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Abstract

In this thesis, adding hardware-process support to Microcontroller Real-time Operating

System Version 2 (MicroC/OS-II) is proposed. µC/OS-II is a hard real-time operating

system (RTOS), mostly written in the C programming language. µC/OS-II is designed to

manage limited resources within embedded systems, and it can only execute and control

software processes performed in the same processor system. µC/OS-II has been modified

in order to manage external hardware processes. These hardware processes are imple-

mented on a Nexys 3 Spartan-6 FPGA Board. In this thesis, µC/OS-II is already ported

to run on an EVBplus HCS12 development board with CodeWarrior Embedded Soft-

ware Development Tools from Freescale Semiconductor Inc. Modifications are applied on

µC/OS-II interrupt system to manage hardware processes, and SPI protocol and parallel

interface are set up to communicate between the HCS12 trainer and the FPGA board.

The work is illustrated by designing a satellite attitude controller, using variable structure

control (VSC).
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Chapter 1

Introduction

The objective of this research is to add hardware-process support to an RTOS. In many

commercial real-time operating systems such as µC/OS-II and VxWorks, there is no run-

time support to handle hardware processes executed on reconfigurable fabrics such as

Field Programmable Gate Array (FPGA) devices. Due to the proliferation of FPGA

technology in real-time applications, there is a need to integrate both software and hard-

ware processes.

In this chapter, section 1.1 provides an overview of real-time operating systems, and

RTOS categories are described next in section 1.2. Section 1.3 briefly reviews FPGA

technologies. Section 1.4 presents the motivations and contributions of the thesis. In the

section 1.5, the outline of the thesis is provided.
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1.1 Overview of a Real-Time Operating System

A real-time operating system (RTOS) is an operating system that handles one or more

dedicated, preprogrammed functions, using limited resources and subject to real-time

constraints [5, 37]. Real-time operating systems are developed taking into consideration

characteristics such as portability, scalability, memory usage and power consumption to

meet the needs of embedded systems [47]. An embedded system refers to an electronic or

mechanical system that contains a built-in microprocessor or microcontroller, dedicated

for a specific application [20, 27]. Embedded systems are designed to meet limited re-

sources in terms of development cost, power and memory, and they are classified into two

categories: hard and soft. In hard real-time systems, missing deadlines to produce system

outcomes can lead to fatal or dangerous consequences, whereas in soft real-time systems,

deadlines misses can be tolerable, but they may degrade the system performance.

A task is defined as a software, independent and asynchronous activity run and con-

trolled by an RTOS. An RTOS kernel is mainly responsible for task dispatching, schedul-

ing and inter-task communication. In single, sequential processor systems, only one task

is performed at any given time, while multi-core processor systems can schedule more than

one task simultaneously. Thus, the scheduler portion of the RTOS kernel uses scheduling

algorithms such as round-robin and priority, pre-emptive scheduling to simultaneously

manage multiple tasks.
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1.2 Types of Real-Time Operating Systems

According to the scheduling algorithm [5], RTOS systems can be categorized into:

• Polled Loop Systems

• Polled Loop with Interrupts

• Round-Robin Systems

• Preemptive Priority Multitasking Systems

(1) Polled Loop Systems

A polled Loop kernel is the simplest real-time kernel to write, debug and implement.

Only polling method is used to scan input devices in order to determine which

task requires the microprocessor time. This kernel is preferable when all tasks

have an equal priority. Once a task starts, it runs to completion. Therefore, it is

easy to determine the response time of a task, and no inter-task communication is

needed in these systems. Nonetheless, this RTOS is not suitable for complicated

applications where multiple tasks have to be handled simultaneously. Furthermore,

no interrupts can be handled from hardware devices in this style of programming.

Thus, I/O devices must be polled as frequently as necessary, so that critical events

are unlikely to be missed. However, polling a device leads to unnecessarily wasting

energy.
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(2) Polled Loop with Interrupts

This RTOS is also referred to as a foreground/background system. Both a polling

algorithm and interrupt are used to maintain regular events and asynchronous, time-

sensitive events respectively. This system performs a regular event as an infinite

loop called a task, whereas critical events are executed by serving Interrupt Service

Routines (ISRs). A task level is the background system, and it is first implemented

and tested. After that, the interrupt system is designed and added to the first stage,

which is called foreground.

(3) Round-Robin Systems

Similar to the previous system, software designers organize the system’s functions

into tasks, but polling is used to manage I/O devices’ events instead of interrupts.

Every task is run from the beginning to completion, and then CPU control moves

to the next task in a cyclical manner. If this scheduling kernel algorithm uses time-

slicing techniques, each task can access the processor time for an equal time slice,

and then the kernel sequences to another task in circular order until all tasks have

been completely executed..

(4) Preemptive Priority Multitasking Systems

All previously mentioned kernels are called non-preemptive, because each task is

run from the beginning to completion, without being preempted by other tasks.

Unlike preemptive Priority multitasking systems, higher priority tasks can preempt

lower priority tasks. For this, the real-time kernel assigns a single, unique priority
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to each task, and examines the set of ready tasks to determine the highest priority

task to run. The lower the priority number the higher the priority of a task. The

priority can be fixed in compilation time and also be changed in runtime. µC/OS-II

is a commercial example for preemptive priority multitasking systems used in the

thesis and explained in Chapter 4.

1.3 Field Programmable Gate Array (FPGA) Technology

FPGA is a chip that a developer can change and update its logic functionality after it has

been fabricated [6]. In fact, a FPGA chip is an array of configurable logic boxes (CLBs)

connected by programmable interconnections, and it exchanges data and control signals

with the external environment through I/O pins as demonstrated in figure 3.1. Each

configurable logic box performs a logic function. The process of configuring an FPGA chip

determines the functions of CLBs and the route of the programmable interconnections

between these logic blocks.

FPGAs have become an attractive solution for implementing embedded systems be-

cause this solution allows multiple system components to be implemented and integrated

into a single chip [32]. Compared to microprocessors, FPGAs can consume less power

because of their capability to work at lower frequencies, and FPGAs can provide much

faster solutions due to their high parallelism feature. Furthermore, because FPGAs are

manufactured with a reconfigurable functionality, they have fast time-to-market. With

FPGA technologies, hardware designers can securely and conveniently write, customize,
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debug and test their designs in their labs or even in-house after purchasing an FPGA

board.

1.4 Motivations and Contributions of the Thesis

Real-time embedded operating systems have been widely used in many commercial prod-

ucts such as digital cameras, cellular phones, medical devices, network adapters and

ATM machines [5]. Nevertheless, many commercial real-time operating systems such as

µC/OS-II and VxWorks do not provide run-time support to manage hardware processes

run and executed on external hardware platforms [39]. Compared to software processes,

the execution domain of hardware processes is different, in that they are executed on

external hardware platforms such as FPGA fabrics instead of the processor system.

In many applications where speed and power are important consideration, special

purpose hardware or accelerators are used [8]. Compared to CPUs, accelerators consume

less power and operate faster. Hardware acceleration can be designed using FPGA or

Application-specific Integrated Circuit (ASIC) technologies. For low volume applications,

FPGAs are preferable in terms of time-to-market, Non Recurring Expenses s(NRE), de-

sign cycle and reconfigurability. There is no layout or masks required in the manufacturing

process for FPGA design, which speeds up time-to-market. NRE costs for FPGAs are less

than ASICs. The FPGA design cycle is simpler because software tools are responsible for

handling mapping, placement, routing and timing. Reconfiguration is the main feature of

FPGAs, which is the capability of being reprogrammed an unlimited number of times to
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implement any customized hardware circuit, while ASICs have fixed functionality after

have been fabricated.

Adding hardware-process support to a real-time operation system allows RTOS users

to compile and execute their hardware designs on FPGA fabrics as if they execute soft-

ware programs on processor-based systems. This support includes creating, deleting and

scheduling hardware processes, and inter-process communication and synchronization.

Our thesis work aims to implement support of hardware processes in real-time oper-

ating systems namely, µC/OS-II using an FPGA-based hardware solution. This research

area is relatively new, and very little work has been done. The thesis work includes

adding software support in the RTOS, and implementing hardware processes and hard-

ware interface on the FPGA board.

• First, Serial Peripheral Interface (SPI) protocol is established in hardware and soft-

ware on the Nexys3 and Dragon12-Plus boards to allow these platforms to commu-

nicate and exchange data and control signals.

• Adding C and header files of the SPI and parallel interface to the board support

package (BSP) file of the µC/OS-II as shown in figure 4.1

• After that, ISR is added to the board support package (BSP) file of the µC/OS-II

to handle hardware processes performed on the FPGA board.

• Finally, hardware implementation of a satellite attitude control system using vari-

able structure control (VSC) and the Hardware-in-the loop (HiL) emulator are

7



designed on the Nexys3 FPGA board, and power consumption and logic resources

for the design of the satellite attitude controller are calculated for floating point

and fixed-point representations.

1.5 Thesis Organization

The remaining of the thesis is organized into six chapters. First, Chapter 2 discusses

a literature review of the previous work. Chapter 3 illustrates the EVBplus HCS12

development board and FPGA technologies. Chapter 4 demonstrates MicroC/OS-II and

its functions. Chapter 5 describes the implementation process for the communication

protocols between the Nexys3 and EVBpuls development boards. Chapter 6 introduces a

satellite attitude controller as our thesis application. Chapter 7 pprovides the conclusion

of the thesis and directions for future research.

8



Chapter 2

Related Work

Recently, FPGAs have become a key enabling technology in developing embedded systems

due to their flexible configuration capabilities to implement any customized hardware

circuit [11, 32]. In fact, FPGAs offer reasonable solutions in terms of development cost,

power and performance for embedded systems. Therefore, it is essential to examine the

issue of integrating software tasks, controlled by an RTOS running on a CPU system, with

hardware processes running on an FPGA device. There has not been enough research on

upgrading an RTOS to control external hardware processes, although some researchers

have attempted to explore and demonstrate this issue using different approaches.

In this chapter, section 2.1 explores a few papers that introduced and proposed oper-

ating systems for FPGAs. Section 2.2 provides examples for either partially or completely

implementing RTOS in hardware. Section 2.3 summarizes the content of the chapter.
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2.1 Operating Systems for FPGAs

Software specialists are unlikely to be knowledgeable about managing hardware mod-

ules and logic resources built on FPGA platforms. To overcome this obstacle, several

researchers have introduced operating systems for reconfigurable architectures on FPGA

technologies. These operating systems are responsible for managing hardware tasks run-

ning on reconfigurable fabrics, and their functionalities include task scheduling, data

communication and synchronization.

Pellizzoni and Caccamo in [36] presented a resource allocation scheme and admission

control test to manage hardware and software tasks running on a system-on-chip (SoC),

namely a Xilinx Virtex-4 FPGA, which is comprised of a single CPU, a partially recon-

figurable FPGA, the main memory and I/O peripherals. Using a partially reconfigurable

device allows the relocation and reconfiguration of hardware tasks. The objective of the

resource management scheme is to maximize the number of real-time tasks running on

the system, while the admission control test is to test and check any tasks added to the

system in order to determine whether the new task can be admitted. In this system ar-

chitecture, a dynamically reconfigurable FPGA is divided into areas that have the same

vertical measurement and different width measurements. Unlike other related work, the

proposed architecture supports partial reconfiguration. However, there was no full OS

support to manage software and hardware tasks in the proposed system.

Linux operating system was extended by So to develop the Berkeley Operating sys-

tem for ReProgrammable Hardware (BORPH) as an operating system for FPGAs [39].
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BORPH claims to provide runtime support for hardware processes, and it can handle up

to four FPGA devices. With using this operating system, software developers are capable

of implementing hardware processes on FPGA boards without having a lot of experience

in hardware design. However, BORPH is still under development and research.

Fleming et al. in [14] proposed the Latency-insensitive Environment for Applica-

tion Programming (LEAP) as an FPGA operating system that consumes 3% of FPGA

area. Using LEAP can address the difficulty of programming FPGAs, which speed up

the development process and increases the portability of FPGA programs. The LEAP

OS differ from traditional software operating systems in that the OS functionally is to

manage distributed modules that are programmed at compile time. In fact, The LEAP

OS uses latency-insensitive communication channels to communicate between modules

within the same FPGA platform and also to communicate with programs on external

platforms. For compile-time management for FPGAs resources, an extensible compiler

interface is introduced, called SoftServices to manage functions such as clocking and the

implementation of the latency-insensitive channels.

2.2 RTOS Implementation in Hardware

Implementing either part of or the whole RTOS in hardware can, to a large extent,

improve the responsiveness of the RTOS. Lange et al. have designed and introduced

a hardware real-time operating system called HartOS [3, 25]. Unlike a software-based

RTOS, HartOS tackles issues including jitter, computational overhead and huge memory
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footprint because its kernel components are mostly implemented in hardware on a Xilinx

FPGA platform. Most previous hardware-based kernels are inflexible and limited in

terms of features, and their performance is poor due to the slow interface between a

microprocessor and a hardware RTOS. Therefore, only one hardware RTOS, called Sierra

Kernel, was commercially released to the market. HartOS is developed to design most

of the the services of a traditional RTOS in hardware. In fact, HartOS is constructed

to have three main hardware modules including a task manager, interrupt manager and

resources manger. Nevertheless, few of its API functions such as mailboxes and queues

are still implemented in software. Furthermore, HartOS has no support of some features

such as event flag management and deadlock detection/prevention on semaphores. This

RTOS also needs additional testing and verification for the timing of all API and kernel

functions.

Kuacharoen et al. in [22] introduced a configurable hardware scheduler for real-time

systems, implemented in hardware on a Xilinx FPGA board and validated in software us-

ing synopsys software tools. While most of the previous hardware scheduler architectures

handle only one scheduling algorithm, this scheduler supports three different schedul-

ing algorithms inculding priority-based, rate monotonic and earliest deadline first. The

scheduler is flexible, and it can change its mode in run-time. The hardware scheduler is

implemented as an Intellectual Property (IP) block, so a hardware designer can smoothly

customize and control the features of the scheduler. The benefit of implementing a sched-

uler in hardware is to minimize the processor time overhead by the scheduler, interrupts

12



and tick handling. Another benefit of using a configurable hardware scheduler is portabil-

ity, so that the scheduler can be connected to any microprocessor as an I/O device. When

an RTOS starts multitasking, the scheduler decides which task is eligible for running and

interrupts the RTOS to perform the task. The RTOS kernel was modified to add the API

of the hardware scheduler as kernel services.

In [41], Swart reviewed several real-time operating systems implemented in hardware

such as system on chip RTOS, RTM unit and HW-RTOS using SMP. There are different

levels of hardware usage to implement an RTOS. Compared to purely software RTOS,

system on chip (SoC) based RTOS provides higher performance in terms of speed. In

RTM unit, time task managers (RTM) are used instead of the CPU to perform task

operations such as task management, event management, and scheduling. This hardware

solution improves performance due to high parallelism. In HW-RTOS using SMP, a hard-

ware RTOS is implemented for symmetric multiprocessors (SMP). The hardware RTOS

consist of two hardware schedulers dedicated for two ARM processors and communication

units for inter-process communication. Using this hardware RTOS architecture, context

switching overhead is significantly decreased. Either completely or partially implemen-

tation of RTOS in hardware may lead to some overheads such as the amount of logic

resources and power consumption. Nonetheless, in term of performance, hardware-based

solutions for RTOS provide much better results over software solutions.

13



2.3 Chapter Summary

This chapter reviews previous work related to integrating software tasks and hardware

tasks. Some previous work purposed designing operating systems for FPGA devices to

map a hardware design’s representations and requirements directly to FPGA platforms

without knowing hardware details, while other researchers purposed adding different levels

of hardware support for RTOS to enhance the performance and responsiveness of an

RTOS. The next chapter discusses the hardware platforms used in this thesis.
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Chapter 3

Hardware Review

This chapter introduces the hardware technology used in this thesis. First, section 3.1

briefly describes HCS12 microcontroller and the variety of systems that the EVBplus

HCS12 development board contains. Section 3.2 illustrates FPGA technologies and

FPGA design flow. Section 3.3 concludes the content of this chapter.

3.1 Overview of EVBplus HCS12 Development Board

The HCS12 is a 16 bit microcontroller family, produced by Freescale Semiconductor

Inc [5]. HCS12 operating voltage is 5 VDC, and its clock speed is up to 25 MhZ. The

Freescale HCS12 trainer is a powerful and convenient prototype platform used in many

universities. In comparison with other trainers, EVBplus HCS12 trainer offers the highest

performance-to-price ratio. The Dragon12 -Plus board, shown in Fig 5.3, is the main

platform for this thesis implementation, which is the host of µC OS/II.

HCS12 microcontroller’s pins are classified into three groups including voltage supply
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pins, which start with ”V” letter to provide voltage to all systems involved, port pins,

which start with ”P” letter to communicate among different systems and miscellaneous

pins to interface with external signals. Most of the pins have two or more functions.

HCS12 can run in different modes: normal and special modes. Special modes are used

for factory testing and development, while HCS12 operates in normal modes that have a

different memory map and external bus configuration. EVB board is factory configured

to work in normal signal mode.

The HCS12 trainer consists of multiple systems including port system, memory sys-

tem, serial communication system, time system, interrupt system, Analog-To-Digital

(ATD) system and Pulse Width Modulation (PWM) system. The port system is re-

sponsible for sending and receiving data and control signals to and from the external

environment. Every port is associated with a register assigned to a memory location.

Each port can work either as an 8-bit general-purpose input/output port or as an in-

terface for its associated system. For instance, Port P is used to provide interface to

the pulse width modulation (PWM) system. If the PWM system is not in use, port

P might be used as a general-purpose input/output port associated with DDRP regis-

ter. The memory system of HCS12 consists of CPU registers, ROM, RAM, EEPROM

and Flash EEPROM memory components. The serial communication system provides

different types of serial data transfer such as Synchronous Peripheral Interface (SPI),

Inter-Integrated Circuit (I2C) and Serial Communication Interface (SCI). In the thesis,

SPI system is used to communicate and exchange data between the HCS12 trainer and
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the Nexys3 board, demonstrated in section 5.1. The HCS12 trainer has 16-bit timer, and

its operating frequency is up to 25 MhZ. The HCS12 MCU responds to program instruc-

tions in a sequential manner except for interrupts and resets. When an interrupt occurs,

the CPU control switches from the main program to Interrupt Service Routine(ISR), and

CPU registers are temporarily stored. In the thesis, ISR has been written to manage

hardware processes performed on the FPGA development board. The ATD system is

used to convert external analog signals such as temperature, pressure and intensity to

digital signals. The PWM system are used to produce signals to drive devices such as

stepper motors, servo motors and relays.

3.2 Overview of FPGA Technology

In general, digital systems consist of two units: control unit and datapath unit [6,38]. The

control block produces control signals to manage datapath operations, while datapath is

responsible for moving and processing data, and it also sends ”status” signals to the

control unit to determine the sequence of datapath operations. A datapath block may

combine interconnections such as wires and multiplexers, functional components such as

ALUs, adders and multipliers and memory components such as RAM.

To design a digital circuit, developers can choose from three deferent solutions ac-

cording to their requirements as follows [42]:

• The first solution is using Application-specific Integrated Circuit (ASIC). Even

though ASIC is an excellent solution in terms of the performance, speed and power
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consumption, it is inflexible, so its functionality cannot be changed or upgraded

after being manufactured [7, 16,23].

• The second approach is to use a microprocessor to implement a digital circuit.

In contrast with ASIC, this solution is more flexible in that its functionality is

configured in software. Nevertheless, it is still limited because it provides fixed

hardware such as registers and physical pins, and it consumes a large amount of

power and provides less speed.

• Lastly, FPGAs provide the better solution compared to the mentioned solutions.

Xilinx and Altera are the most dominating FPGA manufactures on the market.

FPGAs are configurable devices that have outstanding capabilities to implement

digital circuits that can be reprogrammed an unlimited number of times [10,43].

FPGA chips are built using configurable logic blocks connected with programmable in-

terconnections [38, 40, 45] as demonstrated in Figure 3.1. FPGA are further capable of

implementing soft processors such as the MicroBlaze and PicoBlaze processors by Xilinx,

as well as the Nios and Nios-II processors by Altera. Consequently, an FPGA can process

data either by software microprocessor or as a hardware circuit. FPGAs are suitable for

medium and low volume applications. Compared to Application Specific Integrated Cir-

cuit (ASIC) chips, even though FPGAs may provide lower performance, area efficiency

and power efficiency, FPGAs are more flexible, cheaper and have much shorter time-to-

market [9, 17, 23, 43]. With FPGAs, hardware designers can easily fix bugs and upgrade
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functionality to allow customizing digital designs, while ASIC has a fixed functionality

after being fabricated, which increases the development cost [42].

Figure 3.1: FPGA Architecture
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The Nexys 3 digital system development platform from Digilent Inc, used in this thesis

and shown in figure 3.2, can provide an optimal hardware solution by implementing and

integrating sophisticated digital designs such as controllers and embedded soft processors.

Nexys 3 circuit design and implementation platform from Digilent Inc. has a Xilinx

Spartan 6 FPGA chip, switches, buttons, LEDs, seven-segment display, high-speed USB2

port, PS2 port,VGA port and variety of GPIO .

Figure 3.2: Nexys 3 Spartan-6 FPGA Trainer Board [18]
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3.2.1 FPGA Design Flow

This Figure 3.3 shows a flow chart for FPGA design [21,23,42,43].

• Before configuring FPGAs, digital designs can be described either by using a hard-

ware descriptive language(HDL) such as Verilog and VHDL or as schematic dia-

grams created by CAD tools such as Xilinx ISE tools [28] [35]. In HDL modelling,

Resister-Translate-Logic (RTL) is the most practical form used to design FPGA

chips. RTL description describes the behavior of a digital circuit or hardware de-

sign.

• Second, synthesis tools are used to translate the RTL description to create a Gate-

Level netlist that describes the connectivity of a digital circuit or design.

• After that, simulation with test-benches is used to verify the functionality of FPGA

designs. The test-benches are written in the HDL language used to assign input

values for a design. ISIM simulator, from Xilinx ISE Design Suite, is used to

simulate and validate the designs in this thesis,.

• Following this, map tools are used to translate the Gate-Level description to logic

resources available on an FPGA, while place and route tools are responsible for

placing logic resources on the FPGA chip and connecting the design’s logic blocks

through programmable routing links.

• Timing analysis comes next to determine the maximum clock frequency that an

FPGA design can handle.
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• The final step is to produce a bitstream file to configure/program the FPGA. In

the thesis, iMPACT tool, from Xilinx ISE tools, is used to conduct this task.

Figure 3.3: FPGA Design Flow
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3.3 Chapter Summary

This chapter illustrates the main platform used in this thesis which is the the Dragon12

-Plus board. After that, FPGA fabrics are described, as well as the process of FPGA

configuration. In the next chapter, MicroC/OS-II and its functions will be demonstrated.
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Chapter 4

MicroC/OS-II

In this chapter, section 4.1 demonstrates MicroC/OS-II. Following this, its functions are

explained in Section 4.2. Section 4.3 summarizes the content of the chapter.

4.1 Overview of MicroC/OS-II

MicroC/OS-II is a priority-based, multitasking and hard real-time kernel, commercially

released by Micrium Inc., written by Jean J. Lacrosse [24]. In fact, µC/OS-II is an

enhanced version of µC/OS released in 1992. In the second version, Lacrosse added more

services to the RTOS and well organized and commented its source code. Micrium’s

µC/OS-II is a very robust RTOS, which meets the requirements of safety-critical systems

such as railway control systems, braking systems and avionics systems. Additionally,

µC/OS-II kernel is open-source, designed to be clean, consistent, well commented, in-

depth documented and free for educational, non-commercial uses. Therefore, it is useful

for embedded-system studies.

24



µC/OS-II is a portable, ROMable, scalable, deterministic, priority-based, preemptive

and multitasking kernel. It is mostly written in ANSI C with a little Assembly code

targeting a specific microprocessor. µC/OS-II has been ported to more than 100 various

microprocessors, microcontrollers and digital signal processors (DSPs), so it can run on

8-bit, 16-bit, 32-bit and 64-bit CPU architectures. Also, µC/OS-II requires a small mem-

ory footprint, and its user can specify desirable RTOS features and services to be loaded,

which reduces the amount of used RAM and ROM. The execution time of any service

or function provided by this RTOS is deterministic. Tasks with this RTOS can be inter-

rupted or rescheduled according to their priorities, so that the system always dispatches

the highest priority task of a set of ready tasks. Context Switch occurs when the RTOS

suspends the running task and switches the CPU control to a higher-priority, ready task.

µC/OS-II is able to manage up to 64 tasks, eight of which are reserved for the system

use, so the RTOS has 64 levels of priority that can be changed dynamically. Furthermore,

µC/OS-II use different mechanisms to maintain synchronization and communication be-

tween tasks such as event flags, mailboxes and semaphores. µC/OS-II architecture is

shown in figure 4.1.
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Figure 4.1: MicroC/OS-II Architecture
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4.2 Functions of MicroC/OS-II

µC/OS-II services are as follows [20,24]:

• Task management

• Time management

• Inter-task communication and synchronization

• Fixed size Memory management

• Interrupt system management

4.2.1 Task management

µC/OS-II can create, dispatch, schedule, delete, monitor and terminate a task. It has

further mechanisms to handle errors, interact and synchronize among tasks. Each task is

an infinite loop, and there are five different states, only one of which, a task can be in at

any given time, as described in figure 4.2. These states are Dormant, Ready, Running,

Waiting and ISR. The RTOS is responsible for tracking and updating each task’s state. If

a task is inactive before being created, its state is Dormant. Moreover, a task can either

delete itself or get deleted by another task and return from another state to Dormant state

until obtaining a new activation signal. After creating a task either by OSTaskCreate()

or by OSTaskCreateExt(), the task state changes from Dormant to Ready, and it stays

in Ready state as long as another higher priority task is using the CPU. The system
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decides based on the task priority which task in a set of ready tasks will run next and

be assigned to the CPU. Only one task can be in Running state at any time. OSStart()

command is used to start the execution of a task. If a task is in Running state, it can be

preempted to execute a higher priority task, and the preempted task returns to Ready

state. Also, a running task can be interrupted when an interrupt occurs, and the CPU

key registers are stored, and the CPU serves the interrupt by executing ISR. When the

CPU finishes executing ISR, it will continue executing the interrupted task as long as

there is no higher-priority, ready task. Furthermore, while a task is running, it can be

suspended/blocked and change its state to Wait state, waiting for either a resource, a

message or a flag. A task can also be delayed for a certain amount of time and stay in

Waiting state. Waiting state allows other lower priority tasks to obtain the control of the

CPU to execute. After a resource is released or timer is expired, a task returns to the

Ready state to be scheduled. Each task must have its own stack to save its state once it

has been preempted, suspended or interrupted.

The µC/OS-II uses task control block (TCB) to keep track of status of each task.

In fact, µC/OS-II is responsible for updating TCB information in order to be able to

schedule and manage multiple tasks. TCB contains a task’s name, state, priority, stack

pointer and program counter. TCB is implemented in software as C data structures.

There are special tasks including idle task and statistic task. The idle task runs when

there are no other tasks running, while the statistic computes the CPU usage.
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Figure 4.2: Task States

4.2.2 Time management

µC/OS-II provides a number of services that handle time issues. for instance, OSTimeD-

lyHMSM() can delay the execution of the current task by a specific time. OSTimeTick()

is a periodic interrupt generated by a hardware timer that defines the clock frequency of

the RTOS, which allows tasks to be blocked or suspended for specific times.

4.2.3 Inter-task communication and synchronization

Inter-task communication and synchronization refers to the ways that different task are

used to communicate, exchange messages, synchronize their activities and share resources.

The RTOS has two mechanisms to synchronize a task with other tasks or ISRs which

are event flags and semaphores. In the event flag technique, the synchronization among
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tasks depends on the occurrence of events. Event flags are grouped into 8, 16, or 32 bits

as described in fig 4.3. This synchronization approach can be performed in two ways:

disjunctive (OR) requires that any event occurred, and conjunctive (AND) ensures that

all events occurred. Event flags can be set and cleared by either tasks or ISRs; nonetheless,

only tasks can wait for events. A semaphore is a classical wait signal operation in which a

task waits on a semaphore until getting a signal to resume its execution. OSSemPend and

OSSemPost are two important services that µC/OS-II provides to handle a semaphore.

Whereas OSSemPost generates a signal that releases a semaphore, OSSemPend makes a

requesting task wait on a semaphore until being released. Fig 4.4 clearly demonstrates

the mechanism of semaphores.

Inter-task communication is when the processes need to communicate with each other

in order to consistently cooperate. The µC/OS-II provides several mechanisms to main-

tain inter-task communications including message mailboxes and messages queues. Mes-

sage mailboxes and messages queues are services that µC/OS-II provides in order to

allow a task or ISR send one or more messages to a task. Fig 4.5 describes a mailbox and

message queue.
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Figure 4.3: Event Flags

Figure 4.4: Semaphores
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Figure 4.5: Message Mailboxes

Figure 4.6: Message Queues
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4.2.4 Fixed size Memory management

In preemptive systems, each task must have its own stack to store the key registers when

being preempted. Stack allocation and de-allocation can be achieved by using ”malloc”

and ”free” functions in C-language. These functions may lead to memory-fragmentation

issues. µC/OS-II provides a solution for memory fragmentation by allowing application

tasks to use fixed-sized memory blocks made of contiguous memory area.

4.2.5 Interrupts and ISR

The RTOS can also keep track of interrupt nesting by using OSIntEnter and OSIntExit

commands to serve or exit an interrupt service routine (ISR). Interrupts can be nested

up to 255 levels. Critical Sections are codes areas that run by µC/OS-II without being

interrupted or preempted. For this, µC/OS-II disables all interrupts when executing

a critical code, and then the RTOS kernel re-enables interrupts after leaving critical

sections. There are two macros including: OS Enter Critical and OS Exit Critical, used

to disable and enable interrupts. To illustrate, there are three methods to implement

these macros depending on the microprocessor and compiler. The first Method is the

simplest one, and it first disables interrupts when entering a critical section and then

enables all disabled interrupts after finishing the execution of a critical function. In the

second method, the interrupt disable status is saved when entering a critical section and

then restored when leaving a critical section. Compared to the first method, the second

one does not change the interrupt status. The third method stores the processor interrupt
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status into a local variable when executing a critical function and restores the value back

to the processor interrupt status upon the completion of the critical section.

4.3 Chapter Summary

This chapter explores the MicroC/OS-II and its features and functions. In the next

chapter, the steps of implementation followed in this thesis will be illustrated.
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Chapter 5

Implementaion

In this thesis, Serial Peripheral Interface (SPI) protocol is established in hardware and

software on the Nexys3 and Dragon12-Plus boards respectively to allow these platforms

communicate and exchange data and control signals. The main motivation behind this

is to demonstrate the concept of integrating software processes performed by a real-time

operating system with hardware processes implemented on FPGA fabrics.

In this chapter, section 5.1 provides a brief overview of Serial Peripheral Interface (SPI)

protocol. Section 5.2 illustrates the configuration of SPI master on the HCS12 microcon-

troller board. The FPGA implementation of SPI slave is presented in section 5.3 as well

as parallel port.

5.1 Overview of Serial Peripheral Interface (SPI)

SPI is one of the most common serial, low-end communication protocols in master/slave

mode [15,29,31] . It provides full duplex, synchronous and slow/medium data-transmission
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between a microcontroller and other peripheral devices such as DACs, ADCs and EEP-

ROMs. As demonstrated in diagram 5.1, a master component is responsible for initiating

data transmission and configuring and selecting a slave component. For synchronization

purposes, there is a common clock generated by the master to control the rate of data

transmission, denoted by SCLK. The master configures the clock polarity (CPOL) and

phase (CPHA). MOSI and MISO are serial and single-bit data lines to exchange data

signals between the master and slave. Slave Select is an active low signal used by the

master to activate/select the slave device. Two 8-bit shift registers are used to shift data

out with the most significant bit first to exchange data between the master and slave.

The table 5.1 describes the recent specifications of SPI protocol [33, 34]. In the thesis,

the HCS12 acts as the SPI master device, while the FPGA is the SPI slave component.

Figure 5.1: SPI Architecture
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Table 5.1: SPI Specifications

Feature SPI

Manufacturer Motorola (1979)

Plug − and− Play No

Interface type Serial (3+N wires)

Distance Short

Application Transfer of data-streams

Protocol Complexity Simple

Transfer rate Up to 4MHz

Power Consumption low

Transfer type Full Duplex

T ime Constraint Synchronous

Multi Master No

Multi Slave Yes

Addressing Hardware (Chip Select)
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5.2 Configuration of SPI Master

To use the HCS12 microcontroller as SPI master, several registers have to be configured

according to the programmer’s requirements.

First, SPI interface has to be initialized as follows:

(1) Configure the upper part of the DDRS register with the appropriate value to use

them as SPI four wires (MOSI, MISO, SS, SCLK).

(2) Configure the five SPI registers with the desirable parameters and values:

• One baud rate generator register (SPIBR) to define data transfer rate.

• Two control registers (SPICR1, SPICR2) to set up SPI control parameters.

• One data register (SPIDR) to read and write data.

• One status register (SPISR) to determine the status of the transfer.

To send data through SPI from the HCS12 microcontroller to the FPGA:

(1) Store data into SPIDR (SPI Data Register).

(2) Check SPISR (SPI Status Register) to determine whether or not sending data is

completed.

To receive data through SPI by the HCS12 microcontroller from the FPGA:

(1) Write dummy data out to SPIDR

(2) Check SPISR to determine whether or not sending data is completed.
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(3) Store the content of SPIDR into a variable.

The Dragon12 -Plus board is the main platform for the thesis implementation. The

code for the SPI master is written in C language and embedded in Micrium’s C/OS-II

and ported to a HCS12 microprocessor. A new software task, called SPI task, has to

be created and added to the application file of the µC/OS-II. The HCS12 microcontoller

is the master device which is responsible for assigning the frequency rate and sending

data that needs to be manipulated on FPGA fabrics, so the SPI task is programmed

to configure the microcontroller’s SPI pins to manage data and control signals. Other

tasks including data task and receiving task are created. The data task is responsible

for providing data for the SPI task, and they communicate and exchange data through

mailboxes, while the receiving task is an event-triggered task that waits for a flag is set

by a hardware interrupt signal coming from the FPGA platform. Furthermore, C files

and header files of the SPI master are added to the board support package (BSP) file

of the µC/OS-II. Port E is also configured, which has two input pins (PE0, PE1), while

the remaining pins are configurable to be either input or output. PE0 and PE1 might be

used for external interrupts lines: IRQ and XIRQ. In this work, pin PE0 is used as input

for IRQ external interrupts line. Interrupt service routine is written to handle an IRQ

pin interrupt, and interrupt vector is modified. To illustrate, The HCS12 MCU responds

to program instructions in a sequential manner except for interrupts and resets. When

a specific interrupt is triggered, the CPU stops the execution of the main program and

switches to perform Interrupt Service Routine (ISR), and CPU registers are temporarily
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stored. After that, the program goes to the interrupt vector table that contains the actual

addresses of ISRs. While the addresses in the vector table are fixed, the ISR addresses are

changeable determined by the programmer. Upon the completion of ISR, CPU registers

are restored to return to the main program execution. The benefits of using interrupts

are to improve the CPU usage and to efficiently handle I/O devices’ operations.

5.3 FPGA implementation of SPI Slave

The FPGA board represents the slave device which is responsible for processing data

that is received from the microcontroller. The coding of SPI Slave is implemented using

Verilog HDL on Xilinx ISE Project Navigator Ver. 14.7, and the SPI slave is tested

and verified on the Digilent Nexys3 FPGA board. Fig 5.2 describes the RTL schematic

diagram.

A parallel interface module has to be designed on the FPGA board in order to first

send an interrupt request signal and then send results from the FPGA to the HCS12

microcontoller platform. Fig 5.3 describes the final design diagram.
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Figure 5.2: RTL Schematic of SPI Slave

Figure 5.3: The final design
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Table 5.2 provides the logic utilization summary of the SPI slave design implemented

on the Xilinx Spartan-6 FPGA Board, using Xilinx Integrated Software Environment

(ISE) Project Navigator Ver. 14.7.

Table 5.2: Synthesis Summary of SPI Slave

Logic Utilization Used Available Utilization

Number of Slice Registers 65 18,224 1%

Number of Slice LUTs 77 9,112 1%

Number of Bounded IOBs 69 232 29%

5.4 Chapter Summary

This chapter describes the configuration and implementation of the SPI master and SPI

slave on the EVB Plus development board and the Nexys 3 board respectively. In the

following chapter, the design example will be demonstrated, which is a satellite attitude

controller.
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Chapter 6

Design Example: Satellite

Attitude Controller

This chapter describes the hardware implementation of a satellite attitude control system

using VSC on the Nexys3 FPGA for floating point and fixed-point implementations.

Furthermore, it presents the calculations of power consumption and logic resources for

the design of the satellite controller. The coding of satellite attitude controller is developed

using Verilog HDL on Xilinx ISE Project Navigator Ver. 14.7, and this design is tested

and verified on the Digilent Nexys3 Spartan-6 FPGA board.

Section 6.1 reviews the issue of satellite attitude control. Section 6.2 describes a

Hardware in the loop (HiL) technique. Following this, a variable structure control method

is illustrated in section 6.3. After that, section 6.4 demonstrates the Implementation of

satellite attitude control system using Variable Structure Control, and it also provides

the results of testing the attitude control system.
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6.1 Overview of Satellite Attitude Control

Controlling the position and attitude of a satellite is one of the most vital task in satellite

functions. The objective of a satellite attitude control system is to produce a smooth/even

movement for a satellite through its orbit in order to stabilize it. Such systems need

to be subjected to reliability, low power consumption, weight and time constraints due

to their extremely remote operating environment. In case of a failure in the satellite

control system, catastrophic scenarios such as losing spacecrafts may occur. Investigation

concluded that the main reason for failure is an error in the attitude control system [19,30].

In this thesis, a 2-input satellite attitude controller is implemented on the Nexys3 Spartan-

6 FPGA board to study the effect of jitter and noise on the controller performance. The

HiL model is further used to study the controller performance using both floating point

representation and fixed point representation.

6.2 Hardware in The Loop (HiL)

Hardware in the loop (HiL) is a simulation technique in which the control system model

is replaced by actual hardware. In contrast to traditional techniques in designing control

systems, HiL provides an effective platform to bridge the simulation, implementation,

and testing [4]. In this work, an FPGA platform is proposed for hardware in the loop

emulation of satellites in a satellite attitude control system, and an HiL emulator of the

satellite and a satellite attitude controller are constructed using actual hardware to be

tested in real time. The proposed platform allows us to study the effect of Noise, fixed
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point vs. floating point representation, and jitter on the controller performance.

6.3 Variable Structure Control (VSC)

Variable structure control (VSC) with sliding mode is used to model satellite attitude

controller. VSC is a discontinuous nonlinear control technique that is insensitive to the

variations in system parameters which are restricted to certain matching conditions. In

fact, VSC is capable of controlling uncertain systems whose parameters may vary within

known boundaries. The VSC method alters the dynamics of a system by the application

of a discontinuous control signal that forces the system to ”slide” along a cross-section

of the system’s normal behavior. Thus, this mode of the system operation is known

as Sliding Mode Control (SMC). Despite parameter variation and system uncertainties,

the system state variables in SMC mode are forced to stay on a predefined switching

surface that determines the desired dynamics of the system. SMC has been applied suc-

cessfully to control many various physical systems with uncertainties [44]. The SMC

control technique has many attractive features such as fairly straightforward firmware

implementation, robustness, finite-time convergence, and reduced-order compensated dy-

namics. SMC is insensitive to small disturbances during the sliding mode by forcing

the system dynamics to stay on an desired sliding surface using discontinuous control

laws characterized by high gain and high switching frequencies. However, These control

lawsćharacteristics are the main drawbacks of using SMC. To illustrate, high gain control

can violate the control saturation constraints, especially during the transient stage. High
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switching frequency results in a chattering problem which may cause the system insta-

bility [12]. There are many approaches to solve the chattering issue such as boundary

layer technique and adding an auxiliary control input to the system as fuzzy control.

More recent contributions have extended the sliding mode control and introduced the

concept of higher order sliding mode control in order to seek a smooth control that will

naturally and accurately encompass the benefits of the traditional approach to sliding

mode control.

In the sliding mode, defining the desired sliding mode dynamics is attained and main-

tained by means of solving the reachability problem.

6.4 Implementation of a Satellite Attitude Control system

To control the attitude of spacecraft, a mathematical model of the spacecraft should be

derived first. The mathematical model of the spacecraft motion describes the translation

and attitude motion of the spacecraft under the influence of external actuators’ forces and

torques. These equations are highly coupled nonlinear differential equations that makes

it hard to implement using most common control techniques. Therefore, the exact model

will be simplified by a linearization technique around the equilibrium state.

The attitude of the space station relative to the desired earth-pointing attitude can

be defined using the three angles; the pitch θ1, the yaw θ2, and the roll θ3. When the

space station is oriented in the desired direction, then θ1 = θ2 = θ3 = 0.
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A simplified nonlinear model of the spacecraft can be found in [26]

Θ̇ = RΩ + n (6.1)

IΩ̇ = −Ω× IΩ + 3n2I c− U (6.2)

ḣ = Ω× h+ u (6.3)

Where

R(Θ) =
1

cos θ3


cos θ3 − cos θ1 sin θ3 sin θ1 sin θ3

0 cos θ1 − sin θ1

0 sin θ1 cos θ3 cos θ1 cos θ3



c =


− sin θ2 cos θ3

sin θ − 1 cos θ2 + cos θ1 sin θ2 sin θ3

cos θ1 cos θ2 − cos θ1 sin θ2 sin θ3



n =


0

n

0

 , Ω =


ω1

ω2

ω3

 , Θ =


θ1

θ2

θ3

 , U =


u1

u2

u3


U is the control moment gyro input vector,Ω is the angular velocity, I is the moment

of inertia matrix, n is the orbital angular velocity, Θ is Euler angles, h is the total control
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moment gyro momentum, and the moment of inertia matrix is diag[1989 1876 407] as

shown in [13].

After linearizing the model around Θ = [0 0 0], Ω = [0 −n 0], and assuming that the

spacecraft has zero product of inertia, and also the aerodynamic disturbance is negligible.

The roll/yaw axes in the system can be represented as

Ẋ =



0 n 1 0

−n 0 0 1

−3n2∆1 0 0 −n∆1

0 0 −n∆2 0


X +



0 0

0 0

− 1
I1

0

0 − 1
I3


U (6.4)

Where

ẋ =



θ̇1

θ̇2

ω̇1

ω̇2


, u =

U1

U2

 , ∆1 =
I2 − I3
I1

, ∆2 =
I1 − I2
I3

That leads to the following 2 matrices
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A =



0 0.0042 1 0

−0.0042 0 0 1

−3.91× 10−5 0 0 −0.0031

0 0 −0.0012 0



B =



0 0

0 0

−0.0005 0

0 −0.0025



Where

U is the input.

X is the state vector X = [yaw angle , roll angle , yaw rate , roll rate]′.

The eigenvalues of the system are 0 + 0.0076i, 0− 0.0076i,−0.0021, 0.0021. Note that

the system is inherently unstable. However, it is not difficult to prove that the system is

controllable.

In order to use the sliding mode control, it is easier to transfer the state space equa-

tions of the system to a canonical controllable form. Note that since the rank of the

controllability matrix [b1 b2 Ab1 Ab2] is 4 (the system order), the system is controllable.

The following transformation matrix is used [13].
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T =



−1980 0 0 0

0 −407 0 0

0 −8.4 −1989 0

1.7 0 0 −407


(6.5)

The system now is represented in the new coordinates

Ż = AzZ +BzU where Z = TX, Az = TAT−1, Bz = TB

The sliding mode controller can be designed using the state space in the new coordi-

nates system. The 2 switching surfaces are simply algebraic equations expressed in terms

of the states and the desired eigenvalues λ1 and λ2. Here, λ1 = −1 and λ2 = −2. The

switching surface equation is

σ(Z) = CZ = 0

C =

λ1 0 1 0

0 λ2 0 1


The C matrix will be used to design the controller in section 6.4.2.

6.4.1 Model Implementation

The simulator implements the equation

Ẋ = AX +BU (6.6)
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The input to the model is the vector U , which is the output of the controller. After

the system is discretized, the following difference equation is conducted.

x(k + 1) = Ad × x(k) +Bd × u(k) (6.7)

where Ad and Bd are the discrete version of the matrices A and B, u(k) and x(k) are

the values of the variables U and X at discrete points of time kT, 0 ≤ k ≤ ∞, T is the time

step. Since the hardware emulator should be as close as possible to the continuous system,

if the non-linear continuous system is emulated, the time step in the HiL calculation must

be much smaller than the controller cycle time (controller time step). however, since the

linear model is used, the time-step of the emulation is the same as the time step used

in the controller design. With a discretization step of 1 msec, the following matrices are

obtained.

Ad =



1 0 0.001 0

0 1 0 0.001

0 0 1 0

0 0 0 1


(6.8)

Bd =



5× 10−7 0

0 5× 10−7

0.001 0

0 0.001


(6.9)
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The HiL implements equation 6.7. It takes the values of the current state (X) and

the input (U) from the controller to produce the next state. The new state is sent to

the controller to produce the next input and so on. Beside producing the next state, the

model should be able to do two things.

1. It should be able to add a random noise to the values of the states sent to the

controller to emulate error in sensing and transmission.

2. It should be able to delay sending the value of the state to the controller in order

to emulate jitter in the controller.

The linearized model is implemented, proposed in Eq 6.7. The hardware is designed

to emulate the above model. Another point to consider is what hardware should be

used for the model. A microcontroller is a reasonable choice, however it suffers from

the same timing unpredictability, Cache miss, interrupts, and dynamic scheduling. Such

implementation can not guarantee a very predictable calculations.

FPGA looks like a much better alternative. Its flexibility, ease of configuration, hard-

ware dedication, and ease of rapid prototyping are very important characteristics. This

model is implemented using Xilinx Spartan-6 XC6SLX16 in Digilent Nexys-3 board for

the implementation [18].

As shown in Fig 6.1 above, the HiL model is built on the FPGA chip. The controller

is also implemented the controller on the same chip. This is not a limitation, since the

output of the model is available on the chip output so it could be used with an external

controller if desired.
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Satellite Model

U
Controller

X

FPGA CHIP Noise

ref(t)delay

Figure 6.1: A schematic view of the emulator and controller

Fig 6.1 shows the system with the controller and the model connected. Both the

model and the controller are implemented on the same FPGA. The model calculates

the X vector and sends it to the controller; the controller calculates the input U vector

and sends it to the model. The reference signal is supplied to the controller as ref(t)

(the desired value of X). The solid black box on the X link going from the model to

the controller adds random noise to the value transmitted in order to simulate error in

sensing; that operation is controlled by a strobe signal that allows us to either add or

not to add the noise. The random noise is chosen to emulate a specific SNR. The box on

the U input to the satellite model is a shift register that is used to delay the input for a

specific number of cycles before it is delivered to the model in order to simulate jitter in

the calculation by the controller.

The hardware required for model implementation consists of a matrix vector mul-

tiplication, vector vector multiplication, an adder and the glue logic. The design is

implemented on a Nexys-3 board [18] with a Spartan-6 XC6SLX16 chip [46].

Fig 6.2 shows the high level architectural details of the hardware simulator of the
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Figure 6.2: Block diagram of the satellite model

satellite model in Eq. 6.7. Where A is the 4-by-4 matrix Ad, X is the state variables

vector, B is the Bd vector, and U is the control input from the controller in order to set

the required values for X.

The model updates the value of the X vector. Random noise is added to the output

before it is transmitted to the controller (that represents noise added to the measured

value of X either sensing noise, or noise added to the signal during transmission).

In real life, where the controller is doing more than ”attitude control” the controller

might be delayed responding to the incoming signal. This delay may come from many

sources. Some higher priority tasks may delay the response, time variations in executing

the programs because of cache state, or because Interrupts might take more than expected.

This is simulated by by holding the U input in a buffer for a random period of time. The

delay is implemented by a handshaking mechanism for sending the information to the

controller; the handshake is delayed by using a buffer that delays the transmission for a
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random period of time.

Since the model is implemented on FPGA (synchronous logic) in order to add delay,

the system has to run at a much higher frequency than the controller and model are

working at. In that case, delay means skipping a specific number of cycles before the

sampled value are delivered to the controller.

Note also that Fig 6.2 shows only the datapath of the architecture. An FSM is

constructed to control the data flow between the modules, adding random noise and

controlling the delay.

The model was implemented on Xilinx XC6SLX16 in Digilent Nexys-3 board. 32-bit

fixed point representation is used (this is the most widely used standard especially for

D/A conversion and sensing).

6.4.2 Controller Implementation

In a previous work [1], a single input controller is implemented for satellite attitude

control. The advantage of using one input is simplicity of the system design. However,

using a single control input resulted in a long settling time tens of minutes in some cases.

Here, a 2-input controller is implemented. The settling time is in the range of few seconds.

The controller is implemented on the same chip as the system model. There is no

reason to implement the controller on the same chip as the model. The controller could

be implemented as software on a microcontroller or any separate hardware. As a matter

of fact, the main reason to implement the HiL is to use it to test any controller. However,
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for simplicity, an on-chip controller is used.

In this thesis, VSC is applied for satellite attitude control. VSC systems comprise a

collection of different, usually quite simple, feedback control laws and a decision rule that

is designed to force the system states to reach, and subsequently remain on, a predefined

surface within the state-space, depending on the status of the system. The dynamic

behavior of the system in order to reach the switching surface is called the reaching

mode, while the dynamic behavior of the system when confined to the surface is named

the ideal sliding motion mode.

The repositioning of the geostationary communication satellite could be achieved using

many techniques. To produce the required torque; it can be used thruster, momentum

wheel, magnetic torquer and so on. Magnetic control is the most economical way to

stabilize a satellite, despite the fact that its torque is weaker than the torque produced

by a thruster or control moment gyro; the magnetic control does not consume fuel and

thus does not result in changing the satellite mass over time. In addition it is simpler to

implement and lightweight compared to other torque producing methods. The controller

design [13] is as follows:

the switching service is defined as

S = C × Z where Z = T ×X (6.10)

The switching surface vector is

C =

λ1 0 1 0

0 λ2 0 1

 (6.11)
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and the conrntrol input is calculated as

U(i) =



−Ks sign(si) si > ε

−Kn × Z si < ε

where k = 30 [13].

6.4.3 Fixed Point

The IEEE 754 floating point representation is a standard representation used almost

exclusively in all desktops and laptops computers [2]. The multiplication and addition of

standard floating point numbers are rather complex operation. Especially for addition,

where the two numbers have to be converted to a common exponent, perform the addition

and then normalizing the number through shifting. For small embedded calculations, and

when the accuracy and dynamic range of floating point numbers are not needed, simpler

fixed point representation (Qm.n) format can be used a.

The Qm.n format for N -bit binary number consists of 2 parts separated by an implied

binary point. The left most m bits is the 2’s complement representation of the integer

part of the number. The fraction part is represented by the n rightmost bits. An implied

binary point separating the 2 parts (note that m+ n = N), and the n fraction bits have

a negative exponent. Arithmetic operations on fixed point number are integer operations

and thus faster than floating point operations.

The controller is implemented using both fixed point and floating point representation.
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Many values are experimented for m and n in order to find a good result. it has been

found out that Q9.9 gives almost identical results as floating point representation, while

any thing less than Q7.7 results in an unstable system. Three values are used for fixed

point representation, Q9.9, Q8.8, and Q7.7. Fig 6.3 shows θ1 response for different values

of Qm.n and compares it with floating point representation. From the figure, it can be

seen that there is almost no difference between floating point representation and Q9.9

(the 2 graphs completely overlaps). It is also noticeable that for Q8.8, there is a small

difference between Q8.8 and floating point, the difference is aggravated in the case of

Q7.7. Fig. 6.4 shows the input for the above different cases. The results for θ2 is almost

identical to θ1, and they will be not shown here.
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Figure 6.3: Floating point and fixed point response for θ1
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Figure 6.4: Floating point and fixed point input (h=1msec) for different Qm.n values
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6.4.4 Discussion and Observations

Table 6.1 shows the power consumption and the chip resources required for the controller

implementation using floating point and fixed point representation [2]. For the different

resources, the number indicate the number of units of that resource used in the design,

while the number between parenthesis gives the percentage of that resource used in the

design). For example, Q9.9 implementation requires 315 LUTs which accounts for 3% of

LUTs in the chip. Power consumption for fixed point is almost 50% of the floating point

representation. However, the biggest saving is in the LUT’s and slices use. The number

of used slices goes down from 32% to 4% and 3% respectively, although the performance

of Q9.9 is almost identical to floating point representation.
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Table 6.1: The implementation cost of the fixed-point representation controller

float. pt. Q9.9 Q8.8 Q7.7

power (mW) 101.3 60.5 55.9 48.8

LUT 2278(25%) 315 (3%) 257 (2%) 224 (2%)

Slices 734 (32%) 111 (4%) 94 (4%) 91 (3%)
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6.5 Chapter Summary

In this chapter, the design and implementation of a satellite attitude control system based

on Field programmable Gate Array (FPGA) technology is demonstrated to illustrate the

thesis work.
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Chapter 7

Conclusion and Future Research

Directions

This chapter summarizes the main results of the thesis and outlines research directions

for future work.

In this thesis, µC/OS-II has been modified in order to manage hardware processes

implemented on the Nexys 3 Spartan-6 FPGA Board. The EVBplus HCS12 development

board was the main prototype platform hosting µC/OS-II kernel. The first contribution

was to implement Serial Peripheral Interface (SPI) protocol in hardware and software on

the Nexys3 and Dragon12-Plus boards for communication purposes. After that, the C and

header files of the SPI and parallel interface are added the board support package (BSP)

file of the µC/OS-II. Following this, ISR is added to the board support package (BSP)

file of the µC/OS-II to handle hardware processes performed on the FPGA board. The

final contribution was to design hardware implementation of a satellite attitude control
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system using variable structure control (VSC) and the hardware-in-the-loop emulator

on the Nexys3 FPGA board for fixed-point and floating point representations. Power

consumption and logic resources are further calculated for the design of the satellite

controller for fixed-point and floating point representations .

For future developments, in-dept modifications on µC OS/II kernel and partial config-

uration of a FPGA platform would be achieved to add more support for hardware-process

management. It is further recommended that the communication protocols be improved

in future work.
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