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Abstract 

The aim of the projects in this thesis was to identify biomarkers for clear cell 

renal cell carcinomas (ccRCC) and head and neck/oral squamous cell carcinoma 

(HNOSCC), using quantitative or qualitative proteomics. Comparative analysis of 

cancerous and normal tissue homogenates, or secretome analysis of cancer cell cultures 

using liquid chromatography - mass spectrometry (LC-MS) and immunoassay 

techniques, allowed the identification of different types of biomarkers: diagnostic or 

prognostic, biofluid- or tissue-based. 

Chapter 1 of this thesis provides general information on cancer and cancer 

biomarker discovery. Chapter 2 gives a brief introduction to the techniques used in this 

work and theories behind them. Chapters 3 - 5 are papers that resulted from the cancer 

biomarker discovery research performed here, and Chapter 6 contains the conclusions, 

the author's comments and the final remarks. 

The papers on the identification of biomarkers for different diseases, to which the 

author of this thesis contributed, are listed in the Appendix. 
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Chapter 1 

Introduction to cancer biomarker discovery 

1.1. Cancer 

Based on the GLOBOCAN 2008 estimates, about 12. 7 million cancer cases and 

7.6 million cancer deaths are estimated to have occurred in 2008 worldwide [1], which is, 

according to the Union for International Cancer Control [2], more than AIDS, 

tuberculosis, and malaria combined. 

1.2. Causes 

Global cancer rates have been increasing mainly due to an aging population and 

lifestyle changes in the developing world. The majority of cancers (90-95%) are due to 

environmental factors, while 5-10% are due to hereditary factors [3]. Environmental 

factors that contribute to cancer are tobacco (25-30%), diet (30-35%), infections (15-

20%), ionizing and non-ionizing radiation (10%), stress, physical inactivity, physical 

injury, hypoxia and environmental pollutants [3, 4]. 

1.3. Pathophysiology 

Cancer is a disease in which abnormal cells divide and grow uncontrollably, 

forming malignant tumors, and can invade adjacent tissues and organs [5]. This disease is 

characterized by dysregulation of cell growth caused by gene and protein mutation. For 

instance, in humans, the tumor-suppressor gene, p53, encodes protein 53 (p53), which 
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normally regulates cell growth by several mechanisms, one of which is the initiation of 

apoptosis, the programmed cell death that occurs when DNA damage appears to be 

irreparable [6]. Mutation of the p53 gene in prostate cancer cells inhibits their apoptosis 

[7], and mutation of p53 protein (e.g., acetylated lysine-120 replaced by a non-acetylated 

arginine) also inhibits apoptosis of cancer cells [8]. 

1.4. Type of cancers 

The tumors that are at their original site where progression began and that are 

capable of invading adjacent tissues and organs are described as primary cancers. 

Cancerous cells can also spread (metastasize) to other organs through the blood vessels 

and lymph systems to form tumors that are described as metastatic or secondary cancers. 

Tumors that are not capable of invading surrounding tissues and adjacent organs and, in 

most cases, are harmless to human health, are called benign tumors [9]. 

There are many types of cancers: carcinomas are derived from epithelial cells of 

the skin or from tissues that line or cover internal organs; sarcomas arise from connective 

tissue in bone, cartilage, fat, muscle, blood vessels, or other connective or supportive 

tissue; leukemias originate in blood-forming tissue such as the bone marrow and then 

enter the blood; lymphomas and multiple myelomas begin in the cells of the immune 

system; central nervous system cancers begin in the tissues of the brain and spinal cord; 

germ cell cancers, derived from pluripotent cells, most often begin in the testes or the 

ovaries; and blastomas are derived from immature "precursor" cells or embryonic tissue. 

The chances of surviving cancer vary greatly by the type and location of the 

tumors and the extent of the disease at the beginning of treatment. 
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1.5. Cancer staging and treatment 

The stage of a cancer is a description of the extent to which the cancer has spread. 

The stage often takes into account the size of a tumor, how deeply it has penetrated, 

whether it has invaded adjacent organs, how many lymph nodes it has metastasized to (if 

any), and whether it has spread to distant organs. Staging of a tumor is often the most 

important predictor of survival, and cancer treatment is primarily determined by staging. 

Cancer is treated by several methods: surgery, chemotherapy, radiation therapy, 

complementary medicine and/or palliative care. Surgery is most effective on localized, 

solid cancers. It is an important part of diagnosing and staging the tumor, as biopsies are 

typically required. Chemotherapy, in addition to surgery, has proven to be a useful 

therapeutic modality against breast, colorectal, ovarian, and other cancers [1 O]. The 

effectiveness of chemotherapy, unfortunately, is often limited, as the therapeutic agent is 

also toxic to healthy cells in the body. In addition to surgery and/or chemotherapy, 

radiation therapy is also often applied; it uses carefully targeted doses of high-energy 

radiation to kill cancer cells. Radiation therapy is prescribed in about 50% of all cancer 

cases and is effective in about 70% of those with bone metastasis. For certain types of 

cancers, such as early head and neck cancer, radiation may be used effectively alone [1 O]. 

As an alternative to conventional treatment, a "complementary medicine" such as a herbal 

remedy and naturopathic medicine, etc. is sometimes used; however, most of these 

remedies have not been scientifically proven [11]. Finally, palliative care is administered 

to reduce the physical and emotional distress of patients near end of life. 
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1.6. Diagnosis and prognosis 

Most tumors are initially discovered either because of the presentation of 

symptoms or through screening. A patient suspected of harboring a tumor usually 

requires a thorough evaluation of her/his health record, a physical examination and 

diagnostic testing such as blood tests, X-rays, CT scans, endoscopy, and tumor biopsy. 

Histological examination of tumor cells provides information about the type, size, shape, 

appearance and stage of the tumor, and is the only unambiguous diagnostic tool 

(determining cancer staging). This diagnosis typically dictates how a tumor should be 

treated. 

Benign tumors are harmless by definition and can be left untreated as long as 

there is continual monitoring. Stage I cancers (tumor localized to one part of the body) 

are, in many cases, treatable by surgical removal of the tumor alone. The more advanced 

stages of cancer, in which the tumor has invaded adjacent organs or has spread to distant 

organs, require chemo- and radiotherapies in addition to surgery. Prescribed treatments 

based solely on staging can cause more harm than good; for instance, Stage I cancers 

occasionally remain dormant for prolonged periods and treatment may be postponed, if it 

is too risky. In other cases, Stage I cancer can rapidly become more aggressive (invade 

adjacent and distant organs) [12] and become life-threatening; thus, surgery, chemo­

and/or radiotherapies may be necessary. Selection of the most appropriate treatment 

requires prognostic information on how fast the cancer will progress. 

The onset of the transformation of a less aggressive cancer into a more aggressive 

one may not immediately cause changes of cellular morphology and may be overlooked 
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by histological examination. However, such changes may be detectable at the molecular 

level using methods such as ELISA, immunohistochemistry (IHC), etc., but one must 

know what molecular changes to expect when the cancer becomes more aggressive. 

These molecular warnings could lead to more effective treatment, and hence, higher 

success rates as well as better patient care in the battle against cancer. 

1. 7. Cancer biomarkers 

Molecular warnings of disease, such as those described in Section 1.6, are 

described as biomarkers. In general, a biomarker is a substance (DNA, RNA, protein, 

hormone, etc) present in tissues or body fluids that changes in concentration (commonly 

used), location, and/or structure, which signifies a change in the patient's condition, 

including the presence or progression of a disease or a response to therapy. 

Various types of biomolecules can be used as biomarkers; for example, the 

increase in total cellular DNA indicates a cell entering S phase in preparation for mitotic 

division; increase in blood cholesterol indicates a risk of coronary and vascular disease; 

overexpression of the protein, carbonic anhydrase 9 (CAIX), indicates the progression of 

primary into metastatic ccRCC [13]; and expression of the neurofilament heavy chain 

(pNFH) proteins in cerebrospinal fluid helps to monitor drug efficacy in the treatment of 

amyotrophic lateral sclerosis (ALS) [14]. 

Cancer biomarkers can be classified into three categories: diagnostic, prognostic 

and predictive. A diagnostic biomarker indicates that an individual has a cancer. 

Prognostic biomarker predicts the likely course of a cancer in the near future, if left 

untreated. In contrast to prognostic biomarker, a predictive biomarker identifies 
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subpopulations of patients who are most likely to respond to a given therapy [15]. Both 

diagnostic and prognostic biomarkers can also be used to monitor disease recurrence after 

initial therapy. 

Biomarkers harvested from biopsy samples or surgically removed tumors are 

described as tissue-based biomarkers. These biomarkers cannot be used to screen the 

general population because they require invasive methods to retrieve them. Biofluid­

based biomarkers obtained from blood, urine, saliva, vaginal secretion, etc. are 

potentially more valuable because they can be sampled using less invasive means. 

Samples employed in cancer biomarker discovery include tissues, biofluids and 

cell cultures. Although biofluid-based biomarkers are preferred, their discovery is 

typically challenging as their concentrations in a biofluid are typically low and the 

biofluid matrix is complex. Instead, it may be possible to first discover them in tissue 

samples, as long as they are eventually secreted. One strategy that has proven effective in 

integrating the two conditions is to examine the secretome of a cell culture of the tissue 

[16]. This has the advantage of maintaining high biomarker concentration while avoiding 

complexity of the biofluid matrix [17, 18]. 

The studies presented in this thesis focus on the discovery of potential diagnostic 

and prognostic tissue- and biofluid-based protein biomarkers for ccRCC and HNOSCC 

by the analyses of tissue and secretome samples. 

1.8. Proteins 

Proteins are an essential structural component of cells and are the molecular 

machinery in them. They play a multitude of regulatory, signaling, catalytic and other 
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roles in our body. Proteins are highly dynamic and their state (tertiary structure, chemical 

modification, expression and location, etc.) depend on the physiological state of the cell 

or the tissue where they are expressed. 

A 

Peptide bonds 

Figure 1.1. Basic structure (A) of an amino acid and (B) of a tripeptide. Peptide bonds (CO-NH} 

link the amino-acid residues. Ru R2 and R3 represent the side chains that characterize the 

residues. 

Proteins are polymers of amino acids covalently linked by peptide bonds (CO-

NH). Proteins can be as small as human chaperonin 10, consisting of about 100 amino 

acids, and as large as human Ti tin, consisting of over 34,000 amino acids [20]. Short 

polymers made of less than 40 amino acids are generally classified as peptides. The basic 

structure of a generic amino acid and that of a generic tripeptide are given in Figure 1.1. 

1.9. Challenges 

In the field of biomarker detection, sensitivity and specificity are uniquely defined 

and are important characteristics of a given biomarker performance. Sensitivity is the 

fraction (or percentage) of cancer patients successfully identified. Specificity is the 

fraction of cancer-free individuals identified as such. An ideal biomarker would have 
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100% sensitivity and specificity, i.e., all individuals with cancer would have a positive 

test result, and all individuals without cancer would have a negative test result. 

Unfortunately, none of currently available protein biomarkers achieve this level of 

performance; in fact, many of the commonly given tests are far from ideal. There are 

many reasons for this inadequacy: tumor heterogeneity (multiple tumor subpopulations 

within a single type of cancer), matrix interference, individual variations, multiple protein 

functions, etc. [21]. For instance, the prostate specific antigen (PSA) test for prostate 

cancer, despite its wide use, has a relatively poor sensitivity and poor specificity, and is 

prescribed only for high-risk individuals who are being monitored for prostate cancer 

recurrence [22]. For the general population, the effectiveness of the PSA test, even used 

in conjunction with digital rectal examination, is subject of much discussion. 

The sensitivity and specificity of a biomarker test can be increased by means of a 

panel of biomarkers. For example, a study showed that five antigens, galectin-3, PAK2, 

PHB2, RACKI, and RUVBLl, can discriminate individuals with early-stage cancers 

from those who are healthy [23]. Individually, these biomarkers have a sensitivity of 40-

60% and a specificity of around 80%, but when combined, the sensitivity increases to 

70%. It was suggested that this panel of biomarkers could be useful as a diagnostic tool 

to screen early-stage invasive breast cancer and pre-invasive breast cancer for woman at 

risk and could be particularly useful as complement to mammography for women with 

high breast density. 

Another challenge is that most of cancer biomarkers are not cancer-specific, but 

are found in a number of different cancers. For example, alpha-enolase (ENOl) is 

upregulated in glioma [24] and in clear cell renal cell carcinoma (ccRCC) (Chapter 3). 
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Furthermore, not all protein biomarkers function in the same way in different cancers. 

For instance, in glioma, neuroblast differentiation-associated protein AHNAK 

(AHNAK), is downregulated [25], whereas in ccRCC it is upregulated (Chapter 3). 

Although neither ENOl nor AHNAK is cancer-specific, as a panel, they can potentially 

discriminate between both glioma and ccRCC. Upregulation of ENO 1 and 

downregulation of ANAK suggest the onset of glioma, but upregulation of both proteins 

suggests the onset of ccRCC. 

From the foregoing, one may conclude that the current focus of protein biomarker 

discovery is to identify biomarkers or panels of biomarkers having (1) high sensitivity 

and specificity, (2) cancer-specificity, and (3) present in body fluids. Such biomarkers or 

panel of biomarkers in combination with other diagnostic modalities, e.g., imaging 

techniques, can ultimately improve the management of cancer and save lives. 

9 



References 

1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer 

statistics. 

1. CA Cancer J Clin. 2011 Mar-Apr;61(2):69-90. Epub 2011Feb4. Erratum in: CA 

Cancer J Clin. 2011 Mar-Apr;61(2):134. 

2. www.uicc.org 

3. Anand P, Kunnumakkara AB, Sundaram C, Harikumar KB, Tharakan ST, Lai 

OS, Sung B, Aggarwal BB. Cancer is a preventable disease that requires major 

lifestyle changes. Pharm Res. 2008 Sep;25(9):2097-116. Epub 2008 Jul 15. 

Review. Erratum in: Pharm Res. 2008 Sep;25(9):2200. 

4. Nelson DA, Tan TT, Rabson AB, Anderson D, Degenhardt K, White E. Hypoxia 

and defective apoptosis drive genomic instability and tumorigenesis. Genes Dev. 

2004 Sep 1;18(17):2095-107. Epub 2004 Aug 16. 

5. http://www.cancer.gov/dictionary 

6. Read, A. P.; Strachan, T. Human molecular genetics 2. New York: Wiley; 1999. 

ISBN 0-471-33061-2. Chapter 18: Cancer Genetics. 

7. Suh SO, Chen Y, Zaman MS, Hirata H, Yamamura S, Shahryari V, Liu J, 

Tabatabai ZL, Kakar S, Deng G, Tanaka Y, Dahiya R. MicroRNA-145 is 

regulated by DNA methylation and p53 gene mutation in prostate cancer. 

Carcinogenesis. 2011 May;32(5):772-8. Epub 2011 Feb 23. 

10 



8. Mellert H, Sykes SM, Murphy ME, McMahon SB. The ARF/oncogene pathway 

activates p53 acetylation within the DNA binding domain. Cell Cycle. 2007 Jun 

1 ;6(11):1304-6. Epub 2007 Jun 24. Review. 

9. http:! /medical-dictionary. thefreedictionary .com/benign 

10. Holland, James F. (2009). Holland-Frei cancer medicine. (8th ed. ed.). New York: 

McGraw-Hill Medical. 

11. Vickers A. Alternative cancer cures: "unproven" or "disproven"? CA Cancer J 

Clin. 2004 Mar-Apr;54(2):110-8. Review. 

12. Rini BI, Campbell CS, Escudier B. Renal cell carcinoma. Lancet 2009; 373: 

1119-32. 

13. Tostain J, Li G, Gentil-Perret A, Gigante M. Carbonic anhydrase 9 in clear cell 

renal cell carcinoma: a marker for diagnosis, prognosis and treatment. Eur J 

Cancer. 2010 Dec;46(18):3141-8. Epub 2010 Aug 13. Review. 

14. Levine TD, Bowser R, Hank NC, Gately S, Stephan D, Saperstein DS, Van 

Keuren-Jensen K. A Pilot Trial of Pioglitazone HCl and Tretinoin in ALS: 

Cerebrospinal Fluid Biomarkers to Monitor Drug Efficacy and Predict Rate of 

Disease Progression. Neurol Res Int. 2012;2012:582075. Epub 2012 Jun 28. 

15. http://www.dako.com/index/knowledgecenter/kc _publications/kc _publications_ 

connection/kc _publications_ connectionl 3-htm/28828 _ 2009 _ connl 3_ 

difference _predictive _prognostic_ biomarkers _ brunner.pdf 

16. Gunawardana, C. G., Kuk, C., Smith, C.R., Batruch, I. et al., Comprehensive 

analysis of conditioned media from ovarian cancer cell ines identifies novel 

11 



candidate markers of epithelial ovarian cancer. J. Proteome Res. 2009, 8, 4705-

4713. 

17. Villanueva, J., Philip, J., Chaparro, C. A., Li, Y. et al., Correcting common errors 

in identifying cancer-specific serum peptide signatures. J. Proteome Res. 2005, 4, 

1060-1072. 

18. Anderson, N. L., Anderson, N. G., The human plasma proteome: history, 

character, and diagnostic prospects. Mol. Cell. Proteomics 2002, 1, 845-867. 

19. Grnnborg M, Kristiansen TZ, Iwahori A, Chang R, Reddy R, Sato N, Molina H, 

Jensen ON, Hruban RH, Goggins MG, Maitra A, Pandey A. Biomarker discovery 

from pancreatic cancer secretome using a differential proteomic approach. Mol 

Cell Proteomics. 2006 Jan;5(1):157-71. Epub 2005 Oct 8. 

20. http://web.expasy.org 

21. Heppner GH. Tumor heterogeneity. Cancer Res. 1984 Jun;44(6):2259-65. 

22. Thompson IM, Pauler DK, Goodman PJ, Tangen CM, Lucia MS, Parnes HL, 

Minasian LM, Ford LG, Lippman SM, Crawford ED, Crowley JJ, Coltman CA Jr. 

Prevalence of prostate cancer among men with a prostate-specific antigen level < 

or =4.0 ng per milliliter. N Engl J Med. 2004 May 27;350(22):2239-46. Erratum 

in: N Engl J Med. 2004 Sep 30;351(14):1470. 

23. Lacombe J, Mange A, Jarlier M, Bascoul-Mollevi C, Rouanet P, Lamy PJ, 

Maudelonde T, Solassol J. Identification and validation of new autoantibodies for 

the diagnosis of DCIS and node negative early-stage breast cancers. Int J Cancer. 

2012 Aug 7. 

12 



24. Beckner ME, Gobbel GT, Abounader R, Burovic F, Agostino NR, Laterra J, 

Pollack IF. Glycolytic glioma cells with active glycogen synthase are sensitive to 

PTEN and inhibitors of PI3K and gluconeogenesis. Lab Invest. 2005 

Dec;85(12): 1457-70. 

25. Gentil BJ, Benaud C, Delphin C, Remy C, Berezowski V, Cecchelli R, Feraud 0, 

Vittet D, Baudier J. Specific AHNAK expression in brain endothelial cells with 

barrier properties. J Cell Physiol. 2005 May;203(2):362-71. 

13 



2.1. Mass spectrometry 

2.1.1. Introduction 

Chapter 2 

Techniques and methods 

Mass spectrometry (MS) is an indispensable analytical tool in chemistry, biochemistry, 

pharmacy, medicine, and many related fields of science. MS is used to elucidate the 

structures of unknown substances, quantify environmental and forensic analytes, and 

perform quality control of drugs, foods, and polymers. MS can be used to deduce a 

compound's empirical formula from the atomic or molecular mass( es) of its constituents. 

The relative abundance of isotopes helps to determine the elements that contribute to the 

formula and estimate the number of atoms of each element. MS can be used to elucidate 

the connectivity of atoms within small molecules, identify functional groups, determine 

the sequence of constituents in macromolecules, and in some cases, even yield their 

three-dimensional structures. From its inception to the present, MS has undergone 

continual development and its applications are widening. 

The basic principle of MS involves introducing a sample into the gaseous state; 

generating ions from it by a suitable method; separating these ions by a mass analyzer 

according to their mass-to-charge, m/z, ratios (the atomic mass per number of elementary 

charges); detecting the ions; and generating a mass spectrum. Analysis of the mass 
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spectrum results in qualitative and quantitative determinations of ions based on their 

respective m/z values and abundances. 

MS is performed using a mass spectrometer, which consists of an ion source, a 

mass analyzer, and a detector (Figure 2.1 ). In advanced instrumentation, different types 

of mass analyzers can be arranged in tandem to exploit their respective strength in a 

single, so-called, "hybrid instrument." There are different techniques that are employable 

to generate, select, fragment, and detect ions. 

Sample 

l 

m/z 
t 

v 
High vacuum 

Figure 2.1. General scheme of a generic mass spectrometer. Figure is reproduced from 

Banerjee et al. [1]. 

2.1.2. Ion source 

2.1.2.1. Creation of Ions 

The mass analyzer can only separate ionized species. The analyte may be ionized 

by means of a plethora of techniques, including thermally (via an electrically heated thin 

metal ribbon), inductively-coupled plasma (ICP), glow discharge, electron ionization 

(El), chemical ionization (CI), atmospheric pressure photoionization (APPi), fast atom 
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bombardment (F AB), electrospray ionization (ESI), and matrix-assisted laser 

desorption/ionization (MALD I). 

Several of the ionization techniques can impart relatively high energies into the 

ionizing compound and cause its dissociation into atomic and fragment ions. These 

techniques are known as hard ionization techniques. Glow discharge and ICP create 

atomic ions and are useful for elemental analysis of metals, alloys, and metal oxides. EI is 

a widely used technique in organic analysis; the typically high (70 e V) energy of the 

ionization electrons results in fragmentation of the analyte, typically at weak bonds. The 

fragmentation pattern can be examined to reveal atom connectivity and structure. Gas 

chromatography (GC) is often used upstream from EIMS to separate the components in a 

sample. GC-MS has evolved into one of the most powerful analytical tools in the 

analysis of volatile and semi-volatile organic compounds. 

By contrast, other techniques, such as MALDI and ESI [2], generate ions without 

extensive fragmentation; these are known as soft ionization techniques. MALDI and ESI 

are especially useful for the analysis of large biomolecules, including proteins, DNA and 

RNA. These techniques produce gas-phase ions from the solid state (MALDI) and 

solution (ESI), thus bypassing the roadblock of having to generate neutral analytes in the 

gas phase, a prerequisite in most other ionization techniques. 

2.1.2.2. Electrospray ionization 

ESI is the most widely used ionization technique for the study of soluble proteins 

and peptides among the group of atmospheric pressure ionization (API) methods, and is 

the primary ionization technique in liquid chromatography-mass spectrometry (LC-MS) 
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[3]. Since ESI is used extensively in the work presented in this thesis, a more detailed 

discussion of the technique is presented below. 

ESI transfers the analyte from the solution phase to the gas phase as ions. The 

ions are produced either by the addition of a proton (H+) to the analyte (M), the 

protonated analyte is typically denoted as [M +Ht, or by the removal of a proton from 

the analyte, denoted as [M - Hr. Ions may also be produced by the addition of cations 

such as sodium, which is ubiquitous when using glass vessels, giving the ion, [M +Nat. 

Multiply charged ions such as [M + nH]"+ and [M + nNa]"+ are often observed, especially 

when M is relatively large. In ESI, the analyte is dissolved in a mixture of water and a 

volatile organic solvent (e.g. methanol or acetonitrile ), typically at a concentration of 1 o-

6-10-4 M. The dissolved analyte acquires protons from two sources [4]: the solution 

itself, which is typically at a pH of approximately 3.0 (samples are electrosprayed in 

dilute acid for positive ion detection), and from the electrolysis of water in the sample 

solvent, caused by the large potential difference between the capillary and the curtain 

plate. 

The ESI is a process (shown in Figure 2.2) in which a high electric field causes 

the sample solution to emerge from the tip of a capillary as a jet in the shape of a 'Taylor 

cone' [5]. At the tip of the Taylor cone, charged droplets of the solution are ejected into 

the gas phase as a fine mist and begin to travel towards the curtain plate, guided by the 

electric field. As the droplets near the curtain plate entrance, they are met with a counter 

flow of dry N1 that facilitates desolvation and minimizes sampling of solvent molecules 

into the orifice and entrance into the spectrometer. 
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Figure 2.2. Schematic representation of the electrospray process in the positive ion detection 

mode (Figure is adapted from Crotti et al. [5)). 

Two hypotheses have been forwarded on how ions are generated in ESL The first, 

called "the ion evaporation mechanism" [6], suggests that once a droplet reaches a critical 

radius, Coulombic repulsions cause ions to be directly emitted from it. The second, called 

"the charged residue mechanism" [7], suggests that a series of fissions lead to the 

production of small droplets that eventually each carries one analyte molecule bearing 

one or more charges (shown in Figure 2.3). A modification of "the charged residue 

mechanism" [8] considers the effect of the external electric field of the ESI source on the 

positively and negatively charged ions contained within the droplets and suggests that 

they undergo axial charge separation, at least for the first-generation offspring droplets 

prior to further subdivisions. Generally, "the charged residue mechanism" is considered 
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more applicable to large molecules, while "the ion evaporation mechanism" is considered 

more relevant to small molecules. 
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Figure 2.3. Time history of the charged methanol droplet produced by electrospray process. 

The droplet at the top left is a typical parent droplet created at the ES capillary tip. The 

successive solvent evaporation and Coulomb fission leads to the charged nanodroplets that are 

the precursors of the gas-phase analyte ions. The numbers beside the droplets give radius R (µm) 

and number of elementary charges Non the ES droplet; Llt corresponds to the time required for 

evaporative droplet shrinkage to size where fission occurs. Only the first three successive fissions 

of a parent droplet are shown. At the bottom right, the fission of the offspring droplet to produce 

the charged nanodroplets is shown. The inset shows a drawing of droplet jet fission based on 

actual flash microphotograph. (Figure is reproduced from Banerjee et al. {9]}. 

One of the advantages of using ESI to study proteins and other large molecules is 

that it can generate multiply charged ions, which lowers the m/z of high-mass analytes 

into a range accessible by most mass analyzers. The disadvantage of having multiply 
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charged ions is that it can lead to more complicated spectra, which may hinder protein 

identification. 

2.1.3. Mass analyzer 

Gas-phase analyte ions may vary in mlz and abundance by several orders of 

magnitude. These ions must be sorted by the mass analyzer, often in a timespan of a few 

milliseconds or less, and presented to the detector in ascending or descending mlz ratios 

with respect to time. Alternatively, the ions may be made to orbit or oscillate at 

frequencies unique to their m/z values, and these frequencies are then detected to 

determine the m/z of the ions present in the sample. The ions are manipulated, depended 

on the mass-analyzer type, by static or dynamic electric or magnetic fields to achieve 

spatial, and ultimately time, separation, or to coerce them into orbits or oscillations. 

There are several types of mass analyzers: the magnetic sector (B), in which a 

continuous ion beam is deflected in a magnetic field with bending radius depending on 

the ion's momentum; the linear quadrupole (Q), in which a continuous ion beam moves 

in an oscillating electric field with separation achieved based on the stability of ion 

trajectories in the field; the linear ion trap quadrupole (L TQ), in which ions are trapped 

and separated in a linear, quadrupolar radio-frequency field by resonant excitation; the 

quadrupole ion trap (QIT), in which ions are trapped and separated in a three-dimensional 

radio-frequency quadrupole field by resonant excitation; the time-of-flight (TOF), in 

which ions of different m/z, having different velocities, are separated during their flight 

through a field-free drift tube; the Fourier transform-ion cyclotron resonance (FTICR), in 

which ions are trapped in an orbit in magnetic field and their rn/z are deduced from their 

20 



cyclotron frequency; and the Orbitrap, in which ions oscillate in an inhomogeneous 

electric field, allowing their m/z to be deduced from their oscillation frequencies. 

Quadrupole and TOF were employed in the studies presented here; thus, these analyzers 

will be described in more detail. 

2.1.3.1. Quadrupole 

A quadrupole consists of four parallel, cylindrical or hyperbolic rod electrodes mounted 

in a square configuration as shown in Figure 2.4. The pairs of opposite rods are each held 

at the same potential which is composed of a direct current (DC) voltage and a 

superimposed radio-frequency (RF) voltage. Ions travel down the quadrupole in the axial 

space between the rods in the z-direction. An attractive force is exerted on them by one 

pair of rods having the opposite charge to the ions. If the voltage applied across the pairs 

of rods is periodic, attraction and repulsion in both the x- and y-directions will alternate 

in time. The resulting motion of the ions in the quadrupole field depends on their mass 

and charge, and is described by the Mathieu equation. The equation shows that the DC 

and RF fields can both stabilize, or destabilize, an ion's trajectory depending on the ion's 

mlz value and the ratio of DC to RF voltages. Only ions of a certain m/z window that 

have stable trajectories for the given ratio of voltages (resonance ions) will reach the 

detector; the other ions, having unstable trajectories (non-resonance ion), will collide 

with the rods or exit the quadrupole via the space between the rods (see Figure 2.5). 

Thus, the "window of transmission" can be tuned to transmit ions of a particular mlz 

value. By ramping the ratio of DC and RF voltages, a range of mlz values can be scanned 

to generate a mass spectrum. When the DC component of the applied voltages on the 

quadrupole rods is set to zero, the mass analyzer is said to be operating in "RF-only" 
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mode. This results in stable trajectories for all of the ions and they are all transmitted. 

The "RF only" setting is used for ion transmission and focusing. Thus, a quadrupole is an 

effective tool for transmitting an entire population of ions, as an ion lens, or for 

selectively transmitting ions of specific mlz values as a mass analyzer. 

Figure 2.4. Schematic diagram of the quadrupole mass analyzer, conventionally the direction 

down the axis is defined as z and the quadrupolar field is applied across the KY plane. 
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Figure 2.5. Schematic representation of ions with stable trajectory (resonance ions) and 

unstable trajectory (non-resonance ions) in the quadrupole filter. Figure is adapted from 

Wittmann et al. [10}. 
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2.1.3.1.1. Collision cell 

The quadrupole can also be used as a collision cell to induce ion fragmentation 

via collision-induced dissociation (CID). When used as a collision cell, the quadrupole is 

operated in "RF-only" mode: precursor ions are made to collide with a neutral gas (e.g. 

N1 or He) with sufficient energy to cause the ions to fragment. Collision between the 

precursor ion and the inert gas results in conversion of the ion's kinetic energy into 

internal energy. As dissociation rates are typically much lower than the rates of 

intramolecular vibrational energy redistribution [11 ], the excess energy is equilibrated 

within the ion, leading to fragmentation of weaker bonds irrespective of collision site. 

Ionic fragments (product ions) are then transmitted to a second mass analyzer where they 

are separated for subsequent detection. 

2.1.3.2. Time-of-Flight 

The TOF mass analyzer determines the m/z value of an ion via a time 

measurement. The ions of different masses and charges are accelerated by an electric 

field of known strength before entering the TOF tube. All ions of a given charge acquire 

the same kinetic energy, Eh which is proportional to the ion charge, ze, and the voltage 

applied across the accelerator grid, V, according to the equation: 

Ek =zeV (1) 

Because the kinetic energy is related to the mass, m, and the velocity, v, of the 

ions, according to the equation, 

1 2 
Ek =-mv (2) 

2 
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lighter ions travel faster than heavier ones, given the same kinetic energy, and will reach 

the detector at the end of the TOF tube earlier. The time, t, that it takes for the ion to 

travel the distance, d, to the detector is measured to deduce the velocity of the ion: 

d 
V=-

( 
(3) 

By combining Equations 1 - 3 the time-of-flight can be used to deduct the m/z value of 

the ion, viz. : 

t - d /m = k /mz (4) - v12ev 1j-; v-; 

2.1.4. Scan modes in MS 

A modem tandem mass spectrometer is capable of a number of modes of 

operation, depending on how the mass analyzers are operated to achieve specific goals. 

Figure 2.6 shows a schematic representation of the main scanning modes. MS 1 represents 

the first analyzer, which can transmit ions of a specific m/z or transmit all of the ions, 

CID occurs in the collision cell (RF-only quadrupole), and MS2 represents the second 

analyzer, which transmits or mass-analyzes precursor and product ions depending on the 

scan mode. In 'single-stage MS scanning,' all precursor ions are transmitted unhindered 

through MSl and the collision cell into MS2, where they are scanned. In 'product ion 

scanning' a precursor ion is mass-selected in MS 1, fragmented in the collision cell, and 

the product ions are then mass-analyzed in MS2. In 'precursor ion scanning,' a specific 

product ion mlz is monitored in MS2, while the precursor masses are scanned in MS 1. 

Only precursor ions that fragment to give the specific product ions are detectable. In 

'neutral loss scanning,' MS 1 scans a range of mlz while MS2 also scans the same range 

of mlz, but at an offset from the MS 1, which corresponds to a particular neutral loss. In 
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'selected reaction monitoring (SRM),' MS 1 is set to transmit a particular precursor ion, 

while MS2 is set to monitor the presence of a particular fragment ion. SRM is typically 

used for detecting specific analytes that elute from LC with tandem MS being the means 

of detection and quantification. In the studies presented here, the 'single-stage MS 

scanning' and 'product ion scanning' were used for the identification and quantification 

of proteins. 
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Figure 2.6. Schematic representation of different tandem MS scan modes. (Figure is adapted 

from Doman and Aebersold {12]}. 
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2.1.5. Detector 

There are essentially two types of ion detectors: one that generates a signal by 

sensing the oscillation or orbiting motion of the ions and another that generates a signal 

when ions collide with it. Only the FTICR and Orbitrap mass spectrometers use the first 

type of detector, while most others use the latter. 

In the FTICR and Orbitrap, two electrodes are connected to an amplifier and 

sense the motion of the oscillating or orbiting ions. As a group of ions with a particular 

mlz value approaches one electrode while departing from the other, electrons flow 

through the amplifier, drawn to the first electrode by the ions' positive charges and 

sourced by the second. As the ions continue on their orbit or oscillation, they move away 

from the first electrode toward the second, causing the electric current to change 

direction. The resulting alternating current signal has the same frequency as the ions' 

oscillation or orbit. With many ions of different m/z values trapped, a complex periodic 

signal is generated, composed of superimposed alternating current signals. This complex 

signal can be amplified, digitized, and analyzed by Fourier transformation to ultimately 

yield a mass spectrum [2]. 

Among the second type of detectors, the simplest is the Faraday cup, which is an 

electrode with which the ions collide and deposit their charge [2]. The deposition of 

charge increases the electrode's potential, which is then measured by a sensitive 

electrometer. Faraday cups measure ion abundance with the highest accuracy and are, 

therefore, used in isotope-ratio mass spectrometry (IR-MS) [13]. 
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Ion-to-photon detectors operate by converting the energy of an impacting ion to 

light, using a scintillation compound such as Rhodamine B or Csl, which is then detected 

by a photomultiplier tube. This detector is primarily used in MALDI mass spectrometers. 

Ion traps, quadrupole and TOF analyzers usually use some type of electron 

multiplier detector. Because the number of ions reaching the detector at a particular 

instant is small, considerable amplification is necessary to obtain a signal. A channel 

electron multiplier (CEM) is used for this purpose. CEMs consist of a hollow tube with a 

semiconducting inner surface. When an ion strikes the inner surface near the entrance of 

the tube, it causes the emission of a number of electrons. As these electrons are 

accelerated down the tube under a potential gradient, they repeatedly strike the inner 

surface releasing secondary electrons, leading to a cascade of electrons. This 

multiplication process results in the generation of 10,000 electrons per incident ion (gain 

of 10
4
). CEMs are unstable at gains exceeding 104

• In TOF MS, the ion beam is usually 

much wider than in quadrupoles, and this necessitates the use of multiple, parallel, 

miniaturized CEMs in the form of the microchannel plate (MCP) detector to ensure a 

high efficiency of ion detection. This type of detector was used in this study and will be 

described in more detail below. 

2.1.5.1. Microchannel plates 

A diagram of the MCP is shown in Figure 2. 7 A. The gain of an MCP is 103 -104, 

i.e., lower than that of CEM. Two MCPs are often sandwiched together (see Figure 2.7B) 

with a slight angle between the channels in a chevron pattern to obtain gains of 106-1O7• 

Electrons exiting the first plate initiate the cascade in the second plate. Electrons that exit 
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the chevron on the opposite side are collected by an anode and further amplified and 

digitized. 
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Figure 2.7. (A) Microchannel plate (MCP} design. (B} Two MCP plates are arranged as a slightly 

spaced pair with their pores angling in opposite directions to enhance the electron cascading 

intensity. This figure combines two adapted images {14, 15}. 

2.1.6. QSTAR Pulsar mass spectrometer 

The QSTAR Pulsar mass spectrometer (Figure 2.8) from Applied 

Biosystems/MDS SCIEX (Foster City, CA) belongs to the QqTOF (Q = quadrupole mass 

selector, q =collision cell, TOF =mass analyzer) family of hybrid tandem mass 

spectrometers, and was configured as an HPLC-ESI-MS system and used for the 

proteomic analysis work presented in this thesis. 
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Figure 2.8. Schematic diagram of the QSTAR Pulsar. The dashed line represents the ion path 

through the quadrupoles and TOF region. Figure is adapted {16}. 

A nanobore high-performance liquid chromatography (HPLC) system (LC 

Packings, Amsterdam, Netherlands) was used upstream from the ESI source to separate 

the analytes (mostly tryptic peptides, see later), and both were controlled by a computer 

running Analyst QS 1.1 software. The HPLC system will be described further in a later 

section. 

The mass spectrometer consists of an "RF only" quadrupole ( qO), which 

functions as an ion lens, a quadrupole analyzer (Ql), which can be used to select ions for 

fragmentation, a second "RF only" quadrupole ( q2), which functions as the collision cell, 

and a TOF mass analyzer. Low pressure is maintained within the instrument by three 

turbomolecular pumps, each of which evacuates gases at a rate of 250 - 500 L/min. The 
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q2 quadrupole is housed in a semi-isolated casing into which N2 gas can be introduced 

for fragmentation. Semi-isolation is necessary for reaching a sufficiently high pressure 

(about 4x10-2 Torr) in the collision cell, yet maintaining a sufficiently low pressure 

elsewhere in the mass spectrometer. 

The ions exiting q2 are injected into the TOF analyzer orthogonally to the TOF 

acceleration direction and are then reflected back towards the detector via an ion mirror. 

Orthogonal injection eliminates the problem of ion kinetic-energy spread along the z 

direction (the axis of the quadruples). Spread along the z direction becomes unimportant 

because the MCP detector has a large surface area and can capture all of the spread ions. 

The problem of ion kinetic-energy spread in the acceleration direction is solved by an ion 

mirror (reflectron) that enables the refocusing of ions having the same m/z value, but 

slightly different kinetic energy. Orthogonal injection and ion reflection via the reflectron 

were the technological advances that give the TOF mass analyzer its high-resolution. 

The MCP detector is capable of differentiating ion-arrival events on a nanosecond 

timescale. The ion pulses are counted by the instrument's computer, which displays the 

output as a mass spectrum. The TOFMS resolution is about 10,000 - 12,000 as measured 

by dividing the mlz value of the ion being measured by the width of the ion peak at half 

maximum. The TOF mass accuracy typically exceeds 20 ppm and is determined and 

corrected using a procedure described as mass calibration using standard solutions 

containing analytes of accurately known m/z values. The QST AR Pulsar mass 

spectrometer was operated in the positive ion mode in this study. An LC-MS run of a 

peptide sample, in the studies presented here, took 135 min. After loading the sample 

onto the chromatographic column, LC-MS data were acquired, using the Analyst QS 1.1 
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software, in series of 9-s cycles: 1-s survey scan (MS 1 ), followed by four, 2-s product-ion 

scans (MS2) of the four most-abundant ion peaks in the survey scan (a schematic diagram 

of the process is shown in Figure 2.9). 
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Figure 2.9. A schematic diagram represents the LC-MS data acquisition. The TIC (total ion 

count) chromatogram shows all the ions eluted from RP LC column during 135-min LC-MS run. 

LC-MS data were acquired in the series of 9-s cycles: 1-s survey scan (MS1}, followed by four, 2-s 

product-ion scans (MS2} of the four most-abundant ion peaks in the survey scan (as indicated by 

the blue arrows). 
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2.1.7. Iterative runs with precursor ion exclusion (PIE) 

Because of the overwhelming number of tryptic peptides in a digested protein 

sample (see later), only a small number of the peptides can be analyzed in a single LC­

MS run. This is limited by the spectral acquisition speed of the mass spectrometer: only 

about 900 MS 1 and 3600 MS2 spectra can be acquired in a 135-min LC-MS run (see 

Figure 2.9). As a result, only a limited number of proteins can be identified in one LC­

MS run. The number of identified proteins can be increased by performing replicate LC­

MS runs. Our experience is that about 17% of additional proteins can be identified in the 

second run and 8% in the third (i.e. a total increase of 25% ). Additional runs beyond the 

third iteration identify few more proteins [17], the majority of the identifications being 

redundant. 

PIE can increase the number of protein identifications in three replicate LC-MS 

runs by as much as 50% [18]. PIE works by excluding the precursor ions detected in the 

first LC-MS run (Figure 2.1 OA) from MS2 analysis in the second run (Figure 2.1 OB). 

Thus, the four peptides analyzed by MS2 in the second run, are next most abundant, and 

non-redundant. For the third run, the precursor ions detected in the first and second LC­

MS runs are excluded from the MS2 analysis (Figure 2.1 OC). As a result, the total 

number of identified proteins in all LC-MS runs using PIE will be greater than just 

performing replicate runs under the identical conditions. 
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A: 1st LC-MS run 

B: 2nd LC-MS run 
with PIE 

C: 3rd LC-MS run 
with PIE 
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Figure 2.10. A schematic diagram illustrating the PIE strategy. PIE minimizes the redundancy 

of identified peptides and increases the total number of identified proteins in three LC-MS runs. 

A, 8, and C show the same group of peptides, eluted at a given time, in three different LC-MS 

runs. Precursor ions detected in the first LC-MS run (AJ are excluded from the MS2 analysis in the 

second run (BJ, and the precursor ions detected in the first and second LC-MS runs are excluded 

from the MS2 analysis in the third run (CJ. The ions peaks selected for MS2 analysis are indicated 

by color-coded arrows. 
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Wang's PIE method [18] was slightly modified and employed in this work. PIE 

lists were generated using an Excel template developed in-house. To generate the list for 

the second LC-MS run, the peptide summary of a sample, obtained after the first run, was 

imported into the Excel template where: (1) the m/z values and elution (retention) times 

of peptides identified with > 95% confidence were extracted; (2) alternative charge states 

(only +2, +3 and +4 were considered) of the peptides were calculated; and (3) the next 

three greater isotopic mlz values of extracted and calculated peptides were determined. 

The resulting m/z ratios from all three of these considerations constituted the PIE list. 

This list was saved as a text file and imported into the acquisition method for the second 

LC-MS run. The list, used for each LC-MS run, was cumulative of all the mlz values and 

elution times derived from all previous runs for the sample. 

Wang et al. reported that the major time-consuming step was the cutting [18], 

pasting, and processing of data, which took about 30 min to generate a given PIE list for 

one sample. Our Excel template, developed in-house, reduced the processing time to less 

than 2 min [19]. 

2.1.8. Protein identification by MS 

An MS2 or MS/MS analysis (see Figure 2.9) results in a product ion spectrum 

that typically comprises the precursor ion and a series of its fragment ions. While this 

fragmentation pattern can be studied manually and interpreted to give the primary 

structure (the sequence of amino acid residues) in a de novo manner, this task is time­

consuming and demands much expertise. Peptide and protein identification in 

proteomics is typically accomplished by means of an automated search in which 
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"identification" is achieved by matching the m/z values of the ion peaks with those of 

theoretical ion peaks generated in silico on tryptic peptides deduced from all known 

proteins in a protein data bank. The best-matched tryptic peptide (and the protein from 

which the peptide is derived) constitutes the identification. 

Dissociation of a peptide can potentially generate many types of fragment ions. 

This complexity is a function of the CID energy, the nature of the side chains and the 

residual sequence, and the three-dimensional structure of the peptide ions in the gas 

phase. A shorthand nomenclature has been developed to classify fragment ions and 

facilitate description. Figure 2.11 shows how fragment ions are named: a, b, and c ions 

are N-terminal-containing ions, while x, y, and z are C-terminal-containing ions; the 

subscripts denote the residues on which cleavage occurs. 

Z4 Z3 Z1 
Y4 Y3 Y1 

X4 X3 X1 

0 Ri H 0 ff.. H 

NH2 
II I I II I I 

"°cH 
c CH N C CH N /COOH N c CH""'/ ~N/ c CH I I II I I II I R1 H 0 R.a H 0 Rs 

81 82 84 
b1 b2 b4 

C1 C2 C4 

Figure 2.11. The fragmentation of backbone of a peptide. The backbone of a peptide can 

fragment at three bonds CH-CO, CO-NH and NH-CH with each dissociation producing two 

fragments named according to the location of the charge and the amino acid position. 
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Of the three types of bonds, CH-CO, CO-NH, and NH-CH, on the peptide 

backbone where fragmentation is possible, the peptide bond (CO-NH), which joins 

adjacent residues, is typically the weakest and, as a result, are the most easily dissociated 

in CID experiments. Thus, CID typically produces b- and y-type ions, which dominate 

the product ion spectrum as, for example, in Figure 2.12. 

As pointed out earlier, by examining the mass difference between adjacent ions 

from the same peptide, it is possible to determine which amino acid is missing, thus 

allowing the sequence of the peptide to be determined de novo (see Figure 2.12). In 

reality, this is seldom unambiguous and often time-consuming, and de novo sequencing is 

really only practiced when database search is not a viable option, e.g. when the protein 

(or DNA) sequences of the organism are not available. Many computer-aided database 

search algorithms I programs are commercially available; the best of them include 

Mascot, Sequest, and ProteinPilot. Mass spectrometer manufacturers typically package 

one or several of these search programs with their instrument and operating software. 

The results of this dissertation research were obtained with ProteinPilot searches. 

2.2. Trypsin digestion 

Two fundamental approaches are currently used in proteomic analyses. In 'top­

down' proteomics, intact proteins or large peptides are analyzed directly by MS. In 

'bottom-up' proteomics, proteins are first cut via proteolytic digestion into peptides, 

which are then analyzed by MS. In cancer biomarker discovery, 'bottom-up' proteomics 

is the most commonly used approach, and was used in this study. 
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Figure 2.12. The CID QqTOF spectra of doubly charged Glu-fibrinopeptide. (A) shows the y-

series ions, (B) shows the b-series ions. Figures are reproduced {20}. 
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The enzymes typically used for proteolytic digestion of proteins are, Lys-C, Asp­

N, Glu-C and trypsin, with the last being by far most commonly used and is the enzyme 

that was used exclusively in the research work described in this dissertation. Trypsin is a 

protease that cleaves proteins C-terminal to lysine (K) and arginine (R) residues. Lysines 

and arginines with a neighboring acidic amino acid - aspartic acid or glutamic acid -

hydrolyze (cleaved by trypsin) more slowly; the presence of a neighboring proline C­

terminal to lysine or arginine inhibits the hydrolysis completely [21]. Trypsin has high 

cleavage specificity, is aggressive, and is stable under a wide variety of conditions. 

Trypsin typically produces peptides within the preferred mass range for MS sequencing 

(due to the frequency of lysine and arginine residues) and more readily interpretable 

peptide fragmentation mass spectra relative to other enzymes. Trysin digestion is 

effective while the proteins are either in an SDS PAGE gel or in solution. All these 

properties help propel trypsin as the preferred proteolytic enzyme for proteomics. 

Lys-C is active in harsher conditions and gives larger fragments than trypsin. 

Asp-N and Glu-C are also highly sequence-specific proteases, but less active than Lys-C. 

Other less sequence-specific proteases are generally avoided since they create complex 

mixtures of peptides, the spectra of which are more difficult to interpret [22]. 

2.3. Quantitative proteomics 

Quantification in proteomics typically involves a comparison of the expression 

levels of proteins in two sample states. This is typically referred to as relative 

quantification. Relative quantification can be achieved by either label-free, or stable­

isotope labeling approaches. In label-free quantification, each sample is prepared 

38 



separately, and subjected to individual LC-MS analyses. The quantification is then 

accomplished by either direct comparison of the mass spectral peak intensities of the 

precursor ion in the MS 1 spectra of different biological samples (see Figure 2. l 3A), or 

counting the number of MS2 spectra identified for a given precursor (spectral counting) 

(see Figure 2.13B). Both approaches are relatively straightforward to implement, 

although both carry inherent weaknesses. In the first, differences in sample preparation 

and sample injection can result in peak intensity errors and retention time drifts, which 

can significantly complicate the comparison of multiple LC-MS runs [23]. In the second, 

normalization and statistical analysis of spectral counting datasets are necessary for 

reliable quantification. The acquisition and examination of many spectra of a given 

protein are required for reasonably accurate quantification. 

Stable-isotope labeling is more costly and potentially more time-consuming; 

however, it is much less sensitive to experimental biases than label-free quantification. 

In addition, with standards of known concentrations, absolute quantification can be 

achieved. The 'spiked heavy peptides' method involves spiking known concentrations of 

heavier, isotopically labeled versions of the peptides to be quantified into an unlabeled 

sample, performing MS 1 analysis, and quantifying the peptides using a heavy peptide 

standard curve (Figure 2.13C). One of the limitations of this approach is the purity of the 

spiked standard as there is likely interference from isobaric peptides present in the 

standard. However, this potential error can be corrected for provided the percents purity 

of the isotopically labeled and interfering peptides are known. 
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Figure 2.13. Overview of quantitative proteomics methods. The drawings are color quoted to 

indicate the point in each work/low when samples are isotopically labeled (indicated by blue 

[light] and red [heavy]) for LC-MS analysis. Figure is adapted {24]. 
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The basic principle of the three remaining isotope-labeling methods, shown in 

Figure 2.13 (D-F), is that the peptides from the two samples being compared are labeled, 

one with light isotopes and the other with heavy isotopes. The two samples, comprising 

equal amounts of total proteins, are then combined and analyzed by LC-MS analysis. The 

individual peptides labeled with light and heavy isotopes are chemically identical, and 

therefore co-elute during LC separation and are detected simultaneously during MS 

analysis. The peak intensities of the heavy and light peptides are compared and the 

relative expression of the protein in the two samples can then be determined. The three 

methods differ in the way the isotopic labels are incorporated into the peptides. 

'Metabolic labeling' (e.g. SILAC) uses living cell samples to metabolize 

isotopically labeled amino acids and incorporate them into their protein products. The 

proteins are then extracted from the cell samples and are combined and quantified via 

MS 1 analysis (Figure 2.13D). The advantage of this method is that the heavy and light 

protein samples are combined before sample preparation for LC-MS analysis, thus the 

level of quantification bias from processing errors is low. 

'Isotopic labeling' can be performed enzymatically (e.g. GIST, which will not be 

discussed here) or chemically (e.g. ICAT). Isotope-coded affinity tag (ICAT) labeling 

modifies a peptide's cysteine residues with a group containing zero or eight deuterium 

atoms. After labeling, the samples are combined, and the proteins are quantified via MS 1 

analysis (Figure 2.13E). The drawback is that ICAT will not work for the small fraction 

of proteins that lack a cysteine residue; in addition, cysteine is not a common residue and 

!CAT-labeling thus produces few peptides for quantification. This on one hand greatly 
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simplifies sample complexity, but on the other leads to much reduced redundancy which 

may lead to lower analytical reliability. 

With 'isobaric labeling' (e.g. TMT and iTRAQ) peptides are tagged with various 

chemical groups that have the same mass (isobaric), thus in the MS 1 spectrum the same 

(albeit differently labeled) peptide from different samples appears as a single peak, but 

after fragmentation, in the MS2 spectrum, labeled peptides from different samples yield 

reporter ions of different mass (Figure 2.13F). The main advantage of 'isobaric labeling' 

is that it allows the comparison of multiple (up to 8) samples at the same time. Isobaric 

tags for relative and absolute quantitation (iTRAQ) were exclusively used in this work 

and will be further discussed in the next section. 

2.3.1. Isobaric Tags for Relative and Absolute Quantification 

iTRAQ tags are isotopically variable, chemical reagents that are designed to bind 

to primary amine (NH2) groups, such as those found at the N-terminus and the side chain 

of lysine residues in tryptic peptides. iTRAQ is available in sets of four or eight tags ( 4-

plex and 8-plex, respectively). In this research work, 4-plex tags were used. 

An iTRAQ tag consists of three parts: a 'reporter' group, N-methylpiperazine; a 

'balancer' region; and a 'linker', N-hydroxy succinimide (NHS), which reacts with the 

primary amines of the peptide (Figure 2.14A). Thus, every peptide should have at least 

one label at the N-terminus and, for peptides containing lysine residues, a label on each 

lysine side-chain. The 4-plex kit can simultaneously compare up to four proteomic 

samples, and contains reagents with reporter ion masses of 114.1Da,115.1 Da, 116.1 Da 

and 117.1 Da (Figure 2.14A, C). 
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Figure 2.14. iTRAQ labeling of peptides for quantitative proteomics. The chemical structure of 

iTRAQ reagents is shown in (A). The reporter group utilizes stable isotopes of carbon and 

nitrogen, whereas the balance group utilizes stable isotopes of carbon and oxygen, to form 

isobaric tags. Peptides are labeled on their amino groups (B}. Four samples, each with a different 

isobaric tag, show identical m/z values in the MS1 mode of the mass spectrometer. Upon 

fragmentation in the MS2 mode, the reporter group is released and allows relative quantification 

in addition to the peptide sequence information (C}. The figure is reproduced from Ross et al. 

{25]. 

The 'balancer' region between the reporter and the linker has masses of 31, 30, 29 

and 28 Da, respectively, to compensate for the difference in the mass of each reporter; 

this ensures that the mass of the tag, as a whole, is isobaric for all four tags. 
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Consequently, iTRAQ-labeled peptides of an identical sequence from different samples 

in a set are all isobaric and appear as a single precursor ion peak of identical mlz values. 

When the precursor ion peak is selected for fragmentation, the reporter and other 

sequence ions are produced (Figure 2.15). The former have four different m/z values, 

and the ratio among the four gives quantitative information, while the latter collectively 

give qualitative information and permits identification of the peptide in question. 
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Figure 2.15. Quantification of the iTRAQ labels from the y-1 ion of L *VNELTEFAK* from BSA 

(Figure is reproduced from Thermo Electron Corporation website). MS2 spectrum generated from 

a pool of four isobaric, iTRAQ labeled, tryptic peptides. A zoom image of spectrum shows the 

four 'reporter' groups (mass 114-117 Da) from which relative quantification of BSA from each 

sample can be calculated. The rest of the peaks can be used for BSA identification. Figure is 

reproduced {26]. 
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2.4. High-performance liquid chromatography 

In proteomic analysis, a tissue homogenate may consist of thousands of proteins. 

After trypsin digestion, the number of peptides can increase to tens of thousands. This 

complex mixture must be resolved before MS analyses can be performed. A common 

analytical tool used for peptide separation is HPLC. To be compatible with the version of 

ESI employed commonly in proteomic analyses, which consumes nL I min of samples, 

nano-HPLC is typically implemented. 

Nano-HPLC employs automated systems with precisely loaded samples, 

controlled flow rates in the nL I min range, high pressures of up to 450 bars, and on-line 

sample detection. The chromatographic column consists of a fused-silica capillary, 

packed with 3- to 5-µm diameter porous silica, usually coated with a hydrophobic 

material for reverse phase (RP) or antibodies for affinity chromatography; highly cross­

linked styrene-divinylbenzene for size exclusion chromatography (SEC); or ion exchange 

resin for ion-exchange (IEX) chromatography. 

As alluded to earlier, in 'bottom-up' proteomics, the analysis requires a 

proteolysis of all proteins into peptides that generates an even more complex mixture; 

thus, one-dimensional separation is typically not sufficient and additional separation 

dimensions must be introduced in order to reduce the sample complexity. 

Size exclusion chromatography is a method in which large molecules, such as 

proteins or macromolecular complexes in solution, are separated by their size; thus, for 

tryptic peptides this technique is not the best choice. Also, affinity chromatography is not 
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applicable because it is based on specific interactions in a lock-and-key fashion between 

analytes (protein) and matrix-bound ligands (protein specific antibodies). IEX 

chromatography in both anion and cation forms is considered by many to be most 

suitable for the analysis of tryptic peptides, especially in tandem with RP 

chromatography. In this research work, strong cation exchange (SeX) chromatography 

was used in combination with RP chromatography. 

2.4.1. Strong cation exchange chromatography 

The separation of tryptic peptides using sex chromatography is based on the 

charge of the peptides. The sex column is packed with stationary phases consisting of 

cation-exchange resins with acidic sites such as the sulfonic acid group-So3·H+. When 

aqueous solutions of cationic peptides (Mx+) are introduced on the column, an exchange 

equilibrium ensues: 

When other cations that also have the affinity for-S03·H+, for example K+, are 

introduced, they compete with the protonated peptides, viz, 

causing some of the peptide ions on stationary phase to be transferred to the mobile 

phase. These peptide ions move down the column in a series of transfers between 

stationary and mobile phases. The peptide that has a higher affinity for the stationary 
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phase interacts with stationary phase longer and, therefore, has a longer retention time. 

In this research work, peptides were eluted using a gradient of potassium chloride. 

2.4.2. Reverse Phase Chromatography 

The RP chromatography is based on the partitioning of a sample between a 

hydrophobic stationary phase and a polar hydrophilic mobile phase. Here, the stationary 

phase is usually a siloxane with a Cs chain (n-octyl) or C1s chain (n-octyldecyl). Peptides 

having greater hydrophobicity (often containing aromatic residues) partition more into 

the hydrophobic Cs (or C1s) phase and, hence, elute later than those with lesser 

hydrophobicities. More effective competition with the stationary phase is rendered by 

increasing the hydrophobicity of the mobile phase (resulting in a shorter retention time). 

This is done by increasing the concentration of an organic solvent in the mobile phase, 

such as acetonitrile or methanol. As in SCX chromatography, the peptide ions move 

down the column in a series of transfers (partitioning steps) between stationary and 

mobile phases. The RP mobile phase is compatible with ESI; thus, the eluate from RP-LC 

is usually directly routed to the electrospray probe for on-line MS analysis. 

2.5. Clustering analysis 

After identifying and quantifying the proteins by LC-MS analysis, dysregulated 

proteins were selected that could potentially serve as cancer biomarkers. This selection 

was aided using clustering analysis to determine which of the dysregulated proteins could 
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consistently discriminate between cancer and normal samples. In clustering analysis, a set 

of objects are assigned to groups called clusters, so that the objects in the same cluster are 

more similar to each other, based on specific criteria, than to those in other clusters. In 

our case, the objects are the tissue samples and the criteria are the levels of protein 

expression. 

Clustering is a common technique for data mining used in many fields, including 

bioinformatics. Clustering software are available, some of the most widely used include 

Unscrambler® X, MVCP, and Cluster 3. In bioinformatics, the most popular algorithm is 

the "shortest distance" approach, where objects are clustered such that those belonging to 

the same cluster have the shortest distance between them. Here, "distance" is used 

metaphorically to mean the difference in the protein expression of two samples being 

compared. Similar proteins expressions are indicated by a shorter distance between the 

two samples. These distances can be based on a single dimension (one protein) or 

multiple dimensions (many proteins). Tree clustering is a method to visualize the 

distances between the objects when forming clusters. 

The distances can be computed using the 'Chebychev distance', 'power distance', 

'Euclidean distance', 'squared Euclidean distance', 'city-block distance', and other 

methods; in biomarker studies, the last three are most commonly used. 'Euclidean 

distance' is simply the geometric distance in multidimensional space. It is computed as: 

1 

d(x,y) = {L(x; - yJ2 f (5) 
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The advantage of this method is that the distance between any two objects is not affected 

by the addition of new objects to the analysis, which may be outliers. However, the 

distances can be greatly affected by differences in scale among the dimensions from 

which the distances are computed. 

If one wants to put a greater weight on the objects that are further apart, one may 

square the standard Euclidean distance: 

(6) 

Note that the Euclidean and squared Euclidean distances are usually computed from raw 

data, and not from standardized data. 

The 'city-block distance' is also known as the 'rectilinear distance' or 'Manhattan 

length', in which the distance between two points is the sum of the absolute differences 

of their coordinates. In most cases, this distance yields results similar to the Euclidean 

distance; however, the effect of single large differences, for example outliers, is 

dampened, since they are not squared. The city-block distance is computed as: 

In the research work presented in this thesis, the data used for clustering analysis 

were standardized, therefore, it was appropriate to use the 'city-block distance'. 
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2.5.1. City-block distance 

The city-block distance calculation used in the analysis can be explained and 

demonstrated on a simple example of finding the distance a taxi travels to its destination. 

Suppose a taxi drove to the North 7.0 kilometers and then to the West 2.4 kilometers; the 

distance it covered can be calculated using Eqn. 7: 

d(x,y) =lo-1.01+10-2.41 =9.4 km 

The 'city-block distance' can be utilized to quantify differences or similarities in the 

protein expression between tissue samples and cluster the samples accordingly. Suppose 

there are five samples (S 1-S5) and we know the expressions of proteins in them, the 

distances between each pair of samples are first calculated using Eqn. 7 (see Table 1). 

Table 2.1. Distances between samples calculated base on 'city-block distance' method using 

protein expressions. 

Sample Distance 

Protein SI S2 S3 S4 S5 Sl/S2 Sl/S3 Sl/S4 Sl/S5 S2/S3 S2/S4 S2/SS S3/S4 S3/S5 S4/S5 

A 1.1 2.4 2.4 0.8 0.8 9.1 9.2 1.0 1.1 5.3 9.3 9.4 9.4 9.5 0.9 

B 0.9 5.6 4.2 1.0 0.9 

c 1.0 3.1 1.9 1.1 0.7 

D 1.2 1.3 2.6 0.9 1.1 

E 0.8 1.7 3.1 1.0 1.2 

For example, the distance between samples Sl and S2 (Sl/S2) was calculated as: 

d(x,y) = ILl- 2.41+I0.9-5.61 + IL0-3.ll + IL2-1.3I + I0.8-1.71=9.1 

so 



Next, the samples were arranged in two clusters, where the samples from the 

same cluster have a small distance between them, while those from the different clusters 

have a large distance (see Figure 2.16A). The tree clustering representation, resulting 

from this analysis, is shown in Figure 2.16B. 

Cluster analysis is not a typical statistical test; its purpose is to "put objects into 

clusters," using a combination of algorithms. Unlike many other statistical procedures, 

cluster analysis methods are mostly used when there are no a priori hypotheses, and 

research is still in the exploratory phase; in a sense, it finds the "most significant solution 

possible." Therefore, statistical significance testing is really not applicable nor 

appropriate here [27]. 

A B 

~ 6.3 

~""' 52 53 55 54 51 52 53 

Figure 2.16. Principle of clustering analysis. A: the distances between each pair of samples were 

calculated based on the expressions of proteins in these samples using 'city-block distance' 

method; B: the tree clustering representation. 

51 



In this research work, the clustering analysis was performed using Cluster 3.0 

software and the result was visualized with TreeView software (Stanford University, Palo 

Alto, CA, http://www.dnachip.org), both of which were developed by Eisen et al. [28]. 

2.6. Verification of biomarkers 

Differential expressions of the biomarker candidates, identified and quantified by 

MS, were verified by two independent techniques: Western blotting (WB) and 

immunohistochemistry (IHC). The verification ensures that the observed differential 

expressions are not caused by some unforeseen bias of the mass spectrometric method. 

Both techniques allow the quantification of a specific protein in a complex matrix by 

utilizing the very specific affinity of an antibody for the protein. The difference between 

the two techniques is that WB analyzes tissue homogenates or secretome solutions, 

allowing the sample to be concentrated for greater sensitivity, and the proteins are 

quantified instrumentally. IHC is performed on tissue sections typically suitable for 

histology, which reveals protein localization; however, protein quantification is more 

subjective and in according to a set of fixed criteria that typically include stain intensity 

and percent of cells stained. 

2.6.1. Western blotting 

2.6.1.1. Gel electrophoresis 

In the first step of WB, the proteins are separated using gel electrophoresis either 

by their isoelectric point (pl), molecular weight, electric charge, or a combination of 

these. The nature of the separation depends on the treatment of the sample and the nature 
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of the gel. The proteins can be separated by their native 3-D structure or denatured and 

then separated by the length of the polypeptide. In the work presented in this thesis, 

denatured proteins were separated by their molecular weight using SDS-PAGE (sodium 

dodecyl sulfate - polyacrylamide gel electrophoresis). The proteins were denatured using 

2-mercaptoethanol to reduce and break disulfide bonds [S-S] to give sulfhydryl groups 

[SH + SH], thereby disrupting the secondary and higher order structures. The denatured 

proteins were loaded into wells in the gel and a voltage was applied along the length of 

the gel to cause the proteins, covered in the negatively charged SDS, to migrate to the 

positively charged electrode. The proteins travel through the polyacrylamide gel matrix at 

different speeds depending on their size, the smaller ones migrating furthest. 

2.6.1.2. Transfer and blocking 

Once separated, the proteins were then transferred from the gel to a 

polyvinylidene difluoride (PVDF) membrane by sandwiching the gel and the membrane 

between two sheets of thick filter paper, and applying an electric current across the 

sandwich (positive on the PVDF side). The membrane was then treated with non-fat dry 

milk to prevent the non-specific binding of antibodies to the membrane in the subsequent 

step; this step is called "blocking." The milk proteins bind to the membrane where there 

are no transferred proteins; thus, when antibodies are added in the following step, they 

cannot bind by non-specific hydrophobic interactions, but must bind to their target 

proteins. 
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2.6.1.3. Detection 

After blocking, the membrane was incubated with a primary antibody specific to 

the protein of interest (Figure 2.17). Such antibodies are generated by the immune 

system of a host such as a mouse or a rabbit, or by an immune cell culture, when exposed 

to the protein of interest. The membrane was then treated with a secondary antibody 

directed at a part of the primary antibody. The secondary antibody is covalently bound to 

an enzyme such as horseradish peroxidase (HRP) or alkaline phosphatase, which can 

catalyze a signaling chemical reaction in proportion to the amount of target protein 

present. The reaction can be chromogenic, resulting in the deposition of an insoluble 

colored precipitate; fluorogenic, resulting in the deposition of a fluorescent material; or 

chemiluminescent, resulting in the production of light. 

Primary antibody 
binds to protein of 

interest 

Proteins 

secondary antibody 

Figure 2.17. Protein detection in Western blot. 

Luminol ff 
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In this research work, a horseradish peroxidase-linked secondary antibody was 

used to catalyze the chemiluminescent peroxide oxidation of luminol. The luminol 

generates an excited state, the 3-aminophthalate intermediate. This intermediate relaxes 

to a lower energy state and releases photons. This is presented pictorially in Figure 2.18. 
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Figure 2.18. Chemiluminescent reaction of luminol. Figure is reproduced from Thermo Scientific 

web page {29 ]. 

The chemiluminescence was captured on photographic film, and the image was analyzed 

by densitometry using ImageJ, a publicly available Java-based image processing program 

[30]. 

2.6.2. Immunohistochemistry 

IHC visualizes the distribution and localization of target proteins within cells and 

tissue sections by binding target-specific, dye-labeled antibodies to the proteins. 

Sectioned multiple miniature tissue samples were arranged on a slide for comparative 

analysis, forming a tissue microarray (TMA). Appropriate sample preparation and 

treatment is critical to maintaining cell morphology, tissue architecture, and the 

antigenicity of target proteins. 
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2.6.2.1. Tissue fixation and embedding 

To preserve cell morphology and tissue architecture, the tissue was first fixed 

with formaldehyde. The formaldehyde cross-links the primary amino groups of proteins 

with other nearby nitrogen atoms in proteins or DNA through a -CH2- linkage. Fixed 

tissue samples were embedded in paraffin to maintain the architecture of the sample 

during storage and sectioning for IHC. Formalin-fixed paraffin-embedded tissues were 

used in this work. Samples too sensitive for chemical fixation or exposure to solvents 

(used to remove paraffin) could be encased in a cryogenic embedding medium and then 

snap-frozen in liquid nitrogen. 

2.6.2.2. Sectioning and mounting 

Formalin-fixed paraffin-embedded tissues were sectioned into 5 µm slices with a 

microtome. These sections were then mounted onto electrostatically charged glass slides, 

which leave amino groups on the surface of the glass to which the tissue can directly 

couple. Frozen sections could be cut using a pre-cooled cryostat, mount to adhesive glass 

slides, dry overnight at room temperature, and fix by immersion in pre-cooled (-20°C) 

acetone. 

2.6.2.3. Epitope recovery 

Paraffin and -CH2- bridges can mask the protein epitopes and prevent antibody binding. 

To unmask them, tissues were deparaffinized in xylene and treated by heat-induced 

epitope retrieval (HIER). Heat causes cross-linked protein epitopes to 'unfold', while a 

buffer solution maintains the conformation of the 'unfolded' protein. 

56 



2.6.2.4. Quenching/blocking endogenous target activity 

For imaging approaches that depend on biotin, peroxidases or phosphatases for 

the amplification or enzymatic detection of target proteins, it is necessary to quench 

endogenous forms of these proteins to avoid false positive detection and high background 

signals. In this research work, sections were incubated with saturating amounts (0.3% 

v/v) H20 2 which resulted in irreversible inactivation of endogenous peroxidases. 

2.6.2.5. Blocking nonspecific sites 

Although antibodies show preferential affinity for specific epitopes, antibodies 

may weakly bind to non-target proteins, through "reactive sites" that are similar to the 

cognate binding sites on the target protein. This nonspecific binding causes background 

imaging that can mask the detection of the target antigen. To reduce background imaging, 

the tissues were incubated with a buffer that blocked the reactive sites to which the 

primary or secondary antibodies might otherwise bind. Common blocking buffers may 

contain normal serum, non-fat dry milk, BSA or gelatin. In this research work, tissues 

were blocked with 10% FBS (fetal bovine serum) in PBS. 

2.6.2.6. lmmunodetection 

IHC target antigens are detected through chromogenic or fluorescent imaging, and 

the type of readout depends on the experimental design. In fluorescence detection, the 

primary or secondary antibody is conjugated to a fluorophore, and the location of the 

antigens can be seen by fluorescence microscopy. In chromogenic detection, the antibody 
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is conjugated to an enzyme such as HRP or alkaline phosphatase, which catalyzes a color 

forming reaction that deposits a dark precipitate at the antigen site. The sites can be seen 

by optical transmission microscopy. In this work, chromogenic detection was used. 

Tissues were first introduced to primary antibodies specific to the proteins of interest, and 

then to biotin-tagged secondary antibodies having an affinity for the primary antibodies 

(shown in Figure 2.19). 

Primary antibody 
binds to protein of 

Interest 

\~ 
Proteins 

--...... 

DAB 

·:'/ 

Figure 2.19. Protein detection in immunohistochemistry. 
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The biotin-tags were used to bind HRP-labeled streptavidin; biotin and 

streptavidin have an unusually high affinity and specificity for each other. When 3,3 ' -
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diaminobenzidine (DAB) was added to the tissue section in the presence of H20
2
, HRP 

catalyzed the oxidative polymerization of DAB, producing a colored, insoluble 

precipitate at the antigen sites. The signal was amplified because each secondary 

antibody contained several biotins and streptavidin was labeled with two HRP. 

2.6.2. 7. Counterstaining and mounting 

After IHC staining of the target proteins, a second stain is often applied to provide 

contrast that helps the IHC stain to stand out. Many of these counterstains show 

specificity for organelles, while others stain the whole cell. Chromogenic and fluorescent 

counterstains are commercially available for IHC and include: hematoxylin, Hoechst 

stain, and 4',6-diamidino-2-phenylindole (DAPI). In this work, hematoxylin was used, 

which, when oxidized and combined with aluminum ions, formed a metal-dye complex 

that stained the nuclei of mammalian cells blue by binding to lysine residues on nuclear 

histones. After staining, the tissue samples were preserved for long-tem1 usage and 

storage by mounting a coverslip with a DPX mountant ( distyrene, plasticizer and xylene 

mixture). 
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Chapter3 

Identification of differentially expressed proteins in primary 

clear cell renal cell carcinoma ( ccRCC) tissues as potential 

diagnostic biofluid-based biomarkers 

In the research described in this chapter, diagnostic, fluid-based biomarkers for 

the onset of primary ccRCC were sought, using iTRAQ LC-MS analysis to determine 

differentially expressed proteins in primary ccRCC, relative to normal tissue 

homogenates. From the resulting pool of dysregulated proteins, those proteins having 

secretory function were selected based on bioinformatic analysis, due to their potential as 

biofluid-based biomarkers. The dysregulation of these proteins was verified in two 

independent sets of tissue samples by WB and IHC analyses and is currently undergoing 

verification in the serum and urine of ccRCC patients using WB analysis. 

This study was a collaboration of research groups from the Department of 

Chemistry and the Centre for Research in Mass Spectrometry at York University, in 

Toronto, Ontario, Canada; the Keenan Research Center in the Li Ka Shing Knowledge 

Institute and the Department of Laboratory Medicine, St. Michael's Hospital, Toronto, 

Canada; the Department of Laboratory Medicine and Pathobiology, University of 

Toronto, Canada; the Department of Surgery, St. Michael's Hospital, Toronto, Canada; 

and the Division of Medical Oncology and Hematology, Sunnybrook Health Sciences, 

Toronto, Canada. 

The group from Li Ka Shing Knowledge Institute was headed by Professor 

George M. Yousef and included Dr. Nicole M. A. White, Dr. Alexander D. Romaschin, 
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Shereen Metias, and Bishoy Khalil. They performed pathological analyses of kidney 

tissues, carried out tissue isolations and purifications, constructed TMAs, quantified 

immunoexpression of proteins, performed affinity chromatography of sera, and 

performed bioinformatic analyses. 

The group from York University's Centre for Research in Mass Spectrometry was 

headed by Professor K. W. Michael Siu, and included Dr. Leroi V. DeSouza, Dr. Olga 

Krakovska and the author of this thesis. I performed the trypsin digestion of the proteins, 

iTRAQ labeling of the resulting peptides, SCX chromatography and RP LC-MS analysis, 

Protein Pilot database search, clustering analysis, SignalP, SecretomeP and other 

bioinformatics analyses, WB analysis and quantitation, IHC analysis, and developed the 

Excel template for the automated generation of PIE lists. Recalculation of iTRAQ ratios 

was carried out by Dr. Olga Krakovska. This chapter presents details of this study. 
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Abbreviations 

AHNAK: neuroblast differentiation-associated protein AHNAK; ccRCC: clear cell renal 

cell carcinoma; CE: collision energy; EF: error factor; ENO 1: alpha-enolase; FDR: false 

discovery rate; HSPB 1 : heat shock protein beta-1; HSPE 1: 10 kDa heat shock protein, 

mitochondrial; IDA: information-dependent acquisition; IHC: immunohistochemistry; 

iTRAQ: isobaric tags for relative and absolute quantitation; LDHA: L-lactate 

dehydrogenase A chain; MS: mass spectrometry; PBS: phosphate buffered saline; RCC: 

renal cell carcinoma; PTM: post translational modification; RP: reverse phase; SCX: 

strong cation exchange; TMA: tissue microarray; UniProtKB: UniProt Knowledgebase; 

WB: Western blot. 
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Abstract 

BACKGROUND: There are currently no biomarkers for the early and accurate 

detection of clear cell renal cell carcinoma (ccRCC). Diagnosis of cancer, and the 

decision to use nephrectomy, rely on imaging studies which are not always accurate. 

METHODS: We employed high throughput quantitative proteomics, using 

isobaric tags for relative and absolute quantitation (iTRAQ) labeling and LC-MS/MS 

analysis, to identify proteins that are differentially expressed in ten paired ccRCC and 

normal kidney tissue samples. The involvement of dysregulated proteins in 

carcinogenesis and their "secretory" potential were investigated by in-silico analysis. 

Secretory proteins with potential diagnostic utility were verified by W estem blot and 

immunohistochemistry analyses on two independent sets of tissue samples. 

RESULTS: 55 proteins were identified to be significantly dysregulated in ccRCC, 

versus normal, kidney tissues. Of these, 54 have been reported to play a role in 

carcinogenesis, and 39 are secreted proteins. Alpha-enolase (ENOl), L-lactate 

dehydrogenase A chain (LDHA), heat shock protein beta-1 (HSPBl), and 10 kDa heat 

shock protein, mitochondrial (HSPE 1) have been reported to be involved in metabolism, 

growth, proliferation, apoptosis, cell cycle, and hypoxia. By contrast, neuroblast 

differentiation-associated protein (AHNAK) has no records of involvement in any of 

these processes. The dysregulation of these 5 proteins was verified in two independent 

sets of patients. 

CONCLUSIONS: Our study is the comprehensive quantitative proteomics 

analysis in ccRCC, which can lead to the development of an accurate test for the early 

detection of kidney cancer and the confirmation of the nature of kidney masses without 

67 



the need for invasive biopsies. Confirmation of the upregulation of AHNAK, ENOl, 

LDHA, and downregulation HSPB 1 in the serum or urine of ccRCC patients would 

support their utility as biofluid-based biomarkers for the early diagnosis of ccRCC. Such 

biomarkers would greatly improve patient treatment and increase overall survival. 
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Introduction 

Renal cell carcinoma (RCC) is the most common neoplasm in the adult kidney, 

with an increasing incidence over the past 20 years (1). Histopathologically, about 80% 

of RCCs are of the clear-cell type, 15% are papillary, and the remaining 5% are other 

types. Early diagnosis of RCC is associated with a favorable prognosis (5-year survival 

rate - 85%). Unfortunately, RCC is often asymptomatic, with about 30% of patients 

diagnosed at the metastatic stage when the prospects for cure are dismal (5-year survival 

rate -9%) (2). Traditional methods of screening (history, physical examination and urine 

analysis) for detection of asymptomatic RCC are ineffective (3). The diagnosis of RCC, 

and the subsequent resection of the kidney are based on incidental imaging, which are not 

always accurate. There are currently no biomarkers available for the early diagnosis of 

RCC or for determining the nature of renal masses. A non-invasive test, for example, a 

biomarker that can be measured in serum or urine, will have a significant impact on 

patient management. 

Few chromosomal abnormalities have been documented in RCC, including VHL 

mutation (3p-), 5q21 + (70%), and 14q- (41 %) (4,5). The pathogenesis of RCC, however, 

is not yet fully understood. Understanding the tumor biology of RCC at the molecular 

level is essential to improve diagnosis, prognosis, and treatment options ( 6, 7). 

Proteomics, combined with mass spectrometry (MS), offers great promise for 

unveiling the complex molecular events of tumorigenesis and identifying cancer 

biomarkers. Proteomic technologies are being used in studies of dynamic protein 

expression, post-translational modifications, cellular and sub-cellular protein distribution, 
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and protein-protein interactions that have culminated in the identification of many cancer 

biomarkers. 

Initial studies of the serum "spectral signatures" provided by surface enhanced 

laser desorption and ionization (SELDI) MS and MALDI-TOF MS (8.9) were promising, 

however, these studies were hampered by concerns regarding the reproducibility, artifacts 

of sample processing, and "black-box" approach where no proteins were identified or 

quantified, and no relevance of proteins to cancer biology was determined (10). 

Quantitative tissue proteomics is a promising alternative strategy for the discovery and 

identification of tumor biomarkers. One of the advantages of this strategy is that the 

relevant proteins are much more abundant in tissues. Additionally, it directly probes the 

protein profile of the diseased tissue rather than indirectly probing the profile of some 

systemic fluid that may or may not be changed by the disease. 

In this study, we performed quantitative proteomic analysis using isobaric tags for 

relative and absolute quantitation (iTRAQ) labeling and LC-MS to identify proteins that 

were dysregulated in ccRCC versus normal, kidney tissues. We have identified a number 

of proteins that can distinguish between tumor samples and normal tissues with accuracy. 

We have also identified a number of secreted proteins that can serve as potential 

diagnostic markers. Finally, we have elucidated the potential involvement of these 

proteins in RCC pathogenesis. The most interesting proteins were verified by W estem 

blot (WB) analysis on same tissue samples used for LC-MS analysis and by 

immunohistochemistry (IHC) on an independent set of tumor samples. 
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Materials and Methods 

Specimen preparation and protein extraction 

Clear cell RCC tissues and corresponding normal kidney tissues from the same 

patient were obtained from nephrectomy specimens at St. Michael's Hospital, Toronto, 

Canada. As ccRCC is known to arise from the proximal tubules ( 11 ), the kidney cortex is 

considered a suitable representation of normal kidney tissue (12). All specimens were 

histologically confirmed. The study was approved by the Research Ethics Boards of York 

University and St. Michael's Hospital. 

Tissues were prepared as described previously (13-15). Briefly, tissues were 

homogenized in a protease-inhibitor cocktail (Roche, Laval, Canada). Cell debris was 

separated, and the clarified supernatant was used for analysis. A reference sample was 

prepared from a pool of 30 combined normal kidney tissues. Protein concentrations were 

determined using the Bradford assay (Sigma-Aldrich, St. Louis, USA) (13;15). 

iTRAQ sample labeling 

For iTRAQ LC-MS analysis, 100 µg of sample were denatured, disulfide bonds 

were reduced, and the cysteine residues were blocked as per the iTRAQ protocol 

(Applied Biosystems, Foster City, CA). Samples were then digested with trypsin and 

labeled with the iTRAQ tags (Table 1 ). Labeling of the reference sample was 

randomized for each set to eliminate any potential bias associated with a particular 

iTRAQ reporter tag. The iTRAQ-labeled samples were then dried using a vacuum 

centrifuge (Thermo Savant SC 110 A, Holbrook, NY, USA). 

Table 1. iTRAQ labeling of kidney tissue samples. 
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Set/iTRAQ 
tag 114 115 116 117 
1 Cl C2 Nl RN 
2 C3 N2 RN C4 
3 N3 RN cs C6 
4 RN N4 NS C7 
s N6 N7 C8 RN 
6 N8 C9 RN N9 
7 ClO RN NlO 

C: ccRCC tissue samples; N: normal kidney sample; RN: reference sample comprised of 

30 normal kidney samples. 

Strong cation exchange (SCX) chromatography 

The iTRAQ sets were dissolved in 1.7 mL of Buffer A (lS mM KH2P04 in 2S% 

acetonitrile, pH 3.0) and filtered using a 0.4S-µm syringe filter (Millipore, Cambridge, 

ON, Canada). Each set was then separated by off-line SCX chromatography using an 

HPlOSO HPLC instrument (Agilent, Palo Alto, CA) with a 2.1-mm internal diameter x 

100-mm-length Poly LC Polysulfoethyl A column packed with S-µm beads with 300-A 

pores (The Nest Group, Southborough, MA) as described previously (16). Separation was 

performed using a linear binary gradient over 1 h (Table 2). Buffer C was used to strip 

the column after the run. A total of 30 SCX fractions were collected per iTRAQ set. 

These fractions were dried using a vacuum centrifuge as before. 

Table 2. LC gradient for strong cation exchange (SCX) chromatography 

Time, min 
Buffer A,% 
Buffer B, % 
Buffer C, % 

0 
100 
0 
0 

2 
100 
0 
0 

S8 
0 

100 
0 

60 
0 

100 
0 

6S 
0 
0 

100 

7S 
0 
0 

100 

80 
100 
0 
0 

90 
100 
0 
0 
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Buffer A: 15 mM KH2P04 in 25% acetonitri/e, pH 3. O; buffer B: Buffer A containing 350 

mM KC/; buffer C: Buffer A containing 1 M KC/. 

Reverse phase (RP) LC-MS 

The SCX fractions were analyzed in triplicate using precursor ion exclusion lists 

to minimize redundancy. Fractions were analyzed by a nanobore LC system (LC 

Packings, Amsterdam, Netherlands) and a QSTAR Pulsar mass spectrometer (Applied 

Biosystems/MDS SCIEX, Foster City, CA) in positive ion mode, externally calibrated 

with tryptic peptides from bovine serum albumin. The first five fractions were not 

analyzed because they consisted of the void volume which contained unreacted iTRAQ 

labels as well as byproducts that would compromise the reverse RP column. Fractions 6 

- 17 were re-dissolved in 16 µL of eluant A [consisting of 94.9% deionized water, 5.0% 

methanol, and 0.1 % formic acid (pH 3)]. For subsequent fractions, the amount of eluant 

A was incremented by 2 µL over the preceding fraction to accommodate the increase in 

the amount of KCL A 1-µL aliquot of the sample (,..., 1 µg of total peptides) was loaded 

onto a C18 RP pre-column (LC Packings: 300 µm x 5 mm) and desalted before 

separation on an RP analytical column (75-µm x 150-mm packed in-·house with 3-µm 

Kromasil C18 beads with 100 A pores, The Nest Group, Southborough, USA). Eluant A 

was used to load the sample onto the C18 pre-column at a flow rate of 25 µL min-1• After 

4 min, the C18 pre-column was switched in-line with the RP analytical column. 

Separation was performed at 100 nL min-1 using a nonlinear binary gradient (Table 3) 

starting with eluant A and transitioning to eluant B (5.0% deionized water, 94.9% 

methanol, and 0.1 % formic acid). 
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Table 3. LC gradient for reverse phase LC 

Time (min) 0.1 5 10 70 85 95 98 135 
B (%) 5 5 15 35 80 80 5 Stop 

Buffer A: 94.9% deionized water, 5.0% methanol, and 0.1%/ormic acid (pH 3); buffer B: 

5. 0% deionized water, 94. 9% methanol, and 0.1 % formic acid 

MS data were acquired in information-dependent acquisition (IDA) mode using 

the Analyst QS 1.1 software (Applied Biosystems/MDS SCIEX). The LC-MS analysis 

was performed using a 1-s TOF-MS survey scan from 400 to 1500 Da, followed by four, 

2-s product-ion scans, from 80 to 2000 Da, of the four most-abundant ion peaks in the 

survey scan. The collision energy (CE) was automatically controlled by the IDA CE 

parameter script. Switching criteria were set for ions with mlz ~ 400 and <1500, charge 

states of +2 to +4, and abundances of ~10 counts. Using Analyst QS 1.1 controlled 

dynamic exclusion, former target ions were excluded for 30 s, and ions within a 100-ppm 

window were ignored. 

Bioinformatics Analysis 

Protein identification by Protein Pilot 

MS data of each fraction was used to identify proteins by searching a 

concatenated Swissprot/Panther database of 66082 distinct human protein entries (version 

June 2, 2010). The database was searched using Protein Pilot software, version 2.0.1 (AB 

SCIEX, Foster City, USA), which uses the Paragon algorithm (17). Protein identification 
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was performed with MMTS selected as cysteine modification, with the search option 

'emphasis on biological modifications' checked, and with one of missed and/or non­

specific cleavages permitted. Peptide and protein summaries and false discovery rate 

(FDR) reports were generated. 

To minimize redundancy in subsequent iterations, a precursor ion exclusion list, 

generated in-house, was added to the acquisition method after each iteration as described 

in section 2.1. 7 of this thesis. Tolerance windows for exclusion were set at 100 ppm for 

m/z and 360 s for elution time. 

iTRAQ ratio re-calculation and identification of dysregulated proteins 

To identify non-redundant proteins, data acquired for all 25 fractions from each 

iTRAQ set injected in triplicate were searched against a database that was created by 

concatenating the Swissprot human protein database and its reverse (as of June 2, 2010). 

Only proteins identified with local false discovery rate (FDR) :S 5% were considered for 

further analysis (18). 

Proteins identified in seven iTRAQ sets were compiled and matched by accession 

numbers. Redundant proteins and peptides, and proteins identified in reverse sequence 

were removed from the list. To improve the confidence of protein quantitation, the mean 

expression iTRAQ ratios of the proteins were re-calculated, using a script written in 

Matlab (version 7.7.0.471), based on the criteria that the protein must be identified by a 

minimum of three peptides, with 2:.95% confidence, and with an expression ratio error 

factor (EF) <11.1 %. Proteins were considered to be dysregulated if iTRAQ ratios were 

2:.1.5 or :S0.67 in 2:.50% in ccRCC relative to normal samples. 
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Clustering analysis of ccRCC and normal samples based on dysregulated proteins 

To determine if identified dysregulated proteins can discriminate between ccRCC 

and normal samples, a clustering analysis was performed. Proteins were included in the 

analysis if quantification was available in at least 50% of the samples. The average 

iTRAQ ratios were logarithmically transformed, and the city-block distance method was 

used for the hierarchical clustering of proteins and samples. As a control, the samples 

were hierarchically clustered based on quantified proteins without dysregulated proteins. 

Hierarchical clustering analysis was performed using Cluster 3.0 software and the result 

was visualized using Tree View software (19). 

Selection of candidate ccRCC markers 

Dysregulated proteins were selected for further verification if their involvement in 

tumorigenesis was documented (through UniProtKB and PubMed search) and if they 

could potentially be identified in serum. Such serum-based biomarkers must be secreted 

or shed into the extracellular space. Dysregulated proteins were considered to be 

"secreted" if they satisfied at least one of the following four criteria: (1) their subcellular 

location is extracellular or membrane-bound, according to Ingenuity Pathway Analysis; 

(2) they are classically secreted, according to SignalP 4.0 analysis; or (3) they are non­

classically secreted, according to SecretomeP 2.0 analysis; ( 4) they are non-classically 

secreted by the exosome pathway, according to Ingenuity Pathway Analysis. 

SignalP predicts the presence and the location of signal peptide cleavage sites in 

the amino-acid sequences by a combination of artificial neural networks and hidden 

Markov model algorithms to detect signal peptides from input protein sequences. The D 
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score indicates superior discrimination performance of secretory and non-secretory 

proteins (D > 0.450 was considered to be significant for secretory protein). 

SecretomeP was used for non-classical and leaderless protein secretion. 

SecretomeP utilizes a neural network combining six protein features to predict whether a 

protein sequence undergoes non-classical secretion. A given protein is considered non­

classically secreted if it contains a non-classical (non-signal) peptide-triggered protein 

secretion with NN-score 2: 0.5; only proteins that did not contain a signal peptide as 

determined by SignalP were legitimate candidates for this analysis. 

Wes tern blot analysis 

Twenty micrograms of total protein were electrophoretically separated on a 10% 

SDS-PAGE gel. Proteins were then transferred to a PVDF membrane and probed with 

rabbit polyclonal antibodies for L-lactate-dehydrogenase A (LDHA) and a-enolase 

(ENOl), and mouse monoclonal antibodies for lOkDA heat shock protein (HSPEl), 

neuroblast differentiation-associated protein (AHNAK), heat shock protein ~1 (HSPBl), 

and ~-actin (Abeam, Cambridge, USA). ~-actin was used as a loading control. 

Membranes were incubated with primary antibodies overnight at 4°C. Protein expression 

was visualized after incubation with secondary anti-rabbit or anti-mouse antibodies 

conjugated to horseradish peroxidase and enhanced chemiluminescence reagent 

(Amersham Pharmacia Biotech, Piscataway, USA). The luminescence was captured on 

photographic film and the intensity of the resulting bands was determined by 

densitometry using ImageJ (http://rsbweb.nih.gov/ij/). Tumor samples were compared to 
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normal kidney samples using the paired sample two-tailed t-test. Value p ~ 0.05 was 

considered as significant. 

Tissue microarray construction and IHC 

Appropriate areas from ccRCC and normal kidney tissues were selected and 

circled from donor blocks by a pathologist. Tissue microarray (TMA) blocks containing 

duplicate 1.0-mm cores from each specimen were constructed with a manual tissue 

microarrayer (Beecher Instruments, Sun Prairie, USA). The TMAs contained 85 ccRCC 

and matched normal kidney tissues from the same patient. In addition, each block 

contained two marker cores for TMA orientation. 

TMA sections were cut 5-µm thick and placed on charged slides. Slides were 

deparaffinized in xylene, hydrated in gradient ethanol, and pre-treated in a microwave 

oven for 20 min at 800 Win 1 L of citrate buffer (0.01 M, pH 6.0) for antigen retrieval. 

Sections were then incubated with hydrogen peroxide (0.3% v/v) in PBS for 15 min to 

quench the endogenous peroxidase activity, followed by blocking with 10% FBS (fetal 

bovine serum) in PBS (lX) to preclude non-specific binding. Thereafter, the slides were 

incubated overnight at 4°C with the desired primary antibody (AHNAK, HSPBl, ENOl, 

LDHA, and HSPEl) in 1 X PBS. Protein expression was detected using the streptavidin­

biotin complex with the Dako LSAB+ kit (Dako Cytomation, Glostrup, Denmark) and 

diaminobenzidine as the chromogen. All procedures were carried out at room temperature 

unless otherwise specified. Slides were washed with 0.025% Triton X 100 in PBS (0.1 M, 

pH= 7.3) three times after each step. Finally, sections were counterstained with Mayer's 
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hematoxylin and mounted with DPX mountant. In the negative control tissue sections, the 

primary antibody was replaced by isotype specific non-immune mouse I rabbit IgG. 

Immunoexpression was scored by assessing the cytoplasmic, nuclear, and 

membrane staining (in tumors only) intensity and frequency. Intensity was scored as 0 if 

there was no expression; 1 if there was weak intensity immunoexpression; 2 for moderate 

intensity; and 3 for strong immunoexpression. Frequency of immunoexpression was 

scored as 0 if there was no expression; 1 if 1-25% of the cells showed 

immunoexpression; 2 for 26-50% cells with expression; 3 if 51-75% cells showed 

immunoexpression; and 4 if 76-100% cells showed positive immunoexpression. In order 

to quantitatively determine the direction of dysregulation of ccRCC compared to matched 

normal kidney tissue, we calculated the sum of the intensity and frequency scores and 

compared the combined scores from the tumor tissue to normal tissue. Cancer scores that 

had a combined score that was ± 1 from the normal score were not considered significant 

and were called "no change." Cancer scores that had a combined score of 2 or more 

above the normal combined score for that case were labeled "increased expression." 

Cancer scores that had a combined score of 2 or more below the matched normal tissue 

combined score were labeled "decreased expression." 
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Results 

Identification of dysregulated proteins in ccRCC versus normal tissues 

A schematic of the work flow is shown in Figure 1. Based on LC-MS analysis a 

total of 1591 non-redundant proteins with local FDR < 5% were identified; 345 of which 

were reliably quantified. Fifty five proteins fulfilled our criteria for a dysregulation (see 

Materials and Methods) between ccRCC and normal kidney: 15 were upregulated 

(iTRAQ ratios of 2:1.5) and 40 were downregulated (iTRAQ ratios of ~0.67). Table 4 

shows a heat map of the 55 dysregulated proteins and Table 5 shows a full name of 

proteins and their accession numbers. 
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Reference Cancer Cancer Normal 
sample 1 2 1 

~ t + f 
( ...... ~~ ,.,,, . .....,, 

1---~ 

iTRAQ labeling 

. i ·s~x, LC-MS/MS 

f
-'"'"""'""'"'""'"""""""''"'"'"'""'"'"'"""'""'"""""""""--···"""""~"--"""'"'"""""'"'""'•'"''"'"' 

Analyses: 

I -UniProtKB & PubMed journal searches 
-Cluster 3.0 

LSubcellular location (IPA) 
SignalP4.0 
SecretomeP 2.0 
... __ .. ·-~·-··--··-~---··-··-···-,.·-----... ·-----' IHC we 

Figure 1. Work flow for quantitative proteomic analysis. Ten pairs of ccRCC and normal 

matched kidney tissues samples from the same patient were analyzed. The reference sample 

consisted of a homogenate of thirty normal kidney tissues. Each sample was digested 

individually with trypsin and labeled with the appropriate iTRAQ tag. The labeled digests were 

then pooled and separated by of/line sex LC. Each fraction was analyzed in triplicate by on-line 

RP nano-LC-MS. Exclusion lists were used to minimize redundancy. MS data were analyzed by 

Protein Pilot to identify and quantify proteins using a cut-off of 5% local FDR. Dysregulated 

proteins were further analyzed by clustering, their involvement in tumorigenesis processes, and 

potential of being shed into serum. Their dysregulation of selected proteins was verified by WB 

and IHC. 
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Table 4. A list of 55 proteins that were dysregulated in ccRCC compared to normal kidney 

tissue samples as identified by LC-MS analysis. 

No Protein name 

l AHNAK 
2 EN01 
3 H5P81 
4 LDHA 
5 ALDO A 

6 ANXA2 
7 ANXA4 
a ANXA5 
9 CNDPl 
10 CRYAB 
11 GAPDH 
12. MIF 
13 PGK1 
14 PKM2 

15 TPll 
16 HSPE1 
17 PCAA2. 

18 Ar.ADM 
19 ArATl 
20 AC02 
21 ACSF2 
22 ACYl 
23 AKR1Al 

24 ALDH2 
25 ALDH4Al 
26 ALDH6Al 
27 AL DOB 
28 ASS1 
29 ATPSAl 

30 BDH2 
31 BHMT 
32 CAT 
33 CTSB 
34 eves 
35 DOC 

36 ECHS1 
37 ETfB 
38 FBP1 
39 GATM 
4-0 GOT2 
41 GPDl 

42 HADH 
43 HNRNPA281 
44 IDH2 
45 K4 
46 XHK 
47 LDHB 

48 MDH2. 
49 PCX2 
50 PRDX3 

51 SELENBP1 

52 SORO 
53 SPD1 
54 TAGLN 
55 TP58 

Cl C2 C3 C4 CS C6 CJ C8 C9 C10 Nl N2 N3 N4 NS N6 N7 N8 N9 NlO 

0.97 

0.90 0.89 0.89 0.99 1.18 0.82 1.21 1.00 1.05 1.23 

1.01 ~111 o.90 o.89 ·-~!~-L~~~.1 ..!.:E!. i01 1.01 0.91 

1.14 o.~.l\~~l ~:, ~~i-f£i3''!!' ~!~ ~~ 
~'l0:87' -~~~" 1.21 ~l!!.1 1.08 0.95 1.00 1.09 

1.11 o.53 LQla:. 122 104 
Ill 0.92 0.95 ~:~,-·•J!!i!'Jj~s.•QBl•.!l!l!.9 0.83 0.9.8 0.96 

0.84 0.99 0.88 0.94 !i!:§l!L·~~j 1.15 0.97 1.05 0.95 
1.11 0.90 0.93 1.02 0.90 0.86 0.93 0.94 1.09 0.97 

E!Ell:E~~ o.85 .:@,~~-- 112 124 
0.96 0.83 0.93 0.90 :~~ ! 0.53 0.87 0.95 0.95 
l.231111 1.04 1.14 0.82 0.92 0.96 0.90 
0.89 0.91 o.ss 1.00 1.02 0.81 1.04 0.94 0.99 1.11 

"'';:'~"'J~B'.l ... 1.12 0.8.7 0.98 
Q:Z!'.J,.;1,,~.,, l.CS 1.04 0.87 1.11 0.93 0.99 0.95 
0.90 t·tii~j 0.93 0.85 0.96 1.19 0.94 0.89 0.97 
1.16 1.24 o.94 ... Ciaf o.sq 0.91 1.C5 0.90 LI~~] 

1.15 0.91 1.18 0.93 C1:73., 1.05 1.20 0.95 0.95 1.00 
1.21 ~¥~] 1.14 0.96 .... ~!~ .. 0.95 0.97 0.92 0.87 1.11 

~~-~-~Jg£16Jl o.ss 0.85 119 0.94 0.85 1.0l 1.15 0.93 0.99 1.06 
1.08 1.03 1.06 

••••••lll!!•l'~1~~10.82 0.90 0.89 1.02 0.86 1.11 0.92 0.81 1.06 
0.96 1.00 1.12 1.16 1.0-l t'O:iiflliJ 1.14 0.88 0.98 1.15 

~0.4 ~0.5 ~0.67 ~.8 
tllli±1J 

1.23 0.93 :.0,10: 1.Q2 1.16 -0:79] 0.83 1.04 
l.C6 0.94 f ' 0.90 .. 0.91 0.92 ··o:B.9·· 0.88 0.99 
1.14 o.53 1,,< 1 o.91 :Q.Js. 0.94 i.23 0.95 o.s2 1.01 

o.94 · .. 1. :..-.1 .. 0 ... ·.·.L!::,~J i.1s. 0.95 . o .. 96 .. ··111.a.-.·1106 105 
1.12 FQ:a)l 1.14 0.89 0.81 0.87 '(la) ' 1.01 1.10 

-o~ 115 o.53 105 o.90··1«> i o.90, 115 110 

l.'~~tt~~r2:§B{°'i~"-iC8' ~: ... ;~~J 1.l3 

1.17 0.89 0.96 0.95 0.86 1.13 0.94 0.99 
0.91 tJ~r·q.34-1111_ 1.0? 1.21 1.02 

o.88 0.91: ~~~J 0.90 . um. ~= · :~~ i ~:~: 
:,;!:~"' 0.91 : ' ' ' J~~j 0.83' J . I >i . :t33: o.95 : c:>."·l 1.04 115 102 o.95 114 

1.18 j~:?~:~[~~= o.97 
1 
aj.7)j 106 1.09 

~:: ·i~c1 ~:: 1 ~r'j ~:: ~~ ~:!! ~::~ ~: 
0.81 FJ .. j.~.'.·.1. '.I 1.C9 0.97 1.~ 0.93 1.18 0.89 0.87 
1.07 t~;:12~; 1.19 1.05 Bl 0.94 0.96 1.12 1.08 0.96 
1.16 0.99 1.19 0.95 O.&S 0.96 1.CB 0.88 0.90 1.03 
o.94 !T9l74;] o.87 1.11 :-·i?3s: ;··1:19-i 1.02 1.11 1.04 

"o.93 1.00 0.90 ' 0.94; 1..~t I 0.84 0.86 1.18 
[~q~i~·i;m:~ 1.18 i.-:12 l __ ;:~gJ o.99 1.1a 1.09 

1.02 0.87 1.14 1.C5 0.94 1.C5 0.94 0.89 0.99 
0.94 1.CS 1.01 0.92 0.82 1.07 0.87 0.94 1.15 

0.88 
0.96 

1.07 0.90 ~:~i?J.] 0.98 
0.94 0.89 0.89 105 
1.00 0.89 0.89 1.03 
1.23 1.01 0.84 1.04 
1.12 0.96 0.91 0.92 

1.22 

1.06 
1.03 

~1.25 :?,1.5 :?,2.0 :?,2 .5 

'Protein name' shows "gene name" according to UniProtKB. C: ccRCC tissue samples; 

N: normal kidney tissue sample. 
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Table 5. The secretory capability of the 55 dysregulated proteins in ccRCC 

No Accession 

Number 

Protein Name 

1 ...... / ... ~J9~~ ... L ... ~.~~E?blas.~ .. ~~.~~rentia~!~.r:'.=~.~soci~~ed protein.~fiNAK 
, 2 ! sJ)IP06733 , Alpha-enolase 
r-3-· ' spf P04792 ._, ____ ··-·-.. --H;~t shock·p;~tein t;;t;=i-

· · · . 

4 I s?IP00338 l-lactate .. dehydrogenase A chain 
5 ! sp1P04075 Fructose-bisphosphata aldoJase A 

6 :sptp07355-2 tsoform 2 of Annexin A2 

sp1P0952?....... ..... ... ....... .. . Annexin A4 

! : Dysre- ! Subeeilular l Exo- I SignalP, • SecretomP, , 

·Gene name J gulation i location i somes ! D NN 

....... ~~~ ..... +.. up c~ PM ...... ; ...................... .:.. .. ~~~~~ ..... NA 
EN01 • up : c;. PM 1 * j 0.114 0.536 , 

_....._~- ~...,......,.,,.,,..,.,._~-~~....,..""-"'W....,.,.,._..,..,.,., __ ~~:: _ ................ _..............,,~.........,.._._. ...... ,., ... ~,.......,_,~._""""""" __ w.•.•"·~~ 

HSPB1 . up ' C, PM ' " . 0.111 0.74 , 

tOHA up C., PM * 0 0.549 

Al DOA 

ANXA2 
ANXA4 

up 

up 

c 
f l 

\ .. 

i 
.......... ~P .... -.. 1· ..•. ~~ ........... ;. 

0.1 0.356 

0.127 0.746 
0.103 0.439 

Annexin AS ............................ _ .. , ........ ~.~..... up .......... ~~ ........... J ......... --L. ... C'.·.~~~ ............. C>·S~ ...... .. 
Cytosolic non-spe~f~: dipeptt,~~se __ .... ,·--·~-~!?,~2 up ·~C--+-l ---+--0_.1_1_1 ____ 0_.44_3_ 

P02511 .................... !.':~.P.~~·~·~·~!~~1-~".-~ ... ~~~~-~... _ ~-~~-.. ..... .. . ~P. .. .. ..... ~ ... ~.~ .......... ) ......... ~...................... 0.864 
spl~~ ........... , ................... Glyceraldehyde-3-phosphate dehydrogenase ...................... §~~-J:i........... ..... ~'.>. ............... " ....... -~ ................ .J ..... ~ ..... + .... -~:-~?.~ ..... . ~~~~.!. .... _, 

.. g·+ spl~14174 .... ............. ~~~~p~~~~ mi~rat.i~". .. ~".~i~i~ry .. !~~.!'?.~ .... ; .. _ MIF up E ... ! ___ .T .... ~.U2 0.776 .. 
13 ! splPOQ?58" -·-•· _ ... Pho~p~~~_lycerate kinas~ 1 PGK1 ... ~?-... . i c , 0.099 0.389··· ..... 
14- ! spJP14618 Pyruvate kina~e isoz.ymes M1/M2 PKM2 up C •• ' 0.148 0.42 

15 I sPIP60174 Triosephosphate isomerase TPll up C • 0.143 0.51 
16 splP61604 10 kDa heat shock protein, mitochondrial HSPU down M 0.213 0.57 

17 . splP~2765_ , .. 3-ket:oacyl-CoA thiolase, mitochondrial down M O.US 0.382 

.... 1_8 J .... ~?.l~~.~-~-~~ ... l. .... ···-~-~!.~_r.!.!=::.~_i:1._i_~ ... ~.P.~~~.~i.~.~~~yl_~~c.>.'.'-~~~Y.<:f~enase down MM 0.178 0.6~.?. ............. .. 
;_ ___ !-9 !_~plP24752 A_~tyl--~-~~t)'l._~~~-~±~~se, mitochondrial ----.--· ·------- ... - ...... ~?wn __ ~~- ___ ---,----Q_~~----------0.593 
; ......... ?Q .... ..L~P l~?..98. .~~!~t~---~X.~~~~-~'-----~-!!~~-~.~.~-~~~........ o.413 AC02 down M 0.165 

·-··············································->······ 

2-~- _l?.Pl~~~8 Acyl-CoA synthetas_e family m~"!~~ 2, _'-!'~:_h?_!l~r~al 0.5'!!.. __ .,._ ACSF2 down M 0.302 
--·--- - - » 

22 spjQ03154 Aminoacylase-1 ACY1 down 

23 i splP14S.SO Alcohot dehydrogenase {NAOP+] AKR1A1 down 

24 I spl P05091 Aldehyde dehydrogenase~ mitochondrial ALDH2 down 

25 ! spf P30038 Delta-1-pyrroline-5-carboxylate dehydrogenase AlOH4A1 down 

26 ! sp l<:l,0~252 M~~ylmatonate·semialdehy~e d~ydrogenase AlOH6A1. down 

AlDOB ,, ....... ~?. ..... , S.PI.~~?~~-- ...................... ~~~~~!-~?.~~S.P~ate aldo. ____ l_a_.s ..... e ........ s ............. -............................................................................................ .. down 

ASS1 down 
·- ~,.,...,._..,.~~~r- ~. ~--.,,,..,7 ...... ~~- -

___ ~~inino~~C:~inate_ synthase 

c 
Cytosol 

MM 
MM 
M 

c 
·····--·-·· 

~'t!~?!._. 

0.128 

0.163 

0.381 

0.27 
0.108 

0.126 

0.105 
" 

0.369 

0.49 

0.629 

0.584 
0.789 

0.342 

0.571 



Table 5. Continued 

No Accession Protein Name : : Oysre- Subcellular ! Exo- ,, SignalP, SecretomP, · 

Number : Gene name I location : somes . D NN 

down N, c 
down E, M 

down E, M 

down c 
---------------; ..... .. 

down PM# M 



C: cytoplasm; E: extracellular; M: mitochondrial; MM: mitochondrion matrix; N: nucleus; PM: 

plasma membrane. 

Clustering analysis indicated that differential protein expressions can discriminate 

between ccRCC and normal kidney tissue samples. Clustering analysis was performed on 

345 proteins for which quantitative information was available. The samples clustered 

into two main groups: one that contained the 9 of 10 ccRCC samples (Cl-CS, C7-C10); 

and a second that contained all normal samples (Nl-Nl 0) and one cancer sample (C6) 

(Figure 2A). To confirm the results of our clustering analysis, we performed control 

clustering analysis based on the 345 quantified minus the 55 dysregulated proteins. As 

expected, the cancer and normal samples failed to cluster into the two groups (Figure 

2B). 

Elucidating RCC pathogenesis through quantitative proteomics 

We performed UniProtKB and literature searches on the 55 dysregulated proteins 

to investigate their biological significance in carcinogenesis. All proteins, except 

AHN AK, were found to be involved in at least one of the tumorigenesis-related processes 

(Table 6). 
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Figure 2. Hierarchical clustering analysis of ccRCC and normal kidney samples based on 

dysregulated proteins. 

A: To determine if differential protein expression can discriminate between ccRCC and normal 

kidney samples clustering analysis of these samples was performed based on 345 proteins for 

which quantitative information was available. The samples clustered into two main groups: one 

that contained the 9 of 10 ccRCC samples (Cl-CS, C7-C10); and second contained all normal 

samples (Nl-NlO} plus cancer sample C6. The difference in expressions of dysregulated proteins 

between ccRCC and normal kidney samples was statistically significant (p<0.001). B: To verify 

that clustering of samples (in A) was not accidental we performed control clustering analysis 

based on the 345 quantified minus 55 dysregulated proteins. Primary and normal samples were 

mixed together. The difference in expressions of non-dysregulated proteins between ccRCC and 

normal kidney samples in this case was statistically insignificant (p>0.5} which means that 

expressions are similar. That conforms that clustering based on quantified proteins including 

dysregulated (in A) was not accidental. Clustering analysis suggests that dysregulated proteins 

can discriminate between cancer and normal samples. 
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Table 6. Involvement of dysregulated proteins in tumorigenesis-related processes. 

Tumorigenesis-related Protein name 
processes 
Carbohydrate and lipid ACAA2, ACADM, ACATI, AC02, ACSF2, ACYI, 
metabolism AKRIAI, ALDH2, ALDH4Al, ALDH6Al, 

ALDOA, ALDOB, ASSI, ATP5Al, BDH2, BHMT, 
CAT, CNDP2, DDC, ECHSI, ENOI, ETFB, FBPI, 
GAPDH, GATM, GOT2, GPDl, HADH, HSPBI, 
IDH2, K4, KHK, LDHA, LDHB, MDH2, PCK2, 
PGKI, PKM2, SORD, TP5B, TPil 

Apoptosis ACAA2, ANXA2, ANXA4, ANXA5, CRY AB, 
CTSB, CYCS, ENOl, GAPDH, HSPBl, HSPEl, 
LDHA, MIF, SELENBPI, SPDl 

Growth and proliferation CAT, ENOl, FBPl, HNRNPA2Bl, HSPBl, 
HSPEI, LDHA, MIF, PRDX3, SELENBPl, SPDl 

Cell cycle ENOI, HSPBI, HSPEl, MIF 
Hypoxia ENOI, HSPBI, LDHA 

For 'Protein name' was used gene name according to UniProtKB. 

Interestingly, 41 of the dysregulated proteins were found to be involved in 

carbohydrate and lipid metabolism, in agreement with recent reports (20-22) (Table 6). 

Twenty eight proteins are involved in glycolysis, citric cycle, and acetyl-CoA 

metabolism, as shown in Figure 3. Fructose-bisphosphate aldolases A and B (ALDOA, 

ALDOB), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), ENO 1, pyruvate 

kinase isozymes Ml/M2 (PKM2) catalyze the reactions of glycolysis; and aconitate 

hydratase (AC02), malate dehydrogenase (MDH2) and others catalyze citric acid cycle 

reactions. Also, LDHA and LDHB catalyze the conversion of pyruvate to lactate. 
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Figure 3. The involvement of a subgroup of dysregulated proteins in glycolysis, citric cycle, 

metabolism and catabolism of Acetyl-CoA. 

A: Most of the upregulated proteins are enzymes which catalyze the reactions of glycolysis, citric 

acid cycle, metabolism and catabolism of Acetyl-CoA. ETFB serves as a specific electron acceptor 

for several dehydrogenases, including five acytyl-CoA dehydrogenases (AD), glutaryl-CoA and 

sarcosine dehydrogenase; and HSPB1 forms a complex with G6PDH that increased its activity. In 

red lettering are shown upregulated proteins, in green dowdregulated proteins, in black 

documented metabolic reactants, products, and enzymes. lines with arrowheads represent 

documented metabolic reactions. 

B: Visualization of protein-protein interactions for dysregulated proteins in ccRCC using STRING 

analysis. Dysregulated proteins were used as input for STRING and are represented as spheres of 

distinct colors. Blue lines represent interactions between proteins and the thickness of the lines 

display the level of confidence associated with each interaction. 
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Other metabolic processes were found to be affected as well. For instance, 

electron transfer flavoprotein subunit beta (ETFB) serves as a specific electron acceptor 

for several dehydrogenases, including five acyl-CoA dehydrogenases (AD), glutaryl-CoA 

and sarcosine dehydrogenase (UniProtKB), and HSPB 1 forms a complex with glucose 6-

phosphate dehydrogenase (G6PDH), increasing its activity, augmenting NADP(+) to 

NADPH reduction, and stimulating nucleotide synthesis (23). 

Fifteen proteins are involved in apoptosis (Table 6). For example, alpha­

crystallin B chain, annexin A4, and macrophage migration inhibitory factor (MIF) 

negatively regulate the apoptotic process; ENO 1 induces ganglion cell death through an 

apoptotic process (24); LDHA mediates the unique apoptotic effect of c-Myc when 

glycolysis is blocked in lung carcinoma cells (25); gain- and loss-of-function studies 

indicate that HSPB 1 mediates mitochondrial apoptosis in hepatocellular carcinoma cells 

(26); and HSPE 1 regulates apoptosis of mouse ovarian granulosa cells (27). 

Eleven proteins are involved in growth and proliferation (Table 6). For instance, 

catalase promotes growth of cells including T-cells, B-cells, myeloid leukemia cells, and 

melanoma cells (UniProtKB); LDHA directs pyruvic acid into the Krebs cycle rather than 

into glycolysis in AGS gastric cancer cells, which inhibits cell growth (28); silencing of 

ENOl results in growth inhibition of gastric cancer cells (29); upregulation of HSPBl in 

nonangiogenic cells results in expansive growth of breast cancer, xenograft model, 

MDA-MB-436 cells (30); and HSPEl increases both proliferation and death in mouse 

P 19 teratocarcinoma cells (31). 

Four proteins are involved in the cell cycle (Table 6): MIF negatively regulates 

cell cycle arrest (UniProtKB); silencing of ENOl results in cell cycle arrest of gastric 
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cancer cells (29); silencing of HSPBI enhances G(l)-S arrest and cell death of human 

adenocarcinoma, MCF-7 cells (32); and HSPEl interacts with guanine triphosphate­

binding protein of the Ras superfamily involved in termination of M-phase (33). 

Three proteins are involved in, and respond to, hypoxia (Table 6): ENO 1 is 

upregulated in breast cancer cells MCF-7 during hypoxia (34); LDHA is transcriptionally 

controlled in human HepG2 hepatoma cells by the hypoxia inducible factors HIF 1 a and 

HIF2a (35); and tumor-induced angiogenesis in vascular multicellular prostate tumor 

spheroids results in elevated levels of HSPBI (36). 

Identification of dysregulated proteins that can serve as serum biomarkers 

The aim herein was to identify which dysregulated proteins could potentially be 

secreted and, hence, serve as serum-based ccRCC biomarkers. Of the 55 dysregulated 

proteins, 39 (70.9%) satisfied one or more of the four criteria for being considered a 

"secretory" protein (see Materials and Methods for details) (Table 5): 5 proteins (9.1 %) 

were found to be extracellular; 10 (18.2%) were membrane-bound according to 

subcellular location; 8 (14.5%) could be released from cells via the exosome pathway, 

according to Ingenuity Pathway Analysis; 1 (1.8%) could be classically secreted, 

according to SignalP analysis; and 32 (58.2%) proteins were likely to be non-classically 

secreted, according to SecretomeP analysis. 

Interestingly, at least 5 of the dysregulated proteins, namely ENOI, LDHA, 

HSPBI, AHNAK and HSPEI, have been reported to be upregulated in the serum of 

cancer patients compared to healthy controls: serum ENO 1 was elevated in patients with 

small-cell lung carcinoma (37); high serum LDH was linked to significantly poor survival 
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rates in colorectal cancer patients (38); high levels of HSPBl were present in the serum 

of patients with breast cancer (39); serum AHNAK was elevated in patients with ovarian 

cancer (40), and HSPEl was upregulated in the sera of ovarian cancer patients (41). 

Thus, it is indeed possible to detect the upregulation of these proteins in sera and/or urine 

of the ccRCC patients, which makes them especially promising as biofluid-based 

biomarkers for ccRCC. 

Verification of the differential expression of potential biomarkers by WB analysis 

The differential expressions of the five promising biofluid-based biomarker 

candidates were verified by WB analysis in samples of the discovery cohort (Figure 4A). 

As in the LC-MS results, the average expressions of AHN AK, ENO 1, and HSPB 1 were 

found to be significantly elevated in ccRCC compared to the matched normal tissues 

(1.68-fold, p < 0.002; 1.62-fold, p < 0.01; and 1.47-fold, p < 0.01, respectively). LDHA 

was also elevated in ccRCC, although less significantly (1.12-fold, p < 0.4) (Figure 4B). 

HSPEl was significantly downregulated in ccRCC (0.47-fold, p < 0.002), which is also 

in agreement with our LC-MS findings. 

We also assessed the consistency of the WB and the LC-MS results with respect 

to protein dysregulation, using the same set of samples. For ENOl, HSPBl, and HSPEl, 

9 results out of 10 were consistent; for AHN AK, 8 out of 10 were consistent; and for 

LDHA, 6 out of 10 were consistent. Thus, overall, the WB results agree with the LC-MS 

results. 
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Figure 4A 
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Figure 4. Verification of EN01, LDHA, HSPB1, and HSPE1 dysregulation in ccRCC by Western 

blot analysis. 

A: Representative blots showing the expression of proteins in normal kidney tissues (Nl, N2) and 

cancerous ccRCC {Cl, C2). For AHNAK, ENOl, HSPBl, LDHA, expression was increased and for 

HSPEl was decreased in cancer tissues when compared to normal kidney tissue. b-actin was used 

as a loading control. B: Graphical representation of the average fold change in expression of the 

proteins between ten ccRCCs and matched normal specimens (C/N}. Expressions of protein in 

normal samples were normalized (average =1}. 

Verification of the differential expression of potential biomarkers by IHC analysis 

The dysregulation of ENOl, HSPBl, HSPEl, LDHA, and AHNAK were also 

verified by IHC in an independent cohort of 85 patients, using TMAs consisting of paired 

ccRCC and normal kidney tissue obtained from the same patient as a reference (Figure 

5). 
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Cancer Figure 5. Verification of EN01, 

HSPB1, HSPE1, LDHA, and 

AHNAK dysregulation in ccRCC 

by immunohistochemical 

analysis. A-J: Representative 

photomicrographs showing 

differential expression of EN011 

HSPB11 HSPE1 and LDHA in 

ccRCC compared to normal 

kidney tissue by IHC. Original 

magnification x 200. 

The immunoexpression of ENOl was elevated in 56 (70%) ccRCC tissues, which 

is in agreement with both the LC-MS and WB results. Eight tissues (10%) showed no 

change in expression and 16 (20%) showed decreased expression. Five cases were 

omitted from the analysis because the samples washed off the slide. 

For HSPBl, 53 (69%) ccRCC tissues showed elevated expression, again, 

correlating well with our LC-MS and WB data. Thirteen (17%) showed decreased 
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expression and 11 (14%) showed no change in expression. Eight cases were omitted 

from the analysis because the samples washed off the slide. 

The downregulation of HSPEl that was observed using LC-MS and WB was also 

seen in 71 (92%) ccRCC tissues by IHC. There were only 6 (8%) cases that showed no 

change in expression and none showed increased expression. Eight cases were omitted 

from the analysis because the samples washed off the slide. 

The immunoexpression of LDHA was elevated in 76 (96%) ccRCC tissues, while 

2 (3%) showed no change in expression and only one (1 %) showed decreased expression. 

This result correlates with both LC-MS and WB data. Six cases were omitted from the 

analysis because the samples washed off the slide. 

Surprisingly, the upregulation of AHNAK that was observed using LC-MS and 

WB was not seen in any of the ccRCC tissues. One case was omitted from the analysis 

because the tissue washed off the slide. 

94 



Discussion 

Early diagnosis of RCC is associated with a favorable prognosis. Unfortunately, a 

significant proportion of RCC patients are diagnosed at the metastatic stage, when the 

prospects for cure are dismal (5-year survival rate ,..,,9%). Traditional method for detection 

of asymptomatic RCC, which includes medical history, physical examination, and urine 

analysis, is ineffective ( 42). More accurate methods such as non-invasive serum- or 

urine-based biomarkers are urgently required. 

Using LC-MS based proteomic methods, 5 5 proteins were identified that are 

significantly dysregulated in ccRCC relative to normal kidney tissues (Table 4). 

Hierarchical cluster analysis showed that these proteins can clearly distinguish between 

ccRCC and normal kidney tissues (Figure 2A). Of the 55 dysregulated proteins, 54 

(98%) had been reported to be involved in at least one tumorigenic process, and 39 

(70.9%) were classified as "secretory" proteins according to our criteria; thus, they can 

potentially serve as biofluid-based biomarkers. Interestingly, five of the dysregulated 

"secretory" proteins, namely ENOl, LDHA, HSPBl, AHNAK and HSPEl, have also 

been reported to be upregulated in the serum of patients having various malignancies (3 7-

41 ), and this supports the likelihood that these proteins (HSPE 1 may be exception) will 

also be secreted at quantifiable levels in ccRCC, making them even more promising as 

candidates of biofluid-based biomarkers for primary ccRCC. 

The dysregulation of these proteins was verified on two independent sets of 

tissues by WB and IHC. Both analyses confirmed the upregulation of ENO 1, HSPB 1, 

LDHA, and the downregulation of HSPEl. Unexpectedly, the upregulation of AHNAK 

was confirmed by WB but not by IHC, as will be discussed later. The verification of the 
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expression of these proteins m the sera and urine of ccRCC patients 1s currently 

underway. 

The hierarchical cluster analysis divided the samples into two main groups: one 

that contained 9 out of 10 ccRCC samples and another that contained all of the normal 

samples plus one cancer sample (C6) (Figure 2A). The difference between cancer 

sample, C6, and the rest of the cancer samples may be due to the heterogeneity of 

ccRCC; the sample may represent a subpopulation of ccRCC that has a different set of 

biomarker proteins. For instance, this sample exhibited upregulation of disulfide­

isomerase A3 relative to its matched normal kidney tissue sample, whereas the others did 

not, except for C 1. 

According to UniProtKB and PubMed searches, 40 of the 55 dysregulated 

proteins are involved in "metabolic" processes (Figure 3 and Table 6). Metabolism is 

adapted by cancer cells to meet the requirements of rapid cell proliferation, growth, 

negative regulation of apoptosis, survival under hypoxia etc. (43,44). Our findings are 

similar to earlier reports on functional analyses in RCC (45;46). The link between 

carbohydrate metabolism and RCC is not surprising. In contrast to normal proliferating 

cells, tumor cells have to survive in environments with varying oxygen and nutrient 

supplies ( 4 7). The increase in lactate dehydrogenase and the activation of the pyruvate 

kinase pathway indicate active anaerobic glycolysis which is a reflection of the hypoxic 

conditions known to be an integral component of the pathogenesis of RCC ( 48;49). Also, 

the "clear cell" morphology of RCC is known to result from the accumulation of 

glycogen as a result of disturbed carbohydrate metabolism. 
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Although the upregulation of LDHA was statistically insignificant by WB 

analysis (1.12-fold, p < 0.4), it was quite significant by LC-MS analysis (2.15-fold, p < 

0.05). A reason for the difference could be that in the LC-MS analysis, two members of 

the LDH family were separately quantified; LDHA was upregulated and LDHB was 

downregulated. For WB analysis, we used polyclonal antibody, which may not specific to 

LDHA and can also bind LDHB, since the two proteins share 76% of the same sequence. 

Furthermore, they have similar molecular weights of about 36.6 kDA, causing them to 

migrate at similar rates using SDS-PAGE. Thus, the two proteins are very likely to be 

detected together by WB, resulting in the apparently suppressed upregulation of LDHA. 

The upregulation of AHNAK, found by LC-MS, was confirmed by WB, but this 

was contrary to the findings by IHC. An explanation for the reduced immunoexpression 

shown by IHC may be that in cancer cells, AHNAK undergoes post-translational 

modification (PTM) at or near the proteins' epitopes, preventing the antibody from 

binding during IHC analysis, and, as a result, the protein appears to be at lower 

concentration in the cancer tissues than in normal tissues. This PTM did not affect the 

WB analysis because it may cleave off during the analysis. 

In our study, AHNAK was upregulated in ccRCC tissues, but was reportedly 

downregulated in the permeable angiogenic endothelial cells of brain tumors (glioma) 

(50). This suggests that AHNAK may be involved in different tumorigenic mechanisms 

in different tissue types. Similarly, we found HSPE 1 to be downregulated in ccRCC 

tissues, while others found it to be upregulated in endometrial carcinoma ( 13 ); again, this 

suggests that HSPE 1 may play different roles in different tissues. 
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Through quantitative proteomic analysis, we have identified differential protein 

expressions that can distinguish between ccRCC and normal kidney tissues. Most of 

these proteins are involved in biological pathways pertinent to tumor progression, and 

about 70% can be potentially shed into serum. If the upregulation of the most promising 

biomarker candidates are confirmed in serum and/or urine of ccRCC patients, this would 

support further clinical studies of these candidates as serological biomarkers for the early 

diagnosis of ccRCC, which may lead to greatly improved patient management and 

increased overall survival. 
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Chapter4 

Identification of differentially expressed proteins in metastatic, 

relative to primary, ccRCC tissues as potential prognostic 

biomarkers 

This chapter describes research work in which prognostic, tissue-based 

biomarkers for the onset of metastatic ccRCC were sought, as in Chapter 3, using iTRAQ 

LC-MS analysis to determine differentially expressed proteins in metastatic, relative to 

primary, ccRCC kidney tissue homogenates. From the resulting pool of overexpressed 

proteins, those known to be involved in aggressive tumorigenesis, were selected for 

further verification. The proteins that were confirmed to be overexpressed in primary 

ccRCC tumors that had metastasized relative to those that had not metastasized. were 

proposed as potential prognostic biomarkers. If such biomarkers were to be found 

overexpressed in primary tumor biopsy samples, it could indicate a predisposition of the 

tumor to metastasize; therefore, the patient should seek more aggressive treatment. 

In this project, my collaborators performed pathological analysis of kidney 

tissues, isolated and purified tissue proteins, constructed tissue microarrays, quantified 

the immunoexpression of the proteins, and performed portions of the bioinformatics 

analysis. I performed the trypsin digestion of the proteins and iTRAQ labeling of the 

resulting peptides, the SCX chromatography and RP LC-MS analysis, the Protein Pilot 

database search, the PIE list preparation, the clustering analysis, the bioinformatics 

analysis, the WB analysis and its quantitation, and the IHC analysis. Dr. Olga Krakovska 

recalculated the iTRAQ ratios. 
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The results from this project were resubmitted for publication, after minor 

corrections, on August 28, 2012 in "Molecular and Cellular Proteomics" (ID#: 

MCP/2012/020701). 
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Abbreviations 

14-3-3s: 14-3-3 protein zeta/delta, ccRCC: clear cell renal cell carcinoma, CE: collision 

energy, FDR: false discovery rate, Gal-1: galectin-1, Gal-3: galectin-3, GO: Gene 

Ontology, IDA: information-dependent acquisition, IHC: immunohistochemistry, 

iTRAQ: isobaric tags for relative and absolute quantitation, PIE: precursor ion exclusion, 

Pfnl: profilin-1, RCC: renal cell carcinoma, RP: reverse phase, SCX: strong cation 

exchange, TMA: tissue microarray, WB: western blot. 
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Summary 

Metastatic renal cell carcinoma (RCC) is one of the most treatment-resistant 

malignancies and patients have a dismal prognosis with <10% five-year survival rate. 

Identification of markers that can predict the potential of metastases will have a great 

impact in improving patient outcome. In this study, we used differential proteomics with 

isobaric tags for relative and absolute quantitation (iTRAQ) labeling and LC-MS/MS 

analysis to identify proteins that are differentially expressed in metastatic compared to 

primary RCC. We identified 1256 non-redundant proteins and 456 of these were 

quantified. Further analysis identified 29 proteins that were differentially expressed (12 

overexpressed and 17 under expressed) in metastatic vs. primary RCC. Dysregulated 

protein expressions of profilin-1 (Pfnl ), 14-3-3 zeta/delta (14-3-3l;), and galectin-1 (Gal­

l) were verified on two independent sets of tissues by western blot and 

immunohistochemical analysis. Hierarchical clustering analysis showed the protein 

expression profile specific for metastatic RCC can distinguish between aggressive and 

non-aggressive RCC. Pathway analysis showed that dysregulated proteins are involved in 

cellular processes related to tumor progression and metastasis. Furthermore, preliminary 

analysis using a small set of tumors showed that increased expression of Pfnl is 

associated with poor outcome and is a potential prognostic marker in RCC. In addition, 

14-3-3l; and Gal-1 also showed higher expression in the tumors with poor prognosis 

compared to those with good prognosis. Dysregulated proteins in metastatic RCC 

represent potential prognostic markers for kidney cancer patients and a greater 

understanding of their involved biological pathways can serve as the foundation of the 

development of novel targeted therapies for metastatic RCC. 
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Introduction 

Renal cell carcinoma (RCC) is the most common neoplasm of the adult kidney. 

Worldwide incidence and mortality rates of RCC are rising each decade (1). Seventy-five 

percent of kidney tumors are of the clear cell ( ccRCC) subtype (2). Although modem 

imaging techniques for abdominal screening have led to increased incidental detection of 

renal tumors (3), unfortunately approximately 25-30% patients still have metastases at 

presentation. 

The prognosis of RCC is quite variable. The greatest risk of recurrence following 

nephrectomy is within the first 3-5 years ( 4). The ability to predict which tumors will 

metastasize would have a significant impact on patient outcome since the likelihood of a 

favorable response to treatment is greater when the metastatic burden is limited and 

surgical resection of a single or limited number of metastases can result in longer survival 

(5). Furthermore, approximately 3% of patients will develop a second primary renal 

tumor, either synchronous or metachronous. Currently, patient prognosis is assessed by 

histological parameters and a multivariate analysis developed at Memorial Sloan 

Kettering (6), but neither is sufficiently accurate. A more accurate assessment of 

prognosis is urgently needed to better guide patient's management. 

While surgery is curative for localized disease, many patients eventually relapse. 

Metastatic RCC is one of the most treatment-resistant malignancies with chemotherapy 

and radiotherapy having limited effect. The five-year survival rate for metastatic RCC is 

~ 10% (7). Although there has been much progress in RCC treatment with the new era of 

antiangiogenic therapy, the majority of patients ultimately suffers a relapse and die from 

progression of their cancer. A more in-depth understanding of the pathogenesis of 
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metastasis will be a cornerstone towards developing new targeted therapies. A number of 

prognostic markers have previously been identified based on comparative analysis of 

primary and metastatic tumors, including C-reactive protein, tetraspanin 7 (TSPAN7), 

hypoxia-inducible factor 1 alpha (HIF-la), phos-S6, U3 small nucleolar 

ribonucleoprotein protein (IMP3), carbonic anhydrase IX (CAIX) and microvascular 

density (8-14). However, no biomarker has yet had an established clinical role 

independent of stage (15). Differential protein expression between primary RCC and 

normal tissues was previously studied (16-18). Also, differential expression between 

primary and metastatic kidney has been investigated at the miRNA level (19, 20). 

Molecular analyses hold the promise of obtaining a better understanding of the 

pathogenesis of kidney cancer (21 ). 

In this study, we aimed to elucidate the pathogenesis of RCC metastasis through 

proteomic analysis and to identify potential prognostic markers for kidney cancer. We 

performed quantitative proteomic analysis using isobaric tags for relative and absolute 

quantitation (iTRAQ) labeling and LC-MS/MS to identify proteins that were 

dysregulated in metastatic compared to primary RCC. Differential expressions of 

selected, biologically interesting proteins; profilin-1 (Pfnl ), 14-3-3 zeta/delta (14-3-3l;), 

and galectin-1 (Gal-1) were validated on two independent sets of tumors by Western blot 

(WB) analysis and immunohistochemistry (IHC). Hierarchical clustering analysis showed 

that differential protein expression can distinguish between aggressive and non­

aggressive tumors. In order to explore the role of these dysregulated proteins in tumor 

progression, we performed Gene Ontology (GO) and pathway analyses. In addition, we 
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carried out preliminary analysis to assess the potential of Pfnl, 14-3-3l;:, and Gal-1 as 

prognostic markers in RCC. 
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Experimental Procedures 

Patients and specimens 

Primary ccRCC tissues and matched normal kidney tissues from the same patient 

were obtained from nephrectomy specimens at St. Michael's Hospital and the Ontario 

Tumor Bank, Toronto, Canada. We also collected unmatched metastatic RCC tissues. 

Specimens were collected immediately following nephrectomy and flash frozen in liquid 

nitrogen in 2mL cryogenic tubes. As RCC is known to arise from the proximal tubules 

(22), the kidney cortex is considered a suitable representation of normal kidney tissue 

(23). All specimens were histologically confirmed by a pathologist. The study was 

approved by the Research Ethics Boards of York University, St. Michael's Hospital and 

the Ontario Cancer Institute. Relevant clinical information on the patients is shown in 

Supplementary Table 1. 

Tissue preparation and protein extraction 

A schematic of the work flow is shown in Figure 1. Tissues were prepared as 

described previously (24-26). Briefly, tissues were washed three times in ice-cold 

phosphate buffered saline (PBS) and homogenized using a hand-held homogenizer in a 

protease-inhibitor cocktail (Roche, Laval, Canada). Cell debris was then removed by 

centrifugation at 4 °C for 30 min at 14,000 rpm. The clarified supernatant was transferred 

to a fresh 1.5 mL tube. A reference sample was prepared from a pool of six combined 

normal kidney tissues. Protein concentrations were determined using the Bradford assay 

(Sigma-Aldrich, St. Louis, USA) (24, 26). Equal amounts of protein from each tissue 

type were digested with trypsin, labeled with iTRAQ and combined. Samples were then 
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separated by off-line SCX liquid chromatography and analyzed by RP LC-MS/MS. 

Proteins were identified and quantified using Protein Pilot and then subjected to 

additional characterization, including verification by WB, clustering, GO analysis, 

pathway analysis, and IHC. 

Reference Pnmary Primary Metastatic 
sample 1 z 1 

t 115; t116 1111 

~, ITRA.Q labeling 

WI sex LC 

Differentially expressed proteins 

,:t .. 
Clustering Analysis 

Gene Ontology (GO) 
Pathway Analysis 

Candidates in marker 

Figure l Work flow for quantitative 

proteomic analysis. Six pairs of primary ccRCC 

and normal matched kidney tissues from the 

same patient as well as six metastatic RCC 

tissues were analyzed. The reference sample 

consisted of a homogenate of the six normal 

kidney tissues. Each sample was digested 

individually with trypsin and labeled with the 

appropriate iTRAQ tag. The labeled digests 

were then pooled and separated by of/line 

SCX LC. Each fraction was analyzed in 

triplicate by on-line RP nano-LC-MS/MS. 

Exclusion lists were used to minimize 

redundancy. MS data were analyzed by 

Protein Pilot to identify and quantify proteins 

using a cut-off of 5% local FDR. Dysregulated 

proteins were validated by WB and IHC, and 

further analyzed by clustering, GO and 

pathway analyses. 
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iTRAQ sample labeling 

For iTRAQ LC-MS/MS analysis, 100 µg of clarified supematants were denatured 

for 1 hour at 60°C, disulfide bonds were reduced, and the cysteine residues were blocked 

as described in the iTRAQ protocol (Applied Biosystems, Foster City, CA). Supematants 

were then divided into sets of four, each containing one aliquot of the reference sample 

and three ccRCC malignant or individual non-malignant kidney samples. Each sample 

was then digested with trypsin and labeled with the iTRAQ tags (labeling details shown 

in Supplementary Table 2). Labeling of the reference sample was randomized for each 

set to eliminate any potential for bias that might be associated with a particular iTRAQ 

reporter tag. The iTRAQ-labeled samples were then combined according to the specified 

set and transferred into fresh 1.5 mL tubes. Each iTRAQ set was then dried using a 

vacuum centrifuge (Thermo Savant SCl 10 A, Holbrook, NY, USA). 

Strong cation exchange (SCX) chromatography 

The iTRAQ sets were dissolved in 1. 7 mL of Buffer A (1 OmM H3POJKH2P04, in 

an aqueous solution of 25% acetonitrile and acidified to a pH of 3.0 with phosphoric 

acid) and filtered using a 0.45-µm syringe filter (Millipore, Cambridge, ON, Canada). 

Each set was then separated by off-line SCX chromatography using an HP1050 HPLC 

instrument (Agilent, Palo Alto, CA) with a 2.1-mm internal diameter x 100-mm-length 

PolyLC Polysulfoethyl A column packed with 5-µm beads with 300-A pores (The Nest 

Group, Southborough, MA) as described previously (27). Separation was performed 

using a linear binary gradient over 1 h (see details in Supplementary Table 3) of Buffer 

A and Buffer B, where Buffer B was composed of Buffer A and 350mM potassium 
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chloride. Buffer C was composed of Buffer A and 1 M potassium chloride and was used 

to strip the column after the run. A total of 30 SCX fractions were collected per iTRAQ 

set. These fractions were dried using a vacuum centrifuge as before. 

Reverse phase (RP) LC-MS/MS 

The SCX fractions were analyzed in triplicate using a nanobore LC system (LC 

Packings, Amsterdam, Netherlands) and a QST AR Pulsar mass spectrometer (Applied 

Biosystems/MDS SCIEX, Foster City, CA) in positive ion mode, externally calibrated 

with tryptic peptides from bovine serum albumin. The first five fractions were not 

analyzed because they consisted of the void volume which contained unreacted iTRAQ 

labels as well as byproducts that would compromise the RP column. Fractions 6 - 17 

were redissolved in 16µL of eluant A [consisting of 94.9% deionized water, 5.0% 

methanol, and 0.1 % formic acid (pH 3)]. For subsequent fractions, the amount of eluant 

A was incremented by 2µL over the preceding fraction to accommodate the increase in 

the amount of KCL A 1 µL aliquot of the sample (,...., 1 µg of total peptides) was loaded onto 

a C18 RP pre-column (LC Packings: 300 µm x 5 mm) and desalted before separation on 

an RP analytical column (75-µm x 150-mm packed in-house with 3-µm Kromasil C18 

beads with 100 A pores, The Nest Group, Southborough, USA). Eluant A, consisting of 

94.9% deionized water, 5.0% methanol, and 0.1 % formic acid (pH= 3), was used to load 

the sample onto the C18 precolumn at a flow rate of 25µL min-1• After 4 min, the C18 

precolumn was switched in-line with the RP analytical column. Separation was 

performed at lOOnL min·
1 

using a nonlinear binary gradient (see gradient in table below) 
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starting with Eluant A and transitioning to Eluant B, which consisted of 5.0% deionized 

water, 94.9% methanol, and 0.1 % formic acid. 

Time (min) 0.1 5 10 r10 85 95 ~8 135 

[8 (%) 5 5 15 ~5 80 80 5 Stop 

MS data were acquired in information-dependent acquisition (IDA) mode using 

the Analyst QS 1.1 software (Applied Biosystems/MDS SCIEX, Foster City, USA). The 

LC-MS/MS analysis was performed using a 1-s TOF-MS survey scan from 400 to 1500 

Da, followed by four, 2-s product-ion scans, from 80 to 2000 Da, of the four most­

abundant ion peaks in the survey scan. The collision energy (CE) was automatically 

controlled by the IDA CE parameter script. Switching criteria were set for ions with m/z 

2: 400 and :'.S1500, charge states of +2 to +4, and abundances of 2:10 counts. Using 

Analyst QS 1.1 controlled dynamic exclusion, former target ions were excluded for 30 s, 

and ions within a 100-ppm window were ignored. Precursor ion exclusion (PIE) lists 

were used to minimize redundancy. 

Bioinformatics Analysis 

Protein identification by Protein Pilot 

LC-MS/MS data of each fraction was used to identify proteins by searching a 

concatenated Swissprot/Panther database of 66082 distinct human protein entries (version 

June 2, 2010). The database was searched using Protein Pilot software, version 2.0.l (AB 

SCIEX, Foster City, USA), which uses the Paragon algorithm (28). Protein identification 

was performed with MMTS selected as cysteine modification, with the search option 

'emphasis on biological modifications,' and with 'PSPEP' (Proteomics System 
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Performance Evaluation Pipeline Software) analysis checked. Peptide and protein 

summaries, and false discovery rate (FDR) reports were generated. Only proteins 

identified with local FDR::::; 5% were considered for further analysis (29). 

Iterative runs with PIE 

To minimize redundancy in subsequent iterations, a PIE list was added to the 

acquisition method after each iteration as described previously (30, 31 ). PIE lists were 

generated using an Excel template developed in-house. To generate the list for each 

iteration, the peptide summary of a fraction, obtained after the previous iteration, was 

imported into an Excel template where: (1) the m/z values and elution times of peptides 

identified with > 95% confidence were extracted; (2) alternative charge states (only + 2, 

+ 3 and +4 were considered) of the peptides were calculated; and (3) the next three higher 

isotopic m/z values of extracted and calculated peptides were determined. The resulting 

mlz ratios from all three of these considerations constituted the PIE list. This list was 

saved and imported into the acquisition method for the next iteration. The list used for 

each iteration was cumulative of all the m/z values and elution times derived from all 

previous iterations for the fraction. Tolerance windows for exclusion were set at 100 ppm 

for m/z and 360 s for elution time. The template is available in Supplementary Data, 

PIE Template. 

iTRAQ ratio re-calculation and identification of differentially expressedproteins 

To identify non-redundant proteins, data acquired for all 25 fractions from each 

iTRAQ set injected in triplicate were searched using Protein Pilot software. Proteins 
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identified in five iTRAQ sets were compiled together and matched by accession numbers 

using a script written in Matlab (version 7.7.0.471). Redundant proteins and peptides, and 

proteins identified in reverse sequence were removed from the list. To improve the 

confidence of protein quantitation, the mean expression iTRAQ ratios of the proteins 

were re-calculated based on the criteria that the protein must be identified by a minimum 

of three peptides, with 2:95% confidence, and with an expression ratio error factor 

<11.1 %. To enhance confidence in the protein quantitation even more, we included only 

95% of all quantified proteins with the lowest computed error factor (which corresponds 

to a confidence > 0.05 in Supplementary Table 4) for further consideration. Proteins 

were considered to be differentially expressed if iTRAQ ratios were 2:1.5 or ~0.67 in 

2:50% in metastatic relative to primary ccRCC samples. 

GO Analysis 

Proteins were classified into groups according to biological processes (e.g. 

metabolic process), molecular function (e.g. protein binding), and subcellular 

compartmentalization (e.g. cytoplasm, organelle, etc.), using the GO Consortium 

databases. 

Clustering analysis 

To determine if differentially expressed proteins can discriminate between 

metastatic and primary RCC samples the samples were hierarchically clustered based on 

quantified proteins. Proteins were included in the analysis if quantification was available 

in at least 50% of the samples. The average iTRAQ ratios were logarithmically 
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transformed for hierarchical clustering via the City-block distance method. Hierarchical 

clustering analysis was performed using the Cluster 3.0 software and the result was 

visualized with the Tree View software (Stanford University, Palo Alto, CA, 

http://www.dnachip.org), both of which were developed by Eisen et al. (32). 

Western blot analysis 

Dysregulated protein expression in metastatic RCC samples was verified by WB 

analysis. Briefly, 30µg of total protein were electrophoretically separated on a 10% SDS­

PAGE gel. Proteins were then transferred to a PVDF membrane and probed with the 

following polyclonal antibodies; anti-Gal-1 and anti-Pfnl (both from Abeam, Cambridge, 

USA), and anti-14-3-3s (Santa Cruz Biotechnologies, Santa Cruz, USA). ~-actin (Cell 

Signaling Technology, Danvers, USA) was used as a loading control. Membranes were 

incubated with primary antibodies overnight at 4°C. Protein expression was visualized 

after incubation with secondary anti-rabbit antibodies conjugated with horseradish 

peroxidase and enhanced chemoluminescence reagent (Amersham Pharmacia Biotech, 

Piscataway, USA). The intensity of protein staining was determined using ImageJ, a 

publicly available Java-based image processing program (http://rsbweb.nih.gov/ij/). 

Average protein expression was calculated based on two independent WB analyses. 

Primary ccRCC samples were compared to non-malignant kidney samples using the 

paired sample two-tailed t-test. Metastatic RCC samples were compared to primary 

ccRCC samples using the Mann-Whitney two-tailed test. p .:::;0.05 was considered as 

significant. 

Tissue microarray construction and immunohistochemistry 
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Appropriate areas from normal kidney tissue, primary ccRCC and metastatic RCC 

were selected and circled from donor blocks by a pathologist. Tissue microarray {TMA) 

blocks containing duplicate 1.0-mm cores from each specimen were constructed with a 

manual tissue microarrayer (Beecher Instruments, Sun Prairie, USA). The TMAs 

contained 22 cases of primary ccRCC and matched normal kidney tissues from the same 

patient, 12 cases of primary ccRCC from patients who later developed metastasis, and 26 

metastatic RCC tissues. In addition, each block contained two marker cores for TMA 

orientation. 

TMA sections were cut 5µm thick and placed on charged slides. Slides were 

deparaffinized in xylene, hydrated in gradient ethanol, and pre-treated in a microwave 

oven for 20 min at 800 Win 1 L of citrate buffer (0.01 M, pH 6.0) for antigen retrieval. 

Sections were then incubated with hydrogen peroxide (0.3% v/v) in PBS for 15 min to 

quench the endogenous peroxidase activity, followed by blocking with 10% FBS (fetal 

bovine serum) in PBS to preclude non-specific binding. Thereafter, the slides were 

incubated with primary antibodies: Gal-1, Pfnl or 14-3-3s overnight at 4°C. Protein 

expression was detected using the streptavidin-biotin complex with the Dako LSAB+ kit 

(Dako Cytomation, Glostrup, Denmark) and diaminobenzidine as the chromogen. All 

procedures were carried out at room temperature unless otherwise specified. Slides were 

washed with 0.025% Triton X 100 in PBS (O.lM, pH= 7.3) three times after each step. 

Finally, sections were counterstained with Mayer's hematoxylin and mounted with DPX 

mountant. In the negative control tissue sections, the primary antibody was replaced by 

isotype specific non-immune mouse I rabbit IgG. 
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Immunoexpression of each protein was evaluated by a pathologist. Quantification 

in tumor sections was classified into four categories: (A) moderate to strong membrane, 

cytoplasmic and nuclear staining in greater than 50% tumor cells; (B) moderate to strong 

cytoplasmic staining in >50% of either the cytoplasm or nuclei, but not both; (C) overall 

weak staining in the cytoplasm and/or nuclei; and (D) no staining. 
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Results 

Identification of differentially expressed proteins between primary and metastatic 

RCC 

Using Protein Pilot, we identified a total of I256 non-redundant proteins with 

local FDR :S 5% (Supplementary Table 4); 456 of these proteins were reliably 

quantified (Supplementary Table 5). Twenty-nine proteins met our definition for 

differential expression (see Experimental Procedures) in a comparison between 

metastatic and primary RCC: I2 were overexpressed (iTRAQ ratios of ~I .5) and I 7 were 

underexpressed (iTRAQ ratios of ~0.67). Table 1 and Supplementary Table 6 shows a 

heat map of the 29 differentially expressed proteins. A literature search showed that all 

29 proteins had previously been associated with other malignancies. For example, Gal-I 

has previously been reported to be associated with cell migration and invasion in a 

metastatic murine lung cancer model (33). Gal-I was also shown to have prognostic 

significance in epithelial ovarian cancer (34). 

Table 1. Heat map showing expression of 29 proteins that are dysregulated in 

metastatic compared to primary renal cell carcinoma. 
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Gene symbol Relation to Cancer Ref. 

PFNl (Pfnl) Marker for aggressive bladder ca (48, 64) 

LGALSl (Gal-1) Enhances tumorigenicity in lung ca (33, 65) 

YWHAZ (14-3- Cervical ca mets (66, 67) 

ALDO A Aggressive HCC and lung ca (68, 69) 

GAP DH Up in colon ca and liver mets (70) 

GPI Liver mets in colon ca (71, 72) 

LGALS3 Gastric ca, cell migration and (52, 53) 

P4HB Up in melanoma and endometrial ca (73, 74) 

PKM2 Contributes to tumorigenesis (75) 

SlOOAll Colon ca mets, cell growth in lung ca (76, 77) 

TPil Breast ca mets, gastric ca cell lines (78, 79) 

VIM Bone mets, cell migration (80, 81) 

ACAA2 Apoptosis in HCC cells (82) 

AGMAT Down in ccRCC (49, 50) 

AKRlAl Dysregulation in gastric ca (83) 

ATP5B Cell survival (84) 

CA2 Up in uterine ca and gastric ca mets (85, 86) 

CRYLl Associated with HCC DFS (87) 

DCXR Malignant progression of lesions (88) 

DDC Marker for gastric ca (89) 

DLST Mitochondrial respiratory complexes (90) 

FBPl Down in HCC and colon ca (91, 92) 

GPDl Down in breast ca (93) 

HADH Metastatic melanoma (94) 

1--1> 
Cell proliferation (95) N MDHl 

-...J 

MDH2 Metastatic muscle and liver tumors (96) 

PCK2 Down in pancreatic ca (97) 

PEBPl Inhibits prostate ca invasion and (51, 98) 

PEPD Metastatic potential in nude mice (99) 



~0.4 ~0.5 ~0.67 ~0.8 :::,I .25 :::,1.5 :::,2.0 :::,2.5 

ca: cancer; DFS: disease-free survival; HCC: hepatocellular carcinoma; Mets: metastasis. For 

'Protein name' we used the gene name according to UniProtKB. For a full name of the protein 

and its accession number, see Supplementary Table 6. 

Clustering analysis indicated differential protein expression can discriminate 

between metastatic and primary RCC 

In order to examine the hypothesis that the metastatic potential is present at least 

in part of the primary tumor, cluster analysis was performed on 456 proteins for which 

quantitative information was available. The samples clustered into two main groups: one 

that contained the primary RCC samples, Pl, P2 and P6; and a second that had the six 

metastatic cases plus the other three primary RCC samples, P3, P4 and P5 (data not 

shown). Clustering of the last three primary RCC samples with the six metastatic samples 

becomes less puzzling after data from clinical follow-up were examined: one of the 

primary RCC patients developed subsequent metastasis to the liver as well as having a 

history of colon cancer; a second patient also had an earlier cancer; while the third patient 

had no reported metastasis thus far. The other group of primary RCC patients, Pl, P2 and 

P6 did not develop metastasis for five years. If validated on a larger tumor set, these data 

then strongly suggest that RCCs have a unique protein expression pattern that is required 

for metastasis and that differentially expressed proteins can discriminate between 

aggressive and non-aggressive RCCs. 
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Validation of dysregulated protein expression 

To proceed with the first steps in validating our MS analysis, we confirmed the 

differential expressions of three dysregulated proteins by WB analysis using samples 

from the same RCC patient cohort. The proteins Gal-I, Pfnl and 14-3-3s, were selected 

for validation based on their interesting biology and potential significance in RCC 

tumorigensis (35-40). The expressions of Gal-I, PfnI, and 14-3-3s were found to be 

elevated in primary ccRCC when compared to normal kidney tissue (a typical set of 

results is shown in Figure 2A) when analyzed by WB analysis. Additionally, all three 

proteins were further upregulated in metastatic compared to primary ccRCC. 

Densitometry showed that 14-3-3s, PfnI and Gal-I were upregulated 1.93 fold (p 

<0.05), 2.28 fold (p <0.05), and 2.50 fold (p <0.1 ), respectively, in primary ccRCC when 

compared to normal kidney tissue (Figure 2B). When we compared protein expression in 

metastatic vs. primary tissues, I4-3-3s and Pfnl showed significant increased expression 

(1.77-fold change, p <0.05; and 1.92-fold change, p <0.01, respectively), while Gal-1 

showed 2.5 times increased in expression but this finding did not reach 95% statistical 

significance (p <O. I). 

We additionally verified the overexpressions of PfnI, Gal-I, and I4-3-3s in 

metastatic vs. primary RCC in an independent cohort of patients by IHC using TMAs 

consisting of 22 cases of primary ccRCC and 26 metastatic RCC tissues (Figure 3 shows 

a typical set of results). We quantified immunoexpression using the four-tier scale 

described in Experimental Procedures (ranging from A which is the highest to D which is 

no staining). 
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Figure 2. Verification of Gal-1, P/nl, and 14-3-3lll overexpression in metastasis by Western blot 

analysis. (A) Representative blots showing the expression of Gal-1, Pfn1, and 14-3-lll in normal 

kidney tissues (N}, primary (P}, and metastatic ccRCC {M}. For each of these proteins, expression 

was increased in primary tumor tissues when compared to normal kidney tissue; as well, the 

expression of all proteins was increased in metastatic tissues when compared to primary ccRCCs. 

lll-actin was used as a loading control. (B) Graphical representation of the average fold change in 

expression of the three proteins between six primary ccRCCs and matched normal specimens 

(P/N) and that between six primary ccRCCs and six unmatched metastatic cases. 
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Primary Metastatic Figure 3. Verification of Gal-1, P/nl, and 14-3-3s 

overexpression in metastatic ccRCCs by immuno-

histochemical analysis. Representative photomicr-

ographs show the overexpression of Gal-1, Pfn1 and 

14-3-3( in metastatic vs. primary RCC tissue by IHC. 

Pfn1 shows higher intensity and % positivity in 

14-3-1~ 
'l· metastatic (B) compared to primary tumors (A). 14-

3-3( shows more intense cytoplasmic and nuclear 

staining in metastatic (D) than primary {C} RCCs. 

Gat-1 Similarly, Gal-1 staining is more intense in 

metastatic (F} than primary (E) tumor samples. 

Original magnification x 200. 

For Pfnl expression, we found an increased expression in metastatic compared to 

primary ccRCC. Most of the primary tissues (19/22, 86%) showed the B expression level 

(Figure 3A). There were also two (9%) tumor samples that exhibited the A expression 

level, and one (5%) tumor sample that showed the C level. For metastasis, we found that 

the majority (18/23, 78%; 3 cases were omitted because they were washed off the slide) 

of samples showed the A level of expression (Figure 3B) while five (22%) showed the B 

level, indicating overall increased Pfn 1 expression in metastatic compared to primary 

tissues. We then examined the expression of 14-3-3<; in this independent tumor set. 

Similar to the MS results, 14-3-3<; showed increased expression in metastatic when 

compared to primary ccRCC. 28% ( 6/22) primary ccRCC tumor samples had the A level 

of expression (Figure 3C), 36% (8/22) exhibited the B level, and 36% (8/22) the C level. 
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By contrast, in the 24 metastatic tissues that were available for the examination of 14-3-

3i; expression, we found that 67% (16/24, 2 cases were omitted because they were 

washed off the slide) showed the A level of expression (Figure 3D), while 29% (7/24) 

showed the B type level and 4% (1/24) showed the C level, again indicating an overall 

increase of 14-3-3i; expression in metastatic compared to primary RCC. The differences 

in Gal-1 expression between primary and metastatic RCC was not statistically significant. 

(Figures 3E-F). This may be attributed to the high background staining that does not 

allow accurate quantification. A summary of our IHC analyses is shown in Table 2. 

Table 2. lmmunohistochemical expression of profilin-1, galectin-1 and 14-3-3~ in metastatic 
and primary ccRCC. 

Protein Expression 22 primary paired 26 metastatic 
name level ccRCC ccRCC 

Pfn1 A 2 (9%) *18 (78%) 
B 19 (86%) 5 (22%) 
c 1 (5%) 

A 12 (55%) *13 (57%) 

Gal-1 B 8 (36%) 8 (35%) 

c 2 (9%) 1 (4%) 

D 1 (4%) 

A 6 (28%) **16 (67%) 
14-3-3~ 

B 8 (36%) 7 (29%) 

c 8 (36%) 1 (4%) 

* 3 cases were omitted because they were washed off the slide;** 2 cases were omitted 

because they were washed off the slide; A: moderate to strong membrane, cytoplasmic and 

nuclear staining in > 50% tumor cells; B: moderate to strong cytoplasmic staining in >50% either 

the cytoplasm or nuclei but not both; C: overall weak staining in the cytoplasm and/or nuclei; D: 

no staining. 
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GO Analysis 

We subjected the 29 identified proteins that were differentially expressed in 

metastatic vs. primary ccRCC to GO analysis and categorized them according to 

molecular function, biological processes and cellular component. When we analyzed 

dysregulated proteins for molecular function, we found that over one third of proteins 

were grouped under the GO term catalytic activity (G0:0003824, p=0.0016, Figure 4A), 

which included proteins involved in isomerase activity such as glucose-6-phosphate 

isomerase, triosephosphate isomerase 1 and protein disulfide isomerase, among others. In 

addition, we found 69% proteins analyzed were grouped under the GO term protein 

binding (G0:0005515, p<0.001). This category includes actin binding (G0:0003779) in 

which both Pfnl and alcohol dehydrogenase A fall under. 

We also grouped dysregulated proteins based on biological processes. We found 

that a significant number of proteins were grouped under the multicellular organismal 

process (G0:0032501, p=0.00441) and biological regulation (G0:0065007; p<0.001, 

Figure 4B) which includes the proteins Gal-1 and Pfnl. In addition, when the 29 

identified dysregulated proteins were analyzed for their cellular localization, we found 

76% proteins were located intracellularly (p=0.03016), including proteins associated with 

the both plasma and organelle membranes (p=0.01703). There was also a significant 

association with the extracellular region (p<0.001, details not shown). 

Figure 4. Gene Ontology (GO) Analysis. Pie charts showing the results of GO analysis. The 29 

dysregulated proteins were analyzed for (A) molecular function and (B) biological process. 

Significance values for each function and process are shown in the figure. 

133 



NAO or NADH binding 
7% 

7% 

7% 

7% 

7% 

Molecular Function 
Other• 

9% 

Nucleotide binding 
7% 

Biological Process 

Mal ate metabolic process 

Signal transduction 

5% 

Lipid metabolic process 

5% 

Generation of precursor 

metabolites and energy 

5% 

Glucose metabolic process 

5% 

Tricarboxylic acid cycle 

7% 

Carbohydrate metabolic 

process 

9% 

9% 

5% 

Lyase activity 
9% 

Glycolysis 

15% 

Protein Binding 
29% 

~ Oxidoreductase activity 
11% 

Oxidation reduction 

13% 

Unknown 
11% 

134 



Differentially expressed proteins in metastatic RCC are involved in a number of 

pathways related to tumor progression and metastasis 

We performed pathway analysis on the 29 dysregulated proteins. A subset of 

proteins, identified in our study, is involved in cell migration and invasion, cell-cell 

adhesion, and epithelial to mesenchymal transition (Figure 5). 

Extn111:elfular 
spacfl 

lntegrin 
a31}1 

Figure 5. The involvement of a subgroup of differentially expressed proteins in cell-cell 

adhesion, migration and invasion. Gal-1 is involved in cell migration through interaction with 

the a181 integrin, modulates cell adhesion and cell motility via Gal-1-induced expression of RhoA 

and alteration of the polimerization of the actin cytoskeleton, and promotes tumor invasion by 

reorganizing actin cytoskeleton and upregulating matrix metalloproteinase (MMP)-9 and MMP-

2. 14-3-3( cooperates with Erb82 to promote cell motility and migration via the activation of Src, 

and induce EMT by activating the TGFB pathway to reduce cell adhesion. Pfnl plays a role in cell 

adhesion and motility through interaction with G-actin. Pathways involved in tumor progression 

and metastasis are shown in white lettering on a black rectangle; differentially expressed 

proteins: white lettering on a red oval; other proteins involved in pathways: black letters on a 

grey oval. Lines with arrowheads represent documented interactions. 
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Gal-1 has been reported to be involved in a number of pathways that can contribute to 

tumor progression and metastasis. It can promote tumor invasion by upregulating matrix 

metalloproteinase (MMP)-9 and MMP-2 and by reorganizing the actin cytoskeleton in 

lung adenocarcinoma (40). In addition, Gal-1 enhances the activation of Cdc42, thus 

increasing the number and length of filopodia on tumor cells ( 40). Dysregulated Pfnl has 

been previously reported to be involved in the restoration of adherent junctions in breast 

cancer cells (41) and galectin-3 (Gal-3) has been shown to be involved in breast cancer 

cell adhesion ( 42). The identified proteins also have an effect on cellular migration, as 

SlOOAl 1 has been shown to mediate hypoxia-induced mitogenic factor-induced smooth 

muscle cell migration (43) and both 14-3-3l; (44) and vimentin (45) have been shown to 

be involved in cellular migration. 

The potential clinical significance of proteins dysregulated in metastatic RCC 

In order to determine whether the dysregulated proteins identified herein had 

potential as prognostic markers or not, we performed additional preliminary analyses 

using IHC on an expanded set of primary RCC samples. We analyzed the expressions of 

Pfnl, Gal-I and 14-3-3l; in a total of 34 primary ccRCC: 12 cases with poor prognosis 

(developed metastasis within 3 years) and 22 cases with good prognosis (no metastasis 

within 5 years; same set used in the comparison with metastatic ccRCC, Table 2). We 

quantified immunoexpression in terms of the four categories described above. A 

summary of the expression levels of the three proteins in patients with poor vs. good 

prognosis is shown in Figure 6. 

136 



..i good 

.5 
~ ~ poor lllllllllllllllllllllllllllllllllllllllllllllllllllllllllB11111i 

N 
M 

~ good llllllllllllllllllll~==========-1111m•llllllllllllll 
.-1 

poor 

.-1 c 
~ good llllllllllllllllllllllllllllllllllllllllC=========• 
iii 

" 
poor 

0 10 20 30 40 50 60 70 80 90 100 

Pattern Pencentage 

Figure 6. Stacked bar graphs showing differential staining patterns of P/n1, Gal-1and14-3-3{ 

between patients with good prognosis and those with poor prognosis. Higher expression levels 

were associated with tumors with poor prognosis. Expression was quantified in a four-tier scale 

(from A with the highest expression to D with no expression, as described in the text). 

For the expression of Pfnl in the 10 primary ccRCCs with poor prognosis (two 

cases were washed off during IHC handling), seven (70%) samples showed the A level of 

expression and three (30%) showed the C level. By contrast, only 2/22 cases (9%) in the 

good prognostic group showed the A expression level, while 19/22 (86%) showed the B 

level and 1122 (5%) the C level of expression. Significantly, the percent of tumor cases 

displaying the A level of expression (70% vs. 5%, respectively) was drastically different 
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between the poor and the good prognosis cases, and resembled that in metastatic RCCs, 

suggesting that Pfnl may have prognostic value for RCC patients. 

We also investigated the potential of 14-3-3s as a prognostic marker. In the tumor 

cases with poor prognosis, 58% (7/12) exhibited the A level of expression. The B level 

was seen in 17% (2/12) and the C level in 25% (3/12) of cases. This is to be contrasted 

with the expression in 22 tumor cases with good prognosis, we found that only 6/22 

(28%) of the samples showed the A expression level. The B and C levels were each seen 

in 36%. Again, the expression of 14-3-3s in ccRCC of poor prognosis resembled more 

closely to that of metastatic ccRCC and strongly suggests that 14-3-3s may have clinical 

significance for prognosticating kidney cancer patients. 

Finally, for Gal-1 we found that 12/12 (100%) tumors from patients with poor 

prognosis exhibited the A level of expression. When we examined the patients with good 

prognosis, we found that only 12/22 (55%) exhibited the A level, while 8/22 (36%) the B 

level and 2/22 (9%) the C level of expression. 
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Discussion 

Despite the many recent advances in metastatic RCC treatment through targeted 

therapies, the survival rate for metastatic RCC is extremely low at a five-year survival 

rate of <10%. Regrettably, there are no prognostic molecular markers that would predict 

whether a tumor will behave aggressively or remain indolent. It is abundantly clear that 

tumor biology plays a significant role in resultant tumor behavior (15). Unfortunately, 

RCC primary tumors that are placed in the same prognostic category based on currently 

used parameters, may behave differently. It is our hypothesis that the underlying biology 

of these tumors and differences in its detail will determine a particular tumor's potential 

for metastasis. In addition, we can use these biological differences to identify novel 

molecular markers that may be useful for diagnostic, prognostic, or predictive purposes, 

the success of which would pave the road to a new era of personalized medicine in 

kidney cancer ( 46, 4 7). 

In this study, we performed quantitative proteomic profiling to identify 

differential protein expression between metastatic and primary RCC and to identify 

potential prognostic markers for RCC patients. We identified 29 proteins that were 

significantly differentially expressed in metastatic compared to primary RCC. 

Interestingly, all 29 proteins had previously been reported to be involved in tumor 

progression and metastasis (Table 1 and Supplementary Table 6). For example, two 

proteins that we identified to be dysregulated in our study, Pfnl and agmatinase, were 

also reported to have increased ( 48) or decreased ( 49, 50) expression in RCC. In addition, 

many of the proteins we reported had been shown to be involved in cellular migration 

and invasion. For example, phosphatidylethanolamine-binding protein 1/Raf kinase 
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inhibitor protein (RKIP) which was downregulated in our study, was shown to inhibit the 

migration and invasive ability of prostate cancer cells through the extracellular matrix 

(51). Gal-3, which had increased expression in our study, was reported to facilitate cell 

migration and invasion in vitro and induce metastasis in vivo (52, 53). Furthermore, we 

identified a subgroup (5/12) of overexpressed enzymes that are involved in glycolysis. 

These include fructose-bisphosphate aldolase A, glucose-6-phosphate isomerase, 

glyceraldehyde-3-phosphate dehydrogenase, pyruvate kinase Ml/M2, and 

triosephosphate isomerase. Interestingly, proteins involved in the glycolytic pathway 

have also been reported to be involved in the metastasis of other cancers such as 

melanoma (54, 55). 

Hierarchical cluster analysis based on the quantified proteins resulted in patients 

clustered into two distinct groups. One group contained all the patients with metastatic 

RCC and three of the six primary RCCs, while the other group had the remaining three 

primaries. A review of the clinical conditions for the three primaries in the metastatic 

group showed that two of these patients had history of cancers and one had a subsequent 

RCC recurrence, suggesting that the protein expression profile of primary tumors may 

correlate with tumor aggressiveness. These data agree with those of Ramaswamy et al. 

(56) who hypothesized that the metastatic potential of tumors is encoded in the bulk of 

the primary tumor. This implies that there exists a biological difference between primary 

tumors that will metastasize and those that will remain indolent. The clinical implication 

is that exploitation of the protein expression profile may allow prediction of which 

patients will likely develop metastasis. This will encourage more intense follow up of 

these patients and likely leading to earlier detection of any new tumors, the result of 
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which is a more aggressive course of treatment and an overall increase of survival. 

Dissimilar tumor biology between more and less aggressive tumors may be the 

underlying factor for different response to treatment. This can be advantageous, as 

clinicians will have the ability to administer the optimal treatment for patients rather than 

alternative treatments that will not be effective and may cause negative side effects. A 

better understanding of the tumor biology will facilitate the realization of personalized 

medicine for RCC patients. 

Pathway analysis predicted that a number of the identified dysregulated proteins 

are involved in similar biological signaling pathways (Figure 6), suggesting that their 

dysregulation may be a cooperative effect imposed by the malignancy. For example, 

Gal-1 interacts with the al~l integrin subunit inducing the phosphorylation of focal 

adhesion kinase, which modulates cell migration (57). Binding of Gal-1 to integrin is 

involved in cell adhesion (37, 58). Gal-1 has also been found to be involved in cell 

motility (35, 37) and cellular invasion (40). 14-3-3~ is an isoform in a family of 

evolutionally highly conserved acidic proteins expressed in all eukaryot:ic organisms (59) 

and has been shown to be involved in tumor progression and metastasis. 14-3-3~, in 

cooperation with ErbB2, was found to drive breast cancer metastasis (36). In addition, 

Pfnl, an actin-binding protein, plays a critical role in cell migration by regulating the 

actin-cytoskeleton pathway (38, 39). Pfnl remodels the actin cytoskeleton by regulating 

actin polymerization via regeneration of actin monomers from disassembling filament 

networks through G-actin. Interestingly, our study showed that G-actin was 

overexpressed in all metastatic samples, which is in agreement with this mechanism 

(details shown in Supplementary Table 5). 
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An interesting point with respect to Pfn 1 expression is similar to what Minamida 

et al (48) reported, we found Pfnl overexpression in RCC tissues and cell lines. By 

contrast, Pfnl has been found to be underexpressed in most, if not all, aggressive 

adenocarcinomas. For example, Pfnl was reported to be downregulated in human breast 

cancer tissue and cell lines (60), pancreatic (60) and hepatic (61) carcinoma cells, 

squamous cell carcinoma (62), and nasopharyngeal cancer cell lines (63). These 

differences suggest that Pfnl may be involved in different tumorigenic mechanisms in 

different tissue types. 

In order to assess the potential prognostic value of our dysregulated proteins, we 

examined the expressions of Pfnl, Gal-1 and 14-3-3l; on a small set of RCC patients who 

had good and poor prognosis. These proteins were chosen based on their increased 

expression in metastatic vs. primary tumors and their previous reported involvement as 

cancer markers (62-64). Our analysis indicated that of the three proteins Pfnl has the 

most promise as a prognostic marker. Patients who had poor prognosis had high Pfnl 

expression ("A" level of expression in 70% of the tumors) while only 1 % of patients who 

showed good prognosis had this level of expression. Success in this preliminary study is 

limited due to the small number of cases examined, but the encouraging results certainly 

warrant follow up and validation on a larger cohort of patients. 

In short, through quantitative proteomic analysis, we identified differential protein 

expressions that can distinguish between aggressive and non-aggressive RCC tumors. 

Many of these proteins are involved in biological pathways pertinent to tumor 

progression and metastasis. In addition, our preliminary analysis showed that some of 
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these dysregulated proteins may be useful clinical markers. Validation of these markers 

would greatly improve RCC patient treatment and increase overall survival. 
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Chapter 5 

Identification of proteins secreted by the cells of head and 

neck/oral squamous cell carcinoma (HNOSCC) as a strategy to 

find candidates for diagnostic serological biomarkers 

In this project, we attempted to identify serological biomarkers in cultured cell 

lines for the diagnosis of HNOSCC. Cultured cell lines were used primarily because 

cancer tissue and body fluid samples were difficult to obtain and sample sizes were 

limited. However, there are also several advantages to using cultured cells, besides 

having an endless supply of sample; for example, the differentially expressed proteins 

identified in tissue samples may not be secretory, and therefore, not useful as serological 

biomarkers, whereas the growth medium of cell cultures mainly contains proteins that are 

secreted from the cells, often having a protein profile similar to the serum. In addition, 

body fluids are complex, requiring extra purification steps, and can dilute potential 

biomarkers, making them difficult to detect, whereas the cell culture growth medium is 

simpler and potential biomarkers can become relatively concentrated and easily detected. 

The disadvantage of cultured cell lines is that they are not grown in their native 

environment, and this may affect their protein profile. 

LC-MS was used to identify proteins present in the growth medium of cultured 

HNOSCC cell lines to determine if some proteins that had been previously reported to be 

overexpressed in HNOSCC tissues were secreted into the extracellular space. Such 
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proteins would likely be found in the blood, making them potential diagnostic serological 

biomarkers for HNOSCC. 

The results from this project were published in the journal, "Proteomics," (issue 

12, pages 2363-2376 (2011). In this collaborative effort, biologists Dr. Ranju Ralhan, Dr. 

Ajay Matta, and Muzafar Macha cultured the HNOSCC cell-lines, collected conditioned 

media, and performed WB analysis on the conditioned media. Dr. Leroi V. Desouza and 

I performed the trypsin digestion of proteins, LC-MS analysis, and Protein Pilot database 

searches. I also carried out SignalP, SecretomeP and other bioinformatics analyses. 
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Abstract 

In search of blood-based biomarkers that would enhance the ability to diagnose 

head and neck/oral squamous cell carcinoma (HNOSCC) in early stages or predict its 

prognosis, we analyzed the HNOSCC secretome (ensemble of proteins secreted and/or 

shed from the tumor cells) for potential biomarkers using proteomic technologies. LC­

MS/MS was used to identify proteins in the conditioned media of four HNOSCC cell 

lines (SCC4, HSC2, SCC38, and AMOSIII); 140 unique proteins were identified on the 

basis of 5% global false discovery rate, 122 of which were secretory proteins, with 29 

being previously reported to be overexpressed in HNOSCC in comparison to normal head 

and neck tissues. Of these, five proteins including a-enolase, peptidyl prolyl isomerase 

A/cyclophilin A, 14-3-3 s, heterogeneous ribonucleoprotein K, and 14-3-3 cr were 

detected in the sera of HNOSCC patients by Western blot analysis. Our study provides 

the evidence that analysis of head and neck cancer cells' secretome is a viable strategy for 

identifying candidate serological biomarkers for HNOSCC. In future, these biomarkers 

may be useful in predicting the likelihood of transformation of oral pre-malignant lesions, 

prognosis of HNOSCC patients and evaluate response to therapy using minimally 

invasive tests. 
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1. Introduction 

The interactions between cancer cells and the host's dynamic microenvironment 

play vital roles in tumor growth, invasion, and metastasis [1 ]. The cancer cells and the 

host's microenvironment secrete and shed proteins or their fragments extracellularly and 

into bodily fluids, including blood. These proteins and their fragments have been 

described to constitute the "cancer secretome" [2]. As about a quarter of all cellular 

proteins are secreted, many proteins relevant to carcinogenesis may be detectable in the 

blood or other bodily fluids [3, 4]. Sampling of bodily fluids is relatively straightforward, 

is minimally invasive, and can be repeated if necessary, thus providing longitudinal data 

over the course of disease investigation and/or treatment. In this view, analysis of 

proteins in serum/plasma and saliva using MS-based proteomic technologies have been 

extensively examined [5-7]. However, the major challenge when dealing with 

serum/plasma in particular is the complexity of blood, the wide dynamic range of protein 

concentrations, and the low concentrations of proteins that are directly relevant to cancer 

[8, 9]. An alternate strategy for examining the secretome, which proof-of-principle 

studies have been demonstrated to be effective, is to analyze tissue-proximal fluids and 

conditioned media of cancer cell lines for proteins that are released extracellularly [10-

16]. Identification of proteases and growth factors in the cancer secretome underscores 

their utility in monitoring critical aspects of cancer progression, including invasion and 

metastasis [17, 18]. 

Head and neck/oral squamous cell carcinoma (HNOSCC) is the sixth most 

common cause of cancer deaths in the U.S.; despite improvements in therapeutic 

strategies, prognosis for the majority of HNOSCC patients remain bleak [19]. The quality 
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of life is often poor for survivors, mainly because the disease is often diagnosed in 

advanced stages. Moreover, lack of biomarkers that can predict progression of the disease 

or response to therapy further reflects our limited knowledge about head and neck 

carcinogenesis. The discovery of novel molecular targets for HNOSCC diagnostic, 

prognostic, and therapeutic applications has the potential to improve clinical strategy and 

outcome for this disease, especially if these targets are also relevant to oral pre-malignant 

lesions (OPLs), which are histopathologically dysplastic. Our earlier work, performed 

with tissue homogenates from HNOSCCs and OPLs using mass-tagging reagents, 

iTRAQ, and multidimensional LC-MS, resulted in identification of a panel of candidate 

biomarkers for OPLs [20] and HNOSCCs [21]. Other groups have also reported 

overexpression of several proteins in head and neck cancers in comparison to normal 

tissues [3, 22-40], which potentially could serve as putative biomarkers. Development of 

blood-based HNOSCC markers will enable us to predict progression of OPLs, prognosis 

ofHNOSCCs and evaluate response to therapy. 

Herein, we report the use of LC-MS/MS for HNOSCC secretome analysis of four 

HNOSCC cell lines (SCC4, HSC2, SCC38, and AMOSIII). Five proteins were detected 

in sera of HNOSCC patients thereby supporting our hypothesis that secretome analysis of 

head and neck cancer cell lines holds a potential for discovery of serum-based 

biomarkers. Once verified, large-scale analysis of these biomarkers can be carried out 

using standard ELISA-based assays or the more recently highly specialized MS-based 

targeted approaches such as multiple reaction monitoring, wherein specific antibodies are 

not available or difficult to generate [ 41-44]. In future studies, validation of such 

biomarkers will lead to the development of minimally invasive assays for accurately 
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predicting the progression or transformation of OPLs, determining the prognosis of the 

HNOSCC patients, as well as determining the response to therapy. 
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2 Materials and methods 

2.1 Cell culture and collection of conditioned media 

Cell lines used in this study were established from human head and neck 

squamous cell carcinomas from different sites: SCC4 (tongue), SCC38 (glottic larynx), 

HSC2 (mouth), and AMOSIII (buccal mucosa). SCC4 and SCC38 were obtained from 

American Type Culture Collection; HSC2 cells were purchased from Japanese Collection 

of Research Bioresources (Tokyo, Japan), while AMOSIII was developed by our group 

from a chronic tobacco user of Indian origin and deposited in American Type Culture 

Collection [ 45]. Such a different panel of cell lines gave us an advantage to study the 

biomarker diversity due to ethnicity and different sites of origin. The use of cell lines 

from different sites of origin would also help to find common markers that are likely to 

be universally applied for head and neck cancers. The cells were grown in DMEM, 

supplemented with 10% FBS (lnvitrogen, Gaithersburg, MD) and 1 unit/mL of penicillin­

streptomycin (Invitrogen) in 100-mm culture dishes to about 60% confluence at 3 7°C in a 

humidified atmosphere of 5% C02 and 95% air [46]. Thereafter, the culture media were 

aspirated, and the plates were rinsed four times with phosphate-buffered saline (Sigma­

Aldrich, St. Louis, MO) and once with fresh serum-free culture medium. These serum­

free culture media were collected as 0 h controls. The cells were then incubated in fresh 

serum-free culture media for 24--48 h. The cell viability was checked using trypan blue 

dye assay after every 24 h. The serum-free conditioned media was collected after 24 h for 

SCC4, SCC38 cells, after 24 and 48 h for HSC2 cells, and after 48 h for AMOSIII cells, 

considering >95% cell viability until these time points. These conditioned media were 

filtered through 0.2 µm nylon filters, snap-frozen in liquid nitrogen and stored at -80°C 
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until further processing. The conditioned media from a total of 30 plates per cell type 

were pooled for analysis. 

2.2 Protein precipitation from conditioned media 

The workflow and experimental design used in this study are shown in Figure 1. 

Proteins in the conditioned media were precipitated using 0.02% sodiwn deoxycholate 

(Sigma- Aldrich) and 10% trichloroacetic acid (Sigma-Aldrich) as described earlier [47]. 

Following 2 h precipitation on ice, the samples were centrifuged for 30 min at 11 OOOxg 

and washed twice with ice-cold acetone. The precipitated proteins were redissolved in 

50mM ammonium bicarbonate and their concentrations determined using the Bradford 

assay (Bio-Rad, Hercules, CA). The protein samples were then heated at 60°C for 1 h in 

the presence of 5mM DTT, cooled to room temperature, and then alkylated by incubation 

with 1 OmM iodoacetamide for 1 h in dark. Sequencing grade trypsin (Promega, Madison, 

WI) at 1 :20 w/w in 50mM ammonium bicarbonate was then added, and the samples were 

incubated at 37°C overnight [46]. The digested samples were then dried under vacuum 

and redissolved in 10 mL of 0.1 % formic acid. 

2.3 LC-MS/MS analysis 

The redissolved digested samples were analyzed using nanobore LC system (LC 

Packings, Amsterdam, The Netherlands) and QSTAR Pulsar (Applied Biosystems/MDS 

SCIEX, Foster City, CA) as described earlier 21. One-microliter aliquot of the sample (-

100 µg) was loaded onto a C18 RP precolumn (LC Packings: 300 µmx5 mm) and 

desalted before separation on an RP analytical column (75 µmx150 mm packed in-house 
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with 3-µm Kromasil Cl8 beads with 100 A pores, The Nest Group). We used a non­

linear binary gradient: eluant A consisting of 94.9% deionized water, 5.0% ACN, and 

0.1 % formic acid (pH 3); and eluant B consisting of 5.0% deionized water, 94.9% ACN, 

and 0.1 % formic acid for the separation. Eluant A was used to load the sample onto the 

C18 precolumn at a flow rate of 25 µL/min. After 8 min, the C18 precolumn was 

switched inline with the RP analytical column; separation was performed at 200 nL/min 

using a 180-min binary gradient shown in Table 1. 

MS data were acquired in information-dependent acquisition (IDA) mode with the 

Analyst QS 1.1 and Bioanalyst Extension 1.1 software (Applied Biosystems/MDS 

SCIEX). MS cycles comprised a TOF MS survey scan with a mass range of 400-1500 Da 

for 1 s, followed by five product-ion scans with a mass range of 80--2000 Da for 2 s each. 

The collision energy was automatically controlled by the IDA collision energy 

Parameters script. Switching criteria were set to ions with m/z 2::400 and ~1500, charge 

states of 2-4, and abundances of2::10 counts. Former target ions were excluded for 30 s, 

and ions within a 6-Da window were ignored. Additionally, the IDA Extensions II script 

was set to "no repetition" before dynamic exclusion and to select a precursor ion nearest 

to a threshold of 10 counts on every fourth cycle [20, 21]. The protein samples from 

SCC4, SCC38, and HSC2 cell lines were analyzed using online LC-MS/MS in duplicates 

while AMOSIII cells were analyzed once only. 
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Figure l Outline of work/low for identification of proteins secreted by HNOSCC cell lines. 

50 mM ammonium bicarbonate and their concentrations determined using the Bradford assay 

(Bio-Rad, Hercules, CA}. The protein samples were then heated at 60°C for 1 h in the presence of 

5 mM OTT, cooled to room temperature, and then alkylated by incubation with 10 mM 

iodoacetamide for 1 h in dark. Sequencing grade trypsin (Promega, Madison, WI} at 1:20 w/w in 

50 mM ammonium bicarbonate was then added, and the samples were incubated at 37°C 

overnight 46. The digested samples were then dried under vacuum and redissolved in 10 µl of 

0.1%formic acid. 

Table ·t 18()..min binary gradient used 'for separation 

Tlme (min) 0 5 10 120 140 145 155 157 1as 

B (%, 5 5 15 35 60 80 80 5 Stop 
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2.4 Bioinformatics 

LC-MS/MS data were searched using the ProteinPilot software 2.0.1. (Applied 

Biosystems) against an NCBI human protein database containing 207 920 protein 

sequences (version of the June 2, 2010) Protein identification was performed using a 

confidence threshold of 95% (ProteinPilot Unused score 2:1.31) with methyl 

methanethiosulfonate selected as cysteine modification, and with the search option 

"emphasis on biological modifications" checked. The same LC-MS/MS data was 

searched against a concatenated database plus decoy database created from the above 

NCBI human protein database containing 323 410 protein sequences. Identified proteins 

with global false discovery rate (FDR) less than 5% were considered for further analysis 

[48]. SignalP (http://www.cbs.dtu.dk/services/SignalP 3.0) was used to analyze identified 

proteins for classical protein secretion features [ 49]. SignalP predicts the presence and the 

location of signal peptide cleavage sites in the amino-acid sequences by a combination of 

artificial neural networks and hidden Markov model algorithms to detect signal peptides 

from input protein sequences. The presence of secretory signal peptide sequences was 

determined with a probability 2:0.9. SecretomeP (http://www.cbs.dtu.dk/services/ 

SecretomeP 2.0) was used for non-classical and leaderless protein secretion [50]. 

SecretomeP utilizes a neural network combining six protein features to predict whether a 

protein sequence undergoes non-classical secretion or not; these features include the 

number of atoms, number of positively charged residues, presence of transmembrane 

helices, presence of low-complexity regions, presence of pro-peptides, and subcellular 

localization. A given protein is considered non-classically secreted if it contains a non­

classical (non-signal) peptide-triggered protein secretion with score 2:0.5; only proteins 
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that did not contain a signal peptide as determined by SignalP were legitimate candidates 

for this analysis. Ingenuity Pathway Analysis (IP A, Ingenuity Systems, 

www.ingenuity.com) was used to determine the subcellular localization and biological 

functions of the identified proteins (for detailed information on IPA, visit 

www.ingenuity.com). We classified a protein as "secreted" if it satisfied at least one of 

the following four criteria: (i) its subcellular location is extracellular or membrane-bound, 

according to IPA; (ii) it is classically secreted, according to SignalP; (iii) it is non­

classically secreted, according to SecretomeP; or (iv) it is non-classically secreted by the 

exosome pathway, according to the literature. 

2.5 Patient samples and Western blot Analysis 

Serum samples were collected from patients diagnosed with HNOSCC (n=12) 

while control sera were obtained from healthy donors (n= 12) undergoing annual checkup 

at the All India Institute of Medical Sciences, New Delhi, India, with approval of the All 

India Institute of Medical Sciences Ethics Committee after obtaining consent of the 

patients. Blood was collected and processed for serum isolation following the standard 

operating procedure recommended by the Early Detection Research Network [51]. The 

clinical details of the patients are given in Supporting Information Table IS). Sera 

samples were depleted of the 20 most-abundant proteins using the Proteoprep 20 Plasma 

Immunodepletion kit (Sigma-Aldrich) following the manufacturer's specifications before 

Western blotting. Briefly, 8 µL of sera samples were diluted in 100 µL of equilibration 

buffer and filtered through Coming Spin-X centrifuge tube filters. The diluted sera were 

loaded onto the packed bed medium and incubated for 15-20 min. The spin column was 
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centrifuged at 2000xg for 1 min and the flow through was collected in a fresh tube. The 

remaining serum proteins were washed from the spin column by adding 100 µL of 

equilibration buffer and centrifuged to collect the flow through in the same tube. The 

combined flow-through contained the serum proteins minus the targeted abundant 

proteins; this depleted serum sample was concentrated using speed-vac. Western blotting 

was carried out to detect the proteins: a.-enolase, peptidyl prolyl isomerase Ncyclophilin 

A (PPIA), 14-3-3 ~' heterogeneous ribonucleoprotein K (hnRNPK), and 14-3-3 cr in these 

sera samples as described earlier [20, 21, 52]. The criteria of selecting candidates for 

verification were (i) identification in our earlier iTRAQ studies; (ii) biological relevance; 

and (iii) prognostic relevance established in tissues in our earlier studies [20, 21, 52]. The 

details of the antibodies and dilutions used are given in Supporting Information Table IIS. 
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3 Results 

3.1 Secretome analysis of HNOSCC cell lines 

The LC-MS/MS data thus obtained was searched against NCBI human protein 

database plus a decoy database for each cell line (see Supporting Information Table HIS 

a-f). The proteins with global FDR more than 5% were excluded from further analysis. 

Only unique proteins were considered for further analysis. Following these criteria, we 

identified a total of 183 unique proteins in the secretome analysis of HNOSCC cell lines 

(Table 2), of which 140 proteins were non-redundant among these cell lines (see 

Supporting Information Tables IVS). The number of unique peptides with a confidence 

score of~80% per identified protein in conditioned media of each of the four HNOSCC 

cell lines are shown in Table 2. The overlap of two independent replicates (Runs 1 and 2) 

of proteins identified in conditioned media of SCC4, SCC38, and HSC2 are shown in 

Supporting Information Fig. IS. On an average 60% overlap was observed among 

different runs for the same cell line (Supporting Information Fig. IS). The overlap of 

proteins identified in conditioned media of HSC2 collected twice at 24 h and once at 48 h 

are shown in Supporting Information Fig. IIS. Figure 2 shows the extent of overlaps 

between proteins identified in the conditioned media of the four cell lines. Supporting 

Information Fig. HIS shows a Coomassie stained gel showing the reproducibility of the 

experimental procedures followed for secretome analysis. 
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Table 2. The total number of proteins. identified per number of 
unique peptides in conditioned media of four HNOSCC 
~eH lines 

No. peptides identified SCC4 HSC2 SCC38 AMOSIH 

1 1 21 2 6 
2 6 19 7 22 
3 4 6 1 17 
4 2 5 3 10 
;;::5 2 19 4 25 
Total 15 70 18 80 

SCC38 
18 proteins 

SCC4 

5 

15 proteins 

56 

HSC2 
70 1>rofeins 

AMOSUI 

80 1>rotelns 

Figure 2. Overlaps of non-redundant proteins identified in the 
conditioned media of SCC4, HSC2, SCC38, and AMOSlll cells 
lines. 
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3.2 Bioinformatic analysis 

Extracellular and membrane-bound proteins have higher probabilities of being 

secreted or shed, and being available in the conditioned media and probably in serum. 

Thus, using bioinformatics approach, we determined the subcellular localization of 

identified proteins using IP A software. About, 28.1 % of the non-redundant proteins 

identified in this study were found to be extracellular, while 16.0% were membrane­

bound (Fig. 3). Of the 140 proteins identified in this study, 122 proteins satisfied our 

criteria and were classified as secretory proteins while the remaining 18 proteins were 

excluded from further study (Table 3). According to the IPA anthology, 54 proteins in 

Table 3 were localized in the extracellular space and 21 were membrane proteins. Our 

analysis using SignalP bioinformatic program predicted that 75 are likely to be secreted. 

Another 29 proteins can be secreted according to SecretomeP analysis. Twenty-three 

proteins could be secreted from cells via the exosomal pathway [53-60]. Twenty-six 

proteins were reported to be present in either in blood, saliva, or secretome [22, 61] and 

therefore were included in Table 3. Cytoplasmic 14-3-3 a was included in Table 3 

because it can be found in extracellular space as well according to IP A. 
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Cytoplasm 
26.7% 

SCC4 

SCC38 

Exrra~Uular 
tl.1% 

Membrane 
ll.l % 

Nuele~ 
t.3% 

HSC2 

Umiassirkd 
4.:2% 

Al\·IOSUI 
U nelassi fiet1 

5.0% 

E..ottracellular 
18.6% 

l\'lend• ra.ne 
14 . .3% 

Exlra';-ellulur 
56.3% 

Figure 3. Subcellular locations of proteins identified in condi­
tioned media of the SCC4, HSC2, SCC38, and AMOSlll cancer cell 
lines. Percentages of the proteins are given. 

3.3 Western blot analysis 

To determine the potential of 122 identified proteins as serum-based cancer 

biomarkers, we aimed to detect a.-enolase, PPIA, hnRNPK, 14-3-3 ~'and 14-3-3 cr in sera 

ofHNOSCC patients and healthy controls using Western blot analysis. Our results of 

Western blotting revealed increased levels of a.-enolase, PPIA, hnRNPK, 14-3-3 l;:, and 

14-3-3 cr proteins in the majority of the serum samples obtained from HNOSCC patients, 

in comparison with the sera obtained form healthy volunteers as shown in Figs. 4A and 

B. A coomassie stained gel of sera samples is also shown in Supporting Information Fig. 

IVS demonstrating equal loading in each lane of SDS-PAGE. 
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Tat>le 3. Socrotod proteins identified by LC·MSIMS in HNOSCC conditioned media 

Proto ins Atoossion SCC4 SCC33 HSC2 AMOSlll Protein SignalP SeeretomeP Found in OverMexpressed 
hO. ontologyW probabiliryn1 seortf'1 in HNOSCC91 

Exosomes01 Blood/saliva/ 
Mt;tetome 

26kDa proti)in (aa 32-212! memo sapiens'I gil2383$ M 0 0.759 

2 45kDa caleium.:binding protein isoform 1 pracursor gil110~13 c 0.999 
3 Aetivatoo leukocyte e~I adhf!siQn molf!c1,ile variant 1 gll949&1i7 M 0.996 
4 Attivatoo T-eall mark&r CD109 9113139923.6 M o.m 
s .Agrin pre<:ur$0r 9112$88422 M 0.999 

6 Aldolasu A (ALOOAI gil49450115 c 0 0.356 fS3] 

1 •:tEnQlaS$ gilG2896593 c 0 0.536 {!>4, 551 1221 [311 

8 Amyloid (!A4 protefn isoform e precursor 9ilW991SS70 M 
9 Amyloid precursor prot~in homolog HSD-2 gil5102388 E 1 

10 82:3 nucleophosmin (2.80 AA) 91182.5611 N 0 (}.811 [3.8] 

11 ~) Actin variant 911628$1615 c 0 0.498 H~6l 161] 
1.2 1)-2 MicroglobUlin gil34618 M 1 
13 Calgiztarin (hCG2013319) gll119«>3728 u () 0.155 [37] 

14 Calmodulin gil82563.5 M 0 0.676 

15 Calroticulin p~ursor variant gil62S97~1 c 1 

16 Calsyntenin 1 .• isoforrn CRA,,.b gill 195820:36 • M 0 0.132 
17 CaprinM1 isoform 1 gil42.SS8250 M 0.112 0.009 {61] 

18 C044 mol~ule (lndia11 blood group) gil10432372 M 0.997 
19 Clusterin isoform 3 gi1283006712 E 0.312 0.491 

20 Cofilin·1 gil5001535 N 0 0.&:28 1531 (35] 

2:1 Collagen •:t-HU ettain gi1296439504 E o.900 
22 Collagen. typec XVII, ,l. 1, isofonn CAA_b gill195&9998 M 0 0.153 
23 Colony-stimulating factor 1 (macropnaga), gilt 19516821 E 0.991 f61J 

isoform CRA~b 
24 Complem~nt component 1, q subcomponent- gil 1196'107 43 c 0.849 O.& 

binding pr()t(lin, isoform CAA,..e 
2S Complement component C3 gil119ti65 E [61] 

26 Connective tissue growth factor preeursor gil4003123 E 
11 CX-C motif el\emokin~ 2 gil4504155 E 
28 Cystatin-C procursor gil4503"107 E 
29 Dfckkopf-ralated protein 3 :precursor gil4054838.9 E 1 
3) OV&ttoglycan gll229462879 • M 0.999 
31 EIF3S4 gi1481403a-5 c 0 0.615 
32 Eiongation factor 2 gil18i969 c 0 G.38 nm 
~ Eukaryotie translation elongation factor 1 gll62897611 c (}.(103 0.155 tS3. 541 (31. 38] 

a. 1 vatiam 
34 family with sequence similarity 3, member gil'7661114 E 0.906 

C precursor 
~ fatty acid-binding protein1 tlPidermal gil4557581 c 0 0.7'7 

~ fibronectin t isoform CAAJ gil119590945 M O.Mi f22] l23) 

~ SI follistatin·relatiXi prot(Jin t pr(.'CIJl'SOr gll5$0W56 E 1 
00 38 Glutathione S.transfurase-P1c gil126098 c 0.004 0.545 {58] {22] (21. 27. 32, 35. 37] 
~ 

~ Glycerald&hy00-3.phosphate dehydrogenase gil31645 • c 0 0.467 {$4, 55, 58] {22, 611 137] 
40 Granulln gil183613 E M99 {611 



Table 3. Secreted proteins identified by LC«MSJMS in HNOSCC conditioned media 

Proteins Acoession SCC4 SCC38 HSC2 AMOSlll Protein SignalP 5-0cretomeP Found in Over-expressed 

no. onto log~' p t,O bab ilifV°1 $Core'" in HNOSCcni 
8c.OSOtrulS

61 Blood/saliva/ 
seeretome 

1 26kDa protei" (aa 32-2:12~ (Homo saplenrti gil238:35 M 0 0.159 

2 45k0a calelurn·binding protein isoform 1 precursor gil7100573 c 0.999 

3 Activated leukocyte cell adhesion molecule variant '1 gil94%2117 M 0.996 

4 Aetivattd T-ooll marker C0109 gil373$236 M 0.998 

5 Agrin precursor gi12988422 M 0.999 

6 Aldolase A iALOOAi gil4S45611$ c 0 o.l56 {!>31 

7 aEnolase gi1028$593 c 0 0.536 [S4, 561 (221 1371 

8 Amyloid ~A4 pivtein isofurm e precursor gil20001~510 M 1 

9 Amyloid preGursor protein homolog HSD-2 gil57023$8 E 1 

lO 82:3 nuctoopho;&min (200 AA} gil8256'11 N 0 o.811 1381 

l1 ~ Amin variant gil62007625 c 0 Q.498 (Sal [61] 

l2 r~2 Microglobulin gil3.461& • M 1 

t3 Calgiuarin (hCG2013819) gil 119$)3728 .. u 0 0.155 mi 
14 Calmodulin gil82Sm5 M 0 0.616 

15 Calreticulin precursor variant gi162S916S1 c 1 

ts Calwntenin t isofurm CRA_b gil11$592036 M 0 0.132 

17 Caprin~l isoform 1 gi142558250 M 0.1'12 o.on [6'1} 

lS CD44 molecule (Indian blOt)d group) gi1104:lW2 M 0.991 

19 Clusterin isoform 3 gil2838)6ll2 E 0.3'12 0.49'1 

20 Cofili,...1 gil5031635 N 0 0.628 (531 (35] 

21 Collagen ~-1(1) chain gil2964.19M4 E 0.999 

22 Collagen! type XVII. 'l 1. isoform CAA..,b gill 19569998 M 0 0.153 

23 Colony-stimulating factor 1 (macrophage), gil119S'l6821 E 0.997 [SH 

isofurm CRA_b 
24 Complement component l, q subcomponent· gil119610143 c 0.849 0.6 

binding protein, isoform CRA,..c 
2S Complement oompooont C3 gil119&>S E C6H 

26 Connecti~ tiS$\J$ growth factor pl'$¢iJl'$Or gi14503123 E 

11 C-X-C motif chemokine 2 gil4-504155 E 

28 Cystatin-C precursor gil4503107 E 1 

29 Oieklt,o_pf-retated protein 3 pre~ursor gi14-0&48389 E 1 

~ [);sttoglycan gil229462879 M 0.999 

31 Elf3S4 gil481'6385 c 0 0.675 

32 Elongation factor 2 gi1181969 • c 0 o.38 (S1l 

~ Eukaryotic translation elongation factor l gil62897621 c 0.003 0.155 (53. 54] (31,38] 

·:t 1 variant 
34 Fam Hy with sequence similarity 3, member gili(i.61114 E Q.906 

C precursor 
3S Fatty acid-binding protein, ~idarmal gi14S57581 c 0 0.141 

...,: 36 Fibro~tin 1! isoforrn CRAJ gil119~45 M 0.997 (22J 1231 

ex 37 FollistatirHelated proteirl 1 pre.eursor gi15901956 E 1 
IJ 

38 G.lutathione S.transferase-Ptc gi1126008 c 0.084 0.545 (581 (221 [21. 21, 32, 35, 31] 

39 Gtyceraldehyda-3-phosphate dahydroganase gil31645 c 0 o.461 154, 55. 581 (22. 61] 131! 

'° Granulln gil18l613 E 0.999 [611 



Table 3. Continued 

# Proteins Aeoossion SCC4 SCC38 HSC2 AMOSlll Protein SignalP Secr«omeP Found in Over·expresse<J 

~. ontolog-('1 probabili~1 seorac:.1 in HNOSCCU1 

£xoso mus"11 Bloodlsalival 
secretome 

41 Granuloevte eolo1w·$tirnulatin9 factor gil2i431049 • E 0.994 

isoform b precursor 
42 GRP18 :pr~ursor gil38:67S.S c l (611 lWl 
43 H2AFX gil4814027S • N 0.116 o.53-5 154) 

44 hCG 198305S gill 1961943-6 u 0 0.642. 
45 Heat shock protein 21 gil662~1 • c 0 0.74 1591 [221 122. 31. 32, 34, 

35, 371 

'6 Hctat sl'toek protein HSP 90-<:t isoform 1 gil1S3i92S'90 • • c 0 0.204 IPA 

41 He-Ot shock proteio HSP 90.t} gil201$594 .C 0 0.204 IPA 

48 Heparan sulfate proteoglycan gil1844Zi M 1 

49 Histo oo H2A typtl 3 gi I l 5.t>111$:"9 • N O.U91 0.515 

50 Insulin-like. growth factor binding protein 4 gil54696:6U ·E 1 

51 11'\Sulin·like gtQWth factor binding protein 6 gil183894 .. ·E 1 

52. lt\$Ulin~like growth factor binding protein 7, gil119625925 .. .. •E 0.9'98 1&11 

isofo rm CRA..a 
53 Interleukin 8 gil33999 ;E 

54 Kunitl·fype protease inhibitor 1 isoform gil3231-3.'59'9 E 
1 precursor 

55 Laminin a. 3b chaitl gil46020-022 -E 

56 Laminin B2 chain gii18696.4 .E 
SJ Laminin S B3 chain gil51()70'3 E [261 

58 Laminin subunit P,.1 precursor gil1610145-04 • E 

59 Larninin, y2 gilSSS.66.9&5 .E 

00 Loctin, galactosido-binding. soluble. 3 gil119609949 M f50l 
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Figure 4. Detection of secretome proteins in HNOSCC patients' 
sera by Western blot analysis. (A) Sera from patients diagnosed 
with HNOSCCs (C1-C12) and normal controls (N1-N12) were 
depleted for abundant proteins using Proteoprep 20 Plasma 
lmmunodepletion kit as described in Section 2. Equal amounts 
of depleted sera were electrophoresed on 12% SOS-PAGE. 
Western blot analysis was carried out using specific antibodies 
for the panel of proteins: a-enolase, PPIA, hnRNPK, 14-3-3 ~and 
14-3-3 cr. Western blotting showed increased expression of (i) e<­
enolase; (ii) PPIA; (iii) hnRNPK; (iv) 14-3-3 ~ and (v) 14-3-3 er in 
sera samples of HNOSCCs (C1-C8) in comparison to sera of 
healthy controls (N1-N8). Whole cell lysates of SCC4 cells were 
used as a positive control; (8) Panel shows additional western 
blots of (i) e<-enolase, (ii) PPIA, (iii) 14-3-3 ~ in sera from HNSCC 
patients (C8-C12) and normal controls (N8-N12) with whole cell 
lysates from SCC4 cells used as a positive control; (iv) Panel 
shows a ponceau-stained PVDF membrane showing equal 
loading of the protein. 
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4 Discussion 

Head and neck cancer is a heterogeneous disease including different sites such as 

oral cavity (includes tongue, buccal mucosa, alveolus, lip, retromolar trigone, floor of 

mouth), pharynx, larynx, nasopharynx, and salivary glands. In addition, different risk 

factors and ethnic variations add to the complexity of the molecular pathogenesis of this 

malignancy. Thus, our study is unique in giving a comprehensive overview of the 

secretome analysis of four HNOSCC cell lines obtained from different sites of origin and 

ethnicity. Our study resulted in identification of 140 non-redundant proteins among four 

cell lines on the basis of 5% global FDR. Following stringent criteria and bioinformatic 

analysis as described in materials and methods, we successfully identified 122 secretory 

proteins as compared to a recent report by Weng et al., [22] which identified 37 secreted 

proteins only. Notably, 15 of these 37 proteins including PPIA, a-enolase, 14-3-3 l;, 

pyruvate kinase M2 (PKM2), glutathione-S-transferase P 1, profilin 1, glyceraldehyde 

phosphate dehyrogenase, triosephosphate isomerase 1, fibronectin 1, HSP27, neutrophil 

gelatinase associated lipocalin, peroxiredoxinl, transforming growth factor-~ induced 

protein IG-H3 precursor, thrombospodin 1, and plasminogen activator inhibitor 1 were 

common among these studies, thereby supporting our data. Among others, 12 proteins 

have also been reported in earlier investigations on the oral cancer secretome [22]. 

Interestingly, seven of these secretory proteins have been identified in our previous 

reports showing overexpression of these proteins in HNOSCC tissues using iTRAQ 

labeling followed by multidimensional LC-MS/MS suggesting their origin from head and 

neck cancer cells only [21]. These proteins included 14-3-3 l;, PPIA or cyclophilin A, 

glutathione-S-transferase Pl, 14-3-3 cr, calgizzarin, prothymosin a, and lactate 
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dehydrogenase A. In addition, overexpression of several other proteins identified in our 

secretome analysis has also been reported in head and neck cancer tissues [22-39]. 

A major limitation of our study is the use of only a single dimension of separation 

(nano LC) for the analysis of the secretome that probably accounts for the fewer number 

of proteins identified. Several recent reports employing two-dimensional separation have 

shown that the secretome contains > 1000 high confident proteins that can be reliably 

detected in replicate analysis [4, 13, 14, 62, 63]. These studies have demonstrated the 

efficacy of secretome-based strategies in a variety of cancer types [62]. In these studies, 

proteins secreted from cancer cells into serum-free media were resolved by one- or two­

dimensional gels followed by in-gel tryptic digestion and analysis by MALDI-TOF MS 

or LC-MS/MS. Comparison of these studies showed in general that more proteins were 

detected in the secretome using the LC-MS/MS method than the MALDI-TOF [62]. 

Moreover, recent studies have focused on comparison and analysis of various first­

dimensional separation techniques prior to nanoLC MS/MS and have provided evidence 

that the use of 1-D gel electrophoresis in combination with LC-MS/MS yield highest total 

number of identified proteins as well as highest reproducibility in biological replicates in 

comparison to other procedures such as RP and strong cation exchange chromatography 

[62, 63]. In light of these recent reports, the lower number of total proteins identified in 

the present study may be attributed to the use of one-dimensional LC MS/MS. Taken 

together, these reports suggest that cancer cell secretome is too complex for a direct 

nanoLC-MS/MS analysis. Nevertheless, the detection of some of the proteins identified 

in our secretome analysis in HNOSCC patients' sera underscores the great potential of 
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such cell-culture based secretome analysis for discovery of serum-based protein 

biomarkers. 

a-Enolase, a glycolytic enzyme that converts 2-phospho-D-glycerate to 

phosphoenol pyruvate, is a multifunctional enzyme involved in several cellular processes, 

including growth control, tolerance to hypoxia, and allergic responses [64]. It is also a 

plasminogen-binding protein involved in the promotion of plasminogen activation by 

leukocytes. In our study, increased expression of a-enolase has been detected in five of 

eight HNOSCC serum samples in comparison to sera obtained from healthy volunteers. 

Similarly, a-enolase has been identified as a secretory marker in the serum of breast, 

kidney, prostate, ovarian, pancreatic, and non-small cell lung cancer patients. 

Interestingly, a-enolase has been proposed as a predictive maker in lung and prostate 

cancer for evaluating response to treatment in [65, 66]. PPIA contributes to the 

maintenance of proper conformation of nascent or denatured proteins and also provides 

protection against environmental insults [67, 68]. Upregulation of PPIA in small cell lung 

cancer, pancreatic cancer, breast cancer, colorectal cancer, squamous cell carcinoma, and 

melanoma has been reported [68-71]. In our study, we detected PPIA in HNOSCC serum 

samples. However, their relevance as head and neck serum-based biomarkers for 

diagnosis, prognosis, or predicting the response to therapy needs to be investigated. 

In our recent studies using iTRAQ analysis on tissue homogenates, we observed 

increased expression of 14-3-3 sand 14-3-3 cr isoforms in OPLs and HNOSCCs in 

comparison to normal tissues [20, 21, 46, 72, 73]. In this study, we observed increased 

levels of both these isoforms in sera of HNOSCC patients in comparison to healthy 
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volunteers. Taken together, these studies suggest the relevance of both these isoforms in 

head and neck carcinogenesis and warrant a further investigation to determine their 

clinical impact on evaluation of prognosis and predicting response to therapy as serum­

based biomarkers. Notably, 14-3-3 l; has been shown to be secreted by tumor-associated 

monocytes/macrophages from the ascites of epithelial ovarian cancer patients, and 

speculated to play a role in regulating inflammatory pathways of the epithelial ovarian 

cancer microenvironment and serve as a biomarker of tumor-associated inflammation 

[74]. The expression of 14-3-3 l; has also been associated with the degree of cancer 

peritoneal metastasis, the emergence of ascites, bilateral involvement, and the clinical 

stage of ovarian cancer patients [75]. In addition, 14-3-3 l; has been reported in serum of 

lymphoma-bearing SJL mice and the tear fluid. 14-3-3 l; is known to function as an 

adapter protein, interacting with over 100 cellular proteins, and is involved in blocking 

apoptosis and promoting cellular proliferation, adhesion, and cellular movement [76]. 14-

3-3 l; has also been reported to interact with ~-catenin, enhance or inhibit ~-catenin­

dependent transcription, facilitate activation of ~-catenin through Akt, and participate in 

stem-cell development [13]. Combined gene-expression analysis of whole-tissue and 

microdissected pancreatic ductal adenocarcinoma has identified 14-3-3 CJ to be 

specifically overexpressed in the tumor epithelia and correlated with poor disease 

prognosis [77]. 14-3-3 CJ was also identified in the proteomic analysis of laryngeal secs 

[78] and oral SCCs [79]. Most importantly, tissue proteomics showed the overexpression 

of 14-3-3 CJ in OPLs and HNOSCCs, and correlated overexpression with disease 

prognosis [20, 21, 46]. 
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Another important protein identified in our secretome analysis of cell lines and 

verified in serum ofHNOSCC patients was hnRNPK. However, we failed to include 

hnRNPK in Table 3, as it did not meet our criteria to establish the secretory proteins, as 

they were probably overly stringent. The use of 5% of global FDR for confident protein 

identification is the accepted procedure to minimize false-positive identifications. 

However, this requirement can probably be relaxed when additional information is 

available, e.g. from a previous analysis, to reduce the exclusion of legitimate proteins. 

Tissue proteomics has identified hnRNPK in oral dysplastic lesions and head and neck 

cancers [20]. In addition, its overexpression in early preneoplastic stages has been 

independently verified and correlated with poor prognosis [20, 80]. It is noteworthy that 

hnRNPK has also been reported to be overexpressed in nasopharyngeal carcinoma [28, 

29, 81], prostate cancer [82], and other human cancers [83]. 

To summarise, secretome analysis ofHNOSCC cell lines using optimized cell 

culture and LC-MS/MS resulted in the identification of 122 secreted proteins. Further, we 

verified the expression of a-enolase, PPIA, 14-3-3 l;, hnRNPK, and 14-3-3 a in serum of 

HNOSCC patients establishing their potential as putative biomarkers. The detection of 

these proteins in sera underscores the analytical potential and viability for a blood-based 

assay for these putative HNOSCC biomarkers in the future. Individually, the proteins are 

not specific to HNOSCC and have been detected in other human cancers also. However, 

as a panel, they may provide enhanced selectivity to HNOSCC; this verification will 

require large-sample studies involving other cancer types. In short, the secretome analysis 

of head and neck cancer cell lines provided a rationale and tractable means to identify 

serological biomarkers and opportunities for MS-based clinical proteomics. Thus, results 
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of the current and previous investigations demonstrate that examining the secretome 

analysis of HNOSCC cells provided a viable and effective means to determine protein 

candidates that may serve as surrogate tumor markers. 
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Chapter 6 

General Discussion and Conclusions 

6.1. Reproducibility of retention time 

The reproducibility of the retention time of an analyte in RP-LC is one of the 

most important factors in the quality of protein identification using the methods as 

described in Chapters 3 and 4. For PIE to be effective, the retention times of the 

peptides, identified in the first LC-MS run, must be similar (within 3 min) to those in the 

second and third runs; otherwise, most of the same peptides will be identified again (see 

Figure 2.10). 

The retention time is affected by variations in column flow rate, temperature, 

composition of the mobile phase, and surface composition of the stationary phase, which 

may be affected by contamination (by irreversibly adsorbed peptides) or degradation. 

The LC-MS experiment was designed so that ten samples could be analyzed per 

day. Usually, the first LC-MS identification run of the ten samples was sequentially 

performed on the first day; then the second run of the same samples was performed on 

the next day with PIE; and finally, the third run of the samples was performed with PIE 

on the third day. It was noticed that if the same ten samples were run on two consecutive 

the days, the retention times would increase by 2 - 4 minutes. The shift was caused by 

the evaporation of methanol through an opening in the reservoir lid from which eluant B, 

consisting of 94.9% methanol, was withdrawn. The tolerance window for exclusion was 

set at 3 min; thus, the shift in retention times significantly affected the exclusion, causing 

redundant protein identifications. The problem of methanol evaporation was easily 
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solved by topping up the reservoir with fresh eluant B before each run. By doing so, the 

retention time shifted by no more than 0.5 - 1 min, allowing the PIE to be much more 

effective. 

Occasionally, the temperature varied between consecutive days, causing a 

retention time shift. In this case, PIE could still to be used by compensating for the shift. 

The extent of the shift was first assessed by performing a survey run using one of the 

samples run the day before. Three peptides were selected, and their retention times from 

the two consecutive days (RTl and RT2) were recorded along with their rn/z values 

(Table 6.1). The ratio of the retention times for each peptide (RT2/RT1), and the average 

of all three ratios, le, were calculated. By multiplying RTl of all of the peptides in the PIE 

list by le, the expected retention times were determined (re-calculated RTl ). The re-

calculated retention times were very similar to the actual times in the survey run (R T2 in 

Table 6.1 ), allowing the PIE method to work. 

Table 6.1. Re-calculation of the retention times for PIE list. 

For PIE list 
m/z RT1, min RT2, min RT2/RT1 k=average of re-calculated m/z re-calculated 

RT2/RT1 RT1, min RT1, min 

893.101 35.41 40.61 1.15 1.1479 40.65 893.101 40.65 
678.552 52.06 59.01 1.13 59.76 678.552 59.76 
1123.874 69.88 81.304 1.16 80.22 1123.874 80.22 

RT1: retention time of the peptide in 15tLC-MS run, RT2: retention time of the peptide in 2nd LC-

MS run. 
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6.2. The role of Pfnl in the tumors of different tissues 

According to our findings (Chapter 5), and those of Minamida et al., [1] Pfnl is 

overexpressed in ccRCC, but is underexpressed in most aggressive adenocarcinomas [2]. 

This suggests that Pfnl is involved in different tumorigenic mechanisms in different 

tissue types, as was mentioned in Chapter 4. 

In carcinogenesis, the ability of cells to invade and migrate past the basement 

membrane may be dependent on conformational changes within the cellular backbone. In 

most cells, Pfnl remodels the actin cytoskeleton by regulating actin polymerization [3]. 

G-actin monomers are produced from the disassembling of F-actin filan1ents, where Pfn 1 

assists the exchange of ADP for ATP on G-actin (mechanism is shown in Figure 6.lA). 

The functions of Pfnl in ccRCC have not been fully elucidated; however, the findings 

here suggest that Pfn 1 may control migration of metastatic ccRCC cells via traditional 

actin-cytoskeleton pathways. 

In contrast, Bae et al. reported that Pfnl triggers cell migration in metastatic 

MDA-MB-231 breast cancer cells, not through a traditional actin cytoskeleton 

rearrangement, but through a regulation of PI(3,4)P(2) [2]. This mechanism is shown in 

Figure 6.lB. PI(3,4)P(2) recruits lamellipodin (Lpd) and Ena/V ASP to the lamellipodial 

tip where the two proteins bind and trigger cell motility. If Pfnl is expressed in the cell, it 

binds PI(3,4)P(2), thereby, limits the recruitment of Lpd and Ena/V ASP which, in tum, 

inhibits cell motility. Therefore, Bae et al. proposed that Pfnl inhibits the motility of 

MDA-MB-231 cells by negatively regulating PI(3,4)P(2). 
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Figure 6.1. Different roles of P/n1 in tumorigenic mechanisms in ccRCC and breast cancer. (A) 

In ccRCC, Pfn1 may control migration of metastatic cells via traditional actin-cytoskeleton 

pathways. {B) In contrast, Pfn1 inhibits the migration of MDA-MB-231 cells by negatively 

regulating Pl{3,4}P{2). 

6.3. The importance of using a panel of cancer biomarkers 

As was discussed in Section 1. 7 .3, the sensitivity and specificity biomarkers 

markedly improve by assembling them into panels ofbiomarkers [4]. It was pointed out 

how cancer-specific, biomarker panels can be assembled from cancer- nonspecific 

biomarkers. Here, we discuss how the cancer-nonspecific biomarkers, identified in this 

work, can be assembled into panels for the diagnosis/prognosis of different types of 

cancers. The cancer-nonspecific biomarkers found in our investigation of ccRCC were 
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LDHA, ENOl, HSPBl, HSPEl, AHNAK, and Pfnl (see chapter 3 and 4). These have 

also been reported as biomarkers for breast cancer [2, 5, 6], brain cancer [7-10], and 

endometrial carcinoma [11-13]. Figure 6.2 shows four panels assembled from the six 

biomarkers, which can be used for the diagnosis/prognosis of four different cancers. The 

overexpression of LDHA, ENOl, and HSPBl indicates that one of the four cancers in 

present. The particular cancer is identified by the pattern of over- or underexpression of 

the remaining three biomarkers (HSPEl, AHNAK, or Pfnl) . 
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Figure 6.2. Panels of biomarkers for the diagnosis/prognosis of four different cancers 

constructed from the six biomarkers identified in this thesis. Red symbolizes overexpression, 

whereas green symbolizes underexpression. 
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6.4. Closing Remarks 

Cancer biomarker discovery is a growing field whose findings will eventually 

improve the management of cancer. The availability and quality of biological samples, 

and the variability among those taken from different individuals, and even those obtained 

from the same person, remain as challenges to the researcher. Advancements in 

instrumentation and analytical methodologies have allowed progressively lower protein 

concentrations to be quantified at increasingly fast rates, and this has allowed access to 

proteins that were previously unattainable and allowed more thorough proteomic studies. 

The development of comprehensive panels of biomarkers with high sensitivity and 

specificity, which can account for different cancers and their subpopulations, will 

improve management of cancer patients. 

The biomarker candidates for ccRCC and HNOSCC, identified in our discovery 

phase studies, must still be validated on a larger set of samples. Proteins Gal-1, Prfl, 

LDHA, and ENOl, are currently being validated in hundreds of primary and metastatic 

ccRCC patients using IHC analysis in combination with patient clinical histories. 

After the biomarkers are validated, clinical assays based on ELISA or MRM-MS 

must be developed for clinical application. ELISA assays are considered to have the 

highest sensitivity, and zeptomoles of proteins have been detected [14], although its 

typical detection limit is on the attomole scale. The more recent MRM-MS-based 

targeted approach, using mass-spectrometers such as the AB SCIEX QTRAP 5500 

System, can quantify of over 1000 proteins in a single LC-MS analysis and has a 

detection limit comparable to ELISA, but a superior, 4-orders of magnitude, dynamic 

range [15]. 

213 



In summary, the focus of biomarker research today should be on the development 

of non-invasive biofluid-based biomarkers, and on the design of panels of diagnostic, 

prognostic, and predictive biomarkers which would make a significant impact on cancer 

patient management. 
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