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ABSTRACT 
 
The primary purpose of the study was to examine sex differences and menstrual cycle 

time-points on chemoreflex function during supine and 70o upright (HUT) positions 

during: 1) normoxia, 2) hypercapnia (5% CO2), or 3) hyperoxia (100% O2). Women were 

tested during the early-follicular phase (EF; days 2-5) and the mid-luteal phase (ML; 

days 18-24). Compared to baseline, men and women had lower cardiac output index 

(Qi), mean arterial pressure (MAP), cerebrovascular resistance index, and respiratory 

rate during HUT. In response to hypercapnia during HUT (compared to supine), men 

had an augmented increase in MAP, while all groups had an augmented increase in 

ventilation suggesting sexually dimorphic interactions between the baroreflex and 

central chemoreflex. In response to hyperoxia during HUT, men and women displayed 

an attenuated increase of total peripheral resistance index and an attenuated decrease 

of Qi suggesting upright posture activated peripheral chemoreceptors. 
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INTRODUCTION 
 
 Orthostatic intolerance (OI) is characterized by feelings of nausea, light-

headedness, syncope and fatigue upon standing or orthostatic stress (128). It has been 

well established that the prevalence of OI is much higher in young women compared to 

men (23, 45, 51, 67, 158) possibly due to attenuated hemodynamic responses to 

orthostatic stress (23, 70, 146). Convertino (1998) showed that women had significantly 

greater reductions in stroke volume, cardiac output and mean arterial pressure upon 

orthostatic stress compared to men (23). Similarly, Jarvis et al. (2010) investigated the 

effects of 70o head-up tilt (HUT) on vasoconstrictor reserve in men and women and 

ultimately concluded that women have impaired splanchnic vasoconstriction upon 

assumption of HUT implying reduced venous return (70). 

Further, women experience greater light-headedness during the EF phase (low 

estrogen and low progesterone) of their menstrual cycle compared to the ML phase 

(high estrogen and high progesterone) (114). Interestingly, Fu et al. (2009) investigated 

total MSNA during graded orthostatic stress and found that women in the EF phase had 

an attenuated total MSNA response compared to women in the ML phase (47). 

Sympathetic output during orthostatic stress can be influenced by many autonomic 

reflexes such as baroreceptors (65, 149), mechanoreceptors (43), metaboreceptors (96, 

154), and chemoreceptors (74, 107, 110, 142, 143, 151), and these reflexes can in turn 

be influenced by the menstrual cycle. For example, during supine rest, ventilation is 

higher in the ML phase despite lower PaCO2 compared to women the EF phase 

suggesting greater central chemoreceptor activity during the ML phase (138). However, 

there have been no investigations of chemoreflex function through the menstrual cycle 

in upright posture. Should women in the EF phase retain lower central chemoreceptor 

reactivity compared the ML phase in the upright posture, this could help explain lower 

sympathetic activity in the EF phase during tilt due to hypocapnia. 

Interactions between autonomic reflexes have previously been studied. For 

example, the effects of hypoxia and hypercapnia in conjunction with postural changes 

(i.e. interactions between the chemoreflexes and the baroreflex) have been investigated 

(41, 46, 137, 147). Somers, Mark, & Abboud (1991) investigated the interaction 

between baroreflex and chemoreflex control of sympathetic nerve activity in healthy 
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men and women in a combined group (142). They found that sympathetic nerve activity 

was attenuated upon stimulation of both the peripheral chemoreceptors (via hypoxia) 

and baroreflexes (via phenylephrine) compared to hypoxia alone (142). They concluded 

that activation of baroreceptors by increases of arterial pressure markedly inhibited the 

sympatho-excitatory response to stimulation of the peripheral chemoreceptors by 

hypoxia (142). This inhibition of sympathetic activity as a result of baroreflex interaction 

with the peripheral chemoreceptors was not evident when investigating baroreflex and 

central chemoreceptor interaction as sympathetic activation was significantly higher 

after phenylephrine infusion in the presence of hypercapnia (142). This suggests that 

baroreflex inhibition in the tilted position could influence chemoreflex stimulation. 

Further, during post-exercise circulatory occlusion to activate the metaboreflex, it was 

discovered that the activated metaboreflex can stimulate the peripheral chemoreflex in 

healthy men in the absence of hypoxia (39). 

Not only is ventilation and sympathetic activity influenced by CO2 and O2, but 

cerebral vessels maintain brain blood flow in response to changing levels of CO2 

through either vasodilation or vasoconstriction (69). In response to hypercapnia, brain 

blood flow increases via vasodilation to reduce cerebrovascular resistance (69) and 

women have also been shown to have increased cerebrovascular CO2 reactivity to 

hypercapnia compared to men (75). Previous studies investigating cerebrovascular 

responses to oxygen have found that hyperoxia reduces brain blood flow (78, 106, 111, 

159) likely due to increased cerebrovascular resistance (78, 159) as a result of cerebral 

vasoconstriction (78, 106, 159). 

The purpose of this research was to investigate central chemoreflex activation 

and peripheral chemoreflex suppression with hypercapnia and hyperoxia, respectively, 

in the supine or upright postures while investigating the influence of sex and/or 

menstrual cycle. We hypothesized that in normoxic conditions: 1) During upright tilt, 

women would have a greater reduction in brain blood velocity compared to men, and 2) 

Men would have higher ventilation compared to women (in both supine and upright 

positions) and women during the mid-luteal phase would have higher ventilation 

compared to the early follicular phase (in both supine and upright positions). 
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Secondly, we hypothesized that: 1) Central chemoreflex function would be 

enhanced in the upright posture compared to supine, 2) In both the supine and upright 

postures, women in ML will have increased cerebrovascular reactivity to hypercapnia 

compared to men and women in the EF phase; however, women in the EF phase will 

have greater cerebrovascular reactivity than men, and 3) In both the supine and upright 

postures, women during the EF phase will have enhanced central chemoreflex activity 

in response to hypercapnia compared to the ML phase and men. 

Lastly, we hypothesized that: 1) In the supine posture, hyperoxia would decrease 

heart rate and cardiac output index while increasing stroke volume index in all groups 

(as observed previously), and 2) The peripheral chemoreflex would be activated in the 

upright posture (i.e. ventilation will decrease during hyperoxia) and this activation would 

be greatest in the EF phase. 

 

LITERATURE REVIEW 
 

Oxygen 
 

Overwhelming evidence has shown that stimulation of the peripheral 

chemoreceptors as a result of hypoxia results in increased ventilation and arterial 

pressure (21, 22, 110, 143). These chemoreceptors are specialized nerve endings 

located in the carotid and aortic bodies that initiate reflexes in response to fluctuations in 

the chemical composition of arterial blood to elicit effects upon ventilation and 

circulation (21, 22). Specifically, they will detect the decreasing arterial partial pressure 

of oxygen (PaO2; i.e. hypoxia) and will then communicate with respiratory centres in the 

brainstem to increase sympathetic activity and ventilation to raise arterial oxygen 

content. Steinback & Poulin (2008) investigated cardiovascular and cerebrovascular 

responses to isocapnic (end-tidal CO2 (ET-CO2) held constant) and poikilocapnic (ET-

CO2 allowed to vary naturally) hypoxia in humans (144). From baseline measurements 

to just after the onset of hypoxia, both poikilocapnic and isocapnic conditions saw 

significant increases in heart rate and ventilation, however, only poikilocapnic hypoxia 

saw an additional increase in cerebrovascular resistance (CVR) while only isocapnic 

hypoxia saw additional increases in mean arterial pressure and middle cerebral artery 
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velocity (144). This coincides with the significant decrease of ET-CO2 under 

poikilocapnic conditions since low CO2 is known to cause cerebral vasoconstriction. 

  The effects of hyperoxia on cardiovascular, respiratory and cerebral responses 

have also been investigated; however, the duration of exposure in the literature varies 

considerably which can change the cardiorespiratory responses. Daly & Bondurant 

(1962) found that upon exposure to 100% O2 (unknown duration), healthy men had an 

increase in mean arterial pressure as well as systemic vascular resistance (31). This 

was concurrent with a decreased cardiac output and heart rate that was observed with 

no change seen in stroke volume (SV)(31). In response to 5-30 minutes of hyperoxia, 

heart rate, cardiac output and stroke volume decrease while mean arterial pressure and 

systemic vascular resistance increase (29, 36, 78, 148, 157). Indeed, Crawford et al. 

(1997) investigated forearm vasculature responses to 15 minutes of 100% O2 and 

concluded that exposure to hyperoxia increased forearm vascular resistance and mean 

arterial blood pressure (29). These findings suggest that oxygen can evoke a peripheral 

vasoconstrictor effect. Potential mechanisms influencing vasoconstriction as a result of 

hyperoxia include 1) directly affecting vascular smooth muscle cells to depolarize, 

leading to activation of L-type Ca2+ channels resulting in vasoconstriction (160), or 2) 

reducing the basal release of nitric oxide (NO; vasodilator) leading to a reduction of 

endothelium-dependent vasodilation as seen in porcine coronary arteries (112). These 

latter effects are likely elicited through superoxide anion, O2-, which is known to inhibit 

NO, thus, inhibiting vasodilation (55, 166). 

Purves (1966) investigated the effects of 100% O2 on respiratory and circulatory 

responses in 35 unanaesthetized, new-born lambs (117). Purves (1966) found that 

within the first minute of hyperoxic stimulus, minute ventilation decreased by an average 

of 22% and remained 19% lower after 7 minutes (117). Ventilatory responses to 

hyperoxia have also been widely investigated in healthy humans yet show no changes 

in ventilation (33, 34, 136). However, only if the peripheral chemoreceptors are 

activated, can they be suppressed or silenced in response to short periods (e.g. 2 

minutes) of hyperoxia (33, 136). Indeed, Dejours et al. (1958) showed that after a 

healthy individual was made hyperoxic by continuously breathing 33% O2, a further 

exposure to 100% oxygen does not change ventilation further (34). Evidence has shown 
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that ventilation remains unchanged after exposure to 6 minutes of 100% hyperoxia in 

healthy men (64, 90), and Hermand et al. (2015) suggested that hyperoxic-inhibition of 

the peripheral chemoreflex was not sufficient to modulate ventilation in health since the 

peripheral chemoreceptors were not activated at rest (64). Conversely, one study 

showed that ventilation increased in response to 30 minutes of 100% hyperoxia in 

healthy men indicating a time-dependent component to the physiological responses to 

hyperoxia (8). Becker et al. (1996) discovered that 30 minutes of isocapnic hyperoxia 

increased ventilation by 10% even if ET-CO2 is allowed to fall (8). The authors suggest 

that this increase in ventilation could be as a result of the “Haldane effect” whereby the 

binding capability for CO2 is reduced during hyperoxia (44). During hyperoxic 

administration, carbon dioxide is displaced from hemoglobin by oxygen. This in turn 

increases the arterial partial pressure of carbon dioxide (PaCO2) resulting in hyperpnea 

from central chemoreflex activation to subsequently lower arterial carbon dioxide (44). 

Johnston et al. (2003) compiled a comprehensive review that looked at the 

effects of hyperoxia on cerebrovasculature (71). Many studies suggest that hyperoxia 

exposure attenuates cerebral blood flow in healthy individuals (78, 106, 111, 159). In 

particular, Kety & Schmidt (1948) investigated hyperoxic effects on calculated cerebral 

blood flow in young healthy men and found that 100% O2 reduced cerebral blood flow 

by 13% (78). An increase in cerebrovascular resistance in response to 100% O2 was 

observed indicating vasoconstriction of arteries within the brain reducing brain blood 

flow (78). Similarly, both Nakajima et al. (1983) and Watson et al. (2000) found a 

decrease in cerebral blood flow in response to 100% O2 administration by 16.2% (106) 

and over 20% at rest (159), respectively. In contrast, Xu et al. (2012) found that 

hyperoxia exposure left cerebral blood flow unchanged in healthy participants (162). 

This could be due to the length of exposure to hyperoxia or to a preceding period of 

hypoxia; their participants first breathed room air (21% O2) for 8 minutes, followed by 

hypoxia (14% O2) for 18 minutes, hyperoxia (50% O2) for 15 minutes and finally 

hyperoxia (100% O2) for 12 minutes (162).  
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Carbon Dioxide 
 

Much like hypoxia’s stimulation of the peripheral chemoreceptors, hypercapnia 

exerts a powerful stimulatory effect on the central chemoreceptors to promote increases 

in blood pressure, heart rate (78, 91, 151) and ventilation (8, 33, 68, 78, 91, 143) in 

healthy individuals through activation of the sympathetic nervous system. As mentioned 

earlier, the peripheral chemoreceptors detect decreases in partial pressures of arterial 

oxygen (33, 64, 108); however, they are also able to detect increases in partial 

pressures of carbon dioxide, but to a lesser extent (74, 102, 110). The location of the 

central chemoreceptor was the point of some debate until Schlaefke (1981) found that 

the rostral and caudal chemosensitive areas located on the ventrolateral aspect of the 

medulla resulted in ventilatory and circulatory changes upon stimulation in cats (127). 

Further investigation determined that intermediate neurons existed which join these 

areas to the respiratory and cardiovascular controllers within the medulla (127). This 

autonomic reflex is one of many able to regulate and influence the specific areas of the 

brain, such as the medulla, to elicit reflexive responses. Increases in PaCO2 stimulate 

respiratory centres, resulting in hyperpnea to eliminate excess carbon dioxide. As 

PaCO2 decreases, this in turn suppresses the central chemoreceptors to decrease 

ventilation to maintain PaCO2 at homeostatic levels.  

Kara et al. (2003) observed that acute hypercapnic stress stimulated the central 

chemoreceptors to significantly increase sympathetic activity, ventilation and mean 

arterial pressure in healthy subjects (74). Central chemoreceptor stimulation via 

hyperoxic hypercapnia in healthy humans was also shown to elicit an acute increase in 

sympathetic activity resulting in elevated systolic blood pressure and an increase in 

vascular resistance (103). These results were supported by Usselman et al. (2015) who 

found significant increases in sympathetic activity, mean arterial pressure, and total 

peripheral resistance in response to hypoxic hypercapnia (however, both peripheral 

chemoreceptors and central chemoreceptors were stimulated) (151). 

Early investigations in animals sought to isolate chemoreceptor activation 

through denervation of the peripheral chemoreceptors. However, results suggested that 

animals continued to respond with a substantial increase in ventilation in response to 

hypercapnia indicating that the central chemoreceptors are excited by acidity or 
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changes in carbon dioxide levels irrespective of the peripheral chemoreflex (87, 94, 

161). Schwartz, Brackett, Jr., & Cohen (1965) found that canines exhibited linear and 

marked rises in hydrogen ion concentration as PaCO2 incrementally increased 

effectively reducing pH and stimulating respiratory centres (129). This was subsequently 

confirmed by O’Regan & Majcherczyk (1982) who suggested that the central 

chemoreceptors respond to changes in hydrogen ion concentration in the interstitial fluid 

of the brain and thus disturbances of acid-base are responsible for ventilatory and 

circulatory adjustments during hypercapnia (110). 

 

CO2 + H2O  H+ + HCO3
- 

 

These results were confirmed by Harada et al. (1985) when they investigated the 

effect of pH and hypercapnia on respiratory drives (59). They found that by keeping 

PaCO2 constant by continuous equilibration of the solution with 5% CO2 and lowering 

bicarbonate (HCO3-) to decrease pH, respiratory activity was higher than when pH was 

high as a result of higher HCO3- concentration (59). They concluded that bicarbonate 

may act independently as a stimulus to the chemoreceptor (59). This study, however, 

was performed using a rodent model in vitro, and must not be attributed to human 

physiology. Loeschcke (1982) discovered that it was ultimately the extracellular pH that 

is the main chemical signal determining ventilation in felines and that pH values are 

dependent on bicarbonate concentration as a result of altered PaCO2 levels (93). 

Evidence suggests that hypercapnic stimulus provokes larger increases in 

ventilation and sympathetic activity compared to hypoxic stimulus (21, 143). Somers et 

al. (1989) suggested that an inhibitory interaction exists between pulmonary afferents 

(lung stretch receptors) and peripheral chemoreceptors resulting in an attenuated 

ventilatory response to hypoxia, but this interaction does not exist with the central 

chemoreceptors (143). This implies that chemosensitivity in the central chemoreflex is 

greater than the peripheral chemoreflex. Interestingly, Smith et al. (2006), showed that 

central chemoreceptors account for approximately 63% of the steady-state ventilatory 

sensitivity to hypercapnia while the remaining sensitivity, approximately 37%, was due 

to the peripheral chemoreceptors at rest (139). Similarly, Gelfand & Lambertsen (1973) 
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showed that approximately 12% of the ventilatory response to hypercapnia in hyperoxic 

humans (peripheral chemoreceptor suppression) was still a result of peripheral 

chemoreflexes (53). These findings suggest that while hypoxia has been shown to only 

affect peripheral chemoreceptors (33, 64, 108), hypercapnia stimulates both the 

peripheral and the central chemoreceptors (74, 102, 110). However, for the purposes of 

this thesis, the CO2 chemoreflex will be referred to as the “central chemoreflex“ for 

clarity. Both additive responses, where the stimulation of one reflex does not influence 

the other (20, 102) and hyperadditive responses, where the stimulation of one receptor 

augments the sensitivity of the other (30, 66), have been found to exist in response to a 

hypercapnic-hypoxic stimulus. 

Kontos, Richardson, & Patterson, Jr. (1968) investigated the vasodilatory effects 

of hypercapnia on healthy human forearm vasculature (81). They observed that 

hypercapnic acidosis was associated with increases in blood flow with no change in 

blood pressure and therefore they concluded greater peripheral vasodilation 

counteracts the increases of sympathetic activity during rest (81) which was confirmed 

more recently by Lipp et al. (2010). Similarly, cerebral vasculature is known to be 

reactive to hypercapnia. Initial research conducted by Kety & Schmidt (1948) 

investigated the effects of altered arterial tensions of carbon dioxide on cerebral blood 

flow (78). In response to 7% CO2, they found that brain blood flow increased 

significantly by 75% (78). They concluded that these responses reflected cerebral 

vasodilation (78). Furthermore, Reivich (1964) studied the effects of PaCO2 levels on 

cerebral hemodynamics in the rhesus monkey (118). They observed that when PaCO2 

approached low concentrations (10-15 mmHg), cerebral blood flow was diminished and 

vascular resistance increased via vasoconstriction (118). Further, at higher levels of 

PaCO2 (150 mmHg), cerebral blood flow increased and vascular resistance decreased 

via vasodilation (118). More recently, Ito et al. (2003) investigated changes in human 

cerebral blood flow and volume in response to hypercapnia in healthy subjects under 

resting conditions (69). They similarly concluded that 7% CO2 caused significant 

increases in both cerebral blood flow and volume (69). This evidence suggests that 

hypercapnia increases cerebral blood flow by directly dilating vessels in the brain and 

reducing resistance. 
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Figure 1: Flow diagram of central and peripheral chemoreflex function 

 

Orthostatic Stress 
 

 In general, orthostatic stress elicits increases in ventilation (17, 18, 54, 92, 101, 

137, 164), end-tidal oxygen (ET-O2) (92, 101), heart rate (5, 13, 54, 109, 165), mean 

arterial blood pressure (27, 141, 165), total peripheral resistance (25, 27, 105, 109, 126, 

141), sympathetic activity (26, 87) and cerebrovascular resistance (109, 131) with 

decreases seen in brain blood flow velocity (109, 131), brain blood flow (89), stroke 

volume (165), cardiac output (54, 141, 165) and ET-CO2 (18, 54, 92, 101, 109, 164) in 

healthy individuals. Immediately after moving into an upright posture, there is an 

immediate drop in mean arterial pressure and as a result, central venous pressure, 

venous return, and stroke volume decrease. The immediate fall in blood pressure 

inactivates baroreceptors leading to an increase of sympathetic activity resulting in an 

increase of heart rate and total peripheral resistance further leading to a recovery of 

blood pressure (27, 105). 

 Upon passive head-up tilt (HUT), pulmonary blood volume is redistributed to the 

lower half of the lung, and the mechanical descent of the diaphragm into the abdominal 
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cavity produces an increased functional residual capacity (26, 97) leading to increased 

ventilation (Ve) and tidal volume (Vt)(18). These findings were further supported by 

Chadha et al. (1985), Gisolf et al. (2004) and Loeppky & Luft (1975) where an increase 

in functional residual capacity (FRC) was observed in passive HUT to 60o in healthy 

individuals (17, 54, 92). These responses ultimately cause tidal volume to increase (17, 

54, 92, 101, 164) without a concurrent decrease in breathing rate (18) leading to greater 

ventilation and therefore lower ET-CO2. 

Orthostatic stress leads to higher sympathetic nerve activity (27, 57, 88) and 

heart rate (5, 13, 54, 109, 165) with a concurrent decrease in stroke volume (54, 109, 

141, 165) to maintain cardiac output and mean arterial pressure. Interestingly, 

Convertino (2014) suggests that the integrated control of heart rate requires a rapid 

response (parasympathetic; i.e. vagal withdrawal) to enhance tachycardia during the 

onset of orthostatic stress followed by extended (sympathetic) maintenance of elevated 

heart rate (24). The contribution of peripheral vasoconstriction from sympathetic activity 

during orthostasis has also proven to be an important regulator of orthostatic tolerance. 

The increased vascular resistance represents a fundamental compensatory mechanism 

for maintaining arterial pressure in response to reduced cardiac filling during lower body 

negative pressure (LBNP)(25, 126). 

 Interactions between autonomic reflexes have previously been studied. For 

example, the effects of hypoxia and hypercapnia in conjunction with postural changes 

(i.e. interactions between the chemoreflexes and the baroreflex) have been investigated 

(41, 46, 137, 147). Somers, Mark, & Abboud (1991) investigated the interaction 

between baroreflex and chemoreflex control of sympathetic nerve activity in healthy 

men and women in a combined group (142). They found that sympathetic nerve activity 

was attenuated upon stimulation of both the peripheral chemoreceptors (via hypoxia) 

and baroreflexes (via phenylephrine) as opposed to just hypoxia (142). They concluded 

that activation of baroreceptors by increases of arterial pressure markedly inhibited the 

sympatho-excitatory response to stimulation of the peripheral chemoreceptors by 

hypoxia (142). This inhibition of sympathetic activity as a result of baroreflex interaction 

with the peripheral chemoreceptors was not evident when investigating baroreflex and 

central chemoreceptor interaction as sympathetic activation was significantly higher 
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after phenylephrine infusion in the presence of hypercapnia (142). This suggests that 

baroreflex inhibition in the tilted position could influence chemoreflex stimulation. 

Further, during post-exercise circulatory occlusion to activate the metaboreflex, it was 

discovered that the activated metaboreflex can activate the peripheral chemoreflex in 

healthy men in the absence of hypoxia (39). This was determined via a suppression of 

muscle sympathetic nerve activity during hyperoxia administration with occlusion (39). 

Richardson et al. (2002) showed that the ventilatory response to hypercapnia in 

healthy subjects was larger during HUT compared to the supine position suggesting the 

changes in ventilation reflect augmented central chemoreflex sensitivity in the tilted 

position; however, it is important to note that neither sex nor menstrual cycle were 

specifically investigated in this study as the sex of the volunteers were unspecified 

(119). Taneja et al. (2011) investigated the effects of central and peripheral 

chemoreceptor activity in the 70o HUT position in healthy individuals (mixed-sex design) 

(147). In response to hyperoxic hypercapnia during HUT, individuals experienced 

significant increases in minute ventilation, sympathetic activity, breathing rate, ET-O2, 

mean arterial pressure, cardiac output and stroke volume (147). The magnitude of these 

increases was larger than those seen in the supine position suggesting heightened 

central chemoreflex sensitivity in the tilted position (147). In contrast, Skow et al.(2010) 

found no change in ventilation upon graded orthostatic stress (supine to 90o) with or 

without hyperoxic hypercapnia (via rebreathe) in healthy men and women (combined) 

concluding that HUT had no effect on the ventilatory response to hypercapnia (137). In 

response to eucapneic hypoxia in HUT, individuals were seen to have decreases in 

stroke volume and increases in heart rate compared to the supine position (147). These 

findings, together, suggest that peripheral chemoreceptor sensitivity is enhanced in the 

tilted position.  

 Cerebral autoregulation has been defined as the physiological regulatory 

mechanism that maintains a constant level of flow over wide ranges of perfusion 

pressure in the brain (84). Levine et al. (1994) presented two hypotheses whereby 

syncope, defined as a reduction in cerebral blood flow sufficient enough to result in a 

loss of consciousness, can occur in the face of orthostatic stress (89). The more 

commonly accepted hypothesis explains that the fall in cerebral blood flow is secondary 
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to either an excessive decrease in central blood volume or to inefficient neurohumoral 

responses to orthostasis (11). The second hypothesis suggests that failure of cerebral 

autoregulation could compromise cerebral blood flow during orthostatic hypotension 

(57); however, Levine et al. (1994) argues that subjects used in the latter investigation 

poorly represented normal physiology as they all had a history of recurrent, unexplained 

episodes of syncope and most of them received isoproterenol (a beta-adrenergic 

agonist) during their clinical evaluation (89). Levine et al. (1994) found that upon graded 

LBNP (orthostatic stress), healthy subjects experienced decreased cerebral blood flow 

velocity with a greater pulsatility index (PI) suggestive of greater cerebral 

vasoconstriction (89). These results were supported by Serrador et al. (2006) where 

healthy subjects were tilted to 85o for 10 minutes (131). During tilt, they observed a 

significant drop in PaCO2 leading to significant reductions in middle cerebral artery 

velocity due to increased cerebrovascular resistance (131). Furthermore, these findings 

were augmented during hyperventilation which resulted in cerebral vasoconstriction 

(presumably due to a gradual decline seen in ET-CO2) (131). Similarly, Edwards et al. 

(2002) investigated the effects of hypercapnia on cerebral hemodynamics in the 45o 

HUT position in healthy individuals (41). While cerebrovascular resistance index (CVRi) 

decreased in HUT under all conditions, CVRi was significantly higher in hypocapnia and 

lower in hypercapnia compared to normoxia in both the supine and HUT positions (41).  

 

Sex Differences 
 

 It is evident from most research looking at chemoreflex functioning that 

investigations have primarily either looked at animal models (21, 22) or men (18, 92, 

101, 164) which has left a gap in physiological research regarding sex differences. 

Medical students, comprised of men and women, anonymously self-reported the 

prevalence, triggers and recurrence rate of syncope which ultimately showed that 

women experienced a higher prevalence of syncope compared to men (51). Similarly, 

Convertino (1998) showed that LBNP tolerance was significantly lower in women 

compared to age and fitness-matched men as greater reductions in stroke volume, 

cardiac output and mean arterial pressure were seen upon orthostatic stress in women 

(23). These results have also been seen in other studies investigating hemodynamic 
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responses to passive orthostatic stress between men and women (47, 98). In order to 

investigate sex-differences in chemoreflex function in upright posture, Taneja et al. 

(2010) investigated the effects of a breath-hold in healthy men and women during 

postural changes (supine and 60o HUT) (146). During breath-holding, men had 

increases in muscle sympathetic nerve activity (MSNA) burst frequency in both the 

supine and upright tilted positions, whereas women exhibited an increase only while 

supine (to a smaller magnitude than men) indicating suppression of chemoreflex 

induced sympathetic output in upright posture in women (146). The MSNA increases 

seen in men were greater in tilt compared to the supine position (146). This suggests 

that combined hypoxic-hypercapnia (breath-hold) and orthostatic stress influence MSNA 

differently in men and women. Furthermore, the absence of a sympathetic response to 

hypoxic-hypercapnia in upright posture observed in women may contribute to their 

greater prevalence of orthostatic intolerance compared to men (146). 

 Jarvis et al. (2010) found that women had impaired splanchnic vasoconstriction 

in the 70o HUT position compared to men which could lead to increased orthostatic 

intolerance via splanchnic blood pooling (70). In the resting, supine position, women 

had lower splanchnic blood flow and splanchnic vascular conductance compared to 

men (70). However, splanchnic vascular conductance decreased significantly in men 

from baseline to tilt, yet it did not decrease in women suggesting blunted 

vasoconstriction and therefore splanchnic blood pooling during an orthostatic challenge 

(70). Greater splanchnic pooling would contribute to reduced venous return and 

therefore lower stroke volume. 

 Cerebral hemodynamics between healthy men and women have been previously 

studied (32, 38). Investigating cardiovascular and cerebral hemodynamic responses to 

posture changes in young, healthy men and women, Edgell et al. (2012) found that men 

had significantly lower systolic and diastolic middle cerebral artery velocities and higher 

cerebrovascular resistance index compared to women, regardless of position (38). 

These results were likely due to the vasodilatory effects of estrogen (women were 

studied in the late follicular phase when there is estrogen present without progesterone) 

reducing cerebrovascular resistance index (113). 
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 Very little is currently known about ventilatory and cerebrovascular responses 

between men and women in upright posture. Sébert & Sanchez (1981) looked at the 

respiratory effects of a hypoxic-hypercapnic breath-hold between healthy men and 

women in the supine and seated position (130). Ventilatory responses were found to 

increase similarly between the sexes following the breath-hold in both the supine and 

seated positions (130) despite previous observations that MSNA differs between the 

sexes in an upright breath hold (146). Cerebrovascular CO2 reactivity differences have 

been investigated between men and women in the supine position (75). Healthy 

subjects had their middle cerebral artery reactivity measured while breathing 95% O2 

and 5% CO2 (75). When plotting mean middle cerebral artery velocity responses as a 

function of increasing ET-CO2 levels, women had a steeper mean slope compared to 

men suggesting they have higher cerebrovascular CO2 reactivity (i.e. vasodilation) 

compared to men (75). This implies women have heightened cerebral vasoreactivity 

compared to men which may lower the hypercapnic stimulus threshold needed to trigger 

vasodilation. However, it is important to note that in the study by Kastrup et al. (1997), 

the vasoconstrictive properties of 95% hyperoxia oppose the vasodilatory properties of 

5% hypercapnia. 

The respiratory muscle pump has been observed to play a critical role in the 

maintenance of venous return through a pressure gradient that exists between 

peripheral and thoracic veins (133). As a result of inspiration, the pressure within the 

chest averages approximately 5 mmHg less than atmospheric pressure (133). Since 

peripheral venous supply is subjected to normal atmospheric pressures, an externally-

applied pressure gradient exists whereby blood is driven back to the heart (133). Thus, 

increasing respiratory activity promotes increased venous return in both men and 

women (133). This mechanism of regulating venous return can further be influenced by 

sexually-dimorphic differences in anatomy. An investigation observing the effects of sex 

and position on thoraco-abdominal kinematics was conducted on 34 healthy men and 

women (122). Specifically, they found that women have higher thoracic versus 

abdominal contribution to tidal volume than men (122). They suggest that this could 

contribute to the significantly reduced ventilation observed in women compared to men 

(122). 
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Menstrual Cycle 
 

 To date, very little research has investigated how menstrual cycle differences 

could affect chemoreflex activation. Peggs et al. (2012) showed that women in the 

early-follicular (EF) phase of the menstrual cycle (EF; days 2-5) reported significantly 

higher levels of light-headedness compared to when they were in their mid-luteal phase 

(ML; days 18-24) (114). These differences could be attributed to sex hormone 

concentrations since it has been established that the EF phase is when female sex 

hormones (estrogen and progesterone) are found to be at their lowest while the ML 

phase is when they are found at high levels, suggesting orthostatic intolerance in 

women could be associated with an absence of female sex hormones. Slatkovska et al. 

(2006) investigated the effects of menstrual cycle phase on the control of breathing in 

healthy women and observed that women during the ML phase had higher ventilation 

compared to women in the EF phase at rest even though PaCO2 was significantly lower 

in the ML phase (138). This suggests women in the ML phase have augmented central 

chemoreflex activity at rest compared to women in the EF phase which could ultimately 

enhance orthostatic tolerance by increasing sympathetic output. 

 The effect of circulating sex hormones has been investigated previously to 

determine their influence on ventilation in women (35, 95). Dombovy et al. (1987) tested 

the hypoxic and hypercapnic ventilatory response in 8 healthy women throughout their 

menstrual cycle through a graded exercise challenge protocol (35). They discovered 

that women during their luteal phase of their cycle had significantly higher ventilation 

compared to their follicular phase in response to these stimuli throughout the 

progressive workloads (35). Similarly, Machida (1981) studied the influence of 

progesterone on arterial blood and cerebrospinal fluid acid-base balances in 36 healthy 

women during their menstrual cycle under resting conditions (95). They found that 

cerebrospinal fluid and PaCO2 were significantly lower during the luteal phase 

compared to the follicular phase (95).  

 Fu et al. (2009) conducted an important study that investigated the impact of 

menstrual cycle phase on MSNA in response to graded orthostatic stress (47). Women 

were tested during the EF and ML phases (47). Women in the EF phase had 

significantly lower total sympathetic activation during upright tilt compared to the ML 
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phase (which correlates to greater feelings of light-headedness in this phase (114)) 

(47). In accordance with these findings, Minson et al. (2000) studied the influence of 

menstrual cycle on sympathetic activity in young, healthy women and found that resting 

plasma norepinephrine levels were also significantly higher in the ML phase compared 

the EF phase (100). Interestingly, it was observed that sympathetic baroreflex sensitivity 

was higher in women during the ML phase compared to the EF phase implying 

baroreflex-mediated responses may be influenced by female sex-hormones (100). 

Therefore, autonomic reflex interactions may play a role in orthostatic intolerance 

throughout the menstrual cycle. 

 

METHODS 
 

PARTICIPANT DESCRIPTION 
 

All participants were recruited from York University, Keele Campus using online 

social media, posters, word-of-mouth as well as the KURE database used in the 

Kinesiology course; Research Methods of Kinesiology (KINE 2049). Inclusion criteria for 

participation included: 1) Be between 18-30 years of age, and for females, 2) Have a 

normal menstrual cycle (~28 days). Exclusion criteria for participants included: 1) No 

previously diagnosed cardiovascular or respiratory disease/dysfunction, and 2) Not be 

taking any oral contraceptives or have had any for at least one month prior to testing. All 

subjects were asked to refrain from smoking, heavy exercise, the consumption of 

fatty/processed foods as well as caffeinated and alcoholic beverages 12 hours prior to 

testing. Participants were also encouraged to eat a light breakfast and/or lunch before 

coming in for testing. 

Men were tested once (n=13) while women were tested twice (n=14), once 

during the early-follicular phase (EF; days 2-5) and once during the mid-luteal phase 

(ML; days 18-24) of their menstrual cycle (Table 1). This assumed day 0 was the first 

day of menstruation. Female sex hormones (estrogen and progesterone) should be at 

their lowest concentrations during the EF, compared to the ML when these 

concentrations are at high levels. Cycle was determined by self-report. 
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Height (cm) and body mass (kg) were determined by a mechanical beam scale 

(Health O Meter Professional). These values were used to calculate body surface area 

(BSA; m2) using the DuBois and DuBois formula (12); 

 

BSA (m2) = 0.007184 x (weight0.425 x height0.725) 

BSA was used to normalize hemodynamic variables such as cardiac output (Qi), 

stroke volume (SVi), and total peripheral resistance (TPRi). The forced expiratory 

volume in one-second test (FEV1/FVC) was measured by a heated, linear-

pneumotachometer (Hans Rudolph, Series 3813) using spirometry. Self-reported 

physical activity levels and frequency were recorded and used as a prediction of 

cardiorespiratory fitness using the Ainsworth equation to obtain an index of VO2 max (2); 

 

VO2 max = 65 + 1.8(Frequency of Exercise/Week) – 10(Gender; Males = 

0, Females = 1) – 0.3(Age) – 0.6(BMI) 

Table 1: Participant Anthropometrics 
 

 

Men 
Women 

EF ML 

n 13 14 

Age (Years) 22.8±1.1 22.8±0.8 

Height (cm) 174.0±1.7σ 159.6±1.3 

Body mass (kg) 74.9±2.9αβ 60.9±2.8 60.1±2.7 

Predicted VO2 max (mL·kg·min-1) 53.0±1.1σ 41.1±1.3 

BMI (kg/m2) 24.7±0.7 24.0±1.2 23.6±1.0 

FEV1 (%) 81.7±2.0 84.0±2.2 

 
EF is the early-follicular phase, ML is the mid-luteal phase, VO2 max is predicted 

maximal oxygen consumption, FEV1 is the forced expiratory volume in one second test 
and BMI is body mass index. α indicates a main group effect (men vs ML; p=0.001), β 
indicates a main group effect (men vs EF; p=0.002), σ indicates a main sex effect (men 

vs women). 
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MEASUREMENT OF VARIABLES 
 

Cerebral Hemodynamics 
 

A Transcranial Doppler system (TCD; Multigon Industries Inc.) was used to 

quantify middle cerebral artery (MCA) velocity by using non-invasive ultrasound. A 2 

MHz probe was secured in position at the right temporal window by a headband. The 

cerebrovascular resistance index (CVRi), resistance index (RI) and pulsatility index (PI) 

were calculated using the mean, systolic and diastolic values recorded from the Doppler 

ultrasound (see below). For the supine position, mean arterial pressure (MAP) was used 

to calculate CVRi, however, cerebral perfusion pressure (CPP) was used for the tilted 

positions to account for the height difference (cm) measured from the heart to the 

ultrasound probe; 

 

CVRi(supine) = MAP/mean VMCA, where VMCA is middle cerebral artery 

velocity 

CVRi(tilt) = CPP/mean VMCA, where CPP = MAP (Distance X 0.7355 

mmHg/cmH20) 

RI = (max VMCA – min VMCA)/max VMCA 

PI = (max VMCA – min VMCA)/mean VMCA
 

 

 These indices are important in determining how cerebral vasculature responds to 

orthostatic and chemoreflex challenges. The RI, also termed the ‘Pourcelot index’ (116), 

and PI were developed to evaluate and compare Doppler waveforms to give an index of 

vascular resistance in the brain. As downstream impedance increases, the amount of 

diastolic flow decreases and as a result, RI and PI increase (56, 120). 

 

Cardiovascular Hemodynamics 
 

An electrocardiogram (ECG) was collected by a standard II-lead configuration 

where three disposable electrodes (3M Red Dot) were applied; one inferior to each 

clavicle on the delto-pectoral grooves and one on the left iliac fossa (left lower 
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abdomen). Heart rate was continuously calculated from raw ECG data and was used to 

quantify heart rate variability and cardiovagal baroreceptor sensitivity. Beat-by-beat 

continuous blood pressure and cardiac output (Q; L/min) were recorded using a non-

invasive finger-cuff. Cardiac output was calculated using the Modelflow algorithm 

(Finometer, Finapres Medical Systems). Stroke volume (SV; ml/beat) was calculated as 

a quotient of Q and heart rate (HR; bpm). Blood pressure measurements were 

corrected for finger placement using a standard height correction unit (HCU; 

ADInstruments, Human NIBP Height Correction Unit – MLT0902) that allowed the 

Finometer (Finapres Medical Systems) to continually correct for hydrostatic pressure 

changes if the hand moved below or above heart level. Total peripheral resistance 

(TPR; mmHg/(L/min)) was calculated as a quotient of mean arterial pressure (MAP; 

mmHg) and Q. A blood pressure measurement (Return-to-flow function of the 

Finometer) was taken at the beginning of each test to ensure accurate readings 

throughout continuous recording and to calibrate recorded values. Further, an 

automated single blood pressure measurement (BpTRU, BPM-100/200) was taken 

before each trial to ensure subjects reached baseline pressure between trials and to 

further calibrate the readings provided by the Finometer. Pulse wave data was collected 

at the ventral aspect of the left hallux (ADInstruments, Pulse Transducer TN1012/ST) 

and was used to measure pulse wave velocity (discussed below). 

 

Respiratory Variables 
 

Spirometry was collected by a heated, linear-pneumotachometer (Hans Rudolph, 

Series 3813). Volumes inspired and expired were calculated as positive and negative 

integrals of the spirometry channel, respectively. Tidal volume (V t; L) was calculated as 

a cyclical measurement of the maximum peaks of the volume inspired while breathing 

rate was calculated as a cyclical measurement of the rate of inspiration. Lastly, 

ventilation (Ve; L/min) was recorded as a product of breathing rate (breaths/min) and Vt. 

The pneumotachometer was calibrated using a 3 Litre calibration syringe (Hans 

Rudolph, Series 5530) before each test. Oxygen (mmHg) and carbon dioxide (mmHg) 

levels were measured through O2 and CO2 analyzers (Vacumed, Model 17620/17630). 

End-tidal oxygen levels (ET-O2; mmHg) were calculated as the minimum O2 value at the 
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end of exhalation and end-tidal carbon dioxide levels (ET-CO2; mmHg) were calculated 

as the maximum CO2 values at the end of exhalation. Oxygen and carbon dioxide 

measurements collected and analyzed by the Vacumed devices were calibrated 

according to the daily barometric pressure provided by York University’s Meteorological 

Observation station. 

All signals obtained were relayed to a Powerlab (ADInstruments, PowerLab 

16/35) data acquisition system which compiled analog data signals and converted them 

into digital signals. This data was then collected in Labchart software (ADInstruments, 

Version 8.1.3). One-minute averages for all hemodynamic, respiratory and cerebral 

variables were recorded at specific time-points from every trial. In the supine trials, one 

minute of data was selected from the last minute of baseline recording and the second 

minute of gas administration. In the tilted trials, one minute of data was selected from 

the last minute of tilt (pre-gas administration), and the second minute of gas 

administration (while in tilt). 

 

PROTOCOL 

 

Subjects were asked to come in approximately 15 minutes before testing to 

become familiarized with the design protocol, to read and sign the informed consent and 

to collect anthropometric measurements such as height (cm) and body mass (kg). Each 

test was comprised of a total of six trials, three of which were in the supine position and 

three in 70o HUT. 

Figure 2: The time-line of the supine and tilted trials 
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In each position, medical-grade gases were administered for two minutes. These 

gases included; 1) A hypercapnic mixture (5% CO2, 21% O2, nitrogen balance), 2) A 

hyperoxic mixture (100% O2), and 3) A normoxic mixture (0.03% CO2, 21% O2, nitrogen 

balance). Gas flowed through a portable humidifier (Fisher & Paykel Healthcare, HC 

150 Ambient Tracking) prior to inhalation. Data collection did not exceed 2.5 hours and 

a washout period of 5 minutes was implemented in between each trial. 

At the end of all trials, subjects were asked to perform the FEV1/FVC to assess 

their pulmonary function and to validate recruitment of healthy participants. Participants 

were blinded and randomized to the trials. The trial order was determined using a 

function that randomly assigns a number to each of the six trials (RAND function) and 

then subsequently ranking (RANK function) those random numbers (Microsoft Excel, 

Version 15.26). 

 

 

Figure 3: The respiratory apparatus. 1) Detached inhalation tube, 2) Attached exhalation 
tube, 3) Pneumotachometer, 4) Filter, 5) Gas analyzers, 6) Mouth piece 
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AUTONOMIC INDICES 
 

Heart Rate Variability (HRV) 

 

Heart rate variability (HRV) is used to assess autonomic function (86) and is 

determined by vagal and sympathetic influences of the heart (15). Given its validation 

as a measure of autonomic functioning, HRV was used to help quantify 

parasympathetic and sympathetic tone in our participants. Five minute sections of ECG 

data were selected from the supine normoxic trial as well as the entire HUT portion of 

the tilted normoxic trial in order to compare HRV between the supine and HUT 

positions. Labchart software (ADInstruments, Version 8.1.3) was used for power-

spectral analysis to determine time-domain (SDRR) and frequency-domain 

measurements. The low-frequency (LF) to high-frequency (HF) ratio (LF/HF) obtained 

were used to gauge how much of the variability seen was due to either sympathetic (LF) 

or parasympathetic (HF) tone during the supine and HUT positions. 

 

Cardiovagal Baroreceptor Sensitivity (cBRS) 
 

Five minute sections of ECG and beat-to-beat blood pressure data were selected 

from the supine normoxic trial and the entire HUT portion of the tilted normoxic trial. We 

used this data to compare the cBRS in the supine and HUT positions. Sequences of 

three or more beats in which systolic blood pressure (SBP; mmHg) and the R-R interval 

(ms) changed in the same direction (either increasing or decreasing) were identified and 

linear regressions were performed to be averaged that created a single slope 

expressing cBRS (spontaneous method) (9, 10). 

 

Pulse-Wave Velocity (PWV) 
 

Traditionally, arterial stiffness describes the ability of an artery to expand and 

contract in response to blood pressure changes (16); however,  we used it a surrogate 

marker for sympathetic activity since vasoconstriction will result in arterial stiffening. 

Current evidence suggests a correlational relationship exists between central arterial 



 
 

 23 

stiffness (carotid-femoral PWV) and muscle sympathetic nerve activity in healthy men 

(143). 

While carotid-radial and carotid-femoral PWV have been shown to be valid 

measurements of peripheral and central arterial stiffness, respectively, this research 

examined finger-toe PWV which has been shown to be significantly correlated with 

carotid-radial PWV in young adults (40). Although a more common method of 

measuring arterial stiffness, carotid-femoral (or radial) applanation tonometry has been 

shown to be both expensive and technically difficult, requiring two technicians and 

costly equipment (40), thus a more simplified method of measurement (i.e. finger-toe) 

was used for this study. Both the finger and toe pulse waves were measured 

continuously using the Finometer (Finapres Medical Systems) and a toe pulse 

transducer (ADInstruments, Pulse Transducer TN1012/ST), respectively.  

 

PWV = D between two pulse waves (m) / t between two pulse waves 

(s) 

 

The change in distance (D) was calculated as; the distance from the 

sternoclavicular notch (as an index of the heart) to the Finometer finger cuff subtracted 

from the distance from the sternoclavicular notch to the toe. The change in time (t) was 

calculated as: the time of the foot of the blood pressure wave form of the finger (i.e. 

end-diastole) subtracted from the time of the foot of the pulse wave form of the toe 

using the foot-to-foot method (85). Pulse wave velocity was calculated from at least 20 

consecutive heart beats from all supine trials at baseline and the second minute of gas 

administration. 

 

STATISTICS 
 

All results were analyzed using data analysis software (Sigmaplot, Version 12.0). 

Data was analyzed at two time-points within each trial, the minute prior to gas 

administration and the second minute of gas administration. Heart-rate variability and 

cardiovagal baroreceptor sensitivity was analyzed during five minutes of both supine 
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data and HUT data during normoxia administration. Responses were compared 

between the supine and tilted trials within each gas (i.e. supine hyperoxia versus tilted 

hyperoxia). It is statistically impossible to compare men directly to both phases of the 

menstrual cycle concurrently since men were only tested once and women were tested 

twice. Therefore, sex differences were investigated between men and each group of 

women by using multiple two-way repeated-measures ANOVAs (Sex and Posture 

(repeated) as factors). Women were analyzed using a two-way repeated-measures 

ANOVA (Menstrual phase (repeated) and Posture (repeated) as factors). Post-hoc 

analysis of interaction effects used Tukey’s HSD test to determine which groups 

statistically differed from one another. 

 

RESULTS 

Supine Normoxia 

 

Men had a significantly higher stroke volume index compared to women during 

the early-follicular phase (p=0.004) at baseline and during normoxia and mid-luteal 

phase (p=0.006) at baseline (Table 2). Women had a significantly higher total peripheral 

resistance index compared to men in both the early-follicular phase and mid-luteal 

phase (p<0.001) at baseline and during normoxia (Table 2). There were no significant 

main effects of time or menstrual phase on heart rate, mean arterial pressure or cardiac 

output index (Table 2). 

 Men had a significantly higher cerebrovascular resistance index compared to 

women during the mid-luteal phase (p=0.007) at baseline and during normoxia (Table 

2); however, this difference was not evident compared to women during the early-

follicular phase (Table 2). Women during the mid-luteal phase had significantly higher 

mean middle cerebral artery velocity (MCA) compared to men (p<0.036) at baseline and 

during normoxia (Table 2). There were no significant time or phase effects of systolic 

MCA, diastolic MCA, mean MCA, cerebrovascular resistance index, pulsatility index or 

resistance index at baseline and during normoxia (Table 2). 

 Men had significantly higher tidal volumes compared to women during both the 

early-follicular phase (p=0.004) at baseline and during normoxia; however, this 
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difference was not evident compared to women during the mid-luteal phase (Table 2). 

Women during their mid-luteal phase had significantly higher respiratory rates 

compared to their early-follicular phase (p=0.018) and men (p=0.041) (Table 2). Men 

had lower respiratory rate (p=0.04) and higher end-tidal oxygen levels (p=0.027) during 

normoxia compared to baseline but only when compared against women during the 

early-follicular phase (Table 2). There were no significant time or phase effects of tidal 

volume. Ventilation was significantly lower in women during their early-follicular phase 

compared to men (p<0.001) and their mid-luteal phase (p=0.008) at baseline and during 

normoxia (Table 2). During normoxia, women during both phases had significantly lower 

end-tidal carbon dioxide levels (p=0.05) and higher end-tidal oxygen levels (p =0.009) 

compared to baseline (Table 2). Women in their mid-luteal phase had higher end-tidal 

oxygen levels compared to their early-follicular phase (p=0.025) at baseline and 

normoxia (Table 2). 

 

Normoxic Tilt 
 
 Compared to baseline, all groups had a significant increase in heart rate during 

tilt (p<0.001) and normoxia (p<0.001) (Figure 4A). Compared to baseline, all groups had 

significantly lower mean arterial pressure during tilt (p<0.019) and normoxia (p<0.006) 

compared to baseline (Figure 4B). Men had significantly higher cardiac output index 

compared to women during the early-follicular phase (p=0.044) (Figure 4C). All groups 

decreased cardiac output index during tilt (p<0.016) and normoxia (p<0.033) compared 

to baseline (Figure 4C). Stroke volume index decreased in all groups during tilt 

(p<0.001) and normoxia (p<0.001) compared to baseline (Figure 4D). Men had 

significantly higher stroke volume index compared to women during the early-follicular 

phase (p=0.02) (Figure 4D). Total peripheral resistance index did not change in 

response to tilt or normoxia compared to baseline in all groups (Figure 4E). Men had 

significantly lower total peripheral resistance index compared to women during both 

phases (EF and ML; p<0.001) (Figure 4E). There were no significant effects of phase on 

heart rate, mean arterial pressure, cardiac output index, stroke volume index, and total 

peripheral resistance index during tilt or normoxia (Figure 4A-E). 
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Table 2: Hemodynamic, cerebrovascular, and respiratory responses to normoxia in the supine position. 

 
HR is heart rate, MAP is mean arterial pressure, SVi is stroke volume index, Qi is cardiac output index, TPRi is total peripheral 

resistance index, MCA is middle cerebral artery, CVRi is cerebrovascular resistance index, PI is pulsatility index, RI is 

resistance index, Ve is ventilation, Vt is tidal volume, ET-O2 is end-tidal oxygen, and ET-CO2 is end-tidal carbon dioxide. α 
indicates main group effect (men vs EF), β indicates main group effect (men vs ML), ε indicates main phase effect (ML vs EF), 

ω indicates a main time-point effect (against EF), and γ indicates a significant difference from baseline.

Variables 
Men 

Women 

EF ML 

Baseline Normoxia Baseline Normoxia Baseline Normoxia 

Hemodynamics: 
      HR (bpm) 65.5±3.3 65.3±3.5 68.4±1.7 67.3±1.8 70.2±1.7 69.5±2.1 

MAP (mmHg) 88.8±2.2 88.9±2.2 88.6±2.8 88.9±2.8 89.1±1.8 89.6±1.8 

SVi (mL/m2) 0.05±0.002αβ 0.05±0.002α 0.04±0.002 0.04±0.002 0.04±0.001 0.04±0.002 

Qi (L/min/m2) 2.9±0.1 2.9±0.1 2.7±0.1 2.6±0.1 2.8±0.1 2.8±0.1 

TPRi (mmHg/L/min/m2) 8.9±0.7αβ 9.0±0.7αβω 13.1±0.9 13.4±0.9 12.6±0.7 12.7±0.7 

Cerebrodynamics: 
      

Systolic MCA (cm/s) 95.5±5.7 92.2±6.1 97.7±4.2 97.6±4.3 105.4±4.8 105.7±4.9 

Diastolic MCA (cm/s) 44.9±2.7 43.1±3.8 46.2±2.7 46.6±2.6 51.3±3.0 50.7±3.0 

Mean MCA (cm/s) 62.2±3.6β 59.5±4.8β 66.3±3.3 66.1±3.4 72.3±3.6 71.9±3.8 

CVRi (mmHg/cm/s) 1.5±0.1β 1.6±0.2β 1.4±0.1 1.4±0.1 1.3±0.1 1.3±0.1 

PI 0.81±0.05 0.88±0.11 0.79±0.03 0.78±0.03 0.8±0.03 0.8±0.04 

RI 0.53±0.02 0.54±0.03 0.53±0.01 0.52±0.01 0.5±0.01 0.5±0.02 

Respiratory Measures: 
      

Ve (L/min) 12.6±0.3α 12.7±0.8α 9.8±0.5 10.0±0.4 12.2±0.6ε 12.1±0.7ε 

Vt (L) 0.8±0.1α 0.9±0.1α 0.64±0.04 0.67±0.04 0.69±0.04 0.69±0.04 

Respiratory Rate (breaths per 

minute) 
16.7±1.1β 14.9±1.1βω 16.1±1.1 15.7±1.2 18.4±1.2ε 17.9±1.0ε 

ET-O2 (mmHg) 114.7±1.6 118.7±3.3ω 114.5±1.5 116.8±1.8γ 118.9±1.7ε 120.1±1.4εγ 

ET-CO2 (mmHg) 39.3±1.2 39.1±1.9 39.2±1.1 38.5±1.3γ 37.1±1.1 36.7±1.0γ 
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Figure 4: Heart rate (HR; A), mean arterial pressure (MAP; B), cardiac output index (Qi; 

C), stroke volume index (SVi; D), and total peripheral resistance index (TPRi; E) 

responses to tilt and normoxia in the tilted position. EF is the early-follicular phase, ML 
is the mid-luteal phase. α indicates a main group effect (men vs EF), β indicates a main 

group effect (men vs ML), and γ indicates a significant difference from baseline. Men 
are black triangles, ML are white circles and EF are grey squares. 
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All groups had significantly decreased mean, systolic, and diastolic MCA in 

response to tilt (p<0.036) and normoxia (p<0.002) compared to baseline (Figure 5A-C). 

Men had significantly lower mean and diastolic MCA velocities compared to women 

during the mid-luteal phase (p<0.046) (Figure 5A,C). Women during both phases of 

their cycle decreased their cerebrovascular resistance index during tilt (p<0.001) and 

normoxia (p<0.001) compared to baseline. Men decreased their cerebrovascular 

resistance index during tilt (p=0.018), but it was only lower during normoxia when 

compared to women during the mid-luteal phase (p=0.005) (Figure 5D). Men had 

significantly higher cerebrovascular resistance index compared to women during their 

mid-luteal phase at all time-points (p<0.001) (Figure 5D). All groups had significantly 

decreased cerebral perfusion pressure during tilt (p<0.001) and normoxia (p<0.001) 

compared to baseline (Figure 5E). There were no significant effects of sex or time on 

the resistance and pulsatility indices (Figure 5F-G). There were no significant effects of 

phase on mean MCA, systolic MCA, diastolic MCA, cerebrovascular resistance index, 

central perfusion pressure, resistance index, and pulsatility index during normoxic tilt 

(Figure 5A-G). 

Men had significantly higher ventilation compared to women during the early-

follicular phase (p=0.003) (Figure 6A), with women during their mid-luteal phase having 

higher ventilation compared to their early-follicular phase (p=0.034) (Figure 6A). Men 

significantly increased their ventilation during tilt (p<0.016) and normoxia (p<0.034) 

(Figure 6A). Women during both phases had significantly lower respiratory rates during 

normoxia (p=0.03) compared to baseline (Figure 6B). Men had significantly lower 

respiratory rates during tilt (p=0.009) and normoxia (p<0.001) compared to baseline but 

only when compared to women during the early-follicular phase (Figure 6B). Men had 

significantly larger tidal volumes compared to women during the early-follicular phase 

(p=0.035) (Figure 6C). All groups significantly increased their tidal volumes during tilt 

(p<0.017) and normoxia (p<0.003) compared to baseline (Figure 6C). Men significantly 

increased end-tidal O2 levels during tilt (p<0.009) and normoxia (p<0.001) compared to 

baseline (Figure 6D). Women during both phases also had significantly increased end-

tidal O2 levels but only during normoxia (p=0.019) compared to baseline (Figure 6D), 

while significantly decreasing end-tidal CO2 levels during tilt  
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Figure 5: Mean middle cerebral artery velocity (MCAmean; A), systolic middle cerebral 

artery velocity (MCAsystolic; B), diastolic middle cerebral artery velocity (MCAdiastolic; C), 

cerebrovascular resistance index (CVRi; D), cerebral perfusion pressure (CPP; E), 
resistance index (RI; F), and pulsatility index (PI, G) responses to tilt and normoxia in 
the tilted position. EF is the early-follicular phase, ML is the mid-luteal phase. α 

indicates a main group effect (men vs EF), β indicates a main group effect (men vs ML), 
ϴ indicates a main time-point effect (against ML in baseline), and γ indicates a 

significant difference from baseline. Men are black triangles, ML are white circles and 

EF are grey squares.  
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Figure 6: Ventilation (Ve; A), Respiratory Rate (B), Tidal Volume (V t; C), End-tidal 

Oxygen (ET-O2; D), and End-tidal Carbon Dioxide (ET-CO2; E) responses to tilt and 
normoxia in the tilted position. EF is the early-follicular phase, ML is the mid-luteal 

phase. α indicates a main group effect (men vs EF), β indicates a main group effect 
(men vs ML), ε indicates a main phase effect (ML vs EF), ω indicates a main time-point 
effect (against EF in baseline), and γ indicates a significant difference from baseline. 

Men are black triangles, ML are white circles and EF are grey squares. 
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(p<0.001) and normoxia (p<0.001) compared to baseline (Figure 6E). Men had 

significantly decreased end-tidal CO2 levels during tilt (p<0.001) and normoxia (p<0.001) 

compared to baseline (Figure 6E). There were no significant effects of phase on 

respiratory rate, tidal volume, end-tidal O2 and end-tidal CO2 levels (Figure 6B-E). 

All groups had significantly increased LF power with decreased total power and 

HF power in HUT compared to baseline (Men; p≤0.001, EF; p≤0.001, ML; p≤0.004) 

(Table 3). Men had significantly higher LF/HF power and lower HF power compared to 

women during their early-follicular phase (p≤0.032) (Table 3). This difference was also 

observed compared to women during their mid-luteal phase during HUT (p≤0.002) 

(Table 3). Men had significantly higher LF power compared to women during the mid-

luteal phase during HUT (p=0.003) (Table 3). Women during their mid-luteal phase had 

significantly higher LF power and lower HF power compared to their early-follicular 

phase, but only in supine (p≤0.038) (Table 3). Men and women during their early-

follicular phase were observed to have a significant increase in their LF/HF ratio during 

HUT compared to supine (Men; p<0.001, EF; p<0.001) (Table 3). In HUT only, women 

during their early-follicular phase had significantly higher LF/HF ratios compared to 

women during their mid-luteal phase (p=0.013) (Table 3). All groups had a significantly 

decreased cardiovagal baroreceptor sensitivity slope in HUT compared to supine (Men; 

p<0.001, EF; p<0.001, ML; p<0.001) (Table 3). All groups significantly decreased their 

cardiovagal baroreceptor sensitivity slopes in HUT compared to supine (p<0.001). Men 

had significantly lower cardiovagal baroreceptor sensitivity slopes compared to women 

during the early-follicular phase (p=0.026) (Table 3). Men had significantly lower 

standard deviation of the R-R interval during HUT compared to supine (p<0.022) (Table 

3). There were no significant effects of phase on the standard deviation of R-R intervals, 

total power and cardiovagal baroreceptor sensitivity slopes (Table 3). 
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Table 3: Heart-rate variability and cardiovagal baroreceptor sensitivity during normoxia in the supine and HUT positions 

Variable Men Women 

EF ML 

Supine HUT Supine HUT Supine HUT 

HRV:       

SDRR (ms) 78.7±10.2 68.6±6.2γ 74.4±7.1 62.2±4.6 68.6±6.5 59.2±4.8 

LF Power 
(nu) 

37.6±5.3 75.5±4.6βγ 30.3±3.3 61.0±4.6γ 38.4±3.9ε 55.6±4.3γ 

HF Power 
(nu) 

59.2±4.5α 24.9±4.5αβγ 67.9±3.6 39.5±4.5γ 59.6±3.9ε 44.9±4.2γ 

Total 
[Power(μs2)] 

7511.1±1685.9 3612.0±737.6γ 7307.5±1440.5 3026.2±609.1γ 5442.5±963.0 
2805.6±6±598.

5γ 

LF/HF 
[Power(%)] 

0.8±0.2α 5.9±1.8αβγ 0.5±0.1 2.2±0.5γε 0.7±0.1 1.6±0.3 

cBRS: 
      

Mean Slope 
(ms/mmHg) 

25.8±4.9α 6.9±0.9αγ 34.6±3.4 11.9±1.4γ 35.21±4.2 11.9±1.7γ 

 
EF is the early-follicular phase, ML is the mid-luteal phase, HUT is head-up tilt, SDRR is the standard deviation between R-R 

intervals, LF is low-frequency, HF is high-frequency, LF/HF is the ratio between LF and HF, cBRS is cardiovagal baroreceptor 

sensitivity, and nu are normalized units. α indicates main group effect (men vs EF), β indicates main group effect (men vs ML), 
ε indicates main phase effect (ML vs EF), and γ indicates a significant difference from supine.
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Hypercapnia 
 
 There were no significant effects of sex, phase, or position on changes in heart 

rate in response to hypercapnia (Figure 7A). Men had a significantly augmented 

increase in mean arterial pressure in response to CO2 during HUT compared to supine 

(p<0.001) and during HUT compared to women in the early-follicular phase (p=0.026) 

(Figure 7B). Women tended to have significantly augmented increases in mean arterial 

pressure in response to CO2 during HUT compared to supine (p=0.054). All groups had 

a significantly augmented increase in cardiac output index in response to CO2 during 

HUT compared to supine (p<0.012) (Figure 7C). All groups had a significantly 

augmented increase in stroke volume index in response to CO2 during HUT compared 

to supine (p<0.001) (Figure 7D). Women during both phases had a significantly 

augmented decrease in total peripheral resistance index in response to CO2 during HUT 

compared to supine (p=0.012) (Figure 7E). Men also had a significantly augmented 

decrease in total peripheral resistance index in response to CO2 during HUT compared 

to supine, but only when compared with women during their mid-luteal phase (p=0.016) 

(Figure 7E). Men had significantly attenuated changes in total peripheral resistance 

index compared to women only during their early-follicular phase (p=0.004) (Figure 7E). 

There were no significant effects of phase on changes in mean arterial pressure, 

cardiac output index, stroke volume index or total peripheral resistance index (Figure 

7A-E). 

In response to CO2 (in both postures), men had significantly attenuated 

increases in diastolic MCA velocity compared to women during their mid-luteal phase 

(p=0.039) (Figure 8C). Men had a significantly augmented increase in central perfusion 

pressure in response to CO2 during HUT (p<0.001), which was not observed in women 

(Figure 8E). Men had a significantly augmented increase in central perfusion pressure 

in response to CO2 compared to women during the early-follicular phase during HUT 

(p=0.026) (Figure 8E). Women tended to have significantly augmented increases in 

cerebral perfusion pressure in response to CO2 during HUT compared to supine 

(p=0.054) (Figure 8E). There were no significant effects of phase on changes in mean 

MCA velocity, systolic MCA velocity, diastolic MCA velocity, cerebrovascular resistance 

index, central perfusion pressure, resistance index or pulsatility index (Figure 8A-G). 
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Figure 7: Changes in heart rate (HR; A), mean arterial pressure (MAP; B), cardiac 

output index (Qi; C), stroke volume index (SVi; D), and total peripheral resistance index 

(TPRi; E) in response to hypercapnia in the supine and 70o head-up tilted (HUT) 

positions. EF is the early-follicular phase, ML is the mid-luteal phase. α indicates a main 
group effect (men vs EF), ϴ indicates main time-point effect (against ML in supine), µ 
indicates main group effect within HUT (men vs EF), and γ indicates a significant 

difference from baseline. Men are black bars, ML are white bars and EF are grey bars. 
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Figure 8: Changes in mean middle cerebral artery velocity (MCAmean; A), systolic middle 
cerebral artery velocity (MCAsystolic; B), diastolic middle cerebral artery velocity 

(MCAdiastolic; C), cerebrovascular resistance index (CVRi; D), cerebral perfusion pressure 
(CPP; E), resistance index (RI; F), and pulsatility index (PI; G) in response to 
hypercapnia in the supine and 70o head-up tilted (HUT) position. EF is the early-

follicular phase, ML is the mid-luteal phase. β indicates a main group effect (men vs 
ML), µ indicates a main group effect within HUT (men vs EF), and γ indicates a 

significant difference from baseline. Men are black bars, ML are white bars and EF are 
grey bars. 
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There were no significant effects of sex or position on changes in mean MCA velocity, 

systolic MCA velocity, cerebrovascular resistance index, resistance index or pulsatility 

index (Figure 8A-B, D, F-G). 

 Women during both phases experienced a significantly augmented increase in 

ventilation in response to CO2 during HUT compared to supine (p=0.002) while men had 

a significantly augmented increase in ventilation in response to CO2 during HUT 

compared to supine but only when compared to women during their mid-luteal phase 

(p=0.028) (Figure 9A). All groups had a significantly augmented increase in respiratory 

rate in response to CO2 during HUT compared to supine (p<0.019) (Figure 9B). There 

were no significant effects of sex, phase, or posture on changes in tidal volume (Figure 

9C). All groups experienced a significantly attenuated increase in end-tidal oxygen 

levels in response to CO2 during HUT compared to supine (p<0.04) (Figure 9D). All 

groups had a significantly augmented increase in end-tidal carbon dioxide levels in 

response to CO2 during HUT compared to supine (p<0.004) (Figure 9E). There were no 

significant effects of sex or phase on changes in ventilation, respiratory rate, tidal 

volume, end-tidal oxygen levels or end-tidal carbon dioxide levels (Figure 9B-E). 

 

Hyperoxia 
 

Men had significantly attenuated decreases in heart rate in response to O2 

compared to women during their early-follicular phase (p=0.007) (Figure 10A). Men had 

an increase of mean arterial pressure in response to O2 during HUT compared to 

supine but only when compared to women during the mid-luteal phase (p=0.029) 

(Figure 10B). All groups experienced a significantly attenuated decrease in cardiac 

output index in response to O2 during HUT compared to supine (p<0.004) (Figure 10C). 

Women during the early-follicular phase tended to have a smaller decrease of cardiac 

output index in response to O2 compared to the mid-luteal phase regardless of 

position(p=0.066) (Figure 10C). There were no significant effects of sex on changes in 

cardiac output index to O2 (Figure 10C). Men had significantly attenuated increases in 

stroke volume index in response to O2 compared to women during their mid-luteal 

phase (p=0.009) (Figure 10D), regardless of posture. 
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Figure 9: Changes in ventilation (Ve; A), respiratory rate (B), tidal volume (V t; C), end-

tidal oxygen (ET-O2; D), and end-tidal carbon dioxide (ET-CO2; E) in response to 
hypercapnia in the supine and 70o head-up tilted (HUT) position. EF is the early-

follicular phase, ML is the mid-luteal phase. ϴ indicates a main time-point effect (against 
ML in supine) and γ indicates a significant difference from baseline. Men are black bars, 
ML are white bars and EF are grey bars. 
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Figure 10: Changes in heart rate (HR; A), mean arterial pressure (MAP; B), cardiac 

output index (Qi; C), stroke volume index (SV i; D), and total peripheral resistance index 
(TPRi; E) in response to hyperoxia in the supine and 70o head-up tilted (HUT) positions. 

EF is the early-follicular phase, ML is the mid-luteal phase. α indicates a main group 
effect (men vs EF), β indicates a main group effect (men vs ML), ε indicates a main 
phase effect (ML vs EF), ϴ indicates a main time-point effect (against ML in supine), 

and γ indicates a significant difference from baseline. Men are black bars, ML are white 
bars and EF are grey bars. 
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All groups had significantly attenuated increases in total peripheral resistance index in 

response to O2 during HUT compared to supine (p<0.006) (Figure 10E). Women during 

the mid-luteal phase had significantly augmented increases in total peripheral 

resistance index in response to O2 compared to their early-follicular phase (p=0.044) 

(Figure 10E). There were no significant effects of posture or phase on changes in heart 

rate or stroke volume index (Figure 10A, D). 

 Men had significantly augmented decreases of mean and systolic MCA velocity 

in response to O2 when compared to women during their early-follicular phase (p=0.017 

and p=0.006, respectively) (Figure 11A-B). There were no significant effects of posture, 

sex, or phase on diastolic MCA velocity (Figure 11C). Men had significantly augmented 

increases in cerebrovascular resistance index in response to O2 when compared to 

women during their early-follicular phase (p=0.006) (Figure 11D).  Men had an increase 

of cerebral perfusion pressure in response to O2 during HUT compared to supine but 

only when compared to women during the mid-luteal phase (p=0.029) (Figure 11E). 

There were no significant effects of posture or phase on changes in mean MCA velocity, 

systolic MCA velocity, diastolic MCA velocity, cerebrovascular resistance index, 

resistance index, or pulsatility index (Figures 11A-D, F, G). There were no significant 

effects of sex on changes in resistance index and pulsatility index (Figure 11F-G). 

There were no significant effects of sex or phase on changes in ventilation, 

respiratory rate or tidal volume (Figure 12A-C). Men had a significantly attenuated 

increase in end-tidal oxygen levels in response to O2 during HUT compared to supine 

but only when compared to women during the mid-luteal phase (p<0.001) (Figure 12D). 

There were no significant effects of posture on changes in ventilation, respiratory rate, 

tidal volume, and end-tidal carbon dioxide levels (Figure 12A-C, E). Women during their 

mid-luteal phase experienced a significantly attenuated increase in end-tidal oxygen 

levels in response to O2 during HUT compared to supine (p=0.004) (Figure 12D). Men 

had significantly augmented decreases in end-tidal carbon dioxide levels when 

compared to women during the mid-luteal phase (p=0.015) in response to O2 (Figure 

12E). 
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Figure 11: Changes in mean middle cerebral artery velocity (MCAmean; A), systolic 

middle cerebral artery velocity (MCAsystolic; B), diastolic middle cerebral artery velocity 
(MCAdiastolic; C), cerebrovascular resistance index (CVRi; D), cerebral perfusion pressure 

(CPP; E), resistance index (RI; F), and pulsatility index (PI; G) in response to hyperoxia 
in the supine and 70o head-up tilted (HUT) position. EF is the early-follicular phase, ML 
is the mid-luteal phase. α indicates a main group effect (men vs EF) and ϴ a main time-

point effect (against ML in supine). Men are black bars, ML are white bars and EF are 
grey bars. 
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Figure 12: Changes in ventilation (Ve; A), respiratory rate (B), tidal volume (V t; C), end-
tidal oxygen (ET-O2; D), and end-tidal carbon dioxide (ET-CO2; E) in response to 

hyperoxia in the supine and 70o head-up tilted (HUT) position. EF is the early-follicular 
phase, ML is the mid-luteal phase. α indicates a main group effect (men vs EF), β 

indicates a main group effect (men vs ML), ϴ indicates a main time-point effect (against 
ML in supine), and γ indicates a significant difference from baseline. Men are black 
bars, ML are white bars and EF are grey bars. 
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Table 4: Pulse-wave velocity during hypercapnia, hyperoxia and normoxia in the supine position 

Trial 
Men 

Women 

EF ML 

Baseline Gas Baseline Gas Baseline Gas 

Normoxia 6.9±0.6 7.0±0.6 6.4±0.4 6.3±0.4 6.6±0.3 6.9±0.4 

Hypercapnia 7.0±0.6 7.8±0.8 γ 6.2±0.4 6.6±0.5γ 6.6±0.3 7.0±0.3γ 

Hyperoxia 7.0±0.6 6.7±0.6 7.0±0.8 7.0±0.5 6.4±0.4 6.8±0.4 

 
Where EF is the early-follicular phase and ML is the mid-luteal phase. γ indicates a significant difference from baseline; 

p<0.001). 
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Pulse-Wave Velocity 
 
 In the supine position, all groups experienced significantly higher pulse-wave 

velocity in response to carbon dioxide compared to baseline (p<0.001) (Table 4). There 

were no significant effects of time on pulse-wave velocity in response to normoxia or 

hyperoxia (Table 4). There were no significant effects of sex or phase on pulse-wave 

velocity in response to normoxia, hypercapnia or hyperoxia (Table 4). 

 

DISCUSSION 

 

Summary 
 
 In response to HUT, all groups had significant increases in heart rate and end-

tidal O2 with decreases in stroke volume index and end-tidal CO2. All groups had a 

significant decrease in mean arterial pressure due to significantly reduced cardiac 

output index with no concurrent decrease in total peripheral resistance. Men had 

significantly higher cardiac output index compared to women during the early-follicular 

phase (likely due to significantly larger stroke volumes) and lower total peripheral 

resistance index compared to women during both phases. Men had lower brain blood 

flow velocity compared to women during the mid-luteal phase while all groups had a 

significant decrease of cerebrovascular resistance index in response to HUT indicative 

of increased cerebral vasodilation. During HUT, women experienced a significant 

decrease in respiratory rate with a concurrent increase in tidal volume to maintain 

ventilation at supine levels. On the other hand, men also increased their tidal volume 

and decreased their respiratory rate yet this resulted in significantly higher ventilation 

during HUT and normoxia. These results suggest that men have desensitized 

pulmonary stretch receptors. Together, these results suggest the lack of 

hyperventilation observed in women during HUT could result in attenuation of the 

respiratory pump action causing diminished venous return in women. 

All groups experienced a significantly augmented increase in cardiac output 

index in response to CO2 in the HUT position likely due to an augmented increase in 
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stroke volume index with no concurrent changes in heart rate (possibly due to the 

greater respiratory rate and therefore greater respiratory pump in HUT). Only men had a 

significantly augmented increase in mean arterial pressure in response to CO2 during 

HUT suggestive of increased sympathetic nerve activity or greater neurovascular 

transduction (i.e. the ability of blood vessels to constrict during sympathetic activation). 

Indeed, men had a smaller reduction of TPRi during HUT compared to the other groups 

further suggesting increased sympathetic output or greater neurovascular transduction 

in men. In response to CO2, men had significantly smaller increases in diastolic middle 

cerebral artery velocity compared to women during the mid-luteal phase indicating that 

women in the mid-luteal phase may experience greater cerebrovascular reactivity to 

CO2. However, there were no changes seen in cerebrovascular resistance index, 

resistance index or pulsatility index. During hypercapnic tilt, both men and women were 

observed to have significantly augmented increases in end-tidal CO2 and respiratory 

rate with a decrease in end-tidal O2. All groups had significantly augmented increases in 

ventilation during hypercapnic tilt. These results suggest that while the central 

chemoreflex is enhanced in HUT in both sexes, the autonomic or vascular responses to 

CO2 in HUT are different between men and women. We suggest that in HUT during 

hypercapnia, men have greater sympathetic output (or greater neurovascular 

transduction) compared to women. 

In response to hyperoxia during HUT, all groups were observed to have 

significantly attenuated increases in total peripheral resistance index (and attenuated 

decreases in cardiac output index from lower cardiac afterload) suggesting attenuated 

sympathetic tone indicating that the peripheral chemoreflex was inhibited in the upright 

posture. During hyperoxia, women during the early-follicular phase had a greater 

increase in total peripheral resistance index compared to the mid-luteal phase indicating 

that the presence of female sex hormones attenuates peripheral vasoconstriction. 

Compared to women, men had a smaller decrease in heart rate (early-follicular) and a 

smaller increase in stroke volume index (mid-luteal) in response to hyperoxia 

suggesting greater pulmonary vasodilation in men. During hyperoxia, men also had 

augmented reductions in systolic and mean middle cerebral artery velocities and an 
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augmented increase in cerebrovascular resistance index compared to women during 

their early-follicular phase implying greater cerebrovascular constriction. 

 

Head-up Tilt in Normoxia 

 

We hypothesized that in normoxic conditions: 1) During upright tilt, women would 

have a greater reduction of brain blood velocity compared to men, and 2) Men would 

have higher ventilation compared to women (in both supine and upright positions) and 

women during the mid-luteal phase would have higher ventilation compared to the early 

follicular phase (in both supine and upright positions). The first hypothesis was not 

supported yet the second hypothesis was partially supported. 

Hemodynamic sex-differences have been previously noted where men have 

larger stroke volumes compared to women regardless of position (47, 60, 61, 98), and 

this was also observed in the current investigation. Yamada et al. (2007) studied 181 

healthy subjects and discovered that women have significantly smaller ventricular 

volumes compared to age-matched men indicative of smaller stroke volumes 

contributing to a significantly smaller cardiac output index (163). This was supported by 

other studies finding cardiac output to be higher in men than women (47, 60, 61, 98). In 

response to varying lengths of orthostatic challenge (5 minutes to 45 minutes), both 

men and women have been observed to experience decreases in cardiac output as a 

result of a simultaneous decrease in stroke volume and increase in heart rate compared 

to supine (47–49, 82, 98, 105, 134). Our results agree with these previous findings as 

all groups were observed to experience a significant decrease in cardiac output index 

during HUT. This is likely due to the significant decrease in mean arterial pressure 

observed in men and women due to HUT. Interestingly, Fu et al. (2004) observed that 

only women experienced gradual decreases in both systolic and diastolic pressure due 

to 45 minutes of 30o and 60o HUT, respectively (47). Therefore, extending the trial 

length may have resulted in a maintenance of mean arterial pressure and cardiac output 

in men and not women during HUT which could be as a result of increased sympathetic 

activity or greater neurovascular transduction in men (47, 48, 134). 

While we did not directly measure sympathetic activity, heart rate variability in 

men was significantly higher in the low-frequency domain (primarily sympathetic activity) 
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compared to the mid-luteal phase during HUT and significantly lower in the high-

frequency domain (parasympathetic activity) compared to both phases during HUT 

indicating higher sympathetic and lower parasympathetic output in men compared to 

women. Similarly, cardiovagal baroreceptor sensitivity, another indicator of 

parasympathetic nerve activity, was also observed to be significantly lower in men 

compared to women during the early-follicular phase in both positions. Higher 

sympathetic activity in men would lead to higher blood pressure and peripheral 

vasoconstriction. However, Hart et al. (2011) observed that no relationship exists 

between muscle sympathetic nerve activity and total peripheral resistance in young 

women, contrary to what is seen in young men (60), and suggests that increased beta2-

adrenergic vasodilatory responses in women, may offset alpha-adrenergic-mediated 

vasoconstriction during a sympathetic stimulus (i.e. HUT) (60). Therefore, they conclude 

that in young women, sympathetic nerve activity does not determine peripheral 

vasculature resistance, cardiac output, or blood pressure (60). This could help to 

explain why men may be better able to maintain cardiac output index and mean arterial 

pressure during orthostatic stress. 

Men were found to have significantly lower mean and diastolic middle cerebral 

artery velocities compared to women during the mid-luteal phase throughout the 

normoxic tilt trial. These results have been confirmed by previous studies showing 

significantly lower middle cerebral artery velocity in men (32, 38, 150, 153). This is likely 

explained by the significantly larger middle cerebral artery diameters in men compared 

to women (104). Further, estrogen’s potent endothelium-dependent vasodilation (76, 

113) likely resulted in the significantly lower cerebrovascular resistance index observed 

in women during the mid-luteal phase compared to men.  

Contrary to our first hypothesis, women did not have a greater reduction of mean 

brain blood flow velocity during HUT compared to men. All groups experienced a 

reduction in mean, systolic, and diastolic brain blood flow velocity and cerebrovascular 

resistance index during tilt implying cerebrovascular vasodilation during HUT likely 

caused by the significant reduction in cerebral perfusion pressure during HUT. Contrary 

to our results, Abidi et al. (2017) found that men significantly increased cerebrovascular 

resistance index in response to 10 minutes of standing indicating cerebral 
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vasoconstriction in men during orthostatic stress (1). However, Abidi et al. (2017) used 

10 minutes of active standing rather than 5 minutes of passive tilt, as used in the current 

study.  

Ventilation was significantly increased in men during tilt and normoxia which was 

not observed in women. Confirming our results, previous studies also found increased 

ventilation in response to orthostatic stress (18, 54, 97, 101, 156, 164) due to 

concurrent increases in tidal volume (18, 54, 164). In the current study, all groups were 

observed to have significant increases in tidal volume with concurrent decreases in 

respiratory rate but only women did not increase ventilation during orthostatic stress. 

This could potentially be explained by sex differences in the Hering-Breuer reflex, a 

negative feedback loop where inflation of the lungs activates slowly adapting receptors 

to initiate a signal cascade resulting in termination of inspiration (133). Since men have 

anatomically larger lungs, the Hering-Breuer reflex may be less sensitive allowing for 

over-inflation of the lungs leading to increased ventilation compared to women. Romei 

et al. (2010) found that women have a lower abdominal contribution to ventilation 

compared to men (122) potentially allowing men to maintain mean arterial pressure 

through displacement of blood volume from the abdomen, presumably from the 

splanchnic vascular bed, increasing venous return (3). This increase in ventilation in 

response to orthostatic stress observed in men could result in an enhanced respiratory 

pump action compared to women leading to the maintenance of mean arterial pressure 

through greater venous return. Despite this sex difference in the ventilatory response to 

tilt, end-tidal CO2 and end-tidal O2 change similarly between groups (as previously 

observed by Serrador et al. (131)). Increased ventilation in men would normally be 

expected to decrease end-tidal CO2 and increase end-tidal O2; however, the movement 

of hypercapnic and hypoxic blood pools from the abdomen may obscure changes in gas 

exchange.  

Partially confirming the second hypothesis, it was observed that men had 

significantly higher ventilation than women but only during their early-follicular phase, 

and it was also observed that women during the mid-luteal phase had higher ventilation 

than women in the early-follicular phase throughout the normoxic tilt trial. The greater 

ventilation in men is likely due to significantly greater tidal volume and lung sizes 
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compared to women. Dombovy et al. (1987) also found higher ventilation in women 

during their luteal phase compared to their follicular phase and attributed it to higher 

progesterone levels in the luteal phase (35). Indeed, the increase in ventilation due to 

progesterone can be mediated by upregulation of progesterone-receptors in 

hypothalamic neurons (7). Further, female cats injected with progesterone display 

increased phrenic nerve activity compared to males allowing the lungs to inspire quicker 

and deeper resulting in hyperventilation (7). The enhancement of ventilation by 

progesterone could also help to explain why no ventilatory difference was seen between 

men and women during the mid-luteal phase. 

 Although sympathetic activity was not measured directly, heart rate variability 

was used as an indicator of sympathetic nerve activity and showed that women have 

lower sympathetic output compared to men in both positions suggesting that men might 

be better able to maintain cardiac output and blood pressure through higher 

sympathetic nerve activity and/or greater neurovascular transduction. Further, men 

were observed to have higher ventilation in response to orthostatic stress leading to 

greater respiratory muscle pump action compared to women. Our results indicate that 

sexually dimorphic differences in anatomy and circulating sex hormones throughout the 

menstrual cycle can influence ventilation in men and women regardless of position.  

 

Head-up Tilt in Hypercapnia 
 

We hypothesized that: 1) Central chemoreflex function would be enhanced in the 

upright posture compared to supine, 2) In both the supine and upright postures, women 

in ML will have increased cerebrovascular reactivity to hypercapnia compared to men 

and women in the EF phase; however, women in the EF phase will have greater 

cerebrovascular reactivity than men, and 3) In both the supine and upright postures, 

women during the EF phase will have enhanced central chemoreflex activity in 

response to hypercapnia compared to the ML phase and men. Our first hypothesis was 

supported by the evidence, our second hypothesis was partially supported, but the third 

hypothesis was not supported by the evidence. Although men were observed to have a 

significantly augmented increase in mean arterial pressure in response to CO2 during 

HUT compared to the supine position, all groups displayed a greater ventilatory 
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response in hypercapnic tilt compared to supine. These results support our first 

hypothesis that the central chemoreflex is enhanced in upright posture compared to the 

supine position in all participants likely due to interactions with the baroreflex.  

In response to hypercapnia in the supine position, all participants increased heart 

rate, mean arterial pressure, and cardiac output index. These results confirm previous 

studies in healthy humans (28, 73, 78, 79, 91) and are likely due to increased 

sympathetic activation (28, 79). Middle cerebral artery velocity increased and 

cerebrovascular resistance indices decreased in response to hypercapnia confirming 

results of Ito et al. (2003) and Kety & Schmidt (1948) who also reported increased brain 

blood flow with a concurrent decrease in cerebrovascular resistance during hypercapnia 

(69, 78). All subjects increased ventilation, tidal volume, end-tidal O2, and end-tidal CO2 

in response to hypercapnia. These results are consistent with previous findings that 

showed healthy humans respond to hypercapnia by increasing ventilation (14, 21, 33, 

68, 143), tidal volume (14), end-tidal O2 (28), and end-tidal CO2 (28, 68, 79).  

Compared to women, men displayed a greater increase in mean arterial pressure 

(and a corresponding attenuated decrease in total peripheral resistance index) in 

hypercapnic tilt indicating either greater sympathetic nerve activity or greater 

neurovascular conductance (as seen previously in men (61)) reflecting significant 

effects of sex on the autonomic and/or vascular responses to hypercapnia during HUT. 

Beyond the effects of CO2 on autonomic function via the central chemoreflex, CO2 also 

has strong vasodilatory effects on peripheral vasculature. By increasing end-tidal CO2 to 

9 mmHg above baseline, Simmons et al. (2007) observed vasodilation in cutaneous 

skin blood vessels in healthy men and women (135). Similarly, Kontos (1971) observed 

vasodilation and increased forearm vascular conductance in skeletal muscle of healthy 

men in response to inhalation of CO2 (80). However, Viswanathan et al. (1976) 

administered 5% CO2 to 20 healthy men which resulted in significantly increased 

pulmonary vascular resistance and cardiac output perhaps reflecting pulmonary 

vasoconstriction (155). Similarly, Balanos et al. (2003) studied 12 healthy subjects 

(mixed-sex) and found that pulmonary vascular resistance rose significantly in response 

to hypercapnia, suggesting pulmonary vasoconstriction (6). Therefore, we suggest that 

in the current study, the higher end-tidal CO2 observed in hypercapnic tilt compared to 
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supine hypercapnia is responsible for the augmented increases in both stroke volume 

index and cardiac output index via pulmonary vasoconstriction. This increase of end-

tidal CO2 during tilt could be due to enhanced respiratory pump action increasing the 

venous return of hypercapnic blood from the periphery as suggested by Serrador et al. 

(2006). 

Compared to supine hypercapnia, both men and women experienced augmented 

decreases in total peripheral resistance during hypercapnic tilt; however, the decrease 

was greater in women. This occurs in spite of presumed pulmonary vasoconstriction 

due to the greater end-tidal CO2 observed in hypercapnic tilt in all subjects. Since we do 

not see an augmented decrease of cerebral vascular resistance during hypercapnic tilt, 

we hypothesize that the reduction in total peripheral resistance index in hypercapnic tilt 

is driven by greater peripheral blood flow in unmeasured vascular beds such as those in 

the muscles, liver, kidneys, and splanchnia. Interestingly, all groups had significantly 

increased pulse-wave velocity during supine hypercapnia suggesting increased 

peripheral vasoconstriction from increased sympathetic nerve activity. 

The results of this study partially confirm those of Kastrup et al. (1997) who found 

greater cerebrovascular reactivity to CO2 in women compared to men (75). In the 

current study, men had a significantly attenuated increase in diastolic middle cerebral 

artery velocity in response to CO2 compared to women during the mid-luteal phase. 

This suggests diminished cerebral vasodilation in the presence of hypercapnia 

compared to women during the mid-luteal phase; however, there were no significant sex 

differences found within any of the measured resistance indices (pulsatility index, 

resistance index and cerebrovascular resistance index) or significant effects of HUT on 

the cerebrovascular responses to CO2. Other unmeasured resistance indices, such as 

critical closing pressure and resistance area product (as described in 121), could 

display changes in cerebral vasculature responses. In order to make firm conclusions 

about cerebral vasoconstriction or dilation, future investigations using magnetic-

resonance imaging to measure cerebral blood flow are important. Although we 

hypothesized that women during the ML phase would have increased cerebrovascular 

reactivity to CO2 in both positions compared to the EF phase, there were no significant 

changes observed in cerebral hemodynamics in either position within the menstrual 
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cycle. This suggests that female sex hormone concentration does not influence 

cerebrovascular reactivity to CO2 between the early-follicular and mid-luteal phases of 

the menstrual cycle. Similarly, we did not find any evidence that suggested 

cerebrovascular reactivity difference between the supine and upright posture. Peltonen 

et al. (2016) also investigated the cerebrovascular response to hypercapnia and found 

no difference between the early-follicular and late-follicular phases of the menstrual 

cycle (115). We did not find any evidence that suggested cerebrovascular reactivity 

differed between the supine and upright postures. 

All groups had significantly augmented increases in ventilation during HUT in 

response to CO2. This suggests that women also experience interactions between 

autonomic reflexes in upright posture which could enhance the central chemoreflex (63) 

and/or attenuate the pulmonary stretch reflex (146) resulting in the observed augmented 

increase in ventilation during hypercapnic tilt. All participants experienced a significantly 

augmented increase of respiratory rate in hypercapnic tilt which would lead to greater 

respiratory pump action contributing to the observed augmented increases in stroke 

volume and cardiac output. Similarly, all participants experienced attenuated increases 

in end-tidal CO2 and augmented increases in end-tidal O2 during hypercapnic tilt which 

is likely due to augmented increases in venous return from the enhanced respiratory 

pump action (as suggested by 133). There were no significant effects of menstrual cycle 

phase on the respiratory responses to hypercapnic tilt. This does not support out third 

hypothesis that women during the early-follicular phase would have enhanced central 

chemoreflex activity during hypercapnic tilt compared to the mid-luteal phase and men. 

In the current study, only men had an augmented increase in mean arterial 

pressure during hypercapnic tilt suggesting sex-differentiated effects of the interactions 

between the baroreflex and central chemoreflex. These sex differences suggest one 

potential mechanism for greater orthostatic intolerance in women. All groups have 

enhanced central chemoreflex functioning during HUT in response to CO2; however, the 

augmented increases in mean arterial pressure in response to hypercapnia in HUT 

observed in men suggests divergent autonomic responses between the sexes (but not 

between menstrual cycle phases). 
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Head-up Tilt in Hyperoxia 
 

We hypothesized that: 1) In the supine posture, hyperoxia would decrease heart 

rate and cardiac output index while increasing stroke volume index in all groups (as 

observed previously), and 2) The peripheral chemoreflex would be activated in the 

upright posture (i.e. ventilation will decrease during hyperoxia) and this would be 

greatest in the EF phase. 

Consistent with our first hypothesis; all participants had a decrease in heart rate 

in response to hyperoxia which has been confirmed in previous studies (31, 50, 77, 86, 

148, 157), likely caused by greater parasympathetic activity as shown by the significant 

increases in the high-frequency domain of heart-rate variability analysis. Further, in 

response to hyperoxia, men and women had increases in stroke volume index, yet 

decreases in cardiac output index which has been reported previously (31, 50, 77, 148, 

157). These decreases in cardiac output are likely due to increased cardiac afterload 

since men and women also increased total peripheral resistance in response to 

hyperoxia, as observed by others (31, 77, 148, 157), indicating peripheral 

vasoconstriction. Indeed, Ganz et al. (1972) showed that healthy subjects had reduced 

coronary sinus blood flow due to increased left-ventricular coronary resistance in 

response to 90-95% O2 (50). In the current study, pulse-wave velocity was not 

significantly altered due to hyperoxia in the supine position which appears to conflict 

with the increase of total peripheral resistance. However, finger-toe pulse wave velocity 

is a measurement of arterial stiffness in the limbs and central arteries only and does not 

consider potential vasoconstriction in other vascular beds. 

In response to hyperoxia during HUT, there was a significantly attenuated 

increase in total peripheral resistance and an attenuated decrease in cardiac output 

index in all groups suggesting attenuated peripheral vasoconstriction and sympathetic 

output, partially supporting our second hypothesis that the peripheral chemoreceptors 

are activated during orthostatic stress. This could be explained by interactions with 

other reflexes during upright posture such as the baroreflex and/or the metaboreflex. 

For example, during HUT, baroreflexes are deactivated due to an immediate decrease 

in blood pressure and a lack of distension in artery walls (48, 49, 58), and interactions 

between the baroreflex and the chemoreflex have previously been observed in dogs 
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such that the ventilatory responses to chemoreceptor stimulation are augmented by 

baroreceptor unloading and attenuated by baroreceptor activation (62). Similarly, in 

humans, stimulation of the metaboreflex via post-exercise circulatory occlusion 

activates the peripheral chemoreflex (39). Therefore, our observation that the peripheral 

chemoreflex is activated in upright posture could be due to activation of the 

metaboreflex via muscle activation. Interestingly, women during the early-follicular 

phase had augmented increases in total peripheral resistance index compared to the 

mid-luteal phase in response to hyperoxia, regardless of position. Therefore, higher 

levels of circulating sex hormones could be responsible for less peripheral 

vasoconstriction as observed by previous studies (76, 113). However, contrary to our 

hypothesis, there was no evidence of a menstrual cycle phase effect on the activation of 

the peripheral chemoreflex in upright posture. 

All participants responded to hyperoxia with lower middle cerebral artery velocity 

(mean, systolic, and diastolic) and higher cerebrovascular resistance index in all groups 

indicating cerebrovascular vasoconstriction. The cerebral arteries are known to constrict 

due to hyperoxia in healthy individuals (possibly due to the generation of superoxide 

anions, thus resulting in inactivation of nitric oxide as observed by Zhilyaev et al. 

(2003)). This has been widely studied and confirmed by others who saw consistent 

decreases in brain blood flow velocity and increased cerebrovascular resistance in 

healthy subjects (4, 78, 106, 111, 123, 159). However, previous investigations studied 

only men (78, 159), looked at older populations (4, 106) or did not differentiate the 

cerebrovascular responses by sex-differences (111). Interestingly, in the current study, 

men had greater decreases in mean and systolic middle cerebral artery velocities and a 

greater increase of cerebrovascular resistance index in response to hyperoxia 

regardless of position compared to women in the early-follicular phase, thus indicating 

greater cerebral vasoconstriction during hyperoxia. This difference was not observed in 

women during the mid-luteal phase. Although we observed cerebral vasoconstriction in 

all participants in response to hyperoxia, we did not find any evidence of HUT 

influencing cerebral vasoconstriction during hyperoxia.  

Hyperoxia resulted in higher ventilation and tidal volume leading to higher end-

tidal O2 and lower end-tidal CO2. However, no changes in the ventilatory responses to 
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hyperoxia were observed during HUT except for an attenuated increase of end-tidal O2 

in women during the mid-luteal phase and men when compared to women in the mid-

luteal phase. These attenuations were only approximately 6.3% in women during the 

mid-luteal phase and 5.3% in men and the final end-tidal O2 values during hyperoxic tilt 

were still considerably higher than what would lead to 100% hemoglobin saturation. 

Previous studies have shown increases in ventilation in young healthy subjects in 

response to 75%-99.4% hyperoxia (8, 83); however, these studies administered 

hyperoxia for 30 minutes (8) and 50 minutes (83). The proposed mechanism for this 

increase in ventilation was due to the “Haldane effect” where oxygenation of pulmonary 

blood in the lungs readily displaces CO2 from hemoglobin resulting in hyperventilation 

(19). Men had significantly augmented decreases in end-tidal CO2 levels in response to 

hyperoxia possibly due to greater pulmonary vasodilation (as a result of the vasodilatory 

effects of testosterone on pulmonary vasculature (42, 72, 124)) and therefore improved 

gas exchange. Greater pulmonary vasodilation in men during hyperoxia is further 

evidenced by the smaller increase of stroke volume index. The augmented reduction in 

end-tidal CO2 could also help to explain the greater vasoconstriction in the 

cerebrovasculature of men. The suppression of the peripheral chemoreflex in hyperoxic 

tilt should have produced attenuated ventilation in all subjects, yet this was not 

observed. We suggest that the autonomic interactions occurring in upright posture 

indeed result in lower sympathetic output during hyperoxia as expected due to inhibition 

of the peripheral chemoreceptor; however, due to the changes in mechanical forces on 

the chest cavity (i.e. gravity pulling the diaphragm downwards) and therefore, 

pulmonary stretch, the expected reduction in ventilation was obscured. 

These results suggest that in hyperoxic tilt there is an overall reduction in 

sympathetic tone indicated by the attenuated increase of total peripheral resistance 

index and attenuated decrease of cardiac output index; however, this is not reflected in 

cerebrovascular, respiratory, or mean arterial pressure responses. Future investigations 

utilizing direct measurements of muscle sympathetic nerve activity responses to 

hyperoxia during HUT are warranted to firmly conclude that the peripheral chemoreflex 

is indeed activated during upright posture. 
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CONCLUSIONS 
 

The purpose of this research was to investigate central chemoreflex activation 

and peripheral chemoreflex suppression with hypercapnia and hyperoxia, respectively, 

while supine or upright while also investigating sex and/or menstrual cycle differences. 

This investigation confirmed that; 1) the central chemoreflex is augmented in men and 

women during HUT, and 2) the peripheral chemoreflex is activated in men and women 

during HUT. Under normoxic conditions regardless of position, men were observed to 

have lower middle cerebral artery velocities compared to women in the ML phase. 

Ventilation was significantly increased in men in tilt which was not observed in women, 

and women in the mid-luteal phase were observed to have higher ventilation compared 

to the early-follicular phase in both positions. Men and women experienced lower brain 

blood velocity, orthostatic hypotension and decreased cardiac output index during HUT. 

In women, the absence of an increase in respiratory pump activity (i.e. no increase in 

ventilation) likely plays a role in the higher prevalence of orthostatic hypotension.  

In response to hypercapnia during tilt, both men and women exhibited significant 

but divergent responses compared to supine hypercapnia. While all participants had 

greater ventilation during hypercapnic tilt, only men had augmented increases in mean 

arterial pressure. These results suggest that central chemoreflex activation is 

augmented in both men and women during HUT likely due to interactions with other 

autonomic reflexes; however, this augmentation results in divergent autonomic 

responses between the sexes. Although no menstrual cycle differences were observed 

in the cerebrovascular reactivity to CO2 in response to hypercapnia, women in the ML 

phase were exhibited to have greater increases in diastolic MCA velocity during 

hypercapnia compared to men likely due to the presence of female sex hormones 

causing more vasodilation. However, no sex differences were observed in resistance 

indices of cerebrovasculature responses to hypercapnia, thus, further investigation into 

other measurements of resistance may support the observed differences. Both men and 

women exhibited peripheral chemoreflex activation during HUT as evidenced by the 

attenuated increase of total peripheral resistance index and attenuated decrease of 

cardiac output index during HUT. This is suggestive of autonomic reflex interactions (i.e. 

peripheral chemoreflex and baroreflex) during HUT in both men and women. 
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There were very few significant main effects of menstrual cycle throughout this 

investigation other than reduced ventilation in the mid-luteal phase compared to the 

early-follicular phase; however, that had already been well documented. The 

importance of testing women throughout the menstrual cycle should not be 

underestimated.  When comparing each phase to men, sex differences were not always 

evident. Therefore, when investigating sexually dimorphic responses, menstrual cycle 

should be taken into consideration to avoid false negatives or false positives. 

The respiratory pump plays a crucial role in the maintenance of venous return, 

cardiac output index and mean arterial pressure during orthostatic stress. However, by 

not increasing ventilation in HUT, women displayed attenuated respiratory pump action 

in HUT compared to men which may precipitate syncope, lightheadedness, orthostatic 

hypotension and fainting observed in women. Further, increased sympathetic nerve 

activity, greater neurovascular transduction, improved pulmonary gas exchange, and/or 

reliance on abdominal breathing could allow men to maintain mean arterial blood 

pressure during orthostatic stress better than women. Refer to Appendix A for summary 

of results. 

 

LIMITATIONS AND FUTURE STUDIES 

 

This study collected pulse-wave velocity using pulse waves from the finger and 

toe. Although not considered the “gold standard” of measuring central arterial stiffness 

(carotid-femoral pulse-wave velocity is the “gold standard”) (85), this measurement has 

been found to be closely correlated with carotid-radial pulse-wave velocity in young 

adults (40). This simplified method of collection is not a direct measurement of central 

arterial stiffness as is carotid-femoral pulse-wave velocity. Rather, it is a measure of 

peripheral arterial stiffness. Although pulse-wave velocity is not a direct measurement of 

muscle sympathetic nerve activity, it has been shown that there is a strong correlation 

between the stiffening of arteries (reflected by high pulse-wave velocity) and 

sympathetic activation (145), thus, it was used in this study as an indirect, non-invasive, 

surrogate marker for sympathetic activity. In future studies, implementation of 

microneurography to directly assess muscle sympathetic activation will strengthen 
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conclusions regarding sympathetic activation. Lastly, since this method required a pulse 

transducer to be placed on the toe, signal quality was insufficient in most participants 

during HUT, thus, we were unable to determine arterial stiffness during HUT. 

 In response to normoxia in the supine position, women had increases in end-tidal 

O2 with concurrent decreases in end-tidal CO2 compared to baseline. This could be due 

to the constant flow of the normoxic mixture from the tanks into the respiratory 

apparatus (Figure 3) during gas administration, thus, increasing end-tidal O2 and 

reducing end-tidal CO2 by approximately 1-2% (Table 2). 

 All female participants in this study self-reported menstrual cycle phase defining 

day 0 as the first day of menstruation. Unfortunately, we did not confirm plasma 

hormone concentrations of estrogen or progesterone in the mid-luteal phase of the 

menstrual cycle (days 18-24). Future studies should include this or urinary testing of 

luteinizing hormone to confirm ovulation. Similarly, we did not collect blood samples for 

plasma hormone measurements of vasoactive hormones such as norepinephrine, 

epinephrine, renin, and arginine vasopressin. The concentrations of these hormones 

have been observed to change in men and women during postural changes (supine to 

70o HUT), and found to be influenced by sex and position (52). Measurement of these 

circulating hormones would be beneficial in accounting for vasoactive influences on 

cardiovascular and cerebrovascular responses between men and women and during 

posture changes. 

 True cerebral blood flow, measured as the product of mean blood flow velocity 

and cross-sectional area of the vessel, was unable to be quantified due to the inability of 

measuring the cross-sectional area of the middle cerebral artery. However, previous 

studies have found no significant changes in middle cerebral artery diameter during 

either 10 minutes of orthostatic stress (132) or 3 minutes of hyperventilation (152) in 

mixed-sex groups. Direct measurement of cerebral vessel diameter through magnetic 

resonance imaging will allow an accurate calculation of flow to investigate 

cerebrovascular reactivity with or without orthostatic stress. 

Peripheral blood flow was not measured in this study. This limitation in 

conjunction with no direct measurements of muscle sympathetic nerve activity omits an 

accurate indication of neurovascular transduction in our participants. Future studies 
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should implement ultrasonography to measure cross-sectional areas of peripheral blood 

vessels to determine vasoconstriction or vasodilation and, as mentioned previously, 

microneurography to directly measure muscle sympathetic nerve activity. The 

combination of measurements will help to accurately describe changes in neurovascular 

transduction. 

 Blood oxygen saturation levels in our participants were not monitored through 

pulse-oximetry although we expected it to rise to 100% in response to hyperoxia. 

Recently, Ceylan et al. (2016) showed that blood oxygen saturation did not differ 

between 5 different positions in 235 young, healthy men and women and that they 

remained in a normal range (94-98%) (140) throughout testing. Since our protocol did 

not include the effects of hypoxia on cardiovascular, respiratory, or cerebral variables, 

pulse-oximetry was not necessary for the health and safety of our participants. In future 

studies, we plan to implement a hypoxic protocol to assess peripheral chemoreflex 

activation in the supine and upright postures. This will require the use of pulse-oximetry. 

The relationship between respiration and hemodynamics is closely linked by the 

respiratory muscle pump and is an important factor in maintaining venous return during 

orthostatic stress (99, 125). As seen previously, inferior vena cava diameter and central 

venous pressure measurements have been used as indices of venous return (37); 

however, these measurements were not used in the current study. We were therefore 

unable to make firm conclusions about changes in venous return since we were unable 

to directly measure it. 

There were no direct measurements of participant fitness (i.e. VO2max). However, 

we implemented the use of the Ainsworth equation which has been shown to represent 

78% (R2 = 0.78) of the variance observed in measured VO2max thus proving to be a valid 

predicted measure of VO2max in young healthy individuals (2). 

Future studies could incorporate elite athletes to determine their responses to 

chemoreflex and orthostatic stress to determine if highly trained individuals are less able 

to maintain orthostatic tolerance compared to untrained individuals. Further, our lab 

hopes to use this data to expand our research to investigate clinical populations such as 

patients with postural orthostatic tachycardia syndrome (POTS) and orthostatic 

hypotension, conditions that are highly prevalent in women. 
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Appendix A: Summary of results 
 

Condition Major Results 

Normoxic Tilt • Men have increased respiratory pump action compared to 

women during HUT. 

Hypercapnia • The central chemoreflex is augmented in HUT in all groups; 

however, only men have augmented increases in MAP. 

Hyperoxia • The peripheral chemoreflex is activated in HUT in all groups. 

 


