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ABSTRACT 

 
 

Sorting of microparticles and cells using microfluidic platforms has several applications in 

diagnosis, biotechnology, and medicine. However, the currently available microfluidic sorting 

techniques have one or more of the following drawbacks such as low throughput, need for 

diluting sheath flows for operating devices, inability to sort multiple particles simultaneously, 

low purity and requirement of complicated fabrication methods. In this thesis, a hybrid scheme 

for sheath-less fractionation of microparticles has been devised by integrating magnetophoresis, 

inertial focusing and elastic focusing approaches with the concept of pinched flow fractionation. 

We have taken advantage of inertia, magnetic, drag, and elastic forces to achieve high 

throughput multiplexed microparticle fractionation. The technique has been tested with respect to 

parameters such as size of particles, flow rate, device geometry and fluid viscosity (Newtonian 

vs. non-Newtonian). This sorting method offers a tool to handle heterogeneous samples and can 

be used for affinity-based immuno-magnetic separation of biological substances.  
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GLOSSARY 

AR (Aspect ratio) – AR of the channel is defined as ratio of width to height of channel.  

CTCs (Circulating tumor cells) - Rare cancer cells found circulating in the blood of humans. 

DI (Deionized) water – The water whose ions has been removed and is commonly used in 

laboratory research.  

Drag force - Drag force on an object in a fluid is defined as resistance acting on it due to relative 

motion of the object with regard to the surrounding moving fluid. 

Elastic focusing - The phenomenon of microparticles occupying equilibrium position in the 

microchannel under the effect of elastic lift forces. 

Inertial focusing - The phenomenon of microparticles occupying equilibrium position in the 

microchannel under the combined effect of shear induced and wall induced lift forces. 

ImageJ – It is freeware image processing software developed at National Institutes of Health. 

Laminar flow – A type of fluid flow, where fluid particles travel in parallel streamlined layers 

without any disturbance between the layers. 

Magnetophoresis - The phenomenon of movement of magnetic particles under the influence of 

external magnetic field.  

MP (Magnetic particle) - The microsphere having a layer of magnetite and polystyrene onto 

monodispersed polystyrene core particles. 

Multiplex – Handling of multiple analyte or particle at a time is referred to as multiplex process. 
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NMP (Non-magnetic particle) - The microspheres made from the polystyrene polymer. 

Newtonian fluid - Fluids whose viscosity does not change with the rate of shear in the flow. 

Non-Newtonian fluid - Fluids whose viscosity changes with the rate of shear in the flow. 

PDMS (Polydimethylsiloxane) - One of the most commonly used Siloxane polymer for 

fabricating microfluidics devices. 

PEO (Polyethylene oxide) – PEO is a polymer of monomeric unit Ethylene oxide having 

chemical formula C2H4O. It is mixed in water to make an aqueous solution and was used a 

substitute for non-Newtonian fluid. 

Photolithography – It is microfabrication process which involves transferring a micro-pattern 

onto a photoresist layer on a Silicon wafer. 

Soft lithography – It refers to techniques used for fabricating microfluidics devices, 

microstructures and micro-patterns using elastomeric materials. 

SU-8 photoresist – It is an epoxy based negative photoresist, which gets crosslinked upon 

exposure to UV (ultraviolet) light. 

Sheath flow – The external buffer flow used for operating a device is called sheath flow and it 

supplied in addition to sample flow in the device.  
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Chapter One 

1 Introduction and Thesis Structure 

1.1 Introduction 

1.1.1 Background and Motivation 

Handling of mixtures of micron-sized entities such as particles and cells in a fluidic sample is of 

importance in many applications such as diagnostics (e.g. isolation of rare circulating tumor cells 

and separation of malaria infected red blood cells), biotechnology (e.g. selection of high protein 

producing cells from a mixture of protein-secreting cells) and environmental assessments (e.g. 

detection of pathogenic microorganisms in water). There are various techniques available for 

performing these sorting operations on macroscale such as centrifugation [1], chromatography 

[2] and filtration [3]. Centrifugation method requires bulky equipment for separation [1]. 

Achieving high chromatographic separation resolution needs expensive instruments and reagents 

as well as long operation time [2]. Filtration based methods are often inefficient in performing 

separation on large-volume or complex samples owing to clogging of filter pores [3]. 

Microfluidic devices provide a unique platform for achieving separation at microscale with 

numerous distinct advantages such as lesser reagent requirements, lower operational cost, 

miniaturized size, portability and filter-less sorting [4–6]. In the literature, several successful 

attempts have been reported to devise a microfluidic sorting device. These techniques are 

classified as either active methods, which require an external energy to operate, or passive 

methods which do not require any external energy. Main active methods are magnetophoretic 

[7], dielectrophoretic (DEP) [8], optical [9] and acoustic [10] sorting. The passive methods 
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include pinched flow fraction (PFF) [11], hydrodynamic filtration (HDF) [3], inertial sorting 

[12], and deterministic lateral displacement (DLD) [13]. 

1.1.2 Active Microfluidic Sorting Methods 

Here, we discuss the active microfluidic sorting techniques reported in the literature. 

Magnetophoresis refers to movement of magnetic particles (MPs) under the influence of external 

magnetic field. It has been implemented in microfluidic devices using a permanent magnet or an 

electromagnet to generate high gradient magnetic fields at desired locations in the device 

[14,15]. Magnetophoresis has been used for isolating rare circulating tumor cells (CTCs) and 

separating pathogens from water [16,17]. The target substances to be separated can either be 

innately magnetic or conjugated with MPs so that their motion can be influenced by the magnetic 

forces. The separation is achieved based on the difference in force experienced by the particles of 

different sizes or magnetic content as shown in Fig. 1(a). However the operation of this method 

requires a sheath flow for pre-focusing of all particles into a single stream [14,18,19]. The  

throughput of magnetophoretic separation is in the range of ~10
3
-10

7
 particles per hour [14,18] 

and the process of fabricating these devices is complicated because it is challenging to embed 

elements such as magnetic stripes or needles into small microfluidic channels [18].  
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Figure 1. Active microfluidic particle and cell soritng methods. (a) Magnetic sorting device devised by 

Chalmers et al. [19]. A magnet was positioned by the side of device to attract magnetically tagged objects 

and separate them from non-magnetic objects. (b) Dielectrophoretic size based particle sorter reported 

by Kralj et al. [20]. Particles were separated using microfabricated electrodes to apply dielectrophoresis 

force and collected at outlets. (c) Microfluidic acoustic sorter reported by Ren et al. [21]. FIDTs (focused 

interdigital transducers) help in directing the target particles into the collection outlet. (d) Optical 

fractionation of particles reported by MacDonald et al. [9]. Chamber A contains sheath flow which is 

used to hydrodynamically focus the particles injected from chamber B and the laser bean is used to 

deflect the target particles into chamber C while non-target particles are collected into chamber D. All 

permissions have been obtained for reprinting from the respective publishers. 

 

The dielectrophoresis (DEP) technique is based on the idea that dielectric particles experience a 

force when exposed to a non-uniform electric field. For this, microelectrodes are fabricated to 

generate electric field which exerts force on target particles to separate them from non-target 
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particles as shown in Fig. 1(b). The magnitude of forces acting on the particles is dependent on 

several factors such as suspending medium, particles characteristics and frequency of the applied 

electric field [22,23]. The DEP technique has been used for separating cancer cells from blood 

and sorting multiple bacterial targets simultaneously [24,25]. The major limitation of DEP is that 

it cannot be operated at high flow rates as particles cannot be deflected significantly at high 

velocities. Fiedler et al. [8] demonstrated sorting at a maximum linear velocity of up to 10 mm s
-

1
.  

Acoustic sorting utilizes the forces exerted by bulk or surface acoustic waves on the particles 

suspended in the fluid to separate or align them as shown in Fig. 1(c). Acoustic sorting methods 

have been used for separating CTCs from blood and viable mammalian cells from a mixture of 

viable and non-viable cells [26,27]. The throughput of acoustic based methods is in the order of 

10
7
 particles per hour while fabrication of acoustic sorting devices is relatively complex.  

Optical sorting of particles is based on the fact that particles experience a lateral force when 

exposed to a focused light source such as a laser beam as shown in Fig. 1(d). Optical 

fractionation scheme has been used for sorting mitochondria and mammalian cells on 

microfluidic platform [28,29]. These optical manipulation techniques however require a sheath 

flow for operation while sorting of more than two particles is yet to be achieved using this 

method [9,30].  

1.1.3 Passive Microfluidic Sorting Methods  

The majority of the passive microfluidic sorting techniques which are shown in Fig. 2 work 

based on the principle of fluid-particle interactions and experiencing forces such as inertia and 

hydrodynamic forces. In the PFF method, particles are aligned against a wall using a sheath flow 

on distinct streamlines based on their size and separation is achieved as they are allowed to enter 
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into an expansion region as shown in Fig. 2(a). PFF has been used to separate cancer cells from 

white blood cells, to detect single nucleotide polymorphisms, and to sort multiple droplets and 

bubbles [31–34]. This method requires a sheath flow as much as 10-30 times the sample flow 

rate for its operation and also works at a low throughput of 10
5
-10

6
 particles per hour [11,35].  

 

Figure 2. Passive microfluidic particle and cell sorting methods. (a) Pinch Flow Fractionantion (PFF) 

method where a sheath flow is used to focus the particles against the wall of a narrow channel in the 

pinched segment. The focused particles follow different streamlines owing to their different sizes and 

hence get separated as they enter into a broadened segment [11]. (b) Deterministic Lateral Displacement 

(DLD) separation method. Particles are fractionated based on their size as micropillars define a cutoff 

size for the particles, such that particles larger than cutoff would get displaced and move to next lane, 
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however particles smaller than cutoff keep following the same lane [36]. (c) Hydrodynamic Filtration 

(HDF) technique. A mixture of particles are injected into the device and fluid is drained through side 

outlets so as to allow particles to get aligned along the walls. Aligned particles are collected into side 

outlets based on their size as the width of side outlets determines the size of particles that can pass 

through [37]. (d) Inertial sorting of particles in a straight microchannel. Firstly the mixture of particles 

are focused along the side walls in segment I and are further allowed to enter into segment II where the 

larger particles get separated and focused inertially in center [38].(e) Spiral microfluidic device used for 

sorting microparticles. Particles are separated using hydrodynamic forces (Dean and inertial forces) 

generated in curved channels [39]. All permissions have been obtained for reprinting from the respective 

publishers.  

 

The DLD method performs size based separation of particles using numerous micro-fabricated 

pillars as shown in Fig. 2(b). DLD has been efficiently used for isolating cancer cells and 

separating parasites from human blood [40,41] and a comprehensive review of DLD method can 

be found in McGrath et al. [42]. This method can separate multiple particles simultaneously, 

however, the fabrication process of micropillars is challenging and operation of the devices is 

also marred by frequent clogging.  

The HDF method allows suspended particles to be aligned against the wall of a channel by 

draining fluid through its side outlets. Particles are sorted based on their size by controlling the 

width of these side outlets as shown in Fig. 2(c). HDF has been demonstrated to achieve 

leukocyte separation from blood and sorting of human lymphocyte cells [37,43].  However, side 

outlets in HDF devices are prone to clogging when dealing with concentrated mixtures of 

multiple substances and moreover, it requires a large number of side outlets (50-100) making the 

operation of the device a challenging task [37].  

Inertial sorting of microparticles in microfluidic devices is achieved due to presence of 

competing shear- and wall-induced lift forces, which are strongly size dependent and hence 

allowing size based separation as shown in Fig. 2 (d). Inertial focusing based methods have been 
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particularly useful for achieving high throughput separation of rare cells from blood [44]. A 

comprehensive review of inertial sorting in straight microfluidic channels can be found in these 

articles [45,46]. Achieving sorting of more than two particles is challenging in straight 

microfluidic channels, however spiral microfluidics have been shown to achieve multi-particles 

sorting as shown in Fig. 2(e). Spiral microfluidics have also been effectively used for ultra-fast 

and label free isolation of rare cells from blood at ultra-high throughputs [47]. Multi-particle 

sorting in a spiral microfluidic channel has been achieved by the presence of dean forces in 

addition to lift forces [39]. The detailed discussions on spiral microfluidics can be found in these 

articles [39,46]. But these devices still require a sheath flow for multi-particle sorting as reported 

in Sarkar et al. [48]. Also it is not possible to achieve sorting of similar sized particles with 

different characteristics using spiral microfluidics, which is doable using techniques such as 

magnetic sorting by utilizing inherent characteristics such as magnetism.  

Lastly, it should be mentioned that most of the above-mentioned passive sorting methods have 

demonstrated particle sorting in water (Newtonian fluid), however fluids such as blood and 

saliva used for diagnostics show non-Newtonian behavior. Hence, it is desired that a sorting 

scheme be devised to achieve separation of multiple particles in non-Newtonian fluids.  

1.1.4 Characteristics of an Ideal Sorting Technique 

Based on our literature review, we concluded that a sorting technique must have the following 

characteristics:  

(a) It should not require a sheath flow as it dilutes and potentially contaminates the sample and 

also adds operational complexity to experiments.  
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(b) It should be done at a high throughput (e.g., 10
9
 particles per hour) so that a reasonable 

sample volume (e.g., >1 mL) can be processed in a timely manner (e.g., within an hour) in order 

to extract detectable levels of rare targets.  

(c) It should have a simple design and the process of fabricating the device should not be 

complicated.  

(d) It should be able to separate particles with high purity (i.e., >90%).  

(e) It should be operable without the need for any active external energy so that it could be used 

in remote areas. 

(f) It should be filter-less so as to avoid clogging problem and allow concentrated mixtures to be 

handled efficiently. 

(g) It should be efficient in sorting more than two particles at a time.  

(h) It should be capable of separating particles suspended in non-Newtonian fluids too because 

the biological fluids such as blood and saliva are non-Newtonian. 

1.1.5 Objectives of the Thesis and Chapters Organization 

Several desired characteristics of an ideal sorting method have been outlined in the previous 

section, hence the goal of this thesis was to devise a microfluidic technique to achieve sorting of 

microparticles which complies with these requirements. A hybrid method of sorting was 

developed by integrating magnetophoresis, inertial or elastic focusing, and pinched flow 

fractionation into a single device. This combination enabled taking advantage of one method to 

counter the shortcomings of the others, and hence fulfilling most of the desired attributes of an 

ideal sorter. To achieve our goal, the objectives of this thesis were to: 

1. Devise a sheathless method for pre-focusing and hydrodynamic fractionation of 

microparticles (using magnetic forces) in a straight microchannel. 
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2. Investigate the combined effects of inertial, magnetic, and drag forces on microparticles in 

Newtonian fluids in the abovementioned device. 

3. Utilize the gained knowledge to achieve fractionation of up to four particles at a time 

(fourplex sorting) and investigate the achievable fractionation throughput. 

4. Understand the effect of fluid viscosity and elastic forces on multiplex sorting if the particles 

were suspended in non-Newtonian fluids rather than water. 

The concept of hybrid fractionation was tested with a mixture of commercially available 

spherical MPs and NMPs which can easily be transferred to fractionation of microorganisms and 

cells in the future. However, other factors such as shape of microorganisms are also expected to 

influence movement of particles in the channel and have not been investigated here. Moreover, 

the focus of this thesis was to experimentally establish the principle of fractionation and hence 

analytical and numerical studies of the fractionation procedure shall be investigated in the future 

to improve our understanding on how inertial, elastic and magnetic forces interact with each 

other and contribute to sorting of microparticles. We envisage that a better understanding of the 

underlying mechanism would enable increasing complexity of separation beyond fourplexing at 

even higher throughputs than 10
9
 particles per hour.  

The thesis is organized in a manner such that each of the chapters address one or more of the 

objectives outlined above. Chapter 2 is focused on addressing objective 1, chapter 3 addresses 

objectives 2 and 3; and chapter 4 provides discussions on objective 4. Chapters 2 and 3 have 

been submitted as a manuscript for publication and a version of chapter 4 is currently being 

prepared for submission as a short journal paper. A brief description of experimental work and 

results attained in each of the chapters is provided below. Each chapter will also include a more 

thorough introduction section.  
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Chapter 2: This chapter is focused on development of a sheathless method for achieving 

magnetic focusing and hydrodynamic fractionation of two MPs in a microfluidic device. We 

have integrated magnetophoresis with the concept of PFF to achieve sorting of 5 µm magnetic 

particles (MPs) from 11 µm MPs at a throughput of 10
7
 particles per hour. Firstly, sheathless 

focusing of 11 µm MPs against the wall of a thin microchannel and their subsequent 

hydrodynamic deflection at an expansion channel was investigated over a wide range of flow 

rates (0.5 – 5 mL h
-1

). Then, a mixture of 5 µm and 11 µm MPs was injected into the device at a 

flow rate of 5 mL h
-1

 to demonstrate their magneto-hydrodynamic fractionation. 

Chapter 3: In this chapter, we capitalized on the abovementioned sheathless method and further 

combined it with inertial focusing to devise a technique for achieving simultaneous fractionation 

of 5 µm, 11 µm, and 35 µm MPs from 15 µm non-magnetic particles (NMPs) in the same 

microfluidic device. Fractionation of more than two types of particles solely by inertia or 

magnetic forces in Newtonian fluids is a challenging task due to the inherent limitations of each 

technique. By combination of competitive inertial and magnetic forces in a straight microchannel 

and addition of a downstream expansion hydrodynamic separator, we overcame these limitations 

and achieved duplex to fourplex fractionation of MPs and NMPs with high throughput and 

purity. To achieve this, a systematic study was conducted to enumerate the effect of flow rate, 

channel aspect ratio and particle sizes on the fractionation performance of the device. 

Chapter 4: The experiments reported in chapters 2 and 3 were performed with microparticles 

suspended in water (Newtonian media), however, particles behave differently when suspended in 

a non-Newtonian viscoelastic solution like blood. Hence, we conducted a parametric study with 

respect to flow rate and viscosity to delineate the applicability of our multiplex sorting technique 

in a synthetic non-Newtonian media.  
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Chapter 5: This chapter is focused on outlining major conclusions and summary of this thesis. 

We have also outlined the possibility of future works that can be done based on the 

understanding of particle sorting we gained from the described research.  
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Chapter Two 

2 Magneto-Hydrodynamic Fractionation (MHF) for 

Continuous and Sheathless Sorting of High-

Concentration Paramagnetic Microparticles
*
 

2.1  Introduction 

Microfluidic-based particle sorting methods have contributed significantly to the fields of cancer 

diagnosis [44,49,50], pathogen separation from water samples [17,51,52] and immunomagnetic 

assays [53] owing to their compelling advantages such as low cost, portability and minimal 

reagent consumption [54–56]. Several techniques have been devised on microfluidic platforms to 

achieve sorting such as Pinched Flow Fractionation (PFF) [11,35], hydrodynamic filtration [3], 

optical sorting [57], dielectrophoresis [58], acoustic separation [26], Deterministic Lateral 

Displacement (DLD) [59], size exclusion filtration [60] and magnetophoresis [19]. These 

methods certainly proffer an avenue to refine and purify desired targets from a mixture and have 

been used for numerous applications as reported in the literature [61–63]. However, design of a 

robust sorting device remains elusive as these techniques suffer from major drawbacks such as 

sheath flow requirement, complex design, limited throughput (low particle concentration and or 

flow rate), and dependency on external active energy sources. 

                                                 

*
 This chapter has been submitted in whole as a manuscript for publication in Biomedical Microdevices. 
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The PFF method requires a sheath flow as large as 10-30 times the sample flow rate to perform 

size dependent particle sorting [11,35,64]. Sheath flow is used to focus the particles on different 

streamlines along the wall of a microchannel for achieving separation at a downstream expanded 

channel. The sheath flow is highly undesirable for sample handling as it adulterates and dilutes 

the sample, hence making recovery of pristine sample a challenging task [65]. Hydrodynamic 

Filtration (HDF) [3,66], alike PFF, utilizes a laminar flow profile in a microchannel to achieve 

size based separation, but the efficiency of separation is poor and it works at a throughput of 10
5
-

10
6
 particles per hour. The process of micro-fabricating delicate and size-sensitive micro-posts 

required for separation using DLD technique is challenging [42]. Microfabricated filters have 

also been deployed for achieving size-based separation by controlling the size of pores [67]. 

However, filter-based methods along with HDF and DLD techniques are inefficient at handling 

concentrated samples due to frequent clogging of particles in these devices. Inertial microfluidic 

devices have been developed for performing size-based separation of cells and particles, 

however, their performance is highly restricted by the flow rate and geometry of the channel 

[45]. The dielectrophoretic, acoustic and optical sorting methods require active external energy 

sources for operation and hence costly and complex to be adopted [8,21,28]. 

The magnetophoresis method using permanent magnets [68,69], although not requiring an active 

energy source, is marred by issues such as low throughput, requirement of sheath flow and 

complicated fabrication process. Xia et al. [70] used a sheath flow to separate MPs from NMPs 

at a low flow rate of 30-40 µl h
-1

. The NMPs were retained confined within the sheath region 

while MPs were allowed to deflect away from the sheath flow stream owing to magnetic forces 

acting on them, hence leading to their separation from NMPs. Pamme et al. [14] performed free 

flow magnetophoresis for separation of 2 µm and 4.5 µm MPs but they also used buffer flow in 
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order to operate this device. Adams et al. [18] used embedded ferromagnetic stripes to capture 

and deflect MPs for achieving separation. But their method also required a sheath flow of about 

~42 mL h
-1

 when the sample flow rate was ~5 mL h
-1

. The concentrations of MPs used in their 

experiments were 0.006%-0.02% of the total mixture, rest being NMPs which amounted to a 

throughput order of ~10
5
 MPs per hour. Embedding the magnetic strips also added another layer 

of complexity to fabrication of their device. 

In this chapter, we report a hybrid sorting method combining magnetic focusing and 

hydrodynamic separation (called Magneto-Hydrodynamic Fractionation (MHF)) that is able to 

address the above-mentioned limitations of sorting techniques. We used a very simple design 

that consisted of a narrow microchannel with one input for sample injection (no sheath flow), a 

side magnet for sheathless focusing of MPs onto the microchannel wall just like PFF, and a 

downstream expanded channel for hydrodynamic sorting of focused particles. We firstly 

characterized the magnetic focusing of 11 µm MPs along the wall of the narrow microchannel 

over a wide range of flow rates (0.5 to 5 mL h
-1

) to identify and avoid the flow rates at which the 

particles start to shift away from the sidewall due to inertial lift forces. Using the concept of 

MHF, we injected both 5 µm and 11 µm MPs at high concentrations simultaneously into the 

device and found them aligned at the wall on distinct streamlines because of the difference in 

their sizes. The distance between these streamlines were further amplified when the magnetic 

particle were allowed to enter into the expansion zone of the device, leading to their 

hydrodynamic separation. The throughput of this sheathless hybrid sorting method was 10
7
 MPs 

per hour and on-chip fractionation purity was greater than 98%, both of which have not been 

achievable with the existing magnetic sorting techniques.   
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2.2 Materials and Methods 

2.2.1 Materials 

Silicon wafer (4 in diameter) was obtained from University Wafers Corp (MA, USA). Negative 

SU-8 2035 photoresist was obtained from Microchem Corp. (MA, USA) and 

polydimethylsiloxane or PDMS (Sylgard 184) was obtained from Dow Corning (MI, USA). 

Tween 20 was obtained from Sigma Aldrich (MO, USA). Polystyrene MPs of mean diameter 5 

µm and 11 µm were obtained from Spherotech Inc. (IL, USA). The N42 grade permanent 

magnet that was used in all experiments was obtained from Indigo Instruments (ON, Canada). 

The magnets were cuboid with length of 25 mm, width of 10 mm and height of 2.5 mm. 

Masterflex® Tubing and interconnects used for device operation were acquired from Cole 

Parmer (QC, Canada) and Qosina Corp. (NY, USA), respectively. 

2.2.2 Particle Suspensions 

The stock solutions of 5 µm and 11 µm diameter MPs had a size distribution of 4-5 µm and 10-

13.9 µm, respectively. The suspension of particles used for experimentation had a number 

density ratio of 10:1 for 5 µm and 11 µm MPs, respectively, and concentration of the mixture 

was about 1.1 × 10
7
 particles per mL.  The density of particles were approximately 1.05 g cm

-3
, 

almost the same as water density. Hence, the sedimentation velocity of these particles were 

negligible compared to their flow velocity in forward direction.  All particle suspensions used in 

this study were prepared in DI water. A small amount of Tween 20 (~0.1 wt %) was added to 

particle suspension to avoid any possible particle aggregation and to keep them dispersed in the 

sample. 
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2.2.3 Device Design 

The MHF microfluidic particle sorting device is shown in Fig. 3. It consisted of two regions, 

namely the magnetic focusing zone and the hydrodynamic expansion zone. The magnetic 

focusing zone was designed as a narrow microchannel (LFocusing Zone= 40 mm, WFocusing Zone= 90 

µm, Lo= 2 mm, and Wo= 55 µm) over which the MPs were attracted towards a permanent 

magnet located by the side of the channel. The length of the focusing zone was designed based 

on existing guidelines for lateral movement velocity of MPs to ensure that they remain under the 

effect of magnetic force for a long duration to get focused against the wall at the highest flow 

rate of 5 mL h
-1

 tested in our experiments [71]. The width of focusing zone was chosen to be 90 

µm so that it was wide enough to avoid any chance of clogging of 5 µm and 11 µm MPs in the 

channel. The hydrodynamic expansion zone (LExpansion Zone= 30 mm, WExpansion Zone= 11 mm) was 

designed to increase the separation distance between the magnetically focused particles and 

image them downstream of the device when the flow from the focusing zone was completely 

stabilized. The height of channels were all 50 µm.   
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Figure 3. (a) Image of the MHF microfluidic particle sorting device (Scale bar = 10 mm). (b) Schematic 

of the MHF device showing separation of 5 µm and 11 µm MPs based on the concept of magnetic 

focusing and hydrodynamic fractionation. LFocusing Zone = 40 mm, Lo = 2 mm, LExpansion Zone = 30 mm, 

WFocusing Zone = 90 µm, Wo = 55 µm, WExpansion Zone = 11 mm, Height of channel = 50 µm. 

2.2.4 Device Fabrication  

The devices in this chapter, and rest of the chapters, were all fabricated using standard photo- 

and soft-lithography methods and a detailed procedure can be found in McDonald et al. [72].  

Briefly, SU-8 photoresist was spun over a 4 in silicon wafer and exposed to ultraviolet light via a 

photomask that contained the microchannel design discussed above and shown in Fig. 3. The 

process was then followed by heat curing and dissolving the unexposed SU-8 in developer 

solution to get the master mold. Then, PDMS pre-polymer mixture of base and curing agent in 
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the ratio of 10 to 1 was thoroughly mixed and degassed in a vacuum chamber. The mixture was 

poured over the silicon master mold with the permanent magnet put in place, and allowed to cure 

for 2 h at 80
o
C. The cured PDMS layer was peeled off the mold and bonded against a glass slide 

using oxygen enhanced plasma bonding to obtain the final device. The bonded device was 

further kept for 1 h at 80
o
C to enhance the bonding.  

2.2.5 Experimental Setup and Procedure 

The microfluidic device was connected to a 10 mL syringe via a connecting tube at the inlet. The 

syringe was operated with a pump (Legato 110, KD Scientific, USA) to apply the desired flow 

rates (0.5 – 5 mL h
-1

). The device was first washed with de-ionized water for 10 minute before 

introducing the particle suspensions into it. Then, particles were injected into the device and flow 

was allowed to stabilize for 15 minutes. We observed focusing and fractionation upon 

introducing the particles into the channel, however, we allowed this lag time for the sake of 

getting more reliable results. The device was kept under an inverted microscope (Bioimager, ON, 

Canada) and a camera (Point Grey, BC, Canada) was installed on it to capture the images and 

videos of particles sorting at regions B and C of the device. 

2.2.6 Data Analysis  

The number of particles distributed in regions B or C of the channel (Fig. 3b) were quantified 

using freeware ImageJ. Each recorded image was subdivided into a series of frames of a specific 

height with reference to the baseline depicted in Fig. 3b. The particles in each frame were 

counted using “analyse particle” function of ImageJ and plotted against their position to get a 

quantitative representation of the distribution of particles in the device. The width of these 

frames ranged from 50 µm to 350 µm dependent on the distribution of particles along the width 

of the channel, i.e., the denser the particles distribution the thinner the selected frames. In our 
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duplex sorting experiments, the number of 5 µm MPs found mixed with the 11 µm MPs at the 

boundary of stream of these MPs were counted and used to calculate the fractionation purity of 

our device. Although we intended to provide feasibility and design guidelines in this study and 

did not implement separate outputs to extract the sorted particles from our device, but this task 

can be easily performed by splitting the outlet channel at desired locations. 

2.3 Working Principle 

The sorting method shown in Fig. 3b is a hybrid two-step process involving magnetic focusing of 

MPs of different sizes inside a narrow microchannel followed by their hydrodynamic separation 

inside a downstream expansion region. In the first step, the randomly distributed MPs in the inlet 

are attracted towards the magnet and aligned along the inner wall (region A in Fig. 3b) of the 

channel close to the magnet. The success of this step is critical, otherwise separation cannot be 

achieved in the device. As discussed in the Materials and Methods section, it is important that the 

competing magnetic and drag forces acting on the particles and the focusing channel geometry 

[71] are considered in the device design, in order to ensure attracting and capturing all the 

particles at the sidewall of the channel right before they enter the expansion zone. Inertial forces 

in microfluidic channels have been demonstrated to shift particles away from the channel walls  

[45,73], hence it is important to ensure that the magnitude of inertial forces are not dominant in 

MHF such that particles get focused away from the walls. With minimized inertial forces, 

magnetic alignment forces the particles to focus on specific streamlines corresponding to the 

distance of their geometric centers to the channel sidewall (assuming that the particles are ideally 

spherical and mono-sized). In this case, the 5 µm and 11 µm MPs align on different streamlines 

because of differences in their sizes as shown in region A of Fig. 3b. When these distinct 

streamlines enter into the expansion zone (region B of Fig. 3b), they get hydrodynamically 
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separated from each other leading to size-based sorting of the MPs in region C. With the 

hydrodynamic expansion section, the need for extended channel lengths or microfabrication of 

magnetic field gradient generators to achieve distinct separation bands of MPs in existing 

magnetophoretic separation microdevices can be easily avoided.  

2.4 Results and Discussion 

2.4.1 Magnetic Focusing of Paramagnetic Microparticles 

As discussed in section 2.3, achieving focusing of MPs against the inner sidewall of the 

microfluidic device (at region B in Fig. 3b) is the first and most crucial step towards the sorting 

process. Hence, we investigated the behavior of 11 µm MPs over a wide range of flow rates (1–5 

mL h
-1

) in the device. The experiments were performed under two conditions, one without any 

magnet and the other with the magnet positioned along the inner wall of the narrow 

microchannel. The experiments performed without any magnet in the setup showed that particles 

were randomly distributed in the channel at flow rates below 5 mL h
-1

 as shown in Fig. 4a 

(depicting region B of the device). Particles were observed to be weakly focused in the channel 

as the flow rate was increased to 5 mL h
-1

. This can be attributed to weak inertial forces that 

caused the particles to focus at the center of the channel [45,74]. On the other hand, a strong 

focusing against the sidewall was observed at all flow rates when a magnet was introduced into 

the setup. Essentially, the MPs were attracted towards the magnet and aligned themselves along 

the wall. Fig. 4b shows the magnetically focused particles at all flow rates after being deflected 

into the expansion zone (region B in Fig. 3b) of the device. This study helped us ascertain that in 

the range of flow rates tested, the effect of magnetic focusing of particles against the sidewall 

was always dominant over inertial focusing in the center.  
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Figure 4. The images on top (a1-a3) show distribution of 11 µm MPs  in the entrance to expansion zone 

(region B) without any magnet in the setup, and the images at the bottom (b1-b3) show corresponding 

focusing of 11 µm particles after introducing the magnet into the setup. (a1) and (b1) were taken at a flow 

rate of 1 mL h
-1

, (a2) and (b2) were taken at a flow rate of 3 mL h
-1

, while the flow rate for (a3) and (b3) 

was 5 mL h
-1

.  Scale bar = 250 µm. The flow direction was from left to right in all images. 

We also quantified the position of particles downstream the flow in region C of the device in 

order to illustrate the behavior of particles with and without the magnet as observed in Fig. 4. For 

this, the position of particles were measured with respect to the baseline shown in Fig. 3b. We 

divided the images acquired from region C into bands of 350 µm-thick frames assuming baseline 

as the reference. The number of particles exiting from each band was then counted and the 

fraction of particles at each band was acquired by dividing the number of counted particles by 

the total number of particles that went through the device. Fig. 5 shows the results for 

experiments performed at 3 mL h
-1

 (Fig. 4, a2 and b2) for 11 µm particles in the channel.  The 
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black blocks in Fig. 5 represent distribution of magnetically focused particles while the white 

blocks demonstrate the random distribution of the particles along the width of the channel when 

no magnet was used in the setup.  

 

Figure 5. Fraction of 11 µm particles flowing at 3 mL h
-1

 in the device and getting distributed along the 

width of the expansion zone and away from the baseline (i.e., lower wall of expansion zone). The white 

blocks show the distribution of particles when they were injected into the device without any magnet and 

hence, they were found randomly distributed. The black block shows the distribution of particle when 

magnet was introduced into the setup. The particles were found strongly focused and shifted towards the 

wall of the channel. Each block corresponds to a window of 350 µm across the width of the expansion 

zone. 

We found that the MPs, without a magnet in the setup, were dispersed over the region 3.5-7.35 

mm away from the baseline. However, they were found concentrated, when the magnet was 

introduced into setup, within a small region 2.1-2.4 mm away from baseline. The results in Fig. 4 

and Fig. 5 clearly demonstrate that the concept of magnetic focusing could be used for 

manipulation of particles inside an expanding microchannel hence eliminating the need for 

diluting sheath flows used in the conventional PFF and magnetophoresis techniques [11,14]. 
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2.4.2 Effect of Particle Velocity on Magnetic Focusing Position and Efficiency  

As discussed in section 2.3, we intended to minimize the effect of inertial focusing in MHF in 

order to investigate the effect of magnetic focusing and hydrodynamic deflection in this 

technique. Accordingly, we present the effect of velocity on magneto-hydrodynamic deflection 

position and focusing efficiency of particles in this section. The experiments were performed 

with 11 µm MPs in the presence of the magnet in the device and flow rate was varied from 0.5 to 

5 mL h
-1

. Since visualizing the focusing efficiency of particles in the narrow channel was not 

possible due to particles’ high velocities, we imaged them in region C of the device (Fig. 3b) 

where the particles velocity slowed down. As shown in Fig. 6a, we observed that there was a 

slight shift in the focusing position of particles towards the center of the channel as the flow rate 

was increased. The focusing position of particles moved away from the baseline at higher 

velocities but this dislocation was lower than 5% of the total width (11 mm) of the expansion 

channel. Fig. 6b shows that the mean position of focused particles at 0.5 mL h
-1

 was 

approximately 1.8 mm away from the baseline, while the mean position of focused particles at 5 

mL h
-1

 was approximately 2.3 mm away from the baseline. This small shift in focusing position 

can be explained with the help of the fact that particles in a microchannel experience weak 

inertial lift forces towards the center of the channel and this force increases with increase in 

velocity [45,75]. A similar observation was made in several other reports, where it was found 

that particles experience a weak wall induced lift force and hence shift away when they were 

focused against the walls of a channel using a sheath flow in conventional PFF methods [73]. We 

also calculated the 11 µm MPs particle Reynolds number in the channel (Rep=0.4 at 5 mL h
-1

) as 

an evidence to ensure that the effect of inertia in our method was insignificant (i.e., Rep<1)  
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[45,76]. MHF at flow rates higher than 5 mL h
-1

 must be performed with caution and upon 

applying design modifications to the channel geometry to control the effect of inertial focusing. 

 

Figure 6. (a1-a3) Effect of flow rate on position of 11 µm particles after magnetic focusing and deflection 

in the channel at region C of the device. It is clear that the position of particles with respect to the 

baseline is changing with velocity. It was observed that particles shifted away from the wall with 

displacements smaller than 5% of WFocusing Zone, as flow rate was increased from 0.5 to 5 mL h
-1

. Scale bar 

= 250 µm. The flow direction was from left to right in all images. (b) The plot of exit position of 

magnetically focused particles at different velocities. Green, blue and yellow blocks show distribution of 

particles at 0.5 mL h
-1

, 1 mL h
-1

 and 5 mL h
-1

 flow rates, respectively, with quantitative demonstration of 

inertial shift in particles’ position. 

 It is worth noting that this study also provided an insight into the quality of particles’ focusing in 

the channel. At lower flow rates (e.g., 0.5 mL h
-1

 in Fig. 6), it was observed that the particles 

were more dispersed along the width of the channel as compared to their more focused 

distributions at higher flow rates (e.g., 5 mL h
-1

 in Fig. 6). About 40% of particles were located 

in a 100 µm window at 0.5 mL h
-1

, while almost 80% of particles were concentrated in a 50 µm 

window at 5 mL h
-1

. This clearly indicated that although the effect of inertia was not dominant to 
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displace the stream of particles in the device, but it was strong enough to induce a desirable 

particle band focusing in MHF. Accordingly, the optimum focusing and deflection flow rate of 5 

mL h
-1

 was selected for sorting of MPs of two different sizes in the device.  

2.4.3 Magneto-Hydrodynamic Fractionation of 5 µm and 11 µm Paramagnetic 

Microparticles 

We investigate the performance of the device in MHF of particles based on their sizes in this 

section. We chose to work with a mixture of two MPs of 5 µm and 11 µm diameter. Firstly, the 

mixture of both particles was injected into the device at a flow rate of 5 mL h
-1

 and particles 

distribution was observed in the expansion region B of the device. Fig. 7a shows that particles 

were randomly distributed and completely unsorted in the device when no magnetic focusing 

was performed in the narrow channel. We then repeated this study under the same conditions 

with a magnet by the side of the channel. The distribution of both particles in the expansion zone 

in this condition is presented in Fig. 7b. It was found that both particles were magnetically 

focused in the device. Furthermore, the streams of 5 µm and 11 µm MPs were also separated 

from each other. Essentially, the difference in size between 5 µm and 11 µm particles made them 

lie on different streamlines and they got hydrodynamically separated upon entering into the 

expansion zone.  
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Figure 7. Duplex particle separation in the hybrid MHF microfluidic sorter. (a) Both 5 µm and 11 µm 

particles were simultaneously injected into the device without any magnet and a random distribution of 

particles was observed. (b) The distribution of particles at the same location in expansion zone after 

adding a magnet into the system. It was found that both particles were focused and separated from each 

other. The flow rate for this experiment was 5 mL h
-1

. Scale bar = 250 µm. The flow direction was from 

left to right in both images. 

The deflected streams of particles in Fig. 7b were found to be distributed over distinct positions 

downstream of the flow. Fig. 8a shows the observed distribution of sorted particle in region C of 

the device downstream from the expansion zone. We quantified the position of particles using 

the same process discussed in this chapter and the particles were counted over windows of 100 

µm width. Fig. 8b shows the distribution of both particles along the width of the expansion zone 

and with the magnet in the setup. It was found that 11 µm MPs were distributed over a region 

extending from 2.1 mm to 2.5 mm away from baseline. On the other hand, the 5 µm MPs were 

closer to the wall and distributed over a region from 0.2 to 2.1 mm away from the baseline.  
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Figure 8.  (a) Separation of 5 µm and 11 µm MPs at 5 mL h
-1

 flow rate observed at region C of the 

device. Scale bar = 250 µm. The flow direction was from left to right. (b) The particle distribution in (a) 

was quantified by counting the particles over windows of 100 µm width. The 5 µm MPs (represented by 

green blocks) were observed to be well separated from 11 µm MPs (represented by blue blocks). 

The on-chip fractionation purity was estimated by calculating the fraction of MPs mixed together 

at the boundary of their streams. As shown in Fig. 8b, approximately 2% of the total 11 µm MPs 

in the device were mixed with 1% of total 5 µm MPs at a distance 2.1 mm away from baseline, 

leading us to conclude that the purity of fractionation was approximately 98%. The throughput of 

this sorting method was estimated to be around 5×10
7
 particles per hour as the concentration of 

mixture of particles used for this study was approximately 1.1×10
7
 particles per mL and flow rate 

was maintained at 5 mL h
-1

. The throughput achieved by the existing magnetophoretic sorting 

methods is in the order of 10
3
-10

6
 particles per hour at purities over 90%. Our method not only 
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improves upon these characteristics, but also provides sheathless sorting that has not been 

achievable with the existing methods. [14,18,70] 

As shown in Fig. 8, 5 µm MPs were distributed over a wider region compared to 11 µm MPs. 

This can be potentially attributed to 3D migration of particles to preferable equilibrium positions 

along the height of the microchannel in a laminar flow. It has been reported that microparticles in 

a rectangular microchannel (width>height) quickly tend to occupy equilibrium inertial positions 

at top and bottom of the channel because of shear and wall induced lift forces [74]. However, 

these forces are strongly size dependent [46,77]. We believe that 5 µm and 11 µm MPs assumed 

different positions height-wise in the device after magnetically getting focused onto the sidewall 

of the channel, right before entering the expansion zone, as shown schematically in Fig. 9. We 

hypothesize that the smaller 5 µm MPs were less likely to assume any favorable inertial 

equilibrium position in the focusing zone of our device, and were rather distributed throughout 

the channel sidewall during magnetic focusing. But, the 11 µm MPs were more likely to focus 

inertially on two equilibrium positions in the channel while being magnetically pulled towards 

the sidewall. Hence, because of the 3D paraboloid nature of velocity profile in a rectangular 

cross-section, the 11 µm MPs would follow symmetric streamlines while the 5 µm MPs would 

lie on various ones. Consequently, 5 µm MPs were distributed over a larger region compared to 

11 µm MPs, when these streamlines entered into the expansion zone. This however did not 

interfere with separation of particles and sorting was still attainable with high throughput and 

purity.   



  

29 

 

 

Figure 9. Expected distribution of particles at cross-section of the channel in the magnetic focusing zone 

for 11 µm and 5 µm MPs. The 11 µm MPs are inertially focused at two equilibrium positions along the 

height of the channel while 5 µm MPs are not experiencing any significant inertial forces because of their 

smaller size. Hence, 5 µm MPs do not get focused at any preferable position and are distributed 

throughout the height of the channel. Both of these particles were attracted towards the wall because of 

attractive nature of magnetic forces and hence were envisaged to be arranged as shown just before 

entering the expansion zone of the MHF device. 

2.5 Conclusions 

We have developed a novel hybrid method for sorting of magnetic microparticles which can be 

used for separation of particles and biological cells (based on their inert magnetic properties or 

by immunomagnetic tagging) based on their size and magnetic characteristics. This method of 

sorting offers sheathless operation and simple design. It does not require any external active 

energy source while working at a high throughput (10
7
 particles per hour) and performing 

separation with high fractionation purity (98%) which has not been achieved by existing duplex 

magnetophoretic methods. It was also found that particles aggregate when passing through 
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expansion zone of the device due to reduction in linear flow velocity, however these aggregates 

do not exhibit any cross-stream movement and hence the stream of 5 and 11 μm magnetic 

particles analyzed using ImageJ should not lead to any uncertainty in calculations. This sorting 

device can be used to separate two particles of different sizes, however a better performance 

would be observed when there is a larger difference in the sizes of particles. Combination of this 

approach with inertial focusing at higher flow rates will lead to separation of multiple magnetic 

and NMPs at even higher throughputs.  
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Chapter Three 

3 Multiplex Inertio-Magnetic Fractionation (MIMF) of 

Magnetic and Non-Magnetic Microparticles in a 

Microfluidic Device
†
 

3.1 Introduction 

Separation of small substances such as micro- and nano-particles, amino acids, and cells 

distinctly from a heterogeneous sample is critical for many applications such as cellomics [78], 

genomics [79], diagnosis [80,81], and immunoassays [82]. Fluorescence-Activated Cell Sorting 

(FACS) [83] is one of the most commonly used methods for sorting targets based on their 

fluorophore labelling. But FACS needs compatibility of targets with fluorescent tagging and 

requires in-line fluorescent imaging, analysis and active downstream sorting that makes the 

technique complex, expensive and inaccessible. Several microfluidic-based methods such as 

Deterministic Lateral Displacement (DLD) [59], Pinched Flow Fractionation (PFF) [11] and 

spiral microfluidics [84] have been developed to execute multi-particle sorting. DLD method 

works at low throughput and its performance is marred by the frequent clogging of particles in 

the device. The PFF method also works at very low throughput and cannot be operated without a 

diluting sheath flow. Spiral microfluidic devices can be used for multiplex sorting (e.g., fourplex 

                                                 

†
 This chapter has been submitted in whole as a manuscript for publication in Microfluidics and Nanofluidics. 
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sorting in [85]) but the technique still requires a high ratio of sample to sheath flow and its 

operation is highly constrained by the geometry of the channel and limited to a narrow range of 

flow rates. Moreover, DLD, PFF, and spiral microfluidic sorting methods have a common 

limitation of sorting particles solely based on the difference in their sizes which means that 

sorting of two particles with identical or very close sizes but different inherent characteristics 

such as magnetization cannot be achieved with these methods.  

To address the limitations above, the magnetophoretic separation technique has received a 

significant attention. Magnetic sorting has unique operational advantages as it is reasonably 

unperturbed by changes in medium temperature or particle characteristics such as surface charge 

and ionic concentration [86]. Miltenyi et al. [87] used macroscale chromatographic columns for 

separating magnetically-labelled targets from non-magnetic entities in late 1980’s while naming 

the technique Magnetic-Activated Cell Sorting (MACS). Since then, the magnetophoretic 

technique has been implemented in microfluidic devices, for instance, to achieve separation of 

two similar-sized particles based on the difference in their magnetic properties [88]. Over the 

past two decades, microfluidic-based magnetophoretic separation has showed a great potential 

for development of cost-effective and portable particle sorting technologies with some simpler 

systems already making their way to the market by companies such as Miltenyi Biotech and 

BioLegend. However, achieving multiplex sorting of MPs and NMPs at high throughput and 

without the need for a sheath flow still remains a challenge in this field.  

It has been reported that generation of a high-gradient magnetic field (HGMF) [89] inside 

microfluidic devices and close to the stream of particles can improve the magnetic sorting 

performance significantly. HGMF in microfluidic devices can be generated by integration of soft 

magnetic materials inside microchannels, magnetized either by electromagnets or by permanent 
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magnets. Rong et al. [15] developed an on-chip magnetic bead sorter using six solenoid type 

micro-inductors for sorting and transferring 8µm magnetic particle from an input stream to a 

collection outlet in the device. However, they reported that the sorting of magnetic beads was 

possible only at a low flow velocity of 60 µm h
-1

. Xia et al. [70] demonstrated sorting of 1.6 µm 

MPs from 2 µm NMPs at a throughput of ~10
6
 particles per hour using a needle or comb shaped 

HGMF concentrator made from NiFe (80% Nickel, 20% Iron). Giudice et al. [90] demonstrated 

two-particle sorting, i.e., 6 µm or 20 µm NMPs from 10 µm MPs, dispersed in a viscoelastic 

solution with a separation efficiency of up to 96%. The technique required an external buffer 

flow for sorting and the maximum flow rate of operation was 240 µl h
-1

.  Tsai et al. [91] 

demonstrated separation of 0.5 µm MPs from 1.6 µm MPs using a permanent magnet in a 

straight microchannel, however a sheath flow for performing separation was again required in 

their device. Inglis et al. [88] embedded nickel magnetic stripes into a microfluidic channel and 

magnetized them using an external permanent magnet for separating two targets at a flow 

velocity of 240 µm s
-1

. The particles had to be aligned with a sheath flow and the process of 

fabricating the magnetic stripes in the narrow microchannel is relatively complex. Recently, we 

demonstrated a method for size-based fractionation of 5 µm MPs from 11 µm ones in a 

microfluidic device [92]. This hybrid technique was devised based on a combination of magnetic 

focusing of particles against the wall of a microchannel and their hydrodynamic fractionation 

downstream which required no sheath flow and could be operated at a flow velocity of 0.3 m s
-1

, 

which was significantly higher than majority of abovementioned methods. 

Several attempts have been made to separate more than two particles in magnetophoretic devices 

to address the technological need of multiplex fractionation in handling complex mixtures such 

as blood and water. Adams et al. [18] demonstrated triplex sorting and separated two MPs from a 
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NMP, using a similar technique as reported by Inglis et al. [88]. Essentially, they fabricated two 

regions of magnetic strips in their microchannel for deflecting MPs at different angles into two 

collection channels and restricted NMPs from entering into collection outlets using an excessive 

sheath flow. Chalmers et al. [93] used magnetic dipole and quadrupole to separate targets based 

on their extent of magnetic labelling at a throughput of ~10
6
 particles per hour. Pamme et al. [14] 

performed continuous triplex sorting and separated 2 µm and 4.5 µm MPs from 6 µm NMPs 

using a sheath flow to focus the particles in a channel with a side-channel magnet to sort the 

particles at a throughput of ~720 particles per hour. All in all, current magnetophoretic based 

particle sorting techniques can achieve triplex sorting at low flow rates while suffering from 

shortcomings such as a need for sheath flow and fabrication of delicate micro-strips to achieve 

HGMF in the channel.  

In this chapter, we introduce a novel hybrid technique called Multiplex Inertio-Magnetic 

Fractionation (MIMF) to simultaneously fractionate up to four microparticles in water at a 

throughput of 10
6
-10

9
 particles per hour. MIMF is based on interaction between inertial and 

magnetic forces for achieving fourplex fractionation of microparticles in a microchannel. In 

comparison to our duplex method [92]that was capable of fractionating 10
7
 MPs per hour at low 

flow rates (magnetic force dominance), MIMF can fractionate MPs from each other and from 

closely-sized NMPs (duplex to fourplex) at several orders of magnitude higher throughputs by 

taking advantage of inertial forces that become dominant in our device upon optimizing 

geometry and at desirably higher flow rates. We firstly conducted a comprehensive parametric 

study to investigate the effect of flow rate, channel aspect ratio and particle size on duplex 

MIMF to understand the behavior of particles in our device. We then used the obtained 

knowledge to demonstrate triplex and fourplex MIMF of MPs and NMPs in the device at high 
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throughputs and fractionation efficiencies. We anticipate adoption of MIMF in immunomagnetic 

separation applications in which multiple target biological substances such as biomolecules, 

cells, and microorganisms need to be tagged and separated in various types of fluids.  

3.2 Materials and Methods  

3.2.1 Microparticles and Materials 

Polystyrene magnetic beads referred to as 5 µm (size distribution of 4-4.9 µm) and 11 µm (size 

distribution of 10-13.9 µm) MPs were obtained from Spherotech Inc. (IL, USA). The 35 µm 

polyethylene MPs (size distribution of 32-38 µm) were procured from Cospheric LLC (CA, 

USA). The polystyrene NMPs used in this study had an average size of 15 µm (size distribution 

of 10-19 µm) and were obtained from Phosphorex Inc. (MA, USA). We intentionally chose to 

work with poly-dispersed non-MPs due to two reasons. First, to use them as surrogates for a 

variety of non-target non-magnetic materials (e.g., cells of different sizes) in the future 

application of MIMF in immunomagnetic separation of multiple magnetically-tagged target 

analytes from non-targets and the solution. Second, to demonstrate that two closely sized 

particles, one magnetic (10-13.9 µm) and one non-magnetic (10-19 µm) could also be 

fractionated in our device at high throughput and efficiency. 

Silicon wafers and SU-8 2035 photoresist required for device master mold fabrication were 

procured from Wafer World Inc. (FL, USA) and MicroChem Corp. (MA, USA), respectively. 

Polydimethylsiloxane or PDMS (Sylgard 184 kit) for soft lithography-based replication of 

MIMF microfluidic devices was obtained from Dow Corning Corp. (MI, USA) and Tween 20 

was procured from Sigma Aldrich (MO, USA). N42 grade cuboid magnet (length 25 mm, width 
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10 mm and height 2.5 mm) used for magnetic separation of particles in the MIMF device was 

obtained from Indigo Instruments (Waterloo, ON, Canada). 

3.2.2 Design and Fabrication of MIMF Device  

The experiments were performed in the device shown in Fig. 3. We fabricated microchannels 

with various heights (30, 40, 50 and 60 µm) to investigate the effect of Aspect Ratio 

(AR=Width/Height) and hence inertial forces [94–96] on MIMF. The focus of this chapter was 

to investigate the concept of multiplex inertio-magnetic fractionation of microparticles and not 

sorting, hence only two outlets were implemented in this device. However, the findings can 

easily be used as a design guideline to add outlets at desirable locations in the channel for future 

sorting of particles or particle-analyte conjugates (currently under investigation).   

3.2.3 Experimental Procedure and Data Analysis 

Duplex, triplex, and fourplex mixtures of particles at desirable concentrations (10
4
-10

8
 particles 

per ml) in deionized water were prepared off the chip and injected into devices with various 

geometries using a syringe pump (Legato 110, KD Scientific, USA). The sample input flow rate 

was varied (1 – 9 mL h
-1

) to study the effect of flow rate on separation performance in MIMF. 

There was no need for use of sheath flow in this method. Images and videos of particles 

distribution were captured at regions B and C (Fig. 3b) of the device using a camera (GS3-U3-

23S6C-C, Point Grey, BC, Canada) at a frame rate of 162 frames-per-second, mounted on an 

inverted microscope (BIM500FL, Bioimager, ON, Canada). Before performing any imaging and 

as a precaution, we ran the experiments for 15 minutes to allow the flow to stabilize in the device 

although fractionation was observed within 1-2 minutes of sample injection. The freeware 

ImageJ was used for analysing the captured images of particles in the device. For 

quantifying the position of particles, we partitioned the image into a sequence of narrow 
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windows of 100 µm width and used the “analyse particle” function in imageJ for counting 

the number of particles in each of these windows.  

3.3 Working Principle 

For a laminar flow in a circular microchannel, it has been found that spherical microparticles 

tend to focus at a distance 0.6 times the radius away from the center of the channel [97]. It has 

been shown that focusing is promoted by net inertial lift forces acting on these particles [12,45]. 

It has also been reported that particles tend to focus in two central equilibrium positions when 

flowing in a rectangular channel with AR>1 [74]. The net inertial lift force acting on the particles 

in the direction transverse to the flow (Fig. 3b) can be expressed as [74]: 

       
   

  
 

 
                                            (1) 

where CL is lift coefficient, Uf is average flow velocity (m s
-1

), Dh is hydraulic diameter of the 

channel (m), ρ is density of the fluid (Kg m
-3

) and   is the diameter of particles (m). The channel 

Reynolds number (Rec = ρ Uf Dh/µ, where µ is dynamic viscosity of fluid in Pa s) and particle 

Reynolds number (Rep = Rec (a/Dh)
2
) have been used to assess the strength of inertial forces in 

microchannels [45,76]. It has been highlighted in several reports that inertial forces significantly 

affect the focusing of microparticles in microchannels when Rep≥1, and we shall also be 

adopting this criterion [23,45] to explain the fractionation of microparticles in our MIMF device. 

Another dominant force is the stokes drag force (FD) that acts against the motion direction of 

microparticles in the channel. The magnitude of stokes drag force can be expressed as [74]: 

                                                                                     (2) 
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where v is the velocity (m s
-1

) of particles in the lateral direction. Finally, the force acting on a 

magnetic particle due to a permanent magnet such as the one used in our MIMF device (Fig. 3) 

can be expressed as [18]: 

                              
   

 
                                                              (3) 

where M is magnetization (A m
-1

) and  B is magnetic field gradient (T m
-1

). According to 

equations (1) to (3), MPs are under the effect of magnetic, drag and inertial lift forces, while 

NMPs are under the effect of drag and inertial lift forces only.  

Multiplex particle fractionation is achievable in our MIMF device owing to interaction between 

magnetic, drag and inertial lift forces. Hypothetically, the device should be capable of focusing 

NMPs inertially at the center of the channel if Rep,NMP≥1, while fractionating the MPs across the 

width of the channel if Rep,MP does not significantly exceed unity so that magnetic and inertial 

forces act comparatively on these particles. Upon maintaining the magnetic field gradient 

constant, the movement of particles inside our device would be dependent mostly on  input flow 

rate, channel aspect ratio (or hydralic diameter) and particle sizes. Effects of these parameters 

have been investigated to devise a fourplex particle fractionation microdevice. Our focus was 

multiplex fractionation in water so effect of fluid properties was not studied.  

3.4 Results and Discussion 

In this section, we first parametrically investigate the effects of flow rate, channel aspect ratio 

and particle size on separation of MPs from NMPs. The outcomes are then used to demonstrate 

MIMF of three and four particles simultaneously in our device (Fig. 3). 
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3.4.1 Duplex MIMF and Parametric Studies  

As described in Section 3.3, a mixture of MPs and NMPs injected into our device would tend to 

get inertially focused in the center of the channel in the absence of any magnetic force. However, 

only MPs will be attracted towards the wall of the channel and get separated from the stream of 

NMPs upon positioning a magnet in the device (if Rep,MP<1). This scheme of separation would 

be feasible given there is a sufficient inertial force acting on both particles while the magnetic 

force acting on MPs is strong enough to overcome the sum of drag and inertial forces. Hence, it 

is important to optimize the operating conditions of the device so as to achieve co-existence of 

magnetic and inertial forces of appropriate magnitudes but opposite directions. These forces are 

dependent on parameters such as flow rate, channel aspect ratio and particle sizes (Eq. 1-3) under 

constant magnetic field conditions. A series of experiments were performed to ascertain the 

effect of these parameters on distribution of particles in our device. The findings were applied to 

discern optimum conditions for achieving two particle fractionation, with size similarity, in the 

MIMF device.  

 

3.4.2 Effect of Flow Rate on Duplex MIMF  

Experiments were performed with a mixture of 11 µm (10-13.9 µm) magnetic and 15 µm (10-19 

µm) NMPs in the device with AR of 1.8 as discussed in the Materials and Methods section. 

There were a total of approximately 10
6
 particles per mL of sample used in this study. We varied 

the input flow rate from 1 to 9 mL h
-1

 and captured distribution of particles in the expansion zone 

of the device (region B in Fig. 3). The experiments were firstly performed without any magnet to 

gauge the distribution of particles with respect to inertial and drag forces generated in the device 

as shown in Fig. 10a (i-iv). We observed that both particles were randomly distributed across the 
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width of the channel at lower flow rates (<6 mL h
-1

, when the corresponding Rep was 0.1–0.6 for 

both particles, Fig. 10a (i-ii)) which confirmed the absence of significant inertial forces in the 

device to focus the particles. However, particles started getting focused in the center of the 

channel at higher flow rates (>6 mL h
-1

) as observed in Fig. 10a (iii-iv). In these cases, the 

inertial forces grew in magnitude and were able to dominate the distribution of particles as Rep 

became greater than 0.7 for 11 µm MPs and greater than 1.3 for 15 µm NMPs. 

 

Figure 10. Experimental observations of the effect of flow rate (1-9 mL h
-1

) on behaviour of 11 µm 

magnetic and 15 µm NMPs in Region B of the MIMF device with AR of 1.8. a(i-iv) show the results 

without any magnet in the setup while b(i-iv) demonstrate the results at identical conditions but with 

presence of the permanent magnet in the setup. The flow direction was from left to right in all images and 

the scale bar corresponds to 250 µm. 

The above experiments were repeated under same operating conditions with a magnet in the 

setup. Observations of particles distribution is presented in Fig. 10b (i-iv). At all flow rates under 

9 mL h
-1

, the MPs were magnetically focused closer to the channel wall of the expansion zone as 
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Rep,11<1 in all these cases (i.e. inertia less significant). The NMPs were found dispersed in the 

channel at flow rates less than 6 mL h
-1 

as described above, however they got strongly focused in 

the center at flow rates of more than 6 mL h
-1 

(Rep,15=1.3 and higher). At a flow rate of 6 mL h
-1

, 

it was found that both MPs and NMPs were focused in the device and completely separated from 

each other. Interestingly, at the flow rate of 9 mL h
-1

 (Rec=36), we observed that 11 µm MPs 

were slightly defocused in the expansion channel while the 15 µm NMPs were still strongly 

focused. Accordingly, no separation was possible at this flow rate as the inertial forces started to 

become stronger (Rep,11=1) than the magnetic forces and push the MPs towards the center of the 

channel. Hence, we concluded that particle manipulation was governed by magnetic focusing at 

flow rates <6 mL h
-1

 and by inertial focusing at flow rates >6 mL h
-1

 in this device (AR=1.8). In 

terms of particle Reynolds number, fractionation was stronger when Rep was less than unity for 

11 µm magnetic and more than unity for 15 µm NMPs (Fig. 10biii). 

We also measured the exit position of particles at region C of the device with respect to the 

expansion zone baseline, using the method detailed in the Materials and Methods section. Fig. 11 

shows the mean position and distribution of both 11 µm magnetic and 15 µm non-magnetic 

particles when experiments were performed with a magnet in the setup corresponding to 

observed distributions in Fig. 10b (i-iv). At low flow rates of 1 and 3 mL h
-1

, the NMPs were 

dispersed over the regions 4.60±1.70 mm and 4.60±1.40 mm away from the baseline, 

respectively. However, the 11 µm MPs were focused over the regions 1.71±0.15 mm and 

1.74±0.10 mm away from the baseline at the low flow rates of 1 and 3 mL h
-1

, respectively. At 6 

mL h
-1

, the 11 µm MPs were still focused; however, they were found to be slightly shifted 

towards the center of the channel at 2.30±0.10 mm away from the baseline. The NMPs were also 

focused in the region 4.60±0.12 mm away from the baseline at 6 mL h
-1

 due to dominance of 
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inertial forces illustrated in Fig. 10. At 9 mL h
-1

, the 11 µm MPs were slightly defocused due to 

excess inertial forces and distributed over region 2.70±0.80 mm away from the baseline while 15 

µm NMPs were still focused at 4.60±0.10 mm away from the baseline.  

 

Figure 11. Quantification of exit position (mean and standard deviation) of 11 µm magnetic and 

15 µm NMPs in the MIMF device with AR of 1.8 when experiments were performed with a magnet 

at various flow rates. The exit positions were measured with respect to the baseline of the device. 

 

Essentially, inertial forces could be used as a means to differentiate NMPs from MPs in a 

sheathless fashion and without any need for HGMF elements like magnetic comb, needle or 

stripes [18,70,88]. However, we noticed that inertial forces grow in magnitude with increase in 

flow rate (Rec) and eventually interfere with magnetic focusing of MPs. Hence, it is required that 

the device performance be characterized to achieve an optimal flow rate where inertial, drag and 

magnetic forces are of comparable magnitude. The intermediate flow rate regime of 6 mL h
-1

 

(Rec=24, Fig. 10 and 11) is the optimal choice for achieving fractionation of MPs from NMPs in 

the device with AR=1.8, as there is coexistence of inertial and magnetic focusing under this 

condition. 
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3.4.3 Effect of Channel Aspect Ratio on Duplex MIMF  

The ratio of particle size to characteristic length of channel significantly affects the magnitude of 

inertial focusing forces exerted onto particles (Eq. 1). In this section, the effect of AR on the 

distribution of particles in the expansion zone of the device (regions B shown in Fig. 3) was 

investigated. Aspect ratios of 1.8, 2.25 and 3 were tested by fabricating devices with heights of 

50, 40 and 30 µm, respectively. The experiments were performed with a mixture of 11 µm 

magnetic and 15 µm NMPs in the device at flow rates of 1, 3, 6 and 9 mL h
-1

 with a magnet in 

the setup. There were a total of approximately 10
6
 particles per mL of sample used in this study. 

The results of observed distribution of particles in region B of the device are shown in Fig. 12.  

 

Figure 12. Experimental observations of the effect of channel Aspect Ratio (AR=width/height) on 

behavior of 11 µm magnetic and 15 µm NMPs in Region B of the MIMF device at various flow rates 
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(columns). Rows a, b and c correspond to experiments performed with device ARs of 3, 2.25 and 1.8, 

respectively. The flow direction was from left to right in all images and the scale bar corresponds to 250 

µm. 

As seen in Fig. 12, at a flow rate of 1 mL h
-1

, the change in AR from 1.8 to 3 led to enhancement 

of inertial focusing of NMPs owing to increase in particle Reynolds number (Rep,15) from 0.2 to 

0.5. We found that 15 µm NMPs were focused in the center of the device with AR of 3 and 2.25, 

however they were found to be randomly distributed in the device with AR of 1.8. The 11 µm 

MPs were found to be focused magnetically close to the sidewall in all three devices at this low 

flow rate. Rep,11 increased from 0.1 in device with AR=1.8 to 0.3 when AR=3, at which inertial 

focusing is not very strong allowing the 11 µm MPs to be under the dominant effect of magnetic 

forces. At a flow rate of 3 mL h
-1

, it was observed that 15 µm NMPs were still defocused in the 

device with AR of 1.8 (Rep,15=0.6), but focused in the other two devices (Rep,15=0.9 for AR=2.25 

and Rep,15=1.5 for AR=3). The 11 µm MPs, however, were found to be slightly defocused from 

the wall (due to inertia) in the device with AR of 3 (Rep,11=0.8) but still well-focused 

magnetically at the wall in the devices with AR of 2.25 (Rep,11=0.5) and 1.8 (Rep,11=0.3) at a 

flow rate of 3 mL h
-1

. It is worth noting that fractionation of MPs from NMPs in the device with 

AR of 3 was not possible at any flow rate higher than 3 mL h
-1

. At a flow rate of 6 mL h
-1

, we 

found that both magnetic and non-magnetic particles were separately focused in the device with 

AR of 2.25 (Rep,11=1.0 and Rep,15=1.9) and 1.8 (Rep,11=0.7 and Rep,15=1.3) with some inertial 

defocusing of MPs in the device with AR of 2.25 due to the high Rep,11=1.0. Fractionation of 

MPs from NMPs was not possible efficiently in any of the devices at a flow rate of 9 mL h
-1 

(Rep,11 = 2.6, Rep,15 = 4.6 for AR = 3; Rep,11 = 1.5, Rep,15 = 2.8 for AR = 2.25; and Rep,11 = 1.0, 

Rep,15 = 1.9 for AR = 1.8) because MPs were either inertially focused and mixed with non-
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magnetic ones in the center (AR=3) or dispersed in the channel due to comparative strength of 

inertial forces with magnetic forces (AR=1.8 and 2.25). 

The results in Fig. 13 fully support our claim of the need for interaction between comparable 

inertial and magnetic forces to achieve efficient fractionation in our device. Overall, we observed 

that with the decrease of AR (i.e., increase of channel height), inertial forces acting on both 

particles decreased at a given flow rate (due to drop in the axial velocity), which in turn allowed 

the magnetic forces to become comparatively dominant on 11 µm MPs to pull them away from 

the stream of 15 µm NMPs. Accordingly, distinct separation of the two particle streams could be 

obtained at higher flow rates when AR of the MIMF device was reduced. The observation 

pertaining to insufficient separation in the device with AR of 3 at any flow rate greater than 3 mL 

h
-1 

(Rep,11 > 1.7 and Rep,15 > 3.0)
 
can be attributed to dominance of inertial forces at high flow 

velocities over magnetic forces as explained by Eq. 1 and Eq. 3.  

Positional distribution of 11 µm MPs and 15 µm NMPs at 6 mL h
-1 

flow rate (Figs. 13iii) was 

quantified in region C of the device (Fig. 3), assuming baseline as the reference and results are 

presented in Fig. 13. It was found that 15 µm NMPs were concentrated in the region 4.60±0.10 

mm away from the baseline in all three devices. However, the 11 µm MPs were concentrated at 

1.70±0.10 mm, 2.20±0.3 mm and 4.30±0.1 mm away from the baseline in the devices with AR 

of 1.8, 2.25 and 3 respectively. This quantitative result also demonstrate the shifting of MPs from 

the sidewall towards the center of the channel as the AR is increased, confirming that inertial 

forces become more dominant on all particles as the height of the channel decreases from 50µm 

to 30µm. 
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Figure 13. Quantification of exit position (mean and standard deviation) of 11 µm MPs and 15 µm NMPs in MIMF 

devices with ARs of 1.8, 2.25 and 3, at a flow rate of 6 mL h
-1

. The exit positions were measured with respect to the 

baseline of the device. 

In a nutshell, the investigation into aspect ratio of devices led to two important conclusions. 

Firstly, the distribution of particles greatly varies with change in AR of the device and hence the 

device design must be done carefully to achieve the desired results. Especially, the separation 

scheme is more feasible when the particle Reynolds number for 11 µm magnetic particle (Rep,11) 

is less than 1. Secondly, Fig. 12 clearly shows that it is possible to improve the throughput of 

fractionation from 1 mL h
-1

 to 6 mL h
-1

 just by adjusting the AR from 3 to 1.8. This better 

understanding of behavior of particles with respect to AR of the channel enabled development of 

MIMF devices with throughputs higher than 6 mL h
-1

 for fractionation of two to four particles in 

the rest of the chapter. 

3.4.4 Effect of Size of Magnetic Particles on Duplex MIMF  

The magnitude of inertial forces, as seen in Eq. 1, is strongly affected by size of particles [12,74]. 

Herein, we performed the duplex fractionation experiments with  MPs of diameter 5, 11, or 35 

µm mixed one at a time with 15 µm NMPs to elucidate the effect of size on the dynamic 
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competition between inertial and magnetic forces. We chose these sizes to ensure that the device 

principle can be applied for fractionating a wide range of targets from a mixture. The 

experiments in previous section indicated that the device throughput can be improved by 

decreasing the AR of the channel. Hence, we chose to perform this set of experiments in a MIMF 

device with AR of 1.5 to achieve fractionation at a higher flow rate of 9 mL h
-1

 that was not 

achievable with the previous devices. Fig. 14 shows the distribution of the abovementioned pairs 

of particles after fractionation in the channel at region C of the device.  

 

Figure 14. Quantification of exit position (mean and standard deviation) of various sizes (5, 11 or 35 µm) 

of MPs sorted from 15 µm NMPs in a duplex MIMF devices with AR of 1.5 at a flow rate of 9 mL h
-1

. The 

exit positions were measured with respect to the baseline of the device. 

In the experiments conducted with a mixture of 5 µm magnetic and 15 µm non-magnetic 

particles, it was found that NMPs were focused close to the center of the channel, 4.70±0.12 mm 

away from the baseline, because of dominant inertial forces at 9 mL h
-1

 flow rate (Rep,15=1.4). 

The 5 µm MPs were found to be distributed at 0.64±0.34 mm and completely fractionated from 

the NMPs (Rep,5=0.2, hence no inertial focusing). The experiments were performed at a 
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concentration of approximately 10
8
 particles per mL of water (mixture of ~10

8
 MPs and ~10

5
 

NMPs per mL), which resulted in an unprecedented high throughput of 10
9 

particles per hour. 

In the experiments performed with a mixture of 11 µm magnetic and 15 µm non-magnetic 

particles, the MPs (Rep,11=0.8, weaker inertial forces overpowered by magnetic forces) were 

magnetically focused in the region around 1.41±0.12 mm away from the baseline while NMPs 

were found inertially focused close to the center as before. This fractionation study was 

performed at a throughput of 10
7
 particles per hour as the concentration of particles used for 

experiments was about 10
6
 particles per mL of water (mixture of ~10

6
 per mL (due to lower 

concentration of original batch) magnetic and ~10
5
 per mL NMPs).  

When 35 µm MPs were tested in mixture with 15 µm NMPs, they were found distributed over 

the region 4.10±0.04 mm away from the baseline (Rep,35=7.8). Since Rep,35 was much greater 

than 1, these particles experienced more significant inertial forces than the 5 µm and 11 µm MPs 

in previous experiments, and were focused closer to the center of the channel. However, 

magnetic forces were still able to pull them away from the stream of NMPs focused purely by 

inertia at the center of the channel. The throughput of these experiments was about 10
6
 particles 

per hour as the study was conducted at a concentration of about 10
5
 particles per mL (mixture of 

~10
4
 per mL magnetic and ~10

5
 per mL NMPs).  

We observed that there was a complete fractionation of each type of MPs from NMPs in all three 

experiments described above. Moreover, quantification of positions of particles in the device led 

to a finding that the larger the MPs were, the closer they became to the stream of 15 µm NMPs in 

the center of the channel. This can be explained by the magnitude of inertial forces that increases 

more rapidly with particle diameter (4
th

 power dependence in Eq. 1) as compared to magnetic 

forces (3
rd

 power dependence in Eq. 3).  Accordingly, interaction between magnetic and sum of 
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inertial and drag forces can easily be used as a scheme to achieve multiplex particle fractionation 

with MIMF method. This has been pursued in the next two sub-sections of this chapter. 

3.4.5 Triplex MIMF  

In this section, we investigated simultaneous fractionation of three MPs of sizes 5, 11 and 35 µm 

with MIMF. As we observed in the previous section, cumulative effect of magnetic, drag and 

inertial forces leads to size-dependent ordering of MPs in the device, hence offering a scheme to 

perform multi-particle fractionation in an inertio-magnetic device. Experiments were performed 

in a MIMF device with AR of 1.5 at a flow rate of 9 mL h
-1

. This study was conducted at a total 

concentration of approximately 10
6
 particles per mL. Particle distribution images were captured 

at region B of the device with and without the magnet in the setup and results are presented in 

Fig. 15. 

 

Figure 15. Experimental observations (at region B of the device) showing separation of 5, 11 and 35 µm 

MPs in a MIMF device with AR=1.5 at 9 mL h
-1

 flow rate. Distribution of all three particles is 

demonstrated (a) without any magnet and (b-c) with a magnet in the setup. The magnified view of 5 and 

11 µm MPs corresponding to the region of Interest (ROI) in (b) is shown in (c). The flow direction was 

from left to right in all images and scale bars correspond to 250 µm. 
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Firstly, a mixture of all three particles was injected into device and their distribution was 

monitored in region B without any magnet in the setup. Fig.15a shows that all particles were 

randomly distributed in the device in the absence of any magnetic force. We observed that 35 µm 

MPs were focused in the center of the channel, indicating the presence of a significant inertial 

force on these particles (Rep,35=7.8). However, it was difficult to discern the distribution of 5 and 

11 µm MPs distinguishably in this condition (Rep,5=0.2 and Rep,11=0.8). Then, we performed the 

same experiment involving all three particles but with a magnet in the setup and the particle 

distribution results are presented in Fig. 15b and 15c. It was found that 35 µm MPs were still 

focused very close to the center of the channel, indicating that there was a dominance of inertial 

forces on these particles as discussed in the previous section and Fig. 14. Inertial forces 

overpowered the sum of drag and magnetic forces on 35 µm MPs and did not allow them to be 

attracted much towards the magnet in the device. On the other hand, we found that 5 and 11 µm 

MPs were more strongly attracted by the magnet and were focused much closer to the wall of the 

channel as compared to 35 µm MPs. The streams of 5 and 11 µm MPs were not clearly visible in 

Fig. 15b and hence we captured their distribution at a higher magnification as shown in Fig. 15c. 

These particles were found to be completely separated from each other and, as expected, the 5 

µm MPs were closer to the wall than 11 µm MPs. Accordingly, we experimentally verified that 

the smaller the MPs, the closer their positions are to the wall in a MIMF setup. We emphasize 

that existence of one type of force in the device will either lead to no fractionation at all (with 

inertial forces only) or potentially fractionation at a significantly lower throughput and efficiency 

(with magnetic forces only) based on our previously reported method [92]. As demonstrated in 

this section, it is the proper design of the device geometries and the co-existence of inertial and 
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magnetic forces at high flow rates that led to accomplishment of triplex fractionation at high 

throughputs with the MIMF method. 

3.4.6 Fourplex MIMF 

Here, we used the MIMF technique to achieve fractionation of three MPs and a NMP. The 

experiments were performed with mixtures of 5, 11 and 35 µm MPs and 15 µm NMPs in water 

at a total concentration of about 10
6
 particles per mL. The samples were injected into the MIMF 

device with AR of 1.5 at a flow rate of 9 mL h
-1

 (Rep = 0.2, 0.8 and 7.8 for 5, 11 and 35 µm MPs 

respectively and Rep=1.4 for NMPs) and images were captured at region C of the device (Fig. 

16a) for quantifying particles’ exit positions with respect to the expansion zone baseline (Fig. 

16b). We could not capture the entire spectrum of four fractionated particles in one frame at the 

downstream region of the device due to the limited field of view of our microscope, as particle 

bands were distributed over a distance of about 5 mm across the width of the channel. Hence we 

captured the position of 15 µm non-magnetic and 35 µm magnetic particles in one frame at upper 

half of region C of the device closer to the center, and 5 and 11 µm MPs in the other frame at 

lower half of region C closer to the wall.  
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Figure 16. Fourplex MIMF. (a) Experimental observations (at region C of the device) of simultaneous 

sorting of four particles (5, 11 and 35 µm MPs and 15 µm NMPs) in a MIMF device with AR=1.5 at 9 mL 

h
-1

 flow rate. Due to limited field of view of our microscope, we captured the images in two halves at 

region C, to exhibit sorting of all four particles in the device. The flow direction was from left to right in 

both images and scale bar corresponds to 250 µm. The flow direction is from left to right as indicated by 

arrow. (b) Quantification of exit positions and fractions of 5, 11 and 35 µm MPs and 15 µm NMPs sorted 

in the MIMF device. The exit positions were measured with respect to the baseline of the device. 

 

As expected, the 15 µm NMPs were inertially focused in the center and the 35 µm MPs were 

found close to the stream of NMPs as they were strongly under the effect of inertial forces owing 

to their large sizes (see previous section). Magnetic forces dominated the focusing of 5 and 11 

µm MPs in region C of the device and they were both focused closer to the wall and arranged in 

a sequence similar to what was observed in the triplex MIMF (i.e., smaller particles closer to the 

wall due to less dominant inertial forces).  

Further, we quantified the distributed positions of all particles with respect to the baseline in the 

device (Fig. 16b), using the method described before. The 15 µm NMPs were found concentrated 

in the region 4.70±0.12 mm away from the baseline and 35 µm MPs were focused at 4.10±0.04 
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mm. Both of these particles were under the dominant influence of inertial focusing forces while 

magnetic forces separated the MPs from the non-magnetic ones. The 11 µm MPs were found 

closer to the wall and at 1.41±0.12 mm away from the baseline while 5 µm MPs were found at 

0.49±0.22 mm, both under the dominant effect of magnetic forces while taking advantage of 

inertial competing forces to get separated from each other.  

The position of fractionated particles has been provided as guideline here and these particles can 

easily be collected separately by implementing outlets based on the calculated exit positions of 

these particles presented in Fig. 16. This was outside the scope of this research and will be 

pursued in the future for sorting of microorganisms based on MIMF method. It should be 

highlighted that, for this particular MIMF design and flow rate condition, the largest MPs that 

could be separated from NMPs in our device were 35 µm in diameter. Any further increase in the 

size of MPs could led to their mixing with the NMPs. Accordingly, it should be noted that 

although the MIMF method is strong in multiplex fractionation based on competition between 

magnetic, inertial and drag forces, but it has its own limitations in terms of the size of particles 

that can be handled with this device. We anticipate that our proof-of-principle results will pave 

the way for further investigation of this hybrid method to develop custom-designed MIMF 

devices based on end user needs with respect to number and size of particles, throughput, and 

fractionation efficiency. 

3.5 Conclusions 

We have presented a novel MIMF method for fractionation of up to four magnetic and non-

magnetic microparticles in an inertio-magnetic microfluidic device, which addresses several 

drawbacks of currently available magnetic fractionation methods such as low throughput, 

requirement of sheath flow, inability to fractionate multiple targets simultaneously and 
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complicacies in fabricating special HGMF elements such as magnetic combs, stripes or needles. 

We have shown that magnetic forces interact with and complement drag and inertial forces 

synergistically in a straight microchannel to exhibit strong size-dependent ordering of magnetic 

and NMPs, hence paving the way for their fractionation at a downstream hydrodynamic 

expansion zone. We showed that fractionation of similar-size MPs and NMPs in MIMF devices 

could be achieved efficiently at a throughput as high as 10
9
 particles per hour. We identified 

several dominant factors governing behavior of particles in the device and conducted 

experiments to elucidate their effects on fractionation performance. Further, the insights gained 

from these parametric studies were applied to achieve simultaneous fractionation of four 

particles (5, 11 and 35 µm magnetic and 15 µm NMPs) for the first time in a straight 

microfluidic device using inertial focusing and magnetophoresis. We envision that the MIMF 

technique would enable easy handling of complex and dense mixture of particles in a wide 

variety of applications. The technique has a great potential for use in affinity-based 

immunomagnetic tagging, extraction and sorting of multiple cells and microorganisms in water 

and body fluids.   
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Chapter Four 

4 Sheathless and Multiplexed Magnetophoretic Sorting of 

Magnetic and Non-Magnetic Microparticles in Non-

Newtonian Fluids
‡
 

4.1 Introduction 

Sorting operation has multifarious applications in biotechnology [98], medicine [99] and 

diagnostics [100]. Many techniques such as dielectrophoresis [101], acoustic [102], deterministic 

lateral displacement [103], pinched flow fractionation [104] and inertial microfluidic [105] have 

been developed to achieve separation at micro-scale. However, microfluidic-based 

magnetophoretic sorting technique is preferred to handle complex mixtures of micron-sized 

entities such as micro-particles and cells [80,106,107] as many parameters including fluid 

properties do not have any significant influence on the magnetic field. Several magnetic sorting 

microdevices have been proposed in the literature such as free flow magnetophoretic size-based 

sorting of magnetic microparticles [14], electromagnetic manipulation of single magnetic beads 

[108], multi-target magnetic activated cell separation [18], magnetophoresis integrated 

hydrodynamic filtration [43] and a recently-introduced inertia-magneto-hydrodynamic 

fractionation technique (in chapter 2 and 3) by us [92]. Majority of these magnetic techniques 

have demonstrated sorting of biological and non-biological targets solely in Newtonian fluids 

                                                 

‡
 This chapter will be submitted in whole as a manuscript for publication in Applied Physics Letters. 
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like water. However, the biological fluids in which target sorting has to be achieved for 

diagnostic purposes are mostly non-Newtonian such as undiluted blood and saliva [109,110].  

The particles suspended in non-Newtonian fluids behave differently in comparison to their 

behavior in Newtonian fluids because of experiencing elastic lift forces that become dominant in 

such fluids [111]. For instance, 1.9 µm microparticles in a square 20×20 µm
2
 microchannel 

occupy multiple equilibrium positions when the medium is a Newtonian fluid [76], while 10 µm 

microparticles focus only in the center of a 100×100 µm
2
 channel when suspended in a non-

Newtonian viscoelastic solution of 8% polyvinylpyrrolidone [111]. Clearly, there is a need to 

enumerate the behavior of MPs and NMPs under the effects of elastic and magnetic forces for 

achieving their separation when suspended in non-Newtonian fluids as the knowledge of 

magnetophoretic separation in Newtonian fluids is not directly applicable here. Giudice et al. 

[90] recently reported a microfluidic device for separating a magnetic particle from a non-

magnetic particle suspended in a viscoelastic solution of polyacrylamide (PAM). However, their 

technique required an external buffer sheath flow and could only achieve separation of two 

particles at a time.  

In this chapter, we investigated the applicability of our sheath-less fractionation technique [92]  

in triplex separation of MPs and NMPs in a non-Newtonian polyethylene oxide (PEO) fluid. The 

effect of flow rate and viscosity (i.e., PEO concentration in water) on fractionation of particles 

suspended in this surrogate non-Newtonian fluid was studied to achieve triplex sorting of 

microparticles without any external sheath buffer. The parametric study helped to identify the 

optimal operating conditions required for achieving multi-particle magnetophoretic sorting in 

non-Newtonian fluids for the first time. 
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4.2 Methods and Materials 

4.2.1 Materials  

We performed experiments with a mixture of 5 μm and 11 μm diameter MPs (Spherotech Inc., 

USA) and 15 μm diameter NMPs (Phosphorex Inc., USA) suspended in non-Newtonian fluids 

prepared by mixing PEO powder (Molecular Weight ~ 2x10
6
 Da, Sigma Aldrich USA) in water 

at different concentrations (500, 1000, and 2000 ppm). These concentrations correspond to zero 

shear viscosities of 1.8, 2.3 and 4.1 mPa.s, respectively [112]. The total concentration of all three 

particles used for experimentation was 10
6
 particles per mL. We added about 0.5% (v/v) of 

Tween 20 (Sigma Aldrich) to keep particles dispersed in PEO solution. 

4.2.2 Device Design, Fabrication and Experimental Procedures 

The device design has been presented in Fig. 3, however the width of focusing zone was 70 µm 

and height of the channels were 65 µm. A cuboid magnet (20×10×5 mm
3
, Indigo Instruments, 

Canada) was placed by the side of focusing zone. The device master mold was fabricated using 

standard photolithography and the device was prepared in PDMS using soft lithography as 

reported earlier [92]. The experiments were performed by injecting particles suspended in PEO-

water solutions into the device at desired flow rates (0.1–1 mL h
-1

) using a syringe pump (KD 

Scientific, USA). Images and videos of fractionated particles were captured using a 162 fps 

camera (Point Grey, BC, Canada) mounted on an inverted microscope (Bioimager, ON, Canada). 

We used the freeware ImageJ for quantifying the distribution of particles in captured images as 

described in chapters 2 and 3.  
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4.3 Working Principle 

The forces acting on MPs and NMPs in a non-Newtonian fluid in our device are discussed in this 

section. All particles experience elastic lift forces towards the center of the channel (Eq. 4).  

FEL ~ λ(a/w)
3
Q

3
,     (4) 

where λ is relaxation time (ms), w is width of channel (m) and Q is flow rate (m
3
/s) [111–113]. 

The strength of elastic forces is characterized by the Weissenberg Number (Wi=2λQ/w
2
h) 

[111,114].  

The particles also experience net inertial lift forces (FIL) expressed as sum of wall and shear 

induced lift forces (Eq. 1) [45,46]. The magnitude of inertial lift forces on a particle is indicated 

by the particle Reynolds number (Rep). It has been reported that for Rep≥1, the inertial forces are 

dominant in a system as fully demonstrated in chapter 3 [45]. However, we found that the Rep 

for the particles in our device was less than 0.08, indicating that the inertial forces acting on 

particles were negligible. The magnitudes of drag (FD) and magnetic (FM) forces experienced by 

particles have been presented in Eq. 2 and Eq. 3. 

4.4 Results and Discussion 

In this section, we investigated the effect of flow rate and PEO concentration on fractionation of 

magnetic and non-magnetic microparticles in our device. 

4.4.1 Effect of Flow Rate on Triplex Fractionation 

Fig. 17 shows the effect of flow rate on fractionation of 5 µm and 11µm MPs and 15 µm NMPs 

suspended in 1000 ppm PEO using our microfluidic device. The experiments were first 

conducted without any magnet in the setup and images were captured at the entrance of 

expansion zone (Fig. 17a(i-v)). At a lower flow rate of 0.1 mL h
-1 

(Re=0.18, Wi=1.19), all three 
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particles were found to be focused on a single stream as seen in Fig. 17a(i). Similar observation 

of particles focusing in the center of a square microchannel has been reported in the literature 

[111]. We noticed a transition from focusing on a single line to focusing on multiple streams as 

the flow rate was increased to 0.75 mL h
-1 

(Re=1.34, Wi=8.90) in Fig. 17a(iv). This behavior can 

be attributed to increase in magnitude of elastic lift forces with increase in flow rate. These 

elastic lift forces promote focusing of particles in the center and four corners of the microchannel 

(at intersection of walls) where strain rate is minimum [114].  

 

Figure 17. Effect of flow rate (0.1–1 mL h
-1

) on triplex fractionation performance of the device. 

Distribution of 5µm MPs, 11µm MPs and 15µm NMPs suspended in 1000 ppm PEO-water solution is 

demonstrated at the entrance of expansion zone (Region B of Fig. 3) when experiments were conducted 

a(i-v) without any magnet and b(i-v) with a magnet at equivalent conditions. (c) Magnified image of 
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distribution of particles observed in b(iii). (d) Magnified image of distribution of particles observed in 

b(v). The flow direction was from left to right in all images and scale bar corresponds to 350µm. 

We repeated the experiments presented in Fig. 17a with a magnet in the setup and corresponding 

distribution of particles is shown in Fig. 17b. As expected, the distribution of 15 μm NMPs 

remained the same as their motion was not influenced by magnetic forces. The 5 μm and 11 μm 

MPs, however, were attracted towards the sidewall due to the magnetic forces (Fig. 17b(i-iii)). 

The 11 μm MPs were found to be closer to the center than 5 μm MPs in the device. 

Hypothetically, the 5 μm and 11 µm MPs were magnetically focused on the wall in the focusing 

region and eventually separated from each other in the expansion zone (Fig. 3) hydrodynamically 

just like PFF. We also anticipate that the separation of 5 μm MPs from 11 μm MPs is enhanced 

(compared to conventional PFF) as 11 μm MPs shift towards the center in the focusing region 

due to elastic lift forces. We believe the shift of 11 μm MPs towards the center is greater than 

that of 5 μm particles because of strong size dependence of elastic forces (Eq. 4). A magnified 

view of the observed separation of particles corresponding to Fig. 17b(iii) is shown in Fig. 17c. 

The three distinct streams show 5 μm MPs closest to the wall, 15 μm NMPs in the center and 11 

μm MPs positioned in between. We confirmed the distribution and position of particles by 

performing the same exact experiments with only one particle type at the time in the device. At 

any flow rate more than 0.75 mL h
-1
(Re≥1.34, Wi≥8.90), we were unable to achieve any 

separation as observed in Fig. 17b(iv-v) because of presence of multiple focusing positions for 

NMPs as explained before. It was found that the streams of 5 μm and 11 μm MPs and 15 μm 

NMPs were mixed with each other towards the lower channel wall, and there was another stream 

of 15μm NMPs located towards the upper channel wall (Fig. 17d). Hence we concluded that the 

single line focusing of NMPs is compulsory for achieving sorting in our device. 
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4.4.2 Effect of PEO Concentration on Triplex Fractionation 

Here, we investigated the effect of PEO concentration on fractionation performance of our 

device, as the magnitude of elastic lift forces increases with an increase in relaxation time of 

polymer solution. We prepared three different solutions having PEO concentrations of 500, 1000 

and 2000 ppm in water with corresponding relaxation times of 4.3, 6.8 and 10.6 ms [112]. Fig. 

18 shows the distribution of particles in the entrance to expansion zone of the device when 

experiments were performed with a magnet in the setup. At a flow rate of 0.25 mL h
-1
, the 15 μm 

NMPs were found focused at the center of the channel at all three PEO concentrations. The MPs 

were fractionated closer to the wall at 500 ppm PEO concentration and separated from the stream 

of 15 μm NMPs. At a flow rate of 0.5 mL h
-1
, we observed that 15μm NMPs were focused at the 

center at 500 and 1000ppm PEO concentrations, however they started to occupy multiple 

positions at 2000 ppm PEO as seen in Fig. 18ii(a-c). Fractionation of all three particles was 

observed in 500 and 1000 ppm PEO solutions, however multi-stream focusing of NMPs at 2000 

ppm did not allow any fractionation. Further, we observed that particles tend to focus at multiple 

positions (Fig. 18iii(b-c)) at 1000 and 2000 ppm PEO concentrations at a flow rate of 0.75 mL h
-

1
 and consequently no separation was possible. At this flow rate, the separation of all three 

particles was only possible in 500 ppm PEO solution. The focusing of NMPs in multiple 

positions directly depends on PEO concentration in water. The observation presented in Fig. 

18c(i-iii) that multiple focusing occurs at lower flow rate in higher PEO concentration can be 

explained by the fact Wi increases with increase in relaxation time, which is 10.6 ms for 

2000ppm PEO compared to 4.3 ms for 500ppm PEO. In conclusion we noticed that fractionation 

is possible at all PEO concentrations, however operating flow rate has to be lowered to achieve 

separation at higher PEO concentrations.  
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Figure 18. Effect of PEO concentration (500, 1000, and 2000 ppm in water) on triplex fractionation 

performance of the device. Distribution of 5µm MPs, 11µm MPs and 15µm NMPs dispersed in a(i-iii) 

500 ppm, b(i-iii) 1000 ppm and c(i-iii) 2000 ppm PEO solutions are demonstrated at different flow rates 

at the entrance of expansion zone (region B of Fig. 3). The flow direction was from left to right in all 

images and scale bar corresponds to 350µm. 

4.4.3 Triplex Sorting Characterization  

After obtaining a sound understanding of fractionation of particles in our device at various flow 

rates and PEO concentrations, n=32 outlets were integrated across the width of the expansion 

zone to quantify the position of particles as they get sorted out from the device. The results in 

Fig. 19a correspond to a representative experiment performed with all three particles at a flow 



  

63 

 

rate of 0.5 mL h
-1 

in 1000 ppm PEO solution (Fig. 18b(ii)). We captured magnified images of the 

sorted particles in 5 outlets in each frame (examples shown in Fig. 19c and 19d) and counted the 

number of particles in these images using “Analyze Particles” function of the freeware ImageJ. 

We obtained the fraction of particles in each outlet by calculating the ratio of number of particles 

passing through each outlet to the total number of same particles passing through all outlets. The 

5 μm MPs were expectedly found closer to the wall and mostly flowing through outlets 2-6 as 

observed in Fig. 19b. As we have discussed above in section 4.1.3, the 11 μm MPs were 

positioned closer to the center of the channel compared to the 5μm MPs. The 11 μm MPs were 

mostly distributed to outlets 6-11. The 15 μm NMPs, unperturbed by magnetic forces, were 

focused close to the center of the channel and found at outlets 14-16 of the device. 

 

Figure 19. Sorting characterization of 5µm MPs, 11µm MPs and 15µm NMPs in 1000ppm PEO in 

outlets of the device at a flow rate of 0.5 mL h
-1

. (a) Distribution of particles in different outlets 

constructed by combining two images at the junction of outlets 6 and 7 as shown by the dashed line. (b) 

Quantification of exit position of sorted particles showing the fraction of different particles passing 

through the outlets of the device. (c) Magnified view of the sorted 5μm MPs passing through outlets 1-5. 
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(d) Magnified view of the sorted 5μm and 11μm MPs passing through outlets 6-9. The flow direction was 

from left to right as shown by arrows. The scale bars correspond to 350µm. 

As observed in Fig. 19b, approximately 91% of 5 μm MPs passed through outlets 2-5 while the 

rest were distributed across outlets 6-17. A total of 94% of the 11 µm MPs passed through 

outlets 6-9, while 82% of the 15 µm NMPs went through outlet 15. As 5µm MPs were found 

mixed with the streams of both 11 µm MPs and 15 µm NMPs, we calculated the sorting purity of 

both of these particles with respect to contamination of their streams by 5µm MPs. We found 

that 11 µm MPs were sorted from 5 µm MPs with a purity of 94%. The 15 µm NMPs were 

fractionated from 5 µm MPs with a purity of 98%. The streams of 5 μm and 11 μm MPs were 

found to be more dispersed compared to 15 μm NMPs as seen in Fig. 19a. This is potentially 

because of the 3D nature of magnetic forces acting on MPs which might have led to distribution 

of these particles across the height of the channel, while 15μm NMPs were mostly focused in the 

center of the channel due to elastic forces. 

4.5 Conclusions 

In summary, we demonstrated a sheathless mode of magnetophoretic sorting of three MPs and 

NMPs in non-Newtonian fluids with various viscosities. We anticipate that the sorting scheme is 

due to a combination of magnetic and elastic focusing of particles. Hypothetically, the MPs were 

pulled towards the wall of the channel and focused along it, while NMPs were focused in the 

center away from MPs because of elastic lift forces. The 5 µm and 11 µm MPs, focused along 

the wall, get separated from each other in expansion zone of the device in a PFF style. The 

parametric study conducted with respect to flow rate and PEO concentration aided in 

understanding the operating conditions needed for achieving separation. We found that increase 

in Weissenberg number, with increase in flow rate and PEO concentration, leads to focusing of 
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particles in multiple positions and interfere with sorting performance as the focusing of NMPs 

particles at the center of the channel is required for separation. This phenomenon must be further 

investigated and may become advantageous in performing sorting at high flow rates in non-

Newtonian fluids. We envision the adoption of this technique in immunomagnetic separation of 

analytes like cells directly from sampled non-Newtonian fluids (e.g., blood) which can save a 

significant amount of time and resources in current sample preparation processes. 
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Chapter Five 

5 Thesis Summary and Future Works 

Here, we have summarized the major conclusions of this thesis. Also, we have provided a list of 

future works that could be pursued based on the knowledge gained from the undertaken research. 

5.1 Thesis Summary 

In this thesis, we presented a sorting technique for handling mixtures of MPs and NMPs in 

Newtonian and non-Newtonian fluid. Based on our literature review, we found that there were 

several technological gaps in the currently reported methods of sorting. The major drawbacks 

were requirement of a diluting sheath flow for running the device to achieve sorting, low 

throughput of sample processing, low separation purity, inability to perform multiplex sorting 

and complicated methods of fabricating magnetic elements into microfluidics devices. We have 

addressed the majority of these technological gaps using our proposed hybrid sorting technique 

in this thesis. 

To achieve objective 1 of the thesis (outlined in chapter 1), we proposed the MHF technique, 

which has been devised by integrating the magnetic focusing with the concept of PFF. 

Essentially, we focused the MPs along the walls of a thin channel using magnetic field instead of 

any sheath flow, then achieved hydrodynamic fractionation in a style similar to PFF at a 

downstream expansion channel. This sheathless method of sorting does not need any 

complicated fabrication method and can be operated with a simple permanent magnet. Moreover, 

we found that the MHF technique is able to fractionate 5 µm and 11 µm MPs with an efficiency 

of 98% at a throughput of 10
7
 particles per hour. 



  

67 

 

For objective 2 and 3, we proposed the MIMF technique by further combining the inertial 

focusing approach with MHF. We achieved duplex fractionation at a high throughput of 10
9
 

particles per hour. We found that under the combined effects of magnetic, inertial and drag 

forces, particles arrange themselves in the order of their sizes in the microchannel such that 

smaller particles stay closer to the wall of the channel. Utilizing this size based ordering, we 

fractionated four particles simultaneously and separated 5 µm, 11 µm and 35 µm MPs from 15 

µm NMPs. 

To achieve objective 4, we tested a viscoelastic fluid prepared by mixing PEO in water. We 

demonstrated separation of 5 μm and 11 μm MPs from 15 μm NMPs in fluids with various 

viscosities. The sorting was achieved in the MHF style, however we found that particles were 

significantly affected by elastic forces in the viscoelastic solutions. We performed experiments 

with respect to flow rate and PEO concentration, which helped us to determine the optimal 

operating conditions to achieve triplex fractionation and sorting in our device. 

5.2 Future Studies 

In this thesis, we provided an experimental study of sorting microparticles in Newtonian and 

non-Newtonian fluids in a novel microfluidic device. Based on the insights gained in this study, 

we propose further investigations to improve the understanding of underlying mechanism of 

separation and to demonstrate its application in sorting and separation of biological samples.  

We believe it is important to develop numerical models to study the particles motion in the 

device using commercial tools such as COMSOL Multiphysics. Simulations would allow us to 

perform studies to investigate the effect of parameters, which we did not study in this thesis, such 

as length of magnet, width of channel and length of channel on fractionation performance in our 

device. Length of magnet should be optimized as the time for which particles are exposed to 



  

68 

 

magnetic field has a significant influence on exit position of particles in the device. Width of 

channel is another important factor and it needs to be optimized as it directly affects the 

magnitude of inertial forces acting on particles. The length of channel significantly influences the 

position of particles as longer length results in enhanced inertial and elastic focusing. We believe 

optimizing these parameters would aid in achieving even higher throughputs and fractionation 

purities. Simulation studies would also help in answering one of the major questions about 

quality of fractionation of particles in our device. It is important to determine how close the sizes 

of MPs can be to achieve separation in our device. Simulation studies could be a convenient tool 

to determine the effectiveness of our technique in fractionating closely sized MPs. It would also 

aid in modifying the design so that more than four particles could be sorted simultaneously.  

Another important future work is to establish the applicability of this sorting technique to 

biological samples. We expect that two to four different microorganisms could be 

immunomagnetically attached to magnetic beads and sorted in our device based on the proposed 

MIMF or MHF sorting schemes in this thesis. These studies would demonstrate the usefulness of 

our device in handling biological samples, which further could be utilized for separating 

pathogens from water samples or isolating rare CTCs from blood. 

Last but not least, it is important to study the effect of shape of particles on the sorting 

performance in our device experimentally as well as analytically. As cells would be attached to 

magnetic beads, the shape of cells and beads together would not be spherical and it might have 

an influence over the behavior of particles in the channel. It is desired that experiments be 

performed with particles having shapes such as ellipse, cocci and rod, as these are the most 

commonly found shapes of microorganisms.   
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