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Abstract

Time-dependent density functional theory (tddft) is an alternate formulation
of time-dependent N -body quantum mechanics which allows one to describe
a system via the single-particle density, n, rather than the full N -body wave
function. While this reformulation is in theory exact in practice it necessitates at
least two approximations. First, the exchange-correlation potential which encodes
the two-particle interactions present in the time-dependent Schrödinger equation
into the language of the single-particle description is not precisely known. Even
if one had perfect knowledge of this potential a further approximation would
be required when attempting to extract the values of observables as the exact
relation between the one-particle density and most observables of interest is also
unknown.

This dissertation investigates these issues using ion-atom collision systems as
a testbed. First, the observable problem is explored in antiproton-helium, proton-
helium, and He2+-He collision systems. Total cross sections for all charge transfer
processes in these systems, the observables of choice in the present situation, are
determined using a two-centred extension of a correlation-integral model that was
originally applied to single-centred situations.

Following this theoretical total cross section results for all ionization/capture
processes in the He+-He collision system are presented in the approximate im-
pact energy range 10-1000 keV/amu. Calculations were performed within the
framework of a spin-dependent extension of tddft. These cross sections are used
as a benchmark to test an accurate exchange-correlation potential generated via
the Krieger-Li-Iafrate approximation applied within the exchange-only limit in
which correlation is ignored. The results of two models, one where electron
translation factors in the orbitals used to calculate the potential are ignored and
another where partial electron translation factors are included, are compared
with available experimental data as well as a selection of previous theoretical
calculations.
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Chapter 1

Introduction

Atomic collision systems are of interest both on their own merits, and for their
potential in applications. As a particular example the He+-He collision system, a
focus of a large portion of the present work, is applicable in such diverse areas as
fusion reactors [1, 2], astrophysics [3, 4], and dark matter detection [5].

From the point of view of theory, atomic collision systems are often explored
as testbeds for few-electron quantum dynamics. A helium-like target, consisting
of two electrons and a nucleus, and a bare projectile represent the archetypal
few-electron collision system. The simplest example of such a system uses an
antiproton, the negatively charged antiparticle of the proton, as the projectile.
With a negative projectile the collision may be treated as an effective one-centred
system which involves electron excitation and ionization.

One might envision more complex systems by simply increasing the number
of electrons on the target, however, a more useful course is to replace the negatively
charged projectile with one that is positively charged. With a positive projectile
one must consider electron transfer in addition to ionization processes.

Even more complex collision systems may be created by adding active elec-
trons to the projectile. With this addition one must consider various combinations
of ionization from both centres as well as transfers between target and projectile.

This chain of accruing complexity essentially describes the path of this work
in which a series of increasingly involved collision systems are investigated. This
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sequence begins with a negative projectile, that is with an antiproton-helium
system. Following this two systems, proton-helium (p-He) and fully stripped
helium ions on helium (He2+-He), involving positively charged projectiles are
investigated. Finally, a singly charged helium ion incident on a helium atom
(He+-He), a system which contains one electron on the projectile and two on the
target, was studied.

Solving the Schrödinger equation describing a system of more than two
particles is computationally taxing, even for a small number of particles (three
or more). Thus, the so called few-body problem tests the limits of current
computational power. As an example, recently Gainullin and Sonkin presented a
method for directly solving the time-dependent Schrödinger equation [6]. In this
work the authors performed a benchmark proton-hydrogen collision calculation.
With code running on 16 gpus their single electron calculation was completed
in 16 hours. The authors then make the claim that similar performance for a
two-electron system would require access to 1000 gpus.

Perhaps the next best option for tackling a many-body system is the close-
coupling method [7]. Rather then determine the N -body wave function directly
this method relies on a truncated basis expansion to approximate the exact wave
function. A balance must then be found between numerical accuracy and com-
putational intensity. As one increases the number of included basis states the
approximation will approach the exact solution provided the basis used is com-
plete, however, the effort required to achieve a solution also approaches that of a
direct calculation.

A popular alternative comes from perturbation theory. One makes use of the
Born series to describe the transition matrix with respect to free-particle states
which represent the collision system at asymptotic times before and after the
collision. A general feature of perturbative methods is that they have a limited
range of applicability. The Born computable series is generally convergent at
high energies and for weak interactions (in the context of ion-atom collisions this
means low charge-state projectiles). These methods can be improved and extended
into the intermediate energy regime by clever choices for the unperturbed states [8,
9] (i.e. by using distorted instead of plane waves).

Another alternative is the classical trajectory Monte Carlo method [10]
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(ctmc). In the ctmc multiple calculations are performed where particles are
evolved according to the classical Hamiltonian with initial conditions randomly
selected from a distribution, usually one describing the quantum mechanical ini-
tial state in coordinate or momentum space. The primary failing of this method
is its classical nature: the ctmc is fundamentally incapable of capturing purely
quantum mechanical phenomena such as tunnelling and exchange.

Time-dependent density functional theory [11, 12] (tddft), the method of
choice of the current work, attempts to provide a solution to all of the problems
inherent in the above mentioned methods. By reformulating the N -body problem
in terms of the one-particle density rather than the N -electron wave function the
problem is effectively reduced to the complexity of a single-particle calculation.
Additionally as the reformulation is theoretically exact it avoids the restricted
applicability of perturbative methods. While it may seem strange that all of the
complexity of the N -body wave function can be captured by a single particle
quantity like the one-particle density, tddft has been successfully applied to a
wide range of problems. Most obviously given the title of this dissertation tddft

has been applied to ion-atom collisions [13]. Many of the same techniques of
this realm can be applied to the related field of laser interactions with atoms and
molecules (see for example Chapters 24 and 25 in Ref. [11]). tddft has also been
used to determine properties of extended solids (e.g. ionic crystals) [14] and of
complex organic and inorganic molecules [15].

While useful tddft is not without its own drawbacks. One downside is that,
unlike in standard quantum mechanics, observables are not readily calculable
as they are from the many-electron wave function. While the Runge-Gross
theorem [16] guarantees that all observables are expressible as functionals of the
one-particle density, exact expressions are only available in a limited number
of cases [17]. In most situations one is then forced to work with approximate
observable functionals.

Additionally, when working within the context of tddft one typically deter-
mines the one-particle density via an auxiliary system of non-interacting particles.
To obtain this a new potential, the Kohn-Sham potential (ks), which encodes the
interacting system into the language of non-interacting particles, must be intro-
duced. As with the observables, mentioned above, this potential is an unknown
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functional of the one-particle density and, as such, must also be approximated.
This dissertation addresses both issues in the context of ion-atom collisions.

The relevant dft background is presented in Chap. 2. Chapter 3 of this work
largely concerns itself with an investigation of the observable problem using
antiproton-, proton-, and He2+-He collision systems as testbeds. Here a corre-
lation integral model [18] that was adapted to describe single-centred collision
problems [19] is extended to characterize two-centred systems. The second of the
main problems of dft is explored in Chap. 4 where a procedure for accurately ap-
proximating the Kohn-Sham potential is implemented and applied to the He+-He
collision system. Finally, a summary of the results and conclusions of this work
are given in Chap. 5.

Atomic units (~ = me = e = 4πε0 = 1) are used throughout unless otherwise
stated.

4



Chapter 2

Density Functional Theory

This chapter concerns itself with a brief introduction to the world of density-
functional theory, both ground-state [20] (dft) and time-dependent [11, 12, 21]
(tddft). This discussion begins with an overview of various existence theorems
central to density functional theory (Sec. 2.1). Next, the Kohn-Sham equations
are introduced in Sec. 2.2. More practical matters are considered when two of the
main problems of density functional theory, the observable problem (Sec. 2.3) and
the determination of the exchange-correlation potential (Sec. 2.4) are presented.
The discussion of the xc-potential is focused on the optimized potential method
(Sec. 2.4.1) and the Krieger-Li-Iafrate approximation (Sec. 2.4.2).

2.1 dft and tddft Existence Theorems

In the standard treatment of non-relativistic many-body quantum mechanics a
system is described by a wave function Ψ which, depending upon the situation, is
determined by either the time-dependent Schrödinger equation (tdse)

Ĥ (t )Ψ(t ) = i
dΨ(t )
dt

, (2.1)

or the stationary Schrödinger equation (sse)

ĤΨ = EΨ. (2.2)
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If the system in question consists of N electrons then Ψ becomes a function of N
position variables ri and spin variables σi =↑, ↓. The Hamiltonian, Ĥ , may be
decomposed into a kinetic energy term

T̂ = −
1
2

N∑
j=1
∆ j, (2.3)

an electron-electron term

V̂ee =
1
2

N∑
k, j

1��rk − r j ��, (2.4)

and a, possibly, time-dependent external potential

V̂ext =

n∑
j=1

vext(r j, σ j, t ). (2.5)

The function V̂ext contains all of the one-body interactions, including the nuclear
and any external potentials.

Given the one-particle electronic density

n(r, t ) = N
∑

σ1 ...σN

∫
d3r2 . . . d3rN |Ψ(r, σ1, r2, σ2, . . . , rN , σN )|

2 (2.6)

the Hohenberg–Kohn theorem [22] in the stationary case and the Runge-Gross
theorem [16] in the time-dependent case establish a one-to-one mapping between
the one-particle density n and the external potential V̂ext. The potential is then a
unique functional of the one-particle density

V̂ext = V̂ext[n]. (2.7)

It should be noted that for time-dependent systems this mapping is unique only
up to the addition of an arbitrary time-dependent function. As this serves only
to introduce a phase into the associated wave function Ψ[V̂ext] it can be safely
ignored in all future discussions. For more on this see the discussion following
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Eq. (2.16).
In general, the time-dependent external potential will also be a functional of

the initial state of the system Ψ0. For a system consisting of a single electron no
such initial-state dependence exists [23, 24], for two or more electrons the initial-
state dependence is not necessarily unique [25–28]. Fortunately, in most cases of
interest initial-state dependence is not an issue. As an example any system initially
in the ground state, as is the case in this work, may appeal to the Hohenberg-Kohn
theorem to guarantee that functionals depend uniquely on the initial state.

We have formulated the density-potential mapping for an explicitly spin-
dependent system, it then must be noted that the original existence theorems
were not formulated in such general terms. Luckily, generalizations for both the
stationary [29, 30] and time-dependent [31] cases to spin-polarized systems exist.

2.2 The Kohn-Sham Equations

In practice the correspondence between the density and potential is used to map
the interacting many-body sse or tdse onto an auxiliary non-interacting system.
The density-potential mappings discussed in the previous section allow one to
rewrite the interacting system in terms of an auxiliary system of non-interacting
particles described by the functions ϕ jσ ( j = 1, . . . ,Nσ , N = N↑ + N↓) with

n =
∑
σ

Nσ∑
j=1

��ϕ jσ
��2 , (2.8)

where n is the one-particle density of the fully interacting system. The orbitals
ϕ jσ are determined through the stationary or time-dependent Kohn-Sham equa-
tions [29, 32–34] (sks, tdks respectively)(

−
∆

2
+ vσ

ks
[n↑, n↓](r)

)
ϕ jσ(r) = ε jσϕ jσ(r), (2.9)

i
∂

∂t
ϕ jσ =

(
−
∆

2
+ vσ

ks
[n↑, n↓](r, t )

)
ϕ jσ(r, t ), (2.10)
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where the ε jσ appearing in Eq. (2.9) are the Kohn-Sham eigenvalues and the
quantities n↑, n↓ are the spin-up/down one-particle densities defined by

nσ =
Nσ∑
j=1

��ϕ jσ
��2 , (2.11)

such that
n = n↑ + n↓. (2.12)

The potential in Eqs. (2.9) and (2.10) is known as the Kohn-Sham potential.
This potential may be simplified by splitting it into a series of less complex objects

vσ
ks
[n↑, n↓] = vext + vH[n] + vσxc[n↑, n↓]. (2.13)

The first term in this expression is the external potential (see the right hand side
of Eq. 2.5). The next term is the Hartree screening potential

vH(r, t ) =
∫

n(r′, t )
|r − r′ |

d3r ′. (2.14)

The last term is the exchange-correlation potential which encodes the complicated
electron-electron interaction potential into the language of the non-interacting
system. For convenience this is often further broken down into separate exchange
and correlation potentials

vσxc = vσx + vσc . (2.15)

2.3 Observables

In the standard treatment of many-body quantum mechanics there is a well
established process for calculating observables from the full many-body wave
function describing the system. For any solution Ψ, unique up to a phase factor, of
the sse or tdse and any observable Ô we immediately have the unique functional

O[Ψ] = 〈Ψ|Ô |Ψ〉 , (2.16)
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so long as Ô contains no time-derivative terms.
The density-potential mappings of Sec. 2.1 provide the relation

n 7→ V̂ext[n] + c(t ). (2.17)

As the function c only serves to introduce another phase factor we may use the
uniqueness of solutions of the sse/tdse to define a map

n 7→ V̂ext 7→ Ψ 7→ O (2.18)

or,O = O[n].
In principle all observables are functionals of the one-particle density. How-

ever, in practice the exact functional is only known in a handful of cases [17,
p. 211-213]. This discussion will be made far more explicit in Sec. 3.2 where the
difficulties of extracting observables, total cross sections in this case, are described
in detail.

2.4 xc-potential

Consider the energy functional for the interacting system

E[n] = 〈Ψ[n]|Ĥ |Ψ[n]〉 = T [n] + Eee [n] + Eext[n] (2.19)

where the energies on the right-hand side are the contributions from the con-
stituent operators Eq. (2.3)–(2.5). Similarly, we may define the energy functional
for the non-interacting, ks, system as

Es [n] = Ts [n] + Exc[n] + EH[n] + Eext[n]. (2.20)

Making use of the fact that the energy is a unique functional of the density it
follows that

Exc = T −Ts + Eee − EH. (2.21)

9



Finally making use of the fact that the ground-state one-particle density will
minimize the energy it follows that

δExc[n]
δnσ(r)

= vσxc[n](r). (2.22)

The universality of the xc-functional [20] means that once an approximation to
Exc has been found we may apply the resulting potential to any system. Of course,
some approximations will be better suited to certain situations.

There are a few caveats to apply Eq. (2.22). First, the functional is only defined
for the set of ground-state v -representable densities, those densities which arise
as ground-state solutions of the sse for some potential v . The second problem
follows from the first. Due to the fact that not all densities are v -representable [35–
37], one must establish that the set of functions for which the functional is defined
is dense enough to ensure the existence of the functional derivative. For densities
defined on a lattice [38] as well as the general case [35, 39–43] both the issue of
v -representability and the existence of the functional derivatives of the energy
functional have been addressed.

In the case of tddft one can no longer rely upon minimizing the energy
functional when seeking solutions. Instead one looks for stationary points of the
quantum mechanical action [44]

A[n] =
∫ t f

ti
dt 〈Ψ[n]|i

∂

∂t
− Ĥ (t )|Ψ[n]〉 . (2.23)

In analogy to the ground-state case the exchange-correlation part of the action
may be defined in terms of the difference between the actions for the interacting
and non-interacting systems. We then find at a stationary point:

δAxc[n]
δnσ(r, t )

= vσxc[n](r, t ). (2.24)

In addition to similar issues of v -representability and functional differentiabil-
ity the action Eq. (2.23) does not distinguish the direction of time and thus its
naive use may lead to violations of causality [45]. The existence of functional
derivatives has been established in a similar style as in the stationary case [46].
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The problem of which densities are v -representable has also been solved [47]. The
causality problem may be solved in several ways including extending the time
domain to the Keldysh contour [48] and relaxing the boundary condition on one
end point of the time interval [49].

The simplest explicit density functional is the local density approximation [32]
(lda). At its simplest the lda approximates the energy functional of a general
system as that of the homogeneous electron gas (heg)

Elda[n] =
∫

d3r n(r)εheg(n), (2.25)

where εheg is the energy density of the heg, which is a function of the density of
the gas. Exchange contributions to εheg have been determined analytically [50].

Taking things further one is led to the hierarchy of increasingly complex gen-
eralized gradient approximations and hybrid functionals [51]. For time-dependent
systems one may simply apply one of the many ground-state functionals to arrive
at an adiabatic approximation in which the xc-potential depends only on the
instantaneous density. Going beyond the adiabatic approximation is possible,
however such functionals are much more complex. As an example the fully
time-dependent version of the lda, the local deformation approximation [52, 53]
(tdldefa) can be mentioned. A complete description of the time-time dependent
xc-potential is a complicated task. Such a model would need to capture a wide
range of phenomena. It has been shown that derivative discontinuities [54] and
memory effects (see, for instance, the discussions in [11] and [12]) are important.

2.4.1 Optimized Potential Method

An alternate approach to the explicit density functionals mentioned above is to
employ an implicit density functional. For an implicit functional the xc-potential
may be determined indirectly from the ks-orbitals, and their eigenvalues, through
a procedure known as the optimized potential method [55, 56] (opm) for which
there are several derivations [55–60].

Without reproducing too many long equations one may use Eq. (2.22) and
several applications of the chain rule for functional derivatives to arrive at (c .c .
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denoting the complex conjugate of the preceding term)

vσxc(r) =
∫

d3r ′
δvσ

ks
(r′)

δnσ(r)

×
∑
j

{∫
d3r ′′

[
δExc

δϕ jσ(r′′)
δϕ jσ(r′′)
δvσ

ks
(r′)
+ c .c .

]
+

δεk
δvσ

ks
(r′)

∂Exc

∂εk

} (2.26)

from which the opm integral equation is then derived. A similar derivation for
the time-dependent case leads to the time-dependent opm equation [61]. In either
situation an appropriate choice of Exc or Axc can include both exchange and
correlation effects [59, 61]. With that said the opm is typically used to calculate
exact exchange using the functional

Ax[ϕ jσ(r, t )] =
∫

dt Ex[ϕ jσ(r, t )]

= −
1
2

∫
dt

∑
σ

∑
j,k

∫
d3rd3r ′

×
ϕ∗jσ(r

′, t )ϕ∗kσ(r, t )ϕ jσ(r, t )ϕkσ(r′, t )

|r − r′ |
.

(2.27)

After some work the stationary version of the exchange-only opm will then
follow from Eq. (2.26) and the Fock exchange energy in Eq. (2.27). The result
may be expressed, adapting the notation of [62], as∑

j

∫
d3r ′

[
vσx (r′) − ṽ jσ(r′)

]
G jσ(r′, r)ϕ∗jσ(r

′)ϕ jσ(r) + c .c . = 0, (2.28)

where G jσ are the Green’s functions

G jσ(r, r′) =
∑
k, j

ϕkσ(r)ϕ∗kσ(r
′)

εkσ − ε jσ
(2.29)

and

ṽ jσ(r) = −
∑
k

∫
d3r ′

ϕ∗jσ(r
′)ϕ∗kσ(r

′)ϕkσ(r)

|r − r′ | ϕ∗jσ(r)
. (2.30)
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2.4.2 The Krieger-Li-Iafrate Approximation

Solving of the full opm integral equation can be quite difficult. To aid in this
process the Krieger-Li-Iafrate approximation [63] (kli) may be used. One can
think of kli as a closure approximation where the complicated interactions
between orbitals are simplified by the introduction of an average energy difference
∆εσ ≈ εkσ − ε jσ in the Green’s functions. Returning to the exchange-only
example introduced earlier this approximation causes Eq. (2.28) to become

vσx (r) =

∑
j
ϕ∗jσ(r)ϕ jσ(r)

[
ṽ jσ(r) + v̄ jσx − v̄ jσ

]
n(r)

, (2.31)

where
v̄ jσ =

∫
d3r ϕ∗jσ(r)ϕ jσ(r)ṽ jσ(r) (2.32)

and v̄ jσx is defined similarly.
If one then multiplies both sides of Eq. (2.31) by ϕ∗lσ(r)ϕlσ(r) and integrates

over d3r one is left with a set of linear equations for v̄σlσ . This approximation
turns the complex opm integral equation into a much simpler linear system of
equations.

It should be noted that while several variations of the klimethod exist [63–65]
they differ by only a term proportional to ∂Exc/∂εk which, for functionals such
as the exact exchange functional that do not depend on the ks eigenvalues does
not contribute. Of particular interest is the method of Ref. [64] where the the kli
is obtained from the exact opm equation by neglecting certain higher order terms
(i.e. if these terms are added to Eq. (2.31) the exact opm is recovered). Later in
this same work the authors incorporate an approximation to these higher order
terms, the inclusion of which covers much of the difference between kli and the
full opm, however even this approximation to the neglected portion of opm is
rarely included in practice. As one might expect the kli approximation is also
applicable in the time-dependent regime [66–68].

For a wide range of systems kli and the full opm produce very similar re-
sults [60]. The success of both opm and kli potentials is due in part to the fact
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that both capture the correct asymptotics of the exchange potential

lim
r→∞

vσx (r) = −
1
r
. (2.33)

This is not to say that the kli is perfect, it is still an approximation. Both the
exact and opm exchange-correlation potentials satisfy∫

d3r n(r, t )∇vσxc(r, t ) = 0. (2.34)

This relation is often referred to as the zero-force theorem, the name coming from
the obvious interpretation that the force deriving from the exchange-correlation
potential exerts no net force on the electron cloud. An unfortunate consequence
of the kli approximation is that it can lead to violations of the zero-force theorem
which, in turn, can lead to auto-excitation [69]. This is particularly pertinent
in collision systems where spurious excitations may artificially enhance electron
transfer processes.
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Chapter 3

Bare Ion-Helium Collisions

Correlation enters tddft calculations in two distinct ways. First of these is
dynamic correlation, those effects which emerge from a fully time-dependent
correlation potential. These are precisely the effects we ignore through the use
of the frozen correlation model which is discussed alongside a description of the
collision systems of interest in Sec. 3.1.

The second source of correlation comes from the density functional used in
the determination of observables. This so-called functional correlation is the main
focus of this chapter. The exploration of this topic begins in Sec. 3.2 were several
observable functional approximations are introduced. The results of application
of these models to p-He, He2+-He, as well as p̄-He collisions are presented and
discussed in Sec. 3.4.

The analysis presented in this chapter closely follows that of [70]. Addition-
ally, while some results for p̄-He collision system are presented here the bulk of
the theoretical underpinnings of this work are not, as this represents work under-
taken during the completion of the author’s Master’s thesis [71]. The p̄-He cross
sections reproduced in this dissertation are an updated version of the previous
results making use of the improved averaging scheme (Sec. 3.3) developed when
investigating the p-He and He2+-He systems.
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3.1 Collision System

For the current systems of interest, p̄-He, p-He, and He2+-He collisions, the tdks
[Eq. (2.10)] are greatly simplified. First, the initial state of the helium atom will
be a spin-singlet. As a result of this we need only consider one ks-orbital

ϕ = ϕ1↑ = ϕ1↓. (3.1)

With this in mind all spin indices will be suppressed for the remainder of this
chapter. An additional consequence of the spin-singlet nature of the system is that
the exchange potential takes the form

vx = − 1
2vH. (3.2)

As in [19] the correlation potential vc will be approximated using a frozen
correlation model. This potential is determined by inverting the Kohn-Sham
scheme for the density of an accurate multi-configuration Hartree-Fock [72]
(mchf) ground-state helium wave function. The details of this process can be
found in [19, 71].

Finally, the external potential can be specified. For a collision system in
the semi-classical approximation this consists of the Coulomb potentials of the
nuclear centres of the target and projectile. We may write

vext(r, t ) = −
QT
r
−

QP

|r − R(t )|
, (3.3)

where QT and QP are the charges of the target and projectile nuclei and R(t ) =
(b, 0,V t ) is the straight-line trajectory of the projectile with velocity V and
impact parameter (distance of closest approach) b . In the current work we
consider antiprotons, protons, and He2+ ions incident on helium atoms, thus
QT = 2 andQP = −1, 1, and 2 respectively. Above impact energies of 1 keV/amu
where the nuclear motion is well represented by a straight line the semi-classical
approximation may be safely employed [13].

Having spent a few words addressing concerns at the lower end of our impact
energy range it is only logical to turn ones eye to the other extreme. The largest
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impact energy considered in this work, 2000 keV/amu, corresponds to an impact
velocity V ≈ 9 a.u. With the speed of lighit c = 137 a.u. a Lorentz factor γ may
be determined

γ =

(
1 −

V 2

c2

)− 1
2

≈ 1.0027, (3.4)

putting us safely in the non-relativistic regime.
The tdks described above was solved with the basis generator method [73]

(bgm) using a basis similar to the one employed in [74]. As in [19] the basis
rooted in an x-only description of the helium atom in [74] is replaced by one that
reflects the incorporation of the ground-state correlation potential. In the bgm we
expand the time-dependent orbital in terms of the basis functions

χ
K J
k (r, t ) =WT (r , εT )KWP (r, t, εP )J χ00k (r), (3.5)

with
WT (r , εT ) =

1 − e−εT r

r
, (3.6)

WP (r, t, εP ) =
1 − e−εP |r−R(t ) |

|r − R(t )|
(3.7)

and χ00k the eigenstates of the initial Hamiltonian (in this case the ground-state
Kohn-Sham system for the helium atom). In order to keep the number of states
in the basis to a minimum and simplify the description only those states with
K = 0 where included. This simplification has proved sufficient in the past [13].
The remaining regularizer is set to εP = 1 and the basis chosen was similar to that
of [74]. A more general two-centred version of the bgm (tc-bgm) which includes
explicit basis states on both the target and the potential is also possible. The full
machinery of the two-centred version will be discussed in the following chapter.

Before closing this section we will return a final time to the discussion of
relativistic effects, this time in regards to the atomic orbitals. The primary effect of
relativity on the orbitals is to contract or expand the orbitals. To lowest order in
1/c2 the change in average of the position operator for a relativistic hydrogen-like
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orbital follows the relation (see, for example, Ref. [75])

〈r〉rel − 〈r〉nonrel ∝
Qn
c2κ

, (3.8)

where κ = j + 1/2 wih total angular momentum quantum number j and Q the
atomic charge. For the orbitals considered in this work n never exceeds 4, Q is
at most 2, and κ is either 1/2, for spin singlet states, or 1 for atoms containing
one (or three) electrons. All of this means that at worst the orbital distortion
is on the order of 10−4, and while the expression only holds for hydrogen-like
orbitals the exact expression for a multi-electron atom does not disagree in a
signifigant way [75]. With all this said it has been explicitly demonstrated that
relativistic effects are negligible for helium collisions within the impact energy
range considered in this work [76].

3.2 Approximating Observable Functionals

The discussion started in Sec. 2.3 may be elaborated upon by introducing the
observables of interest for our ion-atom collision systems, the ionization and
capture probabilities. For both negatively and positively charged projectiles we
must consider the two pure ionization processes, single ionization

Az +He→ Az +He+ + e− (3.9)

and double ionization

Az +He→ Az +He2+ + 2e−, (3.10)

where Az = H+ or p for protons, Az = He2+, or Az = p̄, and assuming we
exclude processes involving only excitation of the target.

For positively charged projectiles additional processes involving capture must
also be included. The three additional channels are single capture

Az +He→ Az−1 +He+, (3.11)
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transfer ionization
Az +He→ Az−1 +He2+ + e−, (3.12)

and double capture
Az +He→ Az−2 +He2+. (3.13)

The probabilities of finding an electron on the target (T ), on the projectile
(P ), or in the continuum ( I ) are given exactly in terms of the two-particle density
ρ = 2|Ψ|2 by

pTT =
1
2

∫
T

∫
T
d3r1d3r2 ρ(r1, r2, t f ), (3.14a)

pT I =

∫
T

∫
I
d3r1d3r2 ρ(r1, r2, t f ), (3.14b)

p I I =
1
2

∫
I

∫
I
d3r1d3r2 ρ(r1, r2, t f ), (3.14c)

pT P =

∫
T

∫
P
d3r1d3r2 ρ(r1, r2, t f ), (3.14d)

p I P =
∫
I

∫
P
d3r1d3r2 ρ(r1, r2, t f ), (3.14e)

pPP =
1
2

∫
P

∫
P
d3r1d3r2 ρ(r1, r2, t f ). (3.14f)

In the above expressions T , P are disjoint regions containing the target and
projectile, I = R3 \ (T ∪ P ), and t f is some time chosen far enough after the
collision for the two nuclear centres to become independent. As the functional
ρ[n] is unknown these exact expressions are of limited utility.

By introducing the correlation integrals

IV1V2
c =

∫
V1

∫
V2

d3r1 d3r2 gc(r1, r2, t f ) n(r1, t f ) n(r2, t f ), (3.15)

with

gc =
ρ(r1, r2, t f )

n(r1, t f )n(r2, t f )
−
1
2

(3.16)

and V1,V2 ∈ {T , P , I }, and the single-particle probabilities to find an electron on
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the target

pT =
1
2

∫
T
d3r n(r, t f ) (3.17)

or the projectile

pP =
1
2

∫
P
d3r n(r, t f ) (3.18)

Eq. (3.14) become
pTT = p2T +

1
2 I

TT
c , (3.19a)

pT I = 2pT (1 − pT − pP ) − IT P
c − ITT

c , (3.19b)

p I I = (1 − pT − pP )2 + 1
2 I

PP
c + IT P

c + 1
2 I

TT
c , (3.19c)

pT P = 2pT pP + IT P
c , (3.19d)

p I P = 2pp(1 − pT − pP ) − I PPc − IT P
c , (3.19e)

pPP = pP 2 + 1
2 I

PP
c . (3.19f)

With an appropriate choice of t f Eq. (3.17) reduces to a sum over the occupa-
tions of the bound states of the basis defined in Eq. (3.5). The single-centred bgm,
as opposed to the two-centred bgm discussed in Sec. 4.1, basis contains no explicit
projectile states, thus one must first project the one-particle solutions onto an
appropriate set of projectile states (H or He bound states) in order to generate a
sum over projectile occupations analogous to that described for the target. The
process of projecting onto projectile states may lead to inaccuracies depending on
how well the final state is represented by a finite number of bgm basis states.

The expressions for no, single, and double ionization in p̄-He collisions
presented in [19] may be recovered by closing the capture channels, i.e. setting
pp = I PPc = IT P

c = 0. Being explicit we have

pTT = p2T +
1
2 I

TT
c , (3.20a)

pT I = 2pT (1 − pT ) − ITT
c , (3.20b)

p I I = (1 − pT )2 + 1
2 I

TT
c (3.20c)
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As in [19] we may proceed in one of two ways1. The first and simplest method
is to ignore correlation in the functionals for observables. This is equivalent to
setting IV1V2 = 0 for V1,V2 ∈ {T , P } and leads to an independent electron model
(iem) description

pTT
iem
= pT 2, (3.21a)

pT I
iem
= 2pT (1 − pT − pP ), (3.21b)

p I I
iem
= (1 − pT − pP )2, (3.21c)

pT P
iem
= 2pT pP , (3.21d)

p I P
iem
= 2pp(1 − pT − pP ), (3.21e)

pPP
iem
= pP 2. (3.21f)

The second option is to explicitly deal with the correlation integrals by
employing the adiabatic model of Wilken and Bauer [18] (wb). In this approach
the one- and two-particle densities appearing in Eq. (3.16) are approximated by,
the so-called, adiabatic densities, which are modelled by linear interpolations
between the ground-state densities for the given centre, hydrogen or helium, with
no, one, or two electrons bound. Labelling the various densities with a subscript
denoting the number of bound electrons, for example the one-particle densities
will be n0, n1, and n2 respectively, we then have

nA(t f ) =

NV n1 NV ∈ [0, 1]

[2 − NV ] n1 + [NV − 1] n2 NV ∈ [1, 2]
(3.22)

and

ρA(t f ) =

0 NV ∈ [0, 1]

[NV − 1] ρ2 NV ∈ [1, 2],
(3.23)

where
NV (t f ) = NV (t f ) =

∫
V
d3r n(r, t f ) (3.24)

1A third model, the frozen correlation model, was also discussed in [19, 71] but was shown to
essentially reproduce iem results.
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for V ∈ {T , P }.
The quantity ITT

c will then be handled, as it was in [71] and [19], by

ITT
c = −2pT 2 +


0 NT ≤ 1∬
T

ρA(r1,r2,t f )
nA(r1,t f )nA(r1,t f )

n(r1, t f )n(r1, t f )d3r1d3r2 NT > 1.
(3.25)

I PPc is treated analogously with constituent parts appropriately replaced by their
projectile counterparts. IT P

c must be handled with more care. As there is no
clear generalization of the wb model to an explicit two-centre situation a different
approximation scheme must be found. A fair starting place is to consider the
constraints placed on the probabilities

pTT + pT I + p I I + pT P + p I P + pPP = 1 (3.26)

and
0 ≤ pV1V2 ≤ 1 V1,V2 ∈ {T , P , I }. (3.27)

The satisfaction of Eq. (3.26) is guaranteed by the form of Eq. (3.19) regardless of
the models chosen for the correlation integrals.

By considering the probabilities to be functions of the correlation integrals
and single-particle probabilities,

pV1V2 = pV1V2
(
pT , pP , ITT

c , IT P
c , I PPc

)
, (3.28)

the expressions given by Eq. (3.27) may be inverted to place a set of upper/lower
bounds on values of IT P

c that will produce probabilities between zero and one. If
we letUi and Li , i = 1, . . . , 4, be the upper and lower bounds placed on IT P

c , we
obtain

L1 = 2pt (1 − pT − pP ) − ITT
c − 1, (3.29a)

U1 = 2pT (1 − pT − pP ) − ITT
c , (3.29b)

L2 = −(1 − pT − pP )2 − 1
2 I

PP
c − 1

2 I
TT
c , (3.29c)

U2 = 1 − (1 − pT − pP )2 − 1
2 I

PP
c − 1

2 I
TT
c , (3.29d)
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L3 = −2pT pP , (3.29e)

U3 = 1 − 2pT pP , (3.29f)

L4 = 2pP (1 − pT − pP ) − I PPc − 1, (3.29g)

U4 = 2pP (1 − pT − pP ) − I PPc . (3.29h)

We may then calculate a consistent value by setting

IT P
c =

1
2

[
min
1≤i≤4

{Ui} + max
1≤i≤4

{Li}

]
. (3.30)

It can be shown that as the single-particle ionization probability (pI = 1 −
pP − pT ) approaches zero the upper and lower bounds converge. Additionally, in
all cases the viable IT P

c range is small. For p-He collisions the interval is at most
approximately 0.1 and is at least one order of magnitude less than this through the
majority of the impact energy and parameter space considered. For the He2+-He
system the largest interval is around 0.25. The gap remains on this order for a
much larger range of the impact energies considered. As mentioned above the
interval width approaches zero rapidly as the impact parameter increases. Thus
there is little actual choice available for the value of IT P

c , and not much is lost by
always choosing the midpoint of this interval.

3.3 Calculation Details

As has been discussed in previous works, for example [19, 77], fluctuations in
the density persist after the collision process has completed if the Kohn-Sham
potential is explicitly density dependent. Due to this fact the values of observables
must be averaged over some range of t f . The added complexity of the proton-
helium collision system compared to that for antiproton-helium restricts the
range through which the calculations may be run. As a result an insufficient
range of t f is available for averaging to produce a curve as smooth as in the
p̄-He system. More explicitly, letting z f = V t f be the final target-projectile
separation for impact velocity V , p̄-He collisions may be run to a final separation
of 45 a.u., whereas p-He collisions run to a maximum inter-nuclear distance of
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Figure 3.1: p I I as a function of z , an
impact energy of 50 keV, and impact
parameter of 1 a.u.: (a) p̄-He, (b) p-He,
(c) He2+-He.
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Figure 3.2:
��nA(t f ) − n(t f )

��
1 for the an-

tiproton helium collision system.

around 35 a.u.
Figure 3.1, which depicts the values of p I I as a function of z for a prototypical

choice of impact energy and parameter, makes these differences more apparent.
Also of note is that the variances increase by about a factor of two between each
of the collision systems.

We can get a sense of how well the adiabatic density approximates the true
time-dependent density at t f by considering their separation in function space.
Owing to the fact that one-particle densities are necessarily L1 functions (i.e.
integrable functions) it is most natural to use the metric induced by the L1-norm
defined for any f ∈ L1 (R) by �� f ��1 = ∫

d3r
�� f (r)�� (3.31)

for measuring this distance.
Fig. 3.2 displays

��n(t f ) − nA(t f )
��
1, the difference between the adiabatic (nA)

and fully dynamic (n) densities at the final time t f for the antiproton-helium
system2. While it is possible to perform such an analysis for the p-He system
as well, added complications brought on by having to deal with a two-centred

2All integrals were performed with the aid of the cuba numerical integration package [78].
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system make it much more difficult to produce and analyze such data. Intuitively
one would expect that the difference between the two densities should follow
the single-particle probability pT . This belief is supported by the easily derived
relation ��n(t f ) − nA(t f )

��
1 ≤ 4pT . (3.32)

While Fig. 3.3 (which will be discussed in next section) demonstrates monotonic
increase in pT with increasing impact parameter, a general trend for all impact
energies, Fig. 3.2 contains additional structures. Also of note is the minimum that
appears along the impact-energy axis between 200 and 300 keV/amu. These unex-
pected features must be attributed to the fact that nA contains only trivial angular
dependence which makes a proper description of excitation and partial removal
of electronic density impossible. This provides indications of the limitations of
the wb model.

3.4 Results

In the following subsections we present several plots of total cross sections for
a variety of collision processes. Given an outcome probability poutcome the total
cross section associated with this probability is determined according to

σoutcome =

∫
d2b poutcome(b) = 2π

∫ ∞

0
db b poutcome(b). (3.33)

We will refer to our results using the acronyms iem and wb corresponding
to probabilities calculated using Eq. (3.21) and Eq. (3.19) using the wb model
respectively. In both cases the dynamics include the frozen mchf ground-state
correlation potential.

The figures presented below were generated with several criteria in mind. First,
a minimal number of older calculations was selected with the aim of covering
as much of the impact energy range as possible while avoiding overburdening
the figures with multiple overlapping curves. Second, works chosen must be
the product of calculations that go beyond an iem description of the collision
process with preference given to fully correlated two-electron calculations. If
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Figure 3.3: Single-particle removal probability, p, (upper pane) and correlation
integral, ITT

c , ( lower pane) as functions of impact parameter for antiprotons and
protons incident on helium atoms at 20 and 200 keV/amu.

one is interested in some of the calculations excluded from these comparisons
there exist a plethora of independent-electron, independent-event, or related
models [79–110], classical trajectory Monte Carlo calculations [111–120], and
other classical statistical models such as the Bohr-Lindhard model [121, 122].

3.4.1 p̄-He Vs. p-He Collisions

We begin the analysis of results with a comparison of proton and antiproton
collisions with helium. To facilitate juxtaposition we will consider the zero-,
one-, and two-electron removal processes in aggregate. The probabilities for these
outcomes are given respectively by

p0 = (1 − p)2 + 1
2 I

TT
c = pTT , (3.34a)

p+ = 2p(1 − p) − ITT
c = pT I + pT P , (3.34b)

p++ = p2 + 1
2 I

TT
c = p I I + p I P + pPP , (3.34c)

26



101 102 103

EP [keV/amu]

0.0

0.5

1.0

1.5

2.0

2.5
σ
+
[1

0−
16

cm
2 ]

p IEM
p WB
p IEM
p WB

Figure 3.4: Total cross section for one-electron removal from helium by pro-
tons and antiprotons. Protons: dotted iem and dashed wb (theory); N [123],
+ [124], • [125], � [126], I [127], H [128], and � [129] (experiment). Antipro-
tons: dashed-dotted iem and solid wb (theory); � [130], ◦ [131], and × [132]
(experiment).

where the single-particle removal probability is given by

p = 1 − 1
2

∫
T
d3r n(r, t f ) = 1 − pT = pP + pI . (3.35)

For the p̄-He system these are simply the probabilities presented in Eq. (3.20)
making this choice of observables ideal for contrasting with the p-He system.

Presented in Fig. 3.3 are the single-particle removal probability and ITT
c for

both the proton and antiproton collision systems at 20 and 200 keV/amu as
functions of the impact parameter. The correlation integral is always negative,
decaying to zero in increasingly distant collisions as electron removal becomes
less likely. This means that it provides a blanket enhancement to one-electron
removal processes [cf. Eq. (3.34b)].

At 200 keV/amu the results for both p and ITT
c become similar; at lower ener-

gies (i.e., 20 keV/amu) there are significant differences for proton and antiproton
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Figure 3.5: Total cross section for two-electron removal from helium atoms
as a function of impact energy. Protons: dotted iem and dashed wb (theory);
N [123], + [124], • [125], � [126], I [127], H [128], and � [129] (experiment).
Antiprotons: dashed-dotted iem and solid wb (theory); ◦ [131] and / [133]
(experiment).

collisions. In this range the single-removal probability for antiproton impact de-
cays swiftly with rising impact parameter. On the other hand, the single-particle
removal probability in low-energy proton-helium collisions remains appreciable
over a much larger range. Such impact parameter profiles are a signature of
electron capture which is the dominant electron removal process at lower impact
energies. This behaviour is mirrored by that of ITT

c .
A final feature of note is the spike in both antiproton curves at small impact

parameter. In this region the antiproton passes through the charge density of
the helium atom. Such close approaches result in destabilization of the electron
binding and very efficient ionization [134].

Figures 3.4 and 3.5 present the total cross sections for one- and two-electron
removal as functions of impact energy. These plots compare only the current
proton-helium collision results to an updated version (denser impact energy grid
and larger range of averaging as described in Sec. 3.3) of the antiproton-helium
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results of [19] and to experimental data. For a comparison with other theoretical
work see [71] (or [19]) and [135] ( p̄-He) and Sec. 3.4.2 (p-He).

For one-electron removal, Fig. 3.4, the wb model provides an increase for
both protons and antiprotons over the iem except at higher energies where the
correlation integral tends to be small in magnitude as indicated by Fig. 3.3. In the
case of proton-helium collisions this increase is an obvious improvement. The
spread of the experimental data for antiproton-helium collisions makes it difficult
to ascertain whether the enhancement in the cross section is preferable.

The two-electron removal cross sections, Fig. 3.5, for both proton and an-
tiproton collisions are reduced significantly by the wb model. These reductions
represent a clear improvement in either case. While the antiproton results are in
fair agreement with experiment through the entire range explored the proton-
helium results still differ notably below impact energies of 100 keV/amu. This is
an indication that the wb model begins to display problems as capture becomes
more important. These issues will be discussed in greater detail in the subsequent
subsections.

3.4.2 p-He Collisions

Total cross sections for the various ionization and capture processes described
by Eqs. (3.19) and (3.21) for both the wb model and the iem are presented in
Figs. 3.6–3.9. These results are compared to experiment as well as a selection
of previous theoretical studies of p-He collisions that do account for electron
correlation effects.

We will begin the discussion of these results by considering double capture.
For our proton-helium collision calculations the single-particle capture proba-
bility, pP , never rises above 1/2. From Eq. (3.25) it follows that I PPc = −2pP 2,
which implies that pPP ≡ 0. Due to the triviality of this result no plot is displayed.
The iem so amplifies the double capture cross section that the wb model can be
considered in better agreement with experiment even though it is zero for all
impact energies and perceived as an improvement over iem.

Similar to double capture, single capture, Fig. 3.6, only depends on one
correlation integral. The iem provides fair agreement with the experimental data
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Figure 3.6: Total cross section for single capture in proton-helium collisions.
Theoretical results: ao-mo model of Kimura et al. [136] and dw-4b (post form) of
Jana et al. [137]. Experimental Data: • [125] and � [126].

except that it underestimates the peak. This problem is corrected by the wbmodel
which is in good agreement with experiment through most of the impact energy
range considered. This fact helps to justify the model used for IT P

c in Eq. (3.30)
as single capture is expressed as the iem result plus a correction coming solely
from IT P

c [cf. Eq. (3.19d)]. Also presented in Fig. 3.6 are the atomic orbital
(ao) molecular orbital (mo) matching results of Kimura et al. [136] (ao-mo)
and the post form, which includes explicit dynamic correlation contributions,
of the four-body distorted-wave (dw-4b) results of Jana et al. [137]. It should
be noted that what Jana et al. call dynamic correlation while not identical to
tddft dynamic correlation (a time-dependent correlation potential vc) is the
analogue in two-electron calculations and ultimately both should describe the
same effects. The dw-4b and wb models agree quite well above impact energies of
40 keV/amu. Below this they begin to deviate, with the dw-4b results remaining
in better agreement with experiment (excluding the lower extremes of the data
where the perturbative nature of the dw-4b model likely causes it to become less
reliable). The opening of a gap between these two calculations coincides precisely
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Figure 3.7: Total cross section for transfer ionization in proton-helium collisions.
Theoretical results: Second order Born approximation of Godunov et al. [138].
Experimental data: • [125] and � [126].

with the increased role of dynamic correlation as impact energies decrease. This
trend continues with the results of Kimura et al. throughout the remainder of
the impact energy range. The discrepancy between the ao-mo results and the
other calculations for energies above the peak is likely due to the dominance
of the mo over the ao in the analysis [136]. The result of this appears to be an
overestimate of the coupling between centres leading to a slight overestimate of
the cross section at high energies.

Figure 3.7 presents the results for transfer ionization. Once again the wb

model offers an improvement over iem descriptions, lowering the cross section by
as much as a factor of two. Even with this correction the wb still overestimates
the data through the entire range. An unfortunate side effect of the model is a
slight shift in the peak of the curve towards lower energies. The overestimation
in this channel may be a result of the redistribution of probability which must
occur with the double capture channel effectively closed by the wb model.

Our iem and wb results are compared to the second-order Born approximation
calculation of Godunov et al. [138] (on- and off-shell contributions included).
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Figure 3.8: Total cross section for double ionization of helium by proton impact.
Theoretical results: fim of Ford et al. [139]. Experimental data: • [125] and
� [126].

Few correlated transfer ionization calculations exist. As a result conclusions
for the quality of correlation below 100 keV/amu are difficult. One additional
calculation was performed by Belkić and Mančev [143]. However, their data
cover less of the desired impact energy range and were thus excluded from Fig. 3.7.
Godunov et al. are consistently below both iem and wb. The fact that the iem
falls slightly below the wb results above 200 keV/amu points to a problem with
the wb calculations. In this range the difficulty of separating target and projectile
will naturally be emphasized as the relative errors due to the projection problem
grow [see discussion following Eq. (3.19)]. It would seem that these issues are
compounded when the density is forced through the additional machinery of the
wb model. In this region it then becomes difficult to determine to what extent
discrepancies are due to dynamic vs. functional correlation effects or issues of
accuracy.

Next we turn our attention to the results for double ionization in Fig. 3.8.
The wb model improves results by reducing those of the iem at high energies.
Agreement is lost as impact energy drops below 100 keV/amu. A close inspection
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Figure 3.9: Total cross section for single ionization of helium by proton im-
pact. Theoretical results: Slim et al. [140], Winter [141], and Díaz et al. [142]
Experimental data: • [125] and � [126].

of the double ionization result reveals that they are identical to those for transfer
ionization in the approximate range 10–300 keV/amu.

To understand what is causing this we must examine some of the ramifications
of Eq. (3.30). It can be shown that whenever IT P

c is sandwiched between either
L2 andU4 or L4 andU2 we have p I I = p I P . As the former is true for the majority
of contributing impact parameters for the energy range mentioned above we fall
in a situation where double ionization and transfer ionization are forced to be
equal.

Another undesirable feature of the double ionization cross section is the
dip below the experimental data between 100 and 400 keV/amu. As has been
discussed in Sec. 3.3 the added complexity of the proton-helium collision system
compared to that for antiproton-helium restricts the range through which the
calculations may be run. Due to this fact an insufficient range of t f is available
for averaging to produce a curve as smooth as in the p̄-He system (see Fig. 3.1 and
Fig. 3.5), resulting in the additional structure in this region.

Above 300 keV/amu the wb model behaves in a manner consistent with that
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seen in p̄-He collisions, lowering iem results into fair agreement with the data,
then causing a drop below experiment as impact energy increases.

As with transfer ionization few correlated calculations exist for double ion-
ization in p-He collisions. Displayed in Fig. 3.8 are the forced impulse method
(fim) results of Ford et al. [139]. The fim and wb models agree well between
400 and 1000 keV/amu. Below this range the issue of final state stability causes
a sizable disagreement between the two. Above this range issues with how the
wb model distributes probabilities between channels force the double ionization
cross section to become smaller than is physical far too quickly.

Finally we consider our single ionization results depicted in Fig. 3.9. The wb
model corrects the discrepancy between the peaks of the iem and experimental
data. Both calculations are in good agreement with experiment, and each other,
except where the wb results dip slightly below the expected values due to a
loss of probability to the overestimated double ionization maximum around
35 keV/amu.

For this channel enough previous calculations exist to cover almost all of
our impact energy range. These include the coupled-channel calculations of
Slim et al. [140] and Winter [141] as well as the convergent frozen-correlation
approximation (cfca) of Díaz et al. [142]. Slim et al. obtain better agreement with
experiment in the range 25–50 keV/amu. This is likely due to the overestimation
of transfer and double ionization discussed earlier. Above this range the wb model
performs better, this is likely due to what Slim et al. describe as the effects of an
incomplete continuum description in their calculation [140].

In the energy range covered by Winter the wb model appears to be in almost
exact agreement with experiment. Winter attributes much of his disagreement
to his calculations’ not fully accounting for channels beyond single capture and
ionization [141].

The results of Díaz et al. provide a similar level of agreement as the wb model.
Both models are essentially equidistant from experiment above 300 keV/amu.
Díaz et al. attribute their overestimation of the cross section to a neglect of the
capture channels [142], similarly the wb model falls below the experiment likely
due to the overestimate of transfer ionization in this impact energy region.
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Figure 3.10: Total cross section for single ionization of helium by He2+ impact.
Theoretical results: Gramlich et al. [144], Barna et al. [145], and Pindzola et
al. [146]. Experimental data: � [126], • [125], H [147], and N [129].

3.4.3 He
2+
-He Collisions

The results of the He2+-He calculations for both iem and wb model and experi-
mental data are presented in Figs. 3.10–3.14 along with an assortment of previous,
correlated theoretical calculations. As with our proton-helium results single
ionization (Fig. 3.9) in both the iem and wb model are quite similar excluding an
energy range around the maximum where the wbmodel increases the cross section
significantly. In both cases the peak appears to be shifted to a slightly lower impact
energy compared to the measurements. Similar behaviour below 100 keV/amu
see the pair falling above experiment. Depicted alongside the current results in
Fig. 3.10 are the previous coupled-channel calculations of Gramlich et al. [144],
Barna et al. [145], and Pindzola et al. [146]. At the high end of the energy
range explored all results are in agreement. At lower energies (approximately
15–80 keV/amu) the results of Gramlich et al. are in much better agreement with
experiment. This region is precisely the range where capture is dominant and
quite strong. As a result pT < 1/2 for a significant portion of this range causing
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Figure 3.11: Total cross section for double ionization of helium by He2+ impact.
Theoretical results: Singal et al. [91], Barna et al. [145], and Pindzola et al. [146]
Experimental data: � [126], H [147], and N [129].

ITT
c = −pT 2. A negative ITT

c will increase pT I , luckily IT P
c is enough to keep the

wb results from exceeding those of the iem [cf. Eq. (3.19b)]. The lack of correlated
calculations near the experimental maximum unfortunately means little can be
concluded in this region of the curve.

The wb results for double ionization, Fig. 3.11, display the familiar pattern
seen in both antiproton and proton collisions, namely, fair agreement with
experiment at high impact energies coupled with overestimation of the data at
lower energies and a reduction over iem. It should be noted that due to the size of
the error bars of the low energy p̄-He data what constitutes an overestimation is
difficult to determine (wb results do tend towards the upper limits of these error
bars). It would seem that such behaviour is a general feature of the wb model. For
the positively-charged projectiles the wb model causes a shift in the maximum
to lower energies. Much like the p-He results there are slight fluctuations in the
He2+-He wb results due to instabilities in the dynamics.

As above the two-electron calculations by Barna et al. and Pindzola et al.
support the high-energy wb results. Fig. 3.11 also includes the results of Singal et
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Figure 3.12: Total cross section for transfer ionization in He2+-He Collisions.
Theoretical results: Belkić et al. [148]. Experimental data: � [126], • [125], and
H [147].

al.: while not a two-electron calculation it incorporates a modified single-particle
potential designed to account for the increased difficulty of ionizing two electrons.
These results confirm the location of the iem cross section maximum. This
confirms the belief that the wb model becomes less dependable at lower energies.

Unlike for the proton-helium system double ionization and transfer ioniza-
tion, Fig. 3.12, are not identical. The increased role of capture due to the deeper
potential well of the He2+ projectile has the important consequence of allowing
the probability pP to rise above the critical one half threshold. As a result I PPc

is no longer trivial, and the bounds defining IT P
c vary more freely. The wb

model reduces iem results through most of the impact energy range. A slight
over-reduction occurs to the left of the peak. Below 20 keV/amu the results begin
to swing drastically upwards to compensate for the fact that double ionization
becomes zero in this region. As mentioned above the ripples present in the wb
curve are due to instabilities in the dynamics.

Much like the p-He system few calculations exist beyond the level of the iem
for the transfer ionization channel. Presented is the post form of the four-body
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Figure 3.13: Total cross section for single capture in He2+-He collisions. Theo-
retical results: Fritsch [149] and dw-4b of Jana et al. [137]. Experimental data:
� [126], • [125], H [147], and � [150].

continuum distorted-wave approximation results of Belkić et al. [148]. The post
form includes explicit dynamic correlation. At the extremes of the energy range
Belkić et al. are in better agreement with experiment, as the wb and iem slightly
exaggerate the cross section (similar to the p-He results). These discrepancies
become larger as the peak is approached from above. It is difficult to ascertain how
much of this widening gap between our wb results and Belkić et al.’s calculation
is a result of the increased importance of dynamic correlation. Certainly this is
the primary difference down to 80 keV/amu, below which point the perturbative
calculation appears to break down making it less useful for the current purpose.

Single capture cross sections, presented in Fig. 3.13, also follow a pattern
similar to that laid out by the proton-helium case: an increase in the wb over
iem results. This increase results in good agreement with experiment above
50 keV/amu. Unlike previous results the enhancement in cross section persists to
low energies, where the wb model overestimates the measured values.

In the high-energy region of the curve the wb model is in fair agreement with
the dw-4b results of Jana et al. It would appear the effects of dynamic correlation
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Figure 3.14: Total cross section for double capture in He2+-He collisions. Theo-
retical results: Fritsch [149] and Ghosh et al. [151]. Experimental data: H [147],
� [150], and × [152].

may account for the slight underestimation of the wb model to the right of the
maximum. Below the peak the coupled-channel results of Fritsch [149] lend
credence to the experimental data. The failure of both the wb and iem models to
agree with these results (and by extension experiment) may point to a possible
failure of the underlying dynamic calculation in separating the target, projectile
and ionizing regions (T , P and I ).

As mentioned above the expanded role of capture causes the correlation
integral I PPc to no longer be trivial. This also means that double capture in the
wb model is no longer identically zero. Results for double capture are presented
in Fig. 3.14. While the wb decreases the cross section below iem it is difficult to
conclude whether this is an improvement due to the relatively wide spread in the
experimental data.

To aid in this determination we compare our results to those of Fritsch [149]
and the post form of the four-body boundary corrected continuum intermediate
state approximation (bccis-4b) results of Ghosh et al. [151]. For the highest
energies presented Ghosh et al. support the results of the iem over those of
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the wb model. In this region the same factors that force the p-He wb double
capture channel to be identically zero force cross sections above 125 keV/amu
into triviality. Below this limit the data of Ghosh et al. begin to fall more in
line with the wb results. As the results of Fritsch enter the picture in the lower
portion of the energy range the wbmodel appears to be favoured, the gap between
Fritsch and the wb being less than that between iem and Fritsch. The remaining
discrepancy may be due once again to dynamic correlation effects.
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Chapter 4

He
+
-He Collisions

The investigations of the previous chapter began with the simplest possible multi-
electron collision system, one where a negatively-charged projectile is incident
on helium. The situation was then complicated by allowing the projectile to be
positive, thus forcing one to consider electron transfer in addition to ionization
processes.

In this chapter the system of interest is expanded further by the inclusion of
an active electron on the projectile. More specifically, the remainder of this work
concerns itself with the He+-He collision system.

While the external potential, vext, maintains the form of Eq. (3.3), the spin-
polarized nature of the collision system suggests that the spin-free description
utilized in the previous chapter should be replaced by the full spin-dependent
tdks presented in Eq. (2.10).

The determination of a spin-dependent exchange-correlation potential forms
the bulk of this chapter (Sec. 4.1) in which a procedure for calculating an accurate
exchange potential within the x-only approximation is discussed. This is followed
by a brief discussion of the method used to extract cross sections from the one-
particle density (Sec. 4.2) before presenting results in Sec. 4.3. This chapter can
be seen as an extended version of the work presented in [153].
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4.1 Calculating the x-Potential

While the correlation potential in Eq. (2.10) may be ignored, that is the x-only
approximation may be used (with some understanding of the consequences), an
accurate exchange potential is essential for a precise description of the He+-He
collision system. The spin-polarized nature of the system, which emphasizes
exchange effects, makes this fact indisputable. To this end the kli approximation
to the opm (see Sec. 2.4.2) was employed in the calculation of vσx .

The ground-state density functional theory scheme of [154]1 has been adapted
to calculate a time-dependent exchange potential. At any instant of time, t , the
He+-He systemmay be regarded as a diatomic quasi-molecule with an internuclear
distance R(t ) =

√
b2 + Z(t )2, where b and Z are the impact parameter and the z

position of the projectile as described below Eq. (3.3). If at each time-step of the
propagation the time-dependent Kohn-Sham orbitals, ϕ jσ(r, t ) are fed into the
kli functional (ignoring self consistency) an exchange potential, vσx [{ϕ jσ′}; t ], is
obtained2. In Ref. [154] the kli scheme has been implemented for eigenstates of a
total ks potential which is invariant against rotation around the internuclear axis.
This restriction complicates the use of the corresponding kli potential, since the
present ϕ jσ do not exhibit any specific symmetry.

In order to detail a solution to the symmetry problem a more thorough
description of the tc-bgm [155] is necessary. Within the tc-bgm the Kohn-Sham
(ks) orbitals are represented in a non-orthogonal basis

ϕ jσ(r, t ) =
∑

c ∈{P ,T }

∑
k,L,M

dσ j
ckL(t ) χ̃

LM
ck (r, t ), (4.1)

where

χ̃LMck (r, t ) =


e ivT ·r χLMck (r, t ) c = T ,

e ivP ·r χLMck (r, t ) c = P ,
(4.2)

which are the basis functions with electron translation factors (etf) included.
1The details of this implementation may be found in [154]. The code was provided by the

authors via private communication.
2The normalization of the kli potential is chosen so that vklix (r, t )

|r |→∞
−−−−−−→ 0.
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Table 4.1: Description of the tc-bgm basis expansion.

state 1s 2s 2p 3s 3p 3d 4s 4p 4d 4f
k 1 2 3, 4 5 6, 7 8-10 11 12, 13 14-16 17-20
Lmax 0 0 1 1 2 2 2 3 3 3

The basis functions themselves are given by [similarly to the one-centre basis of
Eq. (3.5)]

χLMck (r, t ) =WP (r, t, εP )LWT (rT , εT )M χ00ck(r), (4.3)

with
WT (rT , εT ) =

1 − e−εT rT
rT

, (4.4)

and

WP (r, t, εP ) =
1 − e−εP |r−R(t ) |

|rT − R(t )|
, (4.5)

where rT represents the position vector with respect to the target centre and we
are working in the centre-of-mass frame where R = rT − rP .

In Eq. (4.3) the functions χ00ck are the bound orbitals for the target helium
atom (c = T ) and the projectile helium ion (c = P ). Just like in the one-centred
case discussed in Sec. 3.1 the basis is simplified by including only states generated
from the projectile potential. The regularizer is once again set to εP = 1. The
complete basis set used may be described in terms of the maximum L value
included for each bound sub-shell, 1s -4 f , indexed by k, in the basis. These values
are listed in Tab. 4.1 and total 124 basis states.

It is clear from the above description that only the basis states corresponding
to s-type orbitals will make cylindrically symmetric contributions to the ks-
orbitals. The simplest solution is to only feed the 1s contributions into the kli
functional. While higher s-states are also admissible they will no longer represent
the most occupied subshell meaning their inclusion will do little to improve the
accuracy of the description of a given orbital. Leaving out etfs for the time being
the orbitals will take the explicit form

ϕ1sjσ(r, t ) = aσ j
T (t )χ

00
T 1(r, t ) + aσ j

P (t )χ
00
P1(r, t ). (4.6)
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The coefficients, aσ j
c , are the result of projecting the ks-orbitals onto the two-

dimensional subspace spanned by the target and projectile 1s-states

|ϕ1sjσ〉 = P̂ |ϕ jσ〉 =
∑

c1,c2∈{T ,P }

S̃−1c1c2 | χ
00
c11〉 〈χ

00
c21 |ϕ jσ〉 (4.7)

with S̃−1c1c2 the inverse of the overlap matrix

S̃c1c2 = 〈χ
00
c11 | χ

00
c21〉 . (4.8)

The coefficients are then determined to be

aσ j
c =

∑
c1,c2∈{T ,P }

K∑
k=1

L∑
l=0

S̃−1cc1S
c2 k l
c 1 0 dσ j

c2kl
, (4.9)

with
S c2 k2 l2c1 k1 l1

= 〈χl10c1k1
| χl20c2k2

〉 (4.10)

the full overlap matrix.
Returning to the question of the etfs, working in the rotating centre-of-mass

frame in which the z -direction points along the internuclear axis the etfs become

e ivT ·r = e
iV
2 (x sin θ−z cos θ), (4.11a)

e ivP ·r = e
iV
2 (z cos θ−x sin θ), (4.11b)

where θ = arctan b/Z and V is the relative velocity of the centers, the same
velocity appearing below Eq. (3.3). If we now introduce a two-centred coordinate
system, placing the foci at the two nuclear centres it becomes clear that the
portion of the etfs containing x violates the desired cylindrical symmetry (see
Sec. A.2).

Two obvious solutions present themselves. First, one may simply ignore the
etfs completely. This would amount to passing the orbitals described by Eq. (4.6)
into the kli functional. Alternatively the symmetry breaking portions of the etfs
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may be dropped. In this case the full 1s-only ks-orbital becomes

ϕ̃1sσ j (r, t ) = aσ j
T (t )e

− iV z cos θ
2 χ0T 1(r, t ) + aσ j

P (t )e
iV z cos θ

2 χ0P1(r, t ). (4.12)

This will offer at least some of the correction provided by the full etf. Unfor-
tunately, as the internuclear coordinate Z(t ) approaches zero (corresponding
to θ = π

2 ) the partial etf will tend to one, meaning that when the target and
projectile are at their closest, i.e. in the most active region of the collision, no etf

will be present.
Any investigation of the impact of the etfs is best carried out in an isolated

environment. To achieve this we may introduce a no-response model. In such a
model the initial occupations of the orbitals passed to the kli functional will be
frozen and the full orbitals will be propagated in the resulting potential. To be
more concrete, if we have two spin-up and one spin-down electron the coefficients
be given the fixed values

ã↑1T = ã↑2P = ã↓1T = 1 and ã↑1P = ã↑2T = ã↓1P = 0. (4.13)

In this way the only phase information entering the exchange functional will arise
directly from the etfs. The calculation in which the coefficients are obtained
from Eq. (4.9) will be referred to as the response model in the following.

Regardless of which option is chosen it is important that vH be determined
with the same set of orbitals used in the calculation of vσx , preserving the precise
cancellation of the self interaction present in the Hartree potential. A description
of some of the technical details of the process of propagating the ks-orbitals in
these time-dependent potentials are provided in Appendix B. A collection of
visualizations of this process may be found in Sec. 4.3.3 along with several figures
which illustrate the time evolution of the collision system.

4.2 Final-state analysis

Of interest in any scattering problem is the probability of finding the system in
some final state. If we represent the state being considered as | f1 f2 f3〉 and the
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initial state of the system propagated to some final time t f by |ϕ1↑ ϕ2↑ ϕ1↓(t f )〉
the exclusive probability to find the system in the given final state at time t f will
be given by

P f1 f2 f3(t f ) =
��〈 f1 f2 f3 |ϕ1↑ ϕ2↑ ϕ1↓(t f )〉��2 . (4.14)

If one assumes that both the propagated and final states can be represented as
single Slater determinants then the probability in question becomes

P f1 f2 f3(t f ) = det
[
γ f f ′(t f )

]
, (4.15)

where γ f f ′ is the one-particle density matrix

γ f f ′(t f ) =
∑
σ

Nσ∑
j=1
〈 f |ϕ jσ(t f )〉 〈ϕ jσ(t f )| f ′〉 , (4.16)

with f and f ′ ∈ { f1, f2, f3}, and the transition amplitudes

〈 f |ϕ jσ(t f )〉 = 〈 χ̃l0ck |ϕ jσ(t f )〉 (4.17)

are readily calculable from the dynamics (for some k, l , c , and properly orthogo-
nalized basis functions χ̃l0ck ).

Expressions similiar to Eq. (3.21) may be constructed in this context. The
key to the derivation comes from expressing the single-particle probabilities in
terms of the transition amplitudes, for example, pT may be written

pT =
1
3

∑
σ

Nσ∑
j=1

K∑
k=1

��〈 χ̃00T k |ϕ jσ(t f )〉
��2 , (4.18)

with pP and pI expressed similarly.
Alternatively, one could consider the probability to explicitly measure the

states of some subset of the total number of particles. These so called inclusive
probabilities can be expressed in terms of determinants of submatrices of the
density matrix [156].

In the current problem we are interested in those probabilities which corre-
spond to the possible outcome channels of in the He+-He collision system. The
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processes can be broadly categorized into those that involve one active electron:

He+ +He→ He+ +He+ + e− (4.19)

He+ +He→ He +He+ (4.20)

He+ +He→ He2+ +He + e−, (4.21)

two active electrons:

He+ +He→ He+ +He2+ + 2e− (4.22)

He+ +He→ He2+ +He+ + 2e− (4.23)

He+ +He→ He +He2+ + e−, (4.24)

and three active electrons:

He+ +He→ He2+ +He2+ + 3e−. (4.25)

Additionally there is the channel where no charges are transferred and the two
channels that result in the production of He-. Cross sections for the latter are
known to be negligible [157, 158].

In such configurations we find k particles on the projectile, l particles in the
continuum, and 3 − k − l on the target (0 ≤ k ≤ 3 and 0 ≤ l ≤ 3 − k ). The
probabilities pkl may be calculated in terms of sums of inclusive probabilities to
find a given number of particles in the bound states of the target and projectile by
applying the machinery of [156] (see for example [159–161]). In order to avoid
the use of continuum states the probabilities of interest are determined indirectly
through the probabilties p ′jk of finding j electron on the target and k electron on
the projectile. These take the form

P ′′jk =
∑

f1<...< f j
f ∈T

∑
f j+1<...< f j+k

f ∈P

P f1 ... f f j+k
, (4.26)
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then one has

p ′jk =
N∑
u= j

N−u∑
v=k

(−1)u− j+v−k
(

u
u − k

) (
v

k − v

)
P ′uv . (4.27)

With the probabilities of interest then given by

pkl = p ′N−k−l k . (4.28)

In the above expression T and P are the set of states on the target and on the
projectile ( χ̃00T k and χ̃00Pk respectively). A model of this type which ignores the
functional correlations discussed in Sec. 3.2 is consistent with an iem description.
An example of such a description is provided in Appendix C, in particular
Eq. (C.11).

With the probabilities in hand the corresponding total cross section for each
channel may then be calculated from

σkl = 2π
∫ ∞

0
b pkl (b) db (4.29)

in a similar manner to that of Eq. (3.33). It must be kept in mind that the above
expression does not apply for σ10 which includes the elastic channel and must be
treated with more care.

4.3 Results

4.3.1 1s-only Toy Model

Before presenting the results for the full system some of the details of a simplified
toy model will be discussed. In this model only the 1s target and projectile
states are included in the bgm basis. In this way one can ensure that the orbitals
propagated by the dynamics code are the same as those passed into the kli

functional except that the former include the full etfs while the latter can at most
include partial etfs.
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Figure 4.1: Number of particles as a function of z in 1s -only toy model for
b = 1.0 a.u. In both panels; solid line: etf off, dashed line: partial etf on.

A useful quantity to monitor is the norm of the one-particle density,

N (t ) =
∫

d3r n(r, t ). (4.30)

Ionization having been excluded by construction within this model one should
find N (t ) = 3 for all time. Major violations of this can only be associated with
the etfs.

Figures 4.1a and 4.1b display N as a function of z = V t for collisions with
impact energy of 20 keV/amu and 1000 keV/amu respectively. Both calculations
including and excluding the partial etfs use an impact parameter of 1 a.u and
include response. While both curves show sizable norm violations the inclusion
of a partial etf offers clear benefits. The etfs reduce the overall size of the
violations and reduce the range of time over which these violations occur. This
can be seen most clearly in Fig. 4.1a where the dashed curve detaches from the
N = 3 line more slowly and reattaches more quickly. Additionally including etfs
corrects the unexpected asymmetry about z = 0 a.u.

The origins of the norm violations is easy to trace. According to Eq. (2.8) the
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one-particle density may be written

n(r, t ) =
��ϕ1↑��2 + ��ϕ2↑��2 + ��ϕ1↓��2 . (4.31)

Each orbital in the above expression is normalized to 1 and takes the form

ϕ = aT e ivT ·r χT + aP e−ivT ·r χP . (4.32)

Every orbital then contributes∫
d3r |ϕ |2 = |aT |2 + |aP |2 + 2<

[
aT ∗aP S̃T P

]
(4.33)

to N , where S̃T P are the matrix elements of the overlap matrix (including etfs).
It can then be seen that norm violations are due to the fact that the kli implemen-
tation cannot fully account for the overlaps of the ks-orbitals, a direct consequence
of its inability to deal with non-cylindrically symmetric orbitals.

The slight loss of norm noticeable in the tails of all four curves is on the
order of 0.002. One can consider the small violation as a limit on the accuracy of
calculations. This error is on the order of 0.06%.

4.3.2 Impact Parameter Dependence

Before discussing the total cross section results we present some of the lower level
features of the full calculations. We consider the single-particle probabilities for
each electron to ionize and to switch the nuclear centre to which it is bound.
These probabilities can be calculated from the transition amplitudes. As an
example, if ϕ1↑ begins initially on the target then the single-particle probability
to ionize this electron can be written

p [He(↑1) → I ] =
∑

c ∈{T ,P }

K∑
k=1

L∑
l=1

���〈 χ̃l0ck |ϕ1↑(t f )〉���2 (4.34)
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(c) EP = 250 keV/amu.

Figure 4.2: Single-particle transfer and ionization probabilities in He+-He colli-
sions at various impact energies.

and the single-particle probability to transfer to the projectile may be written

p
[
He(↑1) → He+

]
=

K∑
k=1

��〈 χ̃00Pk |ϕ1↑(t f )〉��2 , (4.35)

where the probabilities are defined in terms of orthogonalized orbitals including
full etfs. These probabilities are presented for the response model including
partial etfs at the impact energies of 10, 60 and 250 keV/amu in Fig. 4.2. When a
distinction is made between response and no-response results the text refers to
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cross sections calculated using either set of fully time-dependent 1s-only orbitals
and those using the model described in the text surrounding Eq. (4.13) respectively.
When no distinction is made the text refers simply to the response versions.

For low-energy collisions capture processes can be seen to be dominant, this is
clearly depicted in Fiq. 4.2a where the single-particle ionization probabilities are
negligible for the majority of impact parameters. In contrast, Fig. 4.2c shows the
diminishing importance of capture over ionization as impact energies increase. As
one would expect the probability to ionize the more tightly bound He+ electron
is consistently less than for either of the He electrons. Also of note is the obvious
difference between the two He electrons, a clear reflection of the implementation
of a spin-dependent potential.

One last point must be mentioned before closing the discussion of impact pa-
rameter dependent probabilities. Presented in Fig. 4.3 are integrands of Eq. (4.29)
for several impact energies, that is, impact parameter dependent probabilities
for the outcome channels of Eqs. (4.19)-(4.25) (with the addition of p00 and p30)
times the impact parameter. For Ep ≤ 500 keV/amu the probabilities behave
as one would expect. That is to say that the probabilities generally follow the
relation p(b) ∼ b a1e−a2b for some positive real numbers a1 and a2. However,
above this level unphysical structures begin to emerge. As an example the p20
curve in Fig. 4.3c contains a large hump below 0.5 a.u.

These are the result of numerical issues that limit the minimum possible
impact parameter for which the calculations produce results from 0.1 a.u. below
500 keV/amu gradually to 0.8 a.u. at 1000 keV/amu. In Eq. (4.29) the integrand,
b pkl (b), is approximated by a cubic spline which is, in turn, integrated to arrive
at a cross section. The structure of the integrand means that so long as pkl (0) is
finite its value is irrelevant and we always know the integrand at b = 0. In Fig. 4.3
the solid portion of each curve represents the region where the probability may
be determined at any point, the dashed sections represent the region where the
spline interpolates between b = 0 and the next lowest available impact parameter.
In the best possible scenario the lower bound on the error of a cubic spline will
scale to the fourth power in the largest step between knots [162], for a spline s f
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Figure 4.3: Impact parameter dependent probabilities for all outcome channels in
He+-He collisions. Dashed portions of curves represent the region where only
the spline interpolant is available.

interpolating a function f one has

E(s f ) =
�� f − s f

��
∞
≤

5
�� f (4)��

∞
ℎ4

384
, (4.36)

where ℎ is the largest separation between grid points used in determining the
spline and

|g |∞ = sup
x∈[a,b]

{|g (x)|}. (4.37)

The step size factor in the error bound then increases from 0.0001 to 0.4096, an
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increase by an approximate factor of 4000. It is this decrease in the accuracy of the
interpolation which results in the unphysical structures present in some outcome
channels above 500 keV/amu. The presence of these structures are the reason for
the lack of a data point at 800 keV/amu in Fig. 4.7, despite values having been
calculated. These structures become most apparent in the inset to Fig. 4.8.

4.3.3 Visualizing the Time-dependent Potential

A considerable amount of information regarding the dynamics of the collision
processes may be gleaned from an inspection of the ks-potential. If a picture
is worth a thousand words then a thirty second long video at 24 fps is worth
approximatetly 720 thousand words. To this end this subsection presents a
collection of animations depicting the time evolution of the time-dependent ks
potential. These videos may be found online3.

When visualizing the ks potential it is best to consider only the electron-
electron contributions, that is to ignore the external potential. This is beneficial
because from the perspective of the current work we are primarily interested in
the performance of our approximation to these portions of the potential. As the
behaviour of the internuclear potential is well established tracking it is of little
value. Additionally, the poles of the Couloumb potential will drown out the
electron electron effects. For these reasons we will concern ourselves with just
the electron-electron contributions

vσee = vσx + vH. (4.38)

The spin-dependent electron-electron potentials are best shown along with
the associated spin-densities, nσ of Eq. (2.11) generated from the 1s -only orbitals
in the petf model. In this way one can more easily understand the appearance
and time evolution of vσee. For example, v ↑ee contains a single peak. This is due
to the exact cancelation of self interaction that is present on the projectile centre
where initially only one electron resides.

Figures 4.4 and 4.5 show a sample of several frames taken from the animation
for a collision with an impact energy of 50 keV/amu and impact parameter

3https://tinyurl.com/ybo3yhqd
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of 1.0 a.u. These figures depict the collisions process at the initial separation
(Figs. 4.4a and 4.5a), at closest approach (Figs. 4.4b and 4.5b), and at the final
time step (Figs. 4.4c and 4.5c). The arrangement of the collision system is easily
determined by combining the initial spin-up and spin-down frames. Both of the
density plots have peaks on the left, while only the spin-up density has a peak
on the right clearly demonstrating that the target is on the left side of the figures.
As these plots are presented in the rotating centre of mass frame the target and
projectile remain on one side of the plane with the internuclear axis as normal.

At closest approach in Fig. 4.4b one may already see a second peak developing
on the projectile as some of the norm is transfered between the collision centres.
This interpretation is cemented in Fig. 4.4c where the one-particle density contains
two distinct maxima.

The spin-up channels appear less active. This can be through the fact that
up to closest approach the size and shape of the two peaks appear unchanged,
only their positions are noticably different. In the final frame a perceptible loss of
norm from both centres is apparent. This may be seen as evidence that the Pauli
exclusion promised by the x-potential is performing as advertised.
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(a) Z(t ) = −40 a.u.. (b) Z(t ) = 0 a.u..

(c) Z(t ) = 40 a.u..

Figure 4.4: Spin-down electron-electron potential compared with the spin-down
component of the one-particle density intially (a), at closest approach (b), and
finally. The parameters of the calculation are EP = 50 keV/amu and b = 1.0 a.u.
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(a) Z(t ) = −40 a.u.. (b) Z(t ) = 0 a.u..

(c) Z(t ) = 40 a.u..

Figure 4.5: Spin-up electron-electron potential compared with the spin-up compo-
nent of the one-particle density intially (a), at closest approach (b), and finally.
The parameters of the calculation are EP = 50 keV/amu and b = 1.0 a.u.

57



4.3.4 Cross Section Results

In what follows all results obtained by propagating the full ks orbitals in a
potential generated from the 1s-only orbitals of Eq. (4.6) that include no electron
translation factors will be designated by netf. Those obtained by an application
of the same processes using the 1s-only orbitals, with partial etfs, of Eq. (4.12)
will be referred to as petf.

Where available the results of the current work are compared with calculations
of other groups. It should be noted that only those calculations that describe the
system quantum mechanically were considered, that is to say works that employ
approaches such as the classical trajectory Monte Carlo method [163], the over
the barrier model [164], or the Bohr–Lindhard model [121, 165] are not included.

We will begin our discussion of the total cross section results with a broad
overview comparing the response and no-response calculations. In general for the
cross sections presented in Figs. 4.6 through 4.14 the response calculations produce
values that are noticeably lower with the exception of σ01 and σ00 (Figs. 4.7 and
4.13 respectively). Where the σ01 no-response curve drops below the response
results appear to coincide with a spike in the response σ30 results (Fig. 4.14). The
artificial nature of the σ00 channel makes determining whether the lower result
is desirable or not difficult. The only other channel, apart from σ00, where the
no-response calculations are in better agreement with experiment is σ02, Fig. 4.11,
where lowering the results moves the response curve below experiment. The
addition of response effects causing a decrease in charge-transfer cross sections is a
typical result, see for example Ref. [77]. In general, response effects result in a
transfer of of probability into the elastic channel, enhancing σ10.

As was mentioned above the primary purpose of the no-response model in
the present context was as a testbed for isolating the etfs from other phase factors.
If we consider only the physical outcome channels, i.e. exclude σ00 and σ03, a
clear pattern emerges. For low impact energies the netf and petf curves coincide,
what one would expect as V approaches zero. As the impact energy increases
a gap begins to open between the two sets of results. The only exceptions to
this trend are σ20 (Fig. 4.8), where the cross sections are likely too large for
small fluctuations to be apparent, and σ01 (Fig. 4.7) where the netf and petf
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Figure 4.6: Total cross section for single ionization of the target. Theoretical
results: petf response (solid line), netf response (dotted line), petf no-response
(dashed line), netf no-response (dash-dotted line), and cdw-eis of Miraglia and
Gravielle [166] (thin solid line). Experimental data: diamonds [167], circles [168],
and squares [169].

response curves are slightly erratic. Leaving aside this channel the tendencies of
the response and no-response models in the presence, or absence, of the partial
etfs are essentially identical. From the discussion in Sec. 4.3.1 it is clear that
the etfs have no effect on vH in the no-response model. One can interpret
this to mean that the differences between the netf and petf results are primarily
attributable to the etfs and not the result of some unforeseen additional processes.

We now discuss the comparison of our response results with experimental
data and other calculations by considering pure single ionization of the target, the
process of Eq. (4.19). The results for this channel, σ11 are presented in Fig. 4.6.
Both netf and petf are in good agreement with experiment throughout the full
range of impact energies. The slightly lower values for the petf version above
200 keV/amu make it a better fit to experiment. The underestimation of both
curves below the peak corresponds almost exactly with the region where σ20

results begin to rise above the experimental results (see Fig. 4.8).

59



101 102 103

EP [keV/amu]

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

σ
01
[1

0−
16

cm
2 ]

Figure 4.7: Total cross section for single ionization of the projectile. Theoretical
results: petf response (solid line), netf response (dotted line), petf no-response
(dashed line), netf no-response (dash-dotted line), and ievm of Sigaud and Mon-
tenegro [170] (thin solid line). Experimental data: diamonds [167].

Also displayed in Fig. 4.6 are the continuum-distorted-wave eikonal-initial-
state approximation (cdw-eis) results of Miraglia and Gravielle [166]. These
results seem to complement the results of the present work through the majority
of the impact energy range. One notable exception to this is the slightly higher
cross section maximum however. As there is a fairly large spread in the experi-
mental data around this region it is difficult to say which is more accurate. The
results of Miraglia and Gravielle also begin to diverge as one approaches lower
impact energies. This feature is likely due in large part to the perturbative nature
of cdw-eis which becomes less reliable as one decreases the impact energy.

Next, we consider the results for σ01 [Eq. (4.21)] shown in Fig. 4.7. As with
the previous channel both netf and petf results are in reasonable agreement with
the experiment where it is available. Also following the general trend described
above both models become essentially equal at low impact energies and separate
as EP increases. Both models begin to overestimate the data above the peak
around 200 keV/amu. Once again the slightly lower petf results are in better
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Figure 4.8: Total cross section for single capture to the projectile. Theoretical
results: petf response (solid line), netf response (dotted line), petf no-response
(dashed line), netf no-response (dash-dotted line), and cdbw-4b (post form) of
Ghanbari-Adivi et al. [171] (thin solid line). Experimental data: diamonds [167]
and circles [168]. Inset presents the same data on a log-log scale.

agreement with experiment. The slight unphysical structures in the curves below
40 keV/amu seem to correspond with the peaks of the σ00 channel. This issue
will be discussed in greater detail below.

These calculations have been compared with the independent event model
(ievm) results of Sigaud and Montenegro [170]. While they do not directly report
σ01 they do present σ02, σ03, and what they call total electron loss (we will
denote this by σtotal). Using the relation

σtotal = σ01 + σ02 + σ03 (4.39)

one can easily determine σ01 from their disclosed results. Their values seem to
be in much better agreement with experiment in the high-energy range than
either the netf or petf models. This can perhaps be explained by the presence
of correlation in the ievm calculations. As will be discussed in more detail
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Figure 4.9: Total cross section for double ionization of the target. Theoretical
results: petf response (solid line), netf response (dotted line). petf no-response
(dashed line), and netf no-response (dash-dotted line). Experimental data: dia-
monds [167], circles [168], and squares [169].

below all of our models underestimate σ02 and σ03 in this impact energy range.
Keeping in mind that

∑
pkl = 1 the increase in these channels resulting from the

incorporation of correlation effects, so-called antiscreening in particular, would be
drawn in part from the current channel of focus σ01 resulting in a decrease, putting
our results and theirs in better agreement with both Sigaud and Montenegro and
the experimental data.

For the results of single electron capture to the projectile, the process of
Eq. (4.20) depicted in Fig. 4.8, both netf and petfmodels are essentially identical.
This is what one would hope for as they are in good agreement with experiment in
the entire range of impact energies, keeping in mind that the unphysical structures
resulting from a lack of low impact parameter data for collisions with impact
energies above 500 keV/amu (discussed in Sec. 4.3.2) are exaggerated by the
log-log scale of the inset plot. A possible explanation of the slight discrepancy
between theory and experiment in the 50-150 keV/amu interval is offered by a
comparison with the four-body Coulomb–Born distorted wave approximation
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Figure 4.10: Total cross section for transfer ionization of the target. Theoretical
results: petf response (solid line), netf response (dotted line), petf no-response
(dashed line), and netf no-response (dash-dotted line). Experimental data: dia-
monds [167] and circles [168].

(cdbw-4b) results of Ghanbari-Adivi et al. [171]. The correlation effects included
in this model may point to the slight rise in cross section being related to the fact
that we have employed an iem approximation. Alternatively, the rise may be due
to a failure of the partial etf.

The latter explanation may provide a more satisfying solution to this problem.
One would expect that capture processes should be dominated by the contribu-
tions of slow and close collisions. The regions where the n/petf models start to
diverge from experiment is approximately the region where both models begin
to diverge in other channels (see for example σ12 in Fig. 4.9), that is the lowest
energies where etfs are important. Additionally they begin to agree with experi-
ment once the cross sections begin to rapidly approach zero, for fast collisions.
This would seem to be an indication that correct etfs are important for capture
processes (a fact that should be at least intuitively obvious).

A few words should be spent addressing the choice for the theoretical cal-
culation compared against. Unlike other channels there exists a relatively large
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Figure 4.11: Total cross section for simultaneous single ionization of the target
and projectile. Theoretical results: petf response (solid line), netf response
(dotted line), petf no-response (dashed line), netf no-response (dash-dotted line),
and ievm of Sigaud and Montenegro [170] (thin solid line). Experimental data:
diamonds [167] and crosses [172].

number of works to select from that fit the criteria listed above. As the majority
of these belong to a family of related perturbative models [166, 171, 175–179] the
latest, that of Ghanbari-Adivi et al., was chosen. A comparison of the work of
Ghanbari-Adivi et al. with several earlier perturbative calculations can be found
in Ref. [171].

With the single-electron processes taken care of double target ionization,
Eq. (4.22), the first of the two-electron processes will be considered next. The
results for this channel are presented in Fig. 4.9. As with previous channels both
netf and petf results appear to be very similar with a slight edge going to the
petf model’s marginally lower results above 100 keV/amu. Both models seem to
shift the peak in the cross section to higher impact energy than experiment would
suggest is correct. As one would expect from an iem the two models exaggerate
double ionization, see for example Refs. [70, 134]. As there are no previous works
fitting the conditions for inclusion listed earlier little else can be concluded about
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Figure 4.12: Total cross section simultaneous double target and single projectile
ionization. Theoretical results: petf response (solid line), netf response (dot-
ted line), petf no-response (dashed line), netf no-response (dash-dotted line),
and ievm of Sigaud and Montenegro [170] (thin solid line). Experimental data:
diamonds [167] and crosses [172].

the results of the present work.
Another channel where the literature lacks a proper touchstone is that of

transfer ionization [Eq. (4.24) shown in Fig. 4.10]. The trends for σ21 are very
similar to those of σ12. As with the previously discussed process both models are
above experiment and shift the experimental peak to a higher impact energy. The
only significant difference is that this is one of the few channels where the netf
model tends to give larger cross section values and is in slightly better agreement
with experiment than the petf. The flattening of the curves below 20 keV/amu
is an artifact of the tc-bgm becoming less reliable at the lowest impact energies.

The last two-electron process is simultaneous single ionization of the target
and projectile, Eq. (4.23). The results for our netf and petf models are presented
in Fig. 4.11. These results both follow the trend of the data quite closely, arguably
matching the position of the peak in the experimental cross sections. This channel
is the second of two where the netf model has a slight egde over the results of the
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Figure 4.13: Total cross section for cap-
ture to the target in He+-He collisions.
Theoretical results: petf response (solid
line), netf response (dotted line), petf
no-response (dashed line), and netf no-
response (dash-dotted line).
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Figure 4.14: Total cross section for dou-
ble capture to the projectile in He+-He.
Theoretical results: petf response (solid
line), netf response (dotted line), petf
no-response (dashed line), and netf no-
response (dash-dotted line).

petf. Unfortunately they fall below experiment for the majority of the impact
energy range shown.

A comparison with the ievm of Sigaud and Montenegro explains this fact.
Sigaud and Montenegro claim to capture the effects of antiscreening, the direct
interaction between target and projectile electrons, which becomes increasingly
important for projectile ionization processes at larger impact energies. As the
results of the current work are those of an iem they make no effort to capture
any correlation effects. Sigaud and Montenegro’s efforts to capture antiscreening
see their results fall within experiment for their entire extent. Encouragingly, if
one were to extend the curve of Sigaud and Montenegro it would seem to overlap
with the results of the present work lending credence to the curve in the region
below the cross section peak, where antiscreening cannot contribute.

Next we consider the sole three electron process, simultaneous double target
and single projectile ionization [Eq. (4.25)]. The results, presented in Fig. 4.12,
again follow the general trends found in the previously discussed channels; over-
estimation of the cross section peak and a slightly better showing for the petf
model over the results of the netfmodel. Unlike for previous channels our results
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Figure 4.15: Total cross section for net recoil ion production in He+-He colli-
sions. Theoretical results: petf response (solid line), netf response (dotted line),
petf no-response (dashed line), netf no-response (dash-dotted line), and cmf of
Schenk [173] (thin dotted line). Experimental data: squares [174].

are in better agreement with experiment than those of Sigaud and Montenegro
which overestimate the cross sections to a greater extent and over a larger impact
energy range. As in previous channels the underestimation of our cross sections
at larger impact energies may be attributed to correlation effects, in particular, to
antiscreening which Sigaud and Montenegro seem to exaggerate in this channel.

In addition to the outcome channels discussed above there are three further
processes. One, σ10, has been left out as it involves no charge transfer. The other
two, σ00 and σ30, involve all three electrons bound to either the target or the
projectile and are displayed in Figs. 4.13 and 4.14. As was pointed out earlier
these channels should not be considered due to the fact that the production cross
sections for these configurations should be negligible, but unfortunately in our
results they are not. While modelling the initial and final states of the system as
single Slater determinants accounts for Pauli exclusion which precludes all three
electrons from occupying the ground state there is nothing in the model to stop
additional electrons from being captured and remaining in excited states. Keeping
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in mind that this model is simply an example of an IEM, albeit a sophisticated
one, the probabilities for these unphysical channels will behave in a predictable
manner p00 ∼ pT 3 and p30 ∼ pP 3. The inclusion of functional correlation should,
in principle, provide an offset. An exaggerated example of this is provided in
Chap. 3 where a wb type model could potentially cause both channels to be zero.
The only recourse, short of implementing a model which contains at least some
functional correlation, is to artificially redistribute the probability from p00 and
p30 into other channels.

Two options immediately present themselves. The first possibility is to
feed the extra probability into the corresponding ionization channels. In other
words, p00 and p30 would augment p01 and p21 respectively. With the peak in σ30

approximately matching that of σ21 in both position and magnitude this solution
would lead to a doubling of the overestimation present in the σ21 channel. A
similar issue would arise in the lower impact energy range of the σ01 curve. This
leaves one with the second option, to put the extra probability from p00 into p10
and feed p30 into p20. The only effect this could have on the presented results
would be to increase σ20 however, as σ30 is at worst an order of magnitude less
than σ20 it would provide only a small shift in the curve displayed in Fig. 4.8.

To close out this section we will consider the total cross section for net recoil
ion production. This quantity, presented in Fig. 4.15, may be calculated from
previously presented results

σ+ = σ11 + σ20 + σ02 + 2σ12 + 2σ21 + 2σ03 + 2σ30. (4.40)

Just as in the separate channels the response results are lower than those of the
no-response model for the majority of the impact energy range putting them in
fair agreement with experiment outside of the imtermediate energy range. No
distinction between netf and petf curves is discernible.

Also depicted in Fig. 4.15 are the common mean field (cmf) results of
Schenk [173], which are in good agreement with experiment. The difference
between the cmf results and those of the current work can be traced to the overes-
timation of single capture (see discussion above and Fig. 4.8). As was discussed in
Ref. [173] the cmf model is very well suited for describing processes involving
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initial target electrons. This in large part due to the fact that in the cmf both
target and projectile electrons are propagated with the same Hamiltonian, that of
the target. One can see this as evidence that the current work trades an excellent
description of a single centre for a slightly less realistic description of both atomic
centres.
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Chapter 5

Conclusions

Following the programme laid out in the introduction this work has presented in-
vestigations of an increasingly complex series of ion-atom collisions systems. This
journey began with the relatively simple antiproton-helium system, continued
with the proton-helium and He2+-He systems, and culminated in a discussion
of the He+-He collision system. In the following subsections more detailed and
collision specific conclusions will be offered for these investigations. Before em-
barking on a summary of individual results it is, perhaps, necessary to emphasize
one of the overarching themes of this work. In most situations our results are
competitive with the best models of others. In many cases our results are the only
ones which can consistently describe all outcome channels for a given collision
system, that is they produce some of the best results available without being
focused on a specific process. This certainly demonstrates the utility of density
functional theory techniques over a fairly wide range of systems.

5.1 p-He and He
2+
-He Collisions

We have investigated correlation effects in p-He and He2+-He collisions. By
expanding the correlation integral model of Wilken and Bauer [18] applied
previously to the antiproton-helium system [19] we have produced total cross
sections for single, double, and transfer ionization as well as single and double
capture. In order to incorporate electron capture processes into the wb model
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two additional correlation integrals, one centred on the projectile ( I PPc ) and
the other two-centred ( IT P

c ), were introduced. While I PPc was dealt with using
straightforward modification of the original wbmodel. IT P

c was determined based
on the values of the other correlation integrals and the single-particle probabilities,
pT and pP . The use of this model was justified by the favourable p-He results for
single capture that depend explicitly only on IT P

c .
For the majority of the channels investigated the wb model represents a clear

improvement over iem results, the most notable exceptions being the double ion-
ization results at low and intermediate impact energies. Where enough correlated
two-electron calculations exist to make a proper comparison these fully correlated
calculations represent a much larger improvement over iem than wb results.

Overall it appears that the p-He results are superior to those of the He2+-He
system. The variation in the quality of results may be attributed to the increased
charge of the projectile. The stronger potential well on the projectile results in an
increase in the role of capture in the dynamics. Immediately, this means that the
problems present in all calculations of separating the target, capture, and ionizing
regions becomes amplified. The increased role of capture also enters into the wb
model itself where the previously closed pP > 1/2 branches of the correlation
integrals are opened, further complicating the analysis. The lack of a full reference
calculation over a wide impact energy range makes separating these issues all the
more difficult.

The opening of the capture channels introduces additional complications into
the wbmodel. First, it accentuates some of the shortcomings of the underlying dy-
namic calculation. While some gains may be made by rerunning these calculations
using the full tc-bgm the base level accuracy of the method is essentially fixed
(especially at low impact energies). One could take this as further confirmation
that no single calculation is yet capable of covering vast tracts of impact energy
space [180]. In this regard our results cover more channels, over a larger energy
range than most.

Second, the wb model itself appears to distribute probabilities among the six
outcome channels in unphysical ways (for example causing double and transfer
ionization in p-He collisions to be equal). While the precise origin of these issues
is not currently known at least some blame must be taken by the piece-wise
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nature of the adiabatic approximation which causes only one of ITT
c or I PPc to

be nontrivial at any given impact parameter. Another source of poor probability
partitioning is the model chosen for IT P

c which, as mentioned above, causes
pI I = pI P . Regardless of the provenance of these issues further applications of the
wb model in the context of capture are inadvisable. This should, however, not be
interpreted as a criticism of correlation-integral models in general it is merely a
reflection of the wb model’s apparent limitations. Work in this vein can be made
easier provided more correlated two-electron calculations become available.

5.2 He
+
-He Collisions

The He+-He collision system was investigated within time-dependent spin-density
functional theory under the constraints of the exchange-only approximation.
An accurate time-dependent exchange potential was determined through the
application of the kli approximation. Total cross section results for all physical
outcome channels were then offered in the approximate impact energy range of
10-1000 keV/amu for two models; one in which electron translation factors were
ignored and a second model where partial etfs were used. The results of both
models are in overall good agreement with experiment.

Without diminishing the results of this work it is necessary to highlight
a few limitations and where the results may be improved in future iterations.
First, the restriction of the implementation of the kli functional to systems of
cylindrical symmetry is the impetus for both the 1s-only approximation as well
as the need to consider both the netf and petf models. Future applications
of the procedure laid out in this work would benefit greatly from a fully three-
dimensional implementation of the kli functional that makes no symmetry
assumptions. Failing this, it may be possible to express the ks orbitals in terms of
a multipole expansion. In this way more complex, symmetry respecting orbitals
may be obtained.

Comparisons of our results with the theoretical works of other groups points
to the fact that the calculations would also gain from the inclusion of correlation
effects. Treating this x-only version as a proof of concept there is nothing, apart
from the added complexity of the calculations, precluding the addition of dynamic
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correlation through the application of any number of ground-state correlation
functionals in the future. It should be noted that such a model would still not
offer a complete description of time-dependent correlation, it would, for example,
lack memory effects [11]. It should then be clear that even an adiabatically
exact potential could not produce ccompletely accurate dynamics [181]. An
added difficulty would be the inclusion of functional correlation effects. In
order to move beyond the iem single Slater determinant description of outcome
probabilities, one would have to adapt a model, preferably one that avoids the
problems of the model of Wilken and Bauer [18] used in Chap. 3 (and Ref. [70])
to explicitly spin-polarized systems. A starting point for such a model is outlined
in Appendix C.
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Appendix A

Coordinate Systems

This appendix contains the fundamentals of some non-rectangular coordinate
systems used in the text. This discussion focuses on lesser known coordinate
systems. For more detail the reader is referred to any mathematical handbook for
physics, for example [182, 183].

A.1 Elliptical Coordinates

Elliptical coordinates are formed by the intersection of series of confocal ellipses
and hyperboles. If we let (ξ, η) denote the elliptic and hyperbolic grid lines and
a > 0 their focal length we can cover the plane with two charts. The first is given
by {

x = aξη
y2 = a

(
ξ2 − 1

) (
1 − η2

)
,

(A.1)

while the second is defined similarly and covers the lower half space ((ξ, η) 7→
(x,−y)). Both charts are defined for (ξ, η) ∈ [1,∞] × [−1, 1] and a = R

2 .
This mapping is demonstrated in Fig. A.1. The coloured lines in the left panel

represent a selection of ξ (blues and greens) and η (reds and oranges) grid lines.
Grid lines are mapped by Eq. (A.1) to lines of corresponding colour in the right
panel.
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Figure A.1: The coordinate mapping of Eq. (A.1) is demonstrated by the corre-
spondence between coloured grid lines.

A.2 Prolate Spheroidal Coordinates

Prolate spheroidal coordinates are a three-dimensional coordinate system that
result from rotating the upper half space elliptical coordinates (defined in the
proceeding section) around the line running through the co-foci of the elliptic
and hyperbolic grid lines.

While several conventions exist, throughout this work prolate spheroidal
coordinates are defined as

x = a
√
(ξ2 − 1)(1 − η2) sin φ,

y = a
√
(ξ2 − 1)(1 − η2) cos φ,

z = aξη,
(A.2)

for (ξ, η, φ) ∈ [1,∞) × [−1, 1] × [0, 2π).
One says that a function f : R3 → R is cylindrically symmetric if it has no φ

dependence, i.e. if f (ξ, η, φ) = f (ξ, η).
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Appendix B

Computational Aspects

In this appendix details of the code used to calculate the results presented in
Sec. 4.3 are presented. This code is an amalgam of several components. These
consist primarily of the code base developed for carrying out tc-bgm collision
calculations, here referred to as BGM, the ground-state dft structure code, DIAMOL,
which can be used to produce a ks-potential for a given arrangement of a diatomic
molecule, and a short programme, hephe.py which manages the execution of a
single run.

Both BGM and DIAMOL are mature stand-alone programmes. While this makes
them well suited to performing their intended function it also makes them
somewhat less adaptable. With this in mind the design philosophy behind the
development of a hybrid code proceeded from a desire to modify the existing code
as little as possible. Essentially the only modifications made to the DIAMOL were
to replace a subroutine which calculates the ks-orbitals with one which reads the
orbitals from a file output by BGM. Similarly the BGM was altered to output orbitals
to be fed into DIAMOL and to read in potentials output by DIAMOL. Additionally
execution control was added to BGM which causes it to pause and wait for a signal
to proceed at each time step, this allows time for a new potential to be calculated
as necessary.

These pieces are monitored and controlled by hephe.py. This script serves
several purposes. First, it sets up the input files needed by BGM and launches
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two child threads. Each thread contains an instance of BGM, one for the spin-up
electrons and another for spin-down. As these run hephe.py monitors their
outputs for a flag which indicates that they are ready to receive a new potential.
At this point the BGM instances are paused and input files needed for DIAMOL are
generated from their outputs. Once DIAMOL has completed its execution the BGM
threads are resumed. The BGM proceeds by expanding the ks-orbitals in the basis
described in Sec. 4.1, the resulting coupled-channel equations are then solved
using the Livermore solver [184, 185] which employs either an Adams method
(predictor-corrector) in the case of non-stiff systems or a backward differentiation
formula in the case of stiff systems. In this way the ks-orbitals are propagated in a
time-dependent potential.
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Appendix C

Three-Electron Correlation In-

tegrals

The process of deriving three-electron versions of the equations presented in
Sec. 3.2 begins as it did in the two electron state with the full N -body wave
function. Unlike in the former case the wave function is not readily split into
spatial and spin components. One is then forced to work with the function
Ψ(r1, σ1, r2, σ2, r3, σ3, t ). Our notation may be simplified by introducing com-
bined spatial-spin coordinates x j = (r j, σ j ) and a combined integral operator⨏

V
d3x =

∑
σ=↑,↓

∫
V
d3r . (C.1)

With a slight modification to the definition of the one-particle density

n(x) = N
⨏

d3x2 . . . d3xN |Ψ(x,x2, . . . ,xN , t )|2 (C.2)

the single-particle probabilities to find an electron on the target or the projectile
may be obtained

pT =
1
3

⨏
T
n(x, t f ) d3x (C.3)
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and
pP =

1
3

⨏
P
n(x, t f ) d3x . (C.4)

In addition to these probabilities we will define two varieties of correlation
integral, one that involves three-particle interactions

IV1V2V3
c =

⨏
V1

⨏
V2

⨏
V3

d3x1d3x2d3x3 g (3)c (x1,x2,x3, t )n(x1, t )n(x2, t )n(x3, t ),

(C.5)

g (3)c (x1,x2,x3, t ) =
ρ(x1,x2,x3, t )

n(x1, t )n(x2, t )n(x3, t )
−
1
9

(C.6)

and a more familiar two-particle version

IV1V2
c =

⨏
V1

⨏
V2

d3x1d3x2 g (2)c (x1,x2, t )n(x1, t )n(x2, t ), (C.7)

g (2)c (x1,x2, t ) =
ρ2(x1,x2, t )

n(x1, t )n(x2, t )
−
1
3

(C.8)

where V1, V2, and V3 ∈ {T , P , I }, ρ = 3|ψ |2, and ρ2 =
⨏

d3x ρ.
With these definitions established the ten outcome probabilities, pkl , detailed

in Sec. 4.2
p00 =

1
3

⨏
T

⨏
T

⨏
T
ρ(x1,x2,x3, t f ) d3x1d3x2d3x3, (C.9a)

p01 =
⨏
T

⨏
T

⨏
I
ρ(x1,x2,x3, t f ) d3x1d3x2d3x3, (C.9b)

p02 =
⨏
T

⨏
I

⨏
I
ρ(x1,x2,x3, t f ) d3x1d3x2d3x3, (C.9c)

p03 =
1
3

⨏
I

⨏
I

⨏
I
ρ(x1,x2,x3, t f ) d3x1d3x2d3x3, (C.9d)

p10 =
⨏
T

⨏
T

⨏
P
ρ(x1,x2,x3, t f ) d3x1d3x2d3x3, (C.9e)

p11 = 2
⨏
T

⨏
P

⨏
I
ρ(x1,x2,x3, t f ) d3x1d3x2d3x3, (C.9f)

p12 =
⨏

P

⨏
I

⨏
I
ρ(x1,x2,x3, t f ) d3x1d3x2d3x3, (C.9g)
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p20 =
⨏
T

⨏
P

⨏
P
ρ(x1,x2,x3, t f ) d3x1d3x2d3x3, (C.9h)

p21 =
⨏

P

⨏
P

⨏
I
ρ(x1,x2,x3, t f ) d3x1d3x2d3x3, (C.9i)

p30 =
1
3

⨏
P

⨏
P

⨏
P
ρ(x1,x2,x3, t f ) d3x1d3x2d3x3, (C.9j)

may be rewritten as

p00 = pT 3 +
1
3
ITTT
c , (C.10a)

p01 = 3pT 2(1 − pT − pP ) + ITT
c − ITTT

c − ITT P
c , (C.10b)

p02 = 3pT (1 − pT − pP )2 − 2ITT
c − 2IT P

c + ITTT
c + 2ITT P

c + IT PP
c , (C.10c)

p03 = (1−pT −pP )3+ITT
c +2IT P

c +I PPc −
1
3
ITTT
c −ITT P

c −IT PP
c −

1
3
I PPPc , (C.10d)

p10 = 3pT 2pP + ITT P
c , (C.10e)

p11 = 6pT pP (1 − pT − pP ) + 2IT P
c − 2ITT P

c − 2IT PP
c , (C.10f)

p12 = 3pP (1 − pT − pP )2 − 2IT P
c − 2I PPc + ITT P

c + 2IT PP
c + I PPPc , (C.10g)

p20 = 3pT pP 2 + IT PP
c , (C.10h)

p21 = 3pP 2(1 − pT − pP ) + I PPc − IT PP
c − I PPPc , (C.10i)

p30 = pP 3 +
1
3
I PPPc . (C.10j)

Just like in the two-electron case the iem may be recovered by setting all
correlation integrals to zero. One finds

piem00 = pT 3, (C.11a)

piem01 = 3pT 2(1 − pT − pP ), (C.11b)

piem02 = 3pT (1 − pT − pP )2, (C.11c)

piem03 = (1 − pT − pP )3, (C.11d)

piem10 = 3pT 2pP , (C.11e)
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piem11 = 6pT pP (1 − pT − pP ), (C.11f)

piem12 = 3pP (1 − pT − pP )2, (C.11g)

piem20 = 3pT pP 2, (C.11h)

piem21 = 3pP 2(1 − pT − pP ), (C.11i)

piem30 = pP 3. (C.11j)

Moving beyond an iem description may prove difficult. The failings of the wb
model, discussed in Chap. 3, essentially preclude its application in this more
complex setting. Any new model envisioned may be aided in part by relations
between the full three-particle density and its various reductions (see for example
Ref. [186]).
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