
  

 

BEST PRACTICES FOR CONSTRUCTING CONFIDENCE INTERVALS 

FOR THE GENERAL LINEAR MODEL UNDER NON-NORMALITY 

 

Mark C. Adkins 

 

A THESIS SUBMITTED TO 

THE FACULTY OF GRADUATE STUDIES 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS 

FOR THE DEGREE OF 

MASTER OF ARTS 

 

GRADUATE PROGRAM IN PSYCHOLOGY 

YORK UNIVERSITY 

TORONTO, ONTARIO 

 

November 2017 

 

© Mark C. Adkins, 2017 

 

 

 

 

 

 

 

 



 ii 
 

 

Abstract 

Given the current climate surrounding the replication crisis facing scientific research, a subsequent call 

for methodological reform has been issued which explicates the need for a shift from null hypothesis 

significance testing to reporting of effect sizes and their confidence intervals (CI). However, little is 

known about the relative performance of CIs constructed following the application of techniques which 

accommodate for non-normality under the general linear model (GLM). We review these techniques of 

normalizing data transformations, percentile bootstrapping, bias-corrected and accelerated bootstrapping, 

and present results from a Monte Carlo simulation designed to evaluate CI performance based on these 

techniques. The effects of sample size, degree of association among predictors, number of predictors, and 

different non-normal error distributions were examined.  Based on the performance of CIs in terms of 

coverage, accuracy, and efficiency, general recommendations are made regarding best practice about 

constructing CIs for the GLM under non-normality. 
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Best Practices for Constructing Confidence Intervals 

For the General Linear Model under Non-normality 

Renewed concerns regarding the dependability of psychological findings have highlighted the 

importance of research practice such as data analysis (Stangor & Lemay, 2016; Vazire, 2015) and 

reporting effect sizes (Kelley & Preacher, 2012) with their confidence intervals (CIs; Wilkinson, 1999; 

Nickerson, 2000; Cumming, 2014). The general linear model (GLM), which includes ANOVA and 

multiple linear regression as special cases, is a popular modeling framework within psychological 

research, and it typically assumes a normal distribution of the random errors with homogeneity of 

variance so that inferential information (e.g., CI coverage) is accurate. However, psychological variables 

are often non-normally distributed (Cain, Zhang, & Yuan, 2016; Micceri, 1989), raising the practical 

question of how best to address potential violation of the GLM assumption regarding the distribution of 

random errors. Several approaches of varying technicality have been developed to address violation of the 

structure of the GLM random errors, but these approaches are not often familiar to substantive 

researchers. The overall purpose of this current research is to present a comprehensive evaluation of 

alternative methods designed to accommodate violations of the assumption of normality in relation to 

effect sizes and their confidence intervals. Additionally, recommendations for best practice about which 

method to apply under different data conditions are presented. 

General Linear Model 

The general linear model can be expressed as:  

𝑦𝑖 = 𝛽0 + 𝛽1𝑥1𝑖 + ⋯ + 𝛽𝐾𝑥𝐾𝑖 +  𝜀𝑖                                                           (1)  

where i = 1, …, N denotes each individual in the sample of size N, and yi is the observed value on the 

continuous dependent variable (DV) for individual i which is predicted by the k = 1, …, K independent 

variables (IV; e.g., xk). The intercept, β0, is interpreted as the expected value of y when all IVs equal zero. 

Each of the K IVs has an associated regression coefficient (e.g., βk) which is interpreted as the expected 
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change in y for a one-unit increase in xk, while holding all other IVs in the model constant. Finally, 𝜀𝑖 are 

the population random errors associated with each case i. Estimates of these random errors (hereafter 

called residuals and denoted as 𝜀𝑖̂) are the deviation of an individual’s value on the DV yi from the model-

implied predicted value in Equation 1. In order to make inferences under ordinary least squares (OLS) 

estimation, it is assumed that these random errors are multivariate normally distributed with mean vector 

0 and variance structure 𝜮 = 𝜎2𝐈𝑁. Here, 𝜎2 is the variance of the random errors around the model-

implied expected value on the DV and IN is an identity matrix of size N. This variance structure has the 

property of homogeneity of variance. If expanded into matrix form, the variance structure of the errors 

can be seen more clearly. As an example, consider the case of N = 4 cases: The variance structure matrix, 

𝜮, is expected to be as follows:  𝜮 = 𝜎2𝐈4𝑥4 = [

𝜎2 0 0 0
0 𝜎2 0 0
0 0 𝜎2 0
0 0 0 𝜎2

], where each case’s error is normally 

distributed with variance equal to σ2. Grouping all these assumptions together, we have ε ~ MVN (0, 𝜮), 

where ε is the 1 × N vector of random errors. 

 The key results of the GLM are the coefficient estimates and their confidence intervals (CIs). In 

the GLM, the estimated regression coefficients, 𝛽̂𝑘, are effect size statistics that convey information about 

both the direction and magnitude of the expected change in y due to a change in xk. Generally, an effect 

size in GLM is defined as “a measure of the magnitude of a phenomenon being studied” (Cohen, Cohen, 

West, & Aiken, 2003, p. 47). An important distinction between highlighting effect sizes over test statistics 

(along with their corresponding p-values) is that the former shifts focus away from making a dichotomous 

decision about the statistical significance of an effect toward the magnitude and direction of the effect. 

Test statistics and p-values do not convey information about the magnitude of an effect. In contrast, effect 

sizes also help answer the pertinent question of whether an effect has practical importance, where the 

interpretation of effects sizes “requires informed judgment in context” (Cumming, 2014). Effect size 

interpretations do not stand on their own apart from theory. The practical importance of an effect is 

determined by comparison to previous research or substantive theory. For example, if a mean difference 
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of 2 points was observed on some measure of pain ranging from 0 to 20 points, a researcher may 

understand enough about the pain measure to determine that a difference of this size is large enough to be 

noticeable for patients. By contrast, interpreting a p-value of 0.0035 does not answer the question of 

whether the reduction in pain would be noticeable to patients undertaking treatment. Such information 

cannot be assessed using p-values. 

Confidence Intervals 

 The CIs of estimated regression coefficients convey their stochastic nature and precision. A  

(1 – α)100% CI provides a range of values for a particular population parameter, such as a regression 

coefficient. Over repeated sampling, it is expected that (1 – α)100% of similarly constructed CIs cover the 

unknown parameter (e.g., βk), where α is the nominal Type I error rate. Assuming that the underlying 

population distribution of 𝛽̂𝑘 is normal, confidence intervals for regression coefficients are constructed 

using the following formula: 

𝛽̂𝑘 ± 𝑡1−
𝛼

2
,𝑑𝑓 × 𝑆𝐸𝛽̂𝑘

                      (2), 

where 𝛽̂𝑘 is the estimated value of the population parameter, 𝑡1−
𝛼

2
,𝑑𝑓is the critical value associated with 

the (1 −
𝛼

2
)th quantile of the t-distribution with df = (N – K – 1) degrees of freedom, and 𝑆𝐸𝛽̂𝑘

 is the 

standard error of the estimate 𝛽̂𝑘. The t-distribution in Equation 2 is based on the known sampling 

distribution of 𝛽̂𝑘 given the normal distribution assumption about the distribution of errors.  A sampling 

distribution is a theoretical distribution which represents the probability distribution of a sample statistic 

across repeated samples of the same size drawn from the same population. The assumption of multivariate 

normality and homoscedasticity of ε ensures that the sampling distribution of the regression coefficients 

follows a standard normal distribution.  Because 𝜎̂2 is estimated, a t-distribution is used in place of a 

standard normal distribution. CIs constructed using Equation 2 will be referred to as standard CIs. 
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 The properties of standard CIs computed from Equation 2 depend on whether the underlying 

assumptions of the model concerning the variance structure of ε (i.e., normality and homoscedasticity) are 

met. When the assumed form of this variance structure is violated, three important properties of CIs can 

be affected. These three properties of CIs are coverage, accuracy, and efficiency. Coverage is the percent 

of CIs, over repeated sampling, that contain the population parameter. More formally, coverage is defined 

as  

%100
)(1)(1

1 11













 


 

R

ublb
Coverage

R

r k

R

r k 
     (3),  

where r = 1, …, R is the total number of replicates, 1(.) is an indicator function, βk is the population 

regression parameter, and lb and ub are the lower and upper bounds of the CI, respectively. Typically, the 

Type I error rate in psychological research is set at α = 0.05 which makes the expected confidence limit (1 

– α)100% = 95%. Accuracy of a CI relates to the tail proportions associated with the lower and upper 

bounds within the kernel of Equation 3. These tail proportions are estimates of the true population tail 

probabilities of the parameter not being captured by the nominal proportion of confidence intervals. The 

upper tail proportion is  


R

r k ub
R 1

)(1
1

 and the lower tail proportion is  


R

r k lb
R 1

)(1
1

 . A CI is 

accurate when each of the two tail proportions is approximately equal to α/2 because the CI should 

capture the central (1 – )100% of parameter estimates. For example, an optimally performing 95% CI 

should have 2.5% in each of the tail proportions. Efficiency is defined by the width of the confidence 

interval. A CI is more efficient when there is less variability of an estimate, indicating a higher level of 

precision. When the model is correct in the population (i.e., no misspecifications about the regression 

equation and the nature of the errors), estimates are unbiased and maximally efficient. Efficiency is a 

reflection of estimated precision and sampling variability; narrow CIs reflect higher precision and lower 

sampling variability, and vice versa. One important note about efficiency is that it loses meaning if a CI 

does not have proper coverage and accuracy. In such a case, a narrow CI becomes a precise estimation 
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that is incorrect because it rarely, or never, captures the parameter of interest. Ultimately, such a CI 

becomes useless in terms of statistical inference. Efficiency can act as a method to arbitrate between two 

competing CI methods as long as both methods have proper coverage and accuracy first. 

  For example, if students’ GPAs were regressed on age and the number of hours per week a 

student worked on homework, and the resulting coefficient for homework was 0.75, then this effect can 

be interpreted such that every one-unit increase in hours spent doing homework, there is an expected 

increase of 0.75 units in GPA, while holding age constant. This effect also has a 95% standard CI = [0.54, 

0.96], indicating that over repeated sampling, 95% of similarly constructed CIs will capture the true 

coefficient. To illustrate the precision and efficiency of CIs, suppose the same data that produced the 

homework effect estimate was repeatedly resampled to create a 95% bootstrap interval = [0.58, 0.92]. 

Assuming that both types of intervals maintain proper coverage, this bootstrap interval has a narrower 

width indicating both a higher level of precision around the effect estimate and greater efficiency. Given 

that the interpretation of a CI is contingent upon repeated sampling, conclusions regarding the coverage of 

any single CI can be problematic. In practice, a single CI is calculated around a given effect estimate, and 

this particular CI has either 0% or 100% coverage of its associated true unknown population parameter. 

Violation of Normality 

When the assumptions of the GLM are met, estimates and standard CIs constructed using 

Equation 2 are unbiased; CIs have proper coverage, are accurate, and are maximally efficient (Cohen, 

Cohen, West & Aiken, 2003). However, the assumption of normality is often violated in practice, and 

frequently occurs alongside violations of homogeneity of variance (Kutner, Nachtsheim, & Neter, 2004). 

Heterogeneity of variance among the residuals can often result from skewed distributions, which are 

common in psychological research (Cain, Zhang, & Yuan, 2016). Heteroscedasticity can adversely affect 

CI properties for parameter estimates by producing standard errors which are biased and inconsistent 

(Hayes & Cai, 2007). For instance, if residuals vary less at the extremes of an IV, then OLS estimates of 

standard errors tend to be overestimated or upward biased (i.e., bias > 0). This upward bias results in CIs 
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which are wider than they would be if the upward bias was not present, communicating less precision 

than is correct. Alternatively, residuals which vary more at relatively high or relatively low values of an 

IV result in underestimated standard errors or a downward bias (i.e., bias < 0) compared with OLS 

standard errors. A downward bias in standard error estimates results in CIs which are narrower than 

proper, indicating more precision than warranted. Stated differently, coverage is less than the nominal 

rate. Alternatively, if standard errors are upward biased, then coverage is larger than the nominal rate. 

Approaches to address violation of normality 

 When normality is violated in practice, researchers have several options. The more common 

approaches which will be reviewed here are the reliance on the robustness of the GLM methodology itself 

(i.e., assume that the effects of assumption violations are negligible), performing data normalizing 

transformations, and the application of bootstrap techniques. 

Robustness of the method 

When faced with violations of model assumptions such as normality, researchers often rely on the 

Central Limit Theorem. This theorem states that as sample size increases, the sampling distribution of 

regression coefficient becomes approximately normal (Moore, McCabe, & Craig, 2014). This claim 

avoids the need to assume normality of errors when using the GLM framework (or any other framework 

requiring distributional assumptions), provided sufficiently large sample size.  

There is some historical precedent for the claim that the methodology surrounding the GLM is 

generally robust to assumption violations. Early studies examined the effect of small deviations from 

different assumptions in isolation (e.g., t-tests comparing two samples with variances of 1 and 4; Boneau, 

1960) and concluded that parametric tests similar to the GLM were robust in many circumstances if 

sample sizes were at least 25 to 30 and the underlying distributions were comparable in shape. However, 

many studies did not examine large deviations from assumptions such as those found in real 

psychological data, which can have variance ratios (defined as the ratio between the largest and smallest 
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sample variances) much greater than the 4:1 ratios examined in early studies (e.g., variance ratios of 7:1 

or even higher; Keselman et al., 1998). Yet, Pek, Wong, and Wong (2017) showed that “large” deviations 

from assumptions depend on how much the model residuals deviate from normal in terms of skewness 

and kurtosis. Although the above cited examples specifically examined special cases of the GLM (e.g., t-

tests and ANOVA), there is evidence that results from conducting a multiple linear regression exhibit 

robustness as well. Specifically, the assumption of normality of model errors has been termed arbitrary as 

long as sample size is sufficiently large to invoke the CLT (Fox, 1991). A caveat to this statement is that 

even though the significance tests and CIs are correct, OLS estimation can suffer a loss in efficiency when 

the distribution of residuals is heavy-tailed. At this point, the belief that the GLM methodology is robust 

to assumption violations is still present and evidenced by the claims of robustness within many research 

methods textbooks (Erceg-Hurn & Mirosevich, 2008). 

Although many of these early studies examined robustness in the sense of maintaining the 

nominal Type I error rate, the presence of assumption violations can result in CIs which are not robust 

when “real data are analyzed” (Erceg-Hurn & Mirosevich, 2008, p. 600). For instance, if residuals come 

from a heavy-tailed error distribution, there is a loss in efficiency due to larger standard errors which 

directly affects CI coverage and efficiency. Lower efficiency is synonymous with wider CIs and 

decreased precision about effect estimates. For a review of the effect assumption violations have on 

parametric tests (such as those in the GLM), see Glass, Peckham, and Sanders (1972). 

Normalizing data transformations 

Another common technique to address the violation of normality is the use of data 

transformations. A data transformation replaces raw scores, such as yi, with new scores which have been 

rescaled by a monotonic transformation function, f(.), such that transformed scores, 𝑦𝑖
∗, can be expressed 

with  𝑦𝑖
∗ = 𝑓(𝑦𝑖) (Kutner, Nachtsheim, & Neter, 2004). Using an appropriate choice of transformation 

function can stabilize the variance of residuals, restore a linear relationship between the DV and residuals, 
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and normalize the distribution of residuals (Box & Cox, 1964). Often, a suitable transformation will 

accomplish these objectives simultaneously. For instance, a common transformation for psychological 

data is the logarithmic transformation. The logarithmic transformation can normalize a positively skewed 

distribution while also reducing residual variance (Bartlett, 1947), provided that the data undergoing 

transformation are all positive prior to transformation. Corrections can be made to data to ensure all 

values are positive, such as adding a constant. After applying a transformation, subsequent analyses are 

conducted using the newly transformed variable. Using the GLM framework, the logarithm of the DV is 

regressed on the IVs and slope estimates are produced. The interpretation of these estimates changes due 

to the transformation; under a logarithmic transformation, the regression coefficient becomes the expected 

change in the logarithm of the DV for a one-unit increase in a specific IV. Regression coefficients can 

also be interpreted as the expected percentage change of the DV on its original scale for a one-unit 

increase in a specific IV. Likewise, CIs around these effects sizes are also on the logarithmic scale of the 

DV. Construction for CIs around these effect sizes are calculated using Equation 2. 

One criticism of data transformations is that, once applied, any subsequent analyses are 

performed on the transformed scale and are no longer logically connected to original research questions 

(Feng et al., 2014). Back-transformations of parameter estimates into the original scale of measurement 

may not directly map onto appropriate estimates of the original data.  

An additional criticism regarding the logarithmic transformation specifically is that it changes the 

original model from being additive to a multiplicative model. By taking the logarithm of the DV, the 

model on the original scale of the DV becomes 

𝑦𝑖 = 𝑒𝛽0+𝛽1𝑥1𝑖+⋯+ 𝛽𝐾𝑥𝐾𝑖+ 𝜀𝑖  .         (4) 

By substituting 𝛼𝑘 = 𝑒𝛽𝑘 where k = 0 to K and 𝑢 = 𝑒  𝜀𝑖 into Equation 4, the multiplicative nature of the 

model becomes clear: 

𝑦𝑖 = 𝛼𝑜 ∗ 𝛼1
𝑥1 ∗ … ∗ 𝛼𝐾

𝑥𝐾 ∗ 𝑢𝑖.         (5) 
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Thus, instead of the components of the model being additive, they have become multiplicative. This 

changes the distribution of the errors from 𝜀𝑖~𝑁(0, 𝜎2) to 𝑢𝑖~𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(0, 𝜎2).This also implies that 

the IVs are no longer linearly related to the DV. Given the widespread usage of data transformations, 

using a logarithmic transformation will be examined to illustrate its efficacy for dealing with non-

normality and its effects on CI properties. 

Bootstrap approaches 

 Another common approach which can address violations of normality is to construct CIs using 

bootstrapping, which is a technique which avoids invoking assumptions about the distribution of the 

regression errors, . When residual variance is not constant, using case-resampling is appropriate (Kutner, 

Nachtsheim, & Neter, 2004; Fox, 2002). This form of bootstrapping within the GLM resamples entire 

cases (sets of IVs and DV together). If there are N cases in the original sample, then each bootstrap 

sample will consist of N randomly sampled with replacement cases from the original sample. This 

resampling procedure is repeated until a predetermined number of bootstrap samples is produced. For 

each of these bootstrap samples, new estimates of regression coefficients are calculated, 𝛽̂𝑘. If confidence 

intervals are the desired outcome from the bootstrap, then 1000 or more bootstrap samples are 

recommended (Fox, 2002). Like most statistical methods which use sample data to generalize about a 

population of interest, the bootstrap technique has an underlying assumption that the observed sample is a 

good representation of the actual population. To accommodate for this assumption, larger sample sizes are 

recommended (in a similar fashion to the CLT). 

 The percentile bootstrap CI is one of the most common types of bootstraps used, and it is formed 

by first rank ordering these bootstrapped estimates (e.g., 𝛽̂𝑘) from smallest to largest. Next, a bootstrap 

percentile interval can be constructed by taking specific quantiles from these rank-ordered estimates. For 

instance, if M = 1000 bootstrap samples are created and a 95% bootstrap percentile interval is being 
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constructed, then the lower bound of the interval is simply the 25th ordered statistic and the upper bound is 

the 975th ordered statistic. 

 Another bootstrap variant of note is the bias-corrected and accelerated percentile bootstrap (BCa 

CI; Efron, 1987). This variant accounts for skewness in the percentile CI. BCa CIs are constructed 

similarly to percentile bootstrap CIs but with two adjustments. The first is a correction constant to adjust 

the CI for skewness. An acceleration parameter is also estimated which further adjusts the endpoints of 

the CI to account the fact that the distribution might change in shape or skewness at different levels of the 

statistic being estimated (Efron & Tibshirani, 1986; Efron, 1987; DiCiccio & Efron, 1996; Carpenter & 

Bithell, 2000). Progressing from percentile CIs to BCa CIs requires less restrictive assumptions at the cost 

of greater computation, although the process itself can be carried out algorithmically without requiring 

researchers to formally calculate the parameters (Efron & Tibshirani, 1986). 

Example 

 To illustrate each of the three approaches described above for addressing non-normality and 

highlight the motivation for this study, an empirical example is presented using a subset of the 1971 

Canadian census focusing on occupational prestige, average income, years of education, and proportion of 

women within each occupation. The dataset contains 102 occupations and can be found within the car 

package for R (Fox & Weisberg, 2011). A GLM was fit to a sample of size N = 30 occupations regressing 

the average income measured in dollars on the average number of years of education for each occupation, 

the percentage of each occupation who are women, and the Pineo-Porter prestige score for each 

occupation. Each of these IVs was mean centered prior to fitting the model. Table 1 summarizes the 

confidence intervals around each regression coefficient using the four approaches described above, and it 

is readily apparent that each approach yields different 95% CIs, the properties (coverage and accuracy) of 

which remain unknown. Although efficiency can be calculated directly (i.e., the width of each CI), it is a 

poor metric to arbitrate among competing CIs techniques when the long-term coverage remains unknown. 

The rationale against using the most efficient CI among competing methods is that the efficiency of each 
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method may be simply a function of the data properties of the sample collected. Using a CI method which 

maintains the nominal coverage over repeated sampling should be the priority of a researcher. The 

question remains, which approach to addressing non-normality when constructing CIs around effect sizes 

should an applied researcher choose?  

 The purpose of this example is two-fold. The first goal is to draw attention to the difference in 

results based on the different approaches used. The focus here is to determine which approach to 

addressing non-normality is most appropriate in terms of CI properties. Given that the true coverage 

remains unknown, it is impossible to determine which (if any) of these CIs contain the true population 

regression coefficient, or which CI maintains the nominal rate of coverage if repeated sampling were 

possible. However, if certain data analytic conditions are known to be present, perhaps one method for 

constructing a CI outperforms the other methods and consequently be a researcher’s best way to optimize 

CI properties. To help answer the question of which approach to utilize, this study presents a Monte Carlo 

simulation to evaluate the properties of the particular CI methods discussed earlier. 

Table 1. Confidence intervals for empirical example 

Confidence Interval 

Method 
IV CI Lower Limit CI Upper Limit 

Standard Education -259.49 699.95 

Perc Education -213.10 561.17 

BCa Education -186.02 574.92 

Standard Prestige 18.13 176.74 

Perc Prestige 16.59 181.33 

BCa Prestige 16.62 181.47 

Standard Women -61.57 -21.22 
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Perc Women -54.01 -26.93 

BCa Women -56.71 -29.38 

Note. BCa = Bias corrected and accelerated bootstrap, Perc = Percentile bootstrap. 

Methods 

A Monte Carlo simulation was conducted to examine the relative efficacy of a variety of approaches 

to dealing with violations of normality of errors on the performance of CIs within the GLM framework. A 

fully crossed four-factor design was implemented examining the effects of sample size, number of IVs, 

degree of association among IVs, and non-normally distributed errors. The levels of each factor were 

varied to reflect data analytic scenarios commonly encountered in applied settings. The simulation was 

conducted using R (R Core Team, 2016) with the SimDesign package to organize the results (Chalmers, 

2017; Sigal & Chalmers, 2016). 

Sample size 

The first factor is sample size. The levels of this factor were N = 10, 30, 50, 100, and 1000. The level 

of N = 30 was included to test the general rule of thumb that the CLT starts to correct non-normality at 

this sample size. As sample size increases, it is expected that coverage converges to the nominal rate of 

95% using α = .05, and the accuracy of the upper and lower boundaries of the CI converges to α/2. The 

efficiency of confidence intervals improves due to the direct effect an increase in sample size has on 

estimates of the standard error for the regression coefficients. 

Continuous independent variables 

The second factor was the number of continuous IVs in the model. The number of multivariate 

normally distributed continuous IVs in each model varied from K = 2, 3, 4, 5, and 6. The IVs were 

generated using the mvrnorm function within the R package MASS (Venables & Ripley, 2002) using pre-

defined covariance matrices specific to each condition in the simulation and each IV was mean-centered. 
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With everything else held constant, it was expected that as the number of IVs increased, the CI coverage 

would decrease. The rationale was that including more IVs would reduce the residual variance in the 

model and shrink the standard errors of the regression coefficients. This results in CIs with smaller ranges 

which are less likely to capture the population parameter of interest. Accuracy was likewise expected to 

deviate from the set rate of α/2 per tail. 

Association among independent variables 

The third factor was the degree of association among the continuous IVs. The degree of association 

among the IVs in each model was controlled by varying the value of the condition number, 𝜅, which is 

the square root of the ratio between the largest and smallest eigenvalues produced from the population 

correlation matrix of the IVs. Following Dudgeon’s (2017) simulation, values of 𝜅 were set at 3, 6, and 9 

to create population correlation matrices for each of the different conditions within the simulation. These 

condition numbers were used to specify eigenvalues and the genCorr function from the R package 

fungible was used to create the population correlation matrices (Waller & Jones, 2016) for each model. A 

higher degree of association among the IVs was expected to increase the standard errors of the regression 

estimates and result in decreased efficiency, lower coverage, and adversely affect accuracy. 

Error distributions 

The fourth and final factor was the population error distributions. The distributions examined 

followed Dudgeon’s (2017) simulation which used three levels for this factor: normal, contaminated-

normal, and highly kurtotic. Using normally distributed errors with a mean of 0 and variance = 1, 

𝜀~𝑁(0,1), shows how a model’s estimates and associated inferential statistics behave with no assumption 

violations and serves as a basis for comparison with the remaining levels of this factor. The contaminated-

normal distribution was created by sampling from a mixture distribution defined as 𝜀 = 0.9𝑊1 + 0.1𝑊2, 

where the distributions of 𝑊1 and 𝑊2 differ only in terms of their variances, 𝑊1~𝑁(0, 𝜎1
2), 

𝑊2~𝑁(0, 𝜎2
2), with 𝜎1

2 = 0.09, and 𝜎2
2 = 100 ∗ 𝜎1

2. Taken together, the errors at this level are distributed 
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with a mean of 0 and variance of 1, with skewness around 0 and kurtosis of about 25.73. This 

contaminated-normal distribution samples more heavily from the tails of the distribution relative to the 

unit-normal distribution. The next distribution was even more highly kurtotic, and was simulated using a 

moment matching method for generating non-normal data as described in Fleishman (1978) using the 

rValeMaurelli function within the SimDesign package (Chalmers, 2016). This distribution has a mean of 

0 and variance of 1, but with an approximate skewness of 0 and a kurtosis of 100. The high kurtosis of 

this distribution results in more errors clustering around the mean of 0 than the normal distribution. In 

general, as the errors deviate further from normality, the OLS estimates for the regression coefficients 

may no longer be the best linear unbiased estimates compared to other estimators.  

Data generation 

 The fully crossed four-factor design of this simulation yielded 225 unique conditions to be 

examined. Using each condition’s degree of association and number of IVs, a unique correlation matrix 

was constructed using Marsaglia and Olkin's (1984) method. Each of these condition-specific correlation 

matrices was rescaled using preset values for the population standard deviations of each IV. The resulting 

covariance matrix was used to simulate a N*K matrix of sample data, where N was the condition’s sample 

size and K was the number of IVs for that condition. This data matrix remained identical across all R = 

1000 replications of each condition. The only difference across each condition’s replications was the 

random sample of errors. 

Log transformation 

 To assess the effect of performing a logarithmic data transformation on the DV in terms of CI 

properties, a separate unique condition was also simulated to mimic the way in which applied researchers 

typically approach the model building process. In practice, researchers will often regress a DV onto a set 

of IVs and use regression diagnostics (e.g., Fox, 1991) to determine whether the assumption of normality 

(among others) was violated. If a violation was detected, the researcher can apply an appropriate data 
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transformation or decide that the violation was not of sufficient consequence and the robustness of the 

GLM should minimize the impact of the violation. If the GLM was assumed to be robust to the violation 

of normality, then a researcher could fit the model without transforming the DV. However, if diagnostics 

indicated that the error distribution was asymmetric in the presence of a positively skewed DV, then the 

logarithm of the DV could be regressed onto the IVs instead. To illustrate how CI properties are affected 

by a decision to log-transform the DV, both models (using log-transformed and untransformed DVs) were 

fit in a unique condition which is described below. 

This separate unique condition used a sample size of N = 1000, a condition value of 3 (degree of 

association), three IVs, and normally distributed errors to represent the ideal situation for fitting a GLM. 

The multiplicative model expressed in Equation 4 was used to generate the untransformed DV, 𝑦𝑖. The 

multiplicative model was used to ensure that the logarithm of 𝑦𝑖 was linearly related to the three IVs and 

that the errors would be distributed normally. The linear relationship between the logarithm of 𝑦𝑖, the 

three IVs, and the errors can be seen in Equation 6, which can be found by taking the logarithm of both 

sides of Equation 4: 

𝑙𝑜𝑔(𝑦𝑖) = 𝛽0 + 𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖 + 𝛽3𝑥3𝑖 +  𝜀𝑖 .     (6) 

This equation represents the “true” model in which the IVs are linearly related to the logarithm of 𝑦𝑖 with 

normally distributed errors. To fit data to the “incorrect” (or misspecified) model in which the IVs are not 

linearly related to the DV, 𝑦𝑖 was regressed onto the exact same three IVs used to originally generate 𝑦𝑖 

from the multiplicative model. The form of the “incorrect” model is in Equation 7 which uses 𝑦𝑖, 𝑥1, 𝑥2, 

and 𝑥3 to find estimates for the regression coefficients and residuals: 

𝑦𝑖 = 𝛽̂0 + 𝛽̂1𝑥1𝑖 + 𝛽̂2𝑥2𝑖 +  𝛽̂3𝑥3𝑖 + 𝜀𝑖̂       (7) 

This “incorrect “model will have non-normally distributed errors because the generation process for 𝑦𝑖 

ensures that the IVs are not linearly related to the DV. The properties of the CIs around the regression 

coefficients from both models are calculated similar to the main simulation as described above. 
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Results 

To compare the performance of CI properties (coverage, efficiency, and accuracy) across all 225 

unique design conditions, average CI properties for each regression parameter estimate of effect size were 

computed. For instance, in design conditions with three IVs, all three coverages, efficiencies, and tail 

proportions were averaged together for each of the three methods for constructing CIs (standard method, 

percentile bootstrap, and the BCa bootstrap). Both bootstrap methods used M = 1000 bootstrap samples to 

construct CIs. The first CI property examined was coverage. In general, coverage for the standard method 

performed well across all conditions (see Figure 1). Coverage for the percentile bootstrap method was 

close to the nominal 95%, but was slightly lower than the standard method. The BCa bootstrap method 

had the most problems, especially for conditions in which residuals were sampled from non-normal error 

distributions. A plot depicting the average coverage per condition is presented in Figure 1. The plot is 

divided horizontally into thirds based on the method used to construct the confidence intervals. The first 

section used the standard method for calculating confidence intervals, the second section used the 

percentile bootstrap method, while the third section used the BCa bootstrap method to construct the 

confidence intervals. A blue confidence region was superimposed on the plot to highlight which average 

coverages are within two standard errors of the nominal 0.95 value, with the standard error of the 

percentage of coverage defined as 

𝑆𝐸(𝜋) = √0.95∗(1−0.95)

𝑅
         (5) 

where R = 1000 was the number of replications per condition. Well-behaved average coverages should 

fall within this 95% confidence region. 

Figure 1 shows spikes in many conditions across both bootstrap methods in which average coverage 

approached 100%. To determine which factor in the design corresponded to these spikes, averages of all 

four CI properties were calculated for each level of the four factors and summarized in Tables 2 to 5. The 

N = 10 level of the sample size factor was responsible for the spikes in average coverage. The average 
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efficiency for this level of sample size was quite large relative to every other level of this factor. These 

larger CI widths reflect the expected imprecision around the estimates of effect size for small sample 

sizes, and it was these larger widths that increased the average coverage of these confidence intervals. 

Figure 2 shows a plot of average efficiency constructed like the plot for average coverage. Overall, all 

three methods for constructing CIs performed quite similarly. The marginal means of average efficiency 

are in Table 2. Two additional plots, Figures 3 and 4, showing the average lower and upper tail 

proportions of the CIs, did not have any easily visible trends. This result is an indication that, on average, 

each method for constructing CIs was centered around the true parameter value. Both Figure 3 and 4 use a 

95% confidence region as with previous plots, except that these two plots have a 95% confidence region 

centered around the expected tail proportions. 

 

 

Figure 1. Average Confidence Interval Coverages 
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Figure 2. Average Confidence Interval Efficiencies 

 

Figure 3. Average Confidence Interval Lower Proportions 
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Figure 4. Average Confidence Interval Upper Proportions 

CI Properties by Factor 

Sample Size 

 The marginal means of CI properties by sample size are in Table 2. The sample size factor did not 

exhibit the expected results for all levels. At the smallest sample size, N = 10, both bootstrap CIs had 

coverage levels exceeding the nominal 95% and fell outside of the 95% confidence region. The percentile 

bootstrap had the highest average coverage (M = 0.98, SD = 0.03), followed by the BCa bootstrap (M = 

0.97, SD = 0.03), and then the standard confidence interval (M = 0.95, SD = 0.01). Furthermore, the 

efficiencies of all three CIs at the N = 10 level were substantially worse than every other level. This effect 

was anticipated because of the instability of estimates at low sample sizes. In essence, the width of these 

intervals indicates very imprecise interval estimates for the regression coefficients and inflated the 

coverage to exceed the nominal level. For this reason, the N = 10 condition was removed prior to 

investigating the effects of the other factors of the simulation design. 
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Next, at the highest level of sample size, N = 1000, the coverage and efficiency were similar for all 

three types of CIs, with each around the 95% benchmark. The coverage of the three remaining levels of 

sample size (N = 30, 50, and 100) remained quite stable, and these sample sizes did exhibit the 

improvement in efficiency as expected. As sample size increased, CI width decreased. In each of these 

middle three levels of sample size, the standard method achieved the 95% coverage, while the coverage 

for the percentile bootstrap CI consistently had 94% coverage. The BCa method performed the worst of 

the three methods and had a coverage of approximately 90% across all three levels.  

Table 2. Confidence Interval Properties by Sample Size 

  

Average 

Coverage 

Average 

Efficiency 
Average Lower 

Proportion 
Average Upper 

Proportion 

Sample 

Size 

Confidence 

Interval 

Type M SD M SD M SD M SD 

10 BCa 0.97 0.03 91.61 107.07 0.014 0.014 0.014 0.014 

10 Perc 0.98 0.03 40.88 36.51 0.010 0.013 0.010 0.012 

10 Standard 0.95 0.01 13.02 5.86 0.023 0.004 0.023 0.004 

30 BCa 0.91 0.03 5.29 1.87 0.044 0.013 0.044 0.014 

30 Perc 0.94 0.01 4.94 1.79 0.029 0.006 0.029 0.006 

30 Standard 0.95 0.01 5.10 1.92 0.025 0.003 0.024 0.003 

50 BCa 0.90 0.03 4.06 1.53 0.049 0.016 0.050 0.016 

50 Perc 0.94 0.01 3.80 1.44 0.030 0.005 0.032 0.005 

50 Standard 0.95 0.01 3.96 1.50 0.025 0.004 0.026 0.003 

100 BCa 0.90 0.03 2.79 1.10 0.050 0.016 0.051 0.017 

100 Perc 0.94 0.01 2.65 1.05 0.031 0.004 0.032 0.004 

100 Standard 0.95 <0.01 2.73 1.08 0.025 0.002 0.025 0.002 

1000 BCa 0.94 0.01 0.89 0.35 0.030 0.005 0.030 0.005 

1000 Perc 0.95 0.01 0.89 0.35 0.027 0.004 0.027 0.004 

1000 Standard 0.95 <0.01 0.89 0.35 0.024 0.003 0.024 0.002 

Note. BCa = Bias corrected and accelerated bootstrap, Perc = Percentile bootstrap. 

Error Distribution 

A full summary of the marginal statistics for CI properties by error distribution is in Table 3. 

When model errors were drawn from a normal distribution, the coverage of all three CIs behaved as 
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expected. The standard method (M = 0.95, SD = 0.01) performed slightly better than the bootstrap 

methods (BCa M = 0.94, SD = 0.01; percentile M = 0.94, SD = 0.01). For models with errors drawn from 

the contaminated-normal distribution, coverage for the standard method performed best (M = 0.95, SD = 

0.01), followed by the percentile bootstrap (M = 0.94, SD = 0.01), and the BCa performed the worst (M = 

0.90, SD = 0.03). For models with errors drawn from the highly kurtotic distribution, coverage for the 

standard method was largest (M = 0.95, SD = 0.01), followed by the percentile bootstrap (M = 0.94, SD = 

0.01), and the BCa, once again, performed the worst (M = 0.90, SD = 0.02). All three error distributions 

exhibited the same pattern regarding the rank order of each method’s efficiencies. The percentile 

bootstrap systematically had the worst level of efficiency, followed by the standard method, and then the 

BCa bootstrap. The normal, contaminated-normal, and the highly kurtotic distribution levels all had 

similar efficiencies.  

Table 3. Confidence Interval Properties by Error Distribution 

  Average Coverage 

Average 

Efficiency 

Average Lower 

Proportion 

Average Upper 

Proportion 

Error 

Distribution 

Type 

Confidence 

Interval Type M SD M SD M SD M SD 

Normal BCa 0.94 0.01 3.37 2.22 0.028 0.004 0.029 0.004 

Normal Perc 0.94 0.01 3.36 2.21 0.028 0.004 0.029 0.004 

Normal Standard 0.95 <0.01 3.38 2.25 0.025 0.003 0.025 0.002 

Contaminate

d-Normal 

BCa 0.90 0.03 3.30 2.14 0.052 0.016 0.053 0.016 

Contaminate

d-Normal 

Perc 0.94 0.01 3.04 1.91 0.030 0.006 0.031 0.006 

Contaminate

d-Normal 

Standard 0.95 <0.01 3.18 2.05 0.024 0.003 0.025 0.003 

Highly 

Kurtotic 

BCa 0.90 0.02 3.11 1.97 0.049 0.012 0.050 0.012 

Highly 

Kurtotic 

Perc 0.94 0.01 2.80 1.73 0.030 0.004 0.031 0.005 

Highly 

Kurtotic 

Standard 0.95 0.01 2.96 1.87 0.025 0.004 0.025 0.003 

Note. BCa = Bias corrected and accelerated bootstrap, Perc = Percentile bootstrap. 
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Degree of association 

The average coverage for each type of CI was unchanged across all three levels of the degree of 

association among the IVs (𝜅 = 3, 6, and 9). Coverage for the standard method was highest (M = 0.95, SD 

= 0.01), followed by the percentile bootstrap (M = 0.94, SD = 0.01), and then by the BCa bootstrap (M = 

0.91, SD = 0.03). As expected, as the degree of association among IVs increased, the efficiency of each 

method increased resulting in greater imprecision for their respective CIs. A full summary is in Table 4. 

Table 4. Confidence Interval Properties by the Degree of Association Among Independent Variables 

  

Average 

Coverage 

Average 

Efficiency 

Average Lower 

Proportion 

Average Upper 

Proportion 

𝜅 

Confidence 

Interval 

Type M SD M SD M SD M SD 

3 BCa 0.91 0.03 1.99 1.05 0.044 0.015 0.045 0.017 

3 Perc 0.94 0.01 1.87 0.98 0.030 0.004 0.031 0.005 

3 Standard 0.95 <0.01 1.93 1.01 0.025 0.003 0.025 0.002 

6 BCa 0.91 0.03 3.24 1.71 0.043 0.016 0.043 0.016 

6 Perc 0.94 0.01 3.05 1.59 0.030 0.005 0.029 0.005 

6 Standard 0.95 <0.01 3.15 1.67 0.025 0.003 0.025 0.003 

9 BCa 0.91 0.03 4.55 2.46 0.042 0.016 0.043 0.016 

9 Perc 0.94 0.01 4.28 2.29 0.029 0.006 0.030 0.005 

9 Standard 0.95 0.01 4.43 2.42 0.024 0.003 0.024 0.003 

Note. 𝜅 = Degree of association among independent variables, BCa = Bias corrected and accelerated 

bootstrap, Perc = Percentile bootstrap. 

Number of Independent Variables 

The results for the factor pertaining to the number of IVs are summarized in Table 5. The average 

coverage for the standard method CIs (M = 0.95, SD < 0.01) was stable across all levels of this factor (K = 

2, 3, 4, 5, and 6). The average coverage for percentile bootstrap CIs remained relatively stable (M = 0.94, 

SD = 0.01) for all conditions except when the number of IVs was six. With six IVs, average coverage 

increased to M = 0.95. The average coverage for BCa bootstrap CIs was lower for each level of this factor 

than both of the other CI methods. The average BCa coverage remained close to 0.92 with a standard 
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deviation ranging from 0.02 to 0.03. There was a decreasing trend in average efficiencies across all levels 

of this factor, such that as the number of IVs in the model increases, the average efficiency decreases as 

does the stability of these means (which can be seen via the standard deviations).  

Table 5. Confidence Interval Properties by the Number of Independent Variables 

  

Average 

Coverage 

Average 

Efficiency 

Average Lower 

Proportion 

Average Upper 

Proportion 

Number 

of 

Independ

ent 

Variables 

Confidence 

Interval 

Type M SD M SD M SD M SD 

2 BCa 0.90 0.04 4.00 2.62 0.047 0.018 0.048 0.019 

2 Perc 0.94 0.01 3.74 2.43 0.031 0.005 0.032 0.006 

2 Standard 0.95 0.01 3.96 2.61 0.024 0.004 0.024 0.003 

3 BCa 0.91 0.03 3.43 2.16 0.046 0.017 0.047 0.018 

3 Perc 0.94 0.01 3.21 2.00 0.032 0.004 0.032 0.005 

3 Standard 0.95 <0.01 3.38 2.13 0.025 0.003 0.025 0.003 

4 BCa 0.91 0.03 3.22 1.98 0.043 0.014 0.044 0.015 

4 Perc 0.94 0.01 3.04 1.85 0.030 0.004 0.030 0.005 

4 Standard 0.95 0.01 3.16 1.93 0.025 0.003 0.025 0.003 

5 BCa 0.92 0.03 2.95 1.85 0.041 0.014 0.041 0.014 

5 Perc 0.94 0.01 2.80 1.74 0.028 0.004 0.029 0.003 

5 Standard 0.95 <0.01 2.84 1.74 0.024 0.003 0.025 0.002 

6 BCa 0.92 0.03 2.68 1.66 0.038 0.013 0.039 0.013 

6 Perc 0.95 0.01 2.55 1.57 0.027 0.004 0.027 0.005 

6 Standard 0.95 <0.01 2.53 1.52 0.025 0.003 0.025 0.003 

Note. BCa = Bias corrected and accelerated bootstrap, Perc = Percentile bootstrap. 

Relative performance of confidence interval properties 

To compare the performances of each CI method within the remaining 180 design conditions after 

removing the 45 conditions with a sample size of N = 10, a subset of only the CI methods which had an 

average coverage inside of the 95% confidence region constructed about the 95% confidence limits was 

analyzed. Coverage is arguably the most important of the three CI properties under consideration because 
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inference using CIs can be misleading without proper coverage. Using this subset of CI methods with 

proper coverage within each design condition, the CI methods with the best and worst efficiency (i.e. 

smallest and largest CI width) were cross-tabulated to broadly consider CI performance. The full results 

are in Table 6. For instance, in 93 of the 180 design conditions, the percentile bootstrap method had the 

best efficiency compared to all other methods. In 89 conditions, the percentile bootstrap method had the 

best efficiency while the standard method had the worst, and in three conditions the percentile bootstrap 

method was best while the BCa bootstrap method was the worst for these five conditions. There was one 

design condition in which only the percentile bootstrap method had proper coverage and by default had 

the best efficiency. The standard method had 51 conditions in which it was the only method that 

maintained proper coverage, and there were an additional 33 cases in which the standard method 

outperformed the all other methods in terms of efficiency. There were two conditions in which the BCa 

had proper coverage and was the most efficient of the three methods. Lastly, there was one design 

condition in which no method had proper coverage. 

Despite using R = 1000 replications per condition, in many instances the efficiency of one method 

was not much different than another method. Using only methods that maintained proper coverage, a full 

breakdown of the 180 design conditions showcasing the methods with the best relative efficiency is 

presented in Table 6. There were three general outcomes. The first was that in many conditions only a 

single method maintained proper coverage, and consequently would be the optimal method. The second 

outcome was that multiple methods had proper coverage and comparable efficiencies, such that was no 

singularly optimal method. The third outcome was when multiple methods had proper coverage, but the 

width of one method was at least 5% smaller than the width of the next smallest CI width. 
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Table 6. Best Efficiency per Condition with Proper Coverage.  

   

Number of Independent 

Variables 

Error Distribution 

Sample 

Size 𝜅 2 3 4 5 6 

Normal 30 3 S S - - s 

Normal 30 6 S - - - s 

Normal 30 9 S S S - s 

Normal 50 3 - - S - - 

Normal 50 6 - - - - - 

Normal 50 9 S - - - - 

Normal 100 3 - - - - - 

Normal 100 6 - - - - - 

Normal 100 9 - - - - - 

Normal 1000 3 - - - - - 

Normal 1000 6 - - - - - 

Normal 1000 9 - - - - - 

Contaminated-

Normal 

30 3 S S - - - 

Contaminated-

Normal 

30 6 p S p - - 

Contaminated-

Normal 

30 9 S S p - s 

Contaminated-

Normal 

50 3 S S p - - 

Contaminated-

Normal 

50 6 S S S - - 

Contaminated-

Normal 

50 9 P S p - - 

Contaminated-

Normal 

100 3 S S S S - 

Contaminated-

Normal 

100 6 S S - S S 

Contaminated-

Normal 

100 9 S S S S S 

Contaminated-

Normal 

1000 3 - - - - - 

Contaminated-

Normal 

1000 6 - - - - - 

Contaminated-

Normal 

1000 9 - - - - - 
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Highly Kurtotic 30 3 S p S - - 

Highly Kurtotic 30 6 p p p - s 

Highly Kurtotic 30 9 p p p - - 

Highly Kurtotic 50 3 p S - p - 

Highly Kurtotic 50 6 S p p - p 

Highly Kurtotic 50 9 S S p S - 

Highly Kurtotic 100 3 S p S - S 

Highly Kurtotic 100 6 S S S p - 

Highly Kurtotic 100 9 S S p S S 

Highly Kurtotic 1000 3 - S - - - 

Highly Kurtotic 1000 6 - - - - - 

Highly Kurtotic 1000 9 S - - - - 

Note. An S indicates that only the standard CI maintained proper coverage. A P indicates that only the 

percentile CI maintained proper coverage. Lowercase letters indicate that their corresponding CI method 

had an efficiency at least 5% better than the next best method. 

Logarithmic transformation 

 The unique condition comparing the two models which used transformed and untransformed DVs 

yielded the expected results. When the untransformed DV was regressed on the three IVs, the average 

coverage suffered greatly (M = 0.16) compared to the log-transformed DV (M = 0.94), after R = 1000 

replications. The average proportions for the upper and lower tails for the model fitted to the 

untransformed DV were M = 0.00 and M = 0.84, respectively, whereas the average proportions for the 

upper and lower tails for the correct, linear model were M = 0.028 and M = 0.029, respectively. Given the 

vastly different scales for each of these two models, a comparison of their average efficiencies is not 

meaningful and will not be reported.  

Discussion 

 Given the renewed concerns regarding the dependability of psychological research findings and 

the call for researchers to report effect sizes and their CIs, the present study sought to further inform 

researchers about how best to approach violations of non-normality for CI construction within the GLM. 



 27 
 

 

Using a Monte Carlo simulation, the impact of common data analytic conditions was assessed regarding 

three important CI properties: coverage, accuracy, and efficiency. 

In terms of overall performance, a few facets of the simulation results need highlighting. First, if 

errors are distributed similarly to the contaminated-normal distribution used here, then at lower sample 

sizes the percentile bootstrap surpasses the standard method in terms of efficiency, given that they have 

similar coverage. It is recommended that the percentile bootstrap be routinely applied. However, when 

sample size is N = 50 or greater, the standard method starts to systematically outperform the percentile 

bootstrap method across all levels of the other simulation factors. As a reminder, the high kurtosis in the 

simulation’s contaminated-normal error distribution is not only indicative of the “peakedness” of the 

distribution, it also represents the heavy tails of the distribution. The relevance of this reminder is that if a 

distribution is heavy tailed, a bootstrap method (i.e., the percentile bootstrap) might be a superior choice 

in terms of efficiency. It was expected that the standard CI would suffer a loss in efficiency when using 

OLS estimation, as was stated earlier and supported by Fox (1991). 

When errors are distributed with extremely high kurtosis, the percentile bootstrap method should 

be employed as it outperforms the standard and BCa bootstrap methods more often, especially for sample 

sizes close to N = 30 or 50. When sample sizes approach 100, the standard method takes over as the 

optimal method for constructing CIs. This recommendation is similar to advice presented above regarding 

the contaminated-normal distribution, but it is important to note that that even with the more extreme 

kurtosis the recommendation remains about the same. 

Another general recommendation is that when the residual distribution is consistent with a normal 

distribution for the underlying errors, the standard method performs similarly or better than the two 

bootstrap methods. Thus, regardless of the degree of association among the IVs, number of IVs, or sample 

size, the standard method was either the only method with nominal coverage or had nominal coverage and 

efficiency comparable with any other method of CI construction. In both cases, the standard method was 

most likely to have optimal CI properties. 
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The effect of sample size was as expected. First, a small sample size (N = 10) led to large 

standard errors and thus each method’s CIs had higher coverage than the nominal 95% limit, and 

efficiency up to thirty times larger than CIs constructed using larger sample sizes. Both bootstrap methods 

were more adversely affected by low sample size than the standard method. It would be hard to justify 

that any sample of size N = 10 is a sufficient approximation for a normal distribution; there simply is not 

enough information to ascertain the veracity of this assumption. Second, the large-sample properties of 

each method showed the expected convergence of coverage to the nominal 95% with CI widths nearly 

identical to each other. This result simply means that with sufficiently large sample sizes (approximately 

N = 1000) the choice between CI method is arbitrary and researchers are recommended to default to the 

computationally lighter standard method. Lastly, coverage tends to reach the 95% confidence limit around 

N = 30 for all methods except the BCa bootstrap. The BCa bootstrap still does not reach proper coverage 

at N = 100, though as stated above, proper coverage for this method is achieved with samples of N = 

1000. 

The unique condition comparing the two models which used log-transformed and untransformed 

DVs indicated that a transformation could improve CI properties. However, data transformations should 

be applied thoughtfully to ensure that they achieve the desired effect of normalizing the distribution of the 

model residuals. There are many possible transformation methods, and, as pointed out by Feng et al. 

(2014), a logarithmic transformation in no way guarantees that model residuals are normalized after a 

transformation. Again, researchers are reminded that using a log-transformed DV within the GLM is 

tantamount to selecting a multiplicative model once back-transformed to the original scale of the DV. The 

question of whether to transform a DV is a matter of balancing how well the transformation normalizes 

residuals, whether the transformation restores linearity, and the ease of interpretation of the regression 

coefficients. 

An empirical example was provided earlier to illustrate how competing approaches to dealing 

with non-normality result in different CIs whose properties remain largely unknown. Using the 
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recommendations summarized in Table 6, the decision about which CI method to choose can be made 

after first determining the data properties of the empirical example. The example used three IVs, had a 

condition value of 4.20 (degree of association among the IVs), and a sample size of N = 30. By 

superimposing the different error distributions examined in the simulation, the density of the empirical 

example’s residuals most closely resembles either contaminated-normal error distribution. The simulation 

condition in Table 6 which provides the closest approximation to the data properties of the empirical 

example suggests that the percentile bootstrap method should outperform the other CI methods by 

achieving nominal coverage and exhibiting at least a 5% improvement in efficiency. While this 

suggestion to choose the percentile bootstrap method for constructing CIs is completely data-driven, the 

simulation results suggest that, on average, this method should be preferred for the current situation. 

Given that all inference requires varying degrees of uncertainty, the current findings can help make 

informed decisions regarding how to address non-normality, and even slight adjustments such as those 

suggested in this present study could improve the dependability of research findings. 

Overall, small patterns were discernable from the simulation results which can give researchers 

support regarding decisions among competing approaches to non-normality. From the present results, it 

was clear that no single approach for dealing with non-normality was optimal across the board. By 

identifying conditions in which a non-standard method outperformed the standard method, researchers are 

encouraged to explore alternate approaches to deal with non-normal errors to improve the properties of 

their desired CIs. This finding alone is a useful contribution given the widespread belief that the GLM is 

robust to assumptions of violations of normality. Simply ignoring the assumption violation can result in 

suboptimal CI performance when the sample size is approximately N = 50 or less, especially when the 

distribution of errors deviates strongly from a normal distribution. When applied researchers are faced 

with the inevitable situation of violations of normality, they might not rely solely on methods with which 

they are familiar. Granted considerations based on known statistical theory outweigh recommendations 

based on simulated results, such theoretical considerations are usually based on large sample properties 
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and do not generalize to every applied situation, particularly with the small sample sizes typically found 

within psychological research. Often, applied researchers have no theoretical basis for deciding how to 

deal with assumption violations beyond the choice of modelling framework. Researchers should be aware 

of the impact that deviations from normality have on CI properties and expand their statistical toolbox to 

include additional methods to help achieve optimal CI performance. 
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