 0.0000 0.0018 0.0006 0.0002 0.0004 0.0000

BBB+ 0.0098 0.0058 0.0026 0.0074 - 0.0031 0.0007 0.0002 0.0004 0.0000 0.0025 0.0008 0.0003 0.0005 0.0000

BBB 0.0100 0.0072 0.0038 0.0088 - 0.0043 0.0009 0.0003 0.0006 0.0000 0.0033 0.0011 0.0004 0.0007 0.0000

BBB- 0.0103 0.0090 0.0055 0.0106 - 0.0057 0.0012 0.0004 0.0008 0.0000 0.0045 0.0015 0.0005 0.0010 0.0000

BB+ 0.0106 0.0114 0.0084 0.0130 - 0.0060 0.0017 0.0004 0.0011 0.0000 0.0049 0.0020 0.0005 0.0013 0.0000

BB 0.0109 0.0151 0.0139 0.0164 - 0.0081 0.0022 0.0004 0.0015 0.0000 0.0067 0.0027 0.0005 0.0018 0.0000

BB- 0.0113 0.0205 0.0237 0.0210 - 0.0091 0.0025 0.0005 0.0020 0.0000 0.0090 0.0028 0.0006 0.0024 0.0000

B+ 0.0117 0.0278 0.0412 0.0281 - 0.0548 0.0027 0.0038 0.0057 0.0001 0.0485 0.0030 0.0043 0.0061 0.0001

B 0.0121 0.0381 0.0706 0.0375 - 0.0996 0.0069 0.0119 0.0139 0.0008 0.0970 0.0073 0.0124 0.0144 0.0008

B- 0.0126 0.0496 0.1123 0.0466 - 0.1716 0.0260 0.0399 0.0334 0.0067 0.1658 0.0263 0.0410 0.0345 0.0070

CCC-C 0.0131 0.0662 0.1872 0.0662 1.0000 0.4842 0.2171 0.1594 0.2662 0.0127 0.4631 0.2189 0.1646 0.2638 0.0141
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Table 2.4 lists the comparison of the statistical performance of these three method-

ologies. We calculate the -2 log likelihood statistic for the estimated PD rates. As the

PD rate of each risk rating is a binomial distribution, the formula for log-likelihood

calculation is as

l(p) =
n∑
i=1

(
log

(
Ni

ki

)
+ ki log p+ (Ni − ki) log(1− p)

)
.

Table 2.4: Comparison of the performance of three methodologies.

Method
-2 Log likelihood

2009 2010 2011 2012 2013

CMLE 51.33 29.89 20.87 27.38 7.07

CMAP 53.71 30.03 21.03 27.55 7.10

QMM 958.34 167.31 159.83 179.18 N/A

Table 2.4 shows that the CMLE method has the highest likelihood score, the

QMM method has the lowest likelihood score. The likelihood score of the CMAP

method is higher QMM method but a little bit lower log-likelihood than CMLE.

MSE statistic is illustrated in Tables 2.5 below calculated by the estimated PD

rates against the realized PD rates for each observation year. QMM perform well in

the prevailing economic situation (the year 2010-2012) but works worse in the credit

downturn and credit peak stages (the year 2009 and year 2013), which means that
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the QMM method is not sensitive to economic environment change. However, both

CMLE and CMAP work well during the whole credit cycle.

Table 2.5: Comparison of MSE of the estimation.

Y2009 Y2010 Y2011 Y2012 Y2013

CMLE 0.01% 0.01% 0.00% 0.00% 0.00%

CMAP 0.06% 0.01% 0.00% 0.00% 0.00%

QMM 25.74% 2.77% 1.17% 4.22% 100.02%

Considering the QMM method cannot smooth the default rates in the very low

default (credit peak, year 2013) environment and the estimated PD rates are not

sensitive to the severe credit environment (credit peak and downturn), next, we will

conduct a comparison of the CMLE and CMAP only through a toy default data.
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2.5.2 Real Default Data

The S&P ’s default data is a typical representative for the industry-wide portfolio

which has longer observed default history and large numbers of borrowers but not

a good representative of the default data from a specific financial institution which

has short observed default history and small numbers of borrowers. To show the

performance of the proposed CMAP algorithm on the portfolio from a financial

institution, we further compare the proposed CMAP and CMLE method on a real

default data which sources from an anonymous financial institution. We kept the

company name secret for the confidential reason and modified the raw data a little bit

(around 5% of the real data) without any impact on the methodologies comparison.

We continually compare log-likelihood score and MSE statistics as the quantitative

measurement. In addition, we compare the estimated PD rates at each rating grade

level along the time to validate the consistency and stability of the estimated PD

rates, which have the significant business meaning since both regulatory capital and

economic capital calculation are based the PDs (with LGD and EAD). The volatile

PDs will cause the volatile capital calculation and generates other issues for the

bank’s risk management and operations.

The real default data spans from the year 2003 to the year 2014 which includes

the financial crisis period (the year 2007 to the year 2009). Its rating grade follows
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Moody’s standard which has 20 risk rating levels from Aaa to Ca. There are around

5000 firms within the portfolio and this number is minor changed every year caused

by the new borrowers added in, some borrowers dropped out, and default may happen

within the portfolio. Total 97 defaults concentrate in the speculative grade (Ba1 and

below). The default rates for the year 2009 are the highest because of the severe

financial crisis. There is no information for the risk rating Aa2 since it is prevalent

that there is no default information at all for some investment grade of an internal

portfolio. Overall, the real data is a typical representative of the financial institution’s

internal default data which does not have monotonic increasing PD rates, the default

rate is sparse since the number of default is small, and some ratings have no default-

information during the observation period. Consequently, the real data is a typical

credit data for us to test the proposed smoothing methodology.

The input values of the total counts and default numbers for each rating and

fiscal year for the smoothing algorithms are presented in Appendix C. To make the

dissertation easily to be read, Table 2.6 below shows the empirical default rates from

the real default data. Figure 2.1 is the empirical PD curve of the real data which

illustrates all the properties of the data we mentioned above.

Figure 2.1 shows that the realized default rates of the toy data in each fiscal

year are not monotonic increasing as the risk ratings creditworthiness worsens, most
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Table 2.6: Realized default rate from empirical default data.

Rating
Empirical Default Rate by Years

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

Aaa 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Aa1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Aa2 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

Aa3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

A1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

A2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 N/A N/A N/A

A3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Baa1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0061 0.0000

Baa2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Baa3 0.0000 0.0000 0.0000 0.0013 0.0014 0.0016 0.0019 0.0022 0.0026 0.0029 0.0032 0.0036

Ba1 0.0011 0.0012 0.0027 0.0015 0.0016 0.0017 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Ba2 0.0011 0.0012 0.0014 0.0016 0.0036 0.0042 0.0025 0.0028 0.0000 0.0000 0.0000 0.0000

Ba3 0.0019 0.0020 0.0000 0.0047 0.0050 0.0054 0.0144 0.0095 0.0071 0.0119 0.0044 0.0049

B1 0.0065 0.0047 0.0050 0.0055 0.0030 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

B2 0.0079 0.0085 0.0095 0.0071 0.0120 0.0174 0.0145 0.0106 0.0116 0.0064 0.0070 0.0000

B3 0.0000 0.0000 0.0000 0.0000 0.0263 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Caa1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Caa2 0.0000 0.0000 0.0000 0.0000 0.0625 0.1111 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Caa3 0.0000 0.0000 1.0000 0.0000 N/A N/A N/A N/A N/A N/A N/A N/A

Ca 0.0000 0.0000 0.0000 0.0000 0.0952 0.1250 0.0833 0.1000 0.0000 0.0000 0.0000 N/A

Note: 1. The data is generated by randomly change the 5% of the real default data; 2. Some ratings have no

information in particular fiscal years; then it will generate the empirical PD of N/A.

37



PD Curves of Raw data 

Note: The PD of Caa3 from raw data for year 2009 is 1 (total count is 1 for rating Caa3)
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Figure 2.1: The time series plot of the realized default rates.

realized default rates are 0 for the investment grades and rate AA2 has no any

information at all , both situations need to be assigned with a reasonable PD rates.
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Smoothing Results of Real Default Data

The input parameters of the prior normal distribution in the CMAP algorithm

is tuned by the empirical mean and standard deviation of the real data for each

rating grade to make the methodology applied in the dissertation consistent. Table

2.7 and 2.8 illustrate the smoothed PD rates by the CMLE and CMAP method

respectively. Figure 2.2 and 2.3 are the PD curves for the associated estimated PD

rates by each method accordingly. We note that both work well in default rate’s

monotonic smoothing perspective. The smoothed PD rates are granularly increasing

as the credit quality becomes worse at each observation time. Meanwhile, both can

calibrate the PD rates estimations for the risk ratings with non-default information

such as no information at all or 0 default rates. Accordingly, both methods can be

used for PD rates smoothing.
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Table 2.7: Smoothed PD rates by CMLE method.

Rating
Smoothed PD Rates by MLE Method

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

Aaa 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0002 0.0001

Aa1 0.0001 0.0001 0.0001 0.0001 0.0002 0.0002 0.0002 0.0001 0.0001 0.0001 0.0003 0.0001

Aa2 0.0001 0.0001 0.0001 0.0002 0.0002 0.0002 0.0003 0.0002 0.0002 0.0002 0.0004 0.0001

Aa3 0.0002 0.0002 0.0002 0.0002 0.0003 0.0003 0.0003 0.0003 0.0002 0.0003 0.0005 0.0002

A1 0.0002 0.0002 0.0002 0.0003 0.0004 0.0004 0.0005 0.0004 0.0003 0.0004 0.0006 0.0002

A2 0.0003 0.0003 0.0003 0.0004 0.0005 0.0005 0.0006 0.0005 0.0004 0.0005 0.0009 0.0003

A3 0.0004 0.0004 0.0004 0.0005 0.0007 0.0007 0.0008 0.0007 0.0006 0.0007 0.0012 0.0004

Baa1 0.0005 0.0005 0.0006 0.0007 0.0009 0.0010 0.0011 0.0009 0.0008 0.0009 0.0016 0.0006

Baa2 0.0007 0.0007 0.0007 0.0009 0.0012 0.0013 0.0015 0.0012 0.0011 0.0012 0.0017 0.0008

Baa3 0.0009 0.0009 0.0010 0.0013 0.0017 0.0018 0.0021 0.0016 0.0014 0.0017 0.0017 0.0011

Ba1 0.0013 0.0012 0.0014 0.0017 0.0022 0.0024 0.0028 0.0022 0.0015 0.0019 0.0018 0.0011

Ba2 0.0017 0.0017 0.0018 0.0023 0.0030 0.0032 0.0038 0.0029 0.0020 0.0025 0.0019 0.0012

Ba3 0.0023 0.0022 0.0025 0.0031 0.0041 0.0043 0.0051 0.0040 0.0027 0.0034 0.0026 0.0016

B1 0.0031 0.0030 0.0034 0.0042 0.0055 0.0058 0.0053 0.0042 0.0037 0.0036 0.0027 0.0017

B2 0.0042 0.0041 0.0045 0.0053 0.0075 0.0079 0.0072 0.0056 0.0050 0.0048 0.0037 0.0017

B3 0.0044 0.0043 0.0047 0.0055 0.0101 0.0083 0.0076 0.0059 0.0053 0.0051 0.0038 0.0018

Caa1 0.0047 0.0045 0.0050 0.0058 0.0106 0.0089 0.0079 0.0062 0.0055 0.0053 0.0040 0.0019

Caa2 0.0049 0.0047 0.0052 0.0061 0.0586 0.0739 0.0169 0.0065 0.0058 0.0056 0.0042 0.0020

Caa3 0.0051 0.0050 0.0055 0.0064 0.0616 0.0776 0.1411 0.0119 0.0061 0.0058 0.0044 0.0022

Ca 0.0054 0.0052 0.0058 0.0067 0.0952 0.1250 0.1482 0.0989 0.0064 0.0061 0.0047 0.0147
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The time series plot shown in Figure 2.2 illustrates the monotonic increasing

property of the estimated PD rates by CMLE method which also assigns the PDs to

all rating grades (even the rating grades without default realized or without iussers

information during the observation time).

PD Curves from CML Method 

Year

PD

0.00

0.05

0.10

0.15

2004 2006 2008 2010 2012 2014

CML

Aaa
Aa1
Aa2
Aa3
A1
A2
A3
Baa1
Baa2
Baa3
Ba1
Ba2
Ba3
B1
B2
B3
Caa1
Caa2
Caa3
Ca

Figure 2.2: The time series plot of the estimated PDs by CMLE method.
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Table 2.8: Smoothed PD rates by CMAP method.

Rating
Smoothed PD Rates by MAP Method

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

Aaa 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

Aa1 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0002 0.0001

Aa2 0.0001 0.0001 0.0001 0.0001 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0003 0.0001

Aa3 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0004 0.0002

A1 0.0002 0.0002 0.0002 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0005 0.0003

A2 0.0003 0.0003 0.0003 0.0003 0.0004 0.0004 0.0004 0.0005 0.0004 0.0004 0.0007 0.0004

A3 0.0004 0.0004 0.0004 0.0005 0.0005 0.0005 0.0006 0.0006 0.0005 0.0006 0.0009 0.0005

Baa1 0.0005 0.0005 0.0006 0.0006 0.0007 0.0007 0.0008 0.0008 0.0007 0.0008 0.0012 0.0007

Baa2 0.0007 0.0007 0.0008 0.0009 0.0010 0.0010 0.0010 0.0011 0.0010 0.0011 0.0013 0.0009

Baa3 0.0010 0.0010 0.0010 0.0012 0.0013 0.0013 0.0014 0.0015 0.0013 0.0015 0.0013 0.0012

Ba1 0.0013 0.0013 0.0014 0.0015 0.0017 0.0017 0.0019 0.0016 0.0014 0.0016 0.0014 0.0013

Ba2 0.0018 0.0018 0.0019 0.0020 0.0023 0.0023 0.0025 0.0022 0.0019 0.0021 0.0019 0.0017

Ba3 0.0024 0.0024 0.0025 0.0028 0.0032 0.0031 0.0034 0.0029 0.0026 0.0028 0.0025 0.0023

B1 0.0033 0.0032 0.0034 0.0037 0.0043 0.0042 0.0040 0.0036 0.0035 0.0031 0.0032 0.0025

B2 0.0044 0.0043 0.0046 0.0050 0.0058 0.0057 0.0054 0.0049 0.0047 0.0042 0.0043 0.0033

B3 0.0046 0.0046 0.0048 0.0053 0.0066 0.0060 0.0057 0.0051 0.0049 0.0044 0.0045 0.0035

Caa1 0.0049 0.0048 0.0050 0.0056 0.0069 0.0063 0.0060 0.0054 0.0052 0.0046 0.0048 0.0037

Caa2 0.0132 0.0132 0.0132 0.0132 0.0329 0.0373 0.0087 0.0106 0.0132 0.0132 0.0132 0.0132

Caa3 0.0164 0.0189 0.0215 0.0240 0.0345 0.0392 0.0729 0.0111 0.0266 0.0292 0.0318 0.0370

Ca 0.0172 0.0199 0.0226 0.0252 0.0649 0.0714 0.0765 0.0576 0.0279 0.0306 0.0334 0.0389
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The proposed CMAP method has the same smoothing properties as the CMLE

method of the monotonic increasing estimated PDs for each observation time. The

time series plot of the estimated PD rates by CMAP method is shown in Figure 2.3.

PD Curves from CMAP Method 
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Figure 2.3: The time series plot of the estimated PDs by CMAP method.
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The log-likelihood score is shown in Table 2.9 and MSE statistics is presented

in Table 2.10 to compare the statistical performance between two methodologies.

Still, the CMLE has a little higher log likelihood statistic than CMAP. The total

-2 log-likelihood statistics is 1235 for CMAP method and 1286 for CMAP method

respectively.

Table 2.9: Comparison of Log Likelihood of CMLE and CMAP.

-2 Log Likelihood

Year 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 Total

CMLE 123.6 110.6 110.2 122.2 161.9 147.5 137.4 98.9 67.9 67.6 56.8 30.6 1235.2

CMAP 127.1 114.1 113.6 125.8 167.6 153.9 143.9 103.2 71.1 71.1 60.4 34.5 1286.3

Table 2.10: Comparison of MSE of the estimation.

Y2003 Y2004 Y2005 Y2006 Y2007 Y2008 Y2009 Y2010 Y2011 Y2012 Y2013 Y2014

CMLE 0.01% 0.01% 0.02% 0.02% 0.42% 0.77% 74.24% 0.03% 0.03% 0.03% 0.01% 0.03%

CMAP 0.08% 0.10% 0.12% 0.15% 0.35% 1.01% 86.00% 0.22% 0.18% 0.21% 0.24% 0.31%

Table 2.11 and Table 2.12 is the comparison of the weighted MSE for two method-

ologies. The weight is defined as the risk rating grades frequency in the portfolio.

CMLE method has a little lower weighted MSE in general. However, the weighted

MSE of the prediction power shows that the CMAP method has lower weighted than
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CMLE method at some observation time,

MSEweighted =
T∑
t=1

K∑
i=1

wi ∗MSEit.

Table 2.11: Comparison of weighted MSE of the estimation.

Y2003 Y2004 Y2005 Y2006 Y2007 Y2008 Y2009 Y2010 Y2011 Y2012 Y2013 Y2014

CMLE 0.14% 0.13% 0.16% 0.10% 0.22% 0.33% 1.31% 0.23% 0.22% 0.25% 0.17% 0.13%

CMAP 0.15% 0.14% 0.17% 0.13% 0.34% 0.52% 1.37% 0.31% 0.24% 0.27% 0.19% 0.14%

Table 2.12: Prediction power: weighted MSE of the estimation.

Y2004 Y2005 Y2006 Y2007 Y2008 Y2009 Y2010 Y2011 Y2012 Y2013 Y2014

CMLE 0.153% 0.202% 0.145% 0.557% 0.427% 1.086% 0.408% 0.569% 0.359% 0.253% 0.220%

CMAP 0.176% 0.225% 0.185% 0.487% 0.538% 1.094% 0.333% 0.409% 0.388% 0.291% 0.291%

It is as we expected that a little higher log-likelihood score and a little lower

MSE from CMLE method than the proposed CMAP since the nature of CMLE

method is to find the optimized value at the time point (rating year) and does not

consider the time (credit cycle) effect. However, the CMAP method is leveraging the

prior knowledge (prior distribution of the PD rates for each risk rating) of the PD

rates. To show the advantages of the proposed CMAP method, we next compare the

estimated PD rates at the risk rating level as shown in Figure 2.4. A heat map of

difference between two methodologies presented in Table 2.13. From Table 2.13, we
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can get the conclusion that the CMLE method is more sensitive to the economic cycle

than CMAP. The estimated PD rates for the upper medium grade above (A3 above)

from the two methods are very close. For the rating grades highly speculative above

(Baa1 B3), the CMLE estimates are higher in the regular economic environment

(year 2000 to year 2006) but are lower in downturn credit environment (year 2008

to year 2009), while the rating grades of substantial risks below (Caa1 below) has

the reverse behavior which is higher in the peak credit environment and lower in the

downturn period.
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Figure 2.4: Comparison of the estimations from CMAP and CMLE.

Year

P
D

1e−04

2e−04

3e−04

4e−04

2004 2006 2008 2010 2012 2014

CML−Aa1
CML−Aa2
CML−Aa3
CML−Aaa
MAP−Aa1
MAP−Aa2
MAP−Aa3
MAP−Aaa

Year

P
D

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

2004 2006 2008 2010 2012 2014

CML−A1
CML−A2
CML−A3
MAP−A1
MAP−A2
MAP−A3

Year

P
D

0.0005

0.0010

0.0015

0.0020

2004 2006 2008 2010 2012 2014

CML−Baa1
CML−Baa2
CML−Baa3
MAP−Baa1
MAP−Baa2
MAP−Baa3

Year

P
D

0.001

0.002

0.003

0.004

0.005

2004 2006 2008 2010 2012 2014

CML−Ba1
CML−Ba2
CML−Ba3
MAP−Ba1
MAP−Ba2
MAP−Ba3

Year

P
D

0.002

0.004

0.006

0.008

0.010

2004 2006 2008 2010 2012 2014

CML−B1
CML−B2
CML−B3
MAP−B1
MAP−B2
MAP−B3

Year

P
D

0.00

0.05

0.10

0.15

2004 2006 2008 2010 2012 2014

CML−Ca
CML−Caa1
CML−Caa2
CML−Caa3
MAP−Ca
MAP−Caa1
MAP−Caa2
MAP−Caa3

47



Table 2.13: Heat map of the difference of the estimated PD rates.

Date 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

Aaa 0.0003% 0.0004% 0.0001% -0.0007% -0.0026% -0.0029% -0.0043% -0.0008% -0.0006% -0.0011% -0.0046% 0.0011%

Aa1 0.0004% 0.0005% 0.0001% -0.0009% -0.0035% -0.0039% -0.0059% -0.0011% -0.0008% -0.0015% -0.0062% 0.0015%

Aa2 0.0005% 0.0007% 0.0001% -0.0013% -0.0047% -0.0052% -0.0079% -0.0014% -0.0011% -0.0021% -0.0083% 0.0020%

Aa3 0.0007% 0.0009% 0.0002% -0.0017% -0.0063% -0.0071% -0.0107% -0.0019% -0.0014% -0.0028% -0.0112% 0.0027%

A1 0.0009% 0.0012% 0.0003% -0.0023% -0.0085% -0.0095% -0.0144% -0.0026% -0.0020% -0.0038% -0.0152% 0.0037%

A2 0.0012% 0.0017% 0.0004% -0.0031% -0.0115% -0.0129% -0.0195% -0.0035% -0.0026% -0.0051% -0.0205% 0.0049%

A3 0.0016% 0.0023% 0.0005% -0.0042% -0.0155% -0.0174% -0.0263% -0.0047% -0.0036% -0.0069% -0.0276% 0.0067%

Baa1 0.0022% 0.0030% 0.0006% -0.0057% -0.0209% -0.0234% -0.0354% -0.0064% -0.0048% -0.0093% -0.0373% 0.0090%

Baa2 0.0030% 0.0041% 0.0009% -0.0076% -0.0282% -0.0316% -0.0478% -0.0086% -0.0065% -0.0125% -0.0391% 0.0121%

Baa3 0.0040% 0.0056% 0.0012% -0.0103% -0.0380% -0.0427% -0.0646% -0.0116% -0.0088% -0.0169% -0.0411% 0.0164%

Ba1 0.0055% 0.0075% 0.0016% -0.0185% -0.0514% -0.0644% -0.0922% -0.0581% -0.0092% -0.0305% -0.0431% 0.0172%

Ba2 0.0074% 0.0101% 0.0021% -0.0249% -0.0693% -0.0870% -0.1245% -0.0784% -0.0124% -0.0411% -0.0036% 0.0565%

Ba3 0.0099% 0.0137% 0.0029% -0.0337% -0.0936% -0.1174% -0.1680% -0.1059% -0.0168% -0.0555% -0.0049% 0.0763%

B1 0.0134% 0.0184% 0.0039% -0.0454% -0.1263% -0.1585% -0.1320% -0.0578% -0.0226% -0.0460% 0.0486% 0.0801%

B2 0.0181% 0.0249% 0.0053% -0.0240% -0.1705% -0.2139% -0.1782% -0.0780% -0.0305% -0.0621% 0.0656% 0.1577%

B3 0.0190% 0.0261% 0.0055% -0.0252% -0.3468% -0.2246% -0.1871% -0.0819% -0.0321% -0.0652% 0.0689% 0.1656%

Caa1 0.0200% 0.0274% 0.0058% -0.0265% -0.3641% -0.2557% -0.1964% -0.0860% -0.0337% -0.0685% 0.0723% 0.1739%

Caa2 0.8311% 0.8468% 0.7966% 0.7089% -2.5771% -3.6601% -0.8192% 0.4080% 0.7408% 0.7633% 0.8965% 1.1193%

Caa3 1.1277% 1.3969% 1.5981% 1.7615% -2.7059% -3.8431% -6.8264% -0.0733% 2.0517% 2.3334% 2.7329% 3.4852%

Ca 1.1841% 1.4667% 1.6780% 1.8495% -3.0356% -5.3602% -7.1677% -4.1291% 2.1543% 2.4501% 2.8696% 2.4161%

Comment: The yellow color means the difference within ±1 base point (0.01%), the green color means the

estimated PD rate from CMLE is less than CMAP by 1 more bps, and the red color means the estimated PD rate

from CMLE is higher than CMAP by 1 more bps.

Next, we compare the impact of the CMAP and CMLE methods to expected loss

calculation, which is the most critical concern of the financial institutions. Assume

that the portfolio is same and independent on LGD and EAD, we calculate the

portfolio level weighted PD, weighting schema is calculated by the frequency weight

of each risk rating grade in the portfolio over the time. As shown in Figure 2.5, the
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weighted PD from CMAP method is more consistent and stable, which is expected

by the financial institution and makes them manage the risk more operability and

rational.

Figure 2.5: Comparison of the weighted PD of the portfolio.
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2.6 Conclusion and Future Work

In this chapter, we propose a smoothing algorithm to smooth the empirical PD

rate. We investigate and compare the performance proposed CMAP method against

QMM and CMLE methods on the historical S&P ’s data and a real data. The results

shows that all three methods of QMM, CMLE and CMAP can work in empirical PD

rates monotonic smoothing. However, QMM does not work well as the other two

methods in the peak credit period (very low default situation) and the results from

QMM has the lowest likelihood score and MSE statistics in the performance measure-

ment. Compared to CMLE method, the proposed CMAP has little worse statistical

performance regarding to the likelihood score and MSE statistics, and very close

regarding the weighted MSE statistics. Nevertheless, the CMLE method is suscep-

tible to the credit environment change, which may come from it’s drawback of very

sensitive to the sample data. CMAP considers the prior knowledge of the historical

PD rate which assumes the PD rates are normally distributed with a mean of the

Long Run Default Rates (LRA) and can leverage the external PD rate data which

is close to the systematic credit data. Thus CMAP can provide the less sensitive

estimators than CMLE. Because the PD rates change as the economic cycle change,

the sensitive PD estimation will cause the dramatic change in the financial institu-

tion’s capital calculation year over year, which can cause the financial institutions’
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operating difficulty. Accordingly, from the perspective of stability and consistency

of the capital calculation, CMAP method is preferable than CMLE since it provides

the less sensitive estimated PD rates with very close statistical performance.

Future work with this approach would include applying this method to the actu-

arial field to smooth the mortality rate curve which has the hump shape or bathtub

shape and is not monotonic increasing or decreasing. Also, this approach can be

applied to the smooth the yield rates in the fixed income pricing and market risk

calculation.
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3 PD Transition Probabilities Matrices

Smoothing through Constrained Maximum a

Posteriori

3.1 PD Transition Probabilities Matrices

In Chapter 2, we propose a smoothing algorithm for empirical PD rates by using

constrained a maximum posterior method, which can be used for calculating the

consistent and reliable regulatory and economic capital by the financial institutions.

When estimating the expected credit loss (ECL) for a portfolio during its lifetime, we

need the term structure of default probabilities, which is defined as the instantaneous

or the cumulative probability of default at each time point t in the future for an

instrument of a borrower. PD transition probabilities show the probability of a

company migrating from one rating category to another during a certain period of

time. The empirical transition matrices are based on internal historical data. Let pt
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denote the probability of default during period t : PD(t − 1, t) = pt . This is called

the conditional or marginal default probability since it is the probability that the

firm defaults at time t given that it has survived until time t − 1. By it’s nature,

PD transition matrices for n periods of time can be calculated by as the nth power

of the one year matrix.

PD rating transition probability matrices are a crucial parameter in the applica-

tions of credit risk area for credit portfolio loss estimation in diversified portfolios

pooled by rating, risk management of revolver loan commitments, and counterparty

credit risk management of the smaller trading counterparties do not have any out-

standing public debt or CDS. It also plays an important role in pricing and in-

vestment decisions in the rating (pool level) portfolios. Without a doubt, owing

to scarce historical data, temporal observations and censored observation data, the

bank’s internal empirical transition probability matrices do not show behaviors as

expected from the industry’s viewpoint of the term structure of the transition prob-

abilities. In this chapter, we present a constrained maximum a posteriori estimation

methodology for smoothing the empirical PD transition probabilities matrices using

an optimization algorithm that leads to consistency with empirical observations and

desired theoretical properties. It is sensitive to the risk measurements and it serves

as a reliable and consistent capital management.
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The empirical estimator of the transition probabilities pij, the probability of a

firm upgrade or downgrade from rating i to rating j, can be simply obtained by

dividing the transition numbers by the total number of rating i at the beginning of

the observation time. Let Ni be the count of firms with rating i at the beginning

of observation time and Nij be the count of the firms migrating from rating i to

rating j during the observation period, then PD transition probability Pij = nij/Nij.

The major credit rating agencies such as Moody’s and S&P ′s publish the transition

matrices every year for different sectors. Assume that there is K+ 1 risk ratings in a

portfolio, where the (K+1)th rating represent the default rating, then the PD rating

transition probability matrix is given by using Pij as the ith row and jth column

element, that is Pij = Pr(j|i) = nij/Nij, e.g.,

P =



P1,1 P1,2 . . . P1,j . . . P1,K+1

P2,1 P2,2 . . . P2,j . . . P2,K+1

...
...

. . .
...

. . .
...

Pi,1 Pi,2 . . . Pi,j . . . Pi,K+1

...
...

. . .
...

. . .
...

0 0 . . . 0 . . . 1



.

Since the total of transition probability from a rating i to all other ratings must

be 1 in a theoretical situation, so that
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K+1∑
j=1

Pij = 1 where i = 1, . . . K + 1.

As one of widely used credit loss modeling approaches in the measure of expected

credit losses (ECL), the PD transition matrix of the risk rating migration which

reflects the credit quality change of the instrument or an obligor for the desired tran-

sition horizon. The internal realized transition matrix is sometimes not reliable to be

directly used because the transition process suffers from the rarity of the observed

events and the presence of censored observations during the observation time. A

rational and desired PD transition matrix should hold the following properties[61]:

• The default probability is monotonically increasing as the creditworthiness

worsens, i.e., the PD rates of the worse creditworthiness is higher than PD

rates of a better creditworthiness rating.

• The sum of transition probabilities of each risk rating is 1.

• The transition probabilities must be monotonic, i.e., a transition probability

to a farther state must be less than a transition probability to a nearer state,

and the highest transition probabilities is at the diagonal (the most borrowers

will stay at the same rating grade in the next term).

• The monotonically decreasing transition probabilities is away from the diagonal
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but not need to be symmetric, i.e., the transition probability of a one-notch

upgrade need not have the same probability as a one-notch downgrade.

• The estimated transition matrix need consider the issue of censored data, i.e.,

the information about the survival time of an issuer is missing due to leave the

company or in a given rating state both prior to the estimation window and

after the end of the window is discarded.

3.2 Proposed Smoothing Algorithm

We propose a new PD transition matrix smoothing methodology which generates

the smoothed estimates corresponding with a well-defined transition matrix and with

the maximum likelihood or small discrepancies. The process includes two steps while

the first step is smoothing the empirical default rates for each rating grade and the

second step is smoothing the empirical transition probabilities with constraints which

force the estimated transition probabilities fit our expectation listed above. Let’s say

there are K performing risk ratings and K + 1 transition states where the (K + 1)th

state represents the default status. Let pij be the transition probability from rating i

to rating j where i and j is from 1 to K. Let Ni be the count of the issuers with rating

i initially at the beginning of the observation period, and nij be the migrated count of

issuers from rating i to rating j at the end of the observation period. As the transition
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probabilities for each risk rating i is a categorical distribution, the conjugate prior

distribution for it is a Dirichlet distribution with parameters si and αij which can

be tuned by the historical data. Let X be the transition probabilities and Xi be the

transition probabilities of ith risk rating. The estimates of the transition probabilities

are the optimal solutions for the following likelihood function with constraints of the

transition probabilities,

p̂ij = arg max
pij

∑
Xi∈X

logP (Xi|pij) + log π(pij)

s.t. 0 ≤ pij ≤ 1,

piK
pi−1,K

≥ exp(ci),

K∑
j=1

pij = 1,

pij
pi,j−1

≥ exp(bij) if j ≤ i,

pij
pi,j−1

≤ exp(bij) if j ≥ i,

ci ≥ 0,

bij ≥ 0,

1 ≤ i ≤ K,

1 ≤ j ≤ K.

(3.1)
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where

logP (Xi|pij) =
K∑
i=1

( K∑
j=1

nij log(pij)
)
,

log π(pij) =
K∑
i=1

log πi(pij),

πi(pi) =
K∏
i=1

[
1

B(si)

K∏
j=1

p
αij−1
ij

]
.

To solve this optimization problem, we propose a two-step progressive method

which first to calibrate the smoothing default rates piK for each risk rating i to make

the default rates monotonic increasing as the rating’s creditworthiness worsen, then

plug these calibrated default rates into (3.1) to calibrate the transition probability

of pij for the transition matrix. The second step can be solved in three different

ways: the first one ignores the prior distribution then the equation (3.1) is exactly

same as the CMLE; the second solution is to calibrate the conjugate prior Dirichlet

distribution’s parameters of αi and αij if we have enough historical transition matrix

data for the portfolio; the third solution is to apply the empirical Bayes model.

Here is a briefly introducation of the empirical Bayes model [62], the estimated

transition probability p̂ij can be calculated by

p̂ij =

nij+MjQj
(ni·+Mj)+ε

1 +Kε
, (3.2)

where ni· =
∑K

j=1 nij and Mj are weights chosen to be large when the observed
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transition probabilities are not significantly different from the marginal frequencies

and Mj is chosen to be near to 0 when the raw transition frequencies are significantly

different from the marginal ones. The formulas for Mj are

Mj =
1

max{.0001,
[
∑K
j=1

(nij−ni·Qj)2

ni·Qj
−K+1]

ni·−K+1
}
, (3.3)

where the Qjs are the marginal probabilities of rating j, modified using ε so that

they are all positive, that is

Qj =
nj +Nε

N(1 +Kε)
. (3.4)

The empirical Bayes model is generated by Dirichlet prior distribution. The detail

derivation of the empirical Bayes model please refer [36].

A corporate transition matrix of the financial institution from S&P (source: table

52, year 2011, [55]) is used to illustrate the proposed methodology shown in Table

3.1 below, which shows that raw transition matrix for this portfolio which is non-

smoothing and the sum of transition matrix is not 1 since the ’NR’ rating exist (’NR’

rating means S&P does not rate a particular obligation as a matter of policy) , also

the estimated transition probabilities are not monotonic decreasing away from the

diagonal.
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Table 3.1: Corporate transition matrix - financial institutions (%).

Rating Issuers AAA AA+ AA AA- A+ A A- BBB+ BBB BBB- BB+ BB BB- B+ B B- CCC/C D NR

AAA 30 36.67 53.33 3.33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6.67

AA+ 11 0 90.91 9.09 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

AA 47 0 0 25.53 59.57 6.38 0 0 2.13 0 0 0 0 0 0 0 0 0 0 6.38

AA- 67 0 0 1.49 52.24 32.84 4.48 1.49 1.49 0 0 0 0 0 0 0 0 0 0 5.97

A+ 149 0 0 0 7.38 58.39 22.15 0.67 1.34 0.67 0 0 0 0 0 0 0 0 0 9.4

A 138 0 0 0 0 11.59 53.62 22.46 6.52 0.72 0.72 0 0 0 0 0 0 0 0 4.35

A- 127 0 0 0 0 0.79 14.96 48.82 13.39 11.81 3.15 3.15 1.57 0 0 0 0 0 0 2.36

BBB+ 99 0 0 0 0 0 0 13.13 67.68 8.08 5.05 1.01 1.01 0 0 0 0 0 0 4.04

BBB 119 0 0 0 0 0 0 0.84 6.72 73.95 6.72 3.36 2.52 0.84 0 0 0 0 0 5.04

BBB- 102 0 0 0 0 0 1.96 0 0.98 17.65 64.71 2.94 1.96 0 0 0 0 0 0.98 8.82

BB+ 45 0 0 0 0 0 0 0 2.22 4.44 20 48.89 2.22 4.44 4.44 0 0 2.22 0 11.11

BB 58 0 0 0 0 0 0 0 0 1.72 5.17 24.14 43.1 5.17 0 0 1.72 5.17 0 13.79

BB- 61 0 0 0 0 0 0 0 0 1.64 0 4.92 13.11 49.18 6.56 9.84 1.64 0 0 13.11

B+ 51 0 0 0 0 0 0 0 0 0 0 0 7.84 17.65 58.82 3.92 3.92 0 0 7.84

B 60 0 0 0 0 0 0 0 0 0 0 0 0 1.67 21.67 51.67 5 3.33 3.33 13.33

B- 40 0 0 0 0 0 0 0 0 0 0 0 0 2.5 2.5 35 42.5 5 2.5 10

CCC/C 13 0 0 0 0 0 0 0 0 0 0 0 0 0 7.69 0 30.77 38.46 7.69 15.38

Table 3.2 below is the count information of issuers’ migration in the transition

matrix which is the input values for the proposed methodology and from which the

numbers in table 3.1 are derived.
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Table 3.2: Corporate transition matrix - financial institutions (count).

Rating Issuers AAA AA+ AA AA- A+ A A- BBB+ BBB BBB- BB+ BB BB- B+ B B- CCC/C D NR

AAA 30 11 16 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2

AA+ 11 0 10 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

AA 47 0 0 12 28 3 0 0 1 0 0 0 0 0 0 0 0 0 0 3

AA- 67 0 0 1 35 22 3 1 1 0 0 0 0 0 0 0 0 0 0 4

A+ 149 0 0 0 11 87 33 1 2 1 0 0 0 0 0 0 0 0 0 14

A 138 0 0 0 0 16 74 31 9 1 1 0 0 0 0 0 0 0 0 6

A- 127 0 0 0 0 1 19 62 17 15 4 4 2 0 0 0 0 0 0 3

BBB+ 99 0 0 0 0 0 0 13 67 8 5 1 1 0 0 0 0 0 0 4

BBB 119 0 0 0 0 0 0 1 8 88 8 4 3 1 0 0 0 0 0 6

BBB- 102 0 0 0 0 0 2 0 1 18 66 3 2 0 0 0 0 0 1 9

BB+ 45 0 0 0 0 0 0 0 1 2 9 22 1 2 2 0 0 1 0 5

BB 58 0 0 0 0 0 0 0 0 1 3 14 25 3 0 0 1 3 0 8

BB- 61 0 0 0 0 0 0 0 0 1 0 3 8 30 4 6 1 0 0 8

B+ 51 0 0 0 0 0 0 0 0 0 0 0 4 9 30 2 2 0 0 4

B 60 0 0 0 0 0 0 0 0 0 0 0 0 1 13 31 3 2 2 8

B- 40 0 0 0 0 0 0 0 0 0 0 0 0 1 1 14 17 2 1 4

CCC/C 13 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 4 5 1 2
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The smoothing process is conducted this way; we first smooth the default rates

DR for this transition matrix by our proposed methodology as described in 2.14.

And thus we will get the constraint for the summation of transition probability for

each non-default risk rating i,
∑K

i=1 pij = 1 − DRi. Then we continue to run an

optimization process with all constraints of 3.1 to get the estimates for the transi-

tion probabilities between the non-zero observed transition probabilities of each risk

rating. We can not estimate the transition probabilities out of range of non-zero

observed transition probabilities for each risk rating since we have any information

about them, so the transition probabilities for them are still 0. The smoothed tran-

sition matrix by the proposed method is shown in table 3.3. It has all the properties

of a well-behaved transition matrix as we expected and can be used for calibrating

the PD term structure.
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Table 3.3: Smoothed corporate transition matrix - financial institutions

Rating Issuers Default NR Default Rate AAA AA+ AA AA- A+ A A- BBB+ BBB BBB- BB+ BB BB- B+ B B- CCC/C

AAA 30 0 2 0.00045 0.4820 0.4816 0.0360 0 0 0 0 0 0 0 0 0 0 0 0 0 0

AA+ 11 0 0 0.00047 0 0.9090 0.0915 0 0 0 0 0 0 0 0 0 0 0 0 0 0

AA 47 0 3 0.00050 0 0 0.1200 0.6500 0.1100 0.0410 0.0400 0.0385 0 0 0 0 0 0 0 0 0

AA- 67 0 4 0.00053 0 0 0.0600 0.5250 0.3250 0.0447 0.0300 0.0148 0 0 0 0 0 0 0 0 0

A+ 149 0 14 0.00056 0 0 0 0.0810 0.0637 .0241.241 0.0180 0.0150 0.0074 0 0 0 0 0 0 0 0

A 138 0 6 0.00059 0 0 0 0 0.1210 0.5600 0.2350 0.0683 0.0076 0.0075 0 0 0 0 0 0 0

A- 127 0 3 0.00062 0 0 0 0 0.0500 0.1460 0.4770 0.1321 0.1150 0.0299 0.0299 0.0165 0 0 0 0 0

BBB+ 99 0 4 0.00065 0 0 0 0 0 0 0.1400 0.7000 0.0800 0.0560 0.0120 0.0113 0 0 0 0 0

BBB 119 0 6 0.00088 0 0 0 0 0 0 0.0300 0.0800 0.8000 0.0750 0.0050 0.0050 0.0041 0 0 0 0

BBB- 102 1 9 0.00119 0 0 0 0 0 0.0180 0.0180 0.0200 0.2000 0.7350 0.0040 0.0038 0 0 0 0 0

BB+ 45 0 5 0.00125 0 0 0 0 0 0 0 0.0260 0.0550 0.2400 0.5900 0.0290 0.0160 0.0160 0.0090 0.0090 0.0087

BB 58 0 8 0.00169 0 0 0 0 0 0 0 - 0.0200 0.0600 0.2900 0.5100 0.0620 0.0150 0.0140 0.0140 0.0133

BB- 61 0 8 0.00228 0 0 0 0 0 0 0 0 0.0090 0.0090 0.0560 0.1500 0.5650 0.0960 0.0940 0.0190 0

B+ 51 0 4 0.00240 0 0 0 0 0 0 0 0 0 0 0 0.0850 0.1910 0.6360 0.0430 0.4260 0

B 60 2 8 0.00740 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0.2400 0.6310 0.0610 0.0410

B- 40 1 4 0.00777 0 0 0 0 0 0 0 0 0 0 0 0 0.0280 0.0280 0.3970 0.4820 0.0570

CCC/C 13 1 2 0.04407 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0480 0.0480 0.3820 0.4780



3.3 Conclusion and Future Work

In this chapter, following the previous chapters empirical PD rate smoothing

algorithm, we propose a smoothing algorithm to smooth the empirical PD transition

matrics to satisfy the industry’s expectation. The well-behaved PD transition matrix

should have the properties of monotonic increasing default probabilities, the sum of

PD transition probabilities for each rating is 1 and decreasing transition probabilities

as the transition state away from the diagonal (stay at the same rating). However, the

empirical internal PD transition matrix usually does not hold these properties. We

propose a two-step smoothing methodology for the observed transition matrix, which

applies the CMAP on the observed default rates first then conduct an optimization

process to obtain the well-behaved transition matrix with maximum likelihood score.

We apply the proposed algorithm to the S&P ’s data; the result shows that the

proposed algorithm can provide a reliable PD transition matrix.
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4 Mixed Response Model with Pairwise

Composite Likelihood Method

In this chapter, we focus on solving the regression problem of the high dimensional

correlated mixed response data which contains both continuous and discrete response

variables using the pairwise composite likelihood method. This kind of regression

widely exists in economic, risk management, finance, biomedical, and psychological

health study. An example of risk management is that the data of a real estate mort-

gage portfolio which may include both discrete outcomes of default, performing and

prepayment, also contains the continuous outcomes of loss amount and prepayment

amount as well, and the outcomes share the universal (or partial) risk drivers.

4.1 Introduction

Mixed response model is that the dependent variables include both continuous

and discrete (binary or categorical) variables and the dependent variables are cor-
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related. Many existing approaches have been proposed to solve the bivariate mixed

response problems or multivariate continuous (or discrete) response, such as multi-

variate multiple regression [37] deals with the multiple continuous response problems,

Multiple-Discrete Choice Models [38] is applied to solve the multiple categorical (bi-

nary) response problems. Some research in multiple mixed response model [64, 39].

We adopt the pairwise composite likelihood approach for jointly analyzing high di-

mensional mixed responses of different types (e.g., binary (categorical) and contin-

uous data). Our approach is based on a latent Gaussian process to represent the

discrete response variables and then model the dependence among the responses

variables assuming that the latent variables and the continuous variables are multi-

variate normal distributed. Our proposed method can be used to estimate the high

dimensional regression problem of mixed response with either common explanatory

variables for all response or different explanatory variables for each response variable.

There are several ways to solve the mixed responses model in the literature.

Olkin and Tate [40] proposed the general location model by decomposing the joint

distribution of the continuous and categorical variables into a marginal multinomial

distribution and a conditional multivariate normal distribution respectively to the

categorical variables and the continuous variables given the categorical variables.

Yang et al. [41] extend this method to mixed Poisson and continuous responses
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through a likelihood-based approach. Another approach for mixed response model

adopts an opposite factorization way against the general location model which de-

compose the joint distribution to a multivariate marginal distribution for the con-

tinuous responses and a conditional distribution of the categorical variables given

the continuous variables. Cox and Wermuth [42] empirically compared the choice

between these two methods and the independency and conditional independency as

well. Moreover, Heckman [43] proposed a general model for simultaneously analyz-

ing two mixed correlated responses which take into account the correlation between

errors in the model for responses. Ryan [44] and Fitzmaurice and Laird [45] extend

and used this approach for clustering the outcomes from discrete and continuous

response.

In high dimensional correlated mixed response data, the main obstacle lies in both

the tremendous computational complexity from the high dimensions and the fact that

continuous and categorical response has the intrinsically different measure scale. In

this dissertation, we propose to apply the pairwise composite likelihood method

to solving the regression models composed with mixed response variable through

leveraging the latent variable representing the discrete response by constraining the

parameters of the latent model proposed by Dunson [46] for identifiability without

restrictions on the correlation. Thus, the dimension of the response is reduced to
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two and the scales of all response convert to the same. This approach simplified the

complexity of high dimension mixed unequal scales response regression problem to

three types of two-dimensional response variables: both continuous response, both

discrete response and mixed continuous and discrete response.

Another significant merit of applying pairwise likelihood approach is that, with-

out any change in the methodology, our proposed method can estimate three types

high dimensional regression problems: high dimension continuous response (also tra-

ditionally called multivariate multilevel model), high dimension discrete response

(multilevel discrete choice model), and high dimension mixed discrete and continu-

ous response models.

A simulation study is conducted to examine the proposed methodology and com-

pare the proposed methodology against the marginal regression with respect to their

estimation outcomes and the performance. The results show the proposed method

can provide accurate and consistent estimator for high dimension mixed correlated

response data. The proposed methodology is implemented by using R code; the

Newton-Raphson method is applied to reach the optimum value of estimators. In

this dissertation,the pairwise composite likelihood method is conducted to reduce

the dimension of the mixed response variables models. We briefly introduce the

methodology here.
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Pairwise Composite Likelihood Estimation

Composite likelihood methods are first introduced by Lindsay [47], which is mo-

tivated by the issue of computational feasibility arising in the likelihood method

with high-dimensional data analysis. The idea of projecting high-dimensional com-

plicated likelihood functions to low-dimensional computationally feasible likelihood

objects by multiplying a collection of component likelihoods, which is methodolog-

ically appealing. The individual component can be a conditional density, marginal

density, or pairwise density. The estimating equation obtained from the derivative

of the composite log-likelihood is an unbiased estimating equation. The literature

on both theoretical and practical applications for inference based on composite like-

lihood continues to expand fast as shown in the overview by Varin, Reid and Firth

[48]. They are extensions of the Fisher’s likelihood theory, one of the most influential

approaches in statistics. Composite likelihood inherits many functional properties

of inference based on the full likelihood function but is more easily implemented on

high-dimensional data sets.

The bivariate pairwise composite likelihood is one special case of a composite

likelihood, in which the pseudo-likelihood is defined as the product of the bivariate

likelihood of all possible pairs of observations. Accordingly, it only captures the

bivariate relationships among the variables within the random vector. Therefore, it
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can only be used to make inference for parameters that identical in the bivariate and

multivariate densities. For example, the mean parameter and the pairwise correlation

take the same values in the bivariate and multivariate densities for multivariate

normal random variables.

The maximum composite likelihood estimators can be reached at the maximum

of the composite likelihood. When deriving the statistical inference, composite like-

lihood needs use Godambe information [49] to replace Fisher information, and the

Godambe information is asymptotic efficiency computed under some regularity con-

ditions compared to Fisher information I. The calculation of Godambe information

G of the parameters η for the log composite likelihood function cl(η) needs sensitiv-

ity or Hessian matrix H and variability matrix J . The parameters η can be obtained

by solving the composited score function U(η). If the composite likelihood function

is a true log-likelihood function, G = H = I. Otherwise, the Godambe information

is calculated by

G(η̂) = H(η̂)J−1(η̂)H(η̂),

where

J(η̂) =
1

n

n∑
i=1

U(η̂)U(η̂)T ,

H(η̂) =
∂2cl(η)

∂η∂ηT

∣∣∣∣
η̂

.
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Latent Variables

The proposed mixed response model leverages the latent variable concept to deal

with the different measure scale issues of the discrete outcomes. Before diving into

the proposed mixed response model, we briefly review the latent variable here first.

Suppose M∗
i is the value of the latent variable for the observation i (i = 1, ..., I),

and Mi is the corresponding observable binary variate. Under the latent variable

assumption, there is a threshold value t for a binary observation such that

Mi =


1, if M∗

i ≥ t,

0, if M∗
i ≤ t,

where 0 and 1 are arbitrary binary codings for Mi. The example here involves

binary outcomes but the idea is easily generalized to multiple categorical and ordinal

outcomes. Now consider the following linear regression model on M∗
i ,

M∗
i = β0 + β1Xi + εi,

whereXi represents the explanatory variables for the ith observation unit. Assume

that εi are iid and εi ∼ N(0, σ), the logistic model or cumulative probit model for

the binary outcomes is naturally derived according to the normal distribution, as

described, for example, by Anderson and Sophia [50]. Since this dissertation use
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probit model, we describe it below,

P (Mi = 1|Xi) = 1− Φ(
t− β0 − β1Xi

σ
),

P (Mi = 0|Xi) = Φ(
t− β0 − β1Xi

σ
).

The latent variables have been used in many mixed response models to analyze the

regression problems of multiple noncommensurate outcomes. Julie et al. [51] apply

the latent variable with partial likelihood to solve the bivariate mixed response model

with binary outcome. And Paul [44] applies the latent variable for mixed response

model with categorical (binary or multi-category) outcomes. Both methodologies

assume that the joint distribution of the continuous outcomes and the latent variables

behind the binary (ordinal) outcomes are a bivariate normal distribution. Moreover,

Green [38] applies the latent variable concept to the discrete choice model which

deals with the multiple binary (or multiple levels) outcomes using the assumption

that the latent variables from the discrete outcomes and the continuous response

are from a multivariate normal distribution. In this dissertation, we continue to

follow the assumption that the latent variables from the discrete outcomes are from

a multivariate normal distribution to construct the joint model for mixed responses.

To focus on the proposed methodology of applying pairwise composite likelihood

method to the high dimensional correlated mixed response, the discrete variables in
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this dissertation are all binary response, but the proposed method is easy to extend

to categorical (ordinal) discrete outcomes.

4.2 Mixed Response with Composite Likelihood

4.2.1 Model Setup

Suppose there are n observations in a dataset and each observation has q cor-

related response variables, in which m response variables are binary outcomes, and

q−m response variables are continuous outcomes. The response variables may or

may not share the common explanatory variables and the design matrices for each

response variable may or may not be balanced. We let M represents the binary re-

sponse and Y represents the continuous response variable. To solve this kind of high

dimensional mixed response regression problem, we assume that there are unknown

latent variable M ∗ where M = sgn(M ∗ > 0) is hidden behind the binary variable,

and the joint distribution of the continuous response variables and latent variables

are normally distributed,
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M (1)∗

M (2)∗

· · ·

M (m)∗

Y (m+1)

Y (m+2)

· · ·

Y (q)



∼ N





µ(1)

µ(2)

· · ·

µ(m)

µ(m+1)

µ(m+2)

· · ·

µ(q)



,
∑



,

where
∑

is a symmetric matrix as

σ2
1 ρ12σ1σ2 · · · ρ1mσ1σm · · · · · · · · · ρ1qσ1σq

ρ12σ1σ2 σ2
2 · · · ρ2mσ2σm · · · · · · · · · ρ2qσ2σq

· · ·

ρ1mσ1σm ρ2mσ2σm · · · σ2
m · · · · · · · · · ρmqσmσq

ρ1,m+1σ1σm+1 ρ2,m+1σ2σm+1 · · · ρm,m+1σmσm+1 σ2
m+1 · · · · · · ρm+1,qσm+1σq

ρ1,m+2σ1σm+2 ρ2,m+2σ2σm+2 · · · · · · · · · σ2
m+2 · · · ρm+2,qσm+2σq

· · · · · · · · · · · ·

ρ1qσ1σq ρ2qσ2σq · · · ρmqσmσq · · · · · · · · · σ2
q



.
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It is assumed that all response variables of the continuous outcomes and the

hidden latent variables behind the binary outcomes follow the multivariate normal

distribution. Given that the measurement scale of the binary response is unmeasur-

able, the dimension of response in the regression may be high, and the computation

complexity of the direct solution, it is natural and convenient to apply the pairwise

composite likelihood method to reduce the dimension of the equation system from

q to 2. Consequently, the likelihood function needs to be instead of the compos-

ite pairwise likelihood function to obtain the estimators of the regressions. For the

simplicity perspective, we use the notation of Z(i) to replace either M (i)∗ if the ith

response variable is binary or Y (i) if the ith response variable is continuous, as shown
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below, 

Z(1)

Z(2)

· · ·

Z(m)

Z(m+1)

Z(m+2)

· · ·

Z(q)



=



M (1)∗

M (2)∗

· · ·

M (m)∗

Y (m+1)

Y (m+2)

· · ·

Y (q)



.

The parameters need to be estimated for any pair of response variables (Z(j), Z(k)

ηj,k, which includes βj,βk, σj, σk, ρjk. According to the properties of the multivari-

ate normal distribution, the pair of response variables (Z(j), Z(k)) follows the bi-

variate normal distribution. Thus, the regression of each pair of response variables

(Z(j), Z(k)) is shown as below,

z
(j)
i = x

(j)
i βj + ε

(j)
i , i = 1 · · ·n

z
(k)
i = x

(k)
i βk + ε

(k)
i , i = 1 · · ·n

where, ε
(j)
i s is iid and ε

(k)
i s is iid respectively as well, however, they are distributed
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as a bivariate normal with correlation ρjk and mean 0, ε
(j)
i

ε
(k)
i

 ∼ N2


 0

0

 ,

 σ2
j , ρjkσjσk

ρjkσjσk, σ2
k


 .

Let

z
(j,k)
i =

 z
(j)
i

z
(k)
i

 ,µ
(j,k)
i =

 x
(j)
i βj

x
(k)
i βk

 ,Σ(j,k) =

 σ2
j , ρj,kσjσk

ρj,kσjσk, σ2
k

 .

The joint density function of (z
(j)
i , z

(k)
i ) will be

h(z
(j)
i , z

(k)
i ;xi,ηj,k) (4.1)

= (2π)nΣ(j,k)
n
2 exp

(
− 1

2
(z

(j,k)
i − µ(j,k))TΣ(j,k)−1(z

(j,k)
i − µ(j,k))

)
.

The likelihood function for the pair of variables of z
(∗)
j and z

(∗)
k is given by

Lj,k(ηj,k) =
n∏
i=1

h(z
(j)
i , z

(k)
i ;xi,ηj,k).

The parameters estimation process via Fisher scoreing can be obtained by solving

the score equation

Uj,k(ηj,k) = Σn
i=1h(z

(j)
i , z

(k)
i ;xi,ηj,k)

−1 ∂

∂ηj,k
h(z

(j)
i , z

(k)
i ;xi,ηj,k).

Accordingly, let ηj,k = (β∗Tj ,β∗Tk ,ρjk,σj,σk), then η be the superset of parame-

ters ηj,k, then the pairwise composite likelihood function of these q response variables
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model is given by

CL(η) =

q−1∏
j=1

q∏
k=j+1

Lj,k(η), (4.2)

and the log-likelihood function and the score function are given by

cl(η) = logCL(η)

=

q−1∑
j=1

q∑
k=j+1

lj,k(ηjk), (4.3)

S(η) =
∂cl(η)

∂η

=

q−1∑
j=1

q∑
k=j+1

∂lj,k(ηj,k)

∂ηj,k
. (4.4)

Now the problem is to solve the score functions derived from three types of

bivariate response regression: both continuous, both binary and mixed with one

continuous and one binary response. If we can solve the problem combined with these

three types of bivariate response regression simultaneously, we can easily extend the

solution to the problems of correlated high dimensional mixed response regression

since the components of composite pairwise likelihood functions are exactly same.

To illustrate our proposed methodology, we use the simplest data set that includes

all three types of combinations of bivariate response variable, which is a data set

includes n observations and each observation has two binary outcomes of M
(1)
i and

M
(2)
i and two continuous outcomes variables of Y

(3)
i and Y

(4)
i , where i = 1, ..., n. let
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M
(1)∗
i and M

(2)∗
i are the unknown latent variables from binary response M

(1)
i and

M
(2)
i . The binary response M (j), j = 1, 2, is assumed that M (j) = sgn(M∗

j > 0). The

4 response variables are correlated and they either share common covariates or have

their own scalar covariate separately. By the assumption, (M (1)∗,M (2)∗, Y (3), Y (4))T

follow a multivariate normal distribution. To simplify the notation, we use Z to

represent these four response variables,

Z(1)

Z(2)

Z(3)

Z(4)


=



M (1)∗

M (2)∗

Y (3)

Y (4)


.

Thus, the regression model for each response variables will be

z
(1)
i = x

(1)
i β∗1 + ε

(1)
i , i = 1 · · ·n

z
(2)
i = x

(2)
i β∗2 + ε

(2)
i ,

z
(3)
i = x

(3)
i β3 + ε

(3)
i ,

z
(4)
i = x

(4)
i β4 + ε

(4)
i ,

where ε
(1)
i s, ε

(2)
i s, ε

(3)
i s, and ε

(4)
i s are iid respectively and they are normally distributed

79



as 

ε
(1)
i

ε
(2)
i

ε
(3)
i

ε
(4)
i


∼ N





0

0

0

0


,



σ2
1 ρ12σ1σ2 ρ13σ1σ3 ρ14σ1σ4

ρ12σ1σ2 σ2
2 ρ23σ2σ3 ρ24σ2σ4

ρ13σ1σ3 ρ23σ2σ3 σ2
3 ρ34σ3σ4

ρ14σ1σ4 ρ24σ2σ4 ρ34σ3σ4 σ2
4




. (4.5)

Let g(µ) = XTβ + ε, X = (X1, ..., X4)T is the design matrix, β∗T1 , β∗T2 , β3, β4 are

the unknown parameter vectors, and g(·) is a known monotone link function. Com-

mon choices of g include logit, probit, or complement log-log functions. The parame-

ters need to be estimated η = (β∗T1 , β∗T2 , βT3 , β
T
4 , ρ12, ρ13, ρ14, ρ23, ρ24, ρ34, σ1, σ2, σ3, σ4)T .

Accordingly, the pairwise composite likelihood function of these four response

variables model is given by

CL(η) =
3∏
j=1

4∏
k=2

Lj,k(η)

= L1,2(η)L1,3(η)L1,4(η)L2,3(η)L2,4(η)L3,4(η), (4.6)

80



and the log-likelihood function and the score function are given by

cl(η) = logCL(η)

= logL1,2(η) + logL1,3(η) + logL1,4(η) + logL2,3(η) + logL2,4(η) + logL3,4(η)

= l1,2(η) + l1,3(η) + l1,4(η) + l2,3(η) + l2,4(η) + l3,4(η),

∂cl(η)

∂η
=

∂l1,2(η)

∂η
+
∂l1,3(η)

∂η
+
∂l1,4(η)

∂η
+
∂l2,3(η)

∂η
+
∂l2,4(η)

∂η
+
∂l3,4(η)

∂η

= U1,2(η) + U1,3(η) + U1,4(η) + U2,3(η) + U2,4(η) + U3,4(η). (4.7)

Please note, as mentioned by many researchers, such as Julie et al. [51], the un-

known latent variance is not uniquely identifiable since it is unobservable. However,

we can rescale the latent variable by dividing its’ standard deviation to produce a

new latent variable which has the variance of 1. Thus, in our equation, both σ1 and

σ2 are constant 1 and do not need to be estimated by our methodology.

Next, we will introduce the detailed process for solving these three cases of bi-

variate regressions respectively, they are the fundamental building blocks of pairwise

composite likelihood method for high dimensional mixed response regression.
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4.2.2 Case 1: Both Continuous Outcomes

The first case is both continuous outcomes. If j = 3 and k = 4 in our simplest four

response variables model setup, then the bivariate regression of this combination is

the case of both continuous response variables. In fact, it is an extension of simple

linear regression which has just one continuous response variable and is the simplest

multiple level linear regression. According to the assumption of multivariate normal

distribution assumption of the response variables, the response variables Z(3) and Z(4)

follow the bivariate normal distribution N2 with the correlation of ρ34 and standard

deviation of σ3 and σ4 respectively. The parameters need to be estimated in the

regression will be η34 = {β3, β4, σ3, σ4, ρ34}. Remember that,

z
(3)
i = x

(3)
i β3 + ε

(3)
i , i = 1 · · ·n

z
(4)
i = x

(4)
i β4 + ε

(4)
i , i = 1 · · ·n

where ε
(3)
i s and ε

(4)
i s are iid respectively. However, they are bivariate normally dis-

tributed as  ε
(3)
i

ε
(4)
i

 ∼ N2


 0

0

 ,

 σ2
3, ρ34σ3σ4

ρ34σ3σ4, σ2
4


 .
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Let

µ
(3)
i = x

(3)
i β3,

µ
(4)
i = x

(4)
i β4.

Then the joint pdf of Z(3) and Z(4) is

f3,4(z
(3)
i , z

(4)
i )

=
1

2πσ3σ4

√
1− ρ2

34

exp
(
− 1

2(1− ρ2
34)

[(z
(3)
i − µ

(3)
i )2

σ2
3

(4.8)

+
(z

(4)
i − µ

(4)
i )2

σ2
4

− 2ρ34(z
(3)
i − µ

(3)
i )(z

(4)
i − µ

(4)
i )

σ3σ4

])
.

Our goal is to estimate the unknown parameters from the regression of this pair of

correlated response variables, and then cooperate with the likelihood function from

other pairs response variables to estimate all the unknown parameters in our 4 mixed

responses variable model. Thus, we need to derive the likelihood function for it and

solve the score function to maximize the likelihood function.

To simplify the equation 4.8, let

Λ =
1

(1− ρ2
34)

[
(z

(3)
i − µ

(3)
i )2

σ2
3

+
(z

(4)
i − µ

(4)
i )2

σ2
4

− 2ρ34(z
(3)
i − µ

(3)
i )(z

(4)
i − µ

(4)
i )

σ3σ4

]
.

The log-likelihood function and score function for the bivariate regression model
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of the continuous response variables (Z(3), Z(4)) are

l34 = log
n∏
i=1

f3,4(z
(3)
i , z

(4)
i )

= log
n∏
i=1

1

2πσ3σ4

√
1− ρ2

34

exp(−1

2
Λ)

= −
n∑
i=1

1

2

(
2 log(2π) + log(σ2

3) + log(σ2
4) + log(1− ρ2

34) + Λ
)
,

S34 =
∂l3,4(η34)

∂η34

.

The estimators of η34 can be obtained by setting the score function above equal

to 0, and the maximum log-likelihood can be reached by Newton-Raphson method

numerically. We list the required input for Newton-Raphson method of first and

second derivative of l34 w.r.t η34 in Appendix E.

4.2.3 Case 2: Both Binary Outcomes

The second case is both binary outcomes, in our four responses variables model

setup, it must be j = 1 and k = 2. We apply the latent variables concept to the binary

response variables z(1) and z(2). As mentioned previously, the standard deviation

of both binary response variables are not identifiable and are set to 1 by rescaling

mechanic. Thus, they do not need to be estimated. Therefore, the parameters

need to be estimated in this kind of bivariate regression is η12 = (β1,β2, ρ12). In

this dissertation, we keep using the notation of z(1) and z(2) for simplicity reasons
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and assume it is already rescaled to the standard deviation of 1. According to the

assumption of multivariate normal distributed of the response variables, the latent

variables z(1) and z(2) follow the bivariate normal distribution with the correlation

of ρ12, which is also the covariance between the response variables z(1) and z(2).

Traditionally, economists name the model with both binary outcomes model as

the bivariate binary choice model as in literature [38], which is the extension of

single discrete choice model, the basic building block of the discrete choice models

used to measure the discrete consumer choices, such as whether to vote for a polit-

ical candidate, whether to purchase a specific brand car, etc. The bivariate binary

choice model is used to model the bivariate choice simultaneously, such as choose the

university and professor simultaneously from a graduate students perspective. Let’s

first review the model setup for the bivariate binary regression based on normality

assumptions,

z
(1)
i = x

(1)
i β

∗
1 + ε

(1)
i , i = 1 · · ·n

z
(2)
i = x

(2)
i β

∗
2 + ε

(2)
i , i = 1 · · ·n

where ε
(1)
i s and ε

(2)
i s are iid respectively. However, they are bivariate normally
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distributed as  ε
(1)
i

ε
(2)
i

 ∼ N2


 0

0

 ,

 1, ρ12

ρ12, 1


 ,

and the mean value of the z(1) and z(2) as below,

µ
(1)
i = x

(1)
i β

∗
1,

µ
(2)
i = x

(2)
i β

∗
2.

For the binary outcomes, traditionally researchers use the logit or probit link func-

tion to build the linear relationship between the independent variables and dependent

variables. Considered the context of the mixed response in our model is assumed

normally distributed, it is convenient for the binary response variable adopting the

probit link than logit link, which can bring much more convenient in perspective

of mathematical complexity. Then, the associated probability for the joint event of

(z(1), z(2)) is

P (z
(1)
i = 1, z

(2)
i = 1|X(1), X(2)) = Φ2(µ

(1)
i , µ

(2)
i , ρ12),

P (z
(1)
i = 1, z

(2)
i = 0|X(1), X(2)) = Φ2(µ

(1)
i ,−µ(2)

i ,−ρ12),

P (z
(1)
i = 0, z

(2)
i = 1|X(1), X(2)) = Φ2(−µ(1)

i , µ
(2)
i ,−ρ12),

P (z
(1)
i = 0, z

(2)
i = 0|X(1), X(2)) = Φ2(−µ(1)

i ,−µ(2)
i , ρ12),
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where Φ2 denotes the bivariate normal cdf. And the above equations can be rewritten

as

P (Z(1) = z1, Z
(2) = z2|X1, X2) = Φ2((2z1 − 1)µ1, (2z2 − 1)µ2, (2z1 − 1)(2z2 − 1)ρ12)

= Φ2(s1µ1, s2µ2, s1s2ρ12),

where s1 = (2z1 − 1) and s2 = (2z2 − 1).

The likelihood function and the log-likelihood function of this model is

L12 =
n∏
i=1

Φ2(s1µ1, s2µ2, s1s2ρ12),

l12 =
n∑
i=1

log Φ2(s1µ1, s2µ2, s1s2ρ12).

Green [38] provides the detail solution for the bivariate discrete choice regression

which is exactly same as our second case of bivariate binary response regression.

Still, we will use the Newton-Raphson method numerically to solve this regression

model. The thorough description of the solution process to the case of both binary

outcomes and the derivatives of the score function is shown in Appendix F,

4.2.4 Case 3: Mixed Binary and Continuous Outcomes

Now, only the case of mixed bivariate response regression model left. When one

response variable Z(j) is binary variable and another response Z(k) is continuous
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variable, in our four response variables model setup, it must be j = 1 or 2 and

k = 3 or 4. Same as in the case 2, the standard devastation of the rescaled Z(j) is

set to 1 and does not need to be estimated. Accordingly, the parameters need to

be estimated in the mixed bivariate regression are ηjk = (β∗j ,βk, σk, ρjk). The joint

distribution of the latent variables Z(j) and the continuous variable Z(k) follow the

bivariate normal distribution with the correlation ρjk.

To model the correlated mixed continuous and binary outcomes simultaneously,

we apply the reverse factorization method against the general location model pro-

posed by Olkin and Tate [40] for the joint bivariate normal distribution: a marginal

model for the continuous outcome and a probit model for the binary variable which

conditions on the continuous outcome. This factorization method provides a mathe-

matically convenient way to model two correlated outcomes. There are advantages of

using the latent variable formulation that it leads to a set of intuitively appealing co-

variates in the conditional model and provides a moment structure which can be eas-

ily extended to allow for splitting the binary outcomes. In addition, the coefficients

of the conditional model are functions of the variance and correlation parameters

from the underlying latent variable model.
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Recall that when j = 1, 2 and k = 3, 4,

z
(j)
i = x

(j)
i β

∗
j + ε

(j)
i , i = 1 · · ·n

z
(k)
i = x

(k)
i βk + ε

(k)
i , i = 1 · · ·n

where ε
(j)
i s and ε

(k)
i s are iid respectively. However, they are bivariate normally

distributed as  ε
(j)
i

ε
(k)
i

 ∼ N2


 0

0

 ,

 1, ρjkσk

ρjkσk, σ2
k


 ,

and the mean value of the Z(j) and Z(k) as below,

µ
(j)
i = x

(j)
i β

∗
j ,

µ
(k)
i = x

(k)
i β

∗
k.

To solve this bivariate mixed binary and continuous outcomes model, we decom-

pose the joint distribution function of binary and continuous variable to the marginal

density function of P (z
(k)
i |X,ηjk) and conditional distribution of P (z

(j)
i |z

(k)
i , X,ηjk),

which assumes that the hidden latent variable corresponding to binary outcomes is

normally distributed and the marginal density of the continuous outcomes is also

normally distributed. Let φ and Φ be the pdf and cdf of the standard normal distri-

bution,
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1. Z(k) is continuous response

P (z
(k)
i |X,ηjk) =

1

σk
φ

(
(z

(k)
i − µ

(k)
i )

σk

)
.

2. Z(j) is binary response

P (z
(j)
i |z

(k)
i , X,ηjk) = Φ

(
−
µ

(j)
i + ρjk

σj
σk

(z
(k)
i − µ

(k)
i )

σj
√

1− ρ2
jk

)
.

The likelihood function, the log-likelihood function and the score function for this

mixed response model will be

Ljk =
n∏
i=1

[
1(z

(j)
i = 0)Φ(z

(j)
i |z

(k)
i ) + 1(z

(j)
i = 1)(1− Φ(z

(j)
i |z

(k)
i ))

]
P (z

(k)
i ),

ljk =
n∑
i=1

log
([

1(z
(j)
i = 0)Φ(z

(j)
i |z

(k)
i ) + 1(z

(j)
i = 1)(1− Φ(z

(j)
i |z

(k)
i ))

]
P (z

(k)
i )
)
,

∂ljk(ηjk)

∂ηjk
= l−1

jk

∫ [∂ logP (z(k))

∂ηjk
+
∂ logP (z(j)|z(k))

∂ηjk

]
Pj,k(z

(j), z(k))dz(j)

=

∫ [∂ logP (z(k))
∂ηjk

+ ∂ logP (z(j)|z(k))
∂ηjk

]
Pj,k(z

(j), z(k))dz∗j∫
Pj,k(z(j), z(k))dz(j)

=
∂ log

[
1(z(j) = 0)Φ(z(j)|z(k)) + 1(z(j) = 1)(1− Φ(z(j)|z(k)))

]
∂ηjk

+
∂ logP (z(k))

∂ηjk

=
∂

∂ηjk
logP (z(k)) +

[ 1(z(j) = 0)

Φ(z(j)|z(k))
− 1(z(j) = 1)

1− Φ(z(j)|z(k))

]∂Φ(z(j)|z(k))

∂ηjk
.
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To simplify the calculation related formulas, we define 2 new equations as below,

ck =
(z(k) − µk)

σk
,

dj = −
(µj + ρjk

σj
σk

(z(k) − µk))

σj
√

1− ρ2
jk

.

Then, the log-likelihood function will be written as

ljk =
∂

∂ηjk
logP (z(k)) +

[ 1(z(j) = 0)

Φ(z(j)|z(k))
− 1(z(j) = 1)

1− Φ(z(j)|z(k))

]∂Φ(z(j)|z(k))

∂ηjk

=
∂

∂ηjk
log
[φ(ck)

σk

]
+
[ 1(z(j) = 0)

Φ(z(j)|z(k))
− 1(z(j) = 1)

1− Φ(z(j)|z(k))

]∂Φ(dj)

∂ηjk
. (4.9)

The estimation parameters can be estimated by solving the score function above.

Julie et al. [51] have also presented the detail solutions for this kind of factorization.

We illustrate the detail first and second derivatives needed for Newton-Raphson

method in Appendix G.

4.3 Simulation Study

In our simulation study, we assume that a random sample of two binary outcomes

and two continuous outcomes are drawn from four variates normal distribution with

an arbitrary correlations matrix. Each outcome has its own regression parameters

such as coefficients and standard deviation respectively. Our goal is to investigate

the performance of the proposed method. Also, we use the marginal regression

91



parameters as the benchmark model and compare the accuracy of the estimated

parameters from both methods. In addition, we provide relevant test statistics for

testing hypothesis about the regression model coefficients, the standard deviation,

and the correlation.

4.3.1 Simulation Data

We generate the data samples with 4 outcomes: 2 binary outcomes (from the

hidden latent variables) and 2 continuous outcomes from a multi-variate normal

distribution with µ = (µ1, µ2, µ3, µ4) and covariance matrix of Σ. The covariance

matrix was compound symmetric with the variances for 2 binary variables equal to

1. Each response variable has its’ own associated covariates Xi = (x0, x1, ..., xk),

where x0 = 1 and x1- xk be the scalar value, and i = (i = 1, 2, . . . , n). For each

outcome, the mean parameter µi = XT
i βi, where the covariates were simulated from

the multivariate normal distribution with variances equal to 1 and the off-diagonal

covariance is arbitrary chosen. We took sample sizes n = 300, 1000, and 3000 for

different test scenarios, and 3 covariates for each regression model corresponding to

each outcome.

We generate different simulation scenarios such as low correlation, low observa-

tion, medium and high observation numbers, either common covariates for all the

92



regression or different covariates for different response regressions. These scenar-

ios is through set different numbers of observations, correlation matrix, regression

coefficients, and standard deviations of each response variable. Since the proposed

method can work with common shared covariate for some response, we also simulate

a scenario which all the response variables share a common covariate vectors. Also,

the simulated scenarios include shared regression coefficients parameters. Each sce-

nario’s results are calculated by the average of minimum of 300 times simulation.

The mean value and standard deviation from the Monte Carlo replications will be

presented as the simulation results.

4.3.2 Simulation Results

Table 4.1-4.6 give the simulation results for different scenarios. Overall, the pro-

posed composite pairwise likelihood method can estimate the parameters accurately

and efficiently. The absolute percentage of the difference between the estimated

values and actual values is less then 1% mostly and the standard deviation from

simulation is small. Compared with marginal linear regression for the continuous

outcomes and logistic regression (probit model) for binary outcomes, the proposed

method provides the significantly accurate not only in the fitting coefficient of linear

equations but also the correlations between the outcomes and the standard devia-
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tions of the residuals. In the simulation results, we use ’Alg’ to represent proposed

method, ∆Marg and ∆Alg represent the difference between the marginal solution to

the true value and the difference between the proposed method to the true value

respectively.

Scenario 1: 300 observations, 1000 replications with lower correlation between

each other outcomes

Table 4.1: Simulation results of scenario 1, K = 300.

Para TRUE Marginal Std. of Marg Alg Std of Alg ∆Marg ∆Alg

β10 0.2 0.325 0.121 0.202 0.075 62.7% 0.9%

β11 0.1 0.164 0.127 0.101 0.077 63.9% 1.4%

β12 0.2 0.331 0.121 0.204 0.072 65.3% 1.8%

β20 0.2 0.329 0.125 0.203 0.077 64.3% 1.4%

β21 0.3 0.495 0.128 0.304 0.075 65.0% 1.4%

β22 0.1 0.162 0.125 0.1 0.074 62.5% 0.4%

β30 0.5 0.501 0.06 0.501 0.06 0.1% 0.1%

β31 8 7.999 0.057 8 0.052 0.0% 0.0%

β32 10 10.001 0.057 10.001 0.053 0.0% 0.0%

β40 0.4 0.4 0.057 0.4 0.057 0.0% 0.0%

β41 5 4.997 0.056 4.998 0.053 0.1% 0.0%

β42 8 8 0.058 8.001 0.055 0.0% 0.0%

σ1 1

σ2 1

σ3 1 0.996 0.04 0.994 0.04 0.4% 0.6%

σ4 1 0.994 0.04 0.993 0.04 0.6% 0.7%

ρ12 0.2 0.12 0.057 0.196 0.092 40.1% 2.0%

ρ13 0.3 0.231 0.055 0.296 0.071 23.0% 1.2%

ρ14 0.1 0.077 0.058 0.1 0.074 22.8% 0.3%

ρ23 0.4 0.309 0.051 0.4 0.065 22.8% 0.1%

ρ24 0.2 0.153 0.056 0.198 0.073 23.7% 0.8%

ρ34 0.4 0.396 0.049 0.398 0.049 1.0% 0.4%
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Scenario 2: 300 observations, 1000 replications with lower correlation between

each other outcomes, all the outcomes share the common covariates.

Table 4.2: Simulation results of scenario 2, K = 300.

Para TRUE Marginal Std. of Marg Alg Std of Alg ∆Marg ∆Alg

β10 0.2 0.33 0.122 0.205 0.075 65.2% 2.5%

β11 0.1 0.166 0.128 0.102 0.079 65.8% 2.5%

β12 0.2 0.32 0.128 0.198 0.078 60.2% 1.1%

β20 0.1 0.158 0.121 0.098 0.075 58.5% 1.5%

β21 0.2 0.328 0.13 0.203 0.08 63.9% 1.5%

β22 0.1 0.168 0.121 0.104 0.075 67.6% 3.9%

β30 0.5 0.5 0.057 0.5 0.057 0.1% 0.1%

β31 8 7.999 0.056 7.999 0.056 0.0% 0.0%

β32 10 10.001 0.058 10.001 0.058 0.0% 0.0%

β40 4 4 0.059 4 0.059 0.0% 0.0%

β41 3 3 0.059 3 0.059 0.0% 0.0%

β42 1 0.999 0.056 0.999 0.056 0.1% 0.1%

σ1 1

σ2 1

σ3 1 0.996 0.041 0.994 0.041 0.4% 0.6%

σ4 1 0.996 0.04 0.995 0.04 0.4% 0.5%

ρ12 0.2 0.127 0.057 0.201 0.09 36.4% 0.3%

ρ13 0.3 0.238 0.055 0.304 0.07 20.8% 1.3%

ρ14 0.3 0.236 0.055 0.302 0.07 21.2% 0.8%

ρ23 0.3 0.237 0.054 0.301 0.069 21.1% 0.3%

ρ24 0.2 0.158 0.056 0.201 0.071 21.2% 0.3%

ρ34 0.3 0.299 0.054 0.299 0.054 0.3% 0.3%
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Scenario 3: 3000 observations, 1000 replications with lower correlation between

each other outcomes

Table 4.3: Simulation results of scenario 3, K = 3000.

Para TRUE Marginal Std. of Marg Alg Std of Alg ∆Marg ∆Alg

β10 0.2 0.324 0.038 0.201 0.023 62.0% 0.7%

β11 0.1 0.164 0.037 0.102 0.022 64.1% 1.6%

β12 0.2 0.324 0.037 0.201 0.022 62.1% 0.4%

β20 0.2 0.325 0.038 0.201 0.023 62.6% 0.5%

β21 0.3 0.485 0.041 0.299 0.024 61.7% 0.4%

β22 0.1 0.161 0.038 0.1 0.023 61.5% 0.4%

β30 0.5 0.5 0.018 0.5 0.018 0.1% 0.1%

β31 8 8 0.018 8 0.016 0.0% 0.0%

β32 10 10 0.018 10 0.016 0.0% 0.0%

β40 0.4 0.4 0.017 0.4 0.017 0.1% 0.1%

β41 5 5 0.018 5 0.017 0.0% 0.0%

β42 8 8 0.019 8 0.018 0.0% 0.0%

σ1 1

σ2 1

σ3 1 0.999 0.013 0.999 0.013 0.1% 0.1%

σ4 1 1 0.013 1 0.013 0.0% 0.0%

ρ12 0.2 0.123 0.018 0.201 0.029 38.4% 0.3%

ρ13 0.3 0.236 0.017 0.301 0.022 21.5% 0.2%

ρ14 0.1 0.079 0.018 0.1 0.023 21.4% 0.3%

ρ23 0.4 0.311 0.016 0.401 0.02 22.2% 0.3%

ρ24 0.2 0.156 0.017 0.201 0.022 21.9% 0.6%

ρ34 0.4 0.4 0.016 0.4 0.016 0.0% 0.1%
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Scenario 4: 1000 observations, 1000 replications with lower correlation between

each other outcomes

Table 4.4: Simulation results of scenario 4, K = 1000.

Para TRUE Marginal Std. of Marg Alg Std of Alg ∆Marg ∆Alg

β10 0.2 0.323 0.063 0.201 0.039 61.6% 0.4%

β11 0.1 0.163 0.069 0.101 0.042 63.5% 0.9%

β12 0.2 0.327 0.068 0.203 0.04 63.6% 1.4%

β20 0.2 0.322 0.066 0.199 0.041 60.9% 0.6%

β21 0.3 0.489 0.069 0.301 0.04 62.9% 0.3%

β22 0.1 0.161 0.065 0.099 0.038 60.7% 1.4%

β30 0.5 0.5 0.031 0.5 0.031 0.0% 0.0%

β31 8 8.001 0.032 8.001 0.029 0.0% 0.0%

β32 10 10 0.031 10 0.029 0.0% 0.0%

β40 0.4 0.4 0.032 0.4 0.032 0.1% 0.1%

β41 5 5 0.032 5 0.03 0.0% 0.0%

β42 8 7.999 0.031 7.999 0.029 0.0% 0.0%

σ1 1

σ2 1

σ3 1 0.999 0.023 0.999 0.023 0.1% 0.1%

σ4 1 0.998 0.022 0.998 0.022 0.2% 0.2%

ρ12 0.2 0.123 0.031 0.2 0.05 38.6% 0.0%

ρ13 0.3 0.235 0.03 0.301 0.038 21.5% 0.3%

ρ14 0.1 0.079 0.032 0.101 0.04 21.4% 0.6%

ρ23 0.4 0.31 0.028 0.4 0.036 22.4% 0.0%

ρ24 0.2 0.155 0.032 0.2 0.041 22.5% 0.0%

ρ34 0.4 0.4 0.028 0.4 0.028 0.1% 0.1%
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Scenario 5: 300 observations, 1000 replications with medium level correlation

between each other outcomes

Table 4.5: Simulation results of scenario 5, K = 300.

Para TRUE Marginal Std. of Marg Alg Std of Alg ∆Marg ∆Alg

β10 0.2 0.325 0.065 0.202 0.04 62.3% 0.8%

β11 0.1 0.164 0.067 0.101 0.038 64.0% 1.1%

β12 0.2 0.328 0.067 0.204 0.038 64.2% 1.8%

β20 0.2 0.323 0.066 0.199 0.041 61.3% 0.4%

β21 0.3 0.49 0.07 0.301 0.04 63.2% 0.5%

β22 0.1 0.161 0.064 0.099 0.037 61.3% 1.0%

β30 0.5 0.5 0.031 0.5 0.031 0.0% 0.0%

β31 8 8.001 0.032 8.001 0.029 0.0% 0.0%

β32 10 10 0.032 10 0.029 0.0% 0.0%

β40 0.5 0.501 0.031 0.501 0.031 0.2% 0.2%

β41 8 8.001 0.032 8 0.029 0.0% 0.0%

β42 10 9.999 0.031 9.999 0.028 0.0% 0.0%

σ1 1

σ2 1

σ3 1 0.999 0.022 0.999 0.022 0.1% 0.1%

σ4 1 0.998 0.022 0.998 0.022 0.2% 0.2%

ρ12 0.3 0.186 0.032 0.301 0.049 37.8% 0.4%

ρ13 0.3 0.235 0.03 0.301 0.038 21.5% 0.4%

ρ14 0.51 0.4 0.026 0.511 0.033 21.6% 0.1%

ρ23 0.4 0.31 0.028 0.4 0.036 22.4% 0.1%

ρ24 0.4 0.31 0.029 0.4 0.038 22.4% 0.0%

ρ34 0.4 0.4 0.028 0.401 0.028 0.0% 0.2%
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Scenario 6: 300 observations, 1000 replications with lower correlation between

each other outcomes, the parameter for both continuous response are same and the

parameter for both binary response are same too.

Table 4.6: Simulation results of scenario 6, K = 300.

Para TRUE Marginal Std. of Marg Alg Std of Alg ∆Marg ∆Alg

β10 0.2 0.324 0.063 0.201 0.039 61.8% 0.5%

β11 0.1 0.164 0.069 0.101 0.041 63.9% 1.1%

β12 0.2 0.329 0.068 0.204 0.04 64.6% 1.9%

β20 0.2 0.322 0.066 0.2 0.041 60.9% 0.0%

β21 0.1 0.161 0.065 0.099 0.039 60.8% 0.6%

β22 0.2 0.322 0.065 0.199 0.039 60.9% 0.5%

β30 0.5 0.5 0.031 0.5 0.031 0.0% 0.0%

β31 8 8.001 0.032 8.001 0.03 0.0% 0.0%

β32 10 10 0.032 10 0.03 0.0% 0.0%

β40 0.5 0.501 0.032 0.501 0.032 0.1% 0.1%

β41 8 8 0.032 8 0.031 0.0% 0.0%

β42 10 9.999 0.031 9.999 0.03 0.0% 0.0%

σ1 1

σ2 1

σ3 1 0.999 0.022 0.999 0.022 0.1% 0.1%

σ4 1 0.998 0.022 0.998 0.022 0.2% 0.2%

ρ12 0.2 0.124 0.032 0.199 0.051 38.2% 0.4%

ρ13 0.3 0.235 0.03 0.301 0.038 21.6% 0.2%

ρ14 0.3 0.235 0.03 0.3 0.038 21.7% 0.1%

ρ23 0.3 0.235 0.029 0.301 0.038 21.5% 0.2%

ρ24 0.2 0.157 0.031 0.2 0.04 21.5% 0.2%

ρ34 0.3 0.3 0.03 0.301 0.03 0.1% 0.2%
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Table 4.7− 4.10 below show the results from the single run of the simulated data.

Still, the estimated value from proposed composite likelihood simultaneously is more

accurate than the marginal method which predict the regression parameters from

each regression respectively. Moreover, the model performance from the proposed

model are much better than marginal solution. The statistics we are using are

AUROC for binary outcomes, the RMSE, MAE and pseudo R Squared for continuous

outcomes. Figure 3.1−3.4 are the ROC curve for the simulated data to intuitively

compare the area under ROC curve. We randomly simulate 2 data set, Data I has

300 observations and Data II has 3000 records to compare the impact from the

observation count.
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The first simulated data has 300 observations. The estimated parameter is im-

proved by the proposed method than marginal method.

Table 4.7: Simulation results from data I, K = 300.

TRUE Marginal Algorithm sd.of Alg ∆Marg ∆Alg

β10 0.2 0.28 0.18 0.07 40.5% 12.1%

β11 0.1 0.08 0.06 0.07 23.4% 42.5%

β12 0.2 0.34 0.21 0.08 71.2% 5.8%

β20 0.2 0.39 0.23 0.08 96.7% 16.7%

β21 0.3 0.82 0.48 0.08 172.3% 60.3%

β22 0.1 0.18 0.12 0.07 75.8% 18.0%

β30 0.5 0.53 0.53 0.06 6.2% 6.0%

β31 8 7.96 7.96 0.05 0.5% 0.5%

β32 10 9.91 9.94 0.05 0.9% 0.6%

β40 0.4 0.43 0.43 0.06 7.7% 7.4%

β41 5 4.96 4.99 0.06 0.7% 0.2%

β42 8 8.01 8.03 0.06 0.1% 0.3%

σ1 1

σ2 1

σ3 1 0.98 0.97 0.04 2.4% 2.5%

σ4 1 1.06 1.06 0.05 5.8% 5.7%

ρ12 0.2 0.14 0.25 0.09 27.6% 23.0%

ρ13 0.3 0.19 0.24 0.08 38.1% 20.8%

ρ14 0.1 0.03 0.05 0.07 65.4% 49.9%

ρ23 0.4 0.35 0.47 0.06 12.6% 17.2%

ρ24 0.2 0.15 0.21 0.07 23.0% 3.4%

ρ34 0.4 0.38 0.39 0.06 4.3% 2.0%
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Table 4.8: Model performance from data I.

AUC 1 AUC 2 R squared 3 RMSE 3 MAE 3 R squared 4 RMSE 4 MAE 4

Perf Marginal 60% 72% 1.00 0.10 0.08 1.00 0.05 0.04

Perf Algorithm 60% 72% 1.00 0.08 0.06 1.00 0.04 0.04

Figure 4.1: ROC curve from data I.

Comparison of ROC curves: Data I
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Comparison of ROC curves: Data II
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The second simulated data has 3000 observations. The estimated parameter from

single run is much improved by the proposed method than marginal method in the

perspective of estimation accuracy.

Table 4.9: Simulation results from data II, K = 3000.

TRUE Marginal Algorithm sd.of Alg ∆Marg ∆Alg

β10 0.2 0.31 0.19 0.02 54.3% 4.3%

β11 0.1 0.1 0.06 0.02 2.2% 38.1%

β12 0.2 0.4 0.25 0.02 99.3% 24.6%

β20 0.2 0.33 0.2 0.02 63.2% 0.8%

β21 0.3 0.47 0.29 0.02 57.4% 3.0%

β22 0.1 0.15 0.09 0.02 49.2% 10.7%

β30 0.5 0.49 0.49 0.02 2.4% 2.4%

β31 8 8 8 0.02 0.0% 0.0%

β32 10 9.98 9.98 0.02 0.2% 0.2%

β40 0.4 0.4 0.4 0.02 0.7% 0.6%

β41 5 4.97 4.96 0.02 0.7% 0.7%

β42 8 7.99 7.99 0.02 0.1% 0.1%

σ1 1

σ2 1

σ3 1 1 1 0.01 0.3% 0.3%

σ4 1 1.01 1.01 0.01 1.3% 1.3%

ρ12 0.2 0.13 0.2 0.03 36.6% 2.3%

ρ13 0.3 0.25 0.32 0.02 16.6% 7.3%

ρ14 0.1 0.08 0.1 0.02 22.3% 1.9%

ρ23 0.4 0.32 0.41 0.02 20.7% 2.1%

ρ24 0.2 0.15 0.19 0.02 25.4% 4.8%

ρ34 0.4 0.38 0.38 0.02 5.1% 5.1%
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Table 4.10: Model performance from data II.

AUC 1 AUC 2 R squared 3 RMSE 3 MAE 3 R squared 4 RMSE 4 MAE 4

Perf Marginal 61% 63% 1.00 0.02 0.02 1.00 0.03 0.03

Perf Algorithm 61% 63% 1.00 0.02 0.02 1.00 0.04 0.03

Figure 4.2: ROC curve from data II.
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Comparison of ROC curves: Data II
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Both single run simulation shows that the performance from the proposed model

can be improved by the observation size increase but the performance from marginal

regressions keeps same. One reason may come from the proposed method solve the

equations simultaneously depending on the correlation between data. The more the

data size will make the proposed method catch the correlation structure more accu-

rately. At the same time, we note that the AUROC is almost same for both marginal

regression and the proposed model, which because we truncate the simulated latent

variables to a binary outcome. When we compare the simulated true latent value

to the actual predicted value, we found that the proposed model can provide much

more accurate estimates than marginal regression.
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4.4 Inference of the Composite Likelihood Estimation

The inference for composite likelihood estimation can be found in many litera-

ture [46, 60], we express them here for our special case of the proposed composite

likelihood method.

Theorem 4.4.1 Under the regularity conditions stated in (D1)-(D6) (see Appendix

D), the score function from pairwise composite likelihood (4.4) is unbiased. Therefore,

the estimator form this score function is also unbiased.

Proof. Since the equations (4.4) of the score function S(η) of mixed response

model are linear combinations of valid likelihood score function clj,k(η) associated

with the event probabilities forming the composite log-likelihood function, they im-

mediately satisfy the requirement of being unbiased because the linear combination

of the unbiased estimator is still unbiased.

Theorem 4.4.2 Under the regularity conditions stated in (D1)-(D6) (see Appendix

D), assume the true parameter is θ0, the estimator from maximum the log likelihood

function (4.2) θ̂CMLE is asymptotically normally distributed:

(θ̂CMLE − θ0)
d−→MVNK(0, G−1).
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Proof. The asymptotically normality of CMLE is proved in many literature, we just

give the proof of our specific case used in this dissertation.

Let θ̂CMLE = max
θ

cl(θ).

Define the score function of θCMLE, the first derivative of the composite log

likelihood ∂cl(θ)
∂θ

, then E(∂cl(θ)
∂θ

) = 0 for all θ. Let θ0 be the true unknown parameter

vector value, according to the Central Limit Theorem (CLT), we have

√
N
∂cl(θ0)

∂θ

d−→ NK(0, J),

where J = V ar[∂cl(θ0)
∂θ

], and NK stands for the multivariate normal distribution of

K dimensions.

Since θ̂CMLE is the CML estimator, expanding ∂cl(θ̂CMLE)
∂θ

around the true value

of θ0 in a first-order Taylor series, we obtain

0 =
∂cl(θ̂CMLE)

∂θ
=
∂cl(θ0)

∂θ
+
∂2cl(θ0)

∂θ2
(θ̂CMLE − θ0).

Then we get

θ̂CMLE − θ0 =

(
− ∂2cl(θ0)

∂θ2

)−1
∂cl(θ0)

∂θ
.

From the law of large numbers (LLN), we also have that -∂
2cl(θ0)
∂θ2

d−→ H, which

is the sample mean of ∂2cl(θ0)
∂θ2

converges to the population mean for the quantity H,

E
(
− ∂2cl(θ0)

∂θ2

)
.
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Now applying Slutsky’s theorem, and assuming non-singularity of J and H, we

prove the following limiting distribution:

(θ̂CMLE − θ0)
d−→ NK(0, H−1JH−1).

Let G = HJ−1H, then

(θ̂CMLE − θ0)
d−→ NK(0, G−1).

Theorem 4.4.3 Under the regularity conditions stated in (D1)-(D6) (see Appendix

D), With probability tending to 1, as n → ∞, the estimator from maximum the log

likelihood function (4.2) θ is consistent to θ0 satisfies
√
N(θ − θ0) = Op(1).

Proof.

we know that

cl(θ)− cl(θ0) = cl′(θ0)(θ − θ0) + (θ − θ0) cl′′(θ∗0)(θ − θ0).

Let θ lie on a ball of Cn−
1
2µ, where µ is a unit vector.

1√
n
cl′(θ0) = Op(1),

cl′(θ0) = Op(
√
n),

cl′(θ0)(θ − θ0) = Op(
√
n

1√
n

) = Op(1)),
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cl′′(θ∗0) = Op(n),

(θ − θ0) cl′′(θ∗0)(θ − θ0) = Op(n×
1√
n
× 1√

n
) = Op(1).

Choose C big enough; the second term dominates the first term. Therefore the

local maximum is not on the boundary. Accordingly, there exists a local maximum

that is inside the ball.
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4.5 Conclusions and Future work

we propose a solution to high dimensional mixed response variables regressions

using the pairwise composite likelihood method, which includes both binary (or cat-

egorical) and continuous variables. We leverage the pairwise composite likelihood

method to reduce the dimensions and simplify the problem to three types of bivari-

ate normal distribution problems: two continuous response problems, two discrete

response problems and mixed binary (categorical) and continuous response problems.

The simulation study shows that the proposed pairwise composite likelihood method

can accurately estimate the parameters of coefficients, correlation and standard de-

viations. One advantage of the proposed method is that it can be easily extended to

all kinds of high dimensional response problems: continuous response variables prob-

lem, discrete response variables problems, and mixed response variables problems. A

disadvantage of this method is that the calibration process takes longer time than the

traditional multi-level multivariate regression for the continuous variable problems.

The possible future work is that it can be extended to the high dimensional mixed

response variables with mixed independent variables containing both fixed effects

and random effects.
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5 Conclusions and Future Work

In this thesis, we focus on solving the smoothing problems of the non-monotonic

increasing empirical PD rates in chapter 2 and solving the smoothing the not well-

behaved PD transition matrices in the credit risk area in chapter 3. In chapter

4, we propose using the pairwise composite likelihood method to solve the high

dimensional mixed response problem. PD rates is a critical parameter in the capi-

tal calculation and risk modeling, and a rational PD rates for any portfolio in the

industry-wide follows monotonic increasing property as the associated risk ratings

creditworthiness worsen. However, the observed empirical PD rates usually do not

hold this property due to many kinds of data issues. In chapter 2, we investigate

monotonic smoothing algorithm for the probability of default and transition matrix

using the Constrained Maximum a Posterior (CMAP) methodology for smoothing

the empirical non-monotonic default rates and transition matrices. We also propose

a solution to the high dimensional mixed response variables regression model through

the pairwise composite likelihood methodology. We propose a smoothing algorithm
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to smooth the empirical PD rate. We investigate and compare the performance pro-

posed CMAP method against QMM and CMLE methods on the historical S&P s

data and real data. The results show that all three methods of QMM, CMLE and

CMAP can work in empirical PD rates monotonic smoothing. However, QMM does

not work well as the other two methods in the peak credit period (very low default

situation) and the results from QMM has the lowest likelihood score and MSE statis-

tics in the performance measurement. Compared to CMLE method, the proposed

CMAP has little worse statistical performance regarding the likelihood score and

MSE statistics, and very close regarding the weighted MSE statistics. Nevertheless,

the CMLE method is susceptible to the credit environment change, which may come

from it’s drawback of very sensitive to the sample data. CMAP considers the prior

knowledge of the historical PD rate which assumes the PD rates are normally dis-

tributed with a mean of the Long Run Default Rates (LRA) and can leverage the

external PD rate data which is close to the systematic credit data. Thus CMAP can

provide the less sensitive estimators than CMLE. Because the PD rates change as the

economic cycle change, the sensitive PD estimation will cause the dramatic change

in the financial institution’s capital calculation year over year, which can cause the

financial institutions’ operating difficulty. Accordingly, from the perspective of sta-

bility and consistency of the capital calculation, CMAP method is preferable than
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CMLE since it provides the less sensitive estimated PD rates with very close sta-

tistical performance. Future work with this approach would include applying this

method to the actuarial field to smooth the mortality rate curve which has the hump

shape or bathtub shape and is not monotonic increasing or decreasing. Also, this

approach can be applied to the smooth the yield rates in the fixed income pricing

and market risk calculation.

In chapter 3, following the previous chapters empirical PD rate smoothing al-

gorithm, we propose a smoothing algorithm to smooth the empirical PD transition

matrics to satisfy the industrys expectation. The well-behaved PD transition matrix

should have the properties of monotonic increasing default probabilities, the sum

of PD transition probabilities for each rating is 1 and decreasing transition prob-

abilities as the transition state away from the diagonal (stay at the same rating).

However, the empirical internal PD transition matrix usually does not hold these

properties. We propose a two-step smoothing methodology for the observed transi-

tion matrix, which applies the CMAP on the observed default rates first then conduct

an optimization process to obtain the well-behaved transition matrix with maximum

likelihood score. We apply the proposed algorithm to the S&P s data; the result

shows that the proposed algorithm can provide a reliable PD transition matrix.

In chapter 4, we propose a solution to high dimensional mixed response variables
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regressions using the pairwise composite likelihood method, which includes both bi-

nary (or categorical) and continuous variables. We leverage the pairwise composite

likelihood method to reduce the dimensions and simplify the problem to three types

of bivariate normal distribution problems: two continuous response problems, two

discrete response problems and mixed binary (categorical) and continuous response

problems. The simulation study shows that the proposed pairwise composite likeli-

hood method can accurately estimate the parameters of coefficients, correlation and

standard deviations. One advantage of the proposed method is that it can be easily

extended to all kinds of high dimensional response problems: continuous response

variables problem, discrete response variables problems, and mixed response vari-

ables problems. A disadvantage of this method is that the calibration process takes

longer time than the traditional multi-level multivariate regression for the continuous

variable problems. The possible future work is that it can be extended to the high

dimensional mixed response variables with mixed independent variables containing

both fixed effects and random effects.
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A Notations

To formally study the problem mentioned in the introduction, we introduce no-

tations used in this dissertation here. In this dissertation, the following are some

notations used in the following Chapters. AT denotes the transpose of a matrix A.

vT , vj and ‖v‖ denote the transpose, jth component and the L2 norm of a vector v,

respectively. Let v = (v1, v2, . . . , vp)
T be a p×1 vector, A = (aij) = (a1, . . . ,ap) be a

q× p matrix where aij’s are the elements of A and aj’s are the column vectors of A,

and B = {i1, i2, . . . , ik} be an index set with 1 ≤ i1 ≤ . . . ≤ ik ≤ p. Let |B| denote

the size of B which is equal to k. Denote v[B] = (vi1 , . . . , vik)
T , A[B] = (ai1 , . . . ,aik).

Let IS(t) be the indicator function such that IS(t) = 1 if t ∈ S and IS(t) = 0 oth-

erwise, a+ = a if a > 0 and a+ = 0 otherwise. The latent variable behind observed

variable M is represnted by M∗. Denote the sign function as sgn. Denote the loga-

rithm function as log and exponential function as exp or e respectively. Denote the

inverse function of f(x) as f−1(x). Let f ′(x) and f ′′(x) denote the first and second

order derivatives of a univariate function, f(x) with respect to the scalar x, and let
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∂f(v)/∂v and ∂2f(v)/(∂v∂vT ) denote the first and second order derivative with

respect to the vector v. φ(·) and Φ(·) denote the probability density function (pdf)

and cumulative distribution function (cdf) of a standard normal distribution respec-

tively. N2 and Φ2(·) denote the probability density function (pdf) and cumulative

distribution function (cdf) of a standard bivariate normal distribution respectively
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B Results from Beta Priori for S&P ’s Data

Table B.1: CMAP Results from Beta Prior for S&P data.

Rating 2009 2010 2011 2012 2013

AAA N/A N/A N/A N/A N/A

AA+ N/A N/A N/A N/A N/A

AA 0.0001 0.0001 0.0001 0.0001 0.0001

AA- 0.0001 0.0001 0.0001 0.0001 0.0001

A+ 0.0019 0.0002 0.0002 0.0002 0.0002

A 0.0024 0.0002 0.0002 0.0002 0.0002

A- 0.0002 0.0002 0.0002 0.0002 0.0002

BBB+ 0.0034 0.0004 0.0003 0.0003 0.0003

BBB 0.0020 0.0006 0.0006 0.0006 0.0005

BBB- 0.0089 0.0007 0.0021 0.0006 0.0006

BB+ 0.0010 0.0073 0.0011 0.0009 0.0009

BB 0.0094 0.0048 0.0020 0.0019 0.0018

BB- 0.0093 0.0060 0.0013 0.0079 0.0013

B+ 0.0491 0.0025 0.0055 0.0071 0.0019

B 0.0894 0.0098 0.0138 0.0155 0.0020

B- 0.1445 0.0233 0.0405 0.0348 0.0114

CCC-C 0.3226 0.1845 0.1444 0.2118 0.0281

Clearly, the posteriori estimator from beta distribution is not monotonic in each

year, thus, it cannot be used as the smoothing solution directly in this specific area.

126



C Default Count of Real Data

Table C.1: Real data: the total count at the beginning of the year.

Rating
Total Count in the Portfolio by Years

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

Aaa 22 20 18 16 16 15 14 13 12 11 10 9

Aa1 18 17 16 15 14 13 12 11 10 9 8 7

Aa2 0 0 0 0 0 0 0 0 0 0 0 0

Aa3 3 3 3 3 2 2 2 3 3 3 2 1

A1 14 13 13 12 11 10 9 8 7 7 7 6

A2 7 5 4 3 2 2 2 2 1 0 0 0

A3 71 66 63 60 57 53 56 45 41 38 39 36

Baa1 329 310 288 269 251 234 218 203 190 177 165 151

Baa2 399 377 350 324 301 280 259 235 212 193 173 154

Baa3 1091 983 882 786 695 608 519 449 383 346 309 278

Ba1 876 808 742 684 626 573 523 476 435 361 301 249

Ba2 907 817 732 636 559 474 400 355 316 296 269 240

Ba3 532 489 456 428 398 370 347 317 281 253 227 204

B1 465 429 398 365 333 302 274 251 230 213 203 194

B2 378 352 317 283 251 230 207 188 172 156 142 127

B3 56 52 47 42 38 32 29 25 19 15 13 13

Caa1 51 47 28 40 36 31 44 25 24 22 20 18

Caa2 1 1 1 1 16 9 5 3 1 1 1 1

Caa3 0 0 0 0 1 1 1 1 0 0 0 0

Ca 8 7 6 5 21 16 12 10 4 3 2 0
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Table C.2: Real data: the default count during the observation year.

Rating
Total Default in the Portfolio by Years

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

Aaa 0 0 0 0 0 0 0 0 0 0 0 0

Aa1 0 0 0 0 0 0 0 0 0 0 0 0

Aa2 0 0 0 0 0 0 0 0 0 0 0 0

Aa3 0 0 0 0 0 0 0 0 0 0 0 0

A1 0 0 0 0 0 0 0 0 0 0 0 0

A2 0 0 0 0 0 0 0 0 0 0 0 0

A3 0 0 0 0 0 0 0 0 0 0 0 0

Baa1 0 0 0 0 0 0 0 0 0 0 1 0

Baa2 0 0 0 0 0 0 0 0 0 0 0 0

Baa3 0 0 0 1 1 1 1 1 1 1 1 1

Ba1 1 1 2 1 1 1 0 0 0 0 0 0

Ba2 1 1 1 1 2 2 1 1 0 0 0 0

Ba3 1 1 0 2 2 2 5 3 2 3 1 1

B1 3 2 2 2 1 0 0 0 0 0 0 0

B2 3 3 3 2 3 4 3 2 2 1 1 0

B3 0 0 0 0 1 0 0 0 0 0 0 0

Caa1 0 0 0 0 0 0 0 0 0 0 0 0

Caa2 0 0 0 0 1 1 0 0 0 0 0 0

Caa3 0 0 0 0 0 0 1 0 0 0 0 0

Ca 0 0 0 0 2 2 1 1 0 0 0 0
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Comparison of Realized and Estimated Default Rates

PD Curves of Raw data, CMLE and CMAP

Note: The Caa3 for year 2009 is 1
Year

PD
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2004 2006 2008 2010 2012 2014

CMLE CMAP

0.00

0.05

0.10

0.15

 Raw
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B3
Caa1
Caa2
Caa3
Ca

Figure C.1: Please note that the realized default rate for Caa3 at year

2000 is 1, we modify it to .2 for showing at this image.
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Comparison of Realized and Estimated Default Rates by Rating Grades

Comparison of Estimated PDs

Year

PD

0e+00
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4e−04

6e−04
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4e−04

6e−04
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Aa3
A1

Figure C.2: For the best risk rating grades, both CMLE and CMAP give

the estimated PDs although the realized default rates are 0 for these

rating grades. And CMAP gives higher estimation for these ratings in

the worse economic environment (year 2008).
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Comparison of Estimated PDs

Year
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Figure C.3: For the rating just above investment grade, the estimated

PDs from CMAP is close to the estimated PDs from CMLE, but higher

in the worse economic environment (year 2008).
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Comparison of Estimated PDs

Year
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Figure C.4: For the speculative rating grades, compared to CMLE

method, the CMAP method generate the estimated PDs is higher in

the better economic environment and lower in the worse economic envi-

ronment (year 2008).
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Comparison of Estimated PDs
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Figure C.5: For the worst risk rating grades, the CMAP’s estimation

is higher is higher in the better economic environment and lower in the

worse economic environment (year 2008).

133



D Regularity Conditions in Composite

Likelihood

(D1). The marginal density function of x , f(x; θ) is distinct for different values

of x, i.e. if θ1 6= θ2 then P (f(x; θ1) 6= f(x; θ2)) > 0, for all observations of X.

(D2). The marginal densities of x have common support for all θ.

(D3). The true value θ0 is an interior point of Ω, the space of possible values of

the parameter θ.

(D4). Let I and OI denote the index and partial derivative operator, respectively,

as in the standard multi-index notation from multivariable calculus. The marginal

density log f is three times continuously differentiable in a closed ball around θ0.

Moreover, there exists a constant C and an integrable function L(x) such that

|OIOiθ log f(x; θ)| ≤ L(x),

for all ||θ − θ0|| ≤ C, all |I| = 2, and any i = 1, ..., N . Here, || · ||2 denotes the

Euclidean norm.
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(D5). J(θ0) is well-defined (i.e. exists and is finite) and invertible.

(D6). H(θ0) is well-defined (i.e. exists and is finite) and (strictly) positive definite

(Also, this regularity conditions can be seen in [54]).
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E Derivatives for Both Continuous Response

Variables
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F Derivatives for Both Binary Response

Variables

µ(1) = X(1)T ∗ β∗1

µ(2) = X(2)T ∗ β∗2

s1 = 2z(1) − 1

s2 = 2z(2) − 1

ρ̃12 = s1s2ρ12

q1 = s1µ
(1)

q2 = s2µ
(2)

Σ̃12 =

 1 ρ̃12

ρ̃12 1
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Si =
qi
σi

δi =
1√

1− ρ̃12
2

Q1 = δi(S2 − ρ̃12S1)

Q2 = δi(S1 − ρ̃12S2)

W1 = φ1(S1)Φ1(Q1)

W2 = φ1(S2)Φ1(Q2)

And we can derive that

δiφ(S1)φ(Q1) = δiφ(S2)φ(Q2) = φ2(S1, S2, ρ̃12).

To simplify our derivatives, we use the following notations,

φb2 = φ2(S1, S2, ρ̃12),

Φb
2 = Φ2(S1, S2, ρ̃12).
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Then, the score function will be

∂l1,2(η)

∂η
=

1

Φ2(
s1XT

1 β
∗
1

σ1
,
s2XT

2 β
∗
2

σ2
, ρ̃12)

∂Φ2(
s1XT

1 β
∗
1

σ1
,
s2XT

2 β
∗
2

σ2
, ρ̃12)

∂η

=
1

Φ2(
q∗1
σ1
,
q∗2
σ2
, ρ̃12)

∂Φ2(
q∗1
σ1
,
q∗2
σ2
, ρ̃12)

∂η

=
1

Φ2(S1, S2, ρ̃12)

∂Φ2(S1, S2, ρ̃12)

∂η

=
1

Φb
2

∂Φb
2

∂η
.

And the detail first and second derivatives of the score function are

∂l12

∂β∗1
=

s1

σ1

W1

Φb
2

·X1,

∂l12

∂β∗2
=

s2

σ2

W2

Φb
2

·X2,

∂l12

∂σ1

= −∂l12

∂β∗1

β1

σ1

,

∂l12

∂σ2

= −∂l12

∂β∗2

β2

σ2

,

∂l12

∂ρ12

=
s1s2φ

b
2

Φb
2

,

∂2l12

∂β∗21

= −X1X
′
1

σ2
1

[S1W1

Φb
2

+
ρ̃12φ

b
2

Φb
2

+
W 2

1

Φ2
2

]
,

∂2l12

∂β∗22

= −X2X
′
2

σ2
2

[S2W2

Φb
2

+
ρ̃12φ

b
2

Φb
2

+
W 2

2

Φ2
2

]
,

∂2l12

∂β∗1∂β
∗
2
′ =

s1s2X1X
′
2

σ1σ2

[φb2
Φb

2

− W1W2

Φb2
2

]
,
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∂2l12

∂β∗1∂ρ12

=
s2X1

σ1

φb2
Φb

2

[
ρ̃12δiQ1 − S1 −

W1

Φb
2

]
,

∂2l12

∂β∗2∂ρ12

=
s1X2

σ2

φb2
Φb

2

[
ρ̃12δiQ2 − S2 −

W2

Φb
2

]
,

∂2l12

∂β∗1∂σ1

=
s1

σ1

[
− W1

σ1Φb
2

+
S1W1q1 + φb2ρ̃12q1

Φb
2σ

2
1

+
W 2

1 q1

Φb2
2 σ

2
1

]
X1,

∂2l12

∂β∗2∂σ2

=
s2

σ2

[
− W2

σ2Φb
2

+
S2W2q2 + φb2ρ̃12q2

Φb
2σ

2
2

+
W 2

2 q2

Φb2
2 σ

2
2

]
X2,

∂2l12

∂β∗1∂σ2

=
s1q2

σ1σ2
2

[
− φb2

Φb
2

+
W1W2

Φb2
2

]
X1,

∂2l12

∂β∗2∂σ1

=
s2q1

σ2σ2
1

[
− φb2

Φb
2

+
W1W2

Φb2
2

]
X2,

∂2l12

∂σ1
2

=
2q1

σ3
1

W1

Φb
2

− q1

σ2
1

[S1W1q1 + φb2ρ̃12q1

Φb
2σ

2
1

+
W 2

1 q1

Φb2
2 σ

2
1

]
,

∂2l12

∂σ2
2

=
2q2

σ3
2

W2

Φb
2

− q2

σ2
2

[S2W2q2 + φb2ρ̃12q2

Φb
2σ

2
2

+
W 2

2 q2

Φb2
2 σ

2
2

]
,

∂2l12

∂ρ12∂σ1

= −s2X1β1

σ2
1

φb2
Φb

2

(
δiρ̃12Q1 − S1 −

W1

Φb
2

)
,

∂2l12

∂σ1∂σ2

= − q1q2

σ2
1σ

2
2

(
− φb2

Φb
2

+
W1W2

Φb2
2

)
,

∂2l12

∂ρ12∂σ2

= −s1X2β2

σ2
2

φb2
Φb

2

(
δiρ̃12Q2 − S2 −

W2

Φb
2

)
,

∂2l12

∂ρ12
2

=
φb2
Φb

2

[
δ2
i ρ̃12

(
1− δ2

i (S
2
1 + S2

2 − 2ρ̃12S1S2)
)

+ δ2
i S1S2 −

φb2
Φb

2

]
.
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G Derivatives for Mixed Response Variables

∂ljk
∂ηjk

=
∂

∂ηjk
logP (ck) +

[ 1(z(j) = 0)

Φ(z(j)|z(k))
− 1(z(j) = 1)

1− Φ(z(j)|z(k))

]∂Φ(dj)

∂ηjk

= − 1

σk

∂σk
∂ηjk

− ck
∂ck
∂ηjk

+
[ 1(z(j) = 0)

Φ(z(j)|z(k))
− 1(z(j) = 1)

1− Φ(z(j)|z(k))

]
φ(dj)

∂dj
∂ηjk

∂2ljk
∂ηjk∂ηTjk

=
( 1

σ2
k

∂σk
∂ηjk

∂σk
∂ηT
− 1

σk

∂2σk
∂ηjk∂ηTjk

− ∂ck
∂ηjk

∂ck
∂ηTjk

− ck
∂2ck

∂ηjk∂ηTjk

)
+
[
− 1(z(j) = 0)

Φ2(z(j)|z(k))
− 1(z(j) = 1)(

1− Φ(z(j)|z(k))
)2

][
φ(dj)

2 ∂dj
∂ηjk

∂dj
∂ηjkT

]
+
[ 1(z(j) = 0)

Φ(z(j)|z(k))
− 1(z(j) = 1)

1− Φ(z(j)|z(k))

]
×
[
− djφ(dj)

∂dj
∂ηjk

∂dj
∂ηTjk

+ φ(dj)
∂2dj

∂ηjk∂ηjkT

]
To get the first and second order derivatives, we need to use the following deriva-

tives function from the normal density function,
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Φ′(dj) = φ(dj),

φ′(ck) = −ckφ(ck),

φ′′(ck) = (c2
k − 1)φ(ck),

∂

∂ηjk
logP (ck) =

∂ log( 1
σk
φ(ck))

∂ηjk

=
∂

∂ηjk
log φ(ck)−

log σk
∂ηjk

=

∂φ(ck)
∂ηjk

φ(ck)
−

∂σk
∂ηjk

σk

=
−ckφ(ck)

∂ck
∂ηjk

φ(ck)
−

∂σk
∂ηjk

σk

= −ck
∂ck
∂ηjk

− 1

σk

∂σk
∂ηjk

,

∂2 logP (ck)

∂ηjk∂ηTjk
=

1

σ2
k

∂σk
∂ηjk

∂σk
∂ηTjk

− 1

σk

∂2σk
∂ηjk∂ηTjk

− ∂ck
∂ηjk

∂ck
∂ηTjk

− ck
∂2ck

∂ηjk∂ηTjk
,

∂Φ(dj)

∂ηjk
= φ(dj)

∂dj
∂ηjk

,

∂2Φ(dj)

∂ηjk∂ηTjk
= −djφ(dj)

∂dj
∂ηjk

∂dj
∂ηjkT

+ φ(dj)
∂2dj

∂ηjkT∂ηjkT
.
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Accordingly, the detail first derivatives for ηjk is as below,

∂ck
∂βk

= − 1

σk
X(k),

∂ck
∂σk

= − 1

σk
ck,

∂dj
∂βk

=
ρjkX

(k)

σk
√

1− ρ2
jk

,

∂dj
∂βj

= − X(j)

σj
√

1− ρ2
jk

,

∂dj
∂σk

=
ρjkck

σk
√

1− ρ2
jk

,

∂dj
∂σj

=
X(j)βj

σ2
j

√
1− ρ2

jk

,

∂dj
∂ρjk

= − ck√
1− ρ2

jk

− X(j)βjρjk

σj(1− ρ2
jk)

3
2

−
ρ2
jkck

(1− ρ2
jk)

3
2

,

∂ljk
∂βk

=
ck
σk
X(k) +

[ 1(z(j) = 0)

Φ(z(j)|z(k))
− 1(z(j) = 1)

1− Φ(z(j)|z(k))

]φ(dj)ρjkX
(k)

σk
√

1− ρ2
jk

,

∂ljk
∂βj

=
[ 1(z(j) = 0)

Φ(z(j)|z(k))
− 1(z(j) = 1)

1− Φ(z(j)|z(k))

][
− φ(dj)X

(j)

σj
√

1− ρ2
jk

]
,

∂ljk
∂σk

= − 1

σk
+
c2
k

σk
+
[ 1(z(j) = 0)

Φ(z(j)|z(k))
− 1(z(j) = 1)

1− Φ(z(j)|z(k))

] φ(dj)ρjkck

σk
√

1− ρ2
jk

,

∂ljk
∂σj

=
[ 1(z(j) = 0)

Φ(z(j)|z(k))
− 1(z(j) = 1)

1− Φ(z(j)|z(k))

]
φ(dj)

X(j)βj

σ2
j

√
1− ρ2

jk

,
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∂ljk
∂ρjk

=
[ 1(z(j) = 0)

Φ(z(j)|z(k))
− 1(z(j) = 1)

1− Φ(z(j)|z(k))

]
φ(dj)

×
[
− ck√

1− ρ2
jk

− X(j)βjρjk

σj(1− ρ2
jk)

3
2

−
ρ2
jkck

(1− ρ2
jk)

3
2

]
.

and the detail second derivatives are

∂2ck
∂σ2

k

=
2

σ2
k

ck,

∂2ck
∂βk∂σk

=
1

σ2
k

xk,

∂2dj
∂ρjk∂σj

=
ρjk(X

(j)βj)

σ2
j (1− ρ2

jk)
3
2

,

∂2dj
∂ρjk∂σk

=
ck
σk

[ 1√
1− ρ2

j,k

+ ρ2
j,k(1− ρ2

j,k)
− 3

2

]
,

∂2dj
∂βj∂σj

=
X(j)

σ2
j

√
1− ρ2

jk

,

∂2dj
∂βj∂ρjk

= − X(j)ρjk

σj(1− ρ2
jk)

3
2

,

∂2dj
∂βk∂ρjk

=
X(k)

σk

[ 1√
1− ρ2

jk

+ ρ2
jk(1− ρ2

jk)
− 3

2

]
,
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∂2dj
∂σk∂βk

= − ρjkX
(k)

σ2
k

√
1− ρ2

jk

,

∂2dj
∂σ2

k

= − 2ρjkck

σ2
k

√
1− ρ2

jk

,

∂2dj
∂σ2

j

= − 2X(j)Tβj

σ3
j

√
1− ρ2

jk

,

∂2dj
∂ρ2

jk

= − ckρjk

(1− ρ2
jk)

3
2

− X(j)βj
σj

[ 1

(1− ρ2
jk)

3
2

+
3ρ2

jk

(1− ρ2
jk)

5
2

]
− ck

[ 2ρjk

(1− ρ2
jk)

3
2

+
3ρ3

jk

(1− ρ2
jk)

5
2

]
.
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