
OPTIMIZATION OF REGULAR PATH QUERIES IN GRAPH
DATABASES

NIKOLAY YAKOVETS

A DISSERTATION SUBMITTED TO THE FACULTY OF GRADUATE
STUDIES

IN PARTIAL FULFILMENT OF THE REQUIREMENTS
FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

GRADUATE PROGRAM IN COMPUTER SCIENCE
YORK UNIVERSITY

TORONTO, ONTARIO
AUGUST 2016

c© Nikolay Yakovets, 2016

Abstract

Regular path queries offer a powerful navigational mechanism in graph databases.

Recently, there has been renewed interest in such queries in the context of the Se-

mantic Web. The extension of SPARQL in version 1.1 with property paths offers

a type of regular path query for RDF graph databases. While eminently useful,

such queries are difficult to optimize and evaluate efficiently, however. We design

and implement a cost-based optimizer we call Waveguide for SPARQL queries

with property paths. Waveguide builds a query plan—which we call a waveplan

(WP)—which guides the query evaluation. There are numerous choices in the con-

struction of a plan, and a number of optimization methods, so the space of plans

for a query can be quite large. Execution costs of plans for the same query can vary

by orders of magnitude with the best plan often offering excellent performance. A

WP’s costs can be estimated, which opens the way to cost-based optimization. We

demonstrate that Waveguide properly subsumes existing techniques and that the

new plans it adds are relevant. We analyze the effective plan space which is enabled

ii

by Waveguide and design an efficient enumerator for it. We implement a pro-

totype of a Waveguide cost-based optimizer on top of an open-source relational

RDF store. Finally, we perform a comprehensive performance study of the state of

the art for evaluation of SPARQL property paths and demonstrate the significant

performance gains that Waveguide offers.

iii

Acknowledgements

First and foremost, I would like to thank my supervisors, Professors Jarek Gryz

and Parke Godfrey. Their continuous support, deep insights, motivation and en-

couragement helped me in my research and writing of this dissertation.

Also, I would like to express my gratitude to the rest of my examination commit-

tee Prof. Aijun An, Prof. Suprakash Datta, and Prof. Ilijas Farah for their helpful

comments and engaging conversation during my defense. Additionally, I would like

to thank Prof. Ken Pu for taking time out from his busy schedule to serve as my

external examiner.

I would like to thank my colleagues at York University, University of Toronto,

and University of Waterloo for our debates in computer science and mathematics,

exchange of skills and knowledge during my graduate program. Thanks also goes

out to Ouma Jailpaul-Gill for being a great friend. I am grateful to Ulya Yigit,

Seela Balkissoon, and Jason Keltz for all of their computer and technical assistance

throughout my graduate program.

iv

Last but not the least, I would like to thank my parents Alexander and Natalia

for their love and support they provided me through my entire life. A very spe-

cial appreciation goes out to my wife and best friend, Sasha, without whose love,

encouragement, and humour, I would not have finished this dissertation.

v

Table of Contents

Abstract ii

Acknowledgements iv

Table of Contents vi

List of Figures xii

1 Introduction 1

1.1 The Problem . 1

1.2 Motivation . 5

1.3 Goals . 6

1.4 Contributions . 8

1.5 Outline . 9

2 Background & Related Work 11

2.1 Graph Data Models . 11

vi

2.1.1 RDF . 15

2.1.2 Property Graph . 18

2.2 Graph Serialization . 20

2.2.1 Relational . 20

2.2.2 Native Graph Databases . 27

2.3 Path Queries . 29

2.3.1 Path Semantics . 31

2.3.2 Paths in SPARQL . 33

2.3.3 Paths in Cypher . 35

2.4 Query Planning . 35

2.5 Related Work . 37

2.5.1 FA Plans . 38

2.5.2 Alpha-RA Plans . 43

2.5.3 Index-based Evaluation . 46

2.5.4 Relational Query Optimizers 48

3 Methodology 53

3.1 Motivation . 53

3.2 Graph Walk . 59

3.3 Query Plans . 60

vii

3.4 Optimizer & Enumerator . 60

3.5 Implementation & Benchmarking 61

4 Graph Walk 63

4.1 Wavefronts . 63

4.2 Expanding a Wavefront . 64

5 Query Plans 69

5.1 Guiding a Wavefront . 69

5.2 Wavefront Interaction . 71

5.3 WAVEGUIDE’s Plan Space . 75

6 Optimizer & Enumerator 77

6.1 Cost Framework . 77

6.2 Search Cost Factors . 79

6.2.1 Search Sizes . 79

6.2.2 Solution Redundancy . 79

6.2.3 Sub-path Redundancy . 80

6.3 Plan Optimizations . 80

6.3.1 Choice of Wavefronts . 81

6.3.2 Reduce . 82

6.3.3 Threading . 83

viii

6.3.4 Partial Caching . 83

6.3.5 Loop Caching . 84

6.4 Cost Analysis . 85

6.4.1 Cost of Threading . 86

6.4.2 Cost of Loop Caching . 88

6.5 Cardinality Estimator . 91

6.5.1 Synopsis Statistics . 94

6.5.2 Consistent Estimation . 98

6.6 Plan Enumerator . 99

6.6.1 Standard Plan Space . 102

6.6.2 Enumeration . 119

7 Implementation & Benchmarking 141

7.1 Implementation . 141

7.1.1 Software: The System . 141

7.1.2 Hardware: Runtime . 146

7.1.3 Software: Runtime . 146

7.2 Methodology . 146

7.3 The Optimizations . 147

7.3.1 Threading . 147

ix

7.3.2 Loop Caching . 149

7.3.3 Partial Loop Caching . 154

7.3.4 Combined Optimizations . 155

7.4 Comparison with Other Systems . 156

7.4.1 Transitive Closure . 157

7.4.2 Query Planning . 159

7.4.3 Query Planning vs. Transitive Closure 160

8 Conclusions 162

8.1 Contributions . 163

8.2 Future Work . 164

8.2.1 Multiple & Conjunctive RPQs 165

8.2.2 Better Cardinality Estimation 168

8.2.3 A Richer Enumerator: Beyond Standard Waveplans 170

8.3 In Summary . 173

Bibliography 175

A Appendix 181

A.1 Nomenclature . 181

A.2 Queries . 183

A.2.1 Threading . 183

x

A.2.2 Loop Caching . 184

A.2.3 Partial Loop Caching & State of the art Planning 184

A.2.4 State of the art Planning . 185

xi

List of Figures

1.1 An example graph database. 3

2.1 Timeline of graph database models. 13

2.2 Graph representation of an RDF triple. 16

2.3 Example property vs. RDF graph. 19

2.4 RDF storage based on a single table. 21

2.5 RDF storage based on property tables. 23

2.6 RDF storage based on vertical partitioning. 26

2.7 Relational vs. native physical graph storage. 27

2.8 Different solution semantics in RPQs. 31

2.9 Query optimizer architecture. 35

2.10 An ε-NFA and corresponding reduced NFA for Q1.3. 40

2.11 Example run of an algorithm proposed by Kochut et al. 41

2.12 Example run of an algorithm proposed by Koschmieder et al. 43

2.13 A parse tree and α-RA tree for query Q1.3. 44

xii

3.1 Plan space classes. 54

3.2 Plans and corresponding Datalog programs. 58

4.1 Waveguide’s evaluation procedure. 64

4.2 Two waveplans, P1 & P2, over graph G, with an evaluation trace of

P1. 67

5.1 Types of transitions used in a wavefront. 70

5.2 Waveplans for abc expression. 74

5.3 Attempting to build waveplans for (abc)+ expression. 74

6.1 Types of search cost factors. 81

6.2 Choosing the wavefronts. 82

6.3 Threading a shared sub-path. 84

6.4 Types of loop caching. 85

6.5 Lensing. 89

6.6 Cardinality estimation of a join. 92

6.7 Synopsis statistics for graph label frequencies. 94

6.8 Estimating join cardinality using synopsis. 96

6.9 Different ways of estimating the cardinality of r = a/b/c/d. 98

6.10 Thompson Construction. 100

6.11 Recursive templates for a standard waveplan. 103

xiii

6.12 Plan space classes. 105

6.13 Example of SWP generation. 106

6.15 Waveguide’s memoization sub-routine. 120

6.14 Waveguide’s enumeration procedure. 121

6.16 Waveguide’s plan generation sub-routine. 122

6.17 Waveguide’s constant seed passing sub-routine. 122

6.18 Waveguide’s Kleene seed passing sub-routine. 122

6.19 Enumeration rules for graph label expressions. 123

6.20 Enumeration rules for the concatenation operator. 124

6.21 Enumeration rule for the union operator. 124

6.22 Enumeration rules for Kleene closures. 125

6.23 Enumeration rules for seed passing. 125

6.24 A run of the enumeration algorithm for Q = (x, (abc)+, y). 130

6.25 A plan template for Kleene plus Q = (x, s1+, y). 138

7.1 Overview of the prototype system. 142

7.2 Query plan designer. 144

7.3 Runtime visualizer and profiler. 145

7.4 Benchmarking Threading. 148

7.5 Benchmarking Loop Caching. 150

7.6 Effect of plans on query evaluation. 151

xiv

7.7 Benchmarking vs. state of the art. 157

8.1 Extended Synopsis. 168

8.2 A richer enumerator. 171

8.3 Example of k-unrolling. 172

xv

1 Introduction

1.1 The Problem

Graph data is becoming rapidly prevalent with the rise of the Semantic Web, social

networks, and data-driven exploration in life sciences. There is a need for natural,

expressive ways to query over these graphs. Standards are coming into place for

this. The Resource Description Framework (RDF) [56] provides a data model for

graph data. An RDF store is a set of triples that describes a directed, edge-

labeled multi-graph. A triple, 〈s, r, o〉, denotes an edge from node “s” (the subject)

to node “o” (the object), with the edge labeled by “r” (the role, also called label or

predicate).

Correspondingly, the SPARQL query language [54] provides a formal means to

query over RDF stores. A query defines sub-graph match criteria; its evaluation

over an RDF store returns all embedded sub-graphs meeting the criteria. For

example, the query

1

“?friend :friendOf Charles” (Q1.1)

evaluates to a list of people (nodes binding to variable “?friend”) who are friends of

(role “:friendOf”) “Charles” (a named node, so a constant). This is a simple query,

of course, and could be evaluated just by extracting the triples with “r = :friendOf”

and “o = Charles”.

In its latest version, 1.1, SPARQL’s expressiveness is extended with property

paths [29]. This effectively introduces the concept of regular path queries (RPQs)—

well studied before the advent of RDF and SPARQL—into the query language.

Instead of specifying the path of interest explicitly between nodes, one may now

specify it implicitly via a regular expression. (This also means matching paths in

the graph are not bounded in length by the query’s expression, while they are in

SPARQL 1.0). For example, the query

?friend :friendOf+ Charles . (Q1.2)

evaluates to a list of people who are friends of “Charles”, or friends of people who

are friends of “Charles”, and so forth (that is, a transitive closure over “:friendOf”).

While SPARQL provides the expressiveness we desire, such queries are more

challenging to optimize well. Query Q1.1 could be evaluated just by extracting the

triples with “r = :friendOf” and “o = Charles”. For even a slightly more complicated

query, however, it may not be straightforward to find a plan to evaluate it efficiently.

2

en:Gundam

jp:Gundamu

:sa
m

eA
s:s

a
m

eA
s

jp:Odaiba

:isLocatedIn

jp:Tookyoo

:isLocatedIn

en:Daiba

:sa
m

eA
s

en:Tokyo

:i
sL

o
ca

te
d

In

en:Japan

jp:Nihon

:isLocatedIn

:isLocatedIn

:sa
m

eA
s:s

a
m

eA
s

Figure 1.1: An example graph database.

For example, consider the knowledge base dataset of the Linked Open Data

(LOD) cloud. LOD is a community effort which aims to interlink the structural

information available in various datasets on the Web (such as Wikipedia, WordNet,

and others), and make it available as a single RDF graph.

RPQs prove useful in querying such linked data by providing a convenient declar-

ative mechanism which can be used to answer queries without prior knowledge of

the underlying data paths.

Example 1 Consider the part of a LOD graph database as presented in Fig. 1.1.

This represents information the Gundam robot statue in Odaiba in Tokyo. The

data has been integrated from two datasets, identified by the prefixes en and jp,

standing for the English and Japanese Wikipedia, respectfully. The data entities

between these two datasets are interlinked by using Web Ontology Language (OWL)

ontology terms. Equivalent entities are connected with owl:sameAs edges. In this

3

case, the Japanese dataset contains richer spatial information related to the statue

than does the English dataset.

Say a user wants to know in which country this Gundam statue is located. Since

there are no direct :isLocatedIn edges outgoing from en:Gundam–as is often the case

in linked data–the graph needs to be searched. During the search, equivalent data

entities need to be resolved by following :sameAs edges. Likewise, a spatial hierarchy

needs to be computed by following :isLocatedIn edges. This search can be defined by

the following SPARQL query pattern:

en:Gundam (:sameAs*/:isLocatedIn)+ (Q1.3)

/:sameAs* ?place .

Q1.3 computes the spatial hierarchy starting from node en:Gundam, using informa-

tion from both interlinked datasets to resolve equivalent entity closures.

Observe that Q1.3 requires transitive closure over concatenation:

“:sameAs*/:isLocatedIn”

with respect to the graph. As we will see, even simple queries like this are sig-

nificantly more challenging to optimize and plan for than queries without closures

(e.g.,Q1.1), and than queries with closures just over single labels (e.g., Q1.2).

4

1.2 Motivation

Property path evaluation is a tale of two methods: two quite different approaches

appear in the literature. For RPQs, seminal work [48] that introduced the G+

query language shows how to use a finite state automaton (FA) effectively as a

plan to guide the graph walk for the query’s evaluation. We call this approach FA.

Subsequent work on RPQs has followed this idea.

SPARQL with property paths is much more recent. Systems for SPARQL

query evaluation have followed the second approach, based primarily on the seminal

work of [44]. These extend the relational algebra to accommodate the translation

of a property path’s regular expression, and then use dynamic programming over

the (extended) relational-algebra parse to devise a plan. Added is an “α” operator,

which provides the transitive closure over a relation to accommodate regular ex-

pressions’ Kleene star. Virtuoso [21], a leading SPARQL system, does just this.

Thus, we call this approach α-RA, the relational algebra extended by “α”.

Which approach is better? We shall show that the effective “plan spaces” that

result from FA and α-RA are incomparable. Sometimes, for a given query and

graph, an FA plan will be the better choice. Other times, an α-RA plan will be.

Our goal is to formalize the notion of plan space for both, to be able to choose

the best plan. We shall show that a richer plan space can be had that properly

5

subsumes FA and α-RA, and offers more plans existing in neither (“mixed” plans),

and that these sometimes are the best plans.

1.3 Goals

Our goal is to design, build, and test a viable cost-based query optimization and

evaluation for SPARQL property paths over RDF stores that is on par with the

state of the art for relational database systems. We name the approach that we

develop Waveguide.

The first step of this endeavor is to define a plan space—the space of query plans

which we name waveplans (WPs)—for SPARQL property path queries. We focus

on single-path, property path queries, essentially the RPQ fragment of SPARQL

1.1. We consider a set semantics—the distinct directive in each query—and thus do

not consider aggregation. A waveplan consists of a collection of (non-deterministic)

finite automata for the property path and search directives which guide the query

evaluation. With proper choice of plan, we can gain orders of magnitude per-

formance improvement for many property path queries over real datasets, while

maintaining comparable performance for other queries, as the leading SPARQL

query engines as Jena [34] and Virtuoso [21]. We evince that planning is critical

to evaluate SPARQL queries efficiently, and that choosing the right plan depends

on the underlying graph data and thus ultimately must be cost-based. Waveplans

6

model a rich space of plans for path queries which encompass powerful optimization

techniques.

The second step of this endeavor is to design an enumerator which will efficiently

walk the space of waveplans. We will show that even for a single-path property

path query (an RPQ), the number of plans which evaluate it is exponential in the

size of the query. Fortunately, the nature of RPQs allows us to design an efficient

enumerator to walk the plan space in time polynomial in the size of the query.

The plan enumerator must be coupled with a cost estimator which costs the

plans in order to be able to select the best plan by estimated cost. For this, we

develop a cost model to model the execution costs (at runtime) of evaluation steps

with respect to a plan. To be able to apply this cost model to estimation, we also

need cardinality estimation of intermediate stages of a plan in execution with respect

to the graph. To aid in cardinality estimation, some degree of statistics of the

graph must be maintained. We develop a cost model, a cardinality estimator, and

synopsis graph statistics that support the cardinality estimation. Based on these,

we construct the cost estimator that can be used in tandem with plan enumerator.

We then implement a Waveguide prototype and test it on real-world datasets

with a micro-benchmark of regular path queries that we develop. We justify the

plan space Waveguide approach provides, perform the benchmarking of the opti-

mizations Waveguide offers, and compare the performance against leading graph

7

databases.

1.4 Contributions

We summarize the contributions of this dissertation in three main areas: novel plan

space and optimizations for regular path queries; a cost-based optimizer which

utilizes these optimizations; and design, implementation, and benchmarking of the

proposed approach.

1. Waveguide-plan space.

(a) Summarize the state of the art for evaluation of RPQs and SPARQL

property paths (§2.5). Establish why none suffices (§3.1).

(b) Devise the waveguide place space (§5). Demonstrate it subsumes the

state of the art, and extends well beyond it (§5.3).

(c) Present the powerful optimizations offered by waveplans (§6.3). Model

the cost factors that determine the efficiency of plans (§6.4).

2. Build a full-fledged cost-based query optimizer for SPARQL 1.1 for property

paths (RPQ fragments of SPARQL 1.1).

(a) Devise a concrete cost model for WPs (§6.1).

(b) Determine an array of statistics that can be computed efficiently offline

that can be used in conjunction with the cost model (§6.5).

(c) Define “WP” systematically to define formally the space of WPs for a

8

given query (§6.6.1).

(d) Design an enumeration algorithm to walk dynamically the space of WPs

to find the WP with least estimated cost (§6.6.2).

3. Prototyping and performance study.

(a) Provide an evaluation framework (§3.2) and implement a prototype of a

Waveguide system (§7.1).

(b) Benchmark query plans for realistic queries over real RDF stores /

graphs. Substantiate the optimizations of our approach (§7).

(c) Justify the necessity of planning and the waveplan space (§7).

1.5 Outline

The dissertation is organized as follows. In Chapter 2, we provide an overview of

graph data models with a focus on Resource Description Framework (RDF). We

discuss graph serialization methods in relational and native graph databases. The

semantics of evaluation of path queries is presented. Then we overview several tech-

niques for query planning and discuss query optimization in relational databases.

Finally, we present current methods of RPQ evaluation based on finite automata

and relational algebra.

In Chapter 3, after the appropriate background and existing approaches have

been established, we provide an overview of our proposed Waveguide method-

9

ology. In Chapter 4, we present the evaluation framework used in Waveguide.

We define a wavefront — a basic unit of graph search used in Waveguide. In

Chapter 5, we introduce waveplans as data structures used in guiding wavefronts.

We discuss the plan space entailed by waveplans and compare it to the existing

RPQ evaluation approaches.

In Chapter 6, we present a cost-based query optimizer based on Waveguide

approach. We discuss cost framework, factors which drive the cost and optimiza-

tions (enabled by Waveguide) which are used to minimize the cost. We define

waveplans formally and analyze the space of waveplans. Then, we design an enumer-

ator to efficiently walk the waveplan space. Combined with cardinality estimator,

enumerator sets the foundation for cost-based Waveguide’s query optimizer.

In Chapter 7, we present our prototype implementation of Waveguide system

over RDF store backed by an open-source relational database system (PostgreSQL).

Then we demonstrate the experiments on large graph datasets which show the merit

of the optimizations used in Waveguide. We also compare our system with the

state of the art in SPARQL property path evaluation and show that our system

demonstrates significant performance gains.

In Chapter 8, we finish by reiterating the dissertation’s key contributions, present

several promising directions for future work, and conclude.

10

2 Background & Related Work

2.1 Graph Data Models

In many applications, information about relationships between data entities is as

important as the data itself. In these areas, the ability to model, manipulate and

issue queries over graph structures can be extremely useful. Graphs provide natural

and easily comprehensible means to represent the information in many domains:

• Social networks: Graph nodes represent people or groups of people and edges

are various social relationships such as friendships, collaborations, shared in-

terests and interactions.

• Life sciences: Advances in the automation of data gathering has resulted in

significant challenges in management and analysis of data used in life sciences.

In many situations, graphs offer an ideal data modeling tool. Consider, for

example, an important research area such as genomics. There, datasets that

describe gene regulation, chemical structure or metabolic pathways can be

naturally represented as graphs.

11

• Spatial: Queries over many technological networks involve calculations that

take into account spatial or geographical features of stored entities. Exam-

ples are transport networks such as highways, airline routes and railways,

telecommunication infrastructure (phone and the Internet), electrical power

grids and water delivery networks.

• Information Flow: Networks that involve some information flow such as

World Wide Web (WWW), linguistic databases such as thesauri describing

relations between word classes, specialized preference and peer-to-peer net-

works. Finally, graphs are the model of choice in representing the data on the

Semantic Web.

Besides allowing natural modeling of the data, graphs enable specification of

powerful query languages. Specifically, many of the applications that we described

above require special graph operations that cannot be easily expressed as queries

over classical data models such as the relational data model. In social networks,

we use specialized measures such as distance between nodes, neighborhoods, size of

connected components, clustering coefficients of vertices and networks. In biological

networks, we are interested in pair correlations which are strong (nearest neighbor

degrees) and interactions between proteins (connected components). Geospatial

applications utilize specific geometric operations such as area or boundary compu-

tations, intersections, inclusions, metric measures such as distance between entities

12

Figure 2.1: Timeline of graph database models.

and diameter of a cluster.

Over the years, graph databases have received attention both from academia

and industry. In general, the research community has evolved two efforts for graph

databases. Activity around graph data models flourished in the first half of the

90s, but then the topic almost disappeared. The rise of the Semantic Web in the

late 2000s is attributed to the return of interest of research community to graph

databases, which still remains strong today. A timeline showing influential graph

data models is presented in Fig.2.1.

The Logical Data Model (LDM, [38]) is considered to be the first data model

based on graphs. It was conceived in an attempt to generalize the relational, hier-

archical and network models. In LDM, a schema is represented by a digraph which

consists nodes of specific types and edges which represent the connections among

data. The database instance, however, is represented as a table: an assignment of

13

values to terminal nodes in the schema. Both data and schema are graph-based

in GOOD [25], an influential data model that inspired many offsprings. Specifi-

cally, GMOD [4] extended GOOD by proposing a number of concepts to deal with

graph-oriented database user interfaces.

An interesting departure from using simple flat graphs as data representation is

exhibited by the Hypernode family of data models [41–43]. Inspired by the practical

issue of displaying the graph to the users in a clear and comprehensive way, these

models utilize nested nodes, which are themselves graphs. This gives the ability

to represent each real-world object as a separate database entity, thus enabling

straightforward encapsulation of information.

In general, this early research established a solid theoretical base for graph-

based data models: data and schema structures, data manipulation languages, and

integrity constraints. Main motivations for this research were the generalization of

classical data models, the limited expressive power of existing query languages, the

need to improve the functionality of object-oriented systems, and work on graphical

and visual interfaces. It should be noted, however, that most of these proposals

lacked actual implementations.

14

2.1.1 RDF

The rise of the Semantic Web in the late 2000s is attributed to the return of

interest of research community to graph databases. A new data model was required

to accommodate distributed, heterogeneous, semi-structured and machine-readable

metadata used on the Semantic Web. Resource Description Framework (RDF, [56]),

a recommendation of W3C, was designed to handle such metadata. The main design

goal of RDF is to support highly-distributed data without any assumptions about

the particular application domain from which the data comes.

RDF views data as a set of resources, which are uniquely identified by their

Internationalized Resource Identifiers (IRIs). RDF statements are used to describe

relationships, called properties, between resources in the form of triples (subject,

property, object). Properties are possible relations between resources; e.g., “created

by” and “born in”. Objects can either be resources or literals, which are atomic

values such as strings.

As an example, consider the following triple that states that Shakespeare wrote

Hamlet:

(http://lit.com/author#Shakespeare, wrote, http://lit.com/book#Hamlet)

Another way to represent a triple (s, P, o) is as a logical formula P (s, o), where the

binary predicate P relates subject s to object o:

15

Shakespeare Hamlet

:wrote

Figure 2.2: Graph representation of an RDF triple.

wrote(http://lit.com/author#Shakespeare, http://lit.com/book#Hamlet)

RDF can thus be represented as a graph by considering properties as labeled,

directed edges between subject and object nodes, and between subjects and literals

(as shown in Fig.2.2).

We formally define RDF triples as follows. Consider set I of all IRIs and L the

set of all literals, and assume that these two sets are disjoint1. Then, an RDF triple

is a tuple: (s, p, o) ∈ I × I × (I ∪L), where s is the subject, p is the predicate, and

o is the object. An RDF graph is a finite set of RDF triples.

RDF provides simple and flexible data model for the Semantic Web. In contrast

to the relational model, in RDF the data is decomposed into triples representing

the relationship between data elements explicitly. This allows for very simple data

merging as one does not have to worry about matching the schemas from different

data sources. Given the global identification mechanism of IRI, merging data is

reduced to a union. This ability to easily process widely distributed and highly

heterogeneous data is essential for RDF to be a successful Web language that aims

to represent data on the Semantic Web.

1RDF also considers a special type of objects to describe anonymous resources, called blank
nodes in the RDF data model. These are out of scope of this document.

16

RDFS is the schema language for RDF. Unlike other data models, there is no

separation between the data and schema in RDF/RDFS. All schema information

in RDFS is defined within RDF itself by introducing a set of distinguished terms

which are prefixed with rdfs:. All these RDFS terms can be grouped based on

their usage as follows.

• Resources: These self-explanatory terms are used to define resources and

classes of resources: rdfs:Resource, rdfs:Class, rdfs:Literal, rdfs:Datatype.

• Relationships: These terms are used to define the relationships between re-

sources: rdfs:range, rdfs:domain, rdfs:subClassOf, rdfs:subPropertyOf.

• Non-modeling and Utilities: These include rdfs:label, rdfs:comment,

rdfs:seeAlso and rdfs:isDefinedBy.

One of the key uses of RDFS is inferencing. Given the explicitly stated informa-

tion, RDFS type and property propagation rules allow determining other, related

information that can be considered as if it had been explicitly stated. Inferencing

is a powerful mechanism in information processing that allows a database to reason

about the data. To facilitate reasoning, in addition to RDFS, other, more elaborate

RDF schema languages such as RDFS-Plus [28] and OWL [46] were developed.

17

2.1.2 Property Graph

The Property Graph Model [57] was introduced in 2010 by Rodriguez et al. It has

become a popular data model for native graph databases2. The main feature of

the Property Graph Model is to allow node and edge attributes. The attributes

are key/value pairs that are attached to nodes and edges. Rodriguez et al. argue

that property graphs are popular in current graph databases due to their versatility.

Specifically, by simply abandoning or adding particular features to the model, many

common graph types can be expressed. For example, by dropping the attributes

and restricting node/edge labels to IRIs, RDF graph can be generated.3 Similarly,

by using weights as edge attributes weighted graphs can be generated.

We formally define a property graph as a directed, labeled, attributed multi-

graph. The edges are directed, nodes and edges are labeled, key-value attributes

(or, properties) are associated with both nodes and edges, and there can be multiple

edges between any two nodes.

Consider an example property graph is shown in Fig.2.3a that describes and

expands on some interesting facts about William Shakespeare. The design choice

made in property graph model is that not every datum needs to be “related” to

an entity; e.g., name, age, and date of birth. Instead, such properties are encoded

2We talk more on this in §2.2.

3This is not completely true as RDF also uses blank or anonymous nodes.

18

Figure 2.3: Example property vs. RDF graph.

as key/value attributes that are attached to the entity in question. Thus, property

graphs provide finer granularity on the meaning of an edge as the key/value of the

edge add extra information beyond the edge label.

On paper, a property graph is a schema-less data model. Rodriguez et al. state

that ultimately, data is represented according to some schema whether that schema

is explicit in the database, in the code interacting with the database, or simply left

implicit. Often, such claims are justified by the need to support of evolving schemas

in current “big data” applications. We think that, in this case, this argument is

invalid, assuming that the consistency in the database is as important as the support

for the flexible schema. The optional schema in RDF seems like a good example of

what can be done in a distributed graph setting with relaxed schema structures.

A single advantage of property graph over RDF comes from the ability to add

attributes to edges. This is useful in practice as many relationships between entities

have literal properties. In RDF, in order to add a literal property to an edge, this

19

edge needs to be reified. This is an unnecessarily cumbersome procedure in the

process of the modeling of the domain.4

2.2 Graph Serialization

With increasing interest in graph technologies, many developers have faced the

challenge of how to rapidly implement an efficient and robust graph storage. While

some opted for “native” solutions, many turned to relational databases in order to

provide the core of an RDF storage system. This decision is not surprising given

that relational technologies offer a four decade-worth of research and development,

great query performance, and good scalability. However, unlike native solutions,

relational implementations require intricate mechanisms that link graph and re-

lational data models. The following subsections provide an overview of different

proposals in this area of research.

2.2.1 Relational

2.2.1.1 Single Table

A generic solution to store graph data in a relational database is to use a single

3-attribute table. In this table, for each triple in an RDF dataset, a single (subject,

4As illustrated in Figures 2.3a and 2.3b. In RDF, reified statements (e.g. RS1 and RS2) need
to be added in order to be able to state a literal fact about a relationship.

20

Figure 2.4: RDF storage based on a single table.

predicate, object) tuple is stored. For data indexing and compression purposes, long

strings such as IRIs may be replaced with short unique numerical identifiers as

shown in Fig. 2.4.

All queries that are issued by an end user at an RDF endpoint are translated to

SQL and sent to a backend database. Queries with more elaborate graph patterns,

however, would require multiple self-joins over Statements table which can lead

to significant performance issues. While single table storage implementation can

efficiently handle highly heterogeneous data and single triple pattern queries, its

biggest disadvantage is the performance penalty incurred by the self-joins associated

with SPARQL queries that have elaborate graph patterns.

21

2.2.1.2 Property Tables

To reduce the number of self-joins, Wilkinson et al. devised an RDF storage method

that utilizes property tables [63]. An idea behind this approach is the exploitation

of the fact that many RDF datasets often have frequently occurring patterns of

statements (regularities). Regularities are the properties that are frequently asso-

ciated together with the majority of the resources in the dataset. For example, an

employee dataset might include for each employee, an employee number, a name,

location, and phone. Then, such common properties can be modeled as attributes

of the same table, which is called a property table.

The attributes of a property table consist of a primary key of a resource (typi-

cally an IRI) and a set of properties that are commonly associated with the resources

in the dataset. For example, one may notice that in the dataset presented in Fig.2.4

properties Type, Title and Copyright appear in the majority of the resources. Thus,

these can be used to construct a property table shown in the middle of Fig.2.4.

When a property is not associated with a resource, it is reflected by a NULL

value in the property table. In the example dataset, properties Author, Artist and

Language are not attributes of the property table. These properties are associated

with minority of the resources, therefore their inclusion in the property table would

lead to a lot of NULL values, which is a waste of space. Triples excluded from the

22

Figure 2.5: RDF storage based on property tables.

property table are placed into excess table, which has (subject, predicate, object)

format.

In the example in Fig. 2.5, the language property can be both “English” and

“French” for multilingual media. Due to First Normal Form [2] requirement in the

relational model, such multi-valued properties cannot be included in the property

table, so would have to be placed into excess table.

An improvement on this RDF storage approach is to consider multiple property

tables. Based on the statistical evaluation of a given RDF dataset, a property

clustering algorithm can be used to decide on the number and configuration of

23

property tables. The schema information can also be used in order to identify

the structure of property tables. In particular, RDFS classes are used to group

resources with the same structure. Hence, it is worthwhile to use these classes as

guidelines to build property tables. Such tables are called property-class tables ; an

example is given on the right side of Fig. 2.4.

The advantage of this RDF storage approach is that queries that involve clus-

tered attributes can be answered without joins. This approach seems to work well

on well-behaved and highly structured data, as then the schema information can

be used to build efficiently the property tables.

However, while such data structure and query workloads may be dominant in

some applications, in many situations this storage approach will underperform. For

instance, a performance penalty is incurred when the data from different property

tables needs to be combined. Since the main feature of RDF is that it was designed

to model highly heterogeneous data, it is usual that most interesting queries would

involve joins over property tables. One way to reduce the likelihood of such “bad”

queries is to make the property tables wider. However, since RDF data is not

structured, this will contribute to the sparseness of the property table, which, in

turn, will impose a significant performance overhead.

The property table technique can significantly improve performance by dramat-

ically reducing the number of self-joins when compared to the single table approach.

24

However, this scheme requires careful property clustering in order to create prop-

erty tables that are not too wide, while still not being too narrow in order to be

able to answer most queries directly.

2.2.1.3 Vertical Partitioning

As an alternative to property tables, Abadi et al. proposed a vertically partitioned

RDF storage approach [1]. In this fully decomposed storage model [15], each unique

property in the RDF dataset gets a table. In each of these tables, the first column

contains the subjects that define that property and the second column contains the

objects for those subjects. An example decomposition is shown in Fig. 2.6.

The vertically partitioned approach has the following advantages over the prop-

erty table technique. First, multi-valued attributes are fully supported and no

longer problematic. In this storage model, if a subject has more than one object

assigned via particular property, then each object is listed in a successive row in

the corresponding table for that property. Second, if no subject is associated with

an object for a particular property, then the corresponding row is simply omitted

from the table. This allows for smaller tables, as NULL data is not explicitly stored.

Finally, the vertically partitioned approach is simpler to implement as no property

clustering algorithms are needed.

Despite its advantages, the vertically partitioned approach is not free from limi-

25

Figure 2.6: RDF storage based on vertical partitioning.

tations. Queries with several properties would require more joins than the property

table technique. Although, these joins are fast merge-joins, they are not free, and

still slower than single table sequential access. Also, when an object or a subject

is updated, all different tables for corresponding properties need to be updated as

well.

In summary, the vertically partitioned approach provides similar performance

to the property table technique while being simpler to design and implement. This

approach performs even better in a column-oriented database. Despite its advan-

26

Figure 2.7: Relational vs. native physical graph storage.

tages, for some datasets and query workloads, vertically partitioned scheme can

under perform when compared to single or property table approaches.

2.2.2 Native Graph Databases

We call a graph database native when it satisfies the index-free adjacency property:

each node stores information about its neighbors as direct references or a local index

in addition to an optional global index of connectedness between nodes. In contrast,

in relational graph databases, a graph is represented as a globally indexed collection

of triples.

At the root of many graph algorithms is the procedure called graph walk. A

graph walk is a “traversal” of the nodes in a graph. During this walk, information

about graph is processed, and, in general, an algorithm which solves a problem on

27

a graph can be computed.

Consider an execution of a walk over a graph that is stored in a relational

database and a graph stored in a native database as presented in Fig.2.7. In order

to make a “jump” from one node to another in the relational graph, an algorithm has

to consult a global index to identify the neighbors of this node. Since most indexes

are implemented as trees, the complexity of a jump, in this case, is O(log n), where

n is a number of entries in the index; e.g., a number of nodes. On the other hand,

in a native database, each node has direct references to its neighbors. This means

that, in this case, each jump takes constant (O(1)) time.

Hence, if an algorithm executes a graph walk that involves many jumps, its

overall complexity will be lower in a native graph database. Further, native jumps

are independent of the number of nodes in the graph, which becomes important as

graph size increases.

Many graph databases today (Neo4j5, DEX6, and AllegroGraph7) implement

index-free adjacency, and thus, can be considered being native graph databases.

5http://neo4j.org/

6http://www.sparsity-technologies.com/

7http://franz.com/agraph/allegrograph/

28

2.3 Path Queries

Besides allowing for natural modeling of the data, graphs enable the specification

of powerful query languages. We enumerate the desired features of graph query

languages as follows8. The first type of query which is often used in information

retrieval, the Semantic Web, and life sciences is adjacency query. Two nodes are

adjacent if there is an edge between them. Similarly, two edges are adjacent if they

share a common node. Such queries may test whether nodes/edges are adjacent;

check the k-neighborhood of a node, or list all neighbors. The second type is

pattern matching queries. These aim to find all sub-graphs in a database that

are isomorphic to a given query pattern graph. Such queries are useful in many

data retrieval tasks. Summarization queries are the third type. These queries

summarize or operate on query results, and typically return a single value. For

example, aggregation queries such as average, count, min, and max are included

in this group. In addition, we include queries which allow functions that compute

some properties of the graph or its elements such as the distance between nodes, the

diameter of a graph, and node degree. The last type of query deals with problems

related to paths or reachability in a graph. These queries identify or test if nodes are

reachable by following a specified path. In general, we consider two types of paths:

fixed and arbitrary-length. Fixed paths contain a predefined number of nodes and

8We borrow this classification from an excellent survey [5] by Angles et al.

29

edges. In contrast, arbitrary-length paths are not fixed in terms of the number of

nodes and edges but specify more relaxed restrictions on paths, usually by using

regular expressions. These are called regular path queries (RPQs). RPQs allow

queries to evaluate regular expressions over graph data and have been recently

included in the specification of popular graph-oriented query languages such as

SPARQL [54] and Cypher [17].

A graph database G can be defined as 〈V,Σ, E〉 for which V is a finite set of

nodes (vertices), Σ is a finite alphabet (a set of labels), and E is a set of directed,

labeled edges, E ⊆ V × Σ× V .

A path in a graph is defined as a sequence p = n0a0n1. . .nk−1ak−1nk such that

ni ∈ N , for 0 ≤ i ≤ k, and 〈ni, ai, ni+1〉 ∈ E, for 0 ≤ i < k. The path-induced

path label λ(p) is the string a1a2. . .ak∈ Σ∗ (for which Σ∗ is a set of all finite strings

formed over Σ). Each node n ∈ V is associated with an empty path, n, the path

label of which is the empty string, denoted by ε.

A regular expression over alphabet Σ is defined inductively, as follows: 1. the

empty string ε and each symbol r ∈ Σ; and, 2. given regular expressions r, r1, and

r2, then (a) the concatenation r1r2, (b) the disjunction r1|r2, and (c) Kleene star r∗.

The regular language defined by the regular expression r is denoted by L(r). The

regular language is defined inductively, as follows: 1. L(ε) = {ε} and L(a) = {a},

for each a ∈ Σ; and, 2. for inductively combining strings, (a) L(r1r2) = L(r1)·L(r2),

30

Figure 2.8: Different solution semantics in RPQs.

(b) L(r1|r2) = L(r1) ∪ L(r2), and (c) L(r∗) = {ε} ∪⋃∞i=1 L(r)i.

A regular path query Q is a tuple 〈x, r, y〉 for which x and y are free variables

(that range over nodes) and r is a regular expression. An answer to Q over graph

G = 〈V,Σ, E〉 is a pair 〈s, t〉 ∈ V ×V such that there exists an arbitrary path p from

node s to node t for which the path label λ(p) is in language L(r) (λ(p) ∈ L(r)).

The answer set of Q over graph G is the set of all answers of Q over G.

2.3.1 Path Semantics

The semantics of conforming paths can either be simple or arbitrary. A simple

path cannot go through the same node twice, whereas arbitrary path does not

have this restriction. In addition, the solution of an RPQ can be either a bag or

a set of variable bindings. In literature, these are also known as counting (∀) and

existential (∃) semantics for query solutions. For example, consider graph database

31

G presented in Fig. 2.8. Suppose, we evaluate the query Q = 〈1, a+b+, y〉, where

x = 1 is fixed and y is free. Then, the query solutions that correspond to different

semantics are as follows:

• Simple/∃: In this scenario, we match paths between nodes to simple paths

and return only a single pair of nodes (s, t) even if there are multiple simple

paths between s and t. In our example, we return three solutions in total.

• Simple/∀: Here, we match simple paths, but count the solutions, i.e. return

as many duplicate pairs (s, t) as there are conforming simple paths between

nodes s and t. In our example, we return all the solutions from Simple/∃,

plus a duplicate pair (1, 7) which correspond to two different simple paths in

G.

• Arbitrary/∃: This case is similar to Simple/∃, but we drop the requirement

for paths to be simple, i.e. a path is conforming as long as its path-induced

label belongs to the language defined by a given regular expression. In our

example, we return all the solutions from Simple/∃ plus a pair (1, 2) which

path satisfies L(a+b+), but is not simple since node 2 is visited more than

once.

• Arbitrary/∀: In this scenario, we drop the requirement for paths to be simple,

but require solutions to be counted. That is, when evaluating RPQs one can

obtain several duplicates for the same solution, essentially one duplicate for

32

every different path in the graph satisfying the expression. Since graphs con-

taining cycles may lead to an infinite number of paths, this scenario requires a

cycle elimination procedure to be defined. Due to cycles in G in our example,

the potential number of solutions is unbounded.

The semantics of RPQs have a great impact on the complexity of query evaluation

and thus need to be considered carefully in the design of a query language.

2.3.2 Paths in SPARQL

SPARQL Protocol and RDF Query Language (SPARQL) [29] is a query language

for RDF. A SPARQL query consists of a set of variables and a graph pattern used

for matching within the RDF graph. In the SPARQL 1.0 standard, graph patterns

only allow simple navigation in the RDF graph, by matching nodes over fixed-

length paths. Under the proposed SPARQL 1.1 standard, the W3C working group

has greatly extended the navigational capabilities of SPARQL queries by allowing

graph patterns that include regular expressions in the form of property paths, which

enable matching of nodes over arbitrary-length paths, and which allow a limited

form of negation.

We use the terminology from [7]. Consider the following pairwise disjoint, infi-

nite sets: I (IRIs), B (blank nodes), L (literals) and V (variables). The proposed

SPARQL 1.1 standard [29] defines a property path recursively as follows:

33

1. Any a ∈ I is a property path;

2. Given property paths p1 and p2, expressions p1/p2, p1|p2, p̂1, p1∗, p1+ and

p1? are also property paths;

3. Given a1, . . . , an ∈ I, expressions !a1, !̂ a1, !(a1| . . . |an), !(̂ a1| . . . |̂ an) and

!(a1| . . . |aj |̂ aj+1| . . . |̂ an) are property paths.

Hence, property paths are regular expressions over vocabulary I of all IRIs, for

which “/” is concatenation, “|” disjunction, “̂ ” inversion, “∗” Kleene star (zero or

more occurrences), “+” one or more occurrences, and “?” zero or one occurrence.

Negated property paths are not supported, but negation on IRIs, inverted IRIs and

disjunctions of combinations of IRIs and inverted IRIs is allowed. A property path

triple is a tuple t of the form (u, p, v), where u, v ∈ (I ∪ V) and p is a property

path. Such a triple is a graph pattern that matches all pairs of nodes 〈u, v〉 in an

RDF graph that are connected by paths that conform to p.

Initially, W3C had adopted simple path semantics for arbitrary-length property

paths in SPARQL 1.1 for the “*” and “+” operators. W3C had also required paths

to be counted ; i.e., to report the number of duplicate pairs (a, b) that correspond to

a number of paths between a and b that conform to p. However, [7,44] have shown

that both of these requirements are computationally infeasible in many cases. These

observations led W3C to drop both simple path and path counting requirements in

favor of regular paths and existential semantics.

34

Logical Space

Planner

Method-
Structure Space

Cost Model

Statistics
Estimator

Enumerator

Figure 2.9: Query optimizer architecture.

2.3.3 Paths in Cypher

Cypher [17] is a graph-oriented declarative query language used in a popular native

graph database Neo4j.9 It is a powerful language that supports adjacency, path,

pattern matching and summarization queries. Similar to SPARQL property paths,

paths in Cypher are defined in terms of regular expressions, yet with slightly dif-

ferent syntax and evaluation semantics. Cypher path queries essentially represent

a limited subset of RPQs with simple paths and counting semantics.

2.4 Query Planning

In general, a query can be executed in many different ways by the database engine.

The strategy which is used by the database during query execution is encoded in a

query plan. Often, the costs of such plans can vary by orders of magnitude, which

motivates the problem of choosing the plan with the lowest possible execution cost.

9http://www.neo4j.com

35

Query optimization is a large research area in the database field which attempts

to find answers to this problem. It is an established area which has been surveyed

extensively [32]. The scope of this document is to provide an overview of an archi-

tecture of a query planner, which is an essential part of any query optimizer.

Query planner is responsible for examining all possible execution plans for each

query and selecting a cheapest plan to be executed. Candidate plans are considered

in a certain order as provided by the enumerator module. Often, the space of

candidate plans grows exponentially with respect to the size of the given query,

making it infeasible to consider every single plan. Hence, it is the task of the

enumerator to provide a sufficient number of candidate plans so that the plan close

to optimal can be found, while pruning those candidate plans which are unlikely to

have the lowest cost.

The plan space which is considered by the enumerator is determined by its

logical and method-structure components. Given the formula which is obtained by

parsing the query, logical space contains all different execution orders of formula’s

operators which can be followed to answer the query. This is called a logical plan.

Given a logical plan, the concrete implementation choices for each of the operators

are determined by the method-structure space, to produce a collection of physical

plans.

A cost of a physical plan is estimated by a cost model module. This module

36

specifies the cost formulas which are used to estimate the cost of execution strategies

used to evaluate operators in a physical plan. These cost formulas take into account

the execution method used, the amount of resources available (such as processor,

memory buffer pool, and disk space), the catalog information (such as available

indexes and tuple sizes), and the statistical estimates gathered from participating

datasets.

2.5 Related Work

We describe the methods used in the evaluation of regular path queries. Recall

that RPQs have the general form Q = (x, L(r), y), where x and y are free variables

and L(r) is the regular language defined by regular expression r. In this work,

we consider existential arbitrary path semantics Arbitrary/∃ of RPQ solutions.10

Then, an evaluation of Q over a graph database G = (V,E) is a set of variable

bindings (s, t) such that the arbitrary path between nodes s and t conforms to

given expression r.

Depending on whether variables x and y are fixed or free, we consider three types

of RPQs: open-ended, half-open, and reachability. Open-ended queries have both

variables free, hence they identify all pairs of nodes in G that are connected with a

path specified by the expression. These queries are often used in graph exploration

10As discussed in §2.3.1

37

and analytical contexts. Half-open queries fix one of the variables, while the other

remains free. Such queries find all nodes reachable from a specific node in a graph

by following a given path. Finally, both variables are fixed in reachability queries.

The answer to this kind of a query is “yes” or “no” depending on the existence of

a path between two given nodes that satisfies the regular expression.

The literature on path queries over graphs, as is pertinent to property paths,

comes from two distinct sources: evaluation strategies for regular path queries

(RPQs); and SPARQL platforms extended for version 1.1 to handle property paths.

We consider each in turn.

2.5.1 FA Plans

Research on RPQs, which well precedes RDF and SPARQL, mostly focused on

theoretical aspects, but little on performance issues for evaluating such queries in

practice. The seminal work that introduced the G+ query language [48] exploited

the natural observation that where there is a regular expression, there is a finite

automaton (FA) that is a recognizer for it. They showed how to use finite state

automata to direct search over the graph to evaluate an RPQ. In essence, an FA

corresponding to the query’s regular expression provides a plan for its evaluation.

Subsequent work on RPQs followed on this idea. Let us call this the FA approach.

Regular expressions are a formal notation for patterns that generate strings—

38

called words—over an alphabet. The set of words that a given regular expression

can generate is called its language. The dual to generation is recognition. Finite

state automata are the recognition counterpart to regular expressions. For any given

regular expression, a finite state automaton—abbreviated as finite automaton—can

be constructed that will recognize the words over the alphabet that belong to the

expression’s language. Thus, an FA A can be constructed to recognize the language

of a given regular expression r. One can construct one such FA by traversing

the parse tree of r bottom up, and combining the automata that recognize sub-

expressions of r into a composite automaton via the union, concatenation, and

closure of the sub-automata as is appropriate.

Example 2 Recall query Q1.3 from Ex. 1. As shown in Fig. 2.10, an automaton

construction for this query is a two-step procedure. First, traversing the parse tree

of r bottom up, the ε-NFA is built up, by the base case and the inductive rules.

Second, the resulting ε-NFA is then minimized to an NFA, which typically has the

smaller size, and hence, is more efficient to process.

The first algorithm to use automata to evaluate regular expressions on graphs

was presented in [48] as a part of an implementation of the G+ query language.

Given a graph database G = (V,E) and a query Q = (s, r, t) in which s and t

are nodes in G, the algorithm proceeds as follows. The expression r is converted

into a finite automaton AQ by using the bottom-up traversal of parse tree of r, as

39

start

q0 q1
ε

:sameAs

q2
:isLocatedIn

ε

q3
ε

:sameAs

a) an ε-NFA

start
q0

:sameAs

:isLocatedIn

q2
:isLocatedIn

:sameAs

b) a reduced NFA

Figure 2.10: An ε-NFA and corresponding reduced NFA for Q1.3.

discussed. Then, the graph database G is converted to finite automaton AG with

graph nodes becoming automaton states and graph edges becoming transitions.

Node x is assigned to be the initial state, and y is assigned to be the accepting state

in AG. Finally, given AG and AQ, a product automaton P = AG×AQ is constructed.

P is then tested for non-emptiness, which checks whether any accepting state can

be reached from the initial state. If the language defined by P is not empty, then

the answer for the reachability query (s, r, t) on graph G is “yes”; i.e., there exists

a path between s and t in G that conforms to r. This idea of employing a product

automaton for RPQ evaluation over graphs has been used in [14, 35, 37, 48, 53, 66].

We briefly discuss two main approaches in detail below.

Kochut et al. [35] proposed an evaluation method that is based on bidirectional

breadth-first search (BFS) in the graph which works as follows. Given a reachabil-

ity query, two automata are constructed. The first one accepts the regular language

defined by the original path expression, while the second one accepts the reversed

language, which is also regular. The path search uses the steps from the bidirec-

40

Figure 2.11: Example run of an algorithm proposed by Kochut et al.

tional BFS to expand the frontiers of entities used to connect paths. Before each

entity is placed on the frontier for the next expansion, a check is performed if the

partial path leading to it is not rejected by the appropriate automaton. This guar-

antees that the partial results which are not accepted by the automaton will not

be expanded further. A candidate path is located when an entity from the forward

frontier matches an entity form the reverse frontier. At this point, it is only known

that the “forward” sub-path has not been rejected by the forward automaton and

that the “reverse” sub-path has not been rejected by an automaton that accepts the

reverse language. Before the concatenated path is returned, it must be accepted by

the forward automaton, created from the original path expression. For half-open

queries, a similar solution is used. In this case, only one automaton in conjunction

with a standard breadth first search is used to grow a single frontier of entities. An

41

example execution of this algorithm on graph database G presented in Fig.2.8 and

reachability query Q = (1, a+b+, 7) is shown in Fig. 2.11.

Koschmieder et al. [37] present an RPQ evaluation method that searches the

graph while simultaneously advancing in the query automaton. This is achieved by

exploring the graph using a breadth-first search strategy while marking the nodes in

the graph with the states in the automaton. A search state (one specific point during

the search process) consists of the current position in the graph (node identifier)

and the current state of the automaton. For every state in the automaton, a labeled

follow set is created. This construction consists of two lists. The first list contains

all edge labels that are accepted in that state, and the second list shows into which

states the automaton may transition for each label. Then, when traversing an edge

during BFS, its label is checked whether it is in the follow set of the current state.

In the positive case, the transition is made and new entries are added to the end of

the list of search states to be processed. One search state is created for each entry

in the list. For every node in the graph, the states in which a search passed this

node are kept. This is used to find completed paths as well as to prevent cycles

in the result paths. The search ends once the list of unprocessed search states is

empty. An example run of this algorithm on graph database G presented in Fig.2.8

and half-open query Q = (1, a+b+, y) is shown in Fig. 2.12.

42

Figure 2.12: Example run of an algorithm proposed by Koschmieder et al.

2.5.2 Alpha-RA Plans

Work on evaluating property paths—much newer by virtue of the fact that the

SPARQL 1.1 standard is quite recent—has mirrored the dynamic-programming

approach behind the algorithm presented in the seminal work of [44]. This can be

modeled by the relational algebra (RA) extended by an operator α for transitive

closure (α-RA) [3]. The full power of relational algebra, extended with α, can then

be employed to devise an evaluation plan—an α-RA-expression tree—based on the

regular expression of the property path. This general approach is found behind

many SPARQL platforms, as it follows relational techniques well. For example,

Virtuoso [21], a leading SPARQL system which is also a well-established rela-

tional database system, extended their platform to accommodate property paths

essentially by adding an “α” operator to the engine.

43

:sameAs :isLocatedIn

∗

/

+

/

:sameAs

∗

a) a parse tree

T

σp=:sameAs

T

σp=:isLocatedIn

α
./o=s

α

./o=s

T

σp=:sameAs

α

σs=en:Gundam

b) an α-RA tree

Figure 2.13: A parse tree and α-RA tree for query Q1.3.

The α operator computes the transitive closure of a relation. Let the graph

database be represented as a relation of triples G(s, p, o). Let T = π1,3(G); thus T

consists of pairs of nodes 〈s, o〉 such that the pair is connected by a directed edge

in the graph. Then α applied to T computes the least fixpoint :

T+ = T ∪ π1,3(T+ ./T+.o=T.s T) (E2.1)

Thus, α(T) results in all pairs of nodes such that, for the nodes of each pair, there

exists a path between them in the graph (denoted by) G. If we were to evaluate

the fixpoint by a semi-näıve evaluation, each iteration of evaluation is over paths of

length one greater than of the previous iteration. The process stops when no new

pairs are added; i.e., the fixpoint has been reached.

Given the SPJRU (select-project-join-rename-union) relational algebra extended

44

with the α operator, one can evaluate the RPQ Q = (x, L(r), y) over graph G =

(V,E) by the algorithm proposed in [44]. This traverses the syntax tree of expres-

sion r bottom-up. Let s be the sub-expression of r represented by a given node in

a parse tree.

The binary relation Rs ⊆ V × V is computed so that node pair (u, v) ∈ Rs iff

there exists a path from u to v in G matching s. The manner in which the relations

are joined going bottom-up in a parse tree depends on the type of the node. The

cases are as follows:

1. If s is a Σ-symbol, then Rs := {(u, v)|(u, s, v) ∈ E}.

2. If s = ε, then Rs := {(u, u)|u ∈ V }.

3. If s1 and s2 are sub-expressions and s = s1|s2, then Rs = Rs1 ∪Rs2.

4. If s1 and s2 are sub-expressions and s = s1 ·s2, then Rs = π1,3(Rs1 ./Rs1.2=Rs2.1

Rs2).

5. If s = s∗1, then Rs is the reflexive and transitive closure of Rs1, or Rs =

α(Rs1) ∪Rs1.

6. If s = s+
1 , then Rs is the transitive closure of Rs1, or Rs = α(Rs1).

(Correctness of this algorithm is established in [44]). The correctness of this al-

gorithm can be proved by performing a structural induction and showing that the

following invariant holds for every relation Rs that is calculated: For each sub-

expression s of r, we have (u, v) ∈ Rs ⇐⇒ ∃ path p in graph G from u to v such

45

that its induced label λ(p) belongs to language L(s).

Example 3 Given query Q1.3 and the database G from Ex. 1, the corresponding

α-RA tree is shown in Fig. 2.13.

The α-RA-based RPQ evaluation can be directly implemented in most rela-

tional databases and relational triple-stores. In [65], we proposed a method that

translates RPQs as defined by SPARQL property paths into recursive SQL. A

similar approach was used by Dey et al. [19] in the context of the evaluation of

provenance-aware RPQs by a relational engine.

2.5.3 Index-based Evaluation

This approach, which is orthogonal to query planning, uses specialized data struc-

tures (e.g., indexes) in the evaluation of RPQs. In these methods, parts of regular

expressions, which are frequent in a given query workload, are precomputed and

stored in indexes to speed up the subsequent RPQ evaluation. One of the main

challenges in using indexes in the evaluation of RPQs has to do with the presence

of transitive closures. The size of a transitive closure may be orders of magnitude

larger than the size of a graph it is computed on. Hence, one needs to be care-

ful in designing the index structure which balances its construction time, storage

space consumption, and speed of retrieval (and, hence, the effectiveness of RPQ

evaluation).

46

In [27], authors implement RPQ evaluation in open-source RDF store RDF-

3X [51] by using highly-compact FERRARI reachability index [60]. In this imple-

mentation, the FERRARI index provides a concise representation of the transitive

closure of the graph. The compactness of the FERRARI is achieved by adaptively

compressing the transitive closure using exact and approximate intervals. Then, the

query processor of RDF-3X is modified to support property path queries through

invocation of the FERRARI index for Kleene expressions in the given query. The

main disadvantage of this approach is that it requires the construction of the index

for all Kleene expressions which are used in the query workload. While this might

be feasible in limited applications for Kleene expressions over single labels (as it

might be few of them), the construction of the indexes for all possible permutations

of labels in more complex expressions is less practical due to space limitations.

In [23], authors aim to overcome the requirement of construction of reachability

indexes for all Kleene expressions in the given query workload. Instead, given

RPQ is rewritten as a union of label paths, thus removing Kleene expressions from

the query completely. Then, each path is evaluated by using precomputed k-path

indexes, which index all paths up to length k in the graph. k-path histograms

are used to optimize join ordering of k-path indexes during the evaluation. This

approach essentially reduces Kleene fragments of regular path queries to unions of

label concatenations. This requires bounding Kleene recursions to prespecified path

47

lengths. While often sufficient in many practical settings, this requirement might

not be suitable for some applications when complete closure needs to be computed.

2.5.4 Relational Query Optimizers

Research on query optimization has been largely focused in the context of relational

databases. We briefly describe the research efforts in connection with each module

in the query optimizer presented in §2.4.

A typical query in a relational database is written in SQL or its variants. In

an optimizer, an SQL query is translated into a formula based on relational alge-

bra which deals with operations on relations such as select (σ), project (π), and

join (./). In order to represent an evaluation order of relational formulas, syntax

trees are used in which leaf nodes are participating relations and inner nodes are

operations performed on these relations. For a given SQL query, many different

relational formulas exist, each associated with its syntax tree, which evaluate it.

These equivalent formulas can be obtained by repeatedly applying a number of

rewrites based on algebraic properties of relational operators such as join reorder-

ing and selection pushdown. Hence, a logical plan space, in relational databases,

consists of a collection of equivalent relational algebra trees.

Due to the exponential blow up of the logical plan space with respect to the

size of the query, it is computationally infeasible to perform an exhaustive search

48

for an optimal operator tree. Hence, the task of the enumerator is to restrict

the search space. One popular heuristic which is used in System R [11] is to

only consider left-deep operator trees. In this scenario, an outer relation in all

joins is always a base database relation and not an intermediate output of some

relational operator. While this heuristic was used in early database optimizers as

it reduced the plan space considerably, it has been shown [49] to miss an optimal

plan in many practical situations. The consideration of a query graph has increased

the complexity of the search due to expensive connectedness verification for all

possible partitions of relations participating in a query. Hence, the enumerator

should be “smart” to choose only those subsets of relations which are likely to span

connected query subgraphs. Two classes of enumeration strategies which find an

optimal relational operator tree have been considered: bottom-up enumeration via

dynamic programming [49], and top-down enumeration through memoization [22].

Both strategies have been shown to have algorithms which are able to achieve

comparable performance [22].

For each logical plan, many corresponding physical plans exist. A physical plan

assigns concrete evaluation algorithms to be used for each relational operator spec-

ified in a logical plan. Given a physical plan, its evaluation cost can be estimated

based on a cost formula. This formula is carefully tuned based on an evaluation

algorithm, execution hardware and cardinalities of participating relations.

49

Cardinality and frequency distribution estimation of input and resulting re-

lations is an important component of every query optimizer and an established

research topic within an academic community (see [45] and [13] for extensive sur-

veys).

A prevalent technique for estimating sizes of relations which is used by most

commercial database systems is based on histograms. In a histogram of an attribute

a of a relation R, the domain of values of a is partitioned into buckets. Within

each bucket, a uniform distribution is assumed. For any bucket b in a histogram,

if a value vi ∈ b, then the frequency fi of vi is approximated by
∑

vj∈b fj/|b|.

Such histogram is called trivial as it assumes the uniform distribution over the

entire attribute domain. There are various histogram types which were proposed by

researchers for estimation of attribute distributions in a relation. Early prototypes

focused on trivial histograms [59], but had large errors since uniform distribution

assumption rarely holds in real data. A better estimation is provided by equi-width

histograms [36]. In these, regardless of the frequency of each attribute value in the

data, the number of consecutive attribute values associated with each bucket is the

same.

Another class of histograms, equi-depth [36], provide a lower worst-case and

average error for a number of selection queries. In equi-depth histograms, the

sum of frequencies of the attribute values associated with each bucket is the same,

50

regardless of the number of these attribute values in the data. In [50], multi-

dimensional equi-width histograms are proposed which are suitable for answering

multi-attribute selection queries.

In serial [33] histograms, the buckets group frequencies that are close to each

other with no interleaving. These have been shown [33] to be optimal (under various

criteria) for reducing the worst-case and the average error in equality selection and

join queries. However, it takes time exponential in the number of buckets to identify

the optimal histogram among all serial ones. Further, since there is typically no

order correlation between attribute values and their frequencies, serial histograms

tend to be quite large and require an additional index.

End-biased [33] histograms were introduced to address these shortcomings. In

these, some number of highest frequencies and some number of lowest frequencies

are maintained in individual buckets, while all the remaining middle frequencies

are approximated together in a single bucket. Optimal end-biased diagrams take

significantly less space, are easy to find in time linear to the number of buckets

and are not too far away [33] from serial diagrams in cardinality estimation. Thus,

many vendors are using end-biased histograms in their commercial RDBMS.

In addition to histograms, several other cardinality estimation techniques have

been investigated. One class of methods [45] relies on approximating the frequency

distributions by a parameterized mathematical distribution or a polynomial. These

51

approaches require very little overhead, but they might not be suitable for many

types of real data which do not follow any mathematical function.

Another class of methods uses online sampling [52] in order to estimate the

cardinalities of a query result. These methods typically produce highly accurate

results, however at a cost of collecting and processing random samples of data. This

cost is considerably higher than the cost of other estimation methods, which makes

online sampling prohibitive in a real query optimization setting when estimates are

required frequently.

52

3 Methodology

3.1 Motivation

Work on property path evaluation has been remiss in not drawing the connection

to RPQs. How do the FA and α-RA approaches compare? Does one subsume the

other? Or are they incomparable? If so, a combined approach might be superior. A

generalized approach might offer new plans that neither FA nor α-RA can produce

with superior performance.

Both the FA and α-RA approaches effectively provide evaluation plans for prop-

erty path queries. However, the plan spaces that are implicit in these approaches

have not been considered. In FA, choosing a different (but still correct) automaton

for the plan might offer a significantly more efficient plan. In systems taking the α-

RA approach, planning is done over the α-RA expression tree that results from the

property path’s translation, but no planning specific to the semantics of property

paths takes place.

The FA and α-RA approaches each entail a plan space; that is, the plans collec-

53

PWPPWP

PFAPFA P↵-RAP↵-RA

Figure 3.1: Plan space classes.

tively an approach produces over all possible property path queries. Let PFA and

Pα-RA denote the plan spaces for FA and α-RA, respectively. To understand how the

approaches are related—for instance, whether one approach subsumes the other, or

whether they are incomparable—we consider these plan spaces. The Venn diagram

of how they are related is shown in Fig. 3.1.11

Lemma 3.1 PFA and Pα-RA are incomparable (PFA−Pα-RA 6= ∅ and Pα-RA−PFA 6=

∅), but overlap (PFA ∩ Pα-RA 6= ∅).

Proof: Of course, we are taking liberties; the place spaces should be over the

same domain of plans. As we have presented things, however, they are not; we

have presented FA plans as automata and α-RA plans as algebraic trees. To prove

formally the lemma in Fig. 3.1, we would need to establish an isomorphism between

11The diagram’s claim that the plan space of waveplans, PWP, properly subsumes both PFA
and Pα-RA is taken up in §3.1.

54

FA and α-RA plans, or have a canonical form for plans to which each plan type

could be mapped. This can be done [14]. The formalism for waveplans would

suffice for this mapping. Datalog, or the relational algebra extended by while

loops (established to be expressively equivalent to Datalog) [2], would provide an

even more universal domain that would suffice.

Here, we formally establish that FA and α-RA spaces are distinct by establishing

a mapping of FA and α-RA plans into Datalog programs. Suppose, graph G is

represented in Datalog as a collection of ground facts p(s, o) for each edge in G

from node s to node o labeled p. This forms an extensional database (EDB) for a

given graph.

Consider query Q = (x, L(r), y) over labeled graph G = 〈V,Σ, E〉. First, we

define the α-RA generation procedure GENα-RA as follows. Given regular expression

r in query Q, we traverse the parse tree of r bottom-up. Let s be the subexpression

of r represented by a given node in the parse tree. Then, we construct the Datalog

rules depending on the type of the node in the parse tree. The cases are as follows:

1. If s is a Σ-symbol, then we do nothing as it is already a part of an EDB.

2. If s1 and s2 are subexpressions and s = s1/s2, then we add:

s(X, Y)← s1(X,Z), s2(Z, Y).

3. If s1 and s2 are subexpressions and s = s1|s2, then we add the following

55

Datalog rules:

s(X, Y)← s1(X, Y).

s(X, Y)← s2(X, Y).

4. If s = s∗1, then we add:

s(X,X).

s(X, Y)← s(X,Z), s1(Z, Y).

5. If s = s+
1 , then we add:

s(X, Y)← s1(X, Y).

s(X, Y)← s(X,Z), s1(Z, Y).

6. Finally, if s = r, then we extract query answers:

Q(X, Y)← r(X, Y).

Next, we define the FA generation procedure GENFA. We construct a finite au-

tomaton Ar which accepts language L(r) defined by regular expression r in a given

query Q. For each transition in Ar from state qi to state qj labeled p, we generate

a Datalog rule as follows:

qj(X, Y)← qi(X,Z), p(Z, Y).

For the initial state q0 ∈ Ar, we generate:

q0(X,X).

And for each final state f ∈ Ar, we extract query answers with:

Q(X, Y)← f(X, Y).

56

Both procedures GENα-RA and GENFA generate Datalog programs based on a given

query. GENα-RA generates a program based on a tree structure of a regular expres-

sion r and, hence, corresponds to the α-RA-based evaluation methods. On the other

hand, GENFA generates a program from a finite automaton which recognizes given

regular expression r and, hence, corresponds to the FA-based evaluation methods.

These Datalog programs along with a method of how these programs are eval-

uated (e.g., via standard semi-naive bottom-up evaluation [2]) present a canonical

form of evaluation plans to which both FA and α-RA plans are mapped.

Consider the following generic property path query pattern:

?x (a/b)+ ?y . (Q3.1)

We shall be using Q3.1 as a prevalent example. Here, “a” and “b” are stand-ins for

labels. It matches node-pairs that are connected by some path labeled ab, abab,

or ababab, and so forth. This is a quite simple property path query, but one that

already demonstrates the complexities of planning.

The FA plan in Fig. 3.2a would be in PFA for Q3.1. There is no α-RA plan that

could be equivalent to it, however; none would ever evaluate aba, ababa, and so

forth as state q1 does in the FA plan. α-RA plans cannot compute transitive closure

in a pipelined fashion as the FA plan is doing; the α operator acts over an entire

relation.

57

startstart
q0q0 aa q1q1 bb

aa

q0(X, X).q0(X, X).

q1(X, Y) q0(X,Z), a(Z, Y).q1(X, Y) q0(X,Z), a(Z, Y).

q2q2

q2(X, Y) q1(X, Z), b(Z, Y).q2(X, Y) q1(X, Z), b(Z, Y).

q1(X, Y) q2(X,Z), a(Z, Y).q1(X, Y) q2(X,Z), a(Z, Y).

Q(X, Y) q2(X, Y).Q(X, Y) q2(X, Y).

(a) FA Datalog program.

TT TT

�p=a�p=a �p=b�p=b

./o=s./o=s

↵↵

s1(X, Y) a(X, Z), b(Z, Y).s1(X, Y) a(X, Z), b(Z, Y).

s2(X, Y) s1(X, Y).s2(X, Y) s1(X, Y).

s2(X, Y) s2(X, Z), s1(Z, Y).s2(X, Y) s2(X, Z), s1(Z, Y).

Q(X, Y) s2(X, Y).Q(X, Y) s2(X, Y).

(b) α-RA Datalog program.

Figure 3.2: Plans and corresponding Datalog programs.

The α-RA plan in Fig. 3.2b would be in Pα-RA for Q3.1. There is no FA plan that

could be equivalent to it, however; no state transition in its automata can represent

the “join” with ab. FA plans do not encompass views, materialized parts of the

query that can be reused, while the α-RA plan does by effectively materializing ab

to join repeatedly on it.

Meanwhile, there are many plans in common between FA and α-RA: for any

query that is restricted to transitive closure over single labels, for example, will

result in common FA and α-RA plans. �

We aim to devise an RPQ evaluation strategy, which is a hybrid of automata

and tree-based approaches. To achieve this, we identify the challenges which are

58

discussed in the following subsections.

3.2 Graph Walk

We formally define a framework that is based on an iterative search guided by

an automaton. We model the search process by using fixpoint algebra, which is

used in query evaluation in deductive databases. We capture a search cache as a

collection of tuples 〈u, v, s〉, for which u and v are nodes in the graph and s is a

state in the controlling automaton. Then, a search is a process of repeated appli-

cation of operations crank, reduce, and cache on a search cache until a fixpoint is

reached, i.e. no new search cache tuples are produced. In short, crank advances the

search wavefront, simultaneously in the graph and the automaton, reduce prevents

unbounded computation by checking for cycles, and cache adds newly discovered

tuples to the cache. The main advantage of this model of the search is that it

operates on a collection of tuples by using operations that can be encoded in proce-

dural or recursive SQL. Hence, this framework can be implemented directly in most

relational database systems, and be able to utilize efficient indexing and external

storage support.

59

3.3 Query Plans

Recall that the construction of the automaton forces a certain order to the query

evaluation, thus defying the purpose of query evaluation planning. To overcome

this, in waveplans, we propose to use wavefront automata which employ two addi-

tional ways to perform the transitions: inverse transitions and transitions on views.

In short, inverse transitions specify a wavefront that expands in the opposite direc-

tion to the edges of the graph. Transitions on views extend from the cache instead

of from the graph. These offer powerful choices in WPs for guiding the search. The

search can have multiple wavefronts from different starting points and directions.

Each wavefront employs the cache to avoid unnecessary recomputation.

3.4 Optimizer & Enumerator

Waveguide plans model a rich space of plans for path queries which encompass

powerful optimization techniques. Thus, RPQ evaluation needs a cost-based opti-

mizer in order to be able to pick the plan with the lowest estimated cost. To build

such optimizer, we need the following. First, we need to define WP systematically

to define formally the space of WPs for a given query. Second, we devise a con-

crete cost-model for WPs. Third, we determine the array of statistics that can be

computed efficiently offline that can be used in conjunction with the cost model.

60

Finally, we design an enumeration algorithm to walk dynamically the space of WPs

to find the WP with least estimated cost.

3.5 Implementation & Benchmarking

Finally, to demonstrate the efficacy of our evaluation method, we focus on evalua-

tion of SPARQL 1.1 property paths over large RDF graphs. We illustrate how our

approach can be implemented effectively on a modern relational database system.

An architecture of our prototype is designed as follows. There are two layers: appli-

cation and RDBMS. The application layer provides a user front-end, preprocesses

the graph data, parses user queries, and generates WPs. Specifically, for demon-

stration purposes, user front-end includes a graphical designer of waveplans and a

profiling widget. This component shows current evaluation state of the system as a

visualization of the graph and paths which were discovered during the iterations of

the search so far. Statistical information such as the number of edge walks, the size

of the cache and the number of reduced state tuples is also shown. The RDBMS

layer provides postprocessing of graph data and performs an iterative graph search

for the given WP. The iterative semi-naive bottom up evaluation procedure can be

implemented as a procedural SQL program. Typically, this implementation, being

local to data, is efficient and close to the performance of native SQL processing.

Finally, this prototype is benchmarked against a number of query workloads

61

on large graph datasets from various domains such as YAGO2s [64] and DBPedia

[18]. We mine these graphs for regular path patterns which follow several simple

templates. These patterns are used to construct a comprehensive benchmark of

the optimizations enabled by Waveguide against state of the art for evaluation of

RPQs and SPARQL property paths.

62

4 Graph Walk

Waveguide’s evaluation strategy is based on an iterative search algorithm — a

graph walk, and variations thereof.

4.1 Wavefronts

In Waveguide, we perform efficiently path search while simultaneously recognizing

the path expressions. Waveguide’s input is a graph database G and a waveplan

PQ which guides a number of search wavefronts that explore the given graph. We

introduce the term wavefront to refer to a part of the plan that evaluates breadth-

first during the evaluation and is essentially pipelined. This graph exploration,

driven by an iterative search procedure, is inspired by the semi-näıve bottom-up

strategy used in the evaluation of linear recursive expressions based on fixpoint, as

is done for the α operator for α-RA, described in §2.5.2.

The key idea is, given a seed as a start, to expand repeatedly the search wave-

fronts until no new answers are produced; i.e., we reach a fixpoint. Each search

63

WAVEGUIDESEARCH(G, PQ)

1 ∆R
0 ← seed(G);

2 i ← 0;
3 while |∆R

i | ≥ 0 do
4 ∆S

i+1 ← seed(∆R
i);

5 ∆C
i+1 ← crank(∆S

i+1, ∆R
i , G, Ci, PQ);

6 ∆R
i+1 ← reduce(∆C

i+1, ∆R
i , Ci);

7 Ci+1 ← cache(∆R
i+1, Ci);

8 i ← i+ 1;
9 done;

10 return extract(Ci);

Figure 4.1: Waveguide’s evaluation procedure.

wavefront is guided by an automaton in the plan, a finite state automaton based

on an NFA. In Fig. 3.2a, the plan consists of a single wavefront automaton. We

shall see examples below of multi-wavefront plans; e.g., plan P2 in Fig. 4.2. This is

akin to the FA approach discussed in §2.5.1. Different, though, from NFAs which

are used as recognizers of regular expressions on strings, wavefront automata have

features directed to the evaluation of regular expressions over graphs.

4.2 Expanding a Wavefront

Each search wavefront has a seed as its initialization. The seed is the set of

nodes in the graph from which this wavefront begins its search. A seed can be

either universal or restricted. A wavefront with a universal seed conducts its search

64

virtually12 starting from every node in a graph. A wavefront with a restricted seed

starts the search from a fixed set of nodes. (A restricted seed is defined by the

results of other wavefronts or by constants used in a query.) Graphically, a seed is

represented as an incoming edge to starting state q0 of the wavefront. We use the

label “U” to denote a universal seed; any other label on this incoming edge denotes

a restriction placed on the seed, thus a “restricted” seed.

The graph exploration (walk) is performed by an iterative procedure guided by

a waveplan, as illustrated in Fig. 4.1. Consider the example from Fig. 4.2 with an

example graph G and two plans P1 and P2 for evaluating query Q = (x, (ab)+, y).

Waveplan P1 consists of a single wavefront automaton (W1), which is analogous to

the plan that results from the FA method. Fig. 4.2 also presents the evaluation

trace by the procedure in Fig. 4.1 using plan P1 over graph G.

During the search, intermediate results are kept in a cache, denoted Ci for

iteration i. This is a collection of tuples 〈u, v, s〉 for which u and v are nodes in

G and s is a state in the plan. The newly discovered tuples found in the current

iteration are denoted by delta ∆i. We use Ci and ∆i to eliminate answers already

seen in the search. Delta tuples produced by crank are denoted ∆C , and those

produced by reduce are ∆R.

To begin, all the universal seeds are initialized (but never materialized!); ∆R
0 is

12Effectively, all nodes in a graph are never materialized due to first-hop optimization which
restricts the starting nodes according to the transition labels originating from q0.

65

assigned the set of 〈u, u, q0〉 for all u ∈ N . Note that q0 is the starting state for all

wavefronts with universal seeds. We then iterate, performing four operations per

iteration:

1. seed. Determine the set of nodes from which to search.

2. crank. Perform a step of the fixpoint operation, the breadth-first search.

3. reduce. Eliminate node pairs seen before.

4. cache: Update the set of pairs of nodes seen already in the evaluation.

The iteration continues until the fixpoint is reached. Thus, this is a guided semi-

näıve evaluation [2].

The seed step populates the restricted seeds, according to their respective seed

conditions. The crank step transitions from the previous delta to the current, ∆R
i →

∆C
i+1. For each node v in 〈u, v, s〉 ∈ ∆R

i , for edge 〈v, a, w〉 ∈ G and automaton

transition 〈s , a, t〉 ∈ W1, 〈u,w, t〉 is added to ∆C
i+1. Thus crank advances the search

simultaneously in the graph and in the automaton.

To prevent unbounded computation over cyclic graphs, the delta is reduced :

∆C
i+1 is checked against both the previous delta ∆R

i and the cache Ci; tuples that

are seen in either ∆R
i or Ci are removed to produce ∆R

i+1. Lastly, the cache is

updated Ci+1 by adding the tuples in the reduced delta ∆R
i+1 to it (Ci). The

iteration halts once ∆R is empty.

It can be established by structural induction that, for any tuple 〈u, v, s〉 in the

66

UU
q0q0 a·a· q1q1 b·b·

a·a·

q2q2

aa

aa

bb

bb

1

2

3

4

GG

W1:W1:
UU

q0q0 a·a· q1q1 b·b· q2q2

W1:W1:

UU
q0q0 W1·W1·

q1q1

W1·W1·

P1P1

W2:W2:

P2P2

�R
0�R
0

h1, 1, q0i
h2, 2, q0i
h3, 3, q0i
h4, 4, q0i

h1, 1, q0i
h2, 2, q0i
h3, 3, q0i
h4, 4, q0i

�S
1 = ;�S
1 = ;

�C
1 = �R

1�C
1 = �R

1

�S
2 = ;�S
2 = ;

�C
2 = �R

2�C
2 = �R

2

�S
3 = ;�S
3 = ;

�C
3 = �R

3�C
3 = �R

3

�S
4 = ;�S
4 = ;

�C
4 = �R

4�C
4 = �R

4

�S
5 = ;�S
5 = ;

�C
5�C
5 �R

5�R
5

h1, 2, q1i
h3, 4, q1i
h1, 2, q1i
h3, 4, q1i

h1, 3, q2i
h3, 1, q2i
h1, 3, q2i
h3, 1, q2i

h1, 4, q1i
h3, 2, q1i
h1, 4, q1i
h3, 2, q1i

h1, 1, q2i
h3, 3, q2i
h1, 1, q2i
h3, 3, q2i

h1, 3, q2i
h3, 1, q2i
h1, 3, q2i
h3, 1, q2i

;;

C0C0 C1C1 C2C2 C3C3 C4C4 C5C5

h1, 1, q0i
h2, 2, q0i
h3, 3, q0i
h4, 4, q0i

h1, 1, q0i
h2, 2, q0i
h3, 3, q0i
h4, 4, q0i

C0C0 C1C1 C2C2 C3C3 C4C4

[[[[[[[[[[
h1, 2, q1i
h3, 4, q1i
h1, 2, q1i
h3, 4, q1i

h1, 3, q2i
h3, 1, q2i
h1, 3, q2i
h3, 1, q2i

h1, 4, q1i
h3, 2, q1i
h1, 4, q1i
h3, 2, q1i

h1, 1, q2i
h3, 3, q2i
h1, 1, q2i
h3, 3, q2i

optimized out

;;

�q0�q0

�q1�q1 �q2�q2 �q1�q1 �q2�q2

optimized out

Figure 4.2: Two waveplans, P1 & P2, over graph G, with an evaluation trace of P1.

cache (C) such that s is an accepting state, the pair of nodes 〈u, v〉must have a path

between them in the graph that conforms to r. Thus, Waveguide produces the

correct results. The answer set can be then extracted from the cache by selecting

the tuples 〈u, v, s〉 for all accepting states s of automaton W1.

Example 4 Consider the evaluation trace presented in Fig. 4.2. First, universal

seeds in ∆R
0 are optimized out by the first-hop optimization which builds ∆C

1 directly

by selecting the tuples from G which match the label (a) of the first transition

〈q0, a·, q1〉 in P1. The search proceeds by iterating crank, reduce and cache to produce

67

∆C
i , ∆R

i and Ci at each iteration i. The search stops at the 5th iteration when

reduced delta ∆R
5 is empty. Those cache tuples in accepting state q2 (shaded) at the

end are then extracted as the answer set.

68

5 Query Plans

We are able to express complex query evaluation plans which involve multiple search

wavefronts that iteratively explore the graph. A query will have a number of

different plans that could be used to evaluate it, as we saw in §3.1. The space of

Waveguide’s plans properly subsumes that of FA and α-RA, providing us the best

of both those approaches, along with useful plans that do not exist with FA or α-RA

(§5.3).

5.1 Guiding a Wavefront

The construction of the NFA forces an order to the query evaluation. A “wrong”

choice of NFA can lead to an inefficient evaluation plan. In Waveguide, we aim

to minimize the search space explored by considering the possible orders of graph

exploration by search wavefronts. To achieve this, we use wavefront automata

which can use transitions that expand the wavefront in the direction opposite to

the direction of the edges of the graph.

69

(a) Prepending vs. appending by expanding the wavefront us-
ing tuples from graph G.

(b) Expanding the wavefront by appending and using the tu-
ples from G (over the graph) vs. from search cache C (over the
view).

Figure 5.1: Types of transitions used in a wavefront.

Consider a graph transition 〈s , l, t〉 in a wavefront as illustrated in Fig. 5.1a.

Edge label l has a general form ·a or a·, where a is an edge label inG and the position

of a dot ‘·’ specifies a direction of a search wavefront and denotes prepend (·a) or

append (a·) transition. A prepend wavefront expands in the opposite direction to

the edges in the graph. Likewise, the append parameter guides a wavefront that

expands in the same direction as the edges in the graph.

Hence, wavefronts enable automaton transitions that explore the graph in a

specified direction. This allows a wavefront to initiate evaluation from any label

70

in the given regular expression and iteratively expand by appending or prepending

path labels. This gives us the power to explore all different expansion orders of a

single wavefront.

5.2 Wavefront Interaction

Often, the search space is constrained even further if several wavefronts are em-

ployed in the evaluation, each evaluating parts13 of a given regular expression.

Waveguide enables this by defining a number of automata, one for each search

wavefront.

In addition to transitions over graph edge labels, waveplans allow transitions

over path views, by using cached result sets produced by other wavefronts. Consider

Fig. 5.1b and automaton transition 〈s , a, t〉. If a is an edge label in G, then this

graph transition expands the wavefront by using the tuples from graph G. Other-

wise, if a is a state in a wavefront then this view transition expands the wavefront

by employing the tuples produced by a wavefront.

These new types of transitions offer powerful choices in WPs for guiding the

search. The search can have multiple wavefronts originating from different starting

points and expanding in different directions. Further, each wavefront can employ

13This decomposition of a regular expression can be determined by graph statistics such as
cardinalities of its labels.

71

the cache through transitions over views to avoid recomputation. (This is also

known as memoization.)

Example 5 Consider the wavefront search in Fig. 4.2 for a query Q with regular

expression r = (ab)+. P1 is a basic WP embodying an NFA that recognizes r. From

P1, we can design a more efficient WPP2: first, compute (ab) with wavefront W1;

and then use a loop-back path-view transition to compute the closure (ab)+ (with

wavefront W2). It can be shown that P2 explores a smaller search space than P1.

Based on the discussion above, we are now ready to give formal definitions of

the concepts introduced in Waveguide.

Definition 5.1 Given graph G = (V,E), we call seed S a set of node pairs

{(s, o) : s, o ∈ V }. A seed can be defined by results of any wavefront, by projection-

constructions, or by an RPQ (x, r, y).

Definition 5.2 We define a pair of projection-construction operators πs(S) and

πo(S) on given seed S. Operator πs(S), provided seed S = {(s, o) : s, o ∈ V }

constructs a set of subject pairs {(s, s) : s ∈ V }. Similarly, πo(S), provided seed

S = {(s, o) : s, o ∈ V } constructs a set of object pairs {(o, o) : o ∈ V }.

Definition 5.3 We call seed U = {(s, s) : s ∈ V } a universal seed when s can be

any node which has an incoming or outgoing edge in G. Formally, U is defined as

72

RPQ (?x, ε, ?x) which yeilds to all nodes in G. Here, ε is label of virtual empty

self-loop edge which any node in a graph has.

Definition 5.4 We call wavefront a tuple Wl = 〈l, S, q0, Q, δ, E, L, F 〉, where

• l is a wavefront label,

• S is a seed,

• Q is a set of states,

• q0 is a starting state, q0 ∈ Q,

• a transition function δ : Q× ((E ∪ L)× {· , ·} ∪ {ε})→ 2Q,

• E is a set of edge labels in a given graph G = (V,E),

• L is a set of wavefront labels distinct from E, and

• a set of accepting states F ⊆ Q.

Definition 5.5 We call waveplan P an ordered set of wavefronts. Consider any

pair of wavefronts W,W ′ ∈ P such that W = (l, S, q0, Q, δ, E, L, F) and W ′ =

(l′, S ′, q′0, Q
′, δ′, E ′, L′, F ′). Then P defines an order <P on wavefronts as follows:

∀W,W ′ ∈ P | W <P W
′ : l′ /∈ S ∧ l′ /∈ L

Given this order, lower wavefronts cannot use labels of higher wavefronts in their

seeds or transitions. That is, such dependencies between wavefronts have no cycles

as guaranteed by their topological order.

73

U
q0 q2q1

P1:

a· b·
q3

c·

U
q0 q2q1

P3:

·a b·
q3

c·

U
q0 q2q1

P2:

·c ·b
q3·a

U
q0 q2q1

P4:

b· c·
q3·a

Figure 5.2: Waveplans for abc expression.

U
q0 q2q1

P+
1 :

a· b·
q3

c·

ε

U
q0 q2q1

P+
3 :

·a b·
q3

c·

ε

U
q0 q2q1

P+
2 :

·c ·b
q3·a

ε

U
q0 q2q1

P+
4 :

b· c·
q3·a

ε

Figure 5.3: Attempting to build waveplans for (abc)+ expression.

Definition 5.6 Waveplan P is legal with respect to Q = (x, r, y) when, for any

graph G, the evaluation of P over G produces a set of bindings 〈s, t〉 such that there

exists an arbitrary path p from node s to node t in G such that the path label λ(p)

is in language L(r).

Example 6 Consider waveplans P1-P4 shown in Fig. 5.2. Observe, that P1-P4 are

legal with respect to regular expression r = abc. On the other hand, consider plans

P+
1 —P+

4 shown in Fig. 5.3. These plans were obtained by connecting accepting and

starting states in P1—P4 with an ε-transition; i.e., establishing a loop-back pipeline

in an attempt to produce plans for (abc)+ expression. Observe, however, that only

74

P+
1 and P+

2 are legal w.r.t. (abc)+ expression, whereas plans P+
3 and P+

4 are legal

w.r.t. a+(bc)+ expression.

5.3 WAVEGUIDE’s Plan Space

We claim that the space of waveguide plans PWP subsumes that of the FA and

α-RA approaches, as the Venn diagram in Fig. 3.1 shows (and with the caveats as

discussed in §3.1).

Lemma 5.7 PWP properly subsumes the union of PFA and Pα-RA (PWP) PFA ∪

Pα-RA).

Proof: That PWP subsumes each of PFA and Pα-RA is straightforward; we devised

WP so that we could express both FA- and α-RA- type plans. WP extends the FA

model. WP encompasses α-RA by the addition of path views ; what the α operator

offers, transitive closure over an arbitrary relation, can be accomplished by view-

labeled transitions.

PWP properly subsumes the union of PFA and Pα-RA because there is a wave-

guide plan that corresponds to neither an FA plan nor an α-RA plan. We have

demonstrated that in the discussions above: any WP with multiple wavefronts and

some wavefront with a long loop-back is such a plan; FA plans are essentially single

wavefront by the FA model, and pipelined loop-backs are outside the scope of α-RA.

75

Likewise, any WP, even single wavefront, that is “mixed”, that combines views and

long loop-backs, corresponds to no FA plan and to no α-RA plan. (In Fig. 6.4 below,

P2 with partial loop-caching is such a plan.) These very types of waveguide plans

that FA and α-RA miss can be the most efficient plans. �

In §6.4, we explain why this rich plan space is relevant. In §7, we compare plans

for real queries over real graph data to establish that this is true in practice, as

well.

76

6 Optimizer & Enumerator

We present a cost framework for Waveguide search, search cost factors that affect

the cost (properties of the graph and of resulting pre-paths computed during the

evaluation), and optimization methods that are enabled by WPs which address the

search factors, in turn.

6.1 Cost Framework

Recall the three steps in Fig. 4.1 of the search iteration: crank, reduce, and cache.

Assume that the search completes in n iterations. The cost of crank, Ccrank, corre-

sponds to the total number of edge walks performed. This search size is the sum

of sizes of the deltas. The cost of reduce, has two components: duplicate removal

within a delta (C∆
reduce) and for the delta against the search cache (CC

reduce). The

cost of cache, Ccache, is associated with search cache maintenance procedures (e.g.,

indexing). The functions f1−4 are placeholders that weigh the costs:

The cost functions f1−4 above are monotone over their parameters; these simply

77

Step Generalized Cost

Ccrank
∑n

i=0 f1(|∆R
i |, |G|, |Ci|)

C∆
reduce

∑n
i=1 f2(|∆C

i |)

CC
reduce

∑n
i=1 f3(|∆C

i |, |Ci|)

Ccache
∑n

i=1 f4(|∆R
i |, |Ci|)

abstract the actual costs as based upon the underlying implementation of Wave-

guide’s data structures and algorithms. For example, in a relational-based system,

assuming tree indexes on Ci and G, functions f1−4 are approximated as:

Example Implementation Complexity

f1 Index-nested loop joins:

∆R
i 1PQ

G and ∆R
i 1PQ

Ci.

O(|∆R
i |·(log |G|+log |Ci|))

f2 Sort ∆C
i , remove duplicates. O(|∆C

i | · log |∆C
i |)

f3 Scan ∆C
i , probe Ci’s index. O(|∆C

i | · log |Ci|)

f4 Scan ∆R
i , insert into Ci’s index. O(|∆R

i | · log |Ci|)

In this scenario, crank is implemented as joins of ∆i with G (for graph transi-

tions) and Ci (for view transitions). The predicates of these joins are dictated by

the WP PQ. Since typically |∆| � |C|, reduce∆ is implemented in-memory. On the

other hand, reduceC is more expensive since it requires probing C’s index. Finally,

cache involves updating C’s index with new ∆’s tuples.

78

6.2 Search Cost Factors

Properties of the graph and of the WP chosen will determine the evaluation cost.

6.2.1 Search Sizes

The wavefronts that we choose for the search determine the intermediate ∆i (pairs

of nodes connected by valid pre-paths) that we collect in each iteration i. Just as

with different join orders in relational query evaluation, different wavefronts will

result in different cardinalities of ∆i . These intermediate cardinalities can vary

widely from plan to plan and affect all four costs f1−4.

6.2.2 Solution Redundancy

After much deliberation, the W3C has adopted a non-counting semantics for SPARQL

property path queries. Each node pair appears only once in the answer, even if there

are several paths between the node pair satisfying the given regular expression.

Answer-path redundancy arises from two sources. First, in dense graphs, solu-

tions are re-discovered by following conforming, yet different paths. Second, nodes

are revisited by following cycles in the graph. Thus, the same answer pair may be

discovered repeatedly during evaluation, which increases both |∆i| and |C|. It is

critical to detect such duplicate solutions early in order to keep the costs f1−4 low.

79

6.2.3 Sub-path Redundancy

In solution redundancy, an answer pair could have multiple paths justifying it.

Likewise, the paths justifying multiple answer pairs may share significant segments

(sub-paths) in common. This arises, for instance, in dense graphs and with hi-

erarchical structures (e.g., isA and locatedIn edge labels). Consider a query “?p

:locatedIn+ Canada”. Every person located in the neighborhood of the Annex in

the city of Toronto qualifies, since the Annex is located in Toronto which is located

in Ontario which is located in Canada. The sub-path “Annex :locatedIn+ Canada”

is shared by the answer path for each Annex resident. Because we keep only node-

pairs (plus state) in the search deltas, and not explicitly the paths themselves,14 we

may walk these sub-paths many times, recomputing “Annex :locatedIn+ Canada”

for each Annex resident, thus unnecessary increasing both |∆i| and |C|.

6.3 Plan Optimizations

We consider WP-optimization methods in relation to the search cost factors above.

14Note this design choice in our evaluation strategy is critical for good performance due to
solution redundancy!

80

a) search cardinality b) solution redundancy

x y

β′

β

γ′

γ

α

a

b

c

x y
rs

c) sub-path sharing

x y

r1

r2

shared seeds

Figure 6.1: Types of search cost factors.

6.3.1 Choice of Wavefronts

The direction in which we follow edges, and where we start in the graph, with

respect to the regular expression will result in different |∆i| we encounter during the

search. Our choice of automata in the WP dictates the wavefront(s). For example,

consider query Q = (x, abc, y) and a fragment of a graph shown in Fig. 6.1a. Since

labels a, b and c have different frequencies, different wavefronts will have different

search sizes. Consider two plans P1 and P2 that evaluate Q shown in Fig. 6.2. P1

has a single wavefront that explores the graph starting from a, appending b and

then c. On the other hand, P2 has a wavefront that starts from the low-frequency

label b, appends c and then prepends a. Observe that, in this scenario, P2 results

in fewer edge walks than P1.

To reduce overall search size, we need to choose wavefronts that result in fewer

81

U
q0 q2q1

P1:

a· b·
q3

c· U
q0 q2q1

P2:

b· c·
q3·a

Figure 6.2: Choosing the wavefronts.

edge walks. Wavefronts can be costed to estimate their search sizes based on statis-

tics about the graph, such as various graph label frequencies. (Such graph statistics

can be computed offline for this purpose, which we discuss in more depth in §6.5).

6.3.2 Reduce

Waveguide’s evaluation strategy is designed to counter solution redundancy. As

shown in Fig. 6.1b, we consider several types of redundant solutions based on a path

which was followed to obtain each solution. Path α is the shortest path. Paths β

and β′ are of the same length, but go through different nodes. Finally, path γ′

shares some nodes with path γ, but it is longer due to a cycle.

In Waveguide, redundancy of candidate solutions is addressed by removal of

duplicates against both C and ∆ by the reduce operation. Assuming a BFS search

strategy, duplicate solutions obtained by following paths of the same length (β, β′)

are removed within a ∆. On the other hand, duplicates obtained by following paths

of different lengths (α, β) are removed when ∆ is compared against C. This also

includes paths with cycles such as γ and γ′ as they also have different lengths.

82

As a further optimization, once a solution seed-target pair has been discovered,

first-path pruning (fpp) removes the seed from further expansion by the search

wavefronts. In our example, once path α has been discovered and solution (x, y)

has been obtained, all longer paths (β, β′, γ, γ′) are never even materialized.

6.3.3 Threading

To counter sub-path redundancy requires us to decompose a query into sub-queries.

We call this decomposition threading, and our WPs accommodate this.

Consider query Q = (x, (r1/rs/r2), y) where sub-path rs is shared among many

solutions as shown in Fig. 6.1c. This query can be threaded as follows. First, pre-

path r1 is computed by wavefront Wr1 . Then, the portion of the regular expression

that will result in sub-paths that will be shared by many answer paths can be

computed by a separate wavefront Wr1:rs . Here, Wr1 seeds wavefront Wr1:rs which

computes a shared path rs for each of the partial solutions produced byWr1 . Finally,

the complete path is pieced together by wavefront Wjoin. Sub-path sharing can be

predicted by graph statistics to indicate when threading is useful.

6.3.4 Partial Caching

Delta results are cached during the evaluation as we need to check against C for

redundantly computed pairs. For large intermediate |∆i|, this can be a significant

83

U
r1

Wr1rsr2 :
rs r2

U
r1

Wr1 :

Wr1·
rs

Wr1:rs :
r2

U
q0 q1

Wjoin:

Wr1· Wrs·

P :

Pt:

Figure 6.3: Threading a shared sub-path.

cost. However, some of this cost can be eliminated. In particular, not every state

in the WP’s automata needs to have its node-pairs cached. Caching is only needed

when unbounded redundancy is possible, due to cycles in the wavefront automata

or in the graph. States without cycles need not be cached.

6.3.5 Loop Caching

Transitions over views in wavefront automata allow us to cache and re-use some of

the intermediate node pairs we encounter during the search. Such named result sets

are useful in reducing unnecessary recomputation by employing an optimization we

call loop caching.

In transitive query Q = (x, (r)+, y), the expression r is repeatedly evaluated

until no new solutions are found. Loop caching rewrites an evaluation plan so that

the base r is cached either fully or partially to speed up the transitive evaluation

84

S
q0 q2q1
a· b·

Wp:

q3
c·

a·

U
abc

Wabc:

S
q0

Wl:

q1

Wabc·

Wabc·U
bc

Wbc:

W :

S
q0 q2q1
a· Wbc·

a·

Pnc (no loop caching)

Ppc (partial loop caching) Pfc (full loop caching)

Figure 6.4: Types of loop caching.

of (r)+.

Consider three plans Pnc, Ppc and Pfc for query Q = (x, (abc)+, y) shown in

Fig. 6.4. Plan Pnc has no loop caching as it evaluates full expression (abc) in a

pipeline with Wp. Plan Ppc uses a separate wavefront to evaluate (bc) first, then

these results are used in a loop to evaluate transitive (abc)+. Finally, plan Pfc

caches the full base expression (abc) in Wabc, which is then used in the evaluation

of a transitive expression in a loop by Wl.

6.4 Cost Analysis

Consider deltas ∆C
i , ∆R

i and cache Ci for all iterations in the evaluation of WP PQ

over graph G. These determine the overall cost of PQ according to the framework

85

in §6.1.

We define a logical delta δs over state s to be a set of delta tuples (u, v, s) ∈ δs

such that δs ⊆
⋃n
i=0 ∆i. In other words, from all physical deltas ∆i we encountered

during the search, we select delta tuples which occur in state s. Logical delta δS over

set of states S is a union of logical deltas over all states in S, i.e.
⋃
s∈S δs. Similarly,

δW over wavefront W is a union
⋃
s∈W δs. For example, consider a breakdown of ∆

into δ for an execution of P1 as shown in Fig. 4.2. Here, for each state q ∈ P1, δq is

shown by encasing the ∆ tuples in a dashed, single and double rectangles for δq0 ,

δq1 and δq2 , respectively.

6.4.1 Cost of Threading

Given a plan P with a single wavefront Wr1rsr2 which computes a regular expression

of a form r = r1/rs/r2, threading rewrites it into a plan Pt with three wavefronts

Wr1 , Wr1:rs and Wjoin as described in §6.3. We partition states in Wr1rsr2 into three

subsets: Sr1 , Srs and Sr2 which are responsible for evaluation of expressions r1, r1rs

and r1rsr2, respectively.

To analyze the cost of threading, we partition edge walks into logical deltas for

86

both P and Pt as follows:

P :
n∑
i=0

|∆′Ci | = |δCWr1rsr2
| = |δCSr1

|+ |δCSrs
|+ |δCSr2

| (6.1)

Pt :
nt∑
i=0

|∆′′Ci | = |δCWr1
|+ |δCWr1:rs

|+ |δCWjoin
| (6.2)

From construction (Fig.6.3), we have:

|δCWr1
| = |δCSr1

| (6.3)

|δCWjoin
| = |δCq0|+ |δCq1|+ |δCSr2

| (6.4)

We define a multiplicity ratio of an expression r1 in graph G, which is computed

by analyzing the paths in G:

M(G, r1) =
|Ss|
|So|

,

where Ss and So is a set of subjects and objects, respectively, connected in G with

paths conforming to r1. Then, M(G, r1) > 1, would indicate that, on average,

there are many subjects connected to a single object in G, while M(G, r1) < 1

would indicate that the opposite is true. The greater M is, the more subjects are

connected to the same object by path r1, and, hence, more subjects share a path

rs which originates from this object. Hence, we have:

|δCSrs
| =M(G, r1) · |δCWr1:rs

| (6.5)

87

We define a gain Gt introduced by threading in P as difference in a number of edge

walks performed in P and Pt. From (1-5), this gain is:

Gt = (M(G, r1)− 1) · |δCWr1:rs
|︸ ︷︷ ︸

A: savings due to threading

− (|δCq0|+ |δCq1|)︸ ︷︷ ︸
B: extra join

If a shared sub-path rs is accurately identified, then the total reduction of number

of edge walks in Pt (A) is sufficiently large to offset the cost of the extra join (B);

i.e., Gt > 0.

To maximize A, we need to maximize bothM(G, r1) and |δWr1:rs
|. For the latter,

a useful metric to consider is an average length L(G, rs) of a path which conforms

to rs in G. The longer the shared sub-path rs is, the greater the cardinality |δWr1:rs
|

is, and, hence, more potential savings in edge walks can be realized by threading

split on rs.

Thus, given M and L for sub-expressions of r in G, the identification of an

efficient threading split r = r1/rs/r2 becomes an (M,L) maximization problem.

6.4.2 Cost of Loop Caching

Given a plan with a single wavefront which computes closure (r)+ of a regular ex-

pression r, loop caching rewrites it into a plan in which parts of r are pre-computed,

cached, and then used in an iterative evaluation of a closure. For example, con-

sider the differences in evaluation of query Q = (x, (abc)+, y) with plans Pnc, Ppc

88

aa

aabb

G1G1

aa

bb

bb

aa

bb

G2G2

G1G1

Pnc:Pnc:

|�C
3 ||�C
3 ||�C

2 ||�C
2 ||�C

1 ||�C
1 | |�C

4 ||�C
4 ||�R

1 ||�R
1 | |�R

2 ||�R
2 | |�R

3 ||�R
3 | |�R

4 ||�R
4 | ⌃C⌃C

Pfc:Pfc:

1212 22

1212

1212

1212

1212

1212

66

22

363666 66 11

11 11 2525

G2G2

Pnc:Pnc:

|�C
3 ||�C
3 ||�C

2 ||�C
2 ||�C

1 ||�C
1 | |�C

4 ||�C
4 ||�R

1 ||�R
1 | |�R

2 ||�R
2 | |�R

3 ||�R
3 | |�R

4 ||�R
4 | ⌃C⌃C

Pfc:Pfc:

1212

1212

1212

1212

7272 3636 15615666

216216 3003007272

7272

7272 3636

3636 3636

Figure 6.5: Lensing.

and Pfc shown in Fig. 6.4. Pnc defines a single wavefront, which, due to absence

of transitions over views, can be executed pipelined. On the other hand, Ppc and

Pfc first compute (bc) and (abc), respectively, in separate wavefronts, the results of

which are used in a wavefront which computes the final closure.

As previously, to analyze the cost of loop caching, we partition edge walks into

logical deltas for both15 Pnc and Pfc:

Pnc :
nnc∑
i=0

|∆′Ci | = |δCq0∈Wp
|+ |δCq1∈Wp

|+ |δCq2∈Wp
|+ |δCq3∈Wp

|︸ ︷︷ ︸
C

Pfc :

nfc∑
i=0

|∆′′Ci | = |δCWabc
|︸ ︷︷ ︸

D

+|δCq0∈Wl
|+ |δCq1∈Wl

|︸ ︷︷ ︸
E

15We omit the comparison with Ppc as it follows the same idea.

89

From construction (Fig.6.4), we have:

|δCq0∈Wp
| = |δCq0∈Wl

|

It follows that a gain Glc of loop caching is a difference in a number of edge walks

in Pnc and Pfc:

Glc = C− (D + E)

In order for cached plan Pfc to be faster, sum of edge walks associated with compu-

tation of base (abc) paths (D) and looped evaluation of (abc)+ paths (E) should be

less than a sum of edge walks associated with evaluation of (a), (ab), (abc), (abca), . . .

paths (C) in pipelined plan Pnc.

Interestingly, values of terms C and E can significantly differ depending on the

general shape of the graph. For example, consider two basic graphs G1 and G2 as

presented in Fig. 6.5. Both G1 and G2 have the same frequencies of labels a and

b, but are different in terms of their shape. G1 exhibits lensing with focal points

on concatenations b/a, while G2 has lensing in a/b. Intermediate cardinalities of

∆C (number of edge walks) of the Waveguide search are presented for plans with

(Pfc) and without (Pnc) loop caching. Observe that loop caching optimization is

beneficial for search in G1 with 30% fewer edge walks. On the other hand, loop

caching performs worse in G2 with 92% more edge walks. This can be explained

by analyzing the edge walks and pruned tuples during the concatenation sequence

90

(. . . /a/b) which is performed in Pnc, but not in Pfc. In G1, (. . . /a/b) computes a

large number of intermediate tuples most of which are later pruned due to a focal

point in b/a. Meanwhile, in G2, (. . . /a/b) first prunes many tuples due to a focal

point in a/b, hence reducing the total number of edge walks performed later in the

search.

Lastly, we consider queries with constants. In pipelined plan Pnc, this constant

can be pushed to seed condition S of its wavefront, therefore reducing term C.

On the other hand, plans Ppc and Pfc allow at most partial constant pushdown,

since cached relations must be computed (term D) with universal seed to ensure

completeness of the final closure.

6.5 Cardinality Estimator

Recall Waveguide’s cost framework presented in §6.1. The costs of all three oper-

ations crank, reduce, and cache depend on the cardinalities |∆i|, |G|, and |Ci|. The

task of Waveguide’s cardinality estimator is to approximate these cardinalities

at each iteration of the guided graph search in order to identify a cost of a given

waveplan.

As we mentioned in §2.5.4, cardinality estimation is a well-established research

area within the database community. There are three main methods used in cardi-

nality estimation: catalog table statistics, histograms, and sampling. Here, we rely

91

T1.s

T1.o ./ T2.s

T2.o

JT1,T2

Figure 6.6: Cardinality estimation of a join.

on the simplest method of cardinality estimation which is based on catalog table

statistics. We defer exploring histograms and sampling for cardinality estimation

in Waveguide to future work.

In general, a cardinality estimate of join T1 ./T1.o=T2.s T2 of two tables T1(s, o)

and T2(s, o) can be computed as follows:

|T1 ./T1.o=T2.s T2| =
∑

j∈JT1,T2

|σT1.o=j(T1)| · |σT2.s=j(T2)| (6.6)

Here, join set JT1,T2 (shown in Fig. 6.6) denotes the set of nodes which match the

join predicate T1.o = T2.s. For each such node j ∈ JT1,T2 , the number of paths

which go through j from T1.s to T2.o is the product |σT1.o=j(T1)| · |σT2.s=j(T2)|.

Hence, a total cardinality of a join is computed as a sum of cardinalities (numbers

of paths) over all j ∈ JT1,T2 .

Hence, in order to estimate the cardinality of a join of two arbitrary tables

T1 and T2, statistics about corresponding join set JT1,T2 should be kept. Further,

92

cardinalities |σT1.o=j(T1)| and |σT2.s=j(T2)| should be maintained for each node j ∈

JT1,T2 . In large databases, maintaining accurate statistics for these is often not

feasible. Hence, in most RDBMS today, the following three assumptions are made.

1. Uniformity. All nodes j in a join set JT1,T2 have the same number of tuples

associated with them in both T1 and T2.

2. Independence. Predicates on attributes (in the same table or from joined

tables) are independent.

3. Inclusion. The domains of join keys overlap such that all keys from the

smaller domain have matches in the larger domain.

Let d(x, T) denote a column cardinality of attribute x in table T , i.e. a number of

distinct values of x in T . Then, from uniformity we have for all nodes j ∈ JT1,T2 :

|σT1.o=j(T1)| = |T1|
d(o, T1)

and |σT2.s=j(T2)| = |T2|
d(s, T2)

(6.7)

Hence, formula (6.6) becomes:

|T1 ./T1.o=T2.s T2| = |JT1,T2| ·
|T1|

d(o, T1)
· |T2|
d(s, T2)

(6.8)

Further, from inclusion, we derive a classical estimation formula which is still

widely used in many commercial RDBMS for estimating the cardinality of the join

of two tables T1(s, o) and T2(s, o):

|T1 ./T1.o=T2.s T2| = min(d(o, T1), d(s, T2)) · |T1|
d(o, T1)

· |T2|
d(s, T2)

(6.9)

93

out middle in

#one #two
Tl1 .o ./ Tl2 .s

b) SYN2 joint-frequency synopsis

#paths

#pairs

a) SYN1 frequency synopsis

out in

Tl1

#paths

#pairs

Figure 6.7: Synopsis statistics for graph label frequencies.

6.5.1 Synopsis Statistics

In queries with joins on foreign keys (like those used in TPC-H benchmark [16]),

formula (6.9) provides acceptable cardinality estimates [40]. However, in Wave-

guide, we deal with graph traversals in which intermediate path endpoints T1(s, o)

and T2(s, o) are joined to produce longer paths during crank operation. In this

scenario, the inclusion assumption will almost always significantly overestimate

the cardinality due to join set JT1,T2 being significantly smaller than both column

cardinalities d(o, T1) and d(s, T2).

In Waveguide, in order to provide a better estimation of the size of a join

set during crank operation, we utilize a compact collection of graph label statistics

which we call synopsis. As shown in Fig. 6.7a, for each edge label l in graph G,

synopsis SYN1 stores the following.

94

• |out|: a number of nodes in G which have outgoing edge labeled with l,

• |in|: a number of nodes in G which have incoming edge labeled with l,

• #paths: a number of paths in G labeled with l, and

• #pairs: a number of distinct node pairs connected with paths labeled with l.

Similarly as shown in Fig. 6.7b, synopsis SYN2 stores join-frequency statistics for

paths labeled l1/l2 in G each pair of labels l1, l2.

• |out|: a number of nodes in G which have outgoing path labeled with l1/l2,

• |in|: a number of nodes in G which have incoming path labeled with l1/l2,

• |middle|: a number of nodes in G which have incoming edge labeled l1 and

outgoing edge labeled l2,

• #paths: a number of paths in G labeled with l1/l2,

• #pairs: a number of distinct node pairs connected with paths labeled with

l1/l2,

• #one: a number of paths labeled l1 from nodes in out to nodes in middle, and

• #two: a number of paths labeled l2 from nodes in middle to nodes in in.

Let Tr/l1 denote a table of node pairs (s, o) such that path between s and o in

G conforms to regular expression r/l1. Similarly, let Tl2 denote all node pairs in

G such that a path between them conforms to l2. Here, r is an arbitrary regular

expression, and l1 and l2 are edge labels in G. Then join Tr/l1 ./Tr/l1 .o=Tl2 .s Tl2 would

effectively produce all node pairs in G such that a path between them conforms to

95

Tr/l1 .o ./ Tl2 .s b) Partition of join candidate nodes

r/l1
l2

l1

J

a) Join

Sl1

Sl1/l2

Sr/l1

Figure 6.8: Estimating join cardinality using synopsis.

concatenation r/l1/l2.

Using both SYN1 and SYN2, we can estimate a cardinality of concatenation

Tr/l1/l2 as follows. As shown in Fig. 6.8a, let Sl1 denote a set of all nodes with

incoming l1 edges in G. Then, a subset Sr/l1 ⊆ Sl1 will have incoming r/l1 paths.

Another subset of Sl1/l2 ⊆ Sl1 are nodes with incoming l1 edges and outgoing l2

edges. An intersection of Sr/l1 and Sl1/l2 are those nodes which have incoming r/l1

paths and outgoing l2 edges. Therefore, a join set J is exactly this intersection

Sr/l1 ∩ Sl1/l2 .

Consider node x in set Sl1 . Assuming independence, the probability that x is

96

in the join set J is:

P [x ∈ J] = P [x ∈ Sr/l1 ∩ Sl1/l2] = P [x ∈ Sr/l1] · P [x ∈ Sl1/l2] =
|Sr/l1|
|Sl1|

· |Sl1/l2||Sl1|

(6.10)

Consider a Bernoulli trial in which success means node x is in the join set, and

failure otherwise. Then, a probability distribution of a cardinality of a join set |J |

follows binomial distribution B(n, p) with parameters n = |Sl1 | and p = P [x ∈ J].

Therefore, we can derive an expected value of a cardinality of a join set:

E[|J |] = n · p = |Sl1| ·
|Sr/l1|
|Sl1|

· |Sl1/l2||Sl1|
=
|Sr/l1| · |Sl1/l2 |

|Sl1|
(6.11)

Observe that |Sr/l1| is a column cardinality d(o, Tr/l1) of objects o in table Tr/l1 .

Further, from synopsis SYN2, we obtain |Sl1/l2| = l1/l2.middle and, from synopsis

SYN1, we obtain |Sl1| = l1.in. Hence, (6.11) becomes:

|J | ≈ E[|J |] =
d(o, Tr/l1) · l1/l2.middle

l1.in
(6.12)

Above, we approximate cardinality |J | of a join set by its expected value E[|J |].

If we keep the independence and uniformity assumptions, but not inclusion

assumptions, we can estimate a cardinality of a join of two tables Tr/l1 ./ Tl2 by

using (6.8, 6.12) and synopses SYN1, SYN2 as follows:

|Tr/l1/l2| =
d(o, Tr/l1) · l1/l2.middle

l1.in
· |Tr/l1|
d(o, Tr/l1)

· |Tl1/l2|
d(s, Tl1/l2)

= |Tr/l1| ·
l1/l2.#two

l1.in
(6.13)

97

a b

/ c

/ d

/

a b

/

/

c d

/

c d

/b

/a

/

a) left-deep b) bushy c) right-deep

Figure 6.9: Different ways of estimating the cardinality of r = a/b/c/d.

Further, from uniformity, we can estimate column cardinalities of both subjects

and objects of the join:

d(s, Tr/l1/l2) = d(s, Tr/l1) · l1/l2.middle

l1.in
and d(o, Tr/l1/l2) = d(o, Tr/l1) · l1/l2.in

l1.in

(6.14)

6.5.2 Consistent Estimation

By using formulas (6.13) and (6.14), we can estimate cardinality of any regular

expression r which consists of n graph labels ai and n − 1 concatenations (from

(6.15)) by using a bottom-up approach. Given a parse tree of r, we estimate r’s

cardinality starting from single graph labels in r and repeatedly combining sub-

expressions of r by going up the parse tree. Since there are many parse trees for

any given expression r (e.g., left-deep, bushy, and right-deep as shown in Fig. 6.9),

the estimation would depend on our choice of a parse tree.

98

In order to be consistent with our estimates in Waveguide, we fix parse trees

for r to be left-deep. Left- or right-deep trees are considered to be the best choice

for cardinality estimation due to the fact that one side of concatenation is always

a graph label for which we have accurate statistics in our synopses. Hence, using

left- or right-deep trees would typically produce better estimates when compared

to bushy (or mixed) trees.

6.6 Plan Enumerator

For each regular path query, there are many waveplans which evaluate it. In §5.3,

we defined the space of waveplans PWP and showed that it properly subsumes PFA

and Pα-RA, the plan spaces of both FA and α-RA approaches. We need to find a way

to enumerate through PWP in order to select the least expensive (with respect to

cost estimation) plan to be executed. Designing an enumerator for complete PWP,

however, is extremely challenging since PWP subsumes all FA plans. This means that

an FA plan constructed from any automaton A which recognizes a given regular

expression should be examined by the enumerator. There exists a multitude of

methods on how automaton A can be obtained by construction, conversion, and

minimization. Here, we mention just a few of them:

1. Thompson’s construction [61] and its optimizations, e.g. the follow automata

[31],

99

s1s1

s2s2

""

""

""

""
""

aa

(a) basis (c) union

s1s1 s2s2
""

(b) concatenation

s1s1"" ""

""

""

s1s1"" ""

""

(d) Kleene star (e) Kleene plus

Figure 6.10: Thompson Construction.

2. Glushkov automaton [26] or position automaton [47] construction, and

3. derivative automaton [6] computation.

We briefly demonstrate how Thompson’s construction algorithm produces an

NFA for a given regular expression r. The algorithm works recursively based on

the parse tree of r. We split into cases based on the type of the operator op in

the parse tree and corresponding subexpressions of r. If s is a leaf node, then the

automaton is constructed as shown in Fig. 6.10a based on whether s is a graph label

a, an ε label, or an empty expression ∅. If op is a concatenation and s1 and s2 are

the concatenated subexpressions, then the automaton is constructed as shown in

Fig. 6.10b. Fig. 6.10c shows the construction for the union. Figs. 6.10d and 6.10d

show the construction for Kleene star and plus, respectively. At any point during

100

the construction, we can prove by structural induction that the following invariant

holds. The resulting automaton A has: (1) exactly one accepting state, (2) no arcs

into the initial state, and (3) no arcs out of the accepting state.

Further methods of obtaining automata from given regular expressions can be

found in [8, 10, 12, 24, 30, 62]. Given the multitude of methods of obtaining an FA,

and, consequently, an FA plan, the only way to design an enumerator which will

be complete with respect to PWP is to use an oracle (or, a black box) which will

produce all possible FAs behind-the-scenes for us.

In this work, we are interested in a concrete implementation of the enumerator

for waveplans, hence we restrict PWP in a way that such enumeration algorithm

would exist, it would have an acceptable complexity, and the plan space it would

enumerate is still rich enough to be interesting.

In the following subsections, we describe how we accomplish this goal. Specif-

ically, we define PSWP, the plan space of standard waveplans which are defined by

the recursive construction procedure based on a parse tree of a given regular ex-

pression. We define PTFA as a subset of PFA which contains the plans obtained from

automata constructed by Thompson’s algorithm. We show how PSWP compares to

PWP, PFA, PTFA, and Pα-RA. Then, we analyze the size of PSWP plan space and

show that it is exponential in the size of the regular expression. Finally, we discuss

how to design an efficient enumeration of standard waveplans in Waveguide. A

101

refinement of this is to enumerate by building up query plans from sub-query plans.

If we can show that this construction procedure exhibits optimal substructure, i.e.,

the least expensive plan for a query can be constructed from least expensive plans

for its sub-queries, then dynamic programming approach can be used to reduce the

complexity of enumeration. For example, System R [11] is such an approach for

queries in relational databases.

6.6.1 Standard Plan Space

Definition 6.1 Given regular path query Q = (x, r, y), we define a standard wave-

plan P for Q as a recursive data structure based on the parse tree of expression r.

Depending on the type of a node in a parse tree, the construction templates T1−10

are presented in Fig. 6.11. The cases are as follows:

1. If r is graph label (atom) a, then Pr is constructed by creating a single wave-

front Wa by following template T5 or T6.

2. If r1 and r2 are subexpressions and r = r1|r2, then Pr is constructed by fol-

lowing template T10.

3. If r1 and r2 are subexpressions and r = r1/r2, then Pr is constructed by follow-

ing templates T1−4 depending on the sizes of subexpressions r1 and r2. Also,

if r2 is a compound expression which has operators other than concatena-

tions, restricted pipeline template T11 is used. Similarly, if r1 is a compound

102

r1r1
r2·r2·

r2r2
·r1·r1

r1r1

Wr2 ·Wr2 ·

r2r2

·Wr1·Wr1

r2r2

r1r1

a·a· ·a·a

a) templates for atomic labels

c) templates for concatenations

T5: T6:

b) template for unions

"" ""

""

r1r1

d) templates for Kleene plus

T1: T2:

T3: T4:

""

·Wr1·Wr1

""

Wr1 ·Wr1 ·

T7: T8: T9:

T10: ""

""

""

""

r1r1

T11:
r2r2

""

strict appending

strict

T12:
r2r2

""

strict prepending

r1r1

Figure 6.11: Recursive templates for a standard waveplan.

103

expression which has operators other than concatenations, then T12 is used.

4. If r1 is a subexpression and r = r1+16 , then Pr is constructed by following

templates T7−9.

Further, standard waveplan PQ for query Q = (x, r, y) has the following invariant

which must hold during the recursive definition: PQ is legal with respect to the

regular expression r it is designed to evaluate.

Definition 6.2 We define a space PSWP of standard plans for a given query Q =

(x, r, y) such that it contains all legal standard waveplans constructed for all parse

trees of r.

Definition 6.3 We define a space PTFA of FA plans for a given query Q = (x, r, y)

such that the corresponding automaton was constructed by Thompson’s algorithm.

Lemma 6.4 Plan space of standard waveplans PSWP properly subsumes the union

of Pα-RA and PTFA (PSWP) PTFA ∪ Pα-RA).

Proof: By analyzing the recursive construction of standard waveplans, Thomp-

son’s automata, and α-RA plans. First, we show that SWP extends the TFA model.

Consider templates T5, T10, T1, T11, and T7 in the recursive definition of the

standard waveplan. These templates use only appending transitions and do not

16We only discuss Kleene + operator. Discussion for Kleene ∗ follows the same ideas.

104

PWPPWP

PFAPFA
P↵-RAP↵-RAPTFAPTFA

PSWPPSWP

Figure 6.12: Plan space classes.

use views. Observe that by using these templates exclusively during the wave-

plan construction, we will effectively generate only those plans which correspond to

Thompson’s automata. Hence, PSWP subsumes PTFA. Second, we show that PSWP

subsumes Pα-RA. Similarly, consider templates T1−6 and T8−10 which are used in

the construction of standard waveplans for all possible parse trees of r. All parse

trees of r combined with append and prepend transitions correspond to all possible

relational algebra (RA) tree plans. Operator α is captured by transitive closures

in T8,9 which use view-labeled transitions over arbitrary relations. Hence, PSWP

subsumes Pα-RA.

Finally, PSWP properly subsumes the union of PTFA and Pα-RA because there

exists a standard waveplan that corresponds to neither an TFA plan nor an α-RA

plan. The example of such plan we gave in §5.7 is, in fact, a standard waveplan,

e.g., in Fig. 6.4 below, P2 with partial loop-caching. The trace of generation of a

105

aa bb cc

//

//

++

a) a parse tree of (abc)+

Pa:Pa:

Pb:Pb:

Pc:Pc:

a·a·

·b·b

·c·c

b) processing leafs

Pbc:Pbc: ·b·b

T5T5

T6T6

T6T6

·c·c

c) processing concatenation (b/c)

Wbc:Wbc:

·b·b ·c·c

Pabc:Pabc:
a·a· Wbc·Wbc·

Wa:Wa:

Wb:Wb:

Wc:Wc:

Wbc :Wbc :

Wabc:Wabc:

T3T3

T2T2

d) processing concatenation (a/b/c)

e) processing Kleene plus and removing "" transitions

Wbc:Wbc:

·b·b ·c·c

P(abc)+:P(abc)+:
a·a· Wbc·Wbc·

W(abc)+:W(abc)+:

T7T7""

Wbc:Wbc:

·b·b ·c·c

P(abc)+:P(abc)+:
a·a· Wbc·Wbc·

W(abc)+:W(abc)+:

a·a·

Figure 6.13: Example of SWP generation.

106

plan like P2 is shown in Fig. 6.13. All generation steps are shown as a bottom-up

traversal of a parse tree for (abc)+. At each step, templates which were used are

shown. Plans like P2 are not in PTFA (and, even, not in PFA) nor they are in Pα-RA.

�

Lemma 6.5 PSWP properly subsumes all plans which are common to FA and α-RA

approaches (PSWP) PFA ∩ Pα-RA).

Proof: The plans which are common to FA and α-RA approaches are direct ap-

pending pipelines with Kleene closures over single graph labels. These are standard

waveplans by construction. �

The total number of plans in PSWP depends on a given query Q = (x, r, y).

There are many different parse trees for a given regular expression r. Further, the

are many different plans for a fixed parse tree for r since different templates might

be used in the construction of a waveplan. We estimate the asymptotic bound

on the size |PSWP| by fixing the concatenation (/), union (|) and Kleene (∗, +)

operators used in the regular expression r in query Q.

Definition 6.6 Let |r| denote the size of regular expression r, the number of al-

phabetical symbols (i.e., atomic graph labels) in r. Depending on the operator, we

define |r| recursively as follows:

107

atom a r1/r2 r1|r2 r1∗ r1+

|r| 1 |r1|+ |r2| |r1|+ |r2| |r1| |r1|

First, consider regular expression r of the form:

r = a1/a2/ . . . /an (6.15)

Here, r has n graph labels ai and n − 1 concatenations. According to Def. 6.6,

size |r| = n. We want to determine how many different waveplans can evaluate

expression r. Each one of the n − 1 concatenations in r can be represented as a

concatenation of two subexpressions r1 and r2 of r. Given waveplans Wr1 and Wr2

which evaluate r1 and r2, respectively, a waveplan for concatenation Wr follows

templates T1−4 shown in Fig. 6.11c.17 In templates T1,2, paths in the graph con-

forming to r2 are appended to the paths which conform to r1. If size |r2| = 1 (i.e.,

r2 is a single graph label), then concatenation r1/r2 is obtained in T1 by adding a

transition over the graph label (r2·) to the wavefront Wr1 which evaluates r1. Oth-

erwise, a transition over the view (Wr2·) is added in T2. Similarly, prepending r1

paths to r2 paths in the graph in templates T3,4 also produces concatenation r1/r2.

Given a split r1/r2 and assuming independence of plans for r1 and r2, we obtain

a number of plans for templates T2 and T4:

PT2
r1,r2

= PT4
r1,r2

= Pr1 · Pr2 (6.16)

17Templates T11 and T12 are not applicable here as r does not contain Kleene or union operators.

108

Similarly, we obtain a number of plans for templates T1 and T3:

PT1
r1,r2

= Pr1 (6.17)

PT3
r1,r2

= Pr2 (6.18)

In order to obtain a total number of plans Pr, we analyze all possible splits of r

into r1 and r2, and partition by template:

Pr =
∑
r1,r2

PT1
r1,r2

+
∑
r1,r2

PT2
r1,r2

+
∑
r1,r2

PT3
r1,r2

+
∑
r1,r2

PT4
r1,r2

(6.19)

We parametrize P(|r|) on the size |r| of r. In T1, r2 is fixed at |r2| = 1, then the

only possible split is when |r1| = |r| − 1. From this and (6.17) we have:

∑
r1,r2

PT1
r1,r2

=
∑

|r1|=|r|−1

Pr1 = P(|r| − 1) (6.20)

Similarly, in T3, r1 is fixed at |r1| = 1, then the only possible split is when |r2| =

|r| − 1. From this and (6.18) we have:

∑
r1,r2

PT3
r1,r2

=
∑

|r2|=|r|−1

Pr2 = P(|r| − 1) (6.21)

In T2, |r2| > 1 and no restrictions are placed on r1, hence from (6.16) we have:

∑
r1,r2

PT2
r1,r2

=
∑
r1,r2

Pr1 · Pr2 =

|r|−2∑
k=1

P(k) · P(|r| − k) (6.22)

Similarly, in T4, |r1| > 1 and no restrictions are placed on r2, hence from (6.16) we

have:

∑
r1,r2

PT4
r1,r2

=
∑
r1,r2

Pr1 · Pr2 =

|r|−1∑
k=2

P(k) · P(|r| − k) (6.23)

109

From (6.19), (6.20), (6.21), (6.22), (6.23) and after re-arranging the terms, we

obtain a recurrence formula for P :

P(|r|) = 2 ·
[
P(|r| − 1) +

|r|−2∑
k=1

P(k) · P(|r| − k)

]
(6.24)

Fig. 6.11a depicts the possible plans when regular expression r consists of a single

path label a. In this scenario, plans would consist of either append or prepend

transitions over a. Hence, we obtain a base case for P(|r|):

P(1) = 2 (6.25)

From (6.24) and (6.25) we can compute first few values for P(|r|):
|r| P(|r|)
1 2
2 4
3 24
4 176
5 1440
6 12608
7 115584
8 1095424

As shown above, the number of waveplans for r grows quickly with the size of r.

In order to analyze the complexity of P(|r|), we need to obtain the closed form of

the recurrence in (6.24). We can obtain this form by using the technique known as

generating functions.

We begin by defining a power series f(z) which contain P(|r|) (written as P|r|

for the sake of compactness) for all values of |r|:

f(z) = P1 + P2 · z + P3 · z2 + P4 · z3 + . . . =
∞∑
i=1

Pi · zi−1 (6.26)

110

Now, consider the partial expansion of expression 2z(f 2(z) + f(z)):

2z(f 2(z) + f(z)) = 2 ·
(

(P1 + P2
1)z + (P2 + 2P1P2)z2 + (P3 + 2P1P3 + P2

2)z3+

+ (P4 + 2P1P4 + 2P2P3)z4 + (P5 + 2P1P5 + P2
3 + 2P2P4)z5 + . . .)

)
After further expansion and rearrangement of terms, we obtain:

2z(f 2(z) + f(z)) = 2P1z + 2P1z (P1 + P2z + P3z
2 + . . .)︸ ︷︷ ︸

f(z))

+
(

2(P2 + P1P2)︸ ︷︷ ︸
P3

z2+

+ 2(P3 + P1P3 + P2
2)︸ ︷︷ ︸

P4

z3 + 2(P4 + P1P4 + 2P2P3)︸ ︷︷ ︸
P5

z4 + . . .
)

After replacing the power series with definitions for f(z), we get:

2z(f 2(z) + f(z)) = 2P1z + 2P1z · f(z) + (f(z)− P2z − p1) (6.27)

Rewrite (6.27) in canonical quadratic equation for f(z):

(2z)f 2(z) + (2z − 2P1z − 1) · f(z) + P2z − 2P1z + P1 (6.28)

Simplify (6.28) by plugging the initial conditions P1 = 2 and P2 = 4 from 6.25:

(2z) · f 2(z) + (−2z − 1) · f(z) + 2 = 0 (6.29)

Solve (6.29) for f(z):

f(z) =
(2z + 1)±

√
(−2z − 1)2 − 4 · 2z · 2

2 · 2z =
1

2
+

1±
√

4z2 − 12z + 1

4z
(6.30)

111

We can rewrite the square root in (6.30) as a binomial expansion according to the

formula:

(a+ b)n = an +
n

1
an−1b1 +

n(n− 1)

2 · 1 an−2b2 +
n(n− 1)(n− 2)

3 · 2 · 1 an−3b3 + . . . (6.31)

Which results in:

(1 + (4z2 − 12z))
1
2 = 1 +

1

2
(4z2 − 12z) +

−1
2
· 1

2

2 · 1 (4z2 − 12z)2+

+
1
2
· (−1

2
)(−3

2
)

3 · 2 · 1 (4z2 − 12z)3 + . . . =
∞∑
n=0

n∏
j=1

(3
2
− j)
n!

(4z2 − 12z)n (6.32)

Next, we expand (4z2 − 12z)n for all n by using the binomial formula, again:

(4z2 − 12z)n =
n∑
k=0

n!

k!(n− k)!
· (−12z)n−k · (4z2)k (6.33)

Hence, the formula (6.32) becomes:

(1 + (4z2 − 12z))
1
2 = 1 +

∞∑
n=1

n∏
j=1

(3
2
− j)
n!

n∑
k=0

n!

k!(n− k)!
· (−12z)n−k · (4z2)k

(6.34)

We substitute the square root in (6.30) by the series obtained in (6.34). Here,

our goal is to obtain the formula for coefficients appearing next to each zn in the

resulting expression since these are (P0 . . .Pn) by the definition of f(z). It is,

however, not trivial since each coefficient comes from expansions of (4z2−12z)n for

different n (due to a nested sum in (6.34)). Finally, we unwind the nested sum in

(6.34) to obtain the closed-form for Pn:

P(n) = −1

4
·
(n+1∑
k=dn+1

2
e

∏k
j=1(3

2
− j) · 4k · (−3)2k−n−1

(2k − n− 1)!(n+ 1− k)!

)
= Θ((4 · 3)n) (6.35)

112

Hence, we have shown that P(|r|) grows exponentially in size of r:

P(|r|) = Θ(c|r|) (6.36)

For a given constant c.

Next, consider regular expression r of the form:

r = r1+ (6.37)

Here, r has a Kleene plus which produces one or more concatenations of r1 with

itself. Again, we want to determine how many different waveplans can evaluate

expression r. Fig. 6.11d shows waveplan templates T7−9 for Kleene plus in r. In

T8 and T9, the transitive closure is computed by a fully loop cached plan; i.e., r1

is evaluated first by wavefront Wr1 and then its results are used in a ε-pipeline

loop to compute the results of r by either appending or prepending transitions over

the view Wr1 . Alternatively, in T7, the transitive closure is computed by repeatedly

pipelining the results of Wr1 into itself. Depending on the structure of the wavefront

Wr1 , plans in T7 have either partial or no loop caching (i.e., they are fully pipelined).

As before, we partition the plans for r by templates:

Pr = PT7
r + PT8

r + PT9
r (6.38)

First, we consider fully cached wavefronts in templates T7 and T8. Here, any wave-

113

front for r1 can be used, hence, the number of plans for r is the same as for r1:

PT7
r = PT8

r = Pr1 (6.39)

Now, consider the wavefronts in template T9. Here, a wavefront for r1 is pipelined

into itself. In this scenario, not all wavefronts for r1 would produce a legal plan for

r.

Lemma 6.7 There exists regular expression r1 such that wavefront Wr constructed

by following template T9 would produce a plan which is illegal with respect to ex-

pression r = r1+.

Proof: We provide an example of such regular expression r1. Consider Ex. 6 in

which wavefronts Wr1 are constructed for expression r1 = abc as shown in Fig.5.2.

Fig.5.3 depicts wavefronts Wr which were constructed by following template T9

given Wr1 . Observe that two out of four wavefronts Wr are illegal with respect to

r. �

It follows that if we use any wavefront Wr1 in T9, we are at risk of producing an

illegal plan for r. Hence, set of plans Wr1 needs to be restricted to guarantee legal

plans for r.

Definition 6.8 We call a wavefront strict if it has either only appending or only

prepending transitions. Strict wavefronts expand in a single direction, i.e. they are

unidirectional.

114

Definition 6.9 Wavefronts which are not strict expand in multiple directions; i.e.

we call these omnidirectional.

Lemma 6.10 For all regular expressions r1 if wavefront Wr1 is strict, then wave-

front Wr constructed by following template T9 would produce a plan which is legal

with respect to expression r = r1+.

Proof: The proof proceeds by showing that path label string produced by repeat-

edly appending or repeatedly prepending r1 to it, in fact, produces a path label

string which matches expression r = r1+. �

Consider r to be a chain of n− 1 concatenations of graph labels (as in (6.15)),

hence |r| = n. Earlier, we have identified the number of waveplans Pr for this

query. Now, we want to see how many of these waveplans has strict Wr, we denote

as Sr. First, we partition Sr into plans in which are Wr is only appending and those

which Wr is only prepending:

Sr =
←−Sr +

−→Sr (6.40)

Again, we consider a split of r into r1/r2. Observe that for strictly appending

wavefronts only templates T1 and T2 are used. Similarly, templates T3 and T4 are

115

used for strictly prepending wavefronts:

−→Sr =
∑
r1,r2

−→S T1
r1,r2

+
∑
r1,r2

−→S T2
r1,r2

(6.41)

←−Sr =
∑
r1,r2

←−S T3
r1,r2

+
∑
r1,r2

←−S T4
r1,r2

(6.42)

Given a split r1/r2, we assume independence of plans for r1 and r2. Observe that

for Wr to be strict, wavefront for r1, Wr1 , also needs to be strict. On the other

hand, r2 is evaluated over the view in T2, hence no restrictions are necessary for

Wr2 . Therefore, we use unrestricted PT2
r2

to denote the number of waveplans for r2.

Finally, we obtain a number of waveplans with strict wavefront for r in T2:

−→S T2
r1,r2

=
−→S T2

r1
· PT2

r2
(6.43)

Similarly, we obtain the number of waveplans for template T4:

←−S T4
r1,r2

=
←−S T4

r1
· PT4

r2
(6.44)

From (6.43) and (6.44), we obtain S for T1 and T3:

−→S T1
r1,r2

=
−→S T1

r1
· 1 =

−→S T1
r1

(6.45)

←−S T3
r1,r2

=
←−S T3

r1
· 1 =

←−S T3
r1

(6.46)

As we did for P(|r|), we parametrize S(|r|) on the size of r. From (6.41), (6.43),

and (6.45), we obtain a recurrence formula for
−→S (|r|) for all splits r1/r2:

−→S (|r|) =
−→S (|r| − 1) +

|r|−2∑
k=1

−→S (k) · P(|r| − k) (6.47)

116

Similarly, we have

←−S (|r|) =
←−S (|r| − 1) +

|r|−2∑
k=1

←−S (k) · P(|r| − k) (6.48)

Since only append or only prepend transitions can be used over atom graph label,

we obtain base cases:

←−S (1) = 1 (6.49)

−→S (1) = 1 (6.50)

From (6.24), (6.40), (6.47-6.50) we can compute first few values for S(n):

|r| P(|r|) S(|r|)
1 2 2
2 4 2
3 24 10
4 176 66
5 1440 506
6 12608 4242
7 115584 37706
8 1095424 349218

As expected, S(|r|) grows more slowly than P(|r|) since plans with a strict wavefront

represent a subset of all plans. However, this restriction applies only to the wave-

front Wr1 which evaluates r1 and not the wavefronts which evaluate sub-expressions

of r1 through views in Wr1 . Hence, S(|r|) asymptotically grows the same as P(|r|),

exponential in the size of regular expression |r|.

We conclude that Kleene operator in r does not asymptotically increase the

number of plans for r1. In fact, it restricts the plans which can be used in r1

117

when template T9 is used. Similarly, direct and inverse pipelines which are used to

concatenate compound expressions in templates T11 and T12 use strict wavefronts

and do not asymptotically increase the number of plans.

Finally, we consider the regular expression of the form:

r = r1|r2| · · · |rn (6.51)

Here, r is a union of n regular expressions r1, . . . , rn. Given waveplans Wr1 , . . . ,Wrn

for each subexpression of r, a waveplan for a union Wr follows template T10 shown

in Fig. 6.11b. In T10, a union for r is evaluated by using transitions over views

for subexpressions r1, . . . , rn. Effectively, this means that each subexpression is

considered independently of the others. Hence, the number of plans for union r is:

Pr =
n∏
i=1

Pri (6.52)

From (6.36) each Pri grows exponentially in the size |ri| of ri. Also, by Def. 6.6,

size of r is the sum of sizes of subexpressions ri. It follows:

Pr =
n∏
i=1

Pri = Θ(c|r1|+...+|rn|) = Θ(c|r|) (6.53)

Theorem 6.11 Given regular expression r, a number of legal standard waveplans

which evaluate it is exponential in the size |r| of this regular expression.

118

Proof: Follows directly from structural induction on all parse trees of r in which,

during the inductive step, concatenation, union, and Kleene operators are exam-

ined. As we have shown above, these produce the number of standard waveplans

exponential in the size of an arbitrary underlying regular expression. �

In §6.3.1, we discussed the choice of wavefronts. A wavefront as discussed above

is a pipelined fragment of a plan. Our plan space covers all legal orderings (sequences

of appends and prepends) that can constitute a wavefront. In §6.3.3, we discussed

the concept of threading. Accommodating threading in plans is complex; we will

discuss this further at the end of the next section. In §6.3.5, we introduced the

optimization of loop caching. This is equivalent to view fragments in plans for

subexpressions in Kleene closures.18

6.6.2 Enumeration

As per Theorem 6.11, the number of standard waveplans which evaluate a regular

path query is exponential in the size of this query. We propose a plan enumerator

for Waveguide plans which uses a dynamic programming approach which allows

it to work in time polynomial in the size of the given query.

Dynamic programming generates the solutions for a larger problem by combin-

ing solutions for smaller problems in a bottom-up fashion. In this way, we can

18In §6.3.2 and §6.3.4, we introduced the optimizations of reduce and partial caching. These are
runtime optimizations which are not part of the plan space.

119

construct an optimal plan for the regular expression of size l by combining optimal

plans for regular expressions of sizes k and l − k, respectively. Enumeration algo-

rithm WGEnum is presented in Fig. 6.14. It takes as an input an RPQ Q, which is

a triple (x, r, y) with r being a regular expression and x, y are either variables or

constants. Table bestPlan is used for memoization of the lowest cost waveplan for

a given expression and seed. The algorithm starts by computing the best plans for

expressions s ⊆ r of size one; i.e., for regular expressions with a single graph label.

After that, it constructs plans for expressions of increasing size l, by combining

plans for expressions of smaller sizes l1 and l2, such that l = l1 + l2. Since there

are many such sub-expressions, the algorithm loops over all sub-expressions of r:

s1 and s2 with sizes l1 and l2, respectively. The loop finishes when l = |r|, and the

best plan for r can be extracted.

memoizeMin(P , r):

1 for each p ∈ P:
2 if cost(p)< cost(bestP lan(r, p.seed)):
3 bestP lan(r, p.seed)← p;

Figure 6.15: Waveguide’s memoization sub-routine.

120

WGEnum(Q = (x, r, y)):

1 for all s ⊆ r : |s| = 1:
2 seedConst(s,Q);
3 seedKleene(s,Q);
4 if(s = a):
5 P ← getPlans(a,null,null,null);
6 memoizeMin(P,ai);
7 if(si = a+):
8 P ← getPlans(a,null,+,null);
9 memoizeMin(P,a+);

10 for 1 < l ≤ |r|:
11 for 1 ≤ l1 < l:
12 l2 = l − l1;
13 for each s1 ⊆ r : |s1| = l1 and
14 s2 ⊆ r : |s2| = l2:
15 if(s1/s2 ⊆ r):
16 P ← getPlans(s1,s2,/,null);
17 memoizeMin(P,s1/s2);
18 if(s1|s2 ⊆ r):
19 P ← getPlans(s1,s2,|,null);
20 memoizeMin(P,s1|s2);
21 for each s ⊆ r : |s| = l:
22 seedConst(s,Q);
23 seedKleene(s,Q);
24 if(s = s1+ ⊆ r):
25 P ← getPlans(s1,null,+,null);
26 memoizeMin(P,s1+);
27 return bestP lan(r,Q);

Figure 6.14: Waveguide’s enumeration procedure.

121

getPlans(s1, s2, op, seed):

1 Plans ps;
2 for each d1 ∈ getSeeds(s1)and d2 ∈ getSeeds(s2):
3 p1 ← bestP lan(s1, d1);
4 p2 ← bestP lan(s2, d2);
5 for each rule ∈ ER:
6 if(rule.precondition(s1, s2, op, seed)):
7 Plan p← rule.genPlan(p1, p2, seed);
8 ps.add(p);
9 return ps;

Figure 6.16: Waveguide’s plan generation sub-routine.

seedConst(s,Q = (x, r, y)):

1 if(x = c and s ⊆pre r):
2 P ← getPlans(s,null,null,(c,ε,y));
3 else if(y = c and s ⊆suf r):
4 P ← getPlans(null,s,null,(x,ε,c));
5 memoizeMin(P , s);

Figure 6.17: Waveguide’s constant seed passing sub-routine.

seedKleene(s,Q = (x, r, y)):

1 if(s ⊆pre s1 and s1+ ⊆ r):
2 for all d←preSeed(s1+, Q):
3 P ←getPlans(s,null,null,d/s1+);
4 memoizeMin(P , s);
5 if(s ⊆suf s1 and s1+ ⊆ r):
6 for all d←postSeed(s1+, Q):
7 P ←getPlans(null,s,null,s1+/d);
8 memoizeMin(P , s);

Figure 6.18: Waveguide’s Kleene seed passing sub-routine.

122

rule

U

U

s1·s1·

·s1·s1

id description
waveplan precondition

s1s1 s2s2 opop seedseed

AA atom append p :p : |s1| = 1|s1| = 1 null null null

p :p :AP atom prepend |s1| = 1|s1| = 1 null null null

Figure 6.19: Enumeration rules for graph label expressions.

Several helper sub-routines are used in WGEnum(). These are memoizeMin(),

getPlans(), seedConst(), and seedKleene(). In memoizeMin(), shown in Fig. 6.15, if

the given set of plans P contains plan p which is cheaper than one stored in bestPlan

(with the same seed), then bestPlan is updated by replacing previous cheapest plan

for r with p. Routine getPlans() is presented in Fig. 6.16. It combines the best plans

for given subexpressions s1 and s2 based on the operator op between s1 and s2 in

r. The way how best plans for s1 and s2 are combined is dictated by operator op,

given seed seed, and a set of enumeration rules ER shown in Figs. 6.19-6.23. Each

enumeration rule constructs a waveplan p based on the validity of its precondition.

The precondition() routine checks for presence and size of regular expressions s1 and

s2, for the type of operator op, and a given seed.

Consider enumeration rule KP for Kleene star operator presented in Fig. 6.22.

Blind application of KP to any given waveplan for s1 might produce an illegal plan

for s1+. Recall that according to Lemma 6.10, Kleene operator in this scenario

123

rule
id description

waveplan precondition
s1s1 s2s2 opop seedseed

p :p :CC concat
compound

|s1| > 1|s1| > 1 |s2| > 1|s2| > 1 null

d1d1 p1p1
d2 = Ud2 = U

p :p :CCF concat
compound

flip d2d2 p2p2

|s1| > 1|s1| > 1 |s2| > 1|s2| > 1 null

p :p :CP concat
pipe

|s2| = 1|s2| = 1 null

d1d1 p1p1

p :p :CPF concat
pipe flip

d2d2 p2p2

|s1| = 1|s1| = 1 |s2| > 0|s2| > 0 null

//

//

//

s1s1

s2s2

s1s1

s2s2

//Ws2 ·Ws2 ·

·Ws1·Ws1

s2·s2· |s1| > 0|s1| > 0

d1 = Ud1 = U

·s1·s1

DP direct
pipeline

p2p2

"" d2 = s1d2 = s1

d1d1 p1p1

p :p :
s1s1 s2s2

DP inverse
pipeline

p1p1

""
d1 = s2d1 = s2

d2d2 p2p2

p :p :
s2s2 s1s1

//

//

null

null

|s1| > 0|s1| > 0

|s2| > 0|s2| > 0

Figure 6.20: Enumeration rules for the concatenation operator.

rule
id description

waveplan precondition
s1s1 s2s2 opop seedseed

U union

p1p1

p :p :

d
| null

s1s1

|s1| > 0|s1| > 0 |s2| > 0|s2| > 0

p2p2

s2s2

""

""

""

""

Figure 6.21: Enumeration rule for the union operator.

124

rule
id description

waveplan precondition
s1s1 s2s2 opop seedseed

KP kleene plus
p1p1

""

p :p :

d

d1 = d/(s1)+d1 = d/(s1)+ + nulls1s1
d1 = (s1)+/dd1 = (s1)+/d

null

KS kleene star
p1p1

""

p :p :

d

d1 = d/(s1)⇤d1 = d/(s1)⇤ * nulls1s1
d1 = (s1)⇤/dd1 = (s1)⇤/d

null

"" ""

"" ""

""

Figure 6.22: Enumeration rules for Kleene closures.

rule
id description

waveplan precondition
s1s1 s2s2 opop seedseed

ASDP absorb seed
direct pipe d

s1·s1·p :p : |s1| = 1|s1| = 1 null null

ASIP absorb seed
inverse pipe d

·s2·s2p :p : |s2| = 1|s2| = 1null null

dd

dd

ASDC absorb seed
direct compound d

Ws1 ·Ws1 ·p :p : |s1| > 1|s1| > 1 null null

ASIC absorb seed
inverse compound d

·Ws2·Ws2p :p : |s2| > 1|s2| > 1null null

dd

dd

seed passing

d1 = Ud1 = U

d2 = Ud2 = U

Figure 6.23: Enumeration rules for seed passing.

125

requires the wavefront for s1 to be strict. A naive way to prevent generation of

such illegal plans is to check whether a given wavefront for s1 is strict. If it is not,

then make KP simply discard s1 without producing a plan. This would work if all

plans for s1 were generated. However, Waveguide’s enumerator keeps only a sin-

gle19 plan for each sub-expression and seed pair, the plan with a lowest estimated

cost. Consequently, if this lowest cost plan for s1 is not strict, then the bottom-up

enumeration will break without producing a legal plan in either of the Kleene rules.

Hence, we need an approach which ensures that during the bottom-up enumera-

tion single best plans are generated and stored for all subexpressions of s1 would

eventually produce a strict waveplan for s1. In Waveguide, we accomplish this

by using a special mechanism which we call seed passing. The main idea behind

the seed passing is that all wavefronts which have been seeded will be generated

strict during the enumeration. Hence, if we can pass seeds during enumeration for

Kleene subexpressions and subexpressions bound by constants, we can guarantee

that the eventual plans generated for these subexpressions will be legal. Before

we discuss how seed passing mechanism operates in Waveguide, we set up some

helpful definitions.

Definition 6.12 We define a prefix of regular expression r to be a subexpression

19Keeping a single plan per seed-expression pair is key for achieving low complexity of enumer-
ation.

126

s ⊆pre r such that s ⊆ r and s generates path strings which are prefixes of path

strings generated by r.

Definition 6.13 Similarly, we define a suffix of regular expression r to be a subex-

pression s ⊆suf r such that s ⊆ r and s generates path strings which are suffixes of

path strings generated by r.

Example 7 Consider regular expression r = abc. Then, for r, expressions a, ab, abc

are prefixes, and c, bc, abc are suffixes.

Definition 6.14 Given query Q = (x, r, y) and subexpression s of r, we define

prepath seed dpre of s in Q as an RPQ which encodes constraining prepaths of s in

r.

Example 8 Consider query Q = (k, abc(def)+, y) and subexpression s = (def)+.

Here, variable x is bound to constant k. Then, prepath seeds of s in Q are the

following RPQs: (x, ε, y) = U , (x, c, y), (x, bc, y), (k, abc, y).

Definition 6.15 Given query Q = (x, r, y) and subexpression s of r, we define

postpath seed dpost of s in Q as an RPQ which encodes constraining postpaths of s

in r.

Example 9 Consider query Q = (x, (def)+abc, k) and subexpression s = (def)+.

Here, variable y is bound to constant k. Then, postpath seeds of s in Q are the

following RPQs: (x, ε, y) = U , (x, a, y), (x, ab, y), (x, abc, k).

127

Definition 6.16 A seed defined by an RPQ can be concatenated with any regular

expression as follows. Given seed d = (x, r, y) and regular expression s, we define

the result of concatenation d/s as seed (x, r/s, y). Similarly, concatenation s/d

yields to seed (x, s/r, y).

Seed passing is handled by subroutines seedConst() and seedKleene(). The seed

is passed as a parameter to plan generation routine getPlans(). Pseudocode for

seedConst() is presented in Fig. 6.17. Given expression s and query Q = (x, r, y),

seedConst() passes the seed which is created by the binding of variables x and y to

the constants in Q. The binding of x to a constant creates a seed which is passed

to all prefixes of r. Similarly, a seed defined by the binding of y to a constant is

passed to all suffixes of r.

Example 10 Consider query Q1 = (c, abc, y) in which variable x is bound to a

constant c. Then, during enumeration, seedConst(c,Q) is called for subexpressions

s of r with increasing sizes starting from |s| = 1 and finishing with l = |s| = |r|.

Hence, a constant seed is passed to plans for all prefixes a, ab, abc of abc. Indeed,

only plans for prefixes of abc are affected by a binding of x to a constant. Plans for

all other subexpressions of abc are not directly affected by this binding, and hence do

not require seed passing. The same logic applies to seed passing to plans for suffixes

of abc in the case when variable y is bound to a constant.

128

Pseudocode for seedKleene() is presented in Fig. 6.18. Given expression s and query

Q = (x, r, y), seedKleene() passes a specific seed into plans for subexpressions s of

r which satisfy the following condition: s should be a prefix or a suffix of a Kleene

subexpression s1+ in r. The seed which is passed is constructed as follows. Prepath

seeds and postpath seeds of s1+ in r are identified by subroutines preSeed() and

postSeed(), respectively. Here, we omit the description of these subroutines, but,

in short, they work by analyzing the automata constructed from a given regular

expression r and have the complexity linear in the size of r. Both prepath and

postpath seeds are concatenated with the Kleene expression itself, and then the

resulting seeds are passed to the plan generation routine for s.

Consider an example run of enumeration algorithm WGEnum for query Q =

(x, (abc)+, y) shown in Fig. 6.24. During the execution of the algorithm, Fig. 6.24

demonstrates the generated plans, their seeds, and corresponding enumeration rules

which generated the plans. The enumeration starts by considering subexpressions

s of (abc)+ of size l = 1. There are no constants in Q, so seedConst() does not

execute. There exists a Kleene subexpression in Q, hence seedKleene() executes.

There are no prepaths or postpaths of (abc)+ in Q, hence Kleene plans are seeded

with the Kleene expression itself. A plan for prefix a (|a| = 1) seeded with (abc)+ is

generated by rule ASDP. Note that this plan is strictly appending. Also, a strictly

prepending plan for suffix c seeded with (abc)+ is generated by rule ASIP. Then,

129

bestP lanbestP lan

UU aa UU bb UU cc
omni omni omni

(abc)+(abc)+ aa
strict appending

(abc)+(abc)+ cc
strict prepending

seedKleene:

|s| = 1|s| = 1

l = 2l = 2

l1 = 1l1 = 1

l2 = 1l2 = 1

UU abab

omni

UU bcbc

omni

(abc)+(abc)+
strict appending

abab (abc)+(abc)+
strict prepending

bcbc

seedKleene: (abc)+(abc)+
strict appending

abab (abc)+(abc)+
strict prepending

bcbc

[1-9]

CP CPF

ASDP ASIP

AA AP

CP CPF

ASDC ASIC

[10-23]

ERER

l = 3l = 3

l1 = 1l1 = 1

l2 = 2l2 = 2

UU abcabc

omni

CC CCF

(abc)+(abc)+
strict appending

abcabc (abc)+(abc)+
strict prepending

abcabcCC CCF

l1 = 2l1 = 2

l2 = 1l2 = 1

UU abcabc

omni

CP CPF

(abc)+(abc)+
strict appending

abcabc (abc)+(abc)+
strict prepending

abcabcCP CPF

seedKleene: (abc)+(abc)+
strict appending

abcabc (abc)+(abc)+
strict prepending

abcabcASDC ASIC

[10-23]

UU (abc)+(abc)+ KP[24-26]

Figure 6.24: A run of the enumeration algorithm for Q = (x, (abc)+, y).

130

plans with universal seeds are generated for all subexpressions a, b, c of size one by

rules AA and AP.

The enumeration continues by constructing plans for subexpressions of size l = 2

by combining plans for subexpressions of size l = 1. First, omnidirectional wave-

fronts are generated for ab and bc by rules CP and CPF. Then, CP is used to generate

a seeded wavefront for ab. Note, that this wavefront continues to be strictly ap-

pending. Similarly, CPF is used to generate a seeded strictly prepending wavefront

for bc. Again, seedKleene() routine is used to generate a strict wavefronts for both

ab and bc. Here, rules ASDC and ASIC are using omnidirectional wavefronts com-

puted earlier for ab and bc to produce strict wavefronts by transitioning over the

corresponding views for ab and bc.

The generation of plans proceeds in the similar fashion for l = 3. Here, expres-

sions of size l = 2 are combined with expressions of size l = 1 and vice versa. Now,

we have a seeded plan for full expression abc used in the Kleene closure in Q. So,

rules KP and KS are used to produce a plan for the closure. Note that all seeded

plans were generated strict by the enumeration rules. Since both KP and KS use a

seeded plan for a subexpression in Kleene, the generated plan for the Kleene closure

is legal with respect to the given query.

Theorem 6.17 Given query Q = (x, r, y), Waveguide’s bottom-up enumerator

WGEnum generates a plan for Q in time polynomial in the size of r.

131

Proof: By analysis of the running time of all subroutines used in WGEnum. Rou-

tine memoizeMin() updates bestPlan in O(|P |) time where |P | is the number of

plans given to it. Set |P | is always generated by the getPlans() routine. Each rule

in ER generates exactly one plan per seed-subexpression pair. There are O(|r|)

seeds and |ER| rules, hence |P | = O(|ER| · |r|2). Note that O(|ER|) = O(1) since

constant |ER| is predefined at compile time. Hence, memoizeMin() runs in O(|r|2)

time.

Routine getPlans() generates plans for a given operator and subexpression pair.

Again, there are O(|r|) seeds and |ER| rules, hence getPlans() runs in O(|ER| ·

|r|2) = O(|r|2) time. Routine seedConst() passes a seed if a given subexpression is

a suffix or a prefix of r. Hence, seedConst() runs in O(|r|2) time. In seedKleene()

routine seeds are generated based on prepaths and postpaths of a given expression-

query pair. There are at most O(|r|) of (pre/post)paths, hence seedKleene() runs

in O(|r|3) time.

We then analyze how many times loops are executed in WGEnum. First loop

L[1-9] is executed |r| times for each subexpression s ∈ r of size 1. Each operation

inside L[1-9] takes at most O(|r|3) time. Hence, loop L[1-9] runs in O(|r|4) time.

We then consider loop L[10-26]. It contains two inner loops L[11-20] and L[21-26].

L[11-20] loops over pairs of subexpressions s1, s2 such that |s1| + |s2| = l. If[15]

condition would hold only if concatenation s1/s2 ∈ r. Hence, for a subexpression

132

of size l, at most l − 1 splits with concatenation (/) into s1 and s2 is possible.

Similarly, for If[18], at most l − 1 splits with union (|) into s1 and s2 is possible.

Each operation inside If[15] and If[18] takes at most O(|r|2) time. Similarly, each

operation in loop L[23-29] also takes at most O(|r|3) time.

There are at most |r| − l + 1 such subexpressions of length l in r for each of

which both L[11-20] and L[21-26] execute. Hence, L[10-26] takes time:

|r|∑
l=2

(|r| − l + 1)(l − 1)×O(|r|3) =
|r|3 − 3

6
×O(|r|3) = O(|r|6) (6.54)

Since L[1-9] runs in O(|r|4) time and L[10-26] runs in O(|r|6) time, the whole

WGEnum runs in O(|r|6) time which is polynomial in the size of given regular

expression r. �

Theorem 6.18 Given RPQ Q = (x, r, y) with regular expression r, Waveguide’s

bottom-up enumerator WGEnum generates a plan for Q which is legal with respect

to r.

Proof: By splitting into cases based on the type of the query Q = (x, r, y) given.

First, suppose that both variables x and y are free; i.e., not bound to any constants.

Further, suppose r does not have any Kleene closures; i.e., operators ∗ and + are

not used. In this case, all seeds used are universal and strictness of wavefronts is not

required; hence, we only need to show that enumeration rules in ER produce legal

plans when used with concatenation (/) and union (|) operators. This is shown

133

by using structural induction on the parse tree of r. Specifically, we assume that

plans p1 and p2 generated for subexpressions s1 and s2 are legal. Given that, we

show that the application of each enumeration rule would produce a legal plan for

a combined expression.

Second, suppose that one of the variables x and y is bound to a constant and

r is still free of Kleene expressions. Without loss of generality, assume that x is

bound to a constant k. Since x is bound to k, the generated plan for expression

r should be strictly appending to be legal. Hence, we need to show that all rules

which led to the generation of a plan for r would produce a strictly appending plan.

We split into cases based on subexpressions s1 and s2 of r and the operator

op. Suppose op is a concatenation operator (/), such that r = s1/s2. In this case,

s1 is a prefix of r by Def. 6.12; i.e., s1 ⊆pre r. During enumeration, seedConst()

passes the constant seed for all such prefixes s1. Hence, depending on the size |s1|,

only rules ASDP and ASDC are used for generating a plan for s1. Both of these

generate strictly appending plans p1 for prefixes s1. Since, none of the plans for

s2 are seeded, rules CC and CP are used to produce the plan for concatenation

r = s1/s2. In both CC and CP, the plan for s1 is copied into the wavefront for

r, and then the appending transition is used for subexpression s2. Since we have

shown that p1 is strictly appending, it follows that all plans generated for r are also

strictly appending.

134

Next, suppose op between s1 and s2 is a union (|) operator. Regardless of the

size of subexpressions s1 and s2, plans p1 and p2 are copied in the rule U to produce

a plan for union s1|s2. Both s1 and s2 are bound by the same constant as r, hence

we can reduce recursively this problem into showing that both p1 and p2 are strict.

We continue splitting recursively s1 and s2 into subexpressions until we either reach

concatenation or when the expression is an atomic label. If op is a concatenation

(/), then we are done (as we have proven this case already). If the expression is

an atomic label, then it is a prefix of itself. Hence, it would have been seeded by

seedConst(). Then, rule ASDP is used for generating a plan for this subexpression.

By construction, this rule produces a strictly appending plan.

Finally, we consider that one of the variables is bound to a constant and r in-

cludes Kleene subexpressions. Here, we are left to prove that plans for subexpres-

sions of Kleene closures are generated strict. Indeed, seedKleene() seeds all prefixes

and suffixes of its subexpressions similar to seedConst(). So, using the same proof

logic we show that all subexpressions of Kleene closures the enumeration rules will

generate strict plans. By Def. 6.10, this is sufficient to show that generated plan is

legal with respect to the Kleene closure. �

Theorem 6.19 Given RPQ Q = (x, r, y) with regular expression r, Waveguide’s

bottom-up dynamic programming enumerator WGEnum generates a plan for Q which

is optimal with respect to Waveguide’s cost model and plan space.

135

Proof: To show the optimality of the plan generated by Waveguide’s enumer-

ation dynamic programming procedure, we need to show that the enumeration

procedure exhibits the optimal substructure property. This property requires the

ability to construct an optimal solution of a problem from optimal solutions of its

subproblems.

In our enumeration, we define a solution of a problem P as the generation

of an optimal plan (a plan with the lowest estimated cost) for a given regular

expression r. Then, optimal solutions to subproblems Si are the lowest cost plans for

subexpressions si of r. Recall that there are many ways to split P into subproblems

depending on how expression r can be constructed from its subexpressions si; i.e.,

different parse trees of r need to be considered. Hence, to prove optimality of our

enumeration, we need to show the following:

1. a construction of a solution for P from optimal solutions for Si is optimal;

and

2. during the enumeration, that we explore all possible splits of problem P into

subproblems Si.

To show (1), we perform a structural induction on a fixed parse tree of r and

split into cases based on the operator in the parse tree. First, we consider the

concatenation operator (/). Suppose, according to the parse tree, expression r is a

concatenation r = s1/s2. Let p1 and p2 denote optimal plans for expressions s1 and

136

s2, respectively. Then, having p1 and p2, we need to show that we can construct

an optimal plan for r with respect to this fixed parse tree, and, hence, with respect

to this particular split of r into s1 and s2. The optimality of a solution for r is

dictated by its total cost which is a sum of costs of p1, p2, and concatenation s1/s2.

Both p1 and p2 produce an answer set (a set of variable bindings in the graph)

for their respective subexpressions. The cost of a concatenation (a join) of these

answer sets would depend only on the sets themselves and not on how these sets

were obtained.20 Hence, an optimal solution for the concatenation r = s1/s2 can

be constructed by considering only optimal solutions for s1 and s2.

Second, we consider the union operator (|). Suppose, according to the parse

tree, expression r is a union r = s1|s2. Here, the evaluations of s1 and s2 are

independent of each other. Hence, by having optimal solutions for s1 and s2, we

can construct an optimal solution for their union s1|s2.

Third, we consider the Kleene closure operators (+ and ∗). Suppose that,

without loss of generality, according to the parse tree, expression r is a Kleene plus

closure of its subexpression s1. Then, by having an optimal plan for s1, can we

20A nuance of this problem is when we consider the order of the answer sets. For example,
it might be more expensive to produce ordered answer sets for s1 and s2, but then the cost of
concatenation s1/s2 might be lower due to use of a merge join. In this case, suboptimal (from
an estimated cost perspective) solutions of subproblems might produce an optimal solution to
the problem itself. This nuance can be handled by additionally keeping interesting orders for
sub-problems, without asymptotic increase in the overall complexity. In Waveguide, we are not
using merge joins in our implementation, and, hence, we are not keeping additional orders in the
memoization table.

137

dd
q0q0

s1s1
"" ""

""

Figure 6.25: A plan template for Kleene plus Q = (x, s1+, y).

construct an optimal plan for the whole closure? In general, the answer is no —

having an optimal plan for the subexpression does not guarantee an optimal plan

for the whole closure. This is caused by the repeated evaluation nature of the Kleene

closure. The optimal plan for s1 guarantees us the lowest cost of evaluation of only

the first loop in the Kleene closure which finds paths s1. However, the plan for s1

might not be optimal for the second loop in the closure which finds paths s1/s1, and

so forth. In general, different plans can be used for each subsequent loops in the

Kleene closure (see unrolling in §8.3). However, by Def. 6.1, we restrict the same

plan to be used for the entire closure (we defer unrolling to future work). Hence,

we need to ensure that the plan we choose for s1 is optimal for the whole closure.

The reason the same plan for s1 might be optimal for one loop in the Kleene

closure and suboptimal for another is the fact that its seed changes from one loop

to another. For example, assume that d represents the seed for the whole closure

s1+ (see Fig. 6.25). Then, d0 = d is seeding the first iteration when d/s1 paths

are computed. d1 = d/s1 is seeding the second iteration when d/s1/s1 paths are

138

computed, and so forth. So, in order to pick the single plan for s1, which is best

for the whole closure, we need to take into account seeds d0, d1, . . . , dn during all

n iterations of the closure. Observe that a union of all seeds is the closure itself:⋃n
i=0 di = d/s1+. Hence, to guarantee optimality of the whole closure, we just

need to seed the subplan for s1 with d+ = d/s1+, which is what is being done

in enumeration rule KP (and KS for Kleene ∗). This shows (1) for all different

operators in the parse tree.

Now, to show (2), we analyze if all possible splits into subproblems are consid-

ered by our enumeration presented in Fig. 6.14. Again, split into cases based on

the operator op. He we only need to consider binary operators:21 the concatenation

(/) and union (|). Observe that, indeed, all possible splits of r of size |r| = l into s1

and s2 are considered in WGEnum by iterating over all sizes |s1| and |s2| such that

|s1|+ |s2| = l. This means that by considering all local optimal solutions for splits

of r into s1 and s2, we find the global optimal solution for r, in general.

�

In §6.3.3, we discussed the optimization of threading. We accommodate this

in-part in the enumeration above. For Kleene closures in the query, these can be

potentially seeded by other parts of the plan. Constants define seeds for subplans.

Both of these are covered by our enumerator WGEnum. Another threading opti-

21Kleene closures are unary operators, hence no splits are possible.

139

mization is for subplans for evaluating views which can be restricted to a smaller

graph walk by the results of other subplans. If such restrictions were applied at

runtime, the evaluation may be more efficient. To choose the best plan, with re-

spect to this view threading optimization, we would need to accommodate this

consideration in the cost estimation and caching of subplans for views during the

enumeration. WGEnum presently does not do this. This is a point of future work.

140

7 Implementation & Benchmarking

7.1 Implementation

7.1.1 Software: The System

We have prototyped a system that implements the methodology from §3 in order to

benchmark waveguide plans to study their performance. We illustrate how Wave-

guide can be implemented effectively on a modern relational database system.

We use PostgreSQL due to that it is open-source and has a high-performance

procedural SQL implementation. However, any RDBMS with good procedural

SQL support could be used. Further, many native graph databases with support

for procedural languages equivalent to procedural SQL can also be used. In this

Waveguide system, resource-intensive tasks are delegated to PostgreSQL via

SQL and procedural SQL routines.

Fig. 7.1 shows the architecture. It consists of two layers: application and

RDBMS. The application layer provides a user front-end, preprocessing the graph

141

strings serial
triples

trans search
state

Graph database

WaveGuide

RDBMSApplication
AP

I

query
parser

data
visualizer

data
import

plan
generator

RDF

(x, L(r), y)

SPARQL

<…>

Evaluation
Properties

seed

crank

reduce

cache

Figure 7.1: Overview of the prototype system.

142

data, parsing user queries, generating WPs, and visualizing key steps during the

search. The RDBMS layer provides postprocessing of the graph data and perform-

ing the iterative Waveguide graph search for the given WP. The RDBMS acts

both as the graph store and as the execution platform for Waveguide’s iterative

algorithms.

Graph database. We represent a graph database in a single logical triples ta-

ble, which is decomposed into two physical tables—strings and a surrogate serial-

Triples—to reduce storage space and improve performance due to IRI compression

as discussed in §2.2.1.1. The surrogate table is indexed in all six ways—spo, sop,

pos, pso, osp, and ops—to accommodate the guided search. In is a subject of fu-

ture work for us if other relational graph storage techniques such as property tables

(§2.2.1.2) and vertical partitioning (§2.2.1.3) would be a benefit for Waveguide

approach.

Guided search. The graph walk framework discussed in §3.2 is implemented

completely in procedural SQL routine in PostgreSQL. Through query hints,

we force PostgreSQL to use Waveguide’s primitive graph search operations

(crank, reduce, and cache) such that they match the example implementations (f1-

f4) given in §6.1. The WP that guides the search process is encoded in the trans

table. To improve the performance, the cache is stored in an unlogged, ephemeral

searchCache table. This is indexed to cover the access paths used by the iterative

143

Figure 7.2: Query plan designer.

search. We implement profiling functions here to feed evaluation statistics to the

data visualizer.

Data importer. This validates RDF data encoded in common formats (e.g.,

N-triples and Turtle.). It converts these to a tab-separated value format for bulk

loading in the RDBMS.

Query parser. We use the Apache ANTLR open-source framework to parse

SPARQL 1.1 property path query strings into an internal tree representation.

Plan generator. Given the query parse tree, we produce a base WP from an NFA

that recognizes the regular expression of the query. We then employ our cost-based

144

Figure 7.3: Runtime visualizer and profiler.

enumeration algorithm to obtain a waveplan with the lowest estimated cost. The

end user can manually tune the produced WP via graphical evaluation plan designer

(shown in Fig. 7.2).

Data visualizer. We employ GraphStream open-source library [20] to perform

the graph visualization in our system. This allows us to visualize dynamically

the key steps involved in the Waveguide search process. We interface with the

RDBMS to visualize the search cache at each iteration of the crank, reduce, and

cache steps. To provide technical insight to the Waveguide process, we display a

number of relevant evaluation parameters and statistics (shown in Fig. 7.3).

145

7.1.2 Hardware: Runtime

Our benchmark was executed on a host 2xXeon E5-2640v2 CPU server with 10

7200RPM HDDs running CentOS 6. PostgreSQL, OpenLink Virtuoso, and Jena

TDB were executed in their own virtual machines which were given 4 CPU cores,

4GB of RAM and 1TB of HDD space.

7.1.3 Software: Runtime

Waveguide prototype planner was implemented in Java 1.8. Waveguide database

execution engine was based on PostgreSQL 9.3. Virtuoso was built against open

source distribution of version 7.2.1 (latest at the time of submission of this disser-

tation) which is maintained by OpenLink on GitHub. We have modified the source

code to increase the transitive memory limit of Virtuoso’s underlying RDBMS.

We obtained the latest version (2.13.0) of Jena TDB for our tests. Both DBPedia

and YAGO2s were fully indexed on all systems to ensure indexed access paths for

all queries used in benchmarks.

7.2 Methodology

We test our implementation of Waveguide by running a collection of realistic

path queries over real-world datasets YAGO2s [64] and DBPedia [18]. The datasets

146

were preprocessed by removing invalid and duplicate triples. After preprocessing,

YAGO2s had 242M triples and DBPedia had 463M triples, with 104 and 65K

distinct predicates, respectively. A large number of predicates makes these datasets

well suited for benchmarking of path queries.

At the time of this disseration, we could not find any available benchmarks for

SPARQL property path queries.22 We, therefore, generate path queries based on

data patterns we identified in real-world graphs. The goal of these experiments

is to verify the gains offered by Waveguide optimizations, and show that they

correspond to the cost framework (§6.1) and analysis (§6.4).

7.3 The Optimizations

7.3.1 Threading

We benchmark the threading optimization by executing a query of the following

template:

?x p/p1+/p2+ ?y (Q7.1)

over the YAGO2s dataset, with “p”, “p1” and “p2” as variable predicates. We chose

this template because it contains the concatenation of two transitive closures, which

makes it difficult to predict the average length of the paths in the answer.

22The first benchmark to include RPQs, gMark [9], was in development at that time.

147

Figure 7.4: Benchmarking Threading.

We group p candidates in two sets: the first (queries L1–L35) having an M

value greater than 10; and the second (queries L36–L55) having an M value less

than 1. Each of the queries is executed with three different plans: D, a direct

evaluation with a single wavefront with no threading; T1 threads on shared path

(p1+/p2+); and T2 threads on (p2+) to illustrate the effect of potentially lower L

than in T1. Given p, predicates p1 and p2 are chosen such that the running time of

Q7.1 is between 0.5 and 5 minutes.

The relative running times for queries L1–L55 executed with plans D (the

baseline), T1, and T2 are presented in Fig. 7.4. As anticipated, the evaluation of

queries in the first group is significantly (up to 75%) faster threaded than direct,

and with T1 being faster than T2. This can be attributed to the fact that the length

of the shared path L is shorter in T2 due to a “later” threading split in the query

148

expression. Also as anticipated, queries in the second group show bad results for

T1. Indeed, picking a predicate with M < 1 for a threading split will generally

be bad due to few shared paths. Further, some queries (L50-L51) are evaluated

significantly slower (up to 23 times!) when threaded in T2. This illustrates the

importance of choosing the correct threading split.

7.3.2 Loop Caching

We benchmark the loop-caching optimization by executing a collection of queries

of the simple template Q(ab)+ = (x, (ab)+, y) (Q3.1) with two WPs Pnc and Pfc,

which specify executions of Q with no loop caching and with full loop caching,

respectively.

Values for a and b were chosen by iterative pruning of predicates appearing

in the DBPedia dataset. First, we excluded predicates with very high (more than

25M) and low (less than 75K) cardinalities, to keep query running times reasonable.

Then, we ran query Qabab = (x, (abab), y) and recorded those (a, b) predicate pairs

for which the result of Qabab was not empty. DBPedia had 1171 such pairs, which

indicates a high number of (ab)+ paths in this dataset. For each of these pairs, we

ran the full closure query Q(ab)+ to obtain its expansion ratio,

rexp =
|Q(ab)+|
|Qab|

(E7.1)

where |Q| denotes the cardinality of a query result.

149

(a) Edge walks vs. runtime in plans w/ & w/o loop caching in DBPedia.

(b) Tuples pruned in Pfc vs. Pnc.

(c) Best pipelined, partially and fully cached plans for queries over YAGO2s.

Figure 7.5: Benchmarking Loop Caching.

150

Figure 7.6: Effect of plans on query evaluation.

Recall that both Pnc and Pfc initially evaluate (ab) paths in the same way, while

the rest of the closure (ab)+ is computed differently. Hence, in order to show the

differences between these plans, we chose predicate pairs with rexp > 2, so that the

computation of the rest of the closure constitutes at least 50% of the plan execution

time. We identified 21 such queries by analyzing graph patterns in DBPedia.

We evaluated each one of these queries with Pnc and Pfc plans and recorded the

running time, edge walks and pruning statistics. Due to widely varying absolute

151

values for these statistics across queries, we present their relative percentage break-

downs in Fig. 7.5a, as follows. Each query is represented by a multi-colored bar,

which shows the percentage breakdown of statistics values between Pnc and Pfc

executions. In this way, we present edge walks (in the left chart) and running-time

execution (in the right chart). We enumerate the queries from D1 to D21 ac-

cording the ascending sorting of the percentage of edge walks performed in the Pnc

execution relative to the Pfc execution. Hence, in query D1, Pnc execution resulted

in significantly fewer edge walks relative to Pfc execution, with the opposite true

for query D21. For edge walks, we perform a further breakdown, for each query, of

the total number of edge walks into the number of tuples which were cached, were

reduced against the cache, or were reduced against the delta. This breakdown is

represented by different shades of the color associated with Pnc or Pfc executions,

respectively. Similarly, for each query, we break down its running time into total

times of crank, cache, reduceC and reduce∆ steps to illustrate the costs of each in

relation to the framework presented in §6.1.

Our first observation is that, in general, the loop caching optimization can both

significantly increase or decrease the total number of edge walks performed by the

search. In our benchmark, loop caching resulted in fewer edge walks in 10 queries,

with almost an order of magnitude reduction, in the best case. On the other hand,

in 11 queries, loop caching resulted in more edge walks, with a more than 5X

152

increase, in the worst case.

Our second observation is that the real cost of Waveguide search corresponds

to the approximations of costs f1-f4 given in §6.1. Consider queries D1-D11 in

which loop caching resulted in a higher total number of edge walks. However, the

majority of these queries still ran faster than their pipelined counterparts due to the

fact that, the bulk of edge walks produced duplicate tuples, which were removed by

reduce∆. Indeed, such in-memory removals are inexpensive according to f2. Further,

we observe that expensive (f1,f3 and f4) disk-based operations crank, reduceC and

cache which require probing or maintaining a tree index contribute significantly to

the overall cost.

Finally, we study the effect of lensing by analyzing the degree of delta and

cache pruning. Fig. 7.5b plots pruning over iterations for the queries which exhibit

lensing: D3 and D21. Query D3 has M(G, a) = 10.58 and M(G, b) = 0.33,

which suggests lensing with focal point on the concatenation a/b. As discussed in

§6.4, this can significantly increase the amount of pruning for loop caching, which

is indeed what we observe. On the other hand, D21 has M(G, a) = 0.07 and

M(G, b) = 5.34, which suggests lensing with a focal point on the concatenation

b/a. This lensing benefits loop caching by decreasing the amount of pruning over

iterations, which is what we observe.

153

7.3.3 Partial Loop Caching

In a previous section, we have shown experimentally that plans from both FA and

α-RA spaces need to be considered in query evaluation. In this section, we aim to

show that plans which are not in FA or α-RA often also require consideration.

We design a collection of queries over YAGO2s dataset which are based on the

template below:

?x (a/b/c)+ ?y (Q7.2)

We pick values for a, b and c by iterative pruning of predicates appearing in the

YAGO2s dataset similar to the process discussed in §7.3.2. As a result, we came

up with 25 queries Y1–Y25 which follow template Q7.2.

The results of the benchmark are presented in Fig.7.5c. We group plans into

three categories: no loop caching (pipelined), partial loop caching and full loop

caching. For each category, we pick the best plan as judged by a total number of

edge walks performed. Due to wide differences in absolute values, we present the

best pipelined plan as a baseline and present the other two groups in relation to it.

As expected, pipelined plans are usually not the best choice in the evaluation

of open-ended queries like Q7.2 Here, pipelined plans win in 5 out 25 queries. This

is explained by the strict evaluation order imposed by such plans. For a query like

Q7.2 there are only two legal pipelined plans, direct and inverse pipelines. Hence,

154

often these plans lose to other plans which allow more flexibility in evaluation

order. Fully loop cached plans which allow the most flexibility in evaluation order

(we generate 20 such plans for Q7.2), are fastest in 11 queries out of 25, sometimes

by an order of magnitude. Finally, in 9 queries out of 25, partially loop cached

plans win, sometimes by a large margin. Hence, these plans, which are exclusive to

Waveguide, need to be considered as well.

7.3.4 Combined Optimizations

We illustrate the impact of combining Waveguide optimizations over the example

query

?p :marriedTo/:diedIn/:locatedIn+/:dealsWith+ USA (Q7.3)

over the YAGO2s dataset. We instantiate p as follows.

P1: single wavefront USA → ?p.

P2: single wavefront ?p → USA.

P3: two wavefronts

?p → :locatedIn+/:dealsWith ← USA.

P4: P2 but with a threaded sub-path

:locatedIn+/:dealsWith+ USA.

Fig. 7.6a shows the effect of wavefront choice on search cardinality. Note the order

of magnitude difference between the best, P4, versus the worst, P1. The three

155

types of redundancy pruning—cache, delta, and fpp—are illustrated for each plan.

Fig. 7.6b plots search size across iterations for P2 with pruning; over 40% of tuples

are pruned! Fig. 7.6c plots delta sizes over iterations for P1 and P3. Note how

the selective search of P3 is better behaved than the rapid expansion of P1. In

Fig. 7.6d, the total execution time for each plan is presented. This demonstrates

the significant improvement in performance achievable by careful design of the WP.

7.4 Comparison with Other Systems

We analyze the performance of the Waveguide prototype in comparison with two

RDF stores: Virtuoso and Jena TDB. Both Virtuoso and Jena TDB are

well known and widely used today to store and query RDF data. Virtuoso is an

example of an RDF store which is backed by a relational database, which makes

it similar to Waveguide prototype. On the other hand, Jena TDB is a native

solution developed specifically to handle graph data. We should point out that a

fair and comprehensive comparison with Virtuoso is impossible because it does

not handle full open-ended property path queries which are a part of SPARQL 1.1

standard specification. Waveguide does not have this limitation.

We design three experiments which aim to benchmark two main aspects of

property path evaluation: 1) transitive closure computation and 2) query planning.

156

(a) Transitive closure. (b) More complex queries.

(c) Analytical query planning.

Figure 7.7: Benchmarking vs. state of the art.

7.4.1 Transitive Closure

Computation of transitive closure is one of the main operations which are encoun-

tered during evaluation of property paths. Hence, it is important to handle this

operation efficiently in order to be able to answer property path queries quickly.

157

Our benchmark consists of a number of realistic, simple transitive closure queries

over YAGO2s dataset which follow the following template:

?entity :locatedIn+ place (Q7.4)

Q7.4 finds all entities transitively located in a certain place, which is given as a

query constant. By varying this constant, we design transitive closure queries with

increasing answer cardinalities, which allow us to benchmark the efficiency of a

transitive closure computation in a given system.

The benchmark results are presented in Fig.7.7a. Virtuoso has the fastest

transitive closure computation engine out of all systems. This is expected as Vir-

tuoso is based on high-performance relational database written in C. Moreover,

all its transitive closure computations are performed completely in main memory

without spilling to disk. (Incidentally, this can be serious performance bottleneck

for large cardinality property path queries.) Waveguide prototype is less than

two times slower than Virtuoso. While our prototype is also based on high-

performance relational database such as PostgreSQL, we utilize stored proce-

dures for our computation which are far less efficient than inline SQL or in-memory

computations used by Virtuoso. Surprisingly, Jena TDB did not scale at all for

transitive closures. While Jena TDB is competitive for general SPARQL queries,

we conclude that the algorithms it uses for transitive closure computation need

more work.

158

7.4.2 Query Planning

This experiment aims to highlight the importance of planning in the evaluation of

property path queries. We design a number of queries over YAGO2s dataset which

are based on the following template:

select ?x ?y { (Q7.5)

?x :locatedIn+ place . [Q7.4]

?x (a/b/c)+ ?y . } [Q7.2]

Observe that Q7.5 is a conjunction of templates Q7.4 and Q7.2. We could not use

just Q7.2 because of Virtuoso limitation which requires property path queries to

be bounded on at least one variable. In Q7.5, that binding is done by Q7.4.

First, we set place in Q7.4 to :Earth, to simulate an analytical workload by

placing a loose binding on ?x in property path Q7.2. Second, we set values of a, b

and c to those used in queries Y1–Y10 in §7.3.3 to produce queries C1–C10. The

benchmark results are presented in Fig.7.7c. We observe that Jena TDB did not

finish in allotted time frame for any of the queries. We attribute this to the poor

implementation of transitive closure computation as discussed in §7.4.2. On the

other hand, despite having faster transitive closure computation engine, Virtuoso

is slower than Waveguide in most of the queries, sometimes significantly. We

attribute this to the limited plan space which is considered by Virtuoso. Due to

159

the limitation which requires transitive queries to be bound by one of the variables,

Virtuoso was always choosing to evaluate Q7.4 first, and then pipeline the results

to Q7.2. As discussed in §7.3.3, such pipelined plans often perform badly for loosely

bound queries. Hence, this limitation led to poor Virtuoso performance for C2–

C10.

7.4.3 Query Planning vs. Transitive Closure

The goal of our third experiment is to understand the capacity in which efficiency

of transitive closure and query planning affect query evaluation. We design a set of

six real-world queries over YAGO2s dataset which we split into two groups. Queries

in the first group (A1-A3) are simple as they contain one or two non-transitive

and one transitive predicate. Therefore, efficient transitive closure computation

plays a bigger role than query planning in this group. Queries in the second group

are slightly more complex as they either contain one transitive (A5-6) or a single

transitive and three non-transitive predicates (A4). Hence, a good evaluation plan

in this group is more important than efficient transitive closure.

The benchmark results are presented in Fig. 7.7b. Due to simplicity of the

queries in the first group, all three engines used identical plans to evaluate them.

Hence, the engine with the fastest transitive closure (in this case, Virtuoso) had

the lowest evaluation time. On the other hand, for queries in the second group,

160

Waveguide was the fastest engine in all of the queries. Further, a slight increase in

query complexity from one (A4) to two transitive predicates (A5-6) caused Jena

TDB to fail to evaluate both A5-6 and Virtuoso’s fail on A6. This highlights

the importance of a large plan space considered by Waveguide over fast transitive

closure computation in Virtuoso in all RPQs besides the simplest ones.

161

8 Conclusions

Regular path queries (RPQs) offer a succinct, declarative mechanism to query

graphs in which the exact paths between nodes are unknown. RPQs are useful in

many application domains such as social networks, life sciences, transportation and

others. RPQs as a concept have been known and studied in the database community

for quite some time now, first appearing during the initial spike of interest in graph

databases in the 1980s. The first methods of evaluation of RPQs appeared during

this time. These methods were based on finite state automata (FA). FA methods

provided a convenient foundation for proving the complexity of evaluation of RPQs

under various semantical configurations. Yet, FA methods were not practical in a

real-world setting as query evaluation; FA methods are too rigid from the query

planning perspective, and, hence, would often fail under many query workloads.

The problem of RPQ evaluation has been revisited by the database community

recently during the resurgence of interest in graph databases over the last couple

of years due to the rise of the Semantic Web. The standards such as SPARQL 1.1

162

which define RPQs as a part of the query language have started coming into place.

In this iteration, researchers proposed to deal with the evaluation of RPQs by using

methods borrowed from the relational databases. Once the relational algebra is

extended with transitive computations (α-RA), cost-based query planning becomes

available to make query evaluation more practical.

In this dissertation, we have made the observation that the effective plan spaces

of FA and α-RA approaches are, in fact, incomparable. This means that query

evaluation techniques which utilize either one of FA and α-RA plan spaces will be

missing plans which might be the best (have the lowest cost) for a given query. This

motivated us to come up with Waveguide, a hybrid RPQ evaluation approach,

which combines FA and α-RA plans spaces and, in fact, extends well beyond them.

8.1 Contributions

Waveguide models a rich space of plans for path queries which encompass pow-

erful optimization techniques. In this dissertation, we have made the following

contributions. First, we have summarized the state of the art for evaluation of

RPQs and SPARQL property paths. We established why none suffices. We de-

signed a novel hybrid approach of RPQ evaluation which we call Waveguide. We

provided and evaluation framework based on iterative search with guided wave-

fronts which explore the graph. We systematically defined waveplans as structures

163

which guide the search. Further, we demonstrated that plan space in Waveguide

approach subsumes state of the art and extends well beyond it. We built a full-

fledged cost-based query optimizer for RPQs based on Waveguide. Specifically,

we modeled the cost factors that determine the efficiency of the plans, and pre-

sented powerful optimizations offered by waveplans. We devised a concrete cost

model for waveplans and determined an array of statistics which can be used in

conjunction with the cost model. We analyzed the waveplan space and designed an

efficient enumeration algorithm to walk it dynamically. Finally, we implemented a

prototype of a Waveguide system and benchmarked it on realistic path queries

on large real-world graph datasets. We substantiated the optimizations offered by

our approach and justified the necessity of rich waveplan space. Further, we tested

our prototype against state-of-the-art RPQ evaluation systems and demonstrated

the significant performance gains offered by our approach.

8.2 Future Work

In this work, we have designed a system called Waveguide which aims to provide

viable cost-based path query optimization and evaluation for SPARQL over RDF

stores.

We now discuss several immediate directions in which this work can be extended.

First, we discuss the extension of the Waveguide framework to handle multiple

164

RPQs (MRPQs) and conjunctive RPQs (CRPQs). Next, we discuss the improve-

ments to the cardinality estimation that can be achieved in Waveguide. Finally,

we present an extended way of handling Kleene subexpressions in Waveguide’s

plan enumerator which will allow it to explore an even richer waveplan space.

8.2.1 Multiple & Conjunctive RPQs

In Waveguide, we focus on single-path, property path queries, essentially the RPQ

fragment of SPARQL 1.1. An immediate extension of Waveguide framework is

to handle multiple RPQs in a batch (MRPQs) and conjunctive RPQs (CRPQs).

Here, a basic optimization observation is that queries running in a batch may

have common subexpressions among them. Instead of running each query individu-

ally, one could benefit from sharing the results of common subexpressions. We can

think of evaluation of MRPQs as a two-step procedure. First, we identify common

subexpressions among submitted queries. Second, we search for the global optimal

plan such that its cost is less than combined cost of local optimal plans in a batch.

We propose SwarmGuide, a generic optimization framework for MRPQs in graph

databases.

In Swarmguide, we identify a pipeline of four steps needed to optimize MRPQs:

query clustering, finding common sub-plans, query rewriting, and global optimiza-

tion. Query clustering is a preprocessing step which goal is to find the commonalities

165

among the RPQs in the batch. The commonalities can be detected by finding the

isomorphic subgraphs of their corresponding finite automata (FAs). This process

is known to be NP-hard, in general [39]. Therefore, we can use heuristics to group

only those queries that can have common sub-automata, and then do the hard task

of identifying the common sub-automata within each group.

Finding common sub-automata resembles finding the maximum common sub-

graph among graphs. The problem becomes more difficult here as we need to find

the largest common subgraphs (sub-automata) for multiple graphs (FAs). Most ex-

isting solutions only consider non-labeled edges and nodes in undirected graphs. We

adopt the solution from the maximal common-edge subgraph (MCES) problem [55]

to detect common sub-automata. This has three steps: transforming labeled-graphs

into the equivalent line-graphs; producing a product graph from the line-graphs;

and detecting the maximal cliques in the product graph, which corresponds to

MCESs (therefore, common sub-automata).

A local optimal plan for a given query may not be the best plan when optimizing

a batch of queries. The goal of the global optimization is then to search local plans

of queries to find a global plan by choosing one local plan per query in a cluster of

RPQs. The cost of this global plan should be less than, or equal to, the total cost of

local optimal plans of queries in the batch. In [58], the authors propose cost-based

heuristic algorithms for this; we likewise adapt their algorithms for here.

166

A single waveplan is often decomposed into several wavefronts as views. When

planning globally, one has to check if views from other queries plans can be shared.

Intermediate node-pairsalong with their states in FA are cached to avoid unbounded

computation over cyclic graphs. When evaluating a global plan in MRPQs, these

local caches need to be maintained globally so subplans shared among queries can

be leveraged. The global cache also can be used to obtain useful statistics about

the graph to obtain a more accurate global optimal plan and choosing the initial

nodes for search exploration.

Conjunctive RPQs can be considered as an extension of MRPQs in which the

end-points of one RPQ can be joined with end-points of another RPQ. In addition

to challenges which we described for MRPQs, the end-point bindings specified by

conjuncts in a CRPQ introduce more opportunities for seeding in which results

of one RPQ are seeded into another RPQ. Even further, CRPQs evaluation opens

opportunities for sideways information passing (SIP) which allows for RPQs to be

evaluated in parallel while still influencing each other’s execution at runtime. The

seeding framework we introduced in Waveguide would need to be extended to

handle these cases.

167

Tl1 .o ./ Tl2 .s
w1,2w1,2

w3,1w3,1

w1,3w1,3

out middle in

#one #two

#paths

#pairs

Figure 8.1: Extended Synopsis.

8.2.2 Better Cardinality Estimation

In this work, we have defined a graph search framework which is based on an itera-

tive graph exploration guided by a waveplan. As discussed in 6.1, we have proposed

an associated cost model based on the number of edge walks (∆i), cardinalities of

subgraphs of G, and the sizes of search cache |Ci| at each iteration i of the search.

Cardinality estimation model described in §6.5 utilizes synopsis : a catalog of

table statistics which stores single and joint label frequencies collected from given

graph G. In Waveguide, a transition from one state to another in a wavefront

automaton is a primitive operation (crank) which drives the search in a graph. In

order to estimate the number of edge walks during the crank, we can use a classical

formula used in the estimation of join sizes of two tables. Recall that this formula

is based on three assumptions: uniformity, independence, and inclusion. While

these assumptions greatly simplify the cardinality estimation, they also introduce

168

errors in estimates. We argue that inclusion assumption almost never holds in a

case of path queries and, hence, might introduce catastrophic errors in cardinal-

ity estimation. We counter this in Waveguide by using joint-frequency synopsis

which allows us to relax the inclusion assumption. However, we are still left with

uniformity and independence assumptions. Here, we propose how to deal with both

of them in Waveguide.

Recall that uniformity assumption states that the tuples are distributed uni-

formly across the join tables T1 and T2 such that each node in a join set JT1,T2

would have the same number of tuples. This assumption, of course, does not usu-

ally hold in a case of path queries. In order to lift the uniformity assumption, we

need to keep some sort of statistics for tuple cardinalities in all possible join sets.

In order to achieve that, we propose an extended synopsis which stores additional

statistics related to tuple cardinalities in a join set as follows. We partition nodes

in a join set into set of bins W such that each node in a bin wi,j ∈ W has exactly

i incoming edges and j outgoing edges as shown in Fig. 8.1. Hence, nodes with

high i and j are heavy-hitters as due to multiplicity they would produce i · j paths.

On the other hand, nodes in bin w1,1 would create only a single path as a result

of a join. Moreover, just from having statistical estimates of binning W , we can

169

produce other estimates of joint-frequency synopsis as follows:

#out∑
i=0

#in∑
j=0

i · wi,j = #one (8.1)

#out∑
i=0

#in∑
j=0

j · wi,j = #two (8.2)

#out∑
i=0

#in∑
j=0

i · j · wi,j = #paths (8.3)

#out∑
i=0

#in∑
j=0

i · wi,j = #middle (8.4)

Of course, storing exact binning WT1,T2 for every join set of tables T1 and T2 would

be prohibitive. Thus, we would like to know how to produce an estimate of WT1,T2

such that it would be useful in overcoming the uniformity assumption. Further,

can equations (8.1-8.4) be used in conjunction with some form of an end-biased

two-dimensional histogram to provide such an estimate.

8.2.3 A Richer Enumerator: Beyond Standard Waveplans

As we have shown in §5.3, the space of waveplans PWP is quite rich as it subsumes

the plan spaces which correspond to both FA and α-RA approaches. In §6.6.1, we

have analyzed a subspace of PWP, a space of standard waveplans. We show that

while PWP is exponential, it is possible to design an enumerator for it which has

polynomial time complexity.

While enumerable PSWP is subsumed by PWP, we show that it still has many

170

PWPPWP

PFAPFA
P↵-RAP↵-RAPTFAPTFA

PSWPPSWP

PUnrollPUnroll

PWPPWP

PFAPFA
P↵-RAP↵-RAPTFAPTFA

PSWPPSWP

PGluPGlu

PWPPWP

PFAPFA
P↵-RAP↵-RAPTFAPTFA

PSWPPSWP

PDerivativePDerivative

Figure 8.2: A richer enumerator.

interesting plans. Specifically, PSWP subsumes all plans which correspond to FAs

generated by Thompson’s construction algorithm, PTFA. PSWP also subsumes all

plans in α-RA, Pα-RA. Further, PSWP has many interesting plans which are not

found in PFA, Pα-RA, and PTFA. One direction of future work in this project is to

design an enumerator for several extensions to PSWP. We discuss some of them here

(Fig. 8.2). We focus on three spaces specifically. PUnroll contains plans obtained

by the k-unrolling procedure for Kleene expressions. PGlu has plans which use

Glushkov automata in some or all of the wavefronts. Similarly, plans in PDerivative

use derivative automata.

First, we tackle PUnroll. During the enumeration for standard waveplans, we

generate a plan for Kleene expression r+ by following a fixed template W 1
r+ as

shown in Fig. 8.3. We argue that by setting seed in this template to a full closure

|r+| in sub-plan pr we are guaranteed to generate plan optimal for Kleene expression

171

W 1
r+:W 1
r+:

""

prpr

UU
strict

""

p1
rp1
r

UU
any

p2
rp2
r
strict

pk
rpk
r
strict

"" ""

.W k
r+:W k
r+:

Figure 8.3: Example of k-unrolling.

r+.

In template W 1
r+ we are forcing the same plan pr to be used for all “loops” in

the plan for r+. It might be beneficial to lift this restriction and use different plans

for pr during the evaluation of r+. However, one needs to be careful in doing so

due to unbounded nature of loops in W 1
r+. Technically, such unrolling may lead

to an infinite number of waveplans for r+. Fortunately, we can easily show that

for any graph G and any RPQ Q there exists a parameter k such that unrolling

the Kleene plan beyond k different sub-plans would not make any difference in the

query evaluation. The intuition beyond this is that all non-cyclic paths in any graph

G are of bounded length. Hence, if you unroll a plan to match the length of the

longest path satisfying r+, then unrolling further would not make any difference as

nothing would match.

Plans in PGlushkov and PDerivative utilize Glushkov and derivative automata. These

automata might have a different number of states and transitions when compared

to Thompson’s automata in PTFA.

172

Some of the plans in PUnrolling, PGlushkov, and PDerivative will be in PFAas, in some

cases, constructs used in these plans can be mapped to automate. However, we

envision that most interesting plans in these spaces will be outside PFA. These

plans will be using the extended machinery offered by Waveguide such as multiple

wavefronts, append and prepend transitions, and views. It is interesting to see

if using these extended plans can lead to better performance when compared to

standard waveplans.

8.3 In Summary

Just as new data models necessitate new query languages, these new query lan-

guages necessitate new approaches if we are to evaluate their queries efficiently

and effectively. The second rise of graph databases has necessitated new, powerful

query languages so that we can make use of them. But we are only beginning to

understand how we can deal effectively with these types of queries.

In this dissertation, we have devised a rich domain of evaluation plans for prop-

erty path type queries in SPARQL, and have shown it extends significantly over

the state of the art. We have demonstrated that choice of a plan can make orders of

magnitude difference in performance. We have illustrated the cost factors behind

these plans’ performance and the types of optimizations that can be achieved. We

have shown which plans are effective depends on the underlying graph database,

173

which means a cost-based means of choosing plans is required.

The rise of graph data is well underway. And as we learned in the past to do

the “impossible” for relational data, for semi-structured, for unstructured search,

we too will meet this challenge.

174

Bibliography

[1] D. Abadi, A. Marcus, S. Madden, and K. Hollenbach. Scalable semantic web
data management using vertical partitioning. In Proceedings of the 33rd inter-
national conference on Very large data bases, pages 411–422. VLDB Endow-
ment, 2007.

[2] S. Abiteboul, R. Hull, and V. Vianu. Foundations of databases, volume 8.
Addison-Wesley, 1995.

[3] R. Agrawal. Alpha: An extension of relational algebra to express a class of
recursive queries. IEEE TSE, 14(7):879–885, 1988.

[4] M. Andries, M. Gemis, J. Paredaens, I. Thyssens, and J. Van den Bussche.
Concepts for graph-oriented object manipulation. In Advances in Database
Technology, pages 21–38. Springer, 1992.

[5] R. Angles and C. Gutierrez. Survey of graph database models. ACM Comput-
ing Surveys (CSUR), 40(1):1, 2008.

[6] V. Antimirov. Partial derivatives of regular expressions and finite automaton
constructions. Theoretical Computer Science, 155(2):291–319, 1996.

[7] M. Arenas, S. Conca, and J. Pérez. Counting beyond a Yottabyte, or how
SPARQL 1.1 property paths will prevent adoption of the standard. In Proceed-
ings of the 21st international conference on World Wide Web, pages 629–638.
ACM, 2012.

[8] A. Asperti, C. S. Coen, and E. Tassi. Regular expressions, au point. arXiv
preprint arXiv:1010.2604, 2010.

[9] G. Bagan, A. Bonifati, R. Ciucanu, G. H. L. Fletcher, A. Lemay, and
N. Advokaat. Generating flexible workloads for graph databases. PVLDB,
9(13):1447–1460, 2016.

175

[10] A. Brüggemann-Klein. Regular expressions into finite automata. Theoretical
Computer Science, 120(2):197–213, 1993.

[11] D. D. Chamberlin, M. M. Astrahan, W. F. King, R. A. Lorie, J. W. Mehl,
T. G. Price, M. Schkolnick, P. Griffiths Selinger, D. R. Slutz, B. W. Wade,
et al. Support for repetitive transactions and ad hoc queries in system r. ACM
Transactions on Database Systems (TODS), 6(1):70–94, 1981.

[12] C.-H. Chang and R. Paige. From regular expressions to DFA’s using com-
pressed NFA’s. In Annual Symposium on Combinatorial Pattern Matching,
pages 90–110. Springer, 1992.

[13] S. Christodoulakis, U. of Waterloo. Dept. of Computer Science, and U. of Wa-
terloo. Faculty of Mathematics. On the estimation and use of selectivities in
database performance evaluation. Department of Computer Science, University
of Waterloo, 1989.

[14] M. P. Consens, A. O. Mendelzon, D. Vista, and P. T. Wood. Constant Propa-
gation Versus Join Reordering in Datalog. In Rules in Database Systems, pages
245–259. Springer, 1995.

[15] G. Copeland and S. Khoshafian. A decomposition storage model. In ACM
SIGMOD Record, volume 14, pages 268–279. ACM, 1985.

[16] T. P. P. Council. TPC-H benchmark specification. Published at http://www.
tcp. org/hspec. html, 2008.

[17] Cypher Query Language. http://docs.neo4j.org/chunked/stable/cypher-
query-lang.html.

[18] The DBpedia Knowledge Base. http://dbpedia.org/.

[19] S. Dey, V. Cuevas-Vicentt́ın, S. Köhler, E. Gribkoff, M. Wang, and
B. Ludäscher. On implementing provenance-aware regular path queries with
relational query engines. In Proceedings of the Joint EDBT/ICDT 2013 Work-
shops, pages 214–223. ACM, 2013.

[20] A. Dutot, F. Guinand, D. Olivier, Y. Pigné, et al. GraphStream: A tool for
bridging the gap between complex systems and dynamic graphs. In Emergent
Properties in Natural and Artificial Complex Systems (Satellite Conference
within ECCS), 2007.

[21] O. Erling and I. Mikhailov. Virtuoso: RDF Support in Native RDBMS. Se-
mantic Web Information Management, 1:501, 2010.

176

[22] P. Fender, G. Moerkotte, T. Neumann, and V. Leis. Effective and robust prun-
ing for top-down join enumeration algorithms. In Data Engineering (ICDE),
2012 IEEE 28th International Conference on, pages 414–425. IEEE, 2012.

[23] G. H. Fletcher, J. Peters, and A. Poulovassilis. Efficient regular path query
evaluation using path indexes. Proceedings of the 19th International Conference
on Extending Database Technology, 2016.

[24] P. Garćıa, D. López, J. Ruiz, and G. I. Álvarez. From regular expressions to
smaller NFAs. Theoretical Computer Science, 412(41):5802–5807, 2011.

[25] M. Gemis, J. Paredaens, I. Thyssens, and J. Van den Bussche. GOOD: a
graph-oriented object database system. In ACM SIGMOD Record, volume 22,
pages 505–510. ACM, 1993.

[26] V. M. Glushkov. The abstract theory of automata. Russian Mathematical
Surveys, 16(5):1, 1961.

[27] A. Gubichev, S. J. Bedathur, and S. Seufert. Sparqling Kleene: Fast Property
Paths in RDF-3X. In Workshop on Graph Data Management Experiences and
Systems, pages 14–20. ACM, 2013.

[28] R. Guha and B. McBride. RDF Vocabulary Description Language 1.0: RDF
Schema. 2004.

[29] S. Harris and A. Seaborne. SPARQL 1.1 query language. W3C working draft.
http://www.w3.org/TR/sparql11-query/, November 2012.

[30] J. Hromkovič, S. Seibert, and T. Wilke. Translating regular expressions into
small ε-free nondeterministic finite automata. Journal of Computer and System
Sciences, 62(4):565–588, 2001.

[31] L. Ilie and S. Yu. Follow automata. Information and computation, 186(1):140–
162, 2003.

[32] Y. E. Ioannidis. Query optimization. ACM Computing Surveys (CSUR),
28(1):121–123, 1996.

[33] Y. E. Ioannidis and S. Christodoulakis. Optimal histograms for limiting
worst-case error propagation in the size of join results. ACM Transactions
on Database Systems (TODS), 18(4):709–748, 1993.

[34] Apache Jena. https://jena.apache.org/, 2013.

177

[35] K. J. Kochut and M. Janik. SPARQLeR: Extended SPARQL for semantic
association discovery. In The Semantic Web: Research and Applications, pages
145–159. Springer, 2007.

[36] R. P. Kooi. The optimization of queries in relational databases. 1980.

[37] A. Koschmieder and U. Leser. Regular path queries on large graphs. In Sci-
entific and Statistical Database Management, pages 177–194. Springer Berlin
Heidelberg, 2012.

[38] G. M. Kuper and M. Y. Vardi. The logical data model. ACM Transactions on
Database Systems (TODS), 18(3):379–413, 1993.

[39] W. Le, A. Kementsietsidis, S. Duan, and F. Li. Scalable multi-query optimiza-
tion for SPARQL. In Data Engineering (ICDE), 2012 IEEE 28th International
Conference on, pages 666–677. IEEE, 2012.

[40] V. Leis, A. Gubichev, A. Mirchev, P. Boncz, A. Kemper, and T. Neumann.
How good are query optimizers, really? Proceedings of the VLDB Endowment,
9(3):204–215, 2015.

[41] M. Levene and G. Loizou. A graph-based data model and its ramifications.
Knowledge and Data Engineering, IEEE Transactions on, 7(5):809–823, 1995.

[42] M. Levene and A. Poulovassilis. The hypernode model and its associated
query language. In Information Technology, 1990.’Next Decade in Informa-
tion Technology’, Proceedings of the 5th Jerusalem Conference on (Cat. No.
90TH0326-9), pages 520–530. IEEE, 1990.

[43] M. Levene and A. Poulovassilis. An object-oriented data model formalised
through hypergraphs. Data & Knowledge Engineering, 6(3):205–224, 1991.

[44] K. Losemann and W. Martens. The complexity of evaluating path expressions
in SPARQL. In Proceedings of the 31st symposium on Principles of Database
Systems, pages 101–112. ACM, 2012.

[45] M. V. Mannino, P. Chu, and T. Sager. Statistical profile estimation in database
systems. ACM Computing Surveys (CSUR), 20(3):191–221, 1988.

[46] D. L. McGuinness, F. Van Harmelen, et al. OWL web ontology language
overview. W3C recommendation, 10(10):2004, 2004.

[47] R. McNaughton and H. Yamada. Regular expressions and state graphs for
automata. IEEE Transactions on Electronic Computers, 1(EC-9):39–47, 1960.

178

[48] A. Mendelzon and P. Wood. Finding regular simple paths in graph databases.
SIAM Journal on Computing, 24(6):1235–1258, 1995.

[49] G. Moerkotte and T. Neumann. Dynamic programming strikes back. In Pro-
ceedings of the 2008 ACM SIGMOD international conference on Management
of data, pages 539–552. ACM, 2008.

[50] M. Muralikrishna and D. J. DeWitt. Equi-depth multidimensional histograms.
In ACM SIGMOD Record, volume 17, pages 28–36. ACM, 1988.

[51] T. Neumann and G. Weikum. RDF-3X: a RISC-style engine for RDF. Pro-
ceedings of the VLDB Endowment, 1(1):647–659, 2008.

[52] F. Olken and D. Rotem. Simple random sampling from relational databases.
In VLDB, volume 86, pages 25–28, 1986.

[53] J. Pérez, M. Arenas, and C. Gutierrez. nSPARQL: A navigational language
for RDF. Web Semantics: Science, Services and Agents on the World Wide
Web, 8(4):255–270, 2010.

[54] E. Prud’Hommeaux and A. Seaborne. SPARQL query language for RDF. W3C
working draft, 4(January), 2008.

[55] J. W. Raymond and P. Willett. Maximum common subgraph isomorphism
algorithms for the matching of chemical structures. Journal of computer-aided
molecular design, 16(7):521–533, 2002.

[56] W3C: Resource Description Framework (RDF). http://www.w3.org/TR/rdf-
concepts/, 2004.

[57] M. A. Rodriguez and P. Neubauer. Constructions from dots and lines. Bulletin
of the American Society for Information Science and Technology, 36(6):35–41,
2010.

[58] P. Roy, S. Seshadri, S. Sudarshan, and S. Bhobe. Efficient and extensible
algorithms for multi query optimization. In ACM SIGMOD Record, volume 29,
pages 249–260. ACM, 2000.

[59] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G.
Price. Access path selection in a relational database management system. In
Proceedings of the 1979 ACM SIGMOD international conference on Manage-
ment of data, pages 23–34. ACM, 1979.

179

[60] S. Seufert, A. Anand, S. Bedathur, and G. Weikum. Ferrari: Flexible and
efficient reachability range assignment for graph indexing. In Data Engineering
(ICDE), 2013 IEEE 29th International Conference on, pages 1009–1020. IEEE,
2013.

[61] K. Thompson. Regular expression search algorithm. Comm. ACM, 11(6):419–
422, 1968.

[62] B. W. Watson et al. Taxonomies and toolkits of regular language algorithms.
Eindhoven University of Technology, Department of Mathematics and Com-
puting Science, 1995.

[63] K. Wilkinson, C. Sayers, H. Kuno, D. Reynolds, et al. Efficient RDF storage
and retrieval in Jena2. In Proceedings of SWDB, volume 3, pages 131–150,
2003.

[64] YAGO2s: A High-Quality Knowledge Base. http://yago-
knowledge.org/resource/. Max Planck Institut Informatik.

[65] N. Yakovets, P. Godfrey, and J. Gryz. Evaluation of SPARQL property paths
via recursive SQL. In L. Bravo and M. Lenzerini, editors, AMW, volume 1087
of CEUR Workshop Proceedings. CEUR-WS.org, May 2013.

[66] H. Zauner, B. Linse, T. Furche, and F. Bry. A RPL through RDF: expressive
navigation in RDF graphs. In Web Reasoning and Rule Systems, pages 251–
257. Springer, 2010.

180

A Appendix

A.1 Nomenclature

α-RA relational algebra extended with α operator, page 5

Pα-RA space of relational algebra extended with α plans, page 75

PFA space of finite automata plans, page 75

PSWP plan space of standard waveplans, page 101

PTFA plan space of automata constructed by Thompson’s algorithm, page 101

PWP space of waveguide plans, page 75

SQL structured query language, page 141

SWP standard waveplan, page 104

fpp first-path pruning, page 83

TFA Thompson’s automaton, page 104

ANTLR another tool for language recognition, page 144

BFS breadth-first search, page 82

Cypher Cypher query language, page 30

EDB extensional database, page 55

FA finite automata, page 5

FERRARI FERRARI reachability index, page 47

GMOD graph-oriented object modification, page 14

181

GOOD graph-oriented object database, page 14

IRI international resource identifier, page 15

LDM logical data model, page 13

LOD linked open data, page 3

OWL Web Ontology Language, page 3

RDBMS relational database management system, page 61

RDF resource description framework, page 1

RDFS resource description framework schema, page 17

RPQ regular path query, page 2

SPARQL SPARQL Protocol and RDF Query Language, page 1

SPJRU select-project-join-rename-union relational algebra, page 44

W3C world wide web consortium, page 15

WP waveplan, page 6

WWW world wide web, page 12

182

A.2 Queries

A.2.1 Threading

L p p1 p2

1 byTransport rdf:type owl:disjointWith
2 happenedIn hasCapital created
3 happenedIn hasCapital owns
4 happenedIn hasCapital rdf:type
5 happenedIn hasCapital participatedIn
6 happenedIn dealsWith rdf:type
7 happenedIn dealsWith hasCapital
8 happenedIn rdf:type owl:disjointWith
9 hasWonPrize rdf:type owl:disjointWith
10 hasWordnetDomain rdf:type owl:disjointWith
11 isCitizenOf hasCapital created
12 isCitizenOf hasCapital owns
13 isCitizenOf hasCapital rdf:type
14 isCitizenOf hasCapital participatedIn
15 isCitizenOf dealsWith rdf:type
16 isCitizenOf dealsWith hasCapital
17 isCitizenOf rdf:type owl:disjointWith
18 isLocatedIn hasCapital created
19 isLocatedIn hasCapital owns
20 isLocatedIn hasCapital rdf:type
21 isLocatedIn dealsWith hasCapital
22 isLocatedIn rdf:type owl:disjointWith
23 isPoliticianOf hasCapital created
24 isPoliticianOf hasCapital owns
25 isPoliticianOf hasCapital rdf:type
26 isPoliticianOf hasCapital participatedIn
27 isPoliticianOf rdf:type owl:disjointWith
28 rdfs:subClassOf rdf:type owl:disjointWith
29 wasBornIn hasCapital created
30 wasBornIn hasCapital owns
31 wasBornIn hasCapital rdf:type
32 wasBornIn hasCapital participatedIn
33 wasBornIn dealsWith rdf:type
34 wasBornIn dealsWith hasCapital
35 wasBornIn rdf:type owl:disjointWith
36 created hasChild isMarriedTo
37 created influences isMarriedTo
38 created influences hasChild
39 created isMarriedTo hasChild
40 hasChild influences isMarriedTo
41 hasChild influences hasChild
42 hasChild isMarriedTo hasChild
43 hasChild hasChild isMarriedTo

183

L p p1 p2

44 influences hasChild isMarriedTo
45 influences isMarriedTo hasChild
46 influences influences isMarriedTo
47 influences influences hasChild
48 isKnownFor hasChild isMarriedTo
49 isKnownFor isMarriedTo hasChild
50 isKnownFor influences isMarriedTo
51 isKnownFor influences hasChild
52 isMarriedTo influences isMarriedTo
53 isMarriedTo influences hasChild
54 isMarriedTo hasChild isMarriedTo
55 isMarriedTo isMarriedTo hasChild

A.2.2 Loop Caching

D a b

1 formerTeam name
2 region candidate
3 clubs currentMember
4 starring title
5 successor predecessor
6 successor before
7 associatedMusicalArtist currentMembers
8 associatedBand currentMembers
9 associatedActs currentMembers
10 after predecessor
11 successor successor
12 before successor
13 before successor
14 successor after
15 currentMembers associatedBand
16 before predecessor
17 after successor
18 imageCaption ordo
19 imageCaption order
20 label subdivisionName
21 candidate region

A.2.3 Partial Loop Caching & State of the art Planning

Y/C a b c

1 isLocatedIn hasCapital owns
2 isConnectedTo isLocatedIn owns
3 dealsWith participatedIn isLocatedIn
4 isLocatedIn owns created
5 participatedIn isLocatedIn dealsWith

184

Y/C a b c

6 hasCapital isLocatedIn dealsWith
7 happenedIn hasCapital participatedIn
8 owns isConnectedTo isLocatedIn
9 dealsWith hasCapital isLocatedIn
10 participatedIn happenedIn hasCapital
11 owns isLocatedIn dealsWith
12 hasCapital participatedIn happenedIn
13 isLeaderOf dealsWith participatedIn
14 dealsWith owns isLocatedIn
15 created isLocatedIn owns
16 hasCapital owns isLocatedIn
17 owns isLocatedIn hasCapital
18 hasAcademicAdvisor isInterestedIn influences
19 isInterestedIn influences hasAcademicAdvisor
20 isMarriedTo hasChild influences
21 influences hasAcademicAdvisor isInterestedIn
22 isMarriedTo influences hasChild
23 hasChild influences isMarriedTo
24 influences isMarriedTo hasChild
25 owns created isLocatedIn

A.2.4 State of the art Planning

A query

1 select distinct ?p
{?p :diedIn/:isLocatedIn+ :France .}

2 select distinct ?p
{?p :wasBornIn/:isLocatedIn+ :France .}

3 select distinct ?p
{?p :wasBornIn/:isLocatedIn+/:type :Europe .}

4 select distinct ?p
{?p :isMarriedTo/:diedIn/:isLocatedIn+/dealsWith
:United States .}

5 select distinct ?p
{?p :isMarriedTo/:diedIn/:isLocatedIn+/dealsWith+
:United States .}

6 select distinct ?p
{?p :connectedTo+/:isLocatedIn+ :United States .}

185

	Abstract
	Acknowledgements
	Table of Contents
	List of Figures
	Introduction
	The Problem
	Motivation
	Goals
	Contributions
	Outline
	Background & Related Work
	Graph Data Models
	RDF
	Property Graph

	Graph Serialization
	Relational
	Native Graph Databases

	Path Queries
	Path Semantics
	Paths in SPARQL
	Paths in Cypher

	Query Planning
	Related Work
	FA Plans
	Alpha-RA Plans
	Index-based Evaluation
	Relational Query Optimizers

	Methodology
	Motivation
	Graph Walk
	Query Plans
	Optimizer & Enumerator
	Implementation & Benchmarking

	Graph Walk
	Wavefronts
	Expanding a Wavefront

	Query Plans
	Guiding a Wavefront
	Wavefront Interaction
	Waveguide's Plan Space

	Optimizer & Enumerator
	Cost Framework
	Search Cost Factors
	Search Sizes
	Solution Redundancy
	Sub-path Redundancy

	Plan Optimizations
	Choice of Wavefronts
	Reduce
	Threading
	Partial Caching
	Loop Caching

	Cost Analysis
	Cost of Threading
	Cost of Loop Caching

	Cardinality Estimator
	Synopsis Statistics
	Consistent Estimation

	Plan Enumerator
	Standard Plan Space
	Enumeration

	Implementation & Benchmarking
	Implementation
	Software: The System
	Hardware: Runtime
	Software: Runtime

	Methodology
	The Optimizations
	Threading
	Loop Caching
	Partial Loop Caching
	Combined Optimizations

	Comparison with Other Systems
	Transitive Closure
	Query Planning
	Query Planning vs. Transitive Closure

	Conclusions
	Contributions
	Future Work
	Multiple & Conjunctive RPQs
	Better Cardinality Estimation
	A Richer Enumerator: Beyond Standard Waveplans

	In Summary

	Bibliography
	Appendix
	Nomenclature
	Queries
	Threading
	Loop Caching
	Partial Loop Caching & State of the art Planning
	State of the art Planning

